WorldWideScience

Sample records for calibrating spectral estimation

  1. Effects of calibration methods on quantitative material decomposition in photon-counting spectral computed tomography using a maximum a posteriori estimator.

    Science.gov (United States)

    Curtis, Tyler E; Roeder, Ryan K

    2017-10-01

    Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in

  2. The Cross-Calibration of Spectral Radiances and Cross-Validation of CO2 Estimates from GOSAT and OCO-2

    Directory of Open Access Journals (Sweden)

    Fumie Kataoka

    2017-11-01

    Full Text Available The Greenhouse gases Observing SATellite (GOSAT launched in January 2009 has provided radiance spectra with a Fourier Transform Spectrometer for more than eight years. The Orbiting Carbon Observatory 2 (OCO-2 launched in July 2014, collects radiance spectra using an imaging grating spectrometer. Both sensors observe sunlight reflected from Earth’s surface and retrieve atmospheric carbon dioxide (CO2 concentrations, but use different spectrometer technologies, observing geometries, and ground track repeat cycles. To demonstrate the effectiveness of satellite remote sensing for CO2 monitoring, the GOSAT and OCO-2 teams have worked together pre- and post-launch to cross-calibrate the instruments and cross-validate their retrieval algorithms and products. In this work, we first compare observed radiance spectra within three narrow bands centered at 0.76, 1.60 and 2.06 µm, at temporally coincident and spatially collocated points from September 2014 to March 2017. We reconciled the differences in observation footprints size, viewing geometry and associated differences in surface bidirectional reflectance distribution function (BRDF. We conclude that the spectral radiances measured by the two instruments agree within 5% for all bands. Second, we estimated mean bias and standard deviation of column-averaged CO2 dry air mole fraction (XCO2 retrieved from GOSAT and OCO-2 from September 2014 to May 2016. GOSAT retrievals used Build 7.3 (V7.3 of the Atmospheric CO2 Observations from Space (ACOS algorithm while OCO-2 retrievals used Version 7 of the OCO-2 retrieval algorithm. The mean biases and standard deviations are −0.57 ± 3.33 ppm over land with high gain, −0.17 ± 1.48 ppm over ocean with high gain and −0.19 ± 2.79 ppm over land with medium gain. Finally, our study is complemented with an analysis of error sources: retrieved surface pressure (Psurf, aerosol optical depth (AOD, BRDF and surface albedo inhomogeneity. We found no change in XCO2

  3. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  4. Calibration with near-continuous spectral measurements

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik

    2001-01-01

    In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....

  5. Estimation of spectral kurtosis

    Science.gov (United States)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to

  6. Calibrating spectral images using penalized likelihood

    NARCIS (Netherlands)

    Heijden, van der G.W.A.M.; Glasbey, C.

    2003-01-01

    A new method is presented for automatic correction of distortions and for spectral calibration (which band corresponds to which wavelength) of spectral images recorded by means of a spectrograph. The method consists of recording a bar-like pattern with an illumination source with spectral bands

  7. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  8. Spectral emissivity of surface blackbody calibrators

    DEFF Research Database (Denmark)

    Clausen, Sønnik

    2007-01-01

    The normal spectral emissivity of commercial infrared calibrators is compared with measurements of anodized aluminum samples and grooved aluminum surfaces coated with Pyromark. Measurements performed by FTIR spectroscopy in the wavelength interval from 2 to 20 mu m and at temperatures between 5...

  9. Laser's calibration of an AOTF-based spectral colorimeter

    Science.gov (United States)

    Emelianov, Sergey P.; Khrustalev, Vladimir N.; Kochin, Leonid B.; Polosin, Lev L.

    2003-06-01

    The paper is devoted to expedients of AOTF spectral colorimeters calibration. The spectrometer method of color values measuring with reference to spectral colorimeters on AOTF surveyed. The theoretical exposition of spectrometer data processing expedients is offered. The justified source of radiation choice, suitable for calibration of spectral colorimeters is carried out. The experimental results for different acousto-optical mediums and modes of interaction are submitted.

  10. Relative spectral response calibration using Ti plasma lines

    Science.gov (United States)

    Teng, FEI; Congyuan, PAN; Qiang, ZENG; Qiuping, WANG; Xuewei, DU

    2018-04-01

    This work introduces the branching ratio (BR) method for determining relative spectral responses, which are needed routinely in laser induced breakdown spectroscopy (LIBS). Neutral and singly ionized Ti lines in the 250–498 nm spectral range are investigated by measuring laser-induced micro plasma near a Ti plate and used to calculate the relative spectral response of an entire LIBS detection system. The results are compared with those of the conventional relative spectral response calibration method using a tungsten halogen lamp, and certain lines available for the BR method are selected. The study supports the common manner of using BRs to calibrate the detection system in LIBS setups.

  11. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    Science.gov (United States)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  12. Abundance estimation of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available This paper evaluates a spectral unmixing method for estimating the partial abundance of spectrally similar minerals in complex mixtures. The method requires formulation of a linear function of individual spectra of individual minerals. The first...

  13. Fermentation process tracking through enhanced spectral calibration modeling.

    Science.gov (United States)

    Triadaphillou, Sophia; Martin, Elaine; Montague, Gary; Norden, Alison; Jeffkins, Paul; Stimpson, Sarah

    2007-06-15

    The FDA process analytical technology (PAT) initiative will materialize in a significant increase in the number of installations of spectroscopic instrumentation. However, to attain the greatest benefit from the data generated, there is a need for calibration procedures that extract the maximum information content. For example, in fermentation processes, the interpretation of the resulting spectra is challenging as a consequence of the large number of wavelengths recorded, the underlying correlation structure that is evident between the wavelengths and the impact of the measurement environment. Approaches to the development of calibration models have been based on the application of partial least squares (PLS) either to the full spectral signature or to a subset of wavelengths. This paper presents a new approach to calibration modeling that combines a wavelength selection procedure, spectral window selection (SWS), where windows of wavelengths are automatically selected which are subsequently used as the basis of the calibration model. However, due to the non-uniqueness of the windows selected when the algorithm is executed repeatedly, multiple models are constructed and these are then combined using stacking thereby increasing the robustness of the final calibration model. The methodology is applied to data generated during the monitoring of broth concentrations in an industrial fermentation process from on-line near-infrared (NIR) and mid-infrared (MIR) spectrometers. It is shown that the proposed calibration modeling procedure outperforms traditional calibration procedures, as well as enabling the identification of the critical regions of the spectra with regard to the fermentation process.

  14. Timing calibration and spectral cleaning of LOFAR time series data

    NARCIS (Netherlands)

    Corstanje, A.; Buitink, S.; Enriquez, J. E.; Falcke, H.; Horandel, J. R.; Krause, M.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    We describe a method for spectral cleaning and timing calibration of short time series data of the voltage in individual radio interferometer receivers. It makes use of phase differences in fast Fourier transform (FFT) spectra across antenna pairs. For strong, localized terrestrial sources these are

  15. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    Science.gov (United States)

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  16. Spectral responsivity-based calibration of photometer and colorimeter standards

    Science.gov (United States)

    Eppeldauer, George P.

    2013-08-01

    Several new generation transfer- and working-standard illuminance meters and tristimulus colorimeters have been developed at the National Institute of Standards and Technology (NIST) [1] to measure all kinds of light sources with low uncertainty. The spectral and broad-band (illuminance) responsivities of the photometer (Y) channels of two tristimulus meters were determined at both the Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS) facility and the Spectral Comparator Facility (SCF) [2]. The two illuminance responsivities agreed within 0.1% with an overall uncertainty of 0.2% (k = 2), which is a factor of two improvement over the present NIST photometric scale. The first detector-based tristimulus color scale [3] was realized. All channels of the reference tristimulus colorimeter were calibrated at the SIRCUS. The other tristimulus meters were calibrated at the SCF and also against the reference meter on the photometry bench in broad-band measurement mode. The agreement between detector- and source-based calibrations was within 3 K when a tungsten lamp-standard was measured at 2856 K and 3100 K [4]. The color-temperature uncertainty of tungsten lamp measurements was 4 K (k = 2) between 2300 K and 3200 K, which is a factor of two improvement over the presently used NIST source-based color temperature scale. One colorimeter was extended with an additional (fifth) channel to apply software implemented matrix corrections. With this correction, the spectral mismatch caused color difference errors were decreased by a factor of 20 for single-color LEDs.

  17. Angle of arrival estimation using spectral interferometry

    International Nuclear Information System (INIS)

    Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R.; Krishna Mohan, R.

    2010-01-01

    We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.

  18. Angle of arrival estimation using spectral interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Krishna Mohan, R., E-mail: krishna@spectrum.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.

  19. SPECTRAL RECONSTRUCTION BASED ON SVM FOR CROSS CALIBRATION

    Directory of Open Access Journals (Sweden)

    H. Gao

    2017-05-01

    Full Text Available Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor’s passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF, SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.

  20. "Calibration" system for spectral measurements and its experimental results

    Science.gov (United States)

    Bruchkouskaya, Sviatlana I.; Katkovsky, Leonid V.; Belyaev, Boris I.; Malyshev, Vladislav B.

    2017-04-01

    "Calibration" system has been developed at A. N. Sevchenko Research Institute of Applied Physical Problems of the Belarusian State University. It was designed for measuring the characteristics of spectral reflectance of all types of natural surfaces (test sites) in ground conditions or on board of aircraft carriers and has the following components: - Photospectroradiometr (PhSR) of high resolution with a range of 400-900 nm, equipped with a digital time-lapse video system; - Two-channel modular spectroradiometer (TMS) with a range of 400-900 nm, designed for simultaneous measurements of reflected light brightness of the underlying surface and the incident radiation from the upper hemisphere; - Two portable spectroradiometers (PSR-700 and PSR-1300) with a spectral range 800-1500 nm; 1200-2500 nm; - Scanning solar spectropolarimeter (SSP-600) with a range of 350-950 nm for measurements of direct sunlight and scattered by the atmosphere at different angles; "Calibration" system provides spectral resolution of 5.2 nm in a range of 400-900 nm, 10 nm in a range of 800-1500 nm and 15 nm in a range of 1200-2500 nm. Measurements of the optical characteristics of solar radiation (for determining parameters of the atmosphere) and that of underlying surface are synchronous. There is also a set of special nozzles for measurements of spectral brightness coefficients, polarization characteristics and spectral albedo. Spectra and images are geotagged to the navigation data (time, GPS). For the measurements of spectral reflection dependencies within "Monitoring-SG" framework expeditions to the Kuril Islands, Kursk aerospace test site and Kamchatka Peninsula were conducted in 2015 and 2016. The spectra of different underlying surfaces have been obtained: soils, plants and water objects, sedimentary and volcanic rocks. These surveys are a valuable material for further researches and selection of test facilities for flight calibration of space imaging systems. Information obtained

  1. In-Flight Spectral Calibration of the APEX Imaging Spectrometer Using Fraunhofer Lines

    Science.gov (United States)

    Kuhlmann, Gerrit; Hueni, Andreas; Damm, Aalexander; Brunner, Dominik

    2015-11-01

    The Airborne Prism EXperiment (APEX) is an imaging spectrometer which allows to observe atmospheric trace gases such as nitrogen dioxide (NO2). Using a high resolution spectrum of solar Fraunhofer lines, APEX measurements collected during flight have been spectrally calibrated for centre wavelength positions (CW) and instrument slit function (ISF) and compared to the laboratory calibration. We find that CWs depend strongly on both across- and along-track position due to spectral smile and CWs dependency on ambient pressure. The width of the ISF is larger than estimated from the laboratory calibration but can be described by a linear scaling of the laboratory values. The ISF width depends on across- but not on along-track direction. The results demonstrate the importance of characterizing and monitoring the instrument performance during flight and will be used to improve the Empa APEX NO2 retrieval algorithm.

  2. TP89 - SIRZ Decomposition Spectral Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, Isacc M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Azevedo, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, Jerel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, William D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Jr., Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    The primary objective of this test plan is to provide X-ray CT measurements of known materials for the purposes of generating and testing MicroCT and EDS spectral estimates. These estimates are to be used in subsequent Ze/RhoE decomposition analyses of acquired data.

  3. Preliminary report on NTS spectral gamma logging and calibration models

    International Nuclear Information System (INIS)

    Mathews, M.A.; Warren, R.G.; Garcia, S.R.; Lavelle, M.J.

    1985-01-01

    Facilities are now available at the Nevada Test Site (NTS) in Building 2201 to calibrate spectral gamma logging equipment in environments of low radioactivity. Such environments are routinely encountered during logging of holes at the NTS. Four calibration models were delivered to Building 2201 in January 1985. Each model, or test pit, consists of a stone block with a 12-inch diameter cored borehole. Preliminary radioelement values from the core for the test pits range from 0.58 to 3.83% potassium (K), 0.48 to 29.11 ppm thorium (Th), and 0.62 to 40.42 ppm uranium (U). Two satellite holes, U19ab number2 and U19ab number3, were logged during the winter of 1984-1985. The response of these logs correlates with contents of the naturally radioactive elements K. Th. and U determined in samples from petrologic zones that occur within these holes. Based on these comparisons, the spectral gamma log aids in the recognition and mapping of subsurface stratigraphic units and alteration features associated with unusual concentration of these radioactive elements, such as clay-rich zones

  4. Nonparametric Collective Spectral Density Estimation and Clustering

    KAUST Repository

    Maadooliat, Mehdi

    2017-04-12

    In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at

  5. Nonparametric Collective Spectral Density Estimation and Clustering

    KAUST Repository

    Maadooliat, Mehdi; Sun, Ying; Chen, Tianbo

    2017-01-01

    In this paper, we develop a method for the simultaneous estimation of spectral density functions (SDFs) for a collection of stationary time series that share some common features. Due to the similarities among the SDFs, the log-SDF can be represented using a common set of basis functions. The basis shared by the collection of the log-SDFs is estimated as a low-dimensional manifold of a large space spanned by a pre-specified rich basis. A collective estimation approach pools information and borrows strength across the SDFs to achieve better estimation efficiency. Also, each estimated spectral density has a concise representation using the coefficients of the basis expansion, and these coefficients can be used for visualization, clustering, and classification purposes. The Whittle pseudo-maximum likelihood approach is used to fit the model and an alternating blockwise Newton-type algorithm is developed for the computation. A web-based shiny App found at

  6. A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models

    International Nuclear Information System (INIS)

    Xu, Jin; Yu, Yaming; Van Dyk, David A.; Kashyap, Vinay L.; Siemiginowska, Aneta; Drake, Jeremy; Ratzlaff, Pete; Connors, Alanna; Meng, Xiao-Li

    2014-01-01

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  7. Robust power spectral estimation for EEG data.

    Science.gov (United States)

    Melman, Tamar; Victor, Jonathan D

    2016-08-01

    Typical electroencephalogram (EEG) recordings often contain substantial artifact. These artifacts, often large and intermittent, can interfere with quantification of the EEG via its power spectrum. To reduce the impact of artifact, EEG records are typically cleaned by a preprocessing stage that removes individual segments or components of the recording. However, such preprocessing can introduce bias, discard available signal, and be labor-intensive. With this motivation, we present a method that uses robust statistics to reduce dependence on preprocessing by minimizing the effect of large intermittent outliers on the spectral estimates. Using the multitaper method (Thomson, 1982) as a starting point, we replaced the final step of the standard power spectrum calculation with a quantile-based estimator, and the Jackknife approach to confidence intervals with a Bayesian approach. The method is implemented in provided MATLAB modules, which extend the widely used Chronux toolbox. Using both simulated and human data, we show that in the presence of large intermittent outliers, the robust method produces improved estimates of the power spectrum, and that the Bayesian confidence intervals yield close-to-veridical coverage factors. The robust method, as compared to the standard method, is less affected by artifact: inclusion of outliers produces fewer changes in the shape of the power spectrum as well as in the coverage factor. In the presence of large intermittent outliers, the robust method can reduce dependence on data preprocessing as compared to standard methods of spectral estimation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Spectral analysis of the IntCal98 calibration curve: a Bayesian view

    International Nuclear Information System (INIS)

    Palonen, V.; Tikkanen, P.

    2004-01-01

    Preliminary results from a Bayesian approach to find periodicities in the IntCal98 calibration curve are given. It has been shown in the literature that the discrete Fourier transform (Schuster periodogram) corresponds to the use of an approximate Bayesian model of one harmonic frequency and Gaussian noise. Advantages of the Bayesian approach include the possibility to use models for variable, attenuated and multiple frequencies, the capability to analyze unevenly spaced data and the possibility to assess the significance and uncertainties of spectral estimates. In this work, a new Bayesian model using random walk noise to take care of the trend in the data is developed. Both Bayesian models are described and the first results of the new model are reported and compared with results from straightforward discrete-Fourier-transform and maximum-entropy-method spectral analyses

  9. MODIS Aqua Optical Throughput Degradation Impact on Relative Spectral Response and Calibration on Ocean Color Products

    Science.gov (United States)

    Lee, Shihyan; Meister, Gerhard

    2017-01-01

    Since Moderate Resolution Imaging Spectroradiometer Aqua's launch in 2002, the radiometric system gains of the reflective solar bands have been degrading, indicating changes in the systems optical throughput. To estimate the optical throughput degradation, the electronic gain changes were estimated and removed from the measured system gain. The derived optical throughput degradation shows a rate that is much faster in the shorter wavelengths than the longer wavelengths. The wavelength-dependent optical throughput degradation modulated the relative spectral response (RSR) of the bands. In addition, the optical degradation is also scan angle-dependent due to large changes in response versus the scan angle over time. We estimated the modulated RSR as a function of time and scan angles and its impacts on sensor radiometric calibration for the ocean science. Our results show that the calibration bias could be up to 1.8 % for band 8 (412 nm) due to its larger out-of-band response. For the other ocean bands, the calibration biases are much smaller with magnitudes at least one order smaller.

  10. Estimating the Spectral Width of a Narrowband Optical Signal

    DEFF Research Database (Denmark)

    Lading, Lars; Skov Jensen, A.

    1980-01-01

    Methods for estimating the spectral width of a narrowband optical signal are investigated. Spectral analysis and Fourier spectroscopy are compared. Optimum and close-to-optimum estimators are developed under the constraint of having only one photodetector.......Methods for estimating the spectral width of a narrowband optical signal are investigated. Spectral analysis and Fourier spectroscopy are compared. Optimum and close-to-optimum estimators are developed under the constraint of having only one photodetector....

  11. An efficient quantum algorithm for spectral estimation

    Science.gov (United States)

    Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth

    2017-03-01

    We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.

  12. Spectral estimation for characterization of acoustic aberration.

    Science.gov (United States)

    Varslot, Trond; Angelsen, Bjørn; Waag, Robert C

    2004-07-01

    Spectral estimation based on acoustic backscatter from a motionless stochastic medium is described for characterization of aberration in ultrasonic imaging. The underlying assumptions for the estimation are: The correlation length of the medium is short compared to the length of the transmitted acoustic pulse, an isoplanatic region of sufficient size exists around the focal point, and the backscatter can be modeled as an ergodic stochastic process. The motivation for this work is ultrasonic imaging with aberration correction. Measurements were performed using a two-dimensional array system with 80 x 80 transducer elements and an element pitch of 0.6 mm. The f number for the measurements was 1.2 and the center frequency was 3.0 MHz with a 53% bandwidth. Relative phase of aberration was extracted from estimated cross spectra using a robust least-mean-square-error method based on an orthogonal expansion of the phase differences of neighboring wave forms as a function of frequency. Estimates of cross-spectrum phase from measurements of random scattering through a tissue-mimicking aberrator have confidence bands approximately +/- 5 degrees wide. Both phase and magnitude are in good agreement with a reference characterization obtained from a point scatterer.

  13. A single model procedure for estimating tank calibration equations

    International Nuclear Information System (INIS)

    Liebetrau, A.M.

    1997-10-01

    A fundamental component of any accountability system for nuclear materials is a tank calibration equation that relates the height of liquid in a tank to its volume. Tank volume calibration equations are typically determined from pairs of height and volume measurements taken in a series of calibration runs. After raw calibration data are standardized to a fixed set of reference conditions, the calibration equation is typically fit by dividing the data into several segments--corresponding to regions in the tank--and independently fitting the data for each segment. The estimates obtained for individual segments must then be combined to obtain an estimate of the entire calibration function. This process is tedious and time-consuming. Moreover, uncertainty estimates may be misleading because it is difficult to properly model run-to-run variability and between-segment correlation. In this paper, the authors describe a model whose parameters can be estimated simultaneously for all segments of the calibration data, thereby eliminating the need for segment-by-segment estimation. The essence of the proposed model is to define a suitable polynomial to fit to each segment and then extend its definition to the domain of the entire calibration function, so that it (the entire calibration function) can be expressed as the sum of these extended polynomials. The model provides defensible estimates of between-run variability and yields a proper treatment of between-segment correlations. A portable software package, called TANCS, has been developed to facilitate the acquisition, standardization, and analysis of tank calibration data. The TANCS package was used for the calculations in an example presented to illustrate the unified modeling approach described in this paper. With TANCS, a trial calibration function can be estimated and evaluated in a matter of minutes

  14. Consequences of Secondary Calibrations on Divergence Time Estimates.

    Directory of Open Access Journals (Sweden)

    John J Schenk

    Full Text Available Secondary calibrations (calibrations based on the results of previous molecular dating studies are commonly applied in divergence time analyses in groups that lack fossil data; however, the consequences of applying secondary calibrations in a relaxed-clock approach are not fully understood. I tested whether applying the posterior estimate from a primary study as a prior distribution in a secondary study results in consistent age and uncertainty estimates. I compared age estimates from simulations with 100 randomly replicated secondary trees. On average, the 95% credible intervals of node ages for secondary estimates were significantly younger and narrower than primary estimates. The primary and secondary age estimates were significantly different in 97% of the replicates after Bonferroni corrections. Greater error in magnitude was associated with deeper than shallower nodes, but the opposite was found when standardized by median node age, and a significant positive relationship was determined between the number of tips/age of secondary trees and the total amount of error. When two secondary calibrated nodes were analyzed, estimates remained significantly different, and although the minimum and median estimates were associated with less error, maximum age estimates and credible interval widths had greater error. The shape of the prior also influenced error, in which applying a normal, rather than uniform, prior distribution resulted in greater error. Secondary calibrations, in summary, lead to a false impression of precision and the distribution of age estimates shift away from those that would be inferred by the primary analysis. These results suggest that secondary calibrations should not be applied as the only source of calibration in divergence time analyses that test time-dependent hypotheses until the additional error associated with secondary calibrations is more properly modeled to take into account increased uncertainty in age estimates.

  15. Uncertainty Analysis of Spectral Irradiance Reference Standards Used for NREL Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Andreas, A.; Reda, I.; Campanelli, M.; Stoffel, T.

    2013-05-01

    Spectral irradiance produced by lamp standards such as the National Institute of Standards and Technology (NIST) FEL-type tungsten halogen lamps are used to calibrate spectroradiometers at the National Renewable Energy Laboratory. Spectroradiometers are often used to characterize spectral irradiance of solar simulators, which in turn are used to characterize photovoltaic device performance, e.g., power output and spectral response. Therefore, quantifying the calibration uncertainty of spectroradiometers is critical to understanding photovoltaic system performance. In this study, we attempted to reproduce the NIST-reported input variables, including the calibration uncertainty in spectral irradiance for a standard NIST lamp, and quantify uncertainty for measurement setup at the Optical Metrology Laboratory at the National Renewable Energy Laboratory.

  16. Correction for spectral mismatch effects on the calibration of a solar cell when using a solar simulator

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, C.H.

    1981-01-15

    A general expression has been derived to enable calculation of the calibration error resulting from simulator-solar AMX spectral mismatch and from reference cell-test cell spectral mismatch. The information required includes the relative spectral response of the reference cell, the relative spectral response of the cell under test, and the relative spectral irradiance of the simulator (over the spectral range defined by cell response). The spectral irradiance of the solar AMX is assumed to be known.

  17. Estimation of uncertainty in TLD calibration

    International Nuclear Information System (INIS)

    Hasabelrasoul, H. A.

    2013-07-01

    In this study thermoluminescence dosimeter TLD was use of individual control devices to make sure the quality assurance and quality control in individual monitoring. The uncertainty measured in reader calibration coefficients for tow reader and uncertainty in radiation dose after irradiate in SSDL laboratory. Fifty sample was selected for the study was placed in the oven at a temperature of 400 for an hour to get zero or background and took zero count by or background and took zero count by reader (1) and reader (2) and then irradiate in SSDL by cesium-137 at a dose of 5 mGy and laid back in the oven at degrees 100 and degrees 10 minutes, to 10 chips for calibration and readout count by reader one and reader two. The RCF was found for each reader above 1.47 and 1.11, respectively, and found the uncertainty RCF was found for each reader above 1.47 and 1.11, respectively, and found the uncertainly RCF 0.430629 and 0.431973. Radiation dose was measured for fifty samples irradiate to dose of 5 mGy and read the count by reader 1 and reader 2 the uncertainty was found for each reader 0.490446 and 0.587602.(Author)

  18. Using AVIRIS for in-flight calibration of the spectral shifts of SPOT-HRV and of AVHRR?

    Science.gov (United States)

    Willart-Soufflet, Veronique; Santer, Richard

    1993-01-01

    The response of a satellite sensor varies during its lifetime; internal calibration devices can be used to follow the sensor degradation or in-flight calibrations are conducted from estimates of the radiance at satellite level for well predictable situations. Changes in gain are evaluated assuming that the spectral response of the sensor is stable with time; i.e., that the filter response as well as the optics or the electronics are not modified since the prelaunch determinations. Nevertheless, there is some evidence that the SPOT interferometer filters are affected by outgassing effects during the launch. Tests in vacuum chambers indicated a narrowing of the filters with a shift of the upper side towards the blue of about 10 nm which is more over consistant with the loss of gain observed during the launch. Also, during the lifetime of SPOT, the relationship between the loss of sensitivity and the filter bandwidth may correspond to this effect. On the other hand, the inconsistancy of the NOAA7 calibration between two methods (desert and ocean) having a different spectral sensitivity may indicate a spectral problem with a shift of the central wavelength of -20 nm. The basic idea here is to take advantage of the good spectral definition of AVIRIS to monitor these potential spectral degradations with an experimental opportunity provided by a field campaign held in La Crau (S.E. of France) in June 1991 which associated ground-based measurements and AVIRIS, SPOT2, NOAA-11 overpasses over both the calibration site of La Crau and an agricultural area.

  19. Impact of calibration on estimates of central blood pressures.

    Science.gov (United States)

    Soender, T K; Van Bortel, L M; Møller, J E; Lambrechtsen, J; Hangaard, J; Egstrup, K

    2012-12-01

    Using the Sphygmocor device it is recommended that the radial pressure wave is calibrated for brachial systolic blood pressure (SBP) and diastolic blood pressure (DBP). However it has been suggested that brachial-to-radial pressure amplification causes underestimation of central blood pressures (BPs) using this calibration. In the present study we examined if different calibrations had an impact on estimates of central BPs and on the clinical interpretation of our results. On the basis of ambulatory BP measurements, patients were categorized into patients with controlled, uncontrolled or resistant hypertension. We first calibrated the radial pressure wave as recommended and afterwards recalibrated the same pressure wave using brachial DBP and calculated mean arterial pressure. Recalibration of the pressure wave generated significantly higher estimates of central SBP (P=0.0003 and Plost in patients with resistant hypertension (P=0.15). We conclude that calibration with DBP and mean arterial pressure produces higher estimates of central BPs than recommended calibration. The present study also shows that this difference between the two calibration methods can produce more than a systematic error and has an impact on interpretation of clinical results.

  20. Herschel SPIRE FTS spectral line source calibrators

    DEFF Research Database (Denmark)

    Hopwood, Rosalind; Polehampton, Edward; Valtchanov, Ivan

    2015-01-01

    We present a summary of the Herschel SPIRE/FTS calibration programme to monitor the repeatability of spectral lines. Observations of planetary nebulae and post-AGB stars are used to assess repeatability and model the asymmetry of the instrument line shape.......We present a summary of the Herschel SPIRE/FTS calibration programme to monitor the repeatability of spectral lines. Observations of planetary nebulae and post-AGB stars are used to assess repeatability and model the asymmetry of the instrument line shape....

  1. Estimation of photon energy distribution in gamma calibration field

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shimizu, Shigeru; Yamaguchi, Yasuhiro

    1997-03-01

    Photon survey instruments used for radiation protection are usually calibrated at gamma radiation fields, which are traceable to the national standard with regard to exposure. Whereas scattered radiations as well as primary gamma-rays exit in the calibration field, no consideration for the effect of the scattered radiations on energy distribution is given in routine calibration works. The scattered radiations can change photon energy spectra in the field, and this can result in misinterpretations of energy-dependent instrument responses. Construction materials in the field affect the energy distribution and magnitude of the scattered radiations. The geometric relationship between a gamma source and an instrument can determine the energy distribution at the calibration point. Therefore, it is essential for the assurance of quality calibration to estimate the energy spectra at the gamma calibration fields. Then, photon energy distributions at some fields in the Facility of Radiation Standard of the Japan Atomic Energy Research Institute (JAERI) were estimated by measurements using a NaI(Tl) detector and Monte Carlo calculations. It was found that the use of collimator gives a different feature in photon energy distribution. The origin of scattered radiations and the ratio of the scattered radiations to the primary gamma-rays were obtained. The results can help to improve the calibration of photon survey instruments in the JAERI. (author)

  2. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  3. Fundamental limits of radio interferometers: calibration and source parameter estimation

    OpenAIRE

    Trott, Cathryn M.; Wayth, Randall B.; Tingay, Steven J.

    2012-01-01

    We use information theory to derive fundamental limits on the capacity to calibrate next-generation radio interferometers, and measure parameters of point sources for instrument calibration, point source subtraction, and data deconvolution. We demonstrate the implications of these fundamental limits, with particular reference to estimation of the 21cm Epoch of Reionization power spectrum with next-generation low-frequency instruments (e.g., the Murchison Widefield Array -- MWA, Precision Arra...

  4. Polarized Redundant-Baseline Calibration for 21 cm Cosmology Without Adding Spectral Structure

    Science.gov (United States)

    Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.

    2018-04-01

    21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly-constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally-smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.

  5. A single model procedure for tank calibration function estimation

    International Nuclear Information System (INIS)

    York, J.C.; Liebetrau, A.M.

    1995-01-01

    Reliable tank calibrations are a vital component of any measurement control and accountability program for bulk materials in a nuclear reprocessing facility. Tank volume calibration functions used in nuclear materials safeguards and accountability programs are typically constructed from several segments, each of which is estimated independently. Ideally, the segments correspond to structural features in the tank. In this paper the authors use an extension of the Thomas-Liebetrau model to estimate the entire calibration function in a single step. This procedure automatically takes significant run-to-run differences into account and yields an estimate of the entire calibration function in one operation. As with other procedures, the first step is to define suitable calibration segments. Next, a polynomial of low degree is specified for each segment. In contrast with the conventional practice of constructing a separate model for each segment, this information is used to set up the design matrix for a single model that encompasses all of the calibration data. Estimation of the model parameters is then done using conventional statistical methods. The method described here has several advantages over traditional methods. First, modeled run-to-run differences can be taken into account automatically at the estimation step. Second, no interpolation is required between successive segments. Third, variance estimates are based on all the data, rather than that from a single segment, with the result that discontinuities in confidence intervals at segment boundaries are eliminated. Fourth, the restrictive assumption of the Thomas-Liebetrau method, that the measured volumes be the same for all runs, is not required. Finally, the proposed methods are readily implemented using standard statistical procedures and widely-used software packages

  6. Optimized Spectrometers Characterization Procedure for Near Ground Support of ESA FLEX Observations: Part 1 Spectral Calibration and Characterisation

    Directory of Open Access Journals (Sweden)

    Laura Mihai

    2018-02-01

    Full Text Available The paper presents two procedures for the wavelength calibration, in the oxygen telluric absorption spectral bands (O2-A, λc = 687 nm and O2-B, λc = 760.6 nm, of field fixed-point spectrometers used for reflectance and Sun-induced fluorescence measurements. In the first case, Ne and Ar pen-type spectral lamps were employed, while the second approach is based on a double monochromator setup. The double monochromator system was characterized for the estimation of errors associated with different operating configurations. The proposed methods were applied to three Piccolo Doppio-type systems built around two QE Pros and one USB2 + H16355 Ocean Optics spectrometers. The wavelength calibration errors for all the calibrations performed on the three spectrometers are reported and potential methodological improvements discussed. The suggested calibration methods were validated, as the wavelength corrections obtained by both techniques for the QE Pro designed for fluorescence investigations were similar. However, it is recommended that a neon emission line source, as well as an argon or mercury-argon source be used to have a reference wavelength closer to the O2-B feature. The wavelength calibration can then be optimised as close to the O2-B and O2-A features as possible. The monochromator approach could also be used, but that instrument would need to be fully characterized prior to use, and although it may offer a more accurate calibration, as it could be tuned to emit light at the same wavelengths as the absorption features, it would be more time consuming as it is a scanning approach.

  7. Stability estimates for hp spectral element methods for general ...

    Indian Academy of Sciences (India)

    We establish basic stability estimates for a non-conforming ℎ- spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are non-conforming if the boundary conditions are Dirichlet. For problems with mixed boundary conditions they are ...

  8. Algorithms for spectral calibration of energy-resolving small-pixel detectors

    International Nuclear Information System (INIS)

    Scuffham, J; Veale, M C; Wilson, M D; Seller, P

    2013-01-01

    Small pixel Cd(Zn)Te detectors often suffer from inter-pixel variations in gain, resulting in shifts in the individual energy spectra. These gain variations are mainly caused by inclusions and defects within the crystal structure, which affect the charge transport within the material causing a decrease in the signal pulse height. In imaging applications, spectra are commonly integrated over a particular peak of interest. This means that the individual pixels must be accurately calibrated to ensure that the same portion of the spectrum is integrated in every pixel. The development of large-area detectors with fine pixel pitch necessitates automated algorithms for this spectral calibration, due to the very large number of pixels. Algorithms for automatic spectral calibration require accurate determination of characteristic x-ray or photopeak positions on a pixelwise basis. In this study, we compare two peak searching spectral calibration algorithms for a small-pixel CdTe detector in gamma spectroscopic imaging. The first algorithm uses rigid search ranges to identify peaks in each pixel spectrum, based on the average peak positions across all pixels. The second algorithm scales the search ranges on the basis of the position of the highest-energy peak relative to the average across all pixels. In test spectra acquired with Tc-99m, we found that the rigid search algorithm failed to correctly identify the target calibraton peaks in up to 4% of pixels. In contrast, the scaled search algorithm failed in only 0.16% of pixels. Failures in the scaled search algorithm were attributed to the presence of noise events above the main photopeak, and possible non-linearities in the spectral response in a small number of pixels. We conclude that a peak searching algorithm based on scaling known peak spacings is simple to implement and performs well for the spectral calibration of pixellated radiation detectors

  9. Spectral Irradiance Calibration in the Infrared. XIV: the Absolute Calibration of 2MASS

    OpenAIRE

    Cohen, Martin; Wheaton, Wm. A.; Megeath, S. T.

    2003-01-01

    Element-by-element we have combined the optical components in the three 2MASS cameras, and incorporated detector quantum efficiency curves and site-specific atmospheric transmissions, to create three relative spectral response curves (RSRs). We provide absolute 2MASS attributes associated with "zero magnitude" in the JHKs bands so that these RSRs may be used for synthetic photometry. The RSRs tie 2MASS to the Cohen-Walker-Witteborn framework of absolute photometry and spectra for the purpose ...

  10. Spectral Estimation by the Random Dec Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Jensen, Jacob L.; Krenk, Steen

    1990-01-01

    This paper contains an empirical study of the accuracy of the Random Dec (RDD) technique. Realizations of the response from a single-degree-of-freedom system loaded by white noise are simulated using an ARMA model. The Autocorrelation function is estimated using the RDD technique and the estimated...

  11. Spectral Estimation by the Random DEC Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Jensen, J. Laigaard; Krenk, S.

    This paper contains an empirical study of the accuracy of the Random Dec (RDD) technique. Realizations of the response from a single-degree-of-freedom system loaded by white noise are simulated using an ARMA model. The Autocorrelation function is estimated using the RDD technique and the estimated...

  12. Spectral Velocity Estimation in the Transverse Direction

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2013-01-01

    A method for estimating the velocity spectrum for a fully transverse flow at a beam-to-flow angle of 90is described. The approach is based on the transverse oscillation (TO) method, where an oscillation across the ultrasound beam is made during receive processing. A fourth-order estimator based...... on the correlation of the received signal is derived. A Fourier transform of the correlation signal yields the velocity spectrum. Performing the estimation for short data segments gives the velocity spectrum as a function of time as for ordinary spectrograms, and it also works for a beam-to-flow angle of 90...... estimation scheme can reliably find the spectrum at 90, where a traditional estimator yields zero velocity. Measurements have been conducted with the SARUS experimental scanner and a BK 8820e convex array transducer (BK Medical, Herlev, Denmark). A CompuFlow 1000 (Shelley Automation, Inc, Toronto, Canada...

  13. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  14. Scientific and Engineering Studies; Spectral Estimation.

    Science.gov (United States)

    1977-01-01

    L NIfN-l DE6X.I,/N ISZN/16 S=IS0ED. 114-zINTI|L0OG(|FL0t.O(M)) *1.ti427,5) CALL OTRCOS(CNe,) CAL QTRCO$(cMr*t) CA6 .L "ODEUS(ZvO) CAL StBJEi,(Z5. -00...6lNES6(Z#,PLAT(IP)emLOO.) CALL SLTS*6(Zo~nelo) CALL 6141S&(Z#O.SseemLOO) CALL LLCSLL5e. CA6 .L L1NLSa(Zokl 16*einLOO.) CALL 61N4ESS(Z@1L.0-1000OO) CA6L...square error of the MC estimate § can be obtained. A significant difference now exists between treatment of the MC estimate and the MSC estimate: whereas

  15. Preliminary evaluation of vector flow and spectral velocity estimation

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    Spectral estimation is considered as the golden standard in ultrasound velocity estimation. For spectral velocity estimation the blood flow angle is set by the ultrasound operator. Vector flow provides temporal and spatial estimates of the blood flow angle and velocity. A comparison of vector flow...... line covering the vessel diameter. A commercial ultrasound scanner (ProFocus 2202, BK Medical, Denmark) and a 7.6 MHz linear transducer was used (8670, BK Medical). The mean vector blood flow angle estimations were calculated {52(18);55(23);60(16)}°. For comparison the fixed angles for spectral...... estimation were obtained {52;56;52}°. The mean vector velocity estimates at PS {76(15);95(17);77(16)}cm/s and at end diastole (ED) {17(6);18(6);24(6)}cm/s were calculated. For comparison spectral velocity estimates at PS {77;110;76}cm/s and ED {18;18;20}cm/s were obtained. The mean vector angle estimates...

  16. Auditory color constancy: calibration to reliable spectral properties across nonspeech context and targets.

    Science.gov (United States)

    Stilp, Christian E; Alexander, Joshua M; Kiefte, Michael; Kluender, Keith R

    2010-02-01

    Brief experience with reliable spectral characteristics of a listening context can markedly alter perception of subsequent speech sounds, and parallels have been drawn between auditory compensation for listening context and visual color constancy. In order to better evaluate such an analogy, the generality of acoustic context effects for sounds with spectral-temporal compositions distinct from speech was investigated. Listeners identified nonspeech sounds-extensively edited samples produced by a French horn and a tenor saxophone-following either resynthesized speech or a short passage of music. Preceding contexts were "colored" by spectral envelope difference filters, which were created to emphasize differences between French horn and saxophone spectra. Listeners were more likely to report hearing a saxophone when the stimulus followed a context filtered to emphasize spectral characteristics of the French horn, and vice versa. Despite clear changes in apparent acoustic source, the auditory system calibrated to relatively predictable spectral characteristics of filtered context, differentially affecting perception of subsequent target nonspeech sounds. This calibration to listening context and relative indifference to acoustic sources operates much like visual color constancy, for which reliable properties of the spectrum of illumination are factored out of perception of color.

  17. Radiometric and spectral calibrations of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) using principle component analysis

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-10-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is

  18. Solar Spectral Lines with Special Polarization Properties for the Calibration of Instrument Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Casini, R.; Alemán, T. del Pino; Judge, P. G. [High Altitude Observatory, National Center for Atmospheric Research 1, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-10-20

    We investigate atomic transitions that have previously been identified as having zero polarization from the Zeeman effect. Our goal is to identify spectral lines that can be used for the calibration of instrumental polarization of large astronomical and solar telescopes, such as the Daniel K. Inouye Solar Telescope, which is currently under construction on Haleakala. We use a numerical model that takes into account the generation of scattering polarization and its modification by the presence of a magnetic field of arbitrary strength. We adopt values for the Landé factors from spectroscopic measurements or semi-empirical results, thus relaxing the common assumption of LS-coupling previously used in the literature. The mechanisms dominating the polarization of particular transitions are identified, and we summarize groups of various spectral lines useful for the calibration of spectropolarimetric instruments, classified according to their polarization properties.

  19. Evaluating the capabilities of vegetation spectral indices on chlorophyll content estimation at Sentinel-2 spectral resolutions

    Science.gov (United States)

    Sun, Qi; Jiao, Quanjun; Dai, Huayang

    2018-03-01

    Chlorophyll is an important pigment in green plants for photosynthesis and obtaining the energy for growth and development. The rapid, nondestructive and accurate estimation of chlorophyll content is significant for understanding the crops growth, monitoring the disease and insect, and assessing the yield of crops. Sentinel-2 equipped with the Multi-Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region and a spatial resolution of 20nm, which can be used to derive vegetation indices using red-edge bands. In this paper, we will focus on assessing the potential of vegetation spectral indices for retrieving chlorophyll content from Sentinel-2 at different angles. Subsequently, we used in-situ spectral data and Sentinel-2 data to test the relationship between VIs and chlorophyll content. The REP, MTCI, CIred-edge, CIgreen, Macc01, TCARI/OSAVI [705,750], NDRE1 and NDRE2 were calculated. NDRE2 index displays a strongly similar result for hyperspectral and simulated Sentinel-2 spectral bands (R2 =0.53, R2 =0.51, for hyperspectral and Sentinel-2, respectively). At different observation angles, NDRE2 has the smallest difference in performance (R2 = 0.51, R2 =0.64, at 0° and 15° , respectively).

  20. Energy Calibration of the Pixels of Spectral X-ray Detectors

    CERN Document Server

    Panta, Raj Kumar; Bell, Stephen T; Anderson, Nigel G; Butler, Anthony P; Butler, Philip H

    2015-01-01

    The energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment. This is due to the requirements of using monochromatic radiation sources such as synchrotron, radio-isotopes, and prohibitively long time needed to set up the equipment and make measurements. To address these limitations, we have developed an automated technique for calibrating the energy response of the pixels in a spectral X-ray detector that runs with minimal user intervention. This technique uses the X-ray tube voltage (kVp) as a reference energy, which is stepped through an energy range of interest. This technique locates the energy threshold where a pixel transitions from not-counting (off) to counting (on). Similarly, we have deve...

  1. Calibrating recruitment estimates for mourning doves from harvest age ratios

    Science.gov (United States)

    Miller, David A.; Otis, David L.

    2010-01-01

    We examined results from the first national-scale effort to estimate mourning dove (Zenaida macroura) age ratios and developed a simple, efficient, and generalizable methodology for calibrating estimates. Our method predicted age classes of unknown-age wings based on backward projection of molt distributions from fall harvest collections to preseason banding. We estimated 1) the proportion of late-molt individuals in each age class, and 2) the molt rates of juvenile and adult birds. Monte Carlo simulations demonstrated our estimator was minimally biased. We estimated model parameters using 96,811 wings collected from hunters and 42,189 birds banded during preseason from 68 collection blocks in 22 states during the 2005–2007 hunting seasons. We also used estimates to derive a correction factor, based on latitude and longitude of samples, which can be applied to future surveys. We estimated differential vulnerability of age classes to harvest using data from banded birds and applied that to harvest age ratios to estimate population age ratios. Average, uncorrected age ratio of known-age wings for states that allow hunting was 2.25 (SD 0.85) juveniles:adult, and average, corrected ratio was 1.91 (SD 0.68), as determined from harvest age ratios from an independent sample of 41,084 wings collected from random hunters in 2007 and 2008. We used an independent estimate of differential vulnerability to adjust corrected harvest age ratios and estimated the average population age ratio as 1.45 (SD 0.52), a direct measure of recruitment rates. Average annual recruitment rates were highest east of the Mississippi River and in the northwestern United States, with lower rates between. Our results demonstrate a robust methodology for calibrating recruitment estimates for mourning doves and represent the first large-scale estimates of recruitment for the species. Our methods can be used by managers to correct future harvest survey data to generate recruitment estimates for use in

  2. Using LUCAS topsoil database to estimate soil organic carbon content in local spectral libraries

    Science.gov (United States)

    Castaldi, Fabio; van Wesemael, Bas; Chabrillat, Sabine; Chartin, Caroline

    2017-04-01

    The quantification of the soil organic carbon (SOC) content over large areas is mandatory to obtain accurate soil characterization and classification, which can improve site specific management at local or regional scale exploiting the strong relationship between SOC and crop growth. The estimation of the SOC is not only important for agricultural purposes: in recent years, the increasing attention towards global warming highlighted the crucial role of the soil in the global carbon cycle. In this context, soil spectroscopy is a well consolidated and widespread method to estimate soil variables exploiting the interaction between chromophores and electromagnetic radiation. The importance of spectroscopy in soil science is reflected by the increasing number of large soil spectral libraries collected in the world. These large libraries contain soil samples derived from a consistent number of pedological regions and thus from different parent material and soil types; this heterogeneity entails, in turn, a large variability in terms of mineralogical and organic composition. In the light of the huge variability of the spectral responses to SOC content and composition, a rigorous classification process is necessary to subset large spectral libraries and to avoid the calibration of global models failing to predict local variation in SOC content. In this regard, this study proposes a method to subset the European LUCAS topsoil database into soil classes using a clustering analysis based on a large number of soil properties. The LUCAS database was chosen to apply a standardized multivariate calibration approach valid for large areas without the need for extensive field and laboratory work for calibration of local models. Seven soil classes were detected by the clustering analyses and the samples belonging to each class were used to calibrate specific partial least square regression (PLSR) models to estimate SOC content of three local libraries collected in Belgium (Loam belt

  3. Estimation and analysis of spectral solar radiation over Cairo

    International Nuclear Information System (INIS)

    Abdel Wahab, M.M.; Omran, M.

    1994-05-01

    This work presents a methodology to estimate spectral diffuse and global radiation on horizontal surface. This method is validated by comparing with measured direct and global spectral radiation in four bands. The results show a good performance in cloudless conditions. The analysis of the ratio of surface values to extraterrestrial ones revealed an over-all depletion in the summer months. Also there was no evidence for any tendency for conversion of radiational components through different bands. The model presents excellent agreement with the measured values for (UV/G) ratio. (author). 7 refs, 4 figs, 3 tabs

  4. Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Reda, I.; Andreas, A.; Konings, J.

    2014-11-01

    Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.

  5. TES Level 1 Algorithms: Interferogram Processing, Geolocation, Radiometric, and Spectral Calibration

    Science.gov (United States)

    Worden, Helen; Beer, Reinhard; Bowman, Kevin W.; Fisher, Brendan; Luo, Mingzhao; Rider, David; Sarkissian, Edwin; Tremblay, Denis; Zong, Jia

    2006-01-01

    The Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite measures the infrared radiance emitted by the Earth's surface and atmosphere using Fourier transform spectrometry. The measured interferograms are converted into geolocated, calibrated radiance spectra by the L1 (Level 1) processing, and are the inputs to L2 (Level 2) retrievals of atmospheric parameters, such as vertical profiles of trace gas abundance. We describe the algorithmic components of TES Level 1 processing, giving examples of the intermediate results and diagnostics that are necessary for creating TES L1 products. An assessment of noise-equivalent spectral radiance levels and current systematic errors is provided. As an initial validation of our spectral radiances, TES data are compared to the Atmospheric Infrared Sounder (AIRS) (on EOS Aqua), after accounting for spectral resolution differences by applying the AIRS spectral response function to the TES spectra. For the TES L1 nadir data products currently available, the agreement with AIRS is 1 K or better.

  6. Blood velocity estimation using ultrasound and spectral iterative adaptive approaches

    DEFF Research Database (Denmark)

    Gudmundson, Erik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2011-01-01

    -mode images are interleaved with the Doppler emissions. Furthermore, the techniques are shown, using both simplified and more realistic Field II simulations as well as in vivo data, to outperform current state-of-the-art techniques, allowing for accurate estimation of the blood velocity spectrum using only 30......This paper proposes two novel iterative data-adaptive spectral estimation techniques for blood velocity estimation using medical ultrasound scanners. The techniques make no assumption on the sampling pattern of the emissions or the depth samples, allowing for duplex mode transmissions where B...

  7. Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)

    Science.gov (United States)

    Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia

    2016-04-01

    Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is

  8. In-vivo studies of new vector velocity and adaptive spectral estimators in medical ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov

    2010-01-01

    New ultrasound techniques for blood flow estimation have been investigated in-vivo. These are vector velocity estimators (Transverse Oscillation, Synthetic Transmit Aperture, Directional Beamforming and Plane Wave Excitation) and adaptive spectral estimators (Blood spectral Power Capon and Blood...

  9. Extrapolated HPGe efficiency estimates based on a single calibration measurement

    International Nuclear Information System (INIS)

    Winn, W.G.

    1994-01-01

    Gamma spectroscopists often must analyze samples with geometries for which their detectors are not calibrated. The effort to experimentally recalibrate a detector for a new geometry can be quite time consuming, causing delay in reporting useful results. Such concerns have motivated development of a method for extrapolating HPGe efficiency estimates from an existing single measured efficiency. Overall, the method provides useful preliminary results for analyses that do not require exceptional accuracy, while reliably bracketing the credible range. The estimated efficiency element-of for a uniform sample in a geometry with volume V is extrapolated from the measured element-of 0 of the base sample of volume V 0 . Assuming all samples are centered atop the detector for maximum efficiency, element-of decreases monotonically as V increases about V 0 , and vice versa. Extrapolation of high and low efficiency estimates element-of h and element-of L provides an average estimate of element-of = 1/2 [element-of h + element-of L ] ± 1/2 [element-of h - element-of L ] (general) where an uncertainty D element-of = 1/2 (element-of h - element-of L ] brackets limits for a maximum possible error. The element-of h and element-of L both diverge from element-of 0 as V deviates from V 0 , causing D element-of to increase accordingly. The above concepts guided development of both conservative and refined estimates for element-of

  10. Breast density estimation from high spectral and spatial resolution MRI

    Science.gov (United States)

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.

    2016-01-01

    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (pdensity estimations. An interclass correlation coefficient of 0.99 (pdensity estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  11. Cross-calibration of Medium Resolution Earth Observing Satellites by Using EO-1 Hyperion-derived Spectral Surface Reflectance from "Lunar Cal Sites"

    Science.gov (United States)

    Ungar, S.

    2017-12-01

    Over the past 3 years, the Earth Observing-one (EO-1) Hyperion imaging spectrometer was used to slowly scan the lunar surface at a rate which results in up to 32X oversampling to effectively increase the SNR. Several strategies, including comparison against the USGS RObotic Lunar Observatory (ROLO) mode,l are being employed to estimate the absolute and relative accuracy of the measurement set. There is an existing need to resolve discrepancies as high as 10% between ROLO and solar based calibration of current NASA EOS assets. Although the EO-1 mission was decommissioned at the end of March 2017, the development of a well-characterized exoatmospheric spectral radiometric database, for a range of lunar phase angles surrounding the fully illuminated moon, continues. Initial studies include a comprehensive analysis of the existing 17-year collection of more than 200 monthly lunar acquisitions. Specific lunar surface areas, such as a lunar mare, are being characterized as potential "lunar calibration sites" in terms of their radiometric stability in the presence of lunar nutation and libration. Site specific Hyperion-derived lunar spectral reflectance are being compared against spectrographic measurements made during the Apollo program. Techniques developed through this activity can be employed by future high-quality orbiting imaging spectrometers (such as HyspIRI and EnMap) to further refine calibration accuracies. These techniques will enable the consistent cross calibration of existing and future earth observing systems (spectral and multi-spectral) including those that do not have lunar viewing capability. When direct lunar viewing is not an option for an earth observing asset, orbiting imaging spectrometers can serve as transfer radiometers relating that asset's sensor response to lunar values through near contemporaneous observations of well characterized stable CEOS test sites. Analysis of this dataset will lead to the development of strategies to ensure more

  12. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    Science.gov (United States)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    transfert function of the DTGS has to be qualified and taken into account. The usual way is to measure it directly by means of an optical shopper and a locking amplifier for different shopping frequencies. We present here an alternative method to estimate this DTGS transfer function, based on the fact that a FTIR continuous scan interfergram contains the different spectral frequencies of interest. Such a calibration method doesn't need a specific setup as it can be performed in standard configuration, playing only with spectrometer parameters. It allows for the precise estimation of detector spectral shapes. However, this measurement is not absolute and the peak response needs therefore to be estimated using a calibrated black body cavity. The method, its results and limits is presented and discussed for a set of different DTGS cells.

  13. AN EMPIRICAL CALIBRATION TO ESTIMATE COOL DWARF FUNDAMENTAL PARAMETERS FROM H-BAND SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Newton, Elisabeth R.; Charbonneau, David; Irwin, Jonathan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mann, Andrew W., E-mail: enewton@cfa.harvard.edu [Astronomy Department, University of Texas at Austin, Austin, TX 78712 (United States)

    2015-02-20

    Interferometric radius measurements provide a direct probe of the fundamental parameters of M dwarfs. However, interferometry is within reach for only a limited sample of nearby, bright stars. We use interferometrically measured radii, bolometric luminosities, and effective temperatures to develop new empirical calibrations based on low-resolution, near-infrared spectra. We find that H-band Mg and Al spectral features are good tracers of stellar properties, and derive functions that relate effective temperature, radius, and log luminosity to these features. The standard deviations in the residuals of our best fits are, respectively, 73 K, 0.027 R {sub ☉}, and 0.049 dex (an 11% error on luminosity). Our calibrations are valid from mid K to mid M dwarf stars, roughly corresponding to temperatures between 3100 and 4800 K. We apply our H-band relationships to M dwarfs targeted by the MEarth transiting planet survey and to the cool Kepler Objects of Interest (KOIs). We present spectral measurements and estimated stellar parameters for these stars. Parallaxes are also available for many of the MEarth targets, allowing us to independently validate our calibrations by demonstrating a clear relationship between our inferred parameters and the stars' absolute K magnitudes. We identify objects with magnitudes that are too bright for their inferred luminosities as candidate multiple systems. We also use our estimated luminosities to address the applicability of near-infrared metallicity calibrations to mid and late M dwarfs. The temperatures we infer for the KOIs agree remarkably well with those from the literature; however, our stellar radii are systematically larger than those presented in previous works that derive radii from model isochrones. This results in a mean planet radius that is 15% larger than one would infer using the stellar properties from recent catalogs. Our results confirm the derived parameters from previous in-depth studies of KOIs 961 (Kepler

  14. Spectral estimates of net radiation and soil heat flux

    International Nuclear Information System (INIS)

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P.J. Jr.; Jackson, R.D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under non advective conditions

  15. Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula

    DEFF Research Database (Denmark)

    Nieto Solana, Hector; Sandholt, Inge; Aguado, Inmaculada

    2011-01-01

    Air temperature can be estimated from remote sensing by combining information in thermal infrared and optical wavelengths. The empirical TVX algorithm is based on an estimated linear relationship between observed Land Surface Temperature (LST) and a Spectral Vegetation Index (NDVI). Air temperature...... variation, land cover, landscape heterogeneity and topography. Results showed that the new calibrated NDVImax perform well, with a Mean Absolute Error ranging between 2.8 °C and 4 °C. In addition, vegetation-specific NDVImax improve the accuracy compared with a unique NDVImax....

  16. Detection Range Estimation of UV Spectral Band Laser Radar

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2014-01-01

    Full Text Available Recently, has come into existence an interest in the systems operating in the ultra-violet (UF band of wavelengths, which use other spectral information (coefficients of reflection or radiation in UF range about location objects, than laser systems in the visible, near or average infrared bands. Thus, a point is not only to receive additional (in another spectral range information on location objects. Laser radiation in the UF spectral band of 0.315 – 0.4 microns is safer than laser radiation with the wavelengths of 0.38 – 1.4 microns.The work presents a comparative estimation of the detection systems range of laser radars in the UV and visible spectral bands for the following wavelengths of radiation:- UF band: 0.266 microns (the fourth harmonic of YAG-laser activated by neodymium ions, 0.308 microns (the XeCl-excimer laser, 0.355 microns (the third harmonic of YAG-laser activated by neodymium ions;- visible band: 0.532 microns (the second harmonic of YAG-laser activated by neodymium ions.Results of calculations show that for the horizontal pathway in the terrestrial atmosphere at the selected radiation wavelengths a detection range is in the range of 2510m – 5690 m.The maximum range of detection corresponds to the visible spectral band. A sweep range decreases with transition to the UF band. This is caused by the fact that with transition to the UF band there is a rise of atmosphere attenuation (generally, because of absorption by ozone, this effect being smoothed by reducing background radiation.In the UF band a wavelength of 0.355 microns is the most acceptable. For this wavelength a detection range is about 1,5 times less (in comparison with the visible band of 0.532 microns. However, this is the much more eye-safe wavelength. With transition to the UV band a detection range decreases not that much and can be compensated by changing parameters of transmitting or receiving channels of laser radar.

  17. Estimation of uncertainty of measurements of 3D mechanisms after kinematic calibration

    International Nuclear Information System (INIS)

    Takamasu, K; Sato, O; Shimojima, K; Takahashi, S; Furutani, R

    2005-01-01

    Calibration methods for 3D mechanisms are necessary to use the mechanisms as coordinate measuring machines. The calibration method of coordinate measuring machine using artifacts, the artifact calibration method, is proposed in taking account of traceability of the mechanism. There are kinematic parameters and form-deviation parameters in geometric parameters for describing the forward kinematic of the mechanism. In this article, the estimation methods of uncertainties using the calibrated coordinate measuring machine after the calibration are formulated. Firstly, the calculation method which takes out the values of kinematic parameters using least squares method is formulated. Secondly, the estimation value of uncertainty of the measuring machine is calculated using the error propagation method

  18. An Exercise on Calibration: DRIFTS Study of Binary Mixtures of Calcite and Dolomite with Partially Overlapping Spectral Features

    Science.gov (United States)

    De Lorenzi Pezzolo, Alessandra

    2013-01-01

    Unlike most spectroscopic calibrations that are based on the study of well-separated features ascribable to the different components, this laboratory experience is especially designed to exploit spectral features that are nearly overlapping. The investigated system consists of a binary mixture of two commonly occurring minerals, calcite and…

  19. Calibration

    International Nuclear Information System (INIS)

    Greacen, E.L.; Correll, R.L.; Cunningham, R.B.; Johns, G.G.; Nicolls, K.D.

    1981-01-01

    Procedures common to different methods of calibration of neutron moisture meters are outlined and laboratory and field calibration methods compared. Gross errors which arise from faulty calibration techniques are described. The count rate can be affected by the dry bulk density of the soil, the volumetric content of constitutional hydrogen and other chemical components of the soil and soil solution. Calibration is further complicated by the fact that the neutron meter responds more strongly to the soil properties close to the detector and source. The differences in slope of calibration curves for different soils can be as much as 40%

  20. Simultaneous estimation of diet composition and calibration coefficients with fatty acid signature data

    Science.gov (United States)

    Bromaghin, Jeffrey F.; Budge, Suzanne M.; Thiemann, Gregory W.; Rode, Karyn D.

    2017-01-01

    Knowledge of animal diets provides essential insights into their life history and ecology, although diet estimation is challenging and remains an active area of research. Quantitative fatty acid signature analysis (QFASA) has become a popular method of estimating diet composition, especially for marine species. A primary assumption of QFASA is that constants called calibration coefficients, which account for the differential metabolism of individual fatty acids, are known. In practice, however, calibration coefficients are not known, but rather have been estimated in feeding trials with captive animals of a limited number of model species. The impossibility of verifying the accuracy of feeding trial derived calibration coefficients to estimate the diets of wild animals is a foundational problem with QFASA that has generated considerable criticism. We present a new model that allows simultaneous estimation of diet composition and calibration coefficients based only on fatty acid signature samples from wild predators and potential prey. Our model performed almost flawlessly in four tests with constructed examples, estimating both diet proportions and calibration coefficients with essentially no error. We also applied the model to data from Chukchi Sea polar bears, obtaining diet estimates that were more diverse than estimates conditioned on feeding trial calibration coefficients. Our model avoids bias in diet estimates caused by conditioning on inaccurate calibration coefficients, invalidates the primary criticism of QFASA, eliminates the need to conduct feeding trials solely for diet estimation, and consequently expands the utility of fatty acid data to investigate aspects of ecology linked to animal diets.

  1. Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra

    Directory of Open Access Journals (Sweden)

    A. Kleinert

    2014-12-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging Fourier transform spectrometer that is capable of operating on various high-altitude research aircraft. It measures the atmospheric emission in the thermal infrared spectral region in limb and nadir geometry. GLORIA consists of a classical Michelson interferometer combined with an infrared camera. The infrared detector has a usable area of 128 × 128 pixels, measuring up to 16 384 interferograms simultaneously. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration and algorithm development. The optical setup with extremely high optical throughput requires the development of new methods and algorithms for spectral and radiometric calibration. Due to the vast amount of data there is a high demand for scientifically intelligent optimisation of the data processing. This paper outlines the characterisation and processing steps required for the generation of radiometrically and spectrally calibrated spectra. Methods for performance optimisation of the processing algorithm are presented. The performance of the data processing and the quality of the calibrated spectra are demonstrated for measurements collected during the first deployments of GLORIA on aircraft.

  2. Directional Canopy Emissivity Estimation Based on Spectral Invariants

    Science.gov (United States)

    Guo, M.; Cao, B.; Ren, H.; Yongming, D.; Peng, J.; Fan, W.

    2017-12-01

    Land surface emissivity is a crucial parameter for estimating land surface temperature from remote sensing data and also plays an important role in the physical process of surface energy and water balance from local to global scales. To our knowledge, the emissivity varies with surface type and cover. As for the vegetation, its canopy emissivity is dependent on vegetation types, viewing zenith angle and structure that changes in different growing stages. Lots of previous studies have focused on the emissivity model, but few of them are analytic and suited to different canopy structures. In this paper, a new physical analytic model is proposed to estimate the directional emissivity of homogenous vegetation canopy based on spectral invariants. The initial model counts the directional absorption in six parts: the direct absorption of the canopy and the soil, the absorption of the canopy and soil after a single scattering and after multiple scattering within the canopy-soil system. In order to analytically estimate the emissivity, the pathways of photons absorbed in the canopy-soil system are traced using the re-collision probability in Fig.1. After sensitive analysis on the above six absorptions, the initial complicated model was further simplified as a fixed mathematic expression to estimate the directional emissivity for vegetation canopy. The model was compared with the 4SAIL model, FRA97 model, FRA02 model and DART model in Fig.2, and the results showed that the FRA02 model is significantly underestimated while the FRA97 model is a little underestimated, on basis of the new model. On the contrary, the emissivity difference between the new model with the 4SAIL model and DART model was found to be less than 0.002. In general, since the new model has the advantages of mathematic expression with accurate results and clear physical meaning, the model is promising to be extended to simulate the directional emissivity for the discrete canopy in further study.

  3. [Research on Oil Sands Spectral Characteristics and Oil Content by Remote Sensing Estimation].

    Science.gov (United States)

    You, Jin-feng; Xing, Li-xin; Pan, Jun; Shan, Xuan-long; Liang, Li-heng; Fan, Rui-xue

    2015-04-01

    Visible and near infrared spectroscopy is a proven technology to be widely used in identification and exploration of hydrocarbon energy sources with high spectral resolution for detail diagnostic absorption characteristics of hydrocarbon groups. The most prominent regions for hydrocarbon absorption bands are 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm by the reflectance of oil sands samples. These spectral ranges are dominated by various C-H overlapping overtones and combination bands. Meanwhile, there is relatively weak even or no absorption characteristics in the region from 1,700 to 1,730 nm in the spectra of oil sands samples with low bitumen content. With the increase in oil content, in the spectral range of 1,700-1,730 nm the obvious hydrocarbon absorption begins to appear. The bitumen content is the critical parameter for oil sands reserves estimation. The absorption depth was used to depict the response intensity of the absorption bands controlled by first-order overtones and combinations of the various C-H stretching and bending fundamentals. According to the Pearson and partial correlation relationships of oil content and absorption depth dominated by hydrocarbon groups in 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm wavelength range, the scheme of association mode was established between the intensity of spectral response and bitumen content, and then unary linear regression(ULR) and partial least squares regression (PLSR) methods were employed to model the equation between absorption depth attributed to various C-H bond and bitumen content. There were two calibration equations in which ULR method was employed to model the relationship between absorption depth near 2,350 nm region and bitumen content and PLSR method was developed to model the relationship between absorption depth of 1,758, 2,310, 2,350 nm regions and oil content. It turned out that the calibration models had good predictive ability and high robustness and they could provide the scientific

  4. Spectral calibration of filters and detectors of solar EUV telescope for 13.2 nm for the TESIS experiment

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Shestov, S.V.; Pertsov, A.A.; Reva, A.A.; Zuev, S.Yu.; Lopatin, A.Ya.; Luchin, V.I.; Zhou, Kh.; Khuo, T.

    2008-01-01

    The full-sun EUV telescope for 13.2 nm spectral band for the TESIS experiment is designed to produce images of hot coronal plasma (T ∼ 10 MK). Calibration process of optical elements is presented. Spectral transmission of multilayer Zr/Si filters, sensitivity and radiation tolerance of CCD detector have been measured. Peak transmission of EUV filters in working, spectral band reaches 40-50% (filters with 50 and 55 layers are used), spectral dependence of transmission is close to calculated one. Transmission of filters in white light is equal to (1-2)x10 -6 . Sensitivity of CCD ranges from 0.01 to 0.1 ADC units per photon, radiation tolerance is better than 10 9 rad [ru

  5. Object Detection and Tracking-Based Camera Calibration for Normalized Human Height Estimation

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2016-01-01

    Full Text Available This paper presents a normalized human height estimation algorithm using an uncalibrated camera. To estimate the normalized human height, the proposed algorithm detects a moving object and performs tracking-based automatic camera calibration. The proposed method consists of three steps: (i moving human detection and tracking, (ii automatic camera calibration, and (iii human height estimation and error correction. The proposed method automatically calibrates camera by detecting moving humans and estimates the human height using error correction. The proposed method can be applied to object-based video surveillance systems and digital forensic.

  6. Measurement reduction for mutual coupling calibration in DOA estimation

    Science.gov (United States)

    Aksoy, Taylan; Tuncer, T. Engin

    2012-01-01

    Mutual coupling is an important source of error in antenna arrays that should be compensated for super resolution direction-of-arrival (DOA) algorithms, such as Multiple Signal Classification (MUSIC) algorithm. A crucial step in array calibration is the determination of the mutual coupling coefficients for the antenna array. In this paper, a system theoretic approach is presented for the mutual coupling characterization of antenna arrays. The comprehension and implementation of this approach is simple leading to further advantages in calibration measurement reduction. In this context, a measurement reduction method for antenna arrays with omni-directional and identical elements is proposed which is based on the symmetry planes in the array geometry. The proposed method significantly decreases the number of measurements during the calibration process. This method is evaluated using different array types whose responses and the mutual coupling characteristics are obtained through numerical electromagnetic simulations. It is shown that a single calibration measurement is sufficient for uniform circular arrays. Certain important and interesting characteristics observed during the experiments are outlined.

  7. Spectral Irradiance Calibration in the Infrared 11: Comparison of (alpha) Boo and 1 Ceres with a Laboratory Standard

    Science.gov (United States)

    Witteborn, Fred C.; Cohen, Martin; Bregman, Jess D.; Wooden, Diane; Heere, Karen; Shirley, Eric L.

    1998-01-01

    Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the K1.5III star, alpha Boo, is measured from 3 microns to 30 microns and that of the C-type asteroid, 1 Ceres, from 5 microns to 30 microns. While these 'standard' spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically they provide a model-independent means of calibrating celestial flux in the spectral range from 12 microns to 30 microns where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards, and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux calibrated by theoretical modeling of these hot stars strengthens our confidence in the applicability of the stellar models as primary irradiance standards.

  8. A teaser made simple: a didactic measurement of the spectral answer of a human-eye-calibrated lux meter

    International Nuclear Information System (INIS)

    Di Capua, R; Offi, F; Dell'Omo, M; Fontana, F

    2012-01-01

    A simple didactic experiment has been designed and realized, in order to illustrate to undergraduate students in scientific faculties some basic concepts lying behind the fundamentals of geometrical optics. The spectral response of a human-eye-calibrated lux meter was measured using a very trivial experimental arrangement. The white light of a halogen lamp was decomposed into its spectral components through a diffraction grating, so that collecting the radiation at different dispersion angles allowed one to measure the intensity as a function of wavelength. The experiment can be used to effectively illustrate the concepts of spectral distribution, the radiometry versus photometry conversion and photopic response, and the famous historical experience by Herschel on the ‘temperature of colours’. (paper)

  9. Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Alfonso Torres-Rua

    2017-06-01

    Full Text Available In recent years, the availability of lightweight microbolometer thermal cameras compatible with small unmanned aerial systems (sUAS has allowed their use in diverse scientific and management activities that require sub-meter pixel resolution. Nevertheless, as with sensors already used in temperature remote sensing (e.g., Landsat satellites, a radiance atmospheric correction is necessary to estimate land surface temperature. This is because atmospheric conditions at any sUAS flight elevation will have an adverse impact on the image accuracy, derived calculations, and study replicability using the microbolometer technology. This study presents a vicarious calibration methodology (sUAS-specific, time-specific, flight-specific, and sensor-specific for sUAS temperature imagery traceable back to NIST-standards and current atmospheric correction methods. For this methodology, a three-year data collection campaign with a sUAS called “AggieAir”, developed at Utah State University, was performed for vineyards near Lodi, California, for flights conducted at different times (early morning, Landsat overpass, and mid-afternoon” and seasonal conditions. From the results of this study, it was found that, despite the spectral response of microbolometer cameras (7.0 to 14.0 μm, it was possible to account for the effects of atmospheric and sUAS operational conditions, regardless of time and weather, to acquire accurate surface temperature data. In addition, it was found that the main atmospheric correction parameters (transmissivity and atmospheric radiance significantly varied over the course of a day. These parameters fluctuated the most in early morning and partially stabilized in Landsat overpass and in mid-afternoon times. In terms of accuracy, estimated atmospheric correction parameters presented adequate statistics (confidence bounds under ±0.1 for transmissivity and ±1.2 W/m2/sr/um for atmospheric radiance, with a range of RMSE below 1.0 W/m2/sr

  10. The fossilized birth–death process for coherent calibration of divergence-time estimates

    Science.gov (United States)

    Heath, Tracy A.; Huelsenbeck, John P.; Stadler, Tanja

    2014-01-01

    Time-calibrated species phylogenies are critical for addressing a wide range of questions in evolutionary biology, such as those that elucidate historical biogeography or uncover patterns of coevolution and diversification. Because molecular sequence data are not informative on absolute time, external data—most commonly, fossil age estimates—are required to calibrate estimates of species divergence dates. For Bayesian divergence time methods, the common practice for calibration using fossil information involves placing arbitrarily chosen parametric distributions on internal nodes, often disregarding most of the information in the fossil record. We introduce the “fossilized birth–death” (FBD) process—a model for calibrating divergence time estimates in a Bayesian framework, explicitly acknowledging that extant species and fossils are part of the same macroevolutionary process. Under this model, absolute node age estimates are calibrated by a single diversification model and arbitrary calibration densities are not necessary. Moreover, the FBD model allows for inclusion of all available fossils. We performed analyses of simulated data and show that node age estimation under the FBD model results in robust and accurate estimates of species divergence times with realistic measures of statistical uncertainty, overcoming major limitations of standard divergence time estimation methods. We used this model to estimate the speciation times for a dataset composed of all living bears, indicating that the genus Ursus diversified in the Late Miocene to Middle Pliocene. PMID:25009181

  11. Spectral Detection of Human Skin in VIS-SWIR Hyperspectral Imagery without Radiometric Calibration

    Science.gov (United States)

    2012-03-01

    6 Spectral reflectance of human skin at VIS-SWIR wavelengths. Skin with less melanin appears brighter because it has higher reflectance...6 illustrates the spectral reflectance of human skin with different melanin levels. One paper proposes a Normalized Difference Skin Index (NDSI), a...1.4% Melanin 12.6% Melanin 23.2% Melanin 34.3% Melanin 45% Melanin Figure 6. Spectral reflectance of human skin at VIS-SWIR wavelengths. Skin with less

  12. Estimating Mutual Information for High-to-Low Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Michaud, Isaac James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Brian J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Brian Phillip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-05

    Presentation shows that KSG2 is superior to KSG1 because it scales locally automatically; KSG estimators are limited to a maximum MI due to sample size; LNC extends the capability of KSG without onerous assumptions; iLNC allows LNC to estimate information gain.

  13. Method for estimating effects of unknown correlations in spectral irradiance data on uncertainties of spectrally integrated colorimetric quantities

    Science.gov (United States)

    Kärhä, Petri; Vaskuri, Anna; Mäntynen, Henrik; Mikkonen, Nikke; Ikonen, Erkki

    2017-08-01

    Spectral irradiance data are often used to calculate colorimetric properties, such as color coordinates and color temperatures of light sources by integration. The spectral data may contain unknown correlations that should be accounted for in the uncertainty estimation. We propose a new method for estimating uncertainties in such cases. The method goes through all possible scenarios of deviations using Monte Carlo analysis. Varying spectral error functions are produced by combining spectral base functions, and the distorted spectra are used to calculate the colorimetric quantities. Standard deviations of the colorimetric quantities at different scenarios give uncertainties assuming no correlations, uncertainties assuming full correlation, and uncertainties for an unfavorable case of unknown correlations, which turn out to be a significant source of uncertainty. With 1% standard uncertainty in spectral irradiance, the expanded uncertainty of the correlated color temperature of a source corresponding to the CIE Standard Illuminant A may reach as high as 37.2 K in unfavorable conditions, when calculations assuming full correlation give zero uncertainty, and calculations assuming no correlations yield the expanded uncertainties of 5.6 K and 12.1 K, with wavelength steps of 1 nm and 5 nm used in spectral integrations, respectively. We also show that there is an absolute limit of 60.2 K in the error of the correlated color temperature for Standard Illuminant A when assuming 1% standard uncertainty in the spectral irradiance. A comparison of our uncorrelated uncertainties with those obtained using analytical methods by other research groups shows good agreement. We re-estimated the uncertainties for the colorimetric properties of our 1 kW photometric standard lamps using the new method. The revised uncertainty of color temperature is a factor of 2.5 higher than the uncertainty assuming no correlations.

  14. Estimating the age of Heliconius butterflies from calibrated photographs

    Directory of Open Access Journals (Sweden)

    Denise Dalbosco Dell’Aglio

    2017-09-01

    Full Text Available Mating behaviour and predation avoidance in Heliconius involve visual colour signals; however, there is considerable inter-individual phenotypic variation in the appearance of colours. In particular, the red pigment varies from bright crimson to faded red. It has been thought that this variation is primarily due to pigment fading with age, although this has not been explicitly tested. Previous studies have shown the importance of red patterns in mate choice and that birds and butterflies might perceive these small colour differences. Using digital photography and calibrated colour images, we investigated whether the hue variation in the forewing dorsal red band of Heliconius melpomene rosina corresponds with age. We found that the red hue and age were highly associated, suggesting that red colour can indeed be used as a proxy for age in the study of wild-caught butterflies.

  15. Estimation of spectral distribution of sky radiance using a commercial digital camera.

    Science.gov (United States)

    Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao

    2016-01-10

    Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution.

  16. TIMASSS: the IRAS 16293-2422 millimeter and submillimeter spectral survey. I. Observations, calibration, and analysis of the line kinematics

    Science.gov (United States)

    Caux, E.; Kahane, C.; Castets, A.; Coutens, A.; Ceccarelli, C.; Bacmann, A.; Bisschop, S.; Bottinelli, S.; Comito, C.; Helmich, F. P.; Lefloch, B.; Parise, B.; Schilke, P.; Tielens, A. G. G. M.; van Dishoeck, E.; Vastel, C.; Wakelam, V.; Walters, A.

    2011-08-01

    Context. Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. Aims: While unbiased surveys at the millimeter and sub-millimeter wavelengths observable from ground-based telescopes have previously been performed towards several high mass protostars, very little exists on low mass protostars, which are believed to resemble our own Sun's progenitor. To help fill up this gap in our understanding, we carried out a complete spectral survey of the bands at 3, 2, 1, and 0.9 mm towards the solar type protostar IRAS 16293-2422. Methods: The observations covered a range of about 200 GHz and were obtained with the IRAM-30 m and JCMT-15 m telescopes during about 300 h of observations. Particular attention was devoted to the inter-calibration of the acquired spectra with previous observations. All the lines detected with more than 3σ confidence-interval certainty and free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. Results: More than 4000 lines were detected (with σ ≥ 3) and identified, yielding a line density of approximatively 20 lines per GHz, comparable to previous surveys in massive hot cores. The vast majority (about two-thirds) of the lines are weak and produced by complex organic molecules. The analysis of the profiles of more than 1000 lines belonging to 70 species firmly establishes the presence of two distinct velocity components associated with the two objects, A and B, forming the IRAS 16293-2422 binary system. In the source A, the line widths of several species increase with the upper level energy of the transition, a behavior compatible with gas infalling towards a ~1 M⊙ object. The source B, which does not show this effect, might have a much lower central mass of ~0.1 M⊙. The difference in the rest velocities

  17. Effects of Serum Creatinine Calibration on Estimated Renal Function in African Americans: the Jackson Heart Study

    Science.gov (United States)

    Wang, Wei; Young, Bessie A.; Fülöp, Tibor; de Boer, Ian H.; Boulware, L. Ebony; Katz, Ronit; Correa, Adolfo; Griswold, Michael E.

    2015-01-01

    Background The calibration to Isotope Dilution Mass Spectroscopy (IDMS) traceable creatinine is essential for valid use of the new Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation to estimate the glomerular filtration rate (GFR). Methods For 5,210 participants in the Jackson Heart Study (JHS), serum creatinine was measured with a multipoint enzymatic spectrophotometric assay at the baseline visit (2000–2004) and re-measured using the Roche enzymatic method, traceable to IDMS in a subset of 206 subjects. The 200 eligible samples (6 were excluded, 1 for failure of the re-measurement and 5 for outliers) were divided into three disjoint sets - training, validation, and test - to select a calibration model, estimate true errors, and assess performance of the final calibration equation. The calibration equation was applied to serum creatinine measurements of 5,210 participants to estimate GFR and the prevalence of CKD. Results The selected Deming regression model provided a slope of 0.968 (95% Confidence Interval (CI), 0.904 to 1.053) and intercept of −0.0248 (95% CI, −0.0862 to 0.0366) with R squared 0.9527. Calibrated serum creatinine showed high agreement with actual measurements when applying to the unused test set (concordance correlation coefficient 0.934, 95% CI, 0.894 to 0.960). The baseline prevalence of CKD in the JHS (2000–2004) was 6.30% using calibrated values, compared with 8.29% using non-calibrated serum creatinine with the CKD-EPI equation (P creatinine measurements in the JHS and the calibrated values provide a lower CKD prevalence estimate. PMID:25806862

  18. Joint Sparsity and Frequency Estimation for Spectral Compressive Sensing

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2014-01-01

    various interpolation techniques to estimate the continuous frequency parameters. In this paper, we show that solving the problem in a probabilistic framework instead produces an asymptotically efficient estimator which outperforms existing methods in terms of estimation accuracy while still having a low...

  19. The issue of gamma spectral system sourceless object calibration software using in radioactive environment measurement

    International Nuclear Information System (INIS)

    Shen Ming; Zhu Yuelong; Zhao Yanzi

    2009-01-01

    The paper introduces the characteristic, based method of HPGe detector LabSOCS (Laboratory Sourceless Object Calibration Software). Compared measured efficiency and LabSOCS efficiency for different point sources, and the tolerance is about 6% at middle and high energy range. For cylinder samples of dirt, animal ash and plant ash, the results of verification is 7%-10%. (authors)

  20. Effects of serum creatinine calibration on estimated renal function in african americans: the Jackson heart study.

    Science.gov (United States)

    Wang, Wei; Young, Bessie A; Fülöp, Tibor; de Boer, Ian H; Boulware, L Ebony; Katz, Ronit; Correa, Adolfo; Griswold, Michael E

    2015-05-01

    The calibration to isotope dilution mass spectrometry-traceable creatinine is essential for valid use of the new Chronic Kidney Disease Epidemiology Collaboration equation to estimate the glomerular filtration rate. For 5,210 participants in the Jackson Heart Study (JHS), serum creatinine was measured with a multipoint enzymatic spectrophotometric assay at the baseline visit (2000-2004) and remeasured using the Roche enzymatic method, traceable to isotope dilution mass spectrometry in a subset of 206 subjects. The 200 eligible samples (6 were excluded, 1 for failure of the remeasurement and 5 for outliers) were divided into 3 disjoint sets-training, validation and test-to select a calibration model, estimate true errors and assess performance of the final calibration equation. The calibration equation was applied to serum creatinine measurements of 5,210 participants to estimate glomerular filtration rate and the prevalence of chronic kidney disease (CKD). The selected Deming regression model provided a slope of 0.968 (95% confidence interval [CI], 0.904-1.053) and intercept of -0.0248 (95% CI, -0.0862 to 0.0366) with R value of 0.9527. Calibrated serum creatinine showed high agreement with actual measurements when applying to the unused test set (concordance correlation coefficient 0.934, 95% CI, 0.894-0.960). The baseline prevalence of CKD in the JHS (2000-2004) was 6.30% using calibrated values compared with 8.29% using noncalibrated serum creatinine with the Chronic Kidney Disease Epidemiology Collaboration equation (P creatinine measurements in the JHS, and the calibrated values provide a lower CKD prevalence estimate.

  1. Sensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Delaram Houshmand Kouchi

    2017-05-01

    Full Text Available The successful application of hydrological models relies on careful calibration and uncertainty analysis. However, there are many different calibration/uncertainty analysis algorithms, and each could be run with different objective functions. In this paper, we highlight the fact that each combination of optimization algorithm-objective functions may lead to a different set of optimum parameters, while having the same performance; this makes the interpretation of dominant hydrological processes in a watershed highly uncertain. We used three different optimization algorithms (SUFI-2, GLUE, and PSO, and eight different objective functions (R2, bR2, NSE, MNS, RSR, SSQR, KGE, and PBIAS in a SWAT model to calibrate the monthly discharges in two watersheds in Iran. The results show that all three algorithms, using the same objective function, produced acceptable calibration results; however, with significantly different parameter ranges. Similarly, an algorithm using different objective functions also produced acceptable calibration results, but with different parameter ranges. The different calibrated parameter ranges consequently resulted in significantly different water resource estimates. Hence, the parameters and the outputs that they produce in a calibrated model are “conditioned” on the choices of the optimization algorithm and objective function. This adds another level of non-negligible uncertainty to watershed models, calling for more attention and investigation in this area.

  2. Interpolation Inequalities and Spectral Estimates for Magnetic Operators

    Science.gov (United States)

    Dolbeault, Jean; Esteban, Maria J.; Laptev, Ari; Loss, Michael

    2018-05-01

    We prove magnetic interpolation inequalities and Keller-Lieb-Thir-ring estimates for the principal eigenvalue of magnetic Schr{\\"o}dinger operators. We establish explicit upper and lower bounds for the best constants and show by numerical methods that our theoretical estimates are accurate.

  3. Spectrally and Radiometrically Stable Wide-Band on Board Calibration Source for In-Flight Data Validation in Imaging Spectroscopy Applications

    Science.gov (United States)

    Coles, J. B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Hernandez, Marco A.; Kroll, Linley A.; Nolte, Scott H.; Porter, Michael D.; Green, Robert O.

    2011-01-01

    The quality of the quantitative spectral data collected by an imaging spectrometer instrument is critically dependent upon the accuracy of the spectral and radiometric calibration of the system. In order for the collected spectra to be scientifically useful, the calibration of the instrument must be precisely known not only prior to but during data collection. Thus, in addition to a rigorous in-lab calibration procedure, the airborne instruments designed and built by the NASA/JPL Imaging Spectroscopy Group incorporate an on board calibrator (OBC) system with the instrument to provide auxiliary in-use system calibration data. The output of the OBC source illuminates a target panel on the backside of the foreoptics shutter both before and after data collection. The OBC and in-lab calibration data sets are then used to validate and post-process the collected spectral image data. The resulting accuracy of the spectrometer output data is therefore integrally dependent upon the stability of the OBC source. In this paper we describe the design and application of the latest iteration of this novel device developed at NASA/JPL which integrates a halogen-cycle source with a precisely designed fiber coupling system and a fiber-based intensity monitoring feedback loop. The OBC source in this Airborne Testbed Spectrometer was run over a period of 15 hours while both the radiometric and spectral stabilities of the output were measured and demonstrated stability to within 1% of nominal.

  4. Preliminary comparison between real-time in-vivo spectral and transverse oscillation velocity estimates

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    2011-01-01

    Spectral velocity estimation is considered the gold standard in medical ultrasound. Peak systole (PS), end diastole (ED), and resistive index (RI) are used clinically. Angle correction is performed using a flow angle set manually. With Transverse Oscillation (TO) velocity estimates the flow angle......, peak systole (PSTO), end diastole (EDTO), and resistive index (RITO) are estimated. This study investigates if these clinical parameters are estimated equally good using spectral and TO data. The right common carotid arteries of three healthy volunteers were scanned longitudinally. Average TO flow...

  5. Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques

    Directory of Open Access Journals (Sweden)

    O. Schmid

    2006-01-01

    Full Text Available Spectral aerosol light absorption is an important parameter for the assessment of the radiation budget of the atmosphere. Although on-line measurement techniques for aerosol light absorption, such as the Aethalometer and the Particle Soot Absorption Photometer (PSAP, have been available for two decades, they are limited in accuracy and spectral resolution because of the need to deposit the aerosol on a filter substrate before measurement. Recently, a 7-wavelength (λ Aethalometer became commercially available, which covers the visible (VIS to near-infrared (NIR spectral range (λ=450–950 nm, and laboratory calibration studies improved the degree of confidence in these measurement techniques. However, the applicability of the laboratory calibration factors to ambient conditions has not been investigated thoroughly yet. As part of the LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia – SMOke aerosols, Clouds, rainfall and Climate campaign from September to November 2002 in the Amazon basin we performed an extensive field calibration of a 1-λ PSAP and a 7-λ Aethalometer utilizing a photoacoustic spectrometer (PAS, 532 nm as reference device. Especially during the dry period of the campaign, the aerosol population was dominated by pyrogenic emissions. The most pronounced artifact of integrating-plate type attenuation techniques (e.g. Aethalometer, PSAP is due to multiple scattering effects within the filter matrix. For the PSAP, we essentially confirmed the laboratory calibration factor by Bond et al. (1999. On the other hand, for the Aethalometer we found a multiple scattering enhancement of 5.23 (or 4.55, if corrected for aerosol scattering, which is significantly larger than the factors previously reported (~2 for laboratory calibrations. While the exact reason for this discrepancy is unknown, the available data from the present and previous studies suggest aerosol mixing (internal versus external as a likely cause. For

  6. Spectral calibration of the fluorescence telescopes of the Pierre Auger observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Juryšek, Jakub; Mandát, Dušan; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2017-01-01

    Roč. 95, Oct (2017), s. 44-56 ISSN 0927-6505 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA MŠk EF16_013/0001402 Grant - others:OP VVV - AUGER-CZ(XE) CZ.02.1.01/0.0/0.0/16_013/0001402 Institutional support: RVO:68378271 Keywords : Auger observatory * nitrogen fluorescence * extensive air shower * calibration Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 3.257, year: 2016

  7. Regional forest cover estimation via remote sensing: the calibration center concept

    Science.gov (United States)

    Louis R. Iverson; Elizabeth A. Cook; Robin L. Graham; Robin L. Graham

    1994-01-01

    A method for combining Landsat Thematic Mapper (TM), Advanced Very High Resolution Radiometer (AVHRR) imagery, and other biogeographic data to estimate forest cover over large regions is applied and evaluated at two locations. In this method, TM data are used to classify a small area (calibration center) into forest/nonforest; the resulting forest cover map is then...

  8. Spectral Gap Estimates in Mean Field Spin Glasses

    Science.gov (United States)

    Ben Arous, Gérard; Jagannath, Aukosh

    2018-05-01

    We show that mixing for local, reversible dynamics of mean field spin glasses is exponentially slow in the low temperature regime. We introduce a notion of free energy barriers for the overlap, and prove that their existence imply that the spectral gap is exponentially small, and thus that mixing is exponentially slow. We then exhibit sufficient conditions on the equilibrium Gibbs measure which guarantee the existence of these barriers, using the notion of replicon eigenvalue and 2D Guerra Talagrand bounds. We show how these sufficient conditions cover large classes of Ising spin models for reversible nearest-neighbor dynamics and spherical models for Langevin dynamics. Finally, in the case of Ising spins, Panchenko's recent rigorous calculation (Panchenko in Ann Probab 46(2):865-896, 2018) of the free energy for a system of "two real replica" enables us to prove a quenched LDP for the overlap distribution, which gives us a wider criterion for slow mixing directly related to the Franz-Parisi-Virasoro approach (Franz et al. in J Phys I 2(10):1869-1880, 1992; Kurchan et al. J Phys I 3(8):1819-1838, 1993). This condition holds in a wider range of temperatures.

  9. Spectral estimates for Dirichlet Laplacians on perturbed twisted tubes

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Barseghyan, Diana

    2014-01-01

    Roč. 8, č. 1 (2014), s. 167-183 ISSN 1846-3886 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Drichlet Laplacian * twisted tube * discrete spectrum * eigenvalue estimates Subject RIV: BE - Theoretical Physics Impact factor: 0.583, year: 2014

  10. Stability estimates for hp spectral element methods for elliptic ...

    Indian Academy of Sciences (India)

    ... parallel preconditioners and error estimates for the solution of the minimization problem which are nearly optimal as the condition number of the preconditioned system is polylogarithmic in , the number of processors and the number of degrees of freedom in each variable on each element. Moreover if the data is analytic ...

  11. Employing an Incentive Spirometer to Calibrate Tidal Volumes Estimated from a Smartphone Camera

    Science.gov (United States)

    Reyes, Bersain A.; Reljin, Natasa; Kong, Youngsun; Nam, Yunyoung; Ha, Sangho; Chon, Ki H.

    2016-01-01

    A smartphone-based tidal volume (VT) estimator was recently introduced by our research group, where an Android application provides a chest movement signal whose peak-to-peak amplitude is highly correlated with reference VT measured by a spirometer. We found a Normalized Root Mean Squared Error (NRMSE) of 14.998% ± 5.171% (mean ± SD) when the smartphone measures were calibrated using spirometer data. However, the availability of a spirometer device for calibration is not realistic outside clinical or research environments. In order to be used by the general population on a daily basis, a simple calibration procedure not relying on specialized devices is required. In this study, we propose taking advantage of the linear correlation between smartphone measurements and VT to obtain a calibration model using information computed while the subject breathes through a commercially-available incentive spirometer (IS). Experiments were performed on twelve (N = 12) healthy subjects. In addition to corroborating findings from our previous study using a spirometer for calibration, we found that the calibration procedure using an IS resulted in a fixed bias of −0.051 L and a RMSE of 0.189 ± 0.074 L corresponding to 18.559% ± 6.579% when normalized. Although it has a small underestimation and slightly increased error, the proposed calibration procedure using an IS has the advantages of being simple, fast, and affordable. This study supports the feasibility of developing a portable smartphone-based breathing status monitor that provides information about breathing depth, in addition to the more commonly estimated respiratory rate, on a daily basis. PMID:26999152

  12. Employing an Incentive Spirometer to Calibrate Tidal Volumes Estimated from a Smartphone Camera

    Directory of Open Access Journals (Sweden)

    Bersain A. Reyes

    2016-03-01

    Full Text Available A smartphone-based tidal volume (VT estimator was recently introduced by our research group, where an Android application provides a chest movement signal whose peak-to-peak amplitude is highly correlated with reference VT measured by a spirometer. We found a Normalized Root Mean Squared Error (NRMSE of 14.998% ± 5.171% (mean ± SD when the smartphone measures were calibrated using spirometer data. However, the availability of a spirometer device for calibration is not realistic outside clinical or research environments. In order to be used by the general population on a daily basis, a simple calibration procedure not relying on specialized devices is required. In this study, we propose taking advantage of the linear correlation between smartphone measurements and VT to obtain a calibration model using information computed while the subject breathes through a commercially-available incentive spirometer (IS. Experiments were performed on twelve (N = 12 healthy subjects. In addition to corroborating findings from our previous study using a spirometer for calibration, we found that the calibration procedure using an IS resulted in a fixed bias of −0.051 L and a RMSE of 0.189 ± 0.074 L corresponding to 18.559% ± 6.579% when normalized. Although it has a small underestimation and slightly increased error, the proposed calibration procedure using an IS has the advantages of being simple, fast, and affordable. This study supports the feasibility of developing a portable smartphone-based breathing status monitor that provides information about breathing depth, in addition to the more commonly estimated respiratory rate, on a daily basis.

  13. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    Science.gov (United States)

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  14. Reduced order ARMA spectral estimation of ocean waves

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Witz, J.A.; Lyons, G.J.

    . After selecting the initial model order based on the Akaike Information Criterion method, a novel model order reduction technique is applied to obtain the final reduced order ARMA model. First estimates of the higher order autoregressive coefficients... of the reduced order ARMA model is obtained. The moving average part is determined based on partial fraction and recursive methods. The above system identification models and model order reduction technique are shown here to be successfully applied...

  15. Construction of the Calibration Set through Multivariate Analysis in Visible and Near-Infrared Prediction Model for Estimating Soil Organic Matter

    Directory of Open Access Journals (Sweden)

    Xiaomi Wang

    2017-02-01

    Full Text Available The visible and near-infrared (VNIR spectroscopy prediction model is an effective tool for the prediction of soil organic matter (SOM content. The predictive accuracy of the VNIR model is highly dependent on the selection of the calibration set. However, conventional methods for selecting the calibration set for constructing the VNIR prediction model merely consider either the gradients of SOM or the soil VNIR spectra and neglect the influence of environmental variables. However, soil samples generally present a strong spatial variability, and, thus, the relationship between the SOM content and VNIR spectra may vary with respect to locations and surrounding environments. Hence, VNIR prediction models based on conventional calibration set selection methods would be biased, especially for estimating highly spatially variable soil content (e.g., SOM. To equip the calibration set selection method with the ability to consider SOM spatial variation and environmental influence, this paper proposes an improved method for selecting the calibration set. The proposed method combines the improved multi-variable association relationship clustering mining (MVARC method and the Rank–Kennard–Stone (Rank-KS method in order to synthetically consider the SOM gradient, spectral information, and environmental variables. In the proposed MVARC-R-KS method, MVARC integrates the Apriori algorithm, a density-based clustering algorithm, and the Delaunay triangulation. The MVARC method is first utilized to adaptively mine clustering distribution zones in which environmental variables exert a similar influence on soil samples. The feasibility of the MVARC method is proven by conducting an experiment on a simulated dataset. The calibration set is evenly selected from the clustering zones and the remaining zone by using the Rank-KS algorithm in order to avoid a single property in the selected calibration set. The proposed MVARC-R-KS approach is applied to select a

  16. Evaluation Study of Fast Spectral Estimators Using In-vivo Data

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Gran, Fredrik; Pedersen, Mads Møller

    2009-01-01

    Spectrograms in medical ultrasound are usually estimated with Welch's method (WM). To achieve sufficient spectral resolution and contrast, WM uses an observation window (OW) of up to 256 emissions per estimate. Two adaptive filterbank methods have been suggested to reduce the OW: Blood spectral...... Power Capon (BPC) and the Blood Amplitude and Phase EStimation method (BAPES). Ten volunteers were scanned over the carotid artery. From each dataset, 28 spectrograms were produced by combining four approaches (WM with a Hanning window (W.HAN), WM with a boxcar window (W.BOX), BPC and BAPES) and seven...

  17. Spectral velocity estimation using autocorrelation functions for sparse data sets

    DEFF Research Database (Denmark)

    2006-01-01

    The distribution of velocities of blood or tissue is displayed using ultrasound scanners by finding the power spectrum of the received signal. This is currently done by making a Fourier transform of the received signal and then showing spectra in an M-mode display. It is desired to show a B......-mode image for orientation, and data for this has to acquired interleaved with the flow data. The power spectrum can be calculated from the Fourier transform of the autocorrelation function Ry (k), where its span of lags k is given by the number of emission N in the data segment for velocity estimation...

  18. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    Energy Technology Data Exchange (ETDEWEB)

    Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu [Division of Geological and Planetary Sciences 252-21, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  19. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    Science.gov (United States)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  20. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models.

    Science.gov (United States)

    Burgués, Javier; Jiménez-Soto, Juan Manuel; Marco, Santiago

    2018-07-12

    The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Impact of the calibration period on the conceptual rainfall-runoff model parameter estimates

    Science.gov (United States)

    Todorovic, Andrijana; Plavsic, Jasna

    2015-04-01

    A conceptual rainfall-runoff model is defined by its structure and parameters, which are commonly inferred through model calibration. Parameter estimates depend on objective function(s), optimisation method, and calibration period. Model calibration over different periods may result in dissimilar parameter estimates, while model efficiency decreases outside calibration period. Problem of model (parameter) transferability, which conditions reliability of hydrologic simulations, has been investigated for decades. In this paper, dependence of the parameter estimates and model performance on calibration period is analysed. The main question that is addressed is: are there any changes in optimised parameters and model efficiency that can be linked to the changes in hydrologic or meteorological variables (flow, precipitation and temperature)? Conceptual, semi-distributed HBV-light model is calibrated over five-year periods shifted by a year (sliding time windows). Length of the calibration periods is selected to enable identification of all parameters. One water year of model warm-up precedes every simulation, which starts with the beginning of a water year. The model is calibrated using the built-in GAP optimisation algorithm. The objective function used for calibration is composed of Nash-Sutcliffe coefficient for flows and logarithms of flows, and volumetric error, all of which participate in the composite objective function with approximately equal weights. Same prior parameter ranges are used in all simulations. The model is calibrated against flows observed at the Slovac stream gauge on the Kolubara River in Serbia (records from 1954 to 2013). There are no trends in precipitation nor in flows, however, there is a statistically significant increasing trend in temperatures at this catchment. Parameter variability across the calibration periods is quantified in terms of standard deviations of normalised parameters, enabling detection of the most variable parameters

  2. A calibration approach to glandular tissue composition estimation in digital mammography

    International Nuclear Information System (INIS)

    Kaufhold, J.; Thomas, J.A.; Eberhard, J.W.; Galbo, C.E.; Trotter, D.E. Gonzalez

    2002-01-01

    The healthy breast is almost entirely composed of a mixture of fatty, epithelial, and stromal tissues which can be grouped into two distinctly attenuating tissue types: fatty and glandular. Further, the amount of glandular tissue is linked to breast cancer risk, so an objective quantitative analysis of glandular tissue can aid in risk estimation. Highnam and Brady have measured glandular tissue composition objectively. However, they argue that their work should only be used for 'relative' tissue measurements unless a careful calibration has been performed. In this work, we perform such a 'careful calibration' on a digital mammography system and use it to estimate breast tissue composition of patient breasts. We imaged 0%, 50%, and 100% glandular-equivalent phantoms of varying thicknesses for a number of clinically relevant x-ray techniques on a digital mammography system. From these images, we extracted mean signal and noise levels and computed calibration curves that can be used for quantitative tissue composition estimation. In this way, we calculate the percent glandular composition of a patient breast on a pixelwise basis. This tissue composition estimation method was applied to 23 digital mammograms. We estimated the quantitative impact of different error sources on the estimates of tissue composition. These error sources include compressed breast height estimation error, residual scattered radiation, quantum noise, and beam hardening. Errors in the compressed breast height estimate contribute the most error in tissue composition--on the order of ±7% for a 4 cm compressed breast height. The spatially varying scattered radiation will contribute quantitatively less error overall, but may be significant in regions near the skinline. It is calculated that for a 4 cm compressed breast height, a residual scatter signal error is mitigated by approximately sixfold in the composition estimate. The error in composition due to the quantum noise, which is the limiting

  3. The method of separation for evolutionary spectral density estimation of multi-variate and multi-dimensional non-stationary stochastic processes

    KAUST Repository

    Schillinger, Dominik

    2013-07-01

    The method of separation can be used as a non-parametric estimation technique, especially suitable for evolutionary spectral density functions of uniformly modulated and strongly narrow-band stochastic processes. The paper at hand provides a consistent derivation of method of separation based spectrum estimation for the general multi-variate and multi-dimensional case. The validity of the method is demonstrated by benchmark tests with uniformly modulated spectra, for which convergence to the analytical solution is demonstrated. The key advantage of the method of separation is the minimization of spectral dispersion due to optimum time- or space-frequency localization. This is illustrated by the calibration of multi-dimensional and multi-variate geometric imperfection models from strongly narrow-band measurements in I-beams and cylindrical shells. Finally, the application of the method of separation based estimates for the stochastic buckling analysis of the example structures is briefly discussed. © 2013 Elsevier Ltd.

  4. Efficient Spectral Power Estimation on an Arbitrary Frequency Scale

    Directory of Open Access Journals (Sweden)

    F. Zaplata

    2015-04-01

    Full Text Available The Fast Fourier Transform is a very efficient algorithm for the Fourier spectrum estimation, but has the limitation of a linear frequency scale spectrum, which may not be suitable for every system. For example, audio and speech analysis needs a logarithmic frequency scale due to the characteristic of a human’s ear. The Fast Fourier Transform algorithms are not able to efficiently give the desired results and modified techniques have to be used in this case. In the following text a simple technique using the Goertzel algorithm allowing the evaluation of the power spectra on an arbitrary frequency scale will be introduced. Due to its simplicity the algorithm suffers from imperfections which will be discussed and partially solved in this paper. The implementation into real systems and the impact of quantization errors appeared to be critical and have to be dealt with in special cases. The simple method dealing with the quantization error will also be introduced. Finally, the proposed method will be compared to other methods based on its computational demands and its potential speed.

  5. Fast Spectral Velocity Estimation Using Adaptive Techniques: In-Vivo Results

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Udesen, Jesper

    2007-01-01

    Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window(OW) is very sbort. In this paper two adaptive techniques are tested and compared to the averaged perlodogram (Welch) for blood velocity estimation. The Blood Power...... the blood process over slow-time and averaging over depth to find the power spectral density estimate. In this paper, the two adaptive methods are explained, and performance Is assessed in controlled steady How experiments and in-vivo measurements. The three methods were tested on a circulating How rig...... with a blood mimicking fluid flowing in the tube. The scanning section is submerged in water to allow ultrasound data acquisition. Data was recorded using a BK8804 linear array transducer and the RASMUS ultrasound scanner. The controlled experiments showed that the OW could be significantly reduced when...

  6. In-vivo validation of fast spectral velocity estimation techniques – preliminary results

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Gran, Fredrik; Pedersen, Mads Møller

    2008-01-01

    Spectral Doppler is a common way to estimate blood velocities in medical ultrasound (US). The standard way of estimating spectrograms is by using Welch's method (WM). WM is dependent on a long observation window (OW) (about 100 transmissions) to produce spectrograms with sufficient spectral...... resolution and contrast. Two adaptive filterbank methods have been suggested to circumvent this problem: the Blood spectral Power Capon method (BPC) and the Blood Amplitude and Phase Estimation method (BAPES). Previously, simulations and flow rig experiments have indicated that the two adaptive methods can...... was scanned using the experimental ultrasound scanner RASMUS and a B-K Medical 5 MHz linear array transducer with an angle of insonation not exceeding 60deg. All 280 spectrograms were then randomised and presented to a radiologist blinded for method and OW for visual evaluation: useful or not useful. WMbw...

  7. Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model

    Directory of Open Access Journals (Sweden)

    Lotter Thomas

    2005-01-01

    Full Text Available This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm.

  8. A singular-value decomposition approach to X-ray spectral estimation from attenuation data

    International Nuclear Information System (INIS)

    Tominaga, Shoji

    1986-01-01

    A singular-value decomposition (SVD) approach is described for estimating the exposure-rate spectral distributions of X-rays from attenuation data measured withvarious filtrations. This estimation problem with noisy measurements is formulated as the problem of solving a system of linear equations with an ill-conditioned nature. The principle of the SVD approach is that a response matrix, representing the X-ray attenuation effect by filtrations at various energies, can be expanded into summation of inherent component matrices, and thereby the spectral distributions can be represented as a linear combination of some component curves. A criterion function is presented for choosing the components needed to form a reliable estimate. The feasibility of the proposed approach is studied in detail in a computer simulation using a hypothetical X-ray spectrum. The application results of the spectral distributions emitted from a therapeutic X-ray generator are shown. Finally some advantages of this approach are pointed out. (orig.)

  9. Comparison of process estimation techniques for on-line calibration monitoring

    International Nuclear Information System (INIS)

    Shumaker, B. D.; Hashemian, H. M.; Morton, G. W.

    2006-01-01

    The goal of on-line calibration monitoring is to reduce the number of unnecessary calibrations performed each refueling cycle on pressure, level, and flow transmitters in nuclear power plants. The effort requires a baseline for determining calibration drift and thereby the need for a calibration. There are two ways to establish the baseline: averaging and modeling. Averaging techniques have proven to be highly successful in the applications when there are a large number of redundant transmitters; but, for systems with little or no redundancy, averaging methods are not always reliable. That is, for non-redundant transmitters, more sophisticated process estimation techniques are needed to augment or replace the averaging techniques. This paper explores three well-known process estimation techniques; namely Independent Component Analysis (ICA), Auto-Associative Neural Networks (AANN), and Auto-Associative Kernel Regression (AAKR). Using experience and data from an operating nuclear plant, the paper will present an evaluation of the effectiveness of these methods in detecting transmitter drift in actual plant conditions. (authors)

  10. Estimation of personal dose based on the dependent calibration of personal dosimeters in interventional radiology

    International Nuclear Information System (INIS)

    Mori, Hiroshige; Koshida, Kichiro; Ichikawa, Katsuhiro

    2007-01-01

    The purpose of present study is, in interventional radiology (IVR), to elucidate the differences between each personal dosimeter, and the dependences and calibrations of area or personal dose by measurement with electronic dosimeters in particular. We compare space dose rate distributions measured by an ionization survey meter with the value measured by personal dosimeter: an optically stimulated luminescence, two fluoroglass, and two electronic dosimeters. Furthermore, with electronic dosimeters, we first measured dose rate, energy, and directional dependences. Secondly, we calibrated the dose rate measured by electronic dosimeters with the results, and estimated these methods with coefficient of determination and Akaike's Information Criterion (AIC). The results, especially in electronic dosimeters, revealed that the dose rate measured fell by energy and directional dependences. In terms of methods of calibration, the method is sufficient for energy dependence, but not for directional dependence, because of the lack of stable calibration. This improvement poses a question for the future. The study suggested that these dependences of the personal dosimeter must be considered when area or personal dose is estimated in IVR. (author)

  11. Real-time airborne gamma-ray background estimation using NASVD with MLE and radiation transport for calibration

    Energy Technology Data Exchange (ETDEWEB)

    Kulisek, J.A., E-mail: Jonathan.Kulisek@pnnl.gov; Schweppe, J.E.; Stave, S.C.; Bernacki, B.E.; Jordan, D.V.; Stewart, T.N.; Seifert, C.E.; Kernan, W.J.

    2015-06-01

    Helicopter-mounted gamma-ray detectors can provide law enforcement officials the means to quickly and accurately detect, identify, and locate radiological threats over a wide geographical area. The ability to accurately distinguish radiological threat-generated gamma-ray signatures from background gamma radiation in real time is essential in order to realize this potential. This problem is non-trivial, especially in urban environments for which the background may change very rapidly during flight. This exacerbates the challenge of estimating background due to the poor counting statistics inherent in real-time airborne gamma-ray spectroscopy measurements. To address this challenge, we have developed a new technique for real-time estimation of background gamma radiation from aerial measurements without the need for human analyst intervention. The method can be calibrated using radiation transport simulations along with data from previous flights over areas for which the isotopic composition need not be known. Over the examined measured and simulated data sets, the method generated accurate background estimates even in the presence of a strong, {sup 60}Co source. The potential to track large and abrupt changes in background spectral shape and magnitude was demonstrated. The method can be implemented fairly easily in most modern computing languages and environments.

  12. 3D registration method for assessing the gastrointestinal motility using spectral reflectance estimation

    Science.gov (United States)

    Nobe, Kazuki; Yoshimoto, Kayo; Yamada, Kenji; Takahashi, Hideya

    2018-02-01

    Functional gastrointestinal disorders (FGID) are the most common gastrointestinal disorders. The term "functional" is generally applied to disorders where there are no structural abnormalities. One of the major factors for FGID is abnormal gastrointestinal motility. We have proposed a system for assessing the function of gastric motility using a 3D endoscope. In this previous study, we established a method for estimating characteristics of contraction wave extracted from a 3D shape include contraction wave obtained from stereo endoscope. Because it is difficult to fix the tip position of the endoscope during the examination, estimation of the 3D position between the endoscope and the gastric wall is necessary for the accurate assessment. Then, we have proposed a motion compensation method using 3D scene flow. However, since mucosa has few feature points, it is difficult to obtain 3D scene flow from RGB images. So, we focused on spectral imaging that can enhance visualization of mucosal structure. Spectral image can be obtained without switching optical filters by using technique to estimate spectral reflectance by image processing. In this paper, we propose registration method of measured 3D shape in time series using estimated spectral image. The spectral image is estimated from the RGB image for each frame. 3D scene flow of feature points, that is, enhanced mucosal structure calculated by spectral images in a time series. The position change between the endoscope and gastric wall is estimated by 3D scene flow. We experimented to confirm the validity of the proposed method using papers with a grid of colors close to the background color.

  13. Geometric Parameters Estimation and Calibration in Cone-Beam Micro-CT

    Directory of Open Access Journals (Sweden)

    Jintao Zhao

    2015-09-01

    Full Text Available The quality of Computed Tomography (CT images crucially depends on the precise knowledge of the scanner geometry. Therefore, it is necessary to estimate and calibrate the misalignments before image acquisition. In this paper, a Two-Piece-Ball (TPB phantom is used to estimate a set of parameters that describe the geometry of a cone-beam CT system. Only multiple projections of the TPB phantom at one position are required, which can avoid the rotation errors when acquiring multi-angle projections. Also, a corresponding algorithm is derived. The performance of the method is evaluated through simulation and experimental data. The results demonstrated that the proposed method is valid and easy to implement. Furthermore, the experimental results from the Micro-CT system demonstrate the ability to reduce artifacts and improve image quality through geometric parameter calibration.

  14. Uncertainty quantification for radiation measurements: Bottom-up error variance estimation using calibration information

    International Nuclear Information System (INIS)

    Burr, T.; Croft, S.; Krieger, T.; Martin, K.; Norman, C.; Walsh, S.

    2016-01-01

    One example of top-down uncertainty quantification (UQ) involves comparing two or more measurements on each of multiple items. One example of bottom-up UQ expresses a measurement result as a function of one or more input variables that have associated errors, such as a measured count rate, which individually (or collectively) can be evaluated for impact on the uncertainty in the resulting measured value. In practice, it is often found that top-down UQ exhibits larger error variances than bottom-up UQ, because some error sources are present in the fielded assay methods used in top-down UQ that are not present (or not recognized) in the assay studies used in bottom-up UQ. One would like better consistency between the two approaches in order to claim understanding of the measurement process. The purpose of this paper is to refine bottom-up uncertainty estimation by using calibration information so that if there are no unknown error sources, the refined bottom-up uncertainty estimate will agree with the top-down uncertainty estimate to within a specified tolerance. Then, in practice, if the top-down uncertainty estimate is larger than the refined bottom-up uncertainty estimate by more than the specified tolerance, there must be omitted sources of error beyond those predicted from calibration uncertainty. The paper develops a refined bottom-up uncertainty approach for four cases of simple linear calibration: (1) inverse regression with negligible error in predictors, (2) inverse regression with non-negligible error in predictors, (3) classical regression followed by inversion with negligible error in predictors, and (4) classical regression followed by inversion with non-negligible errors in predictors. Our illustrations are of general interest, but are drawn from our experience with nuclear material assay by non-destructive assay. The main example we use is gamma spectroscopy that applies the enrichment meter principle. Previous papers that ignore error in predictors

  15. Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 µm Domain

    Directory of Open Access Journals (Sweden)

    Sophie Fabre

    2015-02-01

    Full Text Available This work aims to compare the performance of new methods to estimate the Soil Moisture Content (SMC of bare soils from their spectral signatures in the reflective domain (0.4–2.5 µm in comparison with widely used spectral indices like Normalized Soil Moisture Index (NSMI and Water Index SOIL (WISOIL. Indeed, these reference spectral indices use wavelengths located in the water vapour absorption bands and their performance are thus very sensitive to the quality of the atmospheric compensation. To reduce these limitations, two new spectral indices are proposed which wavelengths are defined using the determination matrix tool by taking into account the atmospheric transmission: Normalized Index of Nswir domain for Smc estimatiOn from Linear correlation (NINSOL and Normalized Index of Nswir domain for Smc estimatiOn from Non linear correlation (NINSON. These spectral indices are completed by two new methods based on the global shape of the soil spectral signatures. These methods are the Inverse Soil semi-Empirical Reflectance model (ISER, using the inversion of an existing empirical soil model simulating the soil spectral reflectance according to soil moisture content for a given soil class, and the convex envelope model, linking the area between the envelope and the spectral signature to the SMC. All these methods are compared using a reference database built with 32 soil samples and composed of 190 spectral signatures with five or six soil moisture contents. Half of the database is used for the calibration stage and the remaining to evaluate the performance of the SMC estimation methods. The results show that the four new methods lead to similar or better performance than the one obtained by the reference indices. The RMSE is ranging from 3.8% to 6.2% and the coefficient of determination R2 varies between 0.74 and 0.91 with the best performance obtained with the ISER model. In a second step, simulated spectral radiances at the sensor level are

  16. Estimating pole/zero errors in GSN-IRIS/USGS network calibration metadata

    Science.gov (United States)

    Ringler, A.T.; Hutt, C.R.; Aster, R.; Bolton, H.; Gee, L.S.; Storm, T.

    2012-01-01

    Mapping the digital record of a seismograph into true ground motion requires the correction of the data by some description of the instrument's response. For the Global Seismographic Network (Butler et al., 2004), as well as many other networks, this instrument response is represented as a Laplace domain pole–zero model and published in the Standard for the Exchange of Earthquake Data (SEED) format. This Laplace representation assumes that the seismometer behaves as a linear system, with any abrupt changes described adequately via multiple time-invariant epochs. The SEED format allows for published instrument response errors as well, but these typically have not been estimated or provided to users. We present an iterative three-step method to estimate the instrument response parameters (poles and zeros) and their associated errors using random calibration signals. First, we solve a coarse nonlinear inverse problem using a least-squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a nonlinear parameter estimation problem to obtain the least-squares best-fit Laplace pole–zero–gain model. Third, by applying the central limit theorem, we estimate the errors in this pole–zero model by solving the inverse problem at each frequency in a two-thirds octave band centered at each best-fit pole–zero frequency. This procedure yields error estimates of the 99% confidence interval. We demonstrate the method by applying it to a number of recent Incorporated Research Institutions in Seismology/United States Geological Survey (IRIS/USGS) network calibrations (network code IU).

  17. Evaluation of the robustness of estimating five components from a skin spectral image

    Science.gov (United States)

    Akaho, Rina; Hirose, Misa; Tsumura, Norimichi

    2018-04-01

    We evaluated the robustness of a method used to estimate five components (i.e., melanin, oxy-hemoglobin, deoxy-hemoglobin, shading, and surface reflectance) from the spectral reflectance of skin at five wavelengths against noise and a change in epidermis thickness. We also estimated the five components from recorded images of age spots and circles under the eyes using the method. We found that noise in the image must be no more 0.1% to accurately estimate the five components and that the thickness of the epidermis affects the estimation. We acquired the distribution of major causes for age spots and circles under the eyes by applying the method to recorded spectral images.

  18. The potential of spectral mixture analysis to improve the estimation accuracy of tropical forest biomass

    NARCIS (Netherlands)

    Basuki, T.M.; Skidmore, A.K.; Laake, van P.E.; Duren, van I.C.; Hussin, Y.A.

    2012-01-01

    A main limitation of pixel-based vegetation indices or reflectance values for estimating above-ground biomass is that they do not consider the mixed spectral components on the earth's surface covered by a pixel. In this research, we decomposed mixed reflectance in each pixel before developing models

  19. Improved crop residue cover estimates by coupling spectral indices for residue and moisture

    Science.gov (United States)

    Remote sensing assessment of soil residue cover (fR) and tillage intensity will improve our predictions of the impact of agricultural practices and promote sustainable management. Spectral indices for estimating fR are sensitive to soil and residue water content, therefore, the uncertainty of estima...

  20. Fast and accurate spectral estimation for online detection of partial broken bar in induction motors

    Science.gov (United States)

    Samanta, Anik Kumar; Naha, Arunava; Routray, Aurobinda; Deb, Alok Kanti

    2018-01-01

    In this paper, an online and real-time system is presented for detecting partial broken rotor bar (BRB) of inverter-fed squirrel cage induction motors under light load condition. This system with minor modifications can detect any fault that affects the stator current. A fast and accurate spectral estimator based on the theory of Rayleigh quotient is proposed for detecting the spectral signature of BRB. The proposed spectral estimator can precisely determine the relative amplitude of fault sidebands and has low complexity compared to available high-resolution subspace-based spectral estimators. Detection of low-amplitude fault components has been improved by removing the high-amplitude fundamental frequency using an extended-Kalman based signal conditioner. Slip is estimated from the stator current spectrum for accurate localization of the fault component. Complexity and cost of sensors are minimal as only a single-phase stator current is required. The hardware implementation has been carried out on an Intel i7 based embedded target ported through the Simulink Real-Time. Evaluation of threshold and detectability of faults with different conditions of load and fault severity are carried out with empirical cumulative distribution function.

  1. Estimation of spectral reflectance of snow from IRS-1D LISS-III ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Marine and Water Resources Group, Space Applications Centre, Ahmedabad, 380 015, India. The sensor ... snowpack characteristics as a result of various metamorphic processes, with age, can cause varia- tions in its ... estimate the direct radiation income of slopes in ... model are: mean solar exo-atmospheric spectral.

  2. Estimation of compound distribution in spectral images of tomatoes using independent component analysis

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.

    2003-01-01

    Independent Component Analysis (ICA) is one of the most widely used methods for blind source separation. In this paper we use this technique to estimate the important compounds which play a role in the ripening of tomatoes. Spectral images of tomatoes were analyzed. Two main independent components

  3. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    Science.gov (United States)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  4. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    Science.gov (United States)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-03-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  5. Efficient spectral estimation by MUSIC and ESPRIT with application to sparse FFT

    Directory of Open Access Journals (Sweden)

    Daniel ePotts

    2016-02-01

    Full Text Available In spectral estimation, one has to determine all parameters of an exponential sum for finitely many (noisysampled data of this exponential sum.Frequently used methods for spectral estimation are MUSIC (MUltiple SIgnal Classification and ESPRIT (Estimation of Signal Parameters viaRotational Invariance Technique.For a trigonometric polynomial of large sparsity, we present a new sparse fast Fourier transform byshifted sampling and using MUSIC resp. ESPRIT, where the ESPRIT based method has lower computational cost.Later this technique is extended to a new reconstruction of a multivariate trigonometric polynomial of large sparsity for given (noisy values sampled on a reconstructing rank-1 lattice. Numerical experiments illustrate thehigh performance of these procedures.

  6. A Fundamental Study on Spectrum Center Estimation of Solar Spectral Irradiation by the Statistical Pattern Recognition

    Science.gov (United States)

    Iijima, Aya; Suzuki, Kazumi; Wakao, Shinji; Kawasaki, Norihiro; Usami, Akira

    With a background of environmental problems and energy issues, it is expected that PV systems will be introduced rapidly and connected with power grids on a large scale in the future. For this reason, the concern to which PV power generation will affect supply and demand adjustment in electric power in the future arises and the technique of correctly grasping the PV power generation becomes increasingly important. The PV power generation depends on solar irradiance, temperature of a module and solar spectral irradiance. Solar spectral irradiance is distribution of the strength of the light for every wavelength. As the spectrum sensitivity of solar cell depends on kind of solar cell, it becomes important for exact grasp of PV power generation. Especially the preparation of solar spectral irradiance is, however, not easy because the observational instrument of solar spectral irradiance is expensive. With this background, in this paper, we propose a new method based on statistical pattern recognition for estimating the spectrum center which is representative index of solar spectral irradiance. Some numerical examples obtained by the proposed method are also presented.

  7. DEVELOPMENT OF NEW HYPERSPECTRAL ANGLE INDEX FOR ESTIMATION OF SOIL MOISTURE USING IN SITU SPECTRAL MEASURMENTS

    Directory of Open Access Journals (Sweden)

    M. R. Mobasheri

    2013-10-01

    Full Text Available Near-surface soil moisture is one of the crucial variables in hydrological processes, which influences the exchange of water and energy fluxes at the land surface/atmosphere interface. Accurate estimate of the spatial and temporal variations of soil moisture is critical for numerous environmental studies. On the other hand, information of distributed soil moisture at large scale with reasonable spatial and temporal resolution is required for improving climatic and hydrologic modeling and prediction. The advent of hyperspectral imagery has allowed examination of continuous spectra not possible with isolated bands in multispectral imagery. In addition to high spectral resolution for individual band analyses, the contiguous narrow bands show characteristics of related absorption features, such as effects of strong absorptions on the band depths of adjacent absorptions. Our objective in this study was to develop a new spectral angle index to estimate soil moisture based on spectral region (350 and 2500 nm. In this paper, using spectral observations made by ASD Spectroradiometer for predicting soil moisture content, two soil indices were also investigated involving the Perpendicular Drought Index (PDI, NMDI (Normalized Multi-band Drought Index indices. Correlation and regression analysis showed a high relationship between PDI and the soil moisture percent (R2 = 0.9537 and NMDI (R2 = 0.9335. Furthermore, we also simulated these data according to the spectral range of some sensors such as MODIS, ASTER, ALI and ETM+. Indices relevant these sensors have high correlation with soil moisture data. Finally, we proposed a new angle index which shows significant relationship between new angle index and the soil moisture percentages (R2 = 0.9432.angle index relevant bands 3, 4, 5, 6, 7 MODIS also showing high accuracy in estimation of soil moisture (R2 = 0.719.

  8. Estimating energy expenditure from heart rate in older adults: a case for calibration.

    Science.gov (United States)

    Schrack, Jennifer A; Zipunnikov, Vadim; Goldsmith, Jeff; Bandeen-Roche, Karen; Crainiceanu, Ciprian M; Ferrucci, Luigi

    2014-01-01

    Accurate measurement of free-living energy expenditure is vital to understanding changes in energy metabolism with aging. The efficacy of heart rate as a surrogate for energy expenditure is rooted in the assumption of a linear function between heart rate and energy expenditure, but its validity and reliability in older adults remains unclear. To assess the validity and reliability of the linear function between heart rate and energy expenditure in older adults using different levels of calibration. Heart rate and energy expenditure were assessed across five levels of exertion in 290 adults participating in the Baltimore Longitudinal Study of Aging. Correlation and random effects regression analyses assessed the linearity of the relationship between heart rate and energy expenditure and cross-validation models assessed predictive performance. Heart rate and energy expenditure were highly correlated (r=0.98) and linear regardless of age or sex. Intra-person variability was low but inter-person variability was high, with substantial heterogeneity of the random intercept (s.d. =0.372) despite similar slopes. Cross-validation models indicated individual calibration data substantially improves accuracy predictions of energy expenditure from heart rate, reducing the potential for considerable measurement bias. Although using five calibration measures provided the greatest reduction in the standard deviation of prediction errors (1.08 kcals/min), substantial improvement was also noted with two (0.75 kcals/min). These findings indicate standard regression equations may be used to make population-level inferences when estimating energy expenditure from heart rate in older adults but caution should be exercised when making inferences at the individual level without proper calibration.

  9. CALIBRATION OF THE MEARTH PHOTOMETRIC SYSTEM: OPTICAL MAGNITUDES AND PHOTOMETRIC METALLICITY ESTIMATES FOR 1802 NEARBY M-DWARFS

    International Nuclear Information System (INIS)

    Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Newton, Elisabeth R.

    2016-01-01

    The MEarth Project is a photometric survey systematically searching the smallest stars near the Sun for transiting rocky planets. Since 2008, MEarth has taken approximately two million images of 1844 stars suspected to be mid-to-late M dwarfs. We have augmented this survey by taking nightly exposures of photometric standard stars and have utilized this data to photometrically calibrate the MEarth system, identify photometric nights, and obtain an optical magnitude with 1.5% precision for each M dwarf system. Each optical magnitude is an average over many years of data, and therefore should be largely immune to stellar variability and flaring. We combine this with trigonometric distance measurements, spectroscopic metallicity measurements, and 2MASS infrared magnitude measurements in order to derive a color–magnitude–metallicity relation across the mid-to-late M dwarf spectral sequence that can reproduce spectroscopic metallicity determinations to a precision of 0.1 dex. We release optical magnitudes and metallicity estimates for 1567 M dwarfs, many of which did not have an accurate determination of either prior to this work. For an additional 277 stars without a trigonometric parallax, we provide an estimate of the distance, assuming solar neighborhood metallicity. We find that the median metallicity for a volume-limited sample of stars within 20 pc of the Sun is [Fe/H] = −0.03 ± 0.008, and that 29/565 of these stars have a metallicity of [Fe/H] = −0.5 or lower, similar to the low-metallicity distribution of nearby G dwarfs. When combined with the results of ongoing and future planet surveys targeting these objects, the metallicity estimates presented here will be important for assessing the significance of any putative planet–metallicity correlation

  10. CALIBRATION OF THE MEARTH PHOTOMETRIC SYSTEM: OPTICAL MAGNITUDES AND PHOTOMETRIC METALLICITY ESTIMATES FOR 1802 NEARBY M-DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Newton, Elisabeth R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2016-02-20

    The MEarth Project is a photometric survey systematically searching the smallest stars near the Sun for transiting rocky planets. Since 2008, MEarth has taken approximately two million images of 1844 stars suspected to be mid-to-late M dwarfs. We have augmented this survey by taking nightly exposures of photometric standard stars and have utilized this data to photometrically calibrate the MEarth system, identify photometric nights, and obtain an optical magnitude with 1.5% precision for each M dwarf system. Each optical magnitude is an average over many years of data, and therefore should be largely immune to stellar variability and flaring. We combine this with trigonometric distance measurements, spectroscopic metallicity measurements, and 2MASS infrared magnitude measurements in order to derive a color–magnitude–metallicity relation across the mid-to-late M dwarf spectral sequence that can reproduce spectroscopic metallicity determinations to a precision of 0.1 dex. We release optical magnitudes and metallicity estimates for 1567 M dwarfs, many of which did not have an accurate determination of either prior to this work. For an additional 277 stars without a trigonometric parallax, we provide an estimate of the distance, assuming solar neighborhood metallicity. We find that the median metallicity for a volume-limited sample of stars within 20 pc of the Sun is [Fe/H] = −0.03 ± 0.008, and that 29/565 of these stars have a metallicity of [Fe/H] = −0.5 or lower, similar to the low-metallicity distribution of nearby G dwarfs. When combined with the results of ongoing and future planet surveys targeting these objects, the metallicity estimates presented here will be important for assessing the significance of any putative planet–metallicity correlation.

  11. A methodology to calibrate water saturation estimated from 4D seismic data

    International Nuclear Information System (INIS)

    Davolio, Alessandra; Maschio, Célio; José Schiozer, Denis

    2014-01-01

    Time-lapse seismic data can be used to estimate saturation changes within a reservoir, which is valuable information for reservoir management as it plays an important role in updating reservoir simulation models. The process of updating reservoir properties, history matching, can incorporate estimated saturation changes qualitatively or quantitatively. For quantitative approaches, reliable information from 4D seismic data is important. This work proposes a methodology to calibrate the volume of water in the estimated saturation maps, as these maps can be wrongly estimated due to problems with seismic signals (such as noise, errors associated with data processing and resolution issues). The idea is to condition the 4D seismic data to known information provided by engineering, in this case the known amount of injected and produced water in the field. The application of the proposed methodology in an inversion process (previously published) that estimates saturation from 4D seismic data is presented, followed by a discussion concerning the use of such data in a history matching process. The methodology is applied to a synthetic dataset to validate the results, the main of which are: (1) reduction of the effects of noise and errors in the estimated saturation, yielding more reliable data to be used quantitatively or qualitatively and (2) an improvement in the properties update after using this data in a history matching procedure. (paper)

  12. Performance evaluation of the spectral centroid downshift method for attenuation estimation.

    Science.gov (United States)

    Samimi, Kayvan; Varghese, Tomy

    2015-05-01

    Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue characterization. Along with other acoustic parameters studied in quantitative ultrasound, the attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral centroid downshift (CDS) method is one the most common frequencydomain approaches applied to this problem. In this study, a statistical analysis of this method's performance was carried out based on a parametric model of the signal power spectrum in the presence of electronic noise. The parametric model used for the power spectrum of received RF data assumes a Gaussian spectral profile for the transmit pulse, and incorporates effects of attenuation, windowing, and electronic noise. Spectral moments were calculated and used to estimate second-order centroid statistics. A theoretical expression for the variance of a maximum likelihood estimator of attenuation coefficient was derived in terms of the centroid statistics and other model parameters, such as transmit pulse center frequency and bandwidth, RF data window length, SNR, and number of regression points. Theoretically predicted estimation variances were compared with experimentally estimated variances on RF data sets from both computer-simulated and physical tissue-mimicking phantoms. Scan parameter ranges for this study were electronic SNR from 10 to 70 dB, transmit pulse standard deviation from 0.5 to 4.1 MHz, transmit pulse center frequency from 2 to 8 MHz, and data window length from 3 to 17 mm. Acceptable agreement was observed between theoretical predictions and experimentally estimated values with differences smaller than 0.05 dB/cm/MHz across the parameter ranges investigated. This model helps predict the best attenuation estimation variance achievable with the CDS method, in terms of said scan parameters.

  13. Use of the spectral analysis for estimating the intensity of a weak periodic source

    International Nuclear Information System (INIS)

    Marseguerra, M.

    1989-01-01

    This paper deals with the possibility of exploiting spectral methods for the analysis of counting experiments in which one has to estimate the intensity of a weak periodic source of particles buried in a high background. The general theoretical expressions here obtained for the auto- and cross-spectra are applied to three kinds of simulated experiments. In all cases it turns out that the source intensity can acutally be estimated with a standard deviation comparable with that obtained in classical experiments in which the source can be moved out. Thus the spectral methods represent an interesting technique nowadays easy to implement on low-cost computers which could also be used in many research fields by suitably redesigning classical experiments. The convenience of using these methods in the field of nuclear safeguards is presently investigated in our Institute. (orig.)

  14. Color quality improvement of reconstructed images in color digital holography using speckle method and spectral estimation

    Science.gov (United States)

    Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa

    2018-05-01

    In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.

  15. Improved target detection and bearing estimation utilizing fast orthogonal search for real-time spectral analysis

    International Nuclear Information System (INIS)

    Osman, Abdalla; El-Sheimy, Naser; Nourledin, Aboelamgd; Theriault, Jim; Campbell, Scott

    2009-01-01

    The problem of target detection and tracking in the ocean environment has attracted considerable attention due to its importance in military and civilian applications. Sonobuoys are one of the capable passive sonar systems used in underwater target detection. Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The frequency resolution introduced by current techniques is limited which affects the accuracy of target detection and bearing estimation at a relatively low signal-to-noise ratio (SNR). This research investigates the development of a bearing estimation method using fast orthogonal search (FOS) for enhanced spectral estimation. FOS is employed in this research in order to improve both target detection and bearing estimation in the case of low SNR inputs. The proposed methods were tested using simulated data developed for two different scenarios under different underwater environmental conditions. The results show that the proposed method is capable of enhancing the accuracy for target detection as well as bearing estimation especially in cases of a very low SNR

  16. Power spectral density of velocity fluctuations estimated from phase Doppler data

    OpenAIRE

    Jicha Miroslav; Lizal Frantisek; Jedelsky Jan

    2012-01-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused...

  17. Performance Evaluation of the Spectral Centroid Downshift Method for Attenuation Estimation

    OpenAIRE

    Samimi, Kayvan; Varghese, Tomy

    2015-01-01

    Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue characterization. Along with other acoustic parameters studied in quantitative ultrasound, the attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral centroid downshift (CDS) method is one the most common frequency-domain approaches applied to this problem. In this study, a statistical analysis of this method’s performance was carried out based on a parametric m...

  18. Simultaneous auto-calibration and gradient delays estimation (SAGE) in non-Cartesian parallel MRI using low-rank constraints.

    Science.gov (United States)

    Jiang, Wenwen; Larson, Peder E Z; Lustig, Michael

    2018-03-09

    To correct gradient timing delays in non-Cartesian MRI while simultaneously recovering corruption-free auto-calibration data for parallel imaging, without additional calibration scans. The calibration matrix constructed from multi-channel k-space data should be inherently low-rank. This property is used to construct reconstruction kernels or sensitivity maps. Delays between the gradient hardware across different axes and RF receive chain, which are relatively benign in Cartesian MRI (excluding EPI), lead to trajectory deviations and hence data inconsistencies for non-Cartesian trajectories. These in turn lead to higher rank and corrupted calibration information which hampers the reconstruction. Here, a method named Simultaneous Auto-calibration and Gradient delays Estimation (SAGE) is proposed that estimates the actual k-space trajectory while simultaneously recovering the uncorrupted auto-calibration data. This is done by estimating the gradient delays that result in the lowest rank of the calibration matrix. The Gauss-Newton method is used to solve the non-linear problem. The method is validated in simulations using center-out radial, projection reconstruction and spiral trajectories. Feasibility is demonstrated on phantom and in vivo scans with center-out radial and projection reconstruction trajectories. SAGE is able to estimate gradient timing delays with high accuracy at a signal to noise ratio level as low as 5. The method is able to effectively remove artifacts resulting from gradient timing delays and restore image quality in center-out radial, projection reconstruction, and spiral trajectories. The low-rank based method introduced simultaneously estimates gradient timing delays and provides accurate auto-calibration data for improved image quality, without any additional calibration scans. © 2018 International Society for Magnetic Resonance in Medicine.

  19. Inertial Measurement Units-Based Probe Vehicles: Automatic Calibration, Trajectory Estimation, and Context Detection

    KAUST Repository

    Mousa, Mustafa

    2017-12-06

    Most probe vehicle data is generated using satellite navigation systems, such as the Global Positioning System (GPS), Globalnaya navigatsionnaya sputnikovaya Sistema (GLONASS), or Galileo systems. However, because of their high cost, relatively high position uncertainty in cities, and low sampling rate, a large quantity of satellite positioning data is required to estimate traffic conditions accurately. To address this issue, we introduce a new type of traffic monitoring system based on inexpensive inertial measurement units (IMUs) as probe sensors. IMUs as traffic probes pose unique challenges in that they need to be precisely calibrated, do not generate absolute position measurements, and their position estimates are subject to accumulating errors. In this paper, we address each of these challenges and demonstrate that the IMUs can reliably be used as traffic probes. After discussing the sensing technique, we present an implementation of this system using a custom-designed hardware platform, and validate the system with experimental data.

  20. Inertial Measurement Units-Based Probe Vehicles: Automatic Calibration, Trajectory Estimation, and Context Detection

    KAUST Repository

    Mousa, Mustafa; Sharma, Kapil; Claudel, Christian G.

    2017-01-01

    Most probe vehicle data is generated using satellite navigation systems, such as the Global Positioning System (GPS), Globalnaya navigatsionnaya sputnikovaya Sistema (GLONASS), or Galileo systems. However, because of their high cost, relatively high position uncertainty in cities, and low sampling rate, a large quantity of satellite positioning data is required to estimate traffic conditions accurately. To address this issue, we introduce a new type of traffic monitoring system based on inexpensive inertial measurement units (IMUs) as probe sensors. IMUs as traffic probes pose unique challenges in that they need to be precisely calibrated, do not generate absolute position measurements, and their position estimates are subject to accumulating errors. In this paper, we address each of these challenges and demonstrate that the IMUs can reliably be used as traffic probes. After discussing the sensing technique, we present an implementation of this system using a custom-designed hardware platform, and validate the system with experimental data.

  1. On the spectral theory and dispersive estimates for a discrete Schroedinger equation in one dimension

    International Nuclear Information System (INIS)

    Pelinovsky, D. E.; Stefanov, A.

    2008-01-01

    Based on the recent work [Komech et al., 'Dispersive estimates for 1D discrete Schroedinger and Klein-Gordon equations', Appl. Anal. 85, 1487 (2006)] for compact potentials, we develop the spectral theory for the one-dimensional discrete Schroedinger operator, Hφ=(-Δ+V)φ=-(φ n+1 +φ n-1 -2φ n )+V n φ n . We show that under appropriate decay conditions on the general potential (and a nonresonance condition at the spectral edges), the spectrum of H consists of finitely many eigenvalues of finite multiplicities and the essential (absolutely continuous) spectrum, while the resolvent satisfies the limiting absorption principle and the Puiseux expansions near the edges. These properties imply the dispersive estimates parallel e itH P a.c. (H) parallel l σ 2 →l -σ 2 -3/2 for any fixed σ>(5/2) and any t>0, where P a.c. (H) denotes the spectral projection to the absolutely continuous spectrum of H. In addition, based on the scattering theory for the discrete Jost solutions and the previous results by Stefanov and Kevrekidis [''Asymptotic behaviour of small solutions for the discrete nonlinear Schroedinger and Klein-Gordon equations,'' Nonlinearity 18, 1841 (2005)], we find new dispersive estimates parallel e itH P a.c. (H) parallel l 1 →l ∞ -1/3 , which are sharp for the discrete Schroedinger operators even for V=0

  2. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression.

    Science.gov (United States)

    Delwiche, Stephen R; Reeves, James B

    2010-01-01

    In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various

  3. Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar

    Directory of Open Access Journals (Sweden)

    R. R. Rogers

    2011-02-01

    Full Text Available The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO spacecraft has provided global, high-resolution vertical profiles of aerosols and clouds since it became operational on 13 June 2006. On 14 June 2006, the NASA Langley Research Center (LaRC High Spectral Resolution Lidar (HSRL was deployed aboard the NASA Langley B-200 aircraft for the first of a series of 86 underflights of the CALIPSO satellite to provide validation measurements for the CALIOP data products. To better assess the range of conditions under which CALIOP data products are produced, these validation flights were conducted under both daytime and nighttime lighting conditions, in multiple seasons, and over a large range of latitudes and aerosol and cloud conditions. This paper presents a quantitative assessment of the CALIOP 532 nm calibration (through the 532 nm total attenuated backscatter using internally calibrated airborne HSRL underflight data and is the most extensive study of CALIOP 532 nm calibration. Results show that HSRL and CALIOP 532 nm total attenuated backscatter agree on average within 2.7% ± 2.1% (CALIOP lower at night and within 2.9% ± 3.9% (CALIOP lower during the day, demonstrating the accuracy of the CALIOP 532 nm calibration algorithms. Additionally, comparisons with HSRL show consistency of the CALIOP calibration before and after the laser switch in 2009 as well as improvements in the daytime version 3.01 calibration scheme compared with the version 2 calibration scheme. Potential biases and uncertainties in the methodology relevant to validating satellite lidar measurements with an airborne lidar system are discussed and found to be less than 4.5% ± 3.2% for this validation effort with HSRL. Results from this study are also compared with prior assessments of the CALIOP 532 nm attenuated backscatter calibration.

  4. Improved covariance matrix estimation in spectrally inhomogeneous sea clutter with application to adaptive small boat detection.

    CSIR Research Space (South Africa)

    Herselman, PL

    2008-09-01

    Full Text Available and that is necessary to set the threshold χt as a function of the steering vector Doppler fd. Improvements to the estimation technique are suggested and evaluated where a more localised M is estimated using either frequency agility or the immediate time history... of frequency, calculated as NIM2(fd) = E{z(fd)2}/E2{z(fd)} , (3) where z(fd) is the power spectral density at fd. This is often used to quantify the Rayleigh-likeness of the envelope 0 5 10 15 −500 −250 0 250 500 Doppler frequency [Hz ] NIM2Time [s...

  5. Estimation of Spectral Exponent Parameter of 1/f Process in Additive White Background Noise

    Directory of Open Access Journals (Sweden)

    Semih Ergintav

    2007-01-01

    Full Text Available An extension to the wavelet-based method for the estimation of the spectral exponent, γ, in a 1/fγ process and in the presence of additive white noise is proposed. The approach is based on eliminating the effect of white noise by a simple difference operation constructed on the wavelet spectrum. The γ parameter is estimated as the slope of a linear function. It is shown by simulations that the proposed method gives reliable results. Global positioning system (GPS time-series noise is analyzed and the results provide experimental verification of the proposed method.

  6. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    Science.gov (United States)

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  7. Moisture estimation in power transformer oil using acoustic signals and spectral kurtosis

    International Nuclear Information System (INIS)

    Leite, Valéria C M N; Veloso, Giscard F C; Borges da Silva, Luiz Eduardo; Lambert-Torres, Germano; Borges da Silva, Jonas G; Pinto, João Onofre Pereira

    2016-01-01

    The aim of this paper is to present a new technique for estimating the contamination by moisture in power transformer insulating oil based on the spectral kurtosis analysis of the acoustic signals of partial discharges (PDs). Basically, in this approach, the spectral kurtosis of the PD acoustic signal is calculated and the correlation between its maximum value and the moisture percentage is explored to find a function that calculates the moisture percentage. The function can be easily implemented in DSP, FPGA, or any other type of embedded system for online moisture monitoring. To evaluate the proposed approach, an experiment is assembled with a piezoelectric sensor attached to a tank, which is filled with insulating oil samples contaminated by different levels of moisture. A device generating electrical discharges is submerged into the oil to simulate the occurrence of PDs. Detected acoustic signals are processed using fast kurtogram algorithm to extract spectral kurtosis values. The obtained data are used to find the fitting function that relates the water contamination to the maximum value of the spectral kurtosis. Experimental results show that the proposed method is suitable for online monitoring system of power transformers. (paper)

  8. A brute-force spectral approach for wave estimation using measured vessel motions

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; Brodtkorb, Astrid H.; Sørensen, Asgeir J.

    2018-01-01

    , and the procedure is simple in its mathematical formulation. The actual formulation is extending another recent work by including vessel advance speed and short-crested seas. Due to its simplicity, the procedure is computationally efficient, providing wave spectrum estimates in the order of a few seconds......The article introduces a spectral procedure for sea state estimation based on measurements of motion responses of a ship in a short-crested seaway. The procedure relies fundamentally on the wave buoy analogy, but the wave spectrum estimate is obtained in a direct - brute-force - approach......, and the estimation procedure will therefore be appealing to applications related to realtime, onboard control and decision support systems for safe and efficient marine operations. The procedure's performance is evaluated by use of numerical simulation of motion measurements, and it is shown that accurate wave...

  9. The biochemical estimation of age in Euphausiids: Laboratory calibration and field comparisons

    Science.gov (United States)

    Harvey, H. R.; Ju, Se-J.; Son, S.-K.; Feinberg, L. R.; Shaw, C. T.; Peterson, W. T.

    2010-04-01

    Euphausiids play a key role in many marine ecosystems as a link between primary producers and top predators. Understanding their demographic (i.e. age) structure is an essential tool to assess growth and recruitment as well as to determine how changes in environmental conditions might alter their condition and distribution. Age determination of crustaceans cannot be accomplished using traditional approaches, and here we evaluate the potential for biochemical products of tissue metabolism (termed lipofuscins) to determine the demographic structure of euphausiids in field collections . Lipofuscin was extracted from krill neural tissues (eye and eye-stalk), quantified using fluorescent intensity and normalized to tissue protein content to allow comparisons across animal sizes. Multiple fluorescent components from krill were observed, with the major product having a maximum fluorescence at excitation of 355 nm and emission of 510 nm. Needed age calibration of lipofuscin accumulation in Euphausia pacifica was accomplished using known-age individuals hatched and reared in the laboratory for over one year. Lipofuscin content extracted from neural tissues of laboratory-reared animals was highly correlated with the chronological age of animals ( r=0.87). Calibrated with laboratory lipofuscin accumulation rates, field-collected sub-adult and adult E. pacifica in the Northeast Pacific were estimated to be older than 100 days and younger than 1year. Comparative data for the Antarctic krill, E. superba showed much higher lipofuscin values suggesting a much longer lifespan than the more temperate species, E. pacifica. These regional comparisons suggest that biochemical indices allow a practical approach to estimate population age structure of diverse populations, and combined with other measurements can provide estimates of vital rates (i.e. longevity, mortality, growth) for krill populations in dynamic environments.

  10. Chi-square spectral fitting for concentration retrieval, automatic local calibration, quality control, and water type detection

    NARCIS (Netherlands)

    Hommersom, A.; Peters, S.W.M.; van der Woerd, H.J.; Eleveld, M.A.; de Boer, J.

    2011-01-01

    In this study, the inverse bio-optical model HYDROPT was calibrated with regional specific inherent optical properties (SIOPs) and various local SIOPs to examine the effect of these calibrations on the retrievals. The study area, the Wadden Sea, is an estuary and tidal flat area with very high

  11. Estimation of Melanin and Hemoglobin Using Spectral Reflectance Images Reconstructed from a Digital RGB Image by the Wiener Estimation Method

    Directory of Open Access Journals (Sweden)

    Yoshihisa Aizu

    2013-06-01

    Full Text Available A multi-spectral diffuse reflectance imaging method based on a single snap shot of Red-Green-Blue images acquired with the exposure time of 65 ms (15 fps was investigated for estimating melanin concentration, blood concentration, and oxygen saturation in human skin tissue. The technique utilizes the Wiener estimation method to deduce spectral reflectance images instantaneously from an RGB image. Using the resultant absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments on fingers during upper limb occlusion demonstrated the ability of the method to evaluate physiological reactions of human skin.

  12. On the possibility of calibrating urban storm-water drainage models using gauge-based adjusted radar rainfall estimates

    OpenAIRE

    Ochoa-Rodriguez, S; Wang, L; Simoes, N; Onof, C; Maksimovi?, ?

    2013-01-01

    24/07/14 meb. Authors did not sign CTA. Traditionally, urban storm water drainage models have been calibrated using only raingauge data, which may result in overly conservative models due to the lack of spatial description of rainfall. With the advent of weather radars, radar rainfall estimates with higher temporal and spatial resolution have become increasingly available and have started to be used operationally for urban storm water model calibration and real time operation. Nonetheless,...

  13. A new measurement-while-drilling gamma ray log calibrator

    International Nuclear Information System (INIS)

    Meisner, J.; Brooks, A.; Wisniewski, W.

    1985-01-01

    Many of the present methods of calibration for both wireline and MWD gamma ray detectors use a point source at a fixed distance from the detector. MWD calibration errors are introduced from scattering effects, from spectral differences, from position sensitivity and form lack of cylindrical geometry. A new method has been developed at Exploration Logging INc. (EXLOG) that eliminates these errors. The method uses a wrap-around or annular calibrator, referenced to the University of Houston gamma ray API pit. The new calibrator is designed to simulate the API pit's gamma ray emission spectrum with a finite amount of natural source material in the annular shape. Because of the thickness of steel between the MWD gamma ray detector and the formation, there is theoretical necessity for spectral matching. A simple theoretical approach was used to calibrate the new calibrator. Spectral matching allows a closer approximation to wireline logs and makes it possible to estimate the relative spectral content of a formation

  14. Measurements and estimation of the columnar optical depth of tropospheric aerosols in the UV spectral region

    Directory of Open Access Journals (Sweden)

    V. E. Cachorro

    2002-04-01

    Full Text Available We report values of the columnar tropospheric aerosol optical depth at UV wavelengths based on experimental measurements of the direct spectral irradiances carried out by a commercial spectroradiometer (Li1800 of Licor company covering the range from 300–1100 nm at two stations with different climate characteristics in Spain. The first station is located in a rural site in north central Spain with continental climate. The data extend from March to the end of October of 1995. The other station is a coastal site in the Gulf of Cádiz (southwest Spain of maritime climate type. This study is mainly focused on the capability of estimating aerosol optical depth values in the UV region based on the extracted information in the visible and near infrared ranges. A first method has been used based on the Ångström turbidity parameters. However, since this method requires detailed spectral information, a second method has also been used, based on the correlation between wavelengths. A correlation has been established between the experimental aerosol optical depth values at 350 nm and 500 nm wavelengths. Although the type of aerosol seems to be the key factor that determines the quality of these estimations, the evaluation of the associated error is necessary to know the behaviour of these estimations in each area of study.Key words. Atmospheric composition and structure (aerosols and particles; transmission and scattering of radiation; troposphere – composition and chemistry

  15. Measurements and estimation of the columnar optical depth of tropospheric aerosols in the UV spectral region

    Directory of Open Access Journals (Sweden)

    V. E. Cachorro

    Full Text Available We report values of the columnar tropospheric aerosol optical depth at UV wavelengths based on experimental measurements of the direct spectral irradiances carried out by a commercial spectroradiometer (Li1800 of Licor company covering the range from 300–1100 nm at two stations with different climate characteristics in Spain. The first station is located in a rural site in north central Spain with continental climate. The data extend from March to the end of October of 1995. The other station is a coastal site in the Gulf of Cádiz (southwest Spain of maritime climate type. This study is mainly focused on the capability of estimating aerosol optical depth values in the UV region based on the extracted information in the visible and near infrared ranges. A first method has been used based on the Ångström turbidity parameters. However, since this method requires detailed spectral information, a second method has also been used, based on the correlation between wavelengths. A correlation has been established between the experimental aerosol optical depth values at 350 nm and 500 nm wavelengths. Although the type of aerosol seems to be the key factor that determines the quality of these estimations, the evaluation of the associated error is necessary to know the behaviour of these estimations in each area of study.

    Key words. Atmospheric composition and structure (aerosols and particles; transmission and scattering of radiation; troposphere – composition and chemistry

  16. Spectral Estimation of UV-Vis Absorbance Time Series for Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Leonardo Plazas-Nossa

    2017-05-01

    Full Text Available Context: Signals recorded as multivariate time series by UV-Vis absorbance captors installed in urban sewer systems, can be non-stationary, yielding complications in the analysis of water quality monitoring. This work proposes to perform spectral estimation using the Box-Cox transformation and differentiation in order to obtain stationary multivariate time series in a wide sense. Additionally, Principal Component Analysis (PCA is applied to reduce their dimensionality. Method: Three different UV-Vis absorbance time series for different Colombian locations were studied: (i El-Salitre Wastewater Treatment Plant (WWTP in Bogotá; (ii Gibraltar Pumping Station (GPS in Bogotá; and (iii San-Fernando WWTP in Itagüí. Each UV-Vis absorbance time series had equal sample number (5705. The esti-mation of the spectral power density is obtained using the average of modified periodograms with rectangular window and an overlap of 50%, with the 20 most important harmonics from the Discrete Fourier Transform (DFT and Inverse Fast Fourier Transform (IFFT. Results: Absorbance time series dimensionality reduction using PCA, resulted in 6, 8 and 7 principal components for each study site respectively, altogether explaining more than 97% of their variability. Values of differences below 30% for the UV range were obtained for the three study sites, while for the visible range the maximum differences obtained were: (i 35% for El-Salitre WWTP; (ii 61% for GPS; and (iii 75% for San-Fernando WWTP. Conclusions: The Box-Cox transformation and the differentiation process applied to the UV-Vis absorbance time series for the study sites (El-Salitre, GPS and San-Fernando, allowed to reduce variance and to eliminate ten-dency of the time series. A pre-processing of UV-Vis absorbance time series is recommended to detect and remove outliers and then apply the proposed process for spectral estimation. Language: Spanish.

  17. Spectral estimation for long-term evolution transceivers using low-complex filter banks

    Directory of Open Access Journals (Sweden)

    Thomas Schlechter

    2014-06-01

    Full Text Available For mobile user equipments (UEs, a careful power management is essential. Despite this fact, quite an amount of energy is wasted in today's UEs’ analogue (AFEs and digital frontends (DFEs. These are engineered for extracting the wanted signal from a spectral environment defined in the corresponding communication standards with their extremely tough requirements. These requirements define a worst-case scenario still ensuring reliable communication. In a typical receiving process the actual requirements can be considered as less critical. Knowledge about the actual environmental spectral conditions allows to reconfigure both frontends to the actual needs and to save energy. In this paper, the authors present a highly efficient generic spectrum sensing approach, which allows to collect information about the actual spectral environment of an UE. This information can be used to reconfigure both the AFE and DFE, thus endowing them with increased intelligence. A low-complex multiplier free filter bank extended by an efficient power calculation unit will be introduced. They also present simulation results, which illustrate the performance of the spectrum sensing approach and a complexity comparison with different well-known implementations is given. Furthermore, estimates on the chip area and power consumption based on a 65 nm CMOS technology database are provided, considering the Smarti4G chip as a reference.

  18. Estimating chlorophyll content of spartina alterniflora at leaf level using hyper-spectral data

    Science.gov (United States)

    Wang, Jiapeng; Shi, Runhe; Liu, Pudong; Zhang, Chao; Chen, Maosi

    2017-09-01

    Spartina alterniflora, one of most successful invasive species in the world, was firstly introduced to China in 1979 to accelerate sedimentation and land formation via so-called "ecological engineering", and it is now widely distributed in coastal saltmarshes in China. A key question is how to retrieve chlorophyll content to reflect growth status, which has important implication of potential invasiveness. In this work, an estimation model of chlorophyll content of S. alterniflora was developed based on hyper-spectral data in the Dongtan Wetland, Yangtze Estuary, China. The spectral reflectance of S. alterniflora leaves and their corresponding chlorophyll contents were measured, and then the correlation analysis and regression (i.e., linear, logarithmic, quadratic, power and exponential regression) method were established. The spectral reflectance was transformed and the feature parameters (i.e., "san bian", "lv feng" and "hong gu") were extracted to retrieve the chlorophyll content of S. alterniflora . The results showed that these parameters had a large correlation coefficient with chlorophyll content. On the basis of the correlation coefficient, mathematical models were established, and the models of power and exponential based on SDb had the least RMSE and larger R2 , which had a good performance regarding the inversion of chlorophyll content of S. alterniflora.

  19. Adaptive on-line calibration for around-view monitoring system using between-camera homography estimation

    Science.gov (United States)

    Lim, Sungsoo; Lee, Seohyung; Kim, Jun-geon; Lee, Daeho

    2018-01-01

    The around-view monitoring (AVM) system is one of the major applications of advanced driver assistance systems and intelligent transportation systems. We propose an on-line calibration method, which can compensate misalignments for AVM systems. Most AVM systems use fisheye undistortion, inverse perspective transformation, and geometrical registration methods. To perform these procedures, the parameters for each process must be known; the procedure by which the parameters are estimated is referred to as the initial calibration. However, when only using the initial calibration data, we cannot compensate misalignments, caused by changing equilibria of cars. Moreover, even small changes such as tire pressure levels, passenger weight, or road conditions can affect a car's equilibrium. Therefore, to compensate for this misalignment, additional techniques are necessary, specifically an on-line calibration method. On-line calibration can recalculate homographies, which can correct any degree of misalignment using the unique features of ordinary parking lanes. To extract features from the parking lanes, this method uses corner detection and a pattern matching algorithm. From the extracted features, homographies are estimated using random sample consensus and parameter estimation. Finally, the misaligned epipolar geographies are compensated via the estimated homographies. Thus, the proposed method can render image planes parallel to the ground. This method does not require any designated patterns and can be used whenever cars are placed in a parking lot. The experimental results show the robustness and efficiency of the method.

  20. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    Science.gov (United States)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  1. Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal Image Data

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, Patrick G.; Posse, Christian; Hylden, Jeff L.; Anderson, Kevin K.

    2007-06-13

    This paper presents a nonlinear Bayesian regression algorithm for the purpose of detecting and estimating gas plume content from hyper-spectral data. Remote sensing data, by its very nature, is collected under less controlled conditions than laboratory data. As a result, the physics-based model that is used to describe the relationship between the observed remotesensing spectra, and the terrestrial (or atmospheric) parameters that we desire to estimate, is typically littered with many unknown "nuisance" parameters (parameters that we are not interested in estimating, but also appear in the model). Bayesian methods are well-suited for this context as they automatically incorporate the uncertainties associated with all nuisance parameters into the error estimates of the parameters of interest. The nonlinear Bayesian regression methodology is illustrated on realistic simulated data from a three-layer model for longwave infrared (LWIR) measurements from a passive instrument. This shows that this approach should permit more accurate estimation as well as a more reasonable description of estimate uncertainty.

  2. Absolute sensitivity calibration from 20 A to 430 A of a grazing incidence spectrometer with a multi-element spectral detector

    International Nuclear Information System (INIS)

    Terry, J.L.; Manning, H.L.; Marmar, E.S.

    1986-07-01

    Two methods which together allow sensitivity calibration from 20 A to 430 A are described in detail. The first method, useful up to 120 A, uses a low power source to generate Kα x-rays which are alternately viewed by an absolute detector (a proportional counter) and the spectrometer. The second method extends that calibration to 430 A. It relies on the 2:1 brightness ratio of bright doublet lines from impurity ions which have a single outer shell electron and which are present in hot, magnetically confined plasmas. It requires that the absolute sensitivity of the spectrometer be known at one wavelength point, and in practice requires a multi-element spectral detector

  3. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have about 7am/7pm orbital geometry) and afternoon satellites (NOAA 7, 9, 11 and 14 that have about 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error. We find we can decrease the global temperature trend by about 0.07 K/decade. In addition there are systematic time dependent errors present in the data that are introduced by the drift in the satellite orbital geometry arises from the diurnal cycle in temperature which is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observations made in the MSU Ch 1 (50.3 GHz) support this approach. The error is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the errors on the global temperature trend. In one path the

  4. Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities

    Science.gov (United States)

    Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.

    2011-01-01

    We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we selected a parent disk sample of 170,000 galaxies from SDSS DR7, with redshifts between 0.02 and 0.10 and r band absolute magnitudes between -18.0 and -22.5. Then, we constructed a child disk sample of 189 galaxies that span the parameter space-- in absolute magnitude, color, and disk size-- covered by the parent sample, and for which we have obtained kinematic data. Long-slit spectroscopy were obtained from the Dual Imaging Spectrograph (DIS) at the Apache Point Observatory 3.5 m for 99 galaxies, and from Pizagno et al. (2007) for 95 galaxies (five have repeat observations). We find the best photometric estimator of disk rotation velocity to be a synthetic magnitude with a color correction that is consistent with the Bell et al. (2003) color-based stellar mass ratio. The improved rotation velocity estimates have a wide range of scientific applications, and in particular, in combination with weak lensing measurements, they enable us to constrain the ratio of optical-to-virial velocity in disk galaxies.

  5. Use of eddy-covariance methods to "calibrate" simple estimators of evapotranspiration

    Science.gov (United States)

    Sumner, David M.; Geurink, Jeffrey S.; Swancar, Amy

    2017-01-01

    Direct measurement of actual evapotranspiration (ET) provides quantification of this large component of the hydrologic budget, but typically requires long periods of record and large instrumentation and labor costs. Simple surrogate methods of estimating ET, if “calibrated” to direct measurements of ET, provide a reliable means to quantify ET. Eddy-covariance measurements of ET were made for 12 years (2004-2015) at an unimproved bahiagrass (Paspalum notatum) pasture in Florida. These measurements were compared to annual rainfall derived from rain gage data and monthly potential ET (PET) obtained from a long-term (since 1995) U.S. Geological Survey (USGS) statewide, 2-kilometer, daily PET product. The annual proportion of ET to rainfall indicates a strong correlation (r2=0.86) to annual rainfall; the ratio increases linearly with decreasing rainfall. Monthly ET rates correlated closely (r2=0.84) to the USGS PET product. The results indicate that simple surrogate methods of estimating actual ET show positive potential in the humid Florida climate given the ready availability of historical rainfall and PET.

  6. Adjustment of a goniometer for X-rays optics calibration in the spectral range 1.5-20 KeV

    International Nuclear Information System (INIS)

    Legistre, S.

    1992-10-01

    The aim of this memoir is the adjustment of a (θ, 2θ) goniometer coupled to X-rays source to calibrate mirrors (single layers like C, Ni, Au, etc... and multilayers like C/W, Si/W, etc...) in the spectral range 1.5 - 20 keV. For each kind of tested optics the adjustment of the goniometer include the procedure alignment of the different components (X-ray source, collimation slits, optics, detectors) and the first reflectivity measurements. Those measurements are compared those realized at LURE, using synchrotron radiation provided by SUPER ACO storage ring, and to a theoretical simulation

  7. Assessment and Calibration of Ultrasonic Measurement Errors in Estimating Weathering Index of Stone Cultural Heritage

    Science.gov (United States)

    Lee, Y.; Keehm, Y.

    2011-12-01

    Estimating the degree of weathering in stone cultural heritage, such as pagodas and statues is very important to plan conservation and restoration. The ultrasonic measurement is one of commonly-used techniques to evaluate weathering index of stone cultual properties, since it is easy to use and non-destructive. Typically we use a portable ultrasonic device, PUNDIT with exponential sensors. However, there are many factors to cause errors in measurements such as operators, sensor layouts or measurement directions. In this study, we carried out variety of measurements with different operators (male and female), different sensor layouts (direct and indirect), and sensor directions (anisotropy). For operators bias, we found that there were not significant differences by the operator's sex, while the pressure an operator exerts can create larger error in measurements. Calibrating with a standard sample for each operator is very essential in this case. For the sensor layout, we found that the indirect measurement (commonly used for cultural properties, since the direct measurement is difficult in most cases) gives lower velocity than the real one. We found that the correction coefficient is slightly different for different types of rocks: 1.50 for granite and sandstone and 1.46 for marble. From the sensor directions, we found that many rocks have slight anisotropy in their ultrasonic velocity measurement, though they are considered isotropic in macroscopic scale. Thus averaging four different directional measurement (0°, 45°, 90°, 135°) gives much less errors in measurements (the variance is 2-3 times smaller). In conclusion, we reported the error in ultrasonic meaurement of stone cultural properties by various sources quantitatively and suggested the amount of correction and procedures to calibrate the measurements. Acknowledgement: This study, which forms a part of the project, has been achieved with the support of national R&D project, which has been hosted by

  8. THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Nordon, R.; Lutz, D.; Genzel, R.; Berta, S.; Wuyts, S.; Magnelli, B.; Foerster Schreiber, N. M.; Poglitsch, A.; Popesso, P. [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, 85741 Garching (Germany); Altieri, B. [Herschel Science Centre, European Space Astronomy Centre, ESA, Villanueva de al Canada, 28691 Madrid (Spain); Andreani, P. [ESO, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Aussel, H.; Daddi, E. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, Bat.709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Bongiovanni, A.; Cepa, J.; Perez Garcia, A. M. [Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife (Spain); Cimatti, A. [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, 40127 Bologna (Italy); Fadda, D. [IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Lagache, G. [Institut d' Astrophysique Spatiale (IAS), Bat 121, Universite de Paris XI, 91450 Orsay Cedex (France); Maiolino, R., E-mail: nordon@mpe.mpg.de [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monte Porzio Catone (Italy); and others

    2012-02-01

    We combine Herschel-Photodetector Array Camera and Spectrometer (PACS) data from the PACS Evolutionary Probe (PEP) program with Spitzer 24 {mu}m and 16 {mu}m photometry and ultra deep Infrared Spectrograph (IRS) mid-infrared spectra to measure the mid- to far-infrared spectral energy distribution (SED) of 0.7 < z < 2.5 normal star-forming galaxies (SFGs) around the main sequence (the redshift-dependent relation of star formation rate (SFR) and stellar mass). Our very deep data confirm from individual far-infrared detections that z {approx} 2 SFRs are overestimated if based on 24 {mu}m fluxes and SED templates that are calibrated via local trends with luminosity. Galaxies with similar ratios of rest-frame {nu}L{sub {nu}}(8) to 8-1000 {mu}m infrared luminosity (LIR) tend to lie along lines of constant offset from the main sequence. We explore the relation between SED shape and offset in specific star formation rate (SSFR) from the redshift-dependent main sequence. Main-sequence galaxies tend to have a similar {nu}L{sub {nu}}(8)/LIR regardless of LIR and redshift, up to z {approx} 2.5, and {nu}L{sub {nu}}(8)/LIR decreases with increasing offset above the main sequence in a consistent way at the studied redshifts. We provide a redshift-independent calibration of SED templates in the range of 8-60 {mu}m as a function of {Delta}log(SSFR) offset from the main sequence. Redshift dependency enters only through the evolution of the main sequence with time. Ultra deep IRS spectra match these SED trends well and verify that they are mostly due to a change in ratio of polycyclic aromatic hydrocarbon (PAH) to LIR rather than continua of hidden active galactic nuclei (AGNs). Alternatively, we discuss the dependence of {nu}L{sub {nu}}(8)/LIR on LIR. The same {nu}L{sub {nu}}(8)/LIR is reached at increasingly higher LIR at higher redshift, with shifts relative to local by 0.5 and 0.8 dex in log(LIR) at redshifts z {approx} 1 and z {approx} 2. Corresponding SED template calibrations

  9. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...

  10. A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate

    Science.gov (United States)

    Djenidi, L.; Antonia, R. A.

    2012-10-01

    We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a -5/3 inertial subrange only when the Taylor microscale Reynods number R λ is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30 ≤ R λ ≤ 400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of < \\varepsilon rangle in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall.

  11. The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements

    Directory of Open Access Journals (Sweden)

    W. Gurlit

    2005-01-01

    Full Text Available Within the framework of the ENVISAT/-SCIAMACHY satellite validation, solar irradiance spectra are absolutely measured at moderate resolution in the UV/visible spectral range (in the UV from 316.7-418 nm and the visible from 400-652 nm at a full width half maximum resolution of 0.55 nm and 1.48 nm, respectively from aboard the azimuth-controlled LPMA/DOAS balloon gondola at around 32 km balloon float altitude. After accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption (O3 and NO2, the measured solar spectra are compared with previous observations. Our solar irradiance spectrum perfectly agrees within +0.03% with the re-calibrated Kurucz et al. (1984 solar spectrum (Fontenla et al., 1999, called MODTRAN 3.7 in the visible spectral range (415-650 nm, but it is +2.1% larger in the (370-415 nm wavelength interval, and -4% smaller in the UV-A spectral range (316.7-370 nm, when the Kurucz spectrum is convolved to the spectral resolution of our instrument. Similar comparisons of the SOLSPEC (Thuillier et al., 1997, 1998a, b and SORCE/SIM (Harder et al., 2000 solar spectra with MODTRAN 3.7 confirms our findings with the values being -0.5%, +2%, and -1.4% for SOLSPEC -0.33%, -0.47%, and -6.2% for SORCE/SIM, respectively. Comparison of the SCIAMACHY solar spectrum from channels 1 to 4 (- re-calibrated by the University of Bremen - with MODTRAN 3.7 indicates an agreement within -0.4% in the visible spectral range (415-585 nm, -1.6% within the 370-415 nm, and -5.7% within 325-370 nm wavelength interval, in agreement with the results of the other sensors. In agreement with findings of Skupin et al. (2002 our study emphasizes that the present ESA SCIAMACHY level 1 calibration is systematically +15% larger in the considered wavelength intervals when compared to all available other solar irradiance measurements.

  12. The Exponent of High-frequency Source Spectral Falloff and Contribution to Source Parameter Estimates

    Science.gov (United States)

    Kiuchi, R.; Mori, J. J.

    2015-12-01

    As a way to understand the characteristics of the earthquake source, studies of source parameters (such as radiated energy and stress drop) and their scaling are important. In order to estimate source parameters reliably, often we must use appropriate source spectrum models and the omega-square model is most frequently used. In this model, the spectrum is flat in lower frequencies and the falloff is proportional to the angular frequency squared. However, Some studies (e.g. Allmann and Shearer, 2009; Yagi et al., 2012) reported that the exponent of the high frequency falloff is other than -2. Therefore, in this study we estimate the source parameters using a spectral model for which the falloff exponent is not fixed. We analyze the mainshock and larger aftershocks of the 2008 Iwate-Miyagi Nairiku earthquake. Firstly, we calculate the P wave and SH wave spectra using empirical Green functions (EGF) to remove the path effect (such as attenuation) and site effect. For the EGF event, we select a smaller earthquake that is highly-correlated with the target event. In order to obtain the stable results, we calculate the spectral ratios using a multitaper spectrum analysis (Prieto et al., 2009). Then we take a geometric mean from multiple stations. Finally, using the obtained spectra ratios, we perform a grid search to determine the high frequency falloffs, as well as corner frequency of both of events. Our results indicate the high frequency falloff exponent is often less than 2.0. We do not observe any regional, focal mechanism, or depth dependencies for the falloff exponent. In addition, our estimated corner frequencies and falloff exponents are consistent between the P wave and SH wave analysis. In our presentation, we show differences in estimated source parameters using a fixed omega-square model and a model allowing variable high-frequency falloff.

  13. BL Lacertae: X-ray spectral evolution and a black-hole mass estimate

    Science.gov (United States)

    Titarchuk, Lev; Seifina, Elena

    2017-06-01

    We present an analysis of the spectral properties observed in X-rays from active galactic nucleus BL Lacertae using RXTE, Suzaku, ASCA, BeppoSAX, and Swift observations. The total time covered by these observations is approximately 20 yr. We show strong observational evidence that this source undergoes X-ray spectral transitions from the low hard state (LHS) through the intermediate state (IS) to the high soft state (HSS) during these observations. During the RXTE observations (1997-2001, 180 ks, for a total 145 datasets), the source was approximately 75%, 20% and only 5% of the time in the IS, LHS, and HSS, respectively. We also used Swift observations (470 datasets, for a total 800 ks), which occurred during 12 yr (2005-2016), the broadband (0.3-200 keV) data of BeppoSAX (1997-2000, 160 ks), and the low X-ray energy (0.3-10 keV) data of ASCA (1995-1999, 160 ks). Two observations of Suzaku (2006, 2013; 50 ks) in combinations with long-term RXTE and Swift data-sets fortunately allow us to describe all spectral states of BL Lac. The spectra of BL Lac are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index saturation level, Γsat = 2.2 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ - Ṁ correlation allows us to estimate the black-hole (BH) mass in BL Lac to be MBH 3 × 107M⊙ for a distance of 300 Mpc. For the BH mass estimate, we use the scaling method taking stellar-mass Galactic BHs 4U 1543-47 and GX 339-4 as reference sources. The Γ - Ṁ correlation revealed in BL Lac is similar to those in a number of stellar-mass Galactic BHs and two recently studied intermediate-mass extragalactic BHs. It clearly shows the correlation along with the very extended Γ saturation at 2.2. This is robust observational evidence for the presence of a BH in BL Lac. We also reveal that the seed (disk) photon temperatures are relatively low, of order of 100 eV, which are consistent

  14. Estimating workload using EEG spectral power and ERPs in the n-back task

    Science.gov (United States)

    Brouwer, Anne-Marie; Hogervorst, Maarten A.; van Erp, Jan B. F.; Heffelaar, Tobias; Zimmerman, Patrick H.; Oostenveld, Robert

    2012-08-01

    Previous studies indicate that both electroencephalogram (EEG) spectral power (in particular the alpha and theta band) and event-related potentials (ERPs) (in particular the P300) can be used as a measure of mental work or memory load. We compare their ability to estimate workload level in a well-controlled task. In addition, we combine both types of measures in a single classification model to examine whether this results in higher classification accuracy than either one alone. Participants watched a sequence of visually presented letters and indicated whether or not the current letter was the same as the one (n instances) before. Workload was varied by varying n. We developed different classification models using ERP features, frequency power features or a combination (fusion). Training and testing of the models simulated an online workload estimation situation. All our ERP, power and fusion models provide classification accuracies between 80% and 90% when distinguishing between the highest and the lowest workload condition after 2 min. For 32 out of 35 participants, classification was significantly higher than chance level after 2.5 s (or one letter) as estimated by the fusion model. Differences between the models are rather small, though the fusion model performs better than the other models when only short data segments are available for estimating workload.

  15. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    Science.gov (United States)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  16. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    Science.gov (United States)

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  17. Effect of heteroscedasticity treatment in residual error models on model calibration and prediction uncertainty estimation

    Science.gov (United States)

    Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli

    2017-11-01

    The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.

  18. TIMASSS: the IRAS 16293-2422 millimeter and submillimeter spectral survey. I. Observations, calibration, and analysis of the line kinematics

    NARCIS (Netherlands)

    Caux, E.; Kahane, C.; Castets, A.; Coutens, A.; Ceccarelli, C.; Bacmann, A.; Bisschop, S.; Bottinelli, S.; Comito, C.; Helmich, F. P.; Lefloch, B.; Parise, B.; Schilke, P.; Tielens, A. G. G. M.; van Dishoeck, E.; Vastel, C.; Wakelam, V.; Walters, A.

    Context. Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. Aims. While unbiased surveys at the millimeter

  19. A recommended procedure for estimating the cosmic-ray spectral parameter of a simple power law

    CERN Document Server

    Howell, L W

    2002-01-01

    A simple power law model with single spectral index alpha sub 1 is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10 sup 1 sup 3 eV. Two procedures for estimating alpha sub 1 --the method of moments and maximum likelihood (ML)--are developed and their statistical performance are compared. The ML procedure is shown to be the superior approach and is then generalized for application to real cosmic-ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution and inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic-ray detector as they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives.

  20. Assessing a learning process with functional ANOVA estimators of EEG power spectral densities.

    Science.gov (United States)

    Gutiérrez, David; Ramírez-Moreno, Mauricio A

    2016-04-01

    We propose to assess the process of learning a task using electroencephalographic (EEG) measurements. In particular, we quantify changes in brain activity associated to the progression of the learning experience through the functional analysis-of-variances (FANOVA) estimators of the EEG power spectral density (PSD). Such functional estimators provide a sense of the effect of training in the EEG dynamics. For that purpose, we implemented an experiment to monitor the process of learning to type using the Colemak keyboard layout during a twelve-lessons training. Hence, our aim is to identify statistically significant changes in PSD of various EEG rhythms at different stages and difficulty levels of the learning process. Those changes are taken into account only when a probabilistic measure of the cognitive state ensures the high engagement of the volunteer to the training. Based on this, a series of statistical tests are performed in order to determine the personalized frequencies and sensors at which changes in PSD occur, then the FANOVA estimates are computed and analyzed. Our experimental results showed a significant decrease in the power of [Formula: see text] and [Formula: see text] rhythms for ten volunteers during the learning process, and such decrease happens regardless of the difficulty of the lesson. These results are in agreement with previous reports of changes in PSD being associated to feature binding and memory encoding.

  1. Estimates of the Spectral Aerosol Single Sea Scattering Albedo and Aerosol Radiative Effects during SAFARI 2000

    Science.gov (United States)

    Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.

    2003-01-01

    Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).

  2. A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate

    Energy Technology Data Exchange (ETDEWEB)

    Djenidi, L.; Antonia, R.A. [The University of Newcastle, School of Engineering, Newcastle, NSW (Australia)

    2012-10-15

    We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate left angle {epsilon}right angle in a variety of turbulent flows. The method relies on the validity of the first similarity hypothesis of Kolmogorov (C R (Doklady) Acad Sci R R SS, NS 30:301-305, 1941) (or K41) which implies that spectra of velocity fluctuations scale on the kinematic viscosity {nu} and left angle {epsilon}right angle at large Reynolds numbers. However, the evidence, based on the DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a -5/3 inertial subrange only when the Taylor microscale Reynolds number R{sub {lambda}} is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30 {<=} R{sub {lambda}}{<=} 400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of left angle {epsilon}right angle in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall. (orig.)

  3. Calibration of a TLD system to estimate personal doses in fields of gamma-neutrons radiation

    International Nuclear Information System (INIS)

    Villegas, E.N.; Somarriba, S.I.

    2016-01-01

    Currently Nicaragua has no personal neutron dosimetry system. The calibration of a batch of albedo neutron dosimeters consisting of two pairs of "6LiF and "7LiF (Mg, Ti) detectors was done. The dosimeter and reader sensitivities were obtained using a "1"3"7Cs source, and a neutron calibration factor was found with a "2"4"1AmBe source. Reproducibility and homogeneity tests were performed, and the detection limit of the system was determined. This calibration will allow the beginning of neutron personal monitoring in the country. (author)

  4. Estimation of scattering contribution in the calibration of neutron devices with radionuclide sources in rooms of different sizes

    Directory of Open Access Journals (Sweden)

    Khabaz Rahim

    2015-01-01

    Full Text Available Calibrations of neutron devices used in area monitoring are often performed by radionuclide neutron sources. Device readings increase due to neutrons scattered by the surroundings and the air. The influence of said scattering effects have been investigated in this paper by performing Monte Carlo simulations for ten different radionuclide neutron sources inside several sizes of concrete wall spherical rooms (Rsp = 200 to 1500 cm. In order to obtain the parameters that relate the additional contribution from scattered neutrons, calculations using a polynomial fit model were evaluated. Obtained results show that the contribution of scattering is roughly independent of the geometric shape of the calibration room. The parameter that relates the room-return scattering has been fitted in terms of the spherical room radius, so as to reasonably accurately estimate the scattering value for each radionuclide neutron source in any geometry of the calibration room.

  5. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    International Nuclear Information System (INIS)

    Sotiropoulou, P I; Martini, N D; Koukou, V N; Nikiforidis, G C; Fountos, G P; Michail, C M; Valais, I G; Kandarakis, I S

    2015-01-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant. (paper)

  6. Signal Processing of Ground Penetrating Radar Using Spectral Estimation Techniques to Estimate the Position of Buried Targets

    Directory of Open Access Journals (Sweden)

    Shanker Man Shrestha

    2003-11-01

    Full Text Available Super-resolution is very important for the signal processing of GPR (ground penetration radar to resolve closely buried targets. However, it is not easy to get high resolution as GPR signals are very weak and enveloped by the noise. The MUSIC (multiple signal classification algorithm, which is well known for its super-resolution capacity, has been implemented for signal and image processing of GPR. In addition, conventional spectral estimation technique, FFT (fast Fourier transform, has also been implemented for high-precision receiving signal level. In this paper, we propose CPM (combined processing method, which combines time domain response of MUSIC algorithm and conventional IFFT (inverse fast Fourier transform to obtain a super-resolution and high-precision signal level. In order to support the proposal, detailed simulation was performed analyzing SNR (signal-to-noise ratio. Moreover, a field experiment at a research field and a laboratory experiment at the University of Electro-Communications, Tokyo, were also performed for thorough investigation and supported the proposed method. All the simulation and experimental results are presented.

  7. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Science.gov (United States)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav

    2012-04-01

    Laser Doppler Anemometry (LDA) and its modifications such as PhaseDoppler Particle Anemometry (P/DPA) is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain - calculation of power spectral density (PSD) of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA) data in the frequency domain. Slot correlation (SC) method implemented in software program Kern by Nobach (2006) is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  8. Power spectral density of velocity fluctuations estimated from phase Doppler data

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available Laser Doppler Anemometry (LDA and its modifications such as PhaseDoppler Particle Anemometry (P/DPA is point-wise method for optical nonintrusive measurement of particle velocity with high data rate. Conversion of the LDA velocity data from temporal to frequency domain – calculation of power spectral density (PSD of velocity fluctuations, is a non trivial task due to nonequidistant data sampling in time. We briefly discuss possibilities for the PSD estimation and specify limitations caused by seeding density and other factors of the flow and LDA setup. Arbitrary results of LDA measurements are compared with corresponding Hot Wire Anemometry (HWA data in the frequency domain. Slot correlation (SC method implemented in software program Kern by Nobach (2006 is used for the PSD estimation. Influence of several input parameters on resulting PSDs is described. Optimum setup of the software for our data of particle-laden air flow in realistic human airway model is documented. Typical character of the flow is described using PSD plots of velocity fluctuations with comments on specific properties of the flow. Some recommendations for improvements of future experiments to acquire better PSD results are given.

  9. A method of incident angle estimation for high resolution spectral recovery in filter-array-based spectrometers

    Science.gov (United States)

    Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No

    2017-02-01

    In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.

  10. A Photo-triggered and photo-calibrated nitric oxide donor: Rational design, spectral characterizations, and biological applications.

    Science.gov (United States)

    He, Haihong; Liu, Yuxin; Zhou, Zhongneng; Guo, Chunlei; Wang, Hong-Yin; Wang, Zhuang; Wang, Xueli; Zhang, Ziqian; Wu, Fu-Gen; Wang, Haolu; Chen, Daijie; Yang, Dahai; Liang, Xiaowen; Chen, Jinquan; Zhou, Shengmin; Liang, Xin; Qian, Xuhong; Yang, Youjun

    2018-04-27

    Nitric oxide (NO) donors are valuable tools to probe the profound implications of NO in health and disease. The elusive nature of NO bio-relevance has largely limited the use of spontaneous NO donors and promoted the development of next generation NO donors, whose NO release is not only stimulated by a trigger, but also readily monitored via a judiciously built-in self-calibration mechanism. Light is without a doubt the most sensitive, versatile and biocompatible method of choice for both triggering and monitoring, for applications in complex biological matrices. Herein, we designed and synthesized an N-nitroso rhodamine derivative (NOD560) as a photo-triggered and photo-calibrated NO donor to address this need. NOD560 is essentially non-fluorescent. Upon irradiation by green light (532 nm), it efficiently release NO and a rhodamine dye, the dramatic fluorescence turn-on from which could be harnessed to conveniently monitor the localization, flux, and dose of NO release. The potentials of NOD560 for in vitro biological applications were also exemplified in in vitro biological models, i.e. mesenchymal stem cell (MSC) migration suppression. NOD560 is expected to complement the existing NO donors and find widespread applications in chemical biological studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Ratioing methods for in-flight response calibration of space-based spectro-radiometers, operating in the solar spectral region

    Science.gov (United States)

    Lobb, Dan

    2017-11-01

    One of the most significant problems for space-based spectro-radiometer systems, observing Earth from space in the solar spectral band (UV through short-wave IR), is in achievement of the required absolute radiometric accuracy. Classical methods, for example using one or more sun-illuminated diffusers as reflectance standards, do not generally provide methods for monitoring degradation of the in-flight reference after pre-flight characterisation. Ratioing methods have been proposed that provide monitoring of degradation of solar attenuators in flight, thus in principle allowing much higher confidence in absolute response calibration. Two example methods are described. It is shown that systems can be designed for relatively low size and without significant additions to the complexity of flight hardware.

  12. Eastern US crustal thickness estimates from spectral analysis and inversion of onshore Bouguer gravity anaomalies

    Science.gov (United States)

    Dybus, W.; Benoit, M. H.; Ebinger, C. J.

    2011-12-01

    The crustal thickness beneath much of the eastern half of the US is largely unconstrained. Though there have been several controlled source seismic surveys of the region, many of these studies suffer from rays that turn in the crust above the Moho, resulting in somewhat ambiguous crustal thickness values. Furthermore, the broadband seismic station coverage east of the Mississippi has been limited, and most of the region remains largely understudied. In this study, we estimated the depth to the Moho using both spectral analysis and inversion of Bouguer gravity anomalies. We systematically estimated depths to lithospheric density contrasts from radial power spectra of Bouguer gravity within 100 km X 100 km windows eastward from the Mississippi River to the Atlantic Coast, and northward from North Carolina to Maine. The slopes and slope breaks in the radial power spectra were computed using an automated algorithm. The slope values for each window were visually inspected and then used to estimate the depth to the Moho and other lithospheric density contrasts beneath each windowed region. Additionally, we performed a standard Oldenburg-Parker inversion for lithospheric density contrasts using various reference depths and density contrasts that are realistic for the different physiographic provinces in the Eastern US. Our preliminary results suggest that the gravity-derived Moho depths are similar to those found using seismic data, and that the crust is relatively thinner (~28-33 km) than expected in beneath the Piedmont region (~35-40 km). Given the relative paucity of seismic data in the eastern US, analysis of onshore gravity data is a valuable tool for interpolating between seismic stations.

  13. Spectral calibration of EBT3 and HD-V2 radiochromic film response at high dose using 20 MeV proton beams

    Science.gov (United States)

    Feng, Yiwei; Tiedje, Henry F.; Gagnon, Katherine; Fedosejevs, Robert

    2018-04-01

    Radiochromic film is used extensively in many medical, industrial, and scientific applications. In particular, the film is used in analysis of proton generation and in high intensity laser-plasma experiments where very high dose levels can be obtained. The present study reports calibration of the dose response of Gafchromic EBT3 and HD-V2 radiochromic films up to high exposure densities. A 2D scanning confocal densitometer system is employed to carry out accurate optical density measurements up to optical density 5 on the exposed films at the peak spectral absorption wavelengths. Various wavelengths from 400 to 740 nm are also scanned to extend the practical dose range of such films by measuring the response at wavelengths removed from the peak response wavelengths. Calibration curves for the optical density versus exposure dose are determined and can be used for quantitative evaluation of measured doses based on the measured optical densities. It was found that blue and UV wavelengths allowed the largest dynamic range though at some trade-off with overall accuracy.

  14. State-of-the art comparability of corrected emission spectra. 2. Field laboratory assessment of calibration performance using spectral fluorescence standards.

    Science.gov (United States)

    Resch-Genger, Ute; Bremser, Wolfram; Pfeifer, Dietmar; Spieles, Monika; Hoffmann, Angelika; DeRose, Paul C; Zwinkels, Joanne C; Gauthier, François; Ebert, Bernd; Taubert, R Dieter; Voigt, Jan; Hollandt, Jörg; Macdonald, Rainer

    2012-05-01

    In the second part of this two-part series on the state-of-the-art comparability of corrected emission spectra, we have extended this assessment to the broader community of fluorescence spectroscopists by involving 12 field laboratories that were randomly selected on the basis of their fluorescence measuring equipment. These laboratories performed a reference material (RM)-based fluorometer calibration with commercially available spectral fluorescence standards following a standard operating procedure that involved routine measurement conditions and the data evaluation software LINKCORR developed and provided by the Federal Institute for Materials Research and Testing (BAM). This instrument-specific emission correction curve was subsequently used for the determination of the corrected emission spectra of three test dyes, X, QS, and Y, revealing an average accuracy of 6.8% for the corrected emission spectra. This compares well with the relative standard uncertainties of 4.2% for physical standard-based spectral corrections demonstrated in the first part of this study (previous paper in this issue) involving an international group of four expert laboratories. The excellent comparability of the measurements of the field laboratories also demonstrates the effectiveness of RM-based correction procedures.

  15. Spatio-Spectral Method for Estimating Classified Regions with High Confidence using MODIS Data

    International Nuclear Information System (INIS)

    Katiyal, Anuj; Rajan, Dr K S

    2014-01-01

    In studies like change analysis, the availability of very high resolution (VHR)/high resolution (HR) imagery for a particular period and region is a challenge due to the sensor revisit times and high cost of acquisition. Therefore, most studies prefer lower resolution (LR) sensor imagery with frequent revisit times, in addition to their cost and computational advantages. Further, the classification techniques provide us a global estimate of the class accuracy, which limits its utility if the accuracy is low. In this work, we focus on the sub-classification problem of LR images and estimate regions of higher confidence than the global classification accuracy within its classified region. The spectrally classified data was mined into spatially clustered regions and further refined and processed using statistical measures to arrive at local high confidence regions (LHCRs), for every class. Rabi season MODIS data of January 2006 and 2007 was used for this study and the evaluation of LHCR was done using the APLULC 2005 classified data. For Jan-2007, the global class accuracies for water bodies (WB), forested regions (FR) and Kharif crops and barren lands (KB) were 89%, 71.7% and 71.23% respectively, while the respective LHCRs had accuracies of 96.67%, 89.4% and 80.9% covering an area of 46%, 29% and 14.5% of the initially classified areas. Though areas are reduced, LHCRs with higher accuracies help in extracting more representative class regions. Identification of such regions can facilitate in improving the classification time and processing for HR images when combined with the more frequently acquired LR imagery, isolate pure vs. mixed/impure pixels and as training samples locations for HR imagery

  16. Calibration and use of plate meter regressions for pasture mass estimation in an Appalachian silvopasture

    Science.gov (United States)

    A standardized plate meter for measuring pasture mass was calibrated at the Agroforestry Research and Demonstration Site in Blacksburg, VA, using six ungrazed plots of established tall fescue (Festuca arundinaceae) overseeded with orchardgrass (Dactylis glomerata). Each plot was interplanted with b...

  17. Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities

    NARCIS (Netherlands)

    Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno II, Jim

    We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we

  18. Advanced statistical tools for SNP arrays : signal calibration, copy number estimation and single array genotyping

    NARCIS (Netherlands)

    Rippe, Ralph Christian Alexander

    2012-01-01

    Fluorescence bias in in signals from individual SNP arrays can be calibrated using linear models. Given the data, the system of equations is very large, so a specialized symbolic algorithm was developed. These models are also used to illustrate that genomic waves do not exist, but are merely an

  19. Pursuing atmospheric water vapor retrieval through NDSA measurements between two LEO satellites: evaluation of estimation errors in spectral sensitivity measurements

    Science.gov (United States)

    Facheris, L.; Cuccoli, F.; Argenti, F.

    2008-10-01

    NDSA (Normalized Differential Spectral Absorption) is a novel differential measurement method to estimate the total content of water vapor (IWV, Integrated Water Vapor) along a tropospheric propagation path between two Low Earth Orbit (LEO) satellites. A transmitter onboard the first LEO satellite and a receiver onboard the second one are required. The NDSA approach is based on the simultaneous estimate of the total attenuations at two relatively close frequencies in the Ku/K bands and of a "spectral sensitivity parameter" that can be directly converted into IWV. The spectral sensitivity has the potential to emphasize the water vapor contribution, to cancel out all spectrally flat unwanted contributions and to limit the impairments due to tropospheric scintillation. Based on a previous Monte Carlo simulation approach, through which we analyzed the measurement accuracy of the spectral sensitivity parameter at three different and complementary frequencies, in this work we examine such accuracy for a particularly critical atmospheric status as simulated through the pressure, temperature and water vapor profiles measured by a high resolution radiosonde. We confirm the validity of an approximate expression of the accuracy and discuss the problems that may arise when tropospheric water vapor concentration is lower than expected.

  20. Estimating Leaf Area Index for an arid region using Spectral Data ...

    African Journals Online (AJOL)

    In this study, spectral reflectance of pearl millet was computed at various wavelengths and at different times during the cropping season, using a spectroradiometer. Three main indices (Normalised Difference Vegetation Index, Ratio Vegetation Index, and Perpendicular Vegetation Index)were derived from the spectral data.

  1. Case Study: On Objective Functions for the Peak Flow Calibration and for the Representative Parameter Estimation of the Basin

    Directory of Open Access Journals (Sweden)

    Jungwook Kim

    2018-05-01

    Full Text Available The objective function is usually used for verification of the optimization process between observed and simulated flows for the parameter estimation of rainfall–runoff model. However, it does not focus on peak flow and on representative parameter for various rain storm events of the basin, but it can estimate the optimal parameters by minimizing the overall error of observed and simulated flows. Therefore, the aim of this study is to suggest the objective functions that can fit peak flow in hydrograph and estimate the representative parameter of the basin for the events. The Streamflow Synthesis And Reservoir Regulation (SSARR model was employed to perform flood runoff simulation for the Mihocheon stream basin in Geum River, Korea. Optimization was conducted using three calibration methods: genetic algorithm, pattern search, and the Shuffled Complex Evolution method developed at the University of Arizona (SCE-UA. Two objective functions of the Sum of Squared of Residual (SSR and the Weighted Sum of Squared of Residual (WSSR suggested in this study for peak flow optimization were applied. Since the parameters estimated using a single rain storm event do not represent the parameters for various rain storms in the basin, we used the representative objective function that can minimize the sum of objective functions of the events. Six rain storm events were used for the parameter estimation. Four events were used for the calibration and the other two for validation; then, the results by SSR and WSSR were compared. Flow runoff simulation was carried out based on the proposed objective functions, and the objective function of WSSR was found to be more useful than that of SSR in the simulation of peak flow runoff. Representative parameters that minimize the objective function for each of the four rain storm events were estimated. The calibrated observed and simulated flow runoff hydrographs obtained from applying the estimated representative

  2. A probabilistic approach for the estimation of earthquake source parameters from spectral inversion

    Science.gov (United States)

    Supino, M.; Festa, G.; Zollo, A.

    2017-12-01

    The amplitude spectrum of a seismic signal related to an earthquake source carries information about the size of the rupture, moment, stress and energy release. Furthermore, it can be used to characterize the Green's function of the medium crossed by the seismic waves. We describe the earthquake amplitude spectrum assuming a generalized Brune's (1970) source model, and direct P- and S-waves propagating in a layered velocity model, characterized by a frequency-independent Q attenuation factor. The observed displacement spectrum depends indeed on three source parameters, the seismic moment (through the low-frequency spectral level), the corner frequency (that is a proxy of the fault length) and the high-frequency decay parameter. These parameters are strongly correlated each other and with the quality factor Q; a rigorous estimation of the associated uncertainties and parameter resolution is thus needed to obtain reliable estimations.In this work, the uncertainties are characterized adopting a probabilistic approach for the parameter estimation. Assuming an L2-norm based misfit function, we perform a global exploration of the parameter space to find the absolute minimum of the cost function and then we explore the cost-function associated joint a-posteriori probability density function around such a minimum, to extract the correlation matrix of the parameters. The global exploration relies on building a Markov chain in the parameter space and on combining a deterministic minimization with a random exploration of the space (basin-hopping technique). The joint pdf is built from the misfit function using the maximum likelihood principle and assuming a Gaussian-like distribution of the parameters. It is then computed on a grid centered at the global minimum of the cost-function. The numerical integration of the pdf finally provides mean, variance and correlation matrix associated with the set of best-fit parameters describing the model. Synthetic tests are performed to

  3. A protocol for the calibration of gamma cameras to estimate internal contamination in emergency situations

    International Nuclear Information System (INIS)

    Dantas, B.M.; Lucena, E.A.; Dantas, A.L.A.; Araujo, F.; Melo, D.; Rebelo, A.M.O.; Teran, M.; Paolino, A.; Hermida, J.C.; Rojo, A.M.; Puerta, J.A.; Morales, J.; Bejerano, G.M.L.; Alfaro, M.; Ruiz, M.A.; Videla, R.; Pinones, O.; Gonzalez, S.; Navarro, T.; Cruz-Suarez, R.

    2007-01-01

    The concern about accidents involving radioactive materials has led to the search of alternative methods to quickly identify and quantify radionuclides in workers and in the population. One of the options to face up an eventual demand for mass monitoring of internal contamination is the use of a nuclear medicine diagnostic equipment known as gamma camera, a device used to scan patients who have been administered specific amounts of radioactive materials for medical purposes. Although the gamma camera is used for image diagnosis, it can be calibrated with anthropomorphic phantoms or point sources for the quantification of radionuclide activities in the human body. This work presents a protocol for the calibration of gamma cameras for such application. In order to evaluate the suitability of this type of equipment, a gamma camera available in a public hospital located in Rio de Janeiro was calibrated for the in vivo measurement of 131 I. The calibration includes the determination of detection efficiencies and minimum detectable activities for each radionuclide. The results show that the gamma camera presents enough sensitivity to detect activity levels corresponding to effective doses below 1 mSv. The protocol is the basis to establish a network of Nuclear Medicine Centres, located in public hospitals in eight countries of Latin America (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru and Uruguay) and in Spain that could be requested to collaborate in remediation actions in the event of an accident involving incorporation of radioactive materials. This protocol is one of the most significant outputs of the IAEA-ARCAL Project (RLA/9/049-LXXVIII) aimed to the Harmonization of Internal Dosimetry Procedures. (authors)

  4. A protocol for the calibration of gamma cameras to estimate internal contamination in emergency situations

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, B.M.; Lucena, E.A.; Dantas, A.L.A.; Araujo, F.; Melo, D. [Instituto de Radioprotecao e Dosimetria, CNEN, Av. Salvador Allende s/n, Rio de Janeiro (Brazil); Rebelo, A.M.O. [University Hospital, Nuclear Medicine Center, Rio de Janeiro (Brazil); Teran, M.; Paolino, A. [Facultad de Quimica, Montevideo (Uruguay); Hermida, J.C. [Hospital de Clinicas, Facultad de Medicina, Montevideo (Uruguay); Rojo, A.M. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Puerta, J.A.; Morales, J. [Universidad Nacional de Colombia, Medellin (Colombia); Bejerano, G.M.L. [Centro de Proteccion e Higiene de las Radiaciones, Ciudad de la Habana (Cuba); Alfaro, M.; Ruiz, M.A. [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac (Mexico); Videla, R.; Pinones, O. [Comision Chilena de Energia Nuclear, Santiago (Chile); Gonzalez, S. [Instituto Peruano de Energia Nuclear, Lima (Peru); Navarro, T. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain); Cruz-Suarez, R. [International Atomic Energy Agency, Vienna (Austria)

    2007-07-01

    The concern about accidents involving radioactive materials has led to the search of alternative methods to quickly identify and quantify radionuclides in workers and in the population. One of the options to face up an eventual demand for mass monitoring of internal contamination is the use of a nuclear medicine diagnostic equipment known as gamma camera, a device used to scan patients who have been administered specific amounts of radioactive materials for medical purposes. Although the gamma camera is used for image diagnosis, it can be calibrated with anthropomorphic phantoms or point sources for the quantification of radionuclide activities in the human body. This work presents a protocol for the calibration of gamma cameras for such application. In order to evaluate the suitability of this type of equipment, a gamma camera available in a public hospital located in Rio de Janeiro was calibrated for the in vivo measurement of {sup 131}I. The calibration includes the determination of detection efficiencies and minimum detectable activities for each radionuclide. The results show that the gamma camera presents enough sensitivity to detect activity levels corresponding to effective doses below 1 mSv. The protocol is the basis to establish a network of Nuclear Medicine Centres, located in public hospitals in eight countries of Latin America (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru and Uruguay) and in Spain that could be requested to collaborate in remediation actions in the event of an accident involving incorporation of radioactive materials. This protocol is one of the most significant outputs of the IAEA-ARCAL Project (RLA/9/049-LXXVIII) aimed to the Harmonization of Internal Dosimetry Procedures. (authors)

  5. Investigating the discrimination potential of linear and nonlinear spectral multivariate calibrations for analysis of phenolic compounds in their binary and ternary mixtures and calculation pKa values

    Science.gov (United States)

    Rasouli, Zolaikha; Ghavami, Raouf

    2016-08-01

    Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD = 0.12], 0.67-23.19 [LOD = 0.13] and 0.73-25.12 [LOD = 0.15] μg mL- 1 for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples.

  6. Calibration of CIR processes to CVA data and applications to estimation of Market Price of Risk

    DEFF Research Database (Denmark)

    Hvolby, Thomas; Christensen, Bent Jesper; Høg, Esben

    2018-01-01

    We present a rigorous framework for CDS valuation and calibration to market quotes on single-name CDSs and methods of calculating the market price of risk (MPR) on such markets. We use the results of MPR for bond markets, and thus the MPR corresponds to the survival probabilities, which is a non......-tradable asset. Further, we present a set-up for numerical valuation of triparty CDS agreements, where two default risky parties trade a CDS with a third entity as reference credit....

  7. Estimated of associated uncertainties of the linearity test of dose calibrators

    International Nuclear Information System (INIS)

    Sousa, Carlos H.S.; Peixoto, Jose G.P.

    2013-01-01

    Activimeters determine the activity of radioactive samples and them are validated by performance tests. This research determined the expanded uncertainties associated to the linearity test. Were used three dose calibrators and three sources of 99 Tc m for testing using recommended protocol by the IAEA, which considered the decay of radioactive samples. The expanded uncertainties evaluated were not correlated with each other and their analysis considered a rectangular probability distribution. The results are also presented in graphical form by the function of normalized activity measured in terms of conventional true value. (author)

  8. Evaluation of Hyperspectral Multi-Band Indices to Estimate Chlorophyll-A Concentration Using Field Spectral Measurements and Satellite Data in Dianshan Lake, China

    Directory of Open Access Journals (Sweden)

    Linna Li

    2013-04-01

    Full Text Available Chlorophyll-a (Chl-a concentration is considered as a key indicator of the eutrophic status of inland water bodies. Various algorithms have been developed for estimating Chl-a in order to improve the accuracy of predictive models. The objective of this study is to assess the potential of hyperspectral multi-band indices to estimate the Chl-a concentration in Dianshan Lake, which is the largest lake in Shanghai, an international metropolis of China. Based on field spectral measurements and in-situ Chl-a concentration collected on 7–8 September 2010, hyperspectral multi-band indices were calibrated to estimate the Chl-a concentration with optimal wavelengths selected by model tuning. A three-band index accounts for 87.36% (R2 = 0.8736 of the Chl-a variation. A four-band index, which adds a wavelength in the near infrared (NIR region, results in a higher R2 (0.8997 by removing the absorption and backscattering effects of suspended solids. To test the applicability of the proposed indices for routinely monitoring of Chl-a in inland lakes, simulated Hyperion and real HJ-1A satellite data were selected to estimate the Chl-a concentration. The results show that the explanatory powers of these satellite hyperspectral multi-band indices are relatively high with R2 = 0.8559, 0.8945, 0.7969, and 0.8241 for simulated Hyperion and real HJ-1A satellite data, respectively. All of the results provide strong evidence that hyperspectral multi-band indices are promising and applicable to estimate Chl-a in eutrophic inland lakes.

  9. In-Orbit Spectral Response Function Correction and Its Impact on Operational Calibration for the Long-Wave Split-Window Infrared Band (12.0 μm of FY-2G Satellite

    Directory of Open Access Journals (Sweden)

    Qiang Guo

    2017-06-01

    Full Text Available During the early stage of the G satellite of the Fengyun-2 series (FY-2G, severe cold biases up to ~2.3 K occur in its measurements in the 12.0 μm (IR2 band, which demonstrate time- and scene-dependent characteristics. Similar cold biases in water vapor and carbon dioxide absorption bands of other satellites are considered to be caused by either ice contamination (physical method or spectral response function (SRF shift (empirical method. Simulations indicate that this cold bias of FY-2G indeed suffers from equivalent SRF shift as a whole towards the longer wavelength direction. To overcome it, a novel approach combining both physical and empirical methods is proposed. With the possible ice thicknesses tested before launch, the ice contamination effect is alleviated, while the shape of the SRF can be modified in a physical way. The remaining unknown factors for cold bias are removed by shifting the convolved SRF with an ice transmittance spectrum. Two parameters, i.e., the ice thickness (5 μm and the shifted value (+0.15 μm, are estimated by inter-calibration with reference instruments, and the modification coefficient is also calculated (0.9885 for the onboard blackbody calibration. Meanwhile, the updated SRF was released online on 23 March 2016. For the period between July 2015 and December 2016, the monthly biases of the FY-2G IR2 band remain oscillating around zero, the majorities (~89% of which are within ±1.0 K, while its mean monthly absolute bias is around 0.6 K. Nevertheless, the cold bias phenomenon of the IR2 band no longer exists. The combination method can be referred by other corrections for cold biases.

  10. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    Directory of Open Access Journals (Sweden)

    Yunpeng Song

    2015-03-01

    Full Text Available Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.

  11. Derivation of the canopy conductance from surface temperature and spectral indices for estimating evapotranspiration in semiarid vegetation

    International Nuclear Information System (INIS)

    Morillas, L.; Garcia, M.; Zarco-Tejada, P.; Ladron de Guevara, M.; Villagarcia, L.; Were, A.; Domingo, F.

    2009-01-01

    This work evaluates the possibilities for estimating stomata conductance (C) and leaf transpiration (Trf) at the ecosystem scale from radiometric indices and surface temperature. The relationships found between indices and the transpiration component of the water balance in a semiarid tussock ecosystem in SE Spain are discussed. Field data were collected from spring 2008 until winter 2009 in order to observe the annual variability of the relationships and the behaviour of spectral indices and surface temperature. (Author) 11 refs.

  12. Improving the Curie depth estimation through optimizing the spectral block dimensions of the aeromagnetic data in the Sabalan geothermal field

    Science.gov (United States)

    Akbar, Somaieh; Fathianpour, Nader

    2016-12-01

    The Curie point depth is of great importance in characterizing geothermal resources. In this study, the Curie iso-depth map was provided using the well-known method of dividing the aeromagnetic dataset into overlapping blocks and analyzing the power spectral density of each block separately. Determining the optimum block dimension is vital in improving the resolution and accuracy of estimating Curie point depth. To investigate the relation between the optimal block size and power spectral density, a forward magnetic modeling was implemented on an artificial prismatic body with specified characteristics. The top, centroid, and bottom depths of the body were estimated by the spectral analysis method for different block dimensions. The result showed that the optimal block size could be considered as the smallest possible block size whose corresponding power spectrum represents an absolute maximum in small wavenumbers. The Curie depth map of the Sabalan geothermal field and its surrounding areas, in the northwestern Iran, was produced using a grid of 37 blocks with different dimensions from 10 × 10 to 50 × 50 km2, which showed at least 50% overlapping with adjacent blocks. The Curie point depth was estimated in the range of 5 to 21 km. The promising areas with the Curie point depths less than 8.5 km are located around Mountain Sabalan encompassing more than 90% of known geothermal resources in the study area. Moreover, the Curie point depth estimated by the improved spectral analysis is in good agreement with the depth calculated from the thermal gradient data measured in one of the exploratory wells in the region.

  13. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    Science.gov (United States)

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

  14. EVALUATION OF VARIOUS SPECTRAL INPUTS FOR ESTIMATION OF FOREST BIOCHEMICAL AND STRUCTURAL PROPERTIES FROM AIRBORNE IMAGING SPECTROSCOPY DATA

    Directory of Open Access Journals (Sweden)

    L. Homolová

    2016-06-01

    Full Text Available In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab and leaf area index (LAI from high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic (beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž. The retrieval algorithm was based on a machine learning method – support vector regression (SVR. Performance of the four spectral inputs used to train SVR was evaluated: a all available hyperspectral bands, b continuum removal (CR 645 – 710 nm, c CR 705 – 780 nm, and d CR 680 – 800 nm. Spectral inputs and corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for Cab −2 and for LAI < 1.5, with consistently better performance for beech over spruce site. Since application of trained SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 – 710 nm, whereas CR bands in range of 680 – 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional reflectance effect present in airborne images due to large sensor field of view.

  15. Cosmic Ray Neutron Sensing: Use, Calibration and Validation for Soil Moisture Estimation

    International Nuclear Information System (INIS)

    2017-03-01

    Nuclear and related techniques can help develop climate-smart agricultural practices by optimizing water use efficiency. The measurement of soil water content is essential to improve the use of this resource in agriculture. However, most sensors monitor small areas (less than 1m in radius), hence a large number of sensors are needed to obtain soil water content across a large area. This can be both costly and labour intensive and so larger scale measuring devices are needed as an alternative to traditional point-based soil moisture sensing techniques. The cosmic ray neutron sensor (CRNS) is such a device that monitors soil water content in a non-invasive and continuous way. This publication provides background information about this novel technique, and explains in detail the calibration and validation process.

  16. Volcanic fluxes of volatiles. Preliminary estimates based on rare gas and major volatile calibration

    International Nuclear Information System (INIS)

    Marty, B.

    1992-01-01

    New estimates for volatile fluxes into the atmosphere and hydrosphere through volcanism have been computed using the measured fluxes of 3 He in oceans and SO 2 in the atmosphere, and the ratios between the volatiles in Mid-Ocean Ridge basalts and in high temperature volcanic gases. These estimates have been checked using independent estimates of the volcanic fluxes. This method provides a reliable means of tracing volatile fluxes, although its precision is restricted by the limited amount of data currently available. (author). 19 refs, 1 tab

  17. Transit Boardings Estimation and Simulation Tool (TBEST) calibration for guideway and BRT modes.

    Science.gov (United States)

    2013-06-01

    This research initiative was motivated by a desire of the Florida Department of Transportation and the : Transit Boardings Estimation and Simulation Tool (TBEST) project team to enhance the value of TBEST to : the planning community by improving its ...

  18. Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization

    NARCIS (Netherlands)

    Z. Bai (Zhidong); H. Li (Hua); M.J. McAleer (Michael); W.-K. Wong (Wing-Keung)

    2016-01-01

    textabstractThis paper considers the portfolio problem for high dimensional data when the dimension and size are both large. We analyze the traditional Markowitz mean-variance (MV) portfolio by large dimension matrix theory, and find the spectral distribution of the sample covariance is the main

  19. Stability Estimates for h-p Spectral Element Methods for Elliptic Problems

    NARCIS (Netherlands)

    Dutt, Pravir; Tomar, S.K.; Kumar, B.V. Rathish

    2002-01-01

    In a series of papers of which this is the first we study how to solve elliptic problems on polygonal domains using spectral methods on parallel computers. To overcome the singularities that arise in a neighborhood of the corners we use a geometrical mesh. With this mesh we seek a solution which

  20. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy

    Science.gov (United States)

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-03-01

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in

  1. Task-oriented comparison of power spectral density estimation methods for quantifying acoustic attenuation in diagnostic ultrasound using a reference phantom method.

    Science.gov (United States)

    Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A

    2013-07-01

    Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.

  2. Model calibration and parameter estimation for environmental and water resource systems

    CERN Document Server

    Sun, Ne-Zheng

    2015-01-01

    This three-part book provides a comprehensive and systematic introduction to the development of useful models for complex systems. Part 1 covers the classical inverse problem for parameter estimation in both deterministic and statistical frameworks, Part 2 is dedicated to system identification, hyperparameter estimation, and model dimension reduction, and Part 3 considers how to collect data and construct reliable models for prediction and decision-making. For the first time, topics such as multiscale inversion, stochastic field parameterization, level set method, machine learning, global sensitivity analysis, data assimilation, model uncertainty quantification, robust design, and goal-oriented modeling, are systematically described and summarized in a single book from the perspective of model inversion, and elucidated with numerical examples from environmental and water resources modeling. Readers of this book will not only learn basic concepts and methods for simple parameter estimation, but also get famili...

  3. Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for carbon cycle studies

    Science.gov (United States)

    He, Yujie; Zhuang, Qianlai; McGuire, David; Liu, Yaling; Chen, Min

    2013-01-01

    Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations in modeling regional carbon dynamics and explore the implications of those options. We calibrated the Terrestrial Ecosystem Model on a hierarchy of three vegetation classification levels for the Alaskan boreal forest: species level, plant-functional-type level (PFT level), and biome level, and we examined the differences in simulated carbon dynamics. Species-specific field-based estimates were directly used to parameterize the model for species-level simulations, while weighted averages based on species percent cover were used to generate estimates for PFT- and biome-level model parameterization. We found that calibrated key ecosystem process parameters differed substantially among species and overlapped for species that are categorized into different PFTs. Our analysis of parameter sets suggests that the PFT-level parameterizations primarily reflected the dominant species and that functional information of some species were lost from the PFT-level parameterizations. The biome-level parameterization was primarily representative of the needleleaf PFT and lost information on broadleaf species or PFT function. Our results indicate that PFT-level simulations may be potentially representative of the performance of species-level simulations while biome-level simulations may result in biased estimates. Improved theoretical and empirical justifications for grouping species into PFTs or biomes are needed to adequately represent the dynamics of ecosystem functioning and structure.

  4. Analysis of Cross-Seasonal Spectral Response from Kettle Holes: Application of Remote Sensing Techniques for Chlorophyll Estimation

    Directory of Open Access Journals (Sweden)

    Bernd Lennartz

    2012-11-01

    Full Text Available Kettle holes, small inland water bodies usually less than 1 ha in size, are subjected to pollution, drainage, and structural alteration by intensive land use practices. This study presents the analysis of spectral signatures from kettle holes based on in situ water sampling and reflectance measurements in application for chlorophyll estimation. Water samples and surface reflectance from kettle holes were collected from 6 ponds in 15 field campaigns (5 in 2007 and 10 in 2008, resulting in a total of 80 spectral datasets. We assessed the existing semi-empirical algorithms to determine chlorophyll content for different types of kettle holes using seasonal and cross-seasonal volume reflectance and derivative spectra. Based on this analysis and optical properties of water leaving reflectance from kettle holes, the following typology of the remote signal interpretation was proposed: Submerged vegetation, Phytoplankton dominated and Mixed type.

  5. Calibrated Tully-Fisher relations for improved estimates of disc rotation velocities

    NARCIS (Netherlands)

    Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Pizagno II, Jim; Lackner, C. N.

    2011-01-01

    In this paper, we derive scaling relations between photometric observable quantities and disc galaxy rotation velocity V-rot or Tully-Fisher relations (TFRs). Our methodology is dictated by our purpose of obtaining purely photometric, minimal-scatter estimators of V-rot applicable to large galaxy

  6. Estimation and calibration of the water isotope differential diffusion length in ice core records

    NARCIS (Netherlands)

    van der Wel, G.; Fischer, H.; Oerter, H.; Meyer, H.; Meijer, H. A. J.

    2015-01-01

    Palaeoclimatic information can be retrieved from the diffusion of the stable water isotope signal during firnification of snow. The diffusion length, a measure for the amount of diffusion a layer has experienced, depends on the firn temperature and the accumulation rate. We show that the estimation

  7. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration

    Science.gov (United States)

    Yang, Ming; Zhu, X. Ronald; Park, Peter C.; Titt, Uwe; Mohan, Radhe; Virshup, Gary; Clayton, James E.; Dong, Lei

    2012-07-01

    The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements. For the first time, the impact of tissue composition variations on SPR estimation was assessed and the uncertainty estimates of each category were determined for low-density (lung), soft, and high-density (bone) tissues. A composite, 95th percentile water-equivalent-thickness uncertainty was calculated from multiple beam directions in 15 patients with various types of cancer undergoing proton therapy. The SPR uncertainties (1σ) were quite different (ranging from 1.6% to 5.0%) in different tissue groups, although the final combined uncertainty (95th percentile) for different treatment sites was fairly consistent at 3.0-3.4%, primarily because soft tissue is the dominant tissue type in the human body. The dominant contributing factor for uncertainties in soft tissues was the degeneracy of Hounsfield numbers in the presence of tissue composition variations. To reduce the overall uncertainties in SPR estimation, the use of dual-energy computed tomography is suggested. The values recommended in this study based on typical treatment sites and a small group of patients roughly agree with the commonly referenced value (3.5%) used for margin design. By using tissue-specific range uncertainties, one could estimate the beam-specific range margin by accounting for different types and amounts of tissues along a beam, which may allow for customization of range uncertainty for each beam direction.

  8. PPV analysis and tension of spectral peak in an X radiation equipment for dosemeter calibration; Analise do PPV e tensao de pico espectral em um equipamento de raios-X para calibracao de dosimetros

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, P.M.C.; Santana, P.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem; Lacerda, M.A.S.; Silva, T.A. da, E-mail: pmco@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2014-07-01

    Dosimetry laboratories around the world try to achieve metrology consistency between the X-rays beams for therapy and diagnostic detectors calibration. One of the parameters to characterize X-ray beam is the practical peak voltage (PPV) assessment. In this work were evaluated the PPV and spectral peak voltage in the potential constant X-ray equipment, that result in a mean difference of 1.4 %. (author)

  9. A postprocessing method based on high-resolution spectral estimation for FDTD calculation of phononic band structures

    Energy Technology Data Exchange (ETDEWEB)

    Su Xiaoxing, E-mail: xxsu@bjtu.edu.c [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li Jianbao; Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-05-15

    If the energy bands of a phononic crystal are calculated by the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT), good estimation of the eigenfrequencies can only be ensured by the postprocessing of sufficiently long time series generated by a large number of FDTD iterations. In this paper, a postprocessing method based on the high-resolution spectral estimation via the Yule-Walker method is proposed to overcome this difficulty. Numerical simulation results for three-dimensional acoustic and two-dimensional elastic systems show that, compared with the classic FFT-based postprocessing method, the proposed method can give much better estimation of the eigenfrequencies when the FDTD is run with relatively few iterations.

  10. A postprocessing method based on high-resolution spectral estimation for FDTD calculation of phononic band structures

    International Nuclear Information System (INIS)

    Su Xiaoxing; Li Jianbao; Wang Yuesheng

    2010-01-01

    If the energy bands of a phononic crystal are calculated by the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT), good estimation of the eigenfrequencies can only be ensured by the postprocessing of sufficiently long time series generated by a large number of FDTD iterations. In this paper, a postprocessing method based on the high-resolution spectral estimation via the Yule-Walker method is proposed to overcome this difficulty. Numerical simulation results for three-dimensional acoustic and two-dimensional elastic systems show that, compared with the classic FFT-based postprocessing method, the proposed method can give much better estimation of the eigenfrequencies when the FDTD is run with relatively few iterations.

  11. Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle

    Science.gov (United States)

    Asrar, G.; Kanemasu, E. T.; Yoshida, M.

    1985-01-01

    The influence of management practices and solar illumination angle on the leaf area index (LAI) was estimated from measurements of wheat canopy reflectance evaluated by two methods, a regression formula and an indirect technique. The date of planting and the time of irrigation in relation to the stage of plant growth were found to have significant effects on the development of leaves in spring wheat. A reduction in soil moisture adversely affected both the duration and magnitude of the maximum LAI for late planting dates. In general, water stress during vegetative stages resulted in a reduction in maximum LAI, while water stress during the reproductive period shortened the duration of green LAI in spring wheat. Canopy geometry and solar angle also affected the spectral properties of the canopies, and hence the estimated LAI. Increase in solar zenith angles resulted in a general increase in estimated LAI obtained from both methods.

  12. Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project - Part 1: calibration, urban enhancements, and uncertainty estimates

    Science.gov (United States)

    Verhulst, Kristal R.; Karion, Anna; Kim, Jooil; Salameh, Peter K.; Keeling, Ralph F.; Newman, Sally; Miller, John; Sloop, Christopher; Pongetti, Thomas; Rao, Preeti; Wong, Clare; Hopkins, Francesca M.; Yadav, Vineet; Weiss, Ray F.; Duren, Riley M.; Miller, Charles E.

    2017-07-01

    We report continuous surface observations of carbon dioxide (CO2) and methane (CH4) from the Los Angeles (LA) Megacity Carbon Project during 2015. We devised a calibration strategy, methods for selection of background air masses, calculation of urban enhancements, and a detailed algorithm for estimating uncertainties in urban-scale CO2 and CH4 measurements. These methods are essential for understanding carbon fluxes from the LA megacity and other complex urban environments globally. We estimate background mole fractions entering LA using observations from four extra-urban sites including two marine sites located south of LA in La Jolla (LJO) and offshore on San Clemente Island (SCI), one continental site located in Victorville (VIC), in the high desert northeast of LA, and one continental/mid-troposphere site located on Mount Wilson (MWO) in the San Gabriel Mountains. We find that a local marine background can be established to within ˜ 1 ppm CO2 and ˜ 10 ppb CH4 using these local measurement sites. Overall, atmospheric carbon dioxide and methane levels are highly variable across Los Angeles. Urban and suburban sites show moderate to large CO2 and CH4 enhancements relative to a marine background estimate. The USC (University of Southern California) site near downtown LA exhibits median hourly enhancements of ˜ 20 ppm CO2 and ˜ 150 ppb CH4 during 2015 as well as ˜ 15 ppm CO2 and ˜ 80 ppb CH4 during mid-afternoon hours (12:00-16:00 LT, local time), which is the typical period of focus for flux inversions. The estimated measurement uncertainty is typically better than 0.1 ppm CO2 and 1 ppb CH4 based on the repeated standard gas measurements from the LA sites during the last 2 years, similar to Andrews et al. (2014). The largest component of the measurement uncertainty is due to the single-point calibration method; however, the uncertainty in the background mole fraction is much larger than the measurement uncertainty. The background uncertainty for the marine

  13. Validation of attenuation, beam blockage, and calibration estimation methods using two dual polarization X band weather radars

    Science.gov (United States)

    Diederich, M.; Ryzhkov, A.; Simmer, C.; Mühlbauer, K.

    2011-12-01

    The amplitude a of radar wave reflected by meteorological targets can be misjudged due to several factors. At X band wavelength, attenuation of the radar beam by hydro meteors reduces the signal strength enough to be a significant source of error for quantitative precipitation estimation. Depending on the surrounding orography, the radar beam may be partially blocked when scanning at low elevation angles, and the knowledge of the exact amount of signal loss through beam blockage becomes necessary. The phase shift between the radar signals at horizontal and vertical polarizations is affected by the hydrometeors that the beam travels through, but remains unaffected by variations in signal strength. This has allowed for several ways of compensating for the attenuation of the signal, and for consistency checks between these variables. In this study, we make use of several weather radars and gauge network measuring in the same area to examine the effectiveness of several methods of attenuation and beam blockage corrections. The methods include consistency checks of radar reflectivity and specific differential phase, calculation of beam blockage using a topography map, estimating attenuation using differential propagation phase, and the ZPHI method proposed by Testud et al. in 2000. Results show the high effectiveness of differential phase in estimating attenuation, and potential of the ZPHI method to compensate attenuation, beam blockage, and calibration errors.

  14. Calibration and analysis of soil carbon efflux estimates with closed chambers at Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern (Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (SE))

    2006-08-15

    The Forsmark and the Laxemar investigation areas are examined by the Swedish Nuclear Fuel and Waste Management Co. for a possible construction of a deep repository for nuclear waste. In the case of a future leakage of waste, the radioactive isotopes could end up in the ecosystems above the repository. The fate of the radionuclides and their possible radiological impacts are then highly determined by ecosystem carbon cycling. An important part of the carbon cycling is the soil carbon effluxes, and in the investigation areas soil carbon effluxes have been examined with the closed chamber technique. This paper is divided into two parts. Firstly, there were problems with the equipment measuring the soil carbon dioxide efflux, and the first part is a description of the problem, how it was corrected and its possible causes. The second part is a manual in how to analyse data and calculate annual estimates of soil carbon efflux. The field measurement by the EGM-4 is just an occasional estimate of the soil carbon efflux at a certain spot and at a certain point in time. To make an interpretation of the measurements, it is essential to analyse the data and to temporally extrapolate them. It is necessary to prepare the raw data for the analysis. The problems with the EGM-4 doing the measurements at the Forsmark and the Laxemar investigation area makes it necessary to correct the data taken up by this EGM-4. The data should also be separated into soil respiration and gross primary production (GPP). Soil carbon dioxide effluxes should be changed to soil carbon effluxes. Soil carbon effluxes are strongly controlled by abiotic factors; temperature is the main factor to influence soil respiration and photosynthetically active radiation (PAR) and air temperature are the main factors to influence GPP. Regression with soil respiration against temperature and with GPP against PAR or temperature can therefore be done. These equations can then be used on datasets with temperature and PAR

  15. Calibration and analysis of soil carbon efflux estimates with closed chambers at Forsmark and Laxemar

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2006-08-01

    The Forsmark and the Laxemar investigation areas are examined by the Swedish Nuclear Fuel and Waste Management Co. for a possible construction of a deep repository for nuclear waste. In the case of a future leakage of waste, the radioactive isotopes could end up in the ecosystems above the repository. The fate of the radionuclides and their possible radiological impacts are then highly determined by ecosystem carbon cycling. An important part of the carbon cycling is the soil carbon effluxes, and in the investigation areas soil carbon effluxes have been examined with the closed chamber technique. This paper is divided into two parts. Firstly, there were problems with the equipment measuring the soil carbon dioxide efflux, and the first part is a description of the problem, how it was corrected and its possible causes. The second part is a manual in how to analyse data and calculate annual estimates of soil carbon efflux. The field measurement by the EGM-4 is just an occasional estimate of the soil carbon efflux at a certain spot and at a certain point in time. To make an interpretation of the measurements, it is essential to analyse the data and to temporally extrapolate them. It is necessary to prepare the raw data for the analysis. The problems with the EGM-4 doing the measurements at the Forsmark and the Laxemar investigation area makes it necessary to correct the data taken up by this EGM-4. The data should also be separated into soil respiration and gross primary production (GPP). Soil carbon dioxide effluxes should be changed to soil carbon effluxes. Soil carbon effluxes are strongly controlled by abiotic factors; temperature is the main factor to influence soil respiration and photosynthetically active radiation (PAR) and air temperature are the main factors to influence GPP. Regression with soil respiration against temperature and with GPP against PAR or temperature can therefore be done. These equations can then be used on datasets with temperature and PAR

  16. Convex relaxations of spectral sparsity for robust super-resolution and line spectrum estimation

    Science.gov (United States)

    Chi, Yuejie

    2017-08-01

    We consider recovering the amplitudes and locations of spikes in a point source signal from its low-pass spectrum that may suffer from missing data and arbitrary outliers. We first review and provide a unified view of several recently proposed convex relaxations that characterize and capitalize the spectral sparsity of the point source signal without discretization under the framework of atomic norms. Next we propose a new algorithm when the spikes are known a priori to be positive, motivated by applications such as neural spike sorting and fluorescence microscopy imaging. Numerical experiments are provided to demonstrate the effectiveness of the proposed approach.

  17. The comparative metrological estimation of methods of emission spectral analysis for wear products in aviation oils

    Energy Technology Data Exchange (ETDEWEB)

    Alchimov, A B; Drobot, S I; Drokov, V G; Zarubin, V P; Kazmirov, A D; Skodaev, Y D; Podrezov, A M [Applied Physics Institute of Irkutsk State University, Irkutsk (Russian Federation)

    1998-12-31

    The comparison of different spectral methods of analysis for wear diagnostics of aircraft engines has been carried out. It is shown that known techniques of determination of metals content in aviation oils with the use the spectrometers MFS (Russia) and MOA (USA) give a low accuracy of measurements. As an alternative the method of wear diagnostics on the base of a scintillation spectrometer is suggested. This method possess far better metrological properties in comparison with those on the base of the spectrometer MFS and MOA. (orig.) 6 refs.

  18. The comparative metrological estimation of methods of emission spectral analysis for wear products in aviation oils

    Energy Technology Data Exchange (ETDEWEB)

    Alchimov, A.B.; Drobot, S.I.; Drokov, V.G.; Zarubin, V.P.; Kazmirov, A.D.; Skodaev, Y.D.; Podrezov, A.M. [Applied Physics Institute of Irkutsk State University, Irkutsk (Russian Federation)

    1997-12-31

    The comparison of different spectral methods of analysis for wear diagnostics of aircraft engines has been carried out. It is shown that known techniques of determination of metals content in aviation oils with the use the spectrometers MFS (Russia) and MOA (USA) give a low accuracy of measurements. As an alternative the method of wear diagnostics on the base of a scintillation spectrometer is suggested. This method possess far better metrological properties in comparison with those on the base of the spectrometer MFS and MOA. (orig.) 6 refs.

  19. An estimation of the spatial coherency radius of a multimode laser beam by the spectral contrast

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, I I

    1983-01-01

    The angular dependency of the spectral contrast behind a diffuser illuminated by an He/Ne laser beam at .63 micrometers on the number of transverse modes is investigated. It is demonstrated that over a wide range of scattering angles, the contrast is determined primarily by the number of transverse modes, i.e. by the radius of the spatial field correlation, and is only slightly dependent on the dimensions and shape of the beam as well as the intensity distribution in the beam. These results may be useful in developing a rapid indication method of the radius of the spatial correlation of laser beams.

  20. Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat Using Ultrasonic, Laser, and Spectral Sensors

    Directory of Open Access Journals (Sweden)

    Jeremy Joshua Pittman

    2015-01-01

    Full Text Available Non-destructive biomass estimation of vegetation has been performed via remote sensing as well as physical measurements. An effective method for estimating biomass must have accuracy comparable to the accepted standard of destructive removal. Estimation or measurement of height is commonly employed to create a relationship between height and mass. This study examined several types of ground-based mobile sensing strategies for forage biomass estimation. Forage production experiments consisting of alfalfa (Medicago sativa L., bermudagrass [Cynodon dactylon (L. Pers.], and wheat (Triticum aestivum L. were employed to examine sensor biomass estimation (laser, ultrasonic, and spectral as compared to physical measurements (plate meter and meter stick and the traditional harvest method (clipping. Predictive models were constructed via partial least squares regression and modeled estimates were compared to the physically measured biomass. Least significant difference separated mean estimates were examined to evaluate differences in the physical measurements and sensor estimates for canopy height and biomass. Differences between methods were minimal (average percent error of 11.2% for difference between predicted values versus machine and quadrat harvested biomass values (1.64 and 4.91 t·ha−1, respectively, except at the lowest measured biomass (average percent error of 89% for harvester and quad harvested biomass < 0.79 t·ha−1 and greatest measured biomass (average percent error of 18% for harvester and quad harvested biomass >6.4 t·ha−1. These data suggest that using mobile sensor-based biomass estimation models could be an effective alternative to the traditional clipping method for rapid, accurate in-field biomass estimation.

  1. Assessing NIR & MIR Spectral Analysis as a Method for Soil C Estimation Across a Network of Sampling Sites

    Science.gov (United States)

    Spencer, S.; Ogle, S.; Borch, T.; Rock, B.

    2008-12-01

    Monitoring soil C stocks is critical to assess the impact of future climate and land use change on carbon sinks and sources in agricultural lands. A benchmark network for soil carbon monitoring of stock changes is being designed for US agricultural lands with 3000-5000 sites anticipated and re-sampling on a 5- to10-year basis. Approximately 1000 sites would be sampled per year producing around 15,000 soil samples to be processed for total, organic, and inorganic carbon, as well as bulk density and nitrogen. Laboratory processing of soil samples is cost and time intensive, therefore we are testing the efficacy of using near-infrared (NIR) and mid-infrared (MIR) spectral methods for estimating soil carbon. As part of an initial implementation of national soil carbon monitoring, we collected over 1800 soil samples from 45 cropland sites in the mid-continental region of the U.S. Samples were processed using standard laboratory methods to determine the variables above. Carbon and nitrogen were determined by dry combustion and inorganic carbon was estimated with an acid-pressure test. 600 samples are being scanned using a bench- top NIR reflectance spectrometer (30 g of 2 mm oven-dried soil and 30 g of 8 mm air-dried soil) and 500 samples using a MIR Fourier-Transform Infrared Spectrometer (FTIR) with a DRIFT reflectance accessory (0.2 g oven-dried ground soil). Lab-measured carbon will be compared to spectrally-estimated carbon contents using Partial Least Squares (PLS) multivariate statistical approach. PLS attempts to develop a soil C predictive model that can then be used to estimate C in soil samples not lab-processed. The spectral analysis of soil samples either whole or partially processed can potentially save both funding resources and time to process samples. This is particularly relevant for the implementation of a national monitoring network for soil carbon. This poster will discuss our methods, initial results and potential for using NIR and MIR spectral

  2. Least squares autoregressive (maximum entropy) spectral estimation for Fourier spectroscopy and its application to the electron cyclotron emission from plasma

    International Nuclear Information System (INIS)

    Iwama, N.; Inoue, A.; Tsukishima, T.; Sato, M.; Kawahata, K.

    1981-07-01

    A new procedure for the maximum entropy spectral estimation is studied for the purpose of data processing in Fourier transform spectroscopy. The autoregressive model fitting is examined under a least squares criterion based on the Yule-Walker equations. An AIC-like criterion is suggested for selecting the model order. The principal advantage of the new procedure lies in the enhanced frequency resolution particularly for small values of the maximum optical path-difference of the interferogram. The usefulness of the procedure is ascertained by some numerical simulations and further by experiments with respect to a highly coherent submillimeter wave and the electron cyclotron emission from a stellarator plasma. (author)

  3. Negative control exposure studies in the presence of measurement error: implications for attempted effect estimate calibration.

    Science.gov (United States)

    Sanderson, Eleanor; Macdonald-Wallis, Corrie; Davey Smith, George

    2018-04-01

    Negative control exposure studies are increasingly being used in epidemiological studies to strengthen causal inference regarding an exposure-outcome association when unobserved confounding is thought to be present. Negative control exposure studies contrast the magnitude of association of the negative control, which has no causal effect on the outcome but is associated with the unmeasured confounders in the same way as the exposure, with the magnitude of the association of the exposure with the outcome. A markedly larger effect of the exposure on the outcome than the negative control on the outcome strengthens inference that the exposure has a causal effect on the outcome. We investigate the effect of measurement error in the exposure and negative control variables on the results obtained from a negative control exposure study. We do this in models with continuous and binary exposure and negative control variables using analysis of the bias of the estimated coefficients and Monte Carlo simulations. Our results show that measurement error in either the exposure or negative control variables can bias the estimated results from the negative control exposure study. Measurement error is common in the variables used in epidemiological studies; these results show that negative control exposure studies cannot be used to precisely determine the size of the effect of the exposure variable, or adequately adjust for unobserved confounding; however, they can be used as part of a body of evidence to aid inference as to whether a causal effect of the exposure on the outcome is present.

  4. Estimation of dimensions and orientation of multiple riverine dune generations using spectral moments

    Science.gov (United States)

    Lisimenka, Aliaksandr; Kubicki, Adam

    2017-02-01

    A new spectral analysis technique is proposed for rhythmic bedform quantification, based on the 2D Fourier transform involving the calculation of a set of low-order spectral moments. The approach provides a tool for efficient quantification of bedform length and height as well as spatial crest-line alignment. Contrary to the conventional method, it not only describes the most energetic component of an undulating seabed surface but also retrieves information on its secondary structure without application of any band-pass filter of which the upper and lower cut-off frequencies are a priori unknown. Validation is based on bathymetric data collected in the main Vistula River mouth area (Przekop Wisły), Poland. This revealed two generations (distinct groups) of dunes which are migrating seawards along distinct paths, probably related to the hydrological regime of the river. The data enable the identification of dune divergence and convergence zones. The approach proved successful in the parameterisation of topographic roughness, an essential aspect in numerical modelling studies.

  5. Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning.

    Science.gov (United States)

    Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P

    2014-03-01

    The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    Science.gov (United States)

    Oda, Hitoshi

    2005-02-01

    spectral inversion makes it possible to estimate the odd-order lateral structure, which cannot be determined by the conventional spectral inversion, which takes no account of the mixed coupling. Higher order structure is biased by the mixed coupling when the conventional spectral inversion is applied to the amplitude spectra incorporating the mixed coupling.

  7. Estimation of spectral solar radiation based on global insolation and characteristics of spectral solar radiation on a tilt surface; Zenten nissharyo ni motozuku zenten nissha supekutoru no suitei to keishamen bunko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H; Kanayama, K; Endo, N; Koromohara, K; Takayama, H [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    Use of global insolation for estimating the corresponding spectral distribution is proposed. Measurements of global insolation spectrum throughout a year were compiled for clear days and cloudy days, ranked by 100W/m{sup 2}, for the clarification of spectral distribution. Global insolation quantity for a clear day was subject mainly to sun elevation. The global insolation spectral distribution with the sun elevation not lower than 15{degree} was similar to Bird`s model. Under the cloudy sky, energy density was lower in the region of wavelengths longer than the peak wavelength of 0.46{mu}m, and the distribution curve was sharper than that under the clear sky. Values given by Bird`s model were larger than measured values in the wavelength range of 0.6-1.8{mu}m, which was attributed to absorption by vapor. From the standard spectral distribution charts for the clear sky and cloudy sky, and from the dimensionless spectral distributions obtained by dividing them by the peak values, spectral distributions could be estimated of insolation quantities for the clear sky, cloudy sky, etc. As for the characteristics of spectral solar radiation on a tilt surface obtained from Bird`s model, they agreed with actually measured values at an angle of inclination of 60{degree} or smaller. 6 refs., 10 figs., 1 tab.

  8. Hull Girder Fatigue Damage Estimations of a Large Container Vessel by Spectral Analysis

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher

    2013-01-01

    This paper deals with fatigue damage estimation from the analysis of full-scale stress measurements in the hull of a large container vessel (9,400 TEU) covering several months of operation. For onboard decision support and hull monitoring sys-tems, there is a need for a fast reliable method...... for esti-mation of fatigue damage in the ship hull. The objective of the study is to investigate whether the higher frequency contributions from the hydroelastic responses (springing and whipping) can satisfactory be included in the fatigue damage estimation by only a few parameters derived from the stress...

  9. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    2000-11-01

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  10. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  11. Estimation of block conductivities from hydrologically calibrated fracture networks. Description of methodology and application to Romuvaara investigation area

    International Nuclear Information System (INIS)

    Niemi, A.; Kontio, K.; Kuusela-Lahtinen, A.; Vaittinen, T.

    1999-03-01

    This study looks at heterogeneity in hydraulic conductivity at Romuvaara site. It concentrates on the average rock outside the deterministic fracture zones, especially in the deeper parts of the bedrock. A large number of stochastic fracture networks is generated based on geometrical data on fracture geometry from the site. The hydraulic properties of the fractures are determined by calibrating the networks against well test data. The calibration is done by starting from an initial estimate for fracture transmissivity distribution based on 2 m interval flow meter data, simulating the 10 m constant head injection test behaviour in a number of fracture network realisations and comparing the simulated well tests statistics to the measured ones. A large number of possible combinations of mean and standard deviation of fracture transmissivities are tested and the goodness-of-fit between the measured and simulated results determined by means of the bootstrapping method. As the result, a range of acceptable fracture transmissivity distribution parameters is obtained. In the accepted range, the mean of log transmissivity varies between -13.9 and -15.3 and standard deviation between 4.0 and 3.2, with increase in standard deviation compensating for decrease in mean. The effect of spatial autocorrelation was not simulated. The variogram analysis did, however, give indications that an autocorrelation range of the order of 10 m might be realistic for the present data. Based on the calibrated fracture networks, equivalent continuum conductivities of the calibrated 30 m x 30 m x 30 m conductivity blocks were determined. For each realisation, three sets of simulations was carried out with the main gradient in x, y and z directions, respectively. Based on these results the components of conductivity tensor were determined. Such data can be used e.g. for stochastic continuum type Monte Carlo simulations with larger scale models. The hydraulic conductivities in the direction of the

  12. Estimation of block conductivities from hydrologically calibrated fracture networks. Description of methodology and application to Romuvaara investigation area

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, A [Royal Institute of Technology, Stockholm (Sweden); Kontio, K; Kuusela-Lahtinen, A; Vaittinen, T [VTT Communities and Infrastructure, Espoo (Finland)

    1999-03-01

    This study looks at heterogeneity in hydraulic conductivity at Romuvaara site. It concentrates on the average rock outside the deterministic fracture zones, especially in the deeper parts of the bedrock. A large number of stochastic fracture networks is generated based on geometrical data on fracture geometry from the site. The hydraulic properties of the fractures are determined by calibrating the networks against well test data. The calibration is done by starting from an initial estimate for fracture transmissivity distribution based on 2 m interval flow meter data, simulating the 10 m constant head injection test behaviour in a number of fracture network realisations and comparing the simulated well tests statistics to the measured ones. A large number of possible combinations of mean and standard deviation of fracture transmissivities are tested and the goodness-of-fit between the measured and simulated results determined by means of the bootstrapping method. As the result, a range of acceptable fracture transmissivity distribution parameters is obtained. In the accepted range, the mean of log transmissivity varies between -13.9 and -15.3 and standard deviation between 4.0 and 3.2, with increase in standard deviation compensating for decrease in mean. The effect of spatial autocorrelation was not simulated. The variogram analysis did, however, give indications that an autocorrelation range of the order of 10 m might be realistic for the present data. Based on the calibrated fracture networks, equivalent continuum conductivities of the calibrated 30 m x 30 m x 30 m conductivity blocks were determined. For each realisation, three sets of simulations was carried out with the main gradient in x, y and z directions, respectively. Based on these results the components of conductivity tensor were determined. Such data can be used e.g. for stochastic continuum type Monte Carlo simulations with larger scale models. The hydraulic conductivities in the direction of the

  13. Calibrated Tully-Fisher relations for improved estimates of disc rotation velocities

    Science.gov (United States)

    Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.; Lackner, C. N.

    2011-11-01

    In this paper, we derive scaling relations between photometric observable quantities and disc galaxy rotation velocity Vrot or Tully-Fisher relations (TFRs). Our methodology is dictated by our purpose of obtaining purely photometric, minimal-scatter estimators of Vrot applicable to large galaxy samples from imaging surveys. To achieve this goal, we have constructed a sample of 189 disc galaxies at redshifts z < 0.1 with long-slit Hα spectroscopy from Pizagno et al. and new observations. By construction, this sample is a fair subsample of a large, well-defined parent disc sample of ˜170 000 galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). The optimal photometric estimator of Vrot we find is stellar mass M★ from Bell et al., based on the linear combination of a luminosity and a colour. Assuming a Kroupa initial mass function (IMF), we find: log [V80/(km s-1)] = (2.142 ± 0.004) + (0.278 ± 0.010)[log (M★/M⊙) - 10.10], where V80 is the rotation velocity measured at the radius R80 containing 80 per cent of the i-band galaxy light. This relation has an intrinsic Gaussian scatter ? dex and a measured scatter σmeas= 0.056 dex in log V80. For a fixed IMF, we find that the dynamical-to-stellar mass ratios within R80, (Mdyn/M★)(R80), decrease from approximately 10 to 3, as stellar mass increases from M★≈ 109 to 1011 M⊙. At a fixed stellar mass, (Mdyn/M★)(R80) increases with disc size, so that it correlates more tightly with stellar surface density than with stellar mass or disc size alone. We interpret the observed variation in (Mdyn/M★)(R80) with disc size as a reflection of the fact that disc size dictates the radius at which Mdyn/M★ is measured, and consequently, the fraction of the dark matter 'seen' by the gas at that radius. For the lowest M★ galaxies, we find a positive correlation between TFR residuals and disc sizes, indicating that the total density profile is dominated by dark matter on these scales. For the

  14. Accuracy evaluation of the estimated absorbed dose to water calibration factor values

    International Nuclear Information System (INIS)

    Ooi, A.S.; Supian Samat; Dolah, M.T.; Taiman Kadni

    2001-01-01

    The purpose of the present work was to evaluate the accuracy of the estimated N D,W values, i.e. N D,W (Est), in comparison with the experimentally obtained N D,W values, i.e. N D,W (Exp). Two methods of evaluation were used. The first method was based on the calculated percentage deviations Δ% of N D,W (Est) from N D,W (Exp). The mean μ% and the standard error σ se % of Δ(%) were obtained. The N D,W Est) values were said to be accurate if the condition of μ% ± σ se % D,W (Exp) and N D,W (Est). In this method, the condition of u D,W (Est) values were to be accurate. the work described here used n=10 data pairs of [N D,W (Exp) ± Δ N D,W (Exp), N D,W (Est) ± Δ N D,W (Est)]. The data pairs were the values reported by IAEA (n=2), NPL (n=1) and SSDL Malaysia (n=7). For the first method, μ% ± σ se % D,W (Est) values was accurate. For the second method, only two u-statistics values (that used data pairs reported by the IAEA) met the requirement. The remainders of the eight u-statistics values (that used data pairs reported by NPL and SSDL) would not only met the requirement if their standard uncertainties of N D,W (Exp) and N D,W (Est) be taken to be equal to 2σ (n=3) and 3σ (n=5). The need to increase the standard uncertainties from 1σ to 2σ or 3σ implied that the standard uncertainties reported by NPL and SSDL were somehow smaller that the magnitude reported by the IAEA. Reasons for this were discussed. (Author)

  15. Dependence on Solar Phase Angle and Grain Size of the Spectral Reflectance of the Railroad Valley Playa for GOSAT/GOSAT-2 Vicarious Calibration

    Science.gov (United States)

    Arai, T.; Matsunaga, T.

    2017-12-01

    GOSAT and the next generation GOSAT-2 satellites estimate the concentration of greenhouse gasses, and distribution of aerosol and cloud to observe solar light reflection and radiation from surface and atmosphere of the Earth. Precise information of the surface and the bidirectional reflectance distribution function (BRDF) are required for the estimation because the surface reflectance of solar light varies with the observation geometry and the surface condition. The purpose of this study is to search an appropriate BRDF model of the GOSAT calibration site (Railroad Valley playa). In 2017, JAXA, NIES, and NASA/OCO-2 teams collaboratively performed 9th vicarious experiments by the simultaneous observation with GOSAT, OCO-2, and ground-based equipment (Kuze et al., 2014) at the Railroad Valley from June 25 to 30. We performed the BRDF measurement to observe solar light reflection by varying with observed angles using a spectroradiometer (FieldSpec4, ASD Inc.) mounted on a one-axis goniometer. The surface sand was shifted to several sizes of grain (75, 125, 250, 500, and 1000 μm), which was measured for the limited area of 5mm diameter with a collimating lens (74-UV, OceanOptics). The BRDF parameters for the observed reflectance were determined by the least squares fitting with the free parameters of a single scattering albedo and an asymmetric factor (Hapke, 2012) for the ultraviolet to near infrared wavelength bands of GOSAT. The resulting value of the single scattering albedo increased with decreasing the grain size of the sands. The observed reflectance of the fine grain sands (below 250 μm) is not varied with observed phase angles (solar incident light - surface sand - detector) as a Lambertian reflectance, but the spectra of coarse grain sands (above 500 μm) are varied with the observation angles. Therefore, a priori information of the target surface such as grain size is required for the determination of the precise reflectance of the target.

  16. Ship motion-based wave estimation using a spectral residual-calculation

    DEFF Research Database (Denmark)

    Nielsen, Ulrik D.; H. Brodtkorb, Astrid

    2018-01-01

    This paper presents a study focused on a newly developed procedure for wave spectrum estimation using wave-induced motion recordings from a ship. The particular procedure stands out from other existing, similar ship motion-based pro-cedures by its computational efficiency and - at the same time- ...

  17. Stability estimates for h-p spectral element methods for elliptic ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    With this mesh we seek a solution which minimizes a weighted ... uniform mesh; fractional Sobolev norms; stability estimate; polylogarithmic bounds. ... In [6,7] we restrict ourselves to examining the Poisson's equation with ... it by stating the stability theorem 3.1 for a simpler case. ..... And this gives us the following inequality:.

  18. Fusion of spectral and electrochemical sensor data for estimating soil macronutrients

    Science.gov (United States)

    Rapid and efficient quantification of plant-available soil phosphorus (P) and potassium (K) is needed to support variable-rate fertilization strategies. Two methods that have been used for estimating these soil macronutrients are diffuse reflectance spectroscopy in visible and near-infrared (VNIR) w...

  19. Spectral filtering modulation method for estimation of hemoglobin concentration and oxygenation based on a single fluorescence emission spectrum in tissue phantoms.

    Science.gov (United States)

    Liu, Quan; Vo-Dinh, Tuan

    2009-10-01

    Hemoglobin concentration and oxygenation in tissue are important biomarkers that are useful in both research and clinical diagnostics of a wide variety of diseases such as cancer. The authors aim to develop simple ratiometric method based on the spectral filtering modulation (SFM) of fluorescence spectra to estimate the total hemoglobin concentration and oxygenation in tissue using only a single fluorescence emission spectrum, which will eliminate the need of diffuse reflectance measurements and prolonged data processing as required by most current methods, thus enabling rapid clinical measurements. The proposed method consists of two steps. In the first step, the total hemoglobin concentration is determined by comparing a ratio of fluorescence intensities at two emission wavelengths to a calibration curve. The second step is to estimate oxygen saturation by comparing a double ratio that involves three emission wavelengths to another calibration curve that is a function of oxygen saturation for known total hemoglobin concentration. Theoretical derivation shows that the ratio in the first step is linearly proportional to the total hemoglobin concentrations and the double ratio in the second step is related to both total hemoglobin concentration and hemoglobin oxygenation for the chosen fiber-optic probe geometry. Experiments on synthetic fluorescent tissue phantoms, which included hemoglobin with both constant and varying oxygenation as the absorber, polystyrene spheres as scatterers, and flavin adenine dinucleotide as the fluorophore, were carried out to validate the theoretical prediction. Tissue phantom experiments confirm that the ratio in the first step is linearly proportional to the total hemoglobin concentration and the double ratio in the second step is related to both total hemoglobin concentrations and hemoglobin oxygenation. Furthermore, the relations between the two ratios and the total hemoglobin concentration and hemoglobin oxygenation are insensitive

  20. Spectral and parameter estimation problems arising in the metrology of high performance mirror surfaces

    International Nuclear Information System (INIS)

    Church, E.L.; Takacs, P.Z.

    1986-04-01

    The accurate characterization of mirror surfaces requires the estimation of two-dimensional distribution functions and power spectra from trend-contaminated profile measurements. The rationale behind this, and our measurement and processing procedures, are described. The distinction between profile and area spectra is indicated, and since measurements often suggest inverse-power-law forms, a discussion of classical and fractal models of processes leading to these forms is included. 9 refs

  1. Satellite estimation of surface spectral ultraviolet irradiance using OMI data in East Asia

    Science.gov (United States)

    Lee, H.; Kim, J.; Jeong, U.

    2017-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface ultraviolet (UV) irradiance is important nowadays. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UV irradiance estimation. Also UV index (UVI) is a simple parameter to show the strength of surface UV irradiance, therefore UVI has been widely utilized for the purpose of UV monitoring. In this study, we estimate surface UV irradiance at East Asia using realistic input based on OMI Total Ozone and reflectivity, and then validate this estimated comparing to UV irradiance from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) data. In this work, we also try to develop our own retrieval algorithm for better estimation of surface irradiance. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UV irradiance calculation. The input to the VLIDORT radiative transfer calculations are the total ozone column (TOMS V7 climatology), the surface albedo (Herman and Celarier, 1997) and the cloud optical depth. Based on these, the UV irradiance is calculated based on look-up table (LUT) approach. To correct absorbing aerosol, UV irradiance algorithm added climatological aerosol information (Arola et al., 2009). The further study, we analyze the comprehensive uncertainty analysis based on LUT and all input parameters.

  2. Estimation and calibration of observation impact signals using the Lanczos method in NOAA/NCEP data assimilation system

    Directory of Open Access Journals (Sweden)

    M. Wei

    2012-09-01

    Full Text Available Despite the tremendous progress that has been made in data assimilation (DA methodology, observing systems that reduce observation errors, and model improvements that reduce background errors, the analyses produced by the best available DA systems are still different from the truth. Analysis error and error covariance are important since they describe the accuracy of the analyses, and are directly related to the future forecast errors, i.e., the forecast quality. In addition, analysis error covariance is critically important in building an efficient ensemble forecast system (EFS.

    Estimating analysis error covariance in an ensemble-based Kalman filter DA is straightforward, but it is challenging in variational DA systems, which have been in operation at most NWP (Numerical Weather Prediction centers. In this study, we use the Lanczos method in the NCEP (the National Centers for Environmental Prediction Gridpoint Statistical Interpolation (GSI DA system to look into other important aspects and properties of this method that were not exploited before. We apply this method to estimate the observation impact signals (OIS, which are directly related to the analysis error variances. It is found that the smallest eigenvalue of the transformed Hessian matrix converges to one as the number of minimization iterations increases. When more observations are assimilated, the convergence becomes slower and more eigenvectors are needed to retrieve the observation impacts. It is also found that the OIS over data-rich regions can be represented by the eigenvectors with dominant eigenvalues.

    Since only a limited number of eigenvectors can be computed due to computational expense, the OIS is severely underestimated, and the analysis error variance is consequently overestimated. It is found that the mean OIS values for temperature and wind components at typical model levels are increased by about 1.5 times when the number of eigenvectors is doubled

  3. Comparing Satellite Rainfall Estimates with Rain-Gauge Data: Optimal Strategies Suggested by a Spectral Model

    Science.gov (United States)

    Bell, Thomas L.; Kundu, Prasun K.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Validation of satellite remote-sensing methods for estimating rainfall against rain-gauge data is attractive because of the direct nature of the rain-gauge measurements. Comparisons of satellite estimates to rain-gauge data are difficult, however, because of the extreme variability of rain and the fact that satellites view large areas over a short time while rain gauges monitor small areas continuously. In this paper, a statistical model of rainfall variability developed for studies of sampling error in averages of satellite data is used to examine the impact of spatial and temporal averaging of satellite and gauge data on intercomparison results. The model parameters were derived from radar observations of rain, but the model appears to capture many of the characteristics of rain-gauge data as well. The model predicts that many months of data from areas containing a few gauges are required to validate satellite estimates over the areas, and that the areas should be of the order of several hundred km in diameter. Over gauge arrays of sufficiently high density, the optimal areas and averaging times are reduced. The possibility of using time-weighted averages of gauge data is explored.

  4. Estimating calibration equations for predicting Ra-226 soil concentrations using RTRAK in-situ detectors at the Ambrosia Lake, New Mexico, Umtra site

    International Nuclear Information System (INIS)

    Gilbert, R. O.; Meyer, H. R.; Miller, M. L.; Begley, C.

    1988-06-01

    This report describes a field study conducted at the Ambrosia Lake, New Mexico, UMTRA site to obtain data for calibrating the RTRAK Sodium Iodide (NaI) detectors for estimating concentrations of Ra-226 in surface soil. The statistical analyses indicate that the data are useful for estimating the calibration equations. Several statistical models are used to evaluate which model is best as a basis for the calibration equations. A procedure is provided for using the estimated calibration equations and extensive RTRAK measurements to estimate the average Ra-226 concentration on 100-m 2 land areas to determine whether additional remedial action is needed. The UMTRA Project office proposes to use the RTRAK for cleanup verification of surface Ra-226 contamination. The system enables 100% coverage of areas having undergone remedial action. The sensitivity of the system enables verification at less than 5 pCi/g averaged over 100 m 2 , as specified by the Environmental Protection Agency (EPA) standards (40 CFR Part 192). This analysis demonstrates RTRAK's ability to meet reasonable standards of statistical accuracy, using commonly accepted procedures. 5 refs., 8 figs., 1 tab

  5. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    Science.gov (United States)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  6. CHANGE DETECTION OF CROPPING PATTERN IN PADDY FIELD USING MULTI SPECTRAL SATELLITE DATA FOR ESTIMATING IRRIGATION WATER NEEDS

    Directory of Open Access Journals (Sweden)

    Rizatus Shofiyati1

    2012-10-01

    Full Text Available This paper investigates the use of multi spectral satellite data for cropping pattern monitoring in paddy field. The southern coastal of Citarum watershed, West Java Province was selected as study sites. The analysis used in this study is identifying crop pattern based on growth stages of wetland paddy and other crops by investi-gating the characteristic of Normalized Differen-ce Vegetation Indices (NDVI and Wetness of Tasseled Cap Transformation (TCT derived from 14 scenes of Landsat TM date 1988 to 2001. In general, the phenological of growth stages of wetland paddy can be used to distinguish with other seasonal crops. The research results indicate that multi spectral satellite data has a great potential for identi-fication and monitoring cropping pattern in paddy field. Specific character of NDVI and Wetness can also produce a map of cropping pattern in paddy field that is useful to monitor agricultural land condition. The cropping pattern can also be used to estimate irrigation water needed of paddy field in the area. Expected implication of the information obtained from this analysis is useful for guiding more appropriate planning and better agricultural management.

  7. Calibration and Evaluation of Different Estimation Models of Daily Solar Radiation in Seasonally and Annual Time Steps in Shiraz Region

    Directory of Open Access Journals (Sweden)

    Hamid Reza Fooladmand

    2017-06-01

    2006 to 2008 were used for calibrating fourteen estimated models of solar radiation in seasonally and annual time steps and the measured data of years 2009 and 2010 were used for evaluating the obtained results. The equations were used in this study divided into three groups contains: 1 The equations based on only sunshine hours. 2 The equations based on only air temperature. 3 The equations based on sunshine hours and air temperature together. On the other hand, statistical comparison must be done to select the best equation for estimating solar radiation in seasonally and annual time steps. For this purpose, in validation stage the combination of statistical equations and linear correlation was used, and then the value of mean square deviation (MSD was calculated to evaluate the different models for estimating solar radiation in mentioned time steps. Results and Discussion: The mean values of mean square deviation (MSD of fourteen models for estimating solar radiation were equal to 24.16, 20.42, 4.08 and 16.19 for spring to winter respectively, and 15.40 in annual time step. Therefore, the results showed that using the equations for autumn enjoyed high accuracy, however for other seasons had low accuracy. So, using the equations for annual time step were appropriate more than the equations for seasonally time steps. Also, the mean values of mean square deviation (MSD of the equations based on only sunshine hours, the equations based on only air temperature, and the equations based on the combination of sunshine hours and air temperature for estimating solar radiation were equal to 14.82, 17.40 and 14.88, respectively. Therefore, the results indicated that the models based on only air temperature were the worst conditions for estimating solar radiation in Shiraz region, and therefore, using the sunshine hours for estimating solar radiation is necessary. Conclusions: In this study for estimating solar radiation in seasonally and annual time steps in Shiraz region

  8. The Efficiency of OLS Estimators of Structural Parameters in a Simple Linear Regression Model in the Calibration of the Averages Scheme

    Directory of Open Access Journals (Sweden)

    Kowal Robert

    2016-12-01

    Full Text Available A simple linear regression model is one of the pillars of classic econometrics. Multiple areas of research function within its scope. One of the many fundamental questions in the model concerns proving the efficiency of the most commonly used OLS estimators and examining their properties. In the literature of the subject one can find taking back to this scope and certain solutions in that regard. Methodically, they are borrowed from the multiple regression model or also from a boundary partial model. Not everything, however, is here complete and consistent. In the paper a completely new scheme is proposed, based on the implementation of the Cauchy-Schwarz inequality in the arrangement of the constraint aggregated from calibrated appropriately secondary constraints of unbiasedness which in a result of choice the appropriate calibrator for each variable directly leads to showing this property. A separate range-is a matter of choice of such a calibrator. These deliberations, on account of the volume and kinds of the calibration, were divided into a few parts. In the one the efficiency of OLS estimators is proven in a mixed scheme of the calibration by averages, that is preliminary, and in the most basic frames of the proposed methodology. In these frames the future outlines and general premises constituting the base of more distant generalizations are being created.

  9. Reduction of variance in spectral estimates for correction of ultrasonic aberration.

    Science.gov (United States)

    Astheimer, Jeffrey P; Pilkington, Wayne C; Waag, Robert C

    2006-01-01

    A variance reduction factor is defined to describe the rate of convergence and accuracy of spectra estimated from overlapping ultrasonic scattering volumes when the scattering is from a spatially uncorrelated medium. Assuming that the individual volumes are localized by a spherically symmetric Gaussian window and that centers of the volumes are located on orbits of an icosahedral rotation group, the factor is minimized by adjusting the weight and radius of each orbit. Conditions necessary for the application of the variance reduction method, particularly for statistical estimation of aberration, are examined. The smallest possible value of the factor is found by allowing an unlimited number of centers constrained only to be within a ball rather than on icosahedral orbits. Computations using orbits formed by icosahedral vertices, face centers, and edge midpoints with a constraint radius limited to a small multiple of the Gaussian width show that a significant reduction of variance can be achieved from a small number of centers in the confined volume and that this reduction is nearly the maximum obtainable from an unlimited number of centers in the same volume.

  10. In-vivo studies of new vector velocity and adaptive spectral estimators in medical ultrasound

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov

    In this PhD project new ultrasound techniques for blood flow measurements have been investigated in-vivo. The focus has mainly been on vector velocity techniques and four different approaches have been examined: Transverse Oscillation, Synthetic Transmit Aperture, Directional Beamforming and Plane...... in conventional Doppler ultrasound. That is angle dependency, reduced temporal resolution and low frame rate. Transverse Oscillation, Synthetic Transmit Aperture and Directional Beamforming can estimate the blood velocity angle independently. The three methods were validated in-vivo against magnetic resonance...... phase contrast angiography when measuring stroke volumes in simple vessel geometry on 11 volunteers. Using linear regression and Bland-Altman analyses good agreements were found, indicating that vector velocity methods can be used for quantitative blood flow measurements. Plane Wave Excitation can...

  11. Hyperspectral data mining to identify relevant canopy spectral features for estimating durum wheat growth, nitrogen status, and yield

    Science.gov (United States)

    Modern hyperspectral sensors permit reflectance measurements of crop canopies in hundreds of narrow spectral wavebands. While these sensors describe plant canopy reflectance in greater detail than multispectral sensors, they also suffer from issues with data redundancy and spectral autocorrelation. ...

  12. Estimation of reproduction number and non stationary spectral analysis of dengue epidemic.

    Science.gov (United States)

    Enduri, Murali Krishna; Jolad, Shivakumar

    2017-06-01

    In this work we analyze the post monsoon Dengue outbreaks by analyzing the transient and long term dynamics of Dengue incidences and its environmental correlates in Ahmedabad city in western India from 2005 to 2012. We calculate the reproduction number R p using the growth rate of post monsoon Dengue outbreaks and biological parameters like host and vector incubation periods and vector mortality rate, and its uncertainties are estimated through Monte-Carlo simulations by sampling parameters from their respective probability distributions. Reduction in Female Aedes mosquito density required for an effective prevention of Dengue outbreaks is also calculated. The non stationary pattern of Dengue incidences and its climatic correlates like rainfall temperature is analyzed through Wavelet based methods. We find that the mean time lag between peak of monsoon and Dengue is 9 weeks. Monsoon and Dengue cases are phase locked from 2008 to 2012 in the 16 to maintain consistency make it "16 to 32" 32 weeks band. The duration of post monsoon outbreak has been increasing every year, especially post 2008, even though the intensity and duration of monsoon has been decreasing. Temperature and Dengue incidences show correlations in the same band, but phase lock is not stationary. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. RSR Calculator, a tool for the Calibration / Validation activities

    Directory of Open Access Journals (Sweden)

    C. Durán-Alarcón

    2014-12-01

    Full Text Available The calibration/validation of remote sensing products is a key step that needs to be done before its use in different kinds of environmental applications and to ensure the success of remote sensing missions. In order to compare the measurements from remote sensors on spacecrafts and airborne platforms with in-situ data, it is necessary to perform a spectral comparison process that takes into account the relative spectral response of the sensors. This technical note presents the RSR Calculator, a new tool to estimate, through numerical convolution, the values corresponding to each spectral range of a given sensor. RSR Calculator is useful for several applications ranging from the convolution of spectral signatures of laboratory or field measurements to the parameter estimation for the calibration of sensors, such as extraterrestrial solar irradiance (ESUN or atmospheric transmissivity (τ per spectral band. RSR Calculator is a useful tool that allows the processing of spectral data and that it can be successfully applied in the calibration/validation remote sensing process of the optical domain.

  14. MOESHA: A genetic algorithm for automatic calibration and estimation of parameter uncertainty and sensitivity of hydrologic models

    Science.gov (United States)

    Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...

  15. Multitaper spectral method to estimate the elastic thickness of South China: Implications for intracontinental deformation

    Directory of Open Access Journals (Sweden)

    Yangfan Deng

    2014-03-01

    Full Text Available The effective elastic thickness (Te represents the thickness of the elastic layer or the flexural rigidity of the lithosphere, the equivalent of which can be calculated from the spectral analysis of gravity and topographic data. Studies of Te have profound influence on intracontinental deformation, and coupling of the tectonic blocks. In this paper, we use the multitaper spectral estimation method to calculate the coherence between Bouguer gravity and topography data, and to obtain the Te map of South China. Through the process of correction, we discuss the relationships of Te versus heat flow, and Te versus seismicity. The results show that Te distribution of South China is affected by three factors: the original age, which controls the basic feature; the Mesozoic evolution, which affects the Te distribution; and the neotectonic movement, which shaped the final distribution. The crust age has a positive correlation with the first-order Te distribution; thus the Yangtze Craton has a relatively higher Te (about 50 km whereas the Te in Cathaysia block is only 10–20 km. By analysis and comparison among the tectonic models of South China, the Te distribution can be well explained using the flat-subduction model. As is typical with neotectonics, the region with a higher heat flow is related with a lower Te. The seismicity does not have a clear relationship with Te, but the strong seismicity could cause a low Te. Seismogenic layer (Ts has a similar trend as Te in the craton, whereas in other areas the relationship is complex.

  16. Calibration of the Diameter Distribution Derived from the Area-based Approach with Individual Tree-based Diameter Estimates Using the Airborne Laser Scanning

    Science.gov (United States)

    Xu, Q.; Hou, Z.; Maltamo, M.; Tokola, T.

    2015-12-01

    Diameter distributions of trees are important indicators of current forest stand structure and future dynamics. A new method was proposed in the study to combine the diameter distributions derived from the area-based approach (ABA) and the diameter distribution derived from the individual tree detection (ITD) in order to obtain more accurate forest stand attributes. Since dominant trees can be reliably detected and measured by the Lidar data via the ITD, the focus of the study is to retrieve the suppressed trees (trees that were missed by the ITD) from the ABA. Replacement and histogram matching were respectively employed at the plot level to retrieve the suppressed trees. Cut point was detected from the ITD-derived diameter distribution for each sample plot to distinguish dominant trees from the suppressed trees. The results showed that calibrated diameter distributions were more accurate in terms of error index and the entire growing stock estimates. Compared with the best performer between the ABA and the ITD, calibrated diameter distributions decreased the relative RMSE of the estimated entire growing stock, saw log and pulpwood fractions by 2.81%, 3.05% and 7.73% points respectively. Calibration improved the estimation of pulpwood fraction significantly, resulting in a negligible bias of the estimated entire growing stock.

  17. SPECIES-SPECIFIC FOREST VARIABLE ESTIMATION USING NON-PARAMETRIC MODELING OF MULTI-SPECTRAL PHOTOGRAMMETRIC POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    J. Bohlin

    2012-07-01

    Full Text Available The recent development in software for automatic photogrammetric processing of multispectral aerial imagery, and the growing nation-wide availability of Digital Elevation Model (DEM data, are about to revolutionize data capture for forest management planning in Scandinavia. Using only already available aerial imagery and ALS-assessed DEM data, raster estimates of the forest variables mean tree height, basal area, total stem volume, and species-specific stem volumes were produced and evaluated. The study was conducted at a coniferous hemi-boreal test site in southern Sweden (lat. 58° N, long. 13° E. Digital aerial images from the Zeiss/Intergraph Digital Mapping Camera system were used to produce 3D point-cloud data with spectral information. Metrics were calculated for 696 field plots (10 m radius from point-cloud data and used in k-MSN to estimate forest variables. For these stands, the tree height ranged from 1.4 to 33.0 m (18.1 m mean, stem volume from 0 to 829 m3 ha-1 (249 m3 ha-1 mean and basal area from 0 to 62.2 m2 ha-1 (26.1 m2 ha-1 mean, with mean stand size of 2.8 ha. Estimates made using digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantmäteriet showed RMSEs (in percent of the surveyed stand mean of 7.5% for tree height, 11.4% for basal area, 13.2% for total stem volume, 90.6% for pine stem volume, 26.4 for spruce stem volume, and 72.6% for deciduous stem volume. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.

  18. Uncertainty of long-term CO2 flux estimates due to the choice of the spectral correction method

    Science.gov (United States)

    Ibrom, Andreas; Geißler, Simon; Pilegaard, Kim

    2010-05-01

    The eddy covariance system at the Danish beech forest long-term flux observation site at Sorø has been intensively examined. Here we investigate which systematic and non-systematic effects the choice of the spectral correction method has on long-term net CO2 flux estimates and their components. Ibrom et al. (2007) gave an overview over different ways to correct for low-pass filtering of the atmospheric turbulent signal by a closed path eddy covariance system. They used degraded temperature time series for spectral correction of low-pass filtered signals. In this new study, correction for high-pass filtering was also included, which made it anyway necessary to use model co-spectra. We compared different ways of adapting different kinds of model co-spectra to the wealth of 14 years high frequency raw data. As the trees grew, the distance between the sonic anemometer and the displacement height decreased over time. The study enabled us to compare the two approaches and different variants of them to give recommendations on their use. The analysis showed that model spectra should not be derived from co-spectra between the vertical wind speed (w) and the scalars measured with the closed path system, i.e. CO2 and H20 concentrations, but instead with sonic temperature (T) w cospectra, to avoid low-pass filtering effects on the estimation of the co-spectral peak frequency (fx). This concern was already expressed earlier in the above mentioned study, but here we show the quantitative effects. The wT co-spectra did not show any height effect on fx as it was suggested in generally used parameterizations. A possible reason for this difference is that measurements, like in all forest flux sites, took place in the roughness sub-layer and not in the inertial sub-layer. At the same time the shape of the relationship between fx and the stability parameter ? differed much from that of often used parameterizations (e.g. from Horst, 1997). The shift of fx towards higher frequencies at

  19. First Evaluation of the Climatological Calibration Algorithm in the Real-time TMPA Precipitation Estimates over Two Basins at High and Low Latitudes

    Science.gov (United States)

    Yong, Bin; Ren, Liliang; Hong, Yang; Gourley, Jonathan; Tian, Yudong; Huffman, George J.; Chen, Xi; Wang, Weiguang; Wen, Yixin

    2013-01-01

    The TRMM Multi-satellite Precipitation Analysis (TMPA) system underwent a crucial upgrade in early 2009 to include a climatological calibration algorithm (CCA) to its realtime product 3B42RT, and this algorithm will continue to be applied in the future Global Precipitation Measurement era constellation precipitation products. In this study, efforts are focused on the comparison and validation of the Version 6 3B42RT estimates before and after the climatological calibration is applied. The evaluation is accomplished using independent rain gauge networks located within the high-latitude Laohahe basin and the low-latitude Mishui basin, both in China. The analyses indicate the CCA can effectively reduce the systematic errors over the low-latitude Mishui basin but misrepresent the intensity distribution pattern of medium-high rain rates. This behavior could adversely affect TMPA's hydrological applications, especially for extreme events (e.g., floods and landslides). Results also show that the CCA tends to perform slightly worse, in particular, during summer and winter, over the high-latitude Laohahe basin. This is possibly due to the simplified calibration-processing scheme in the CCA that directly applies the climatological calibrators developed within 40 degrees latitude to the latitude belts of 40 degrees N-50 degrees N. Caution should therefore be exercised when using the calibrated 3B42RT for heavy rainfall-related flood forecasting (or landslide warning) over high-latitude regions, as the employment of the smooth-fill scheme in the CCA bias correction could homogenize the varying rainstorm characteristics. Finally, this study highlights that accurate detection and estimation of snow at high latitudes is still a challenging task for the future development of satellite precipitation retrievals.

  20. Estimation of Signal Coherence Threshold and Concealed Spectral Lines Applied to Detection of Turbofan Engine Combustion Noise

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2010-01-01

    Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise. Copyright 2011 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.

  1. Estimation of the two-dimensional power spectral density of spatial fluctuation in terrestrial gamma-ray dose rate

    International Nuclear Information System (INIS)

    Minato, Susumu

    2000-01-01

    The multiple regression analysis done for 50 sets of data of natural terrestrial gamma-ray dose rates collected from different sites of the world led to an empirical formula for the variance of the data as a function of mean value and area. The mean values and areas studied in this paper range from 10 to 100 (nGy/h) and from 10 -3 to 10 7 (km 2 ), respectively. For an isotropic field of fluctuation, a two-dimensional power spectral density (2D PSD) was derived theoretically from the above mentioned empirical formula in a form of S(k)=0.952 x 10 -3 m 2.02 k -2.36 , where k (cycles/km) and m (nGy/h) are the wave number and the mean, respectively. The validity of the estimated 2D PSD was confirmed by comparing with PSDs obtained by the following two methods. One is the spatial auto-correlation analysis for several sets of randomly distributed 2D data consisting of more than 170 samples taken through ground surveys. The other is the direct 2D Fourier transform for two sets of 100 x 100 data matrix picked up from a dose rate map produced through airborne surveys. (author)

  2. Estimation and Extrapolation of Tree Parameters Using Spectral Correlation between UAV and Pléiades Data

    Directory of Open Access Journals (Sweden)

    Azadeh Abdollahnejad

    2018-02-01

    Full Text Available The latest technological advances in space-borne imagery have significantly enhanced the acquisition of high-quality data. With the availability of very high-resolution satellites, such as Pléiades, it is now possible to estimate tree parameters at the individual level with high fidelity. Despite innovative advantages on high-precision satellites, data acquisition is not yet available to the public at a reasonable cost. Unmanned aerial vehicles (UAVs have the practical advantage of data acquisition at a higher spatial resolution than that of satellites. This study is divided into two main parts: (1 we describe the estimation of basic tree attributes, such as tree height, crown diameter, diameter at breast height (DBH, and stem volume derived from UAV data based on structure from motion (SfM algorithms; and (2 we consider the extrapolation of the UAV data to a larger area, using correlation between satellite and UAV observations as an economically viable approach. Results have shown that UAVs can be used to predict tree characteristics with high accuracy (i.e., crown projection, stem volume, cross-sectional area (CSA, and height. We observed a significant relation between extracted data from UAV and ground data with R2 = 0.71 for stem volume, R2 = 0.87 for height, and R2 = 0.60 for CSA. In addition, our results showed a high linear relation between spectral data from the UAV and the satellite (R2 = 0.94. Overall, the accuracy of the results between UAV and Pléiades was reasonable and showed that the used methods are feasible for extrapolation of extracted data from UAV to larger areas.

  3. Comparison of Landsat 8 OLI and Landsat 7 ETM+ for estimating grassland LAI using model inversion and spectral indices: case study of Mpumalanga, South Africa

    CSIR Research Space (South Africa)

    Masemola, Cecilia

    2016-06-01

    Full Text Available the radiative transfer model (RTM) and spectral indices approaches for estimating LAI on rangeland systems in South Africa. The RTM was inverted using artificial neural network (ANN) and lookup table (LUT) algorithms. The accuracy of the models was higher...

  4. Portable compact multifunction IR calibrator

    International Nuclear Information System (INIS)

    Wyatt, C.L.; Jacobsen, L.; Steed, A.

    1988-01-01

    A compact portable multifunction calibrator designed for future sensor systems is described which enables a linearity calibration for all detectors simultaneously using a near small-area source, a high-resolution mapping of the focal plane with 10 microrad setability and with a blur of less than 100 microrad, system spectral response calibration (radiometer) using a Michelson interferometer source, relative spectral response (spectrometer) using high-temperature external commercial blackbody simulators, and an absolute calibration using an internal low-temperature extended-area source. 5 references

  5. Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African savannahs

    Science.gov (United States)

    Alistair M.S. Smith; Martin J. Wooster; Nick A. Drake; Frederick M. Dipotso; Michael J. Falkowski; Andrew T. Hudak

    2005-01-01

    The remote sensing of fire severity is a noted goal in studies of forest and grassland wildfires. Experiments were conducted to discover and evaluate potential relationships between the characteristics of African savannah fires and post-fire surface spectral reflectance in the visible to shortwave infrared spectral region. Nine instrumented experimental fires were...

  6. ASD FieldSpec Calibration Setup and Techniques

    Science.gov (United States)

    Olive, Dan

    2001-01-01

    This paper describes the Analytical Spectral Devices (ASD) Fieldspec Calibration Setup and Techniques. The topics include: 1) ASD Fieldspec FR Spectroradiometer; 2) Components of Calibration; 3) Equipment list; 4) Spectral Setup; 5) Spectral Calibration; 6) Radiometric and Linearity Setup; 7) Radiometric setup; 8) Datadets Required; 9) Data files; and 10) Field of View Measurement. This paper is in viewgraph form.

  7. Estimating daily time series of streamflow using hydrological model calibrated based on satellite observations of river water surface width: Toward real world applications.

    Science.gov (United States)

    Sun, Wenchao; Ishidaira, Hiroshi; Bastola, Satish; Yu, Jingshan

    2015-05-01

    Lacking observation data for calibration constrains applications of hydrological models to estimate daily time series of streamflow. Recent improvements in remote sensing enable detection of river water-surface width from satellite observations, making possible the tracking of streamflow from space. In this study, a method calibrating hydrological models using river width derived from remote sensing is demonstrated through application to the ungauged Irrawaddy Basin in Myanmar. Generalized likelihood uncertainty estimation (GLUE) is selected as a tool for automatic calibration and uncertainty analysis. Of 50,000 randomly generated parameter sets, 997 are identified as behavioral, based on comparing model simulation with satellite observations. The uncertainty band of streamflow simulation can span most of 10-year average monthly observed streamflow for moderate and high flow conditions. Nash-Sutcliffe efficiency is 95.7% for the simulated streamflow at the 50% quantile. These results indicate that application to the target basin is generally successful. Beyond evaluating the method in a basin lacking streamflow data, difficulties and possible solutions for applications in the real world are addressed to promote future use of the proposed method in more ungauged basins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Method for estimation of the spectral distribution that influence electric power of PV module; Taiyo denchi shutsuryoku ni eikyo wo ataeru bunko nissha bunpu no suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamagami, Y.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    A method was proposed for estimating the spectral distribution using air mass, precipitable water, and clear indexes which are generally obtainable, and a comparative study was made between the spectral distribution obtained by this method and the measured data using output power of PV modules, etc. as indexes. When solar light comes into the atmosphere, it dissipates receiving scattering/absorption by various gases and aerosols. Direct light component and scattered light component which arrive at the earth surface become functions of air mass and precipitable water. The wavelength distribution of scattered light in cloudy sky is not dependent upon air mass, but affected strongly by absorption band by steam of clouds. By relational equations considered of these, output power and short-circuit current of PV modules are obtained to make a comparison with the measured data. As a result, it was found that this method estimated the spectral distribution with accuracy. Further, seasonal changes in the spectral distribution were well reproduced. The simulation of the module output in Sapporo and Okinawa brought a result that the output in Okinawa is 1.93% larger than in Okinawa. 5 refs., 5 figs., 6 tabs.

  9. Calibration of the Ångström-Prescott coefficients (a, b) under different time scales and their impacts in estimating global solar radiation in the Yellow River basin

    DEFF Research Database (Denmark)

    Liu, Xiaoyling; Mei, Xurong; Li, Yuzhong

    2009-01-01

    is the calibration of the locally specific coefficients. Although the coefficients have been extensively studied and calibrated in many places over the world, their relations with time scale are much less investigated. This paper addressed the variation in these coefficients caused by time scale and how...... location. However, the large effect of time scales on a and b produced no significant impact on the estimation accuracy of Rs because of the conservative response of the sum a + b to time scale. In this sense, the coefficients calibrated at daily scale are interchangeable with those calibrated at monthly...

  10. Estimation of organic carbon deposition into forest ecosystems by determination of the spectral absorption of rainwater in range of ultraviolet radiation (SAC254)

    International Nuclear Information System (INIS)

    Bartels, U.

    1988-01-01

    Organic compounds are mostly neglected within deposition measurement programs because their determination is expensive and complicated. A very simple and rapid estimation of total organic carbon (TOC) is possible by determination of the spectral absorption coefficient in the range of ultraviolet radiation at 254 nm wave-length (SAC 254 ): TOC (mg/1) = 0,5 SAC 254 (m −1 ) - 0,15 (author) [de

  11. A reweighted ℓ1-minimization based compressed sensing for the spectral estimation of heart rate variability using the unevenly sampled data.

    Directory of Open Access Journals (Sweden)

    Szi-Wen Chen

    Full Text Available In this paper, a reweighted ℓ1-minimization based Compressed Sensing (CS algorithm incorporating the Integral Pulse Frequency Modulation (IPFM model for spectral estimation of HRV is introduced. Knowing as a novel sensing/sampling paradigm, the theory of CS asserts certain signals that are considered sparse or compressible can be possibly reconstructed from substantially fewer measurements than those required by traditional methods. Our study aims to employ a novel reweighted ℓ1-minimization CS method for deriving the spectrum of the modulating signal of IPFM model from incomplete RR measurements for HRV assessments. To evaluate the performance of HRV spectral estimation, a quantitative measure, referred to as the Percent Error Power (PEP that measures the percentage of difference between the true spectrum and the spectrum derived from the incomplete RR dataset, was used. We studied the performance of spectral reconstruction from incomplete simulated and real HRV signals by experimentally truncating a number of RR data accordingly in the top portion, in the bottom portion, and in a random order from the original RR column vector. As a result, for up to 20% data truncation/loss the proposed reweighted ℓ1-minimization CS method produced, on average, 2.34%, 2.27%, and 4.55% PEP in the top, bottom, and random data-truncation cases, respectively, on Autoregressive (AR model derived simulated HRV signals. Similarly, for up to 20% data loss the proposed method produced 5.15%, 4.33%, and 0.39% PEP in the top, bottom, and random data-truncation cases, respectively, on a real HRV database drawn from PhysioNet. Moreover, results generated by a number of intensive numerical experiments all indicated that the reweighted ℓ1-minimization CS method always achieved the most accurate and high-fidelity HRV spectral estimates in every aspect, compared with the ℓ1-minimization based method and Lomb's method used for estimating the spectrum of HRV from

  12. Emissivity compensated spectral pyrometry—algorithm and sensitivity analysis

    International Nuclear Information System (INIS)

    Hagqvist, Petter; Sikström, Fredrik; Christiansson, Anna-Karin; Lennartson, Bengt

    2014-01-01

    In order to solve the problem of non-contact temperature measurements on an object with varying emissivity, a new method is herein described and evaluated. The method uses spectral radiance measurements and converts them to temperature readings. It proves to be resilient towards changes in spectral emissivity and tolerates noisy spectral measurements. It is based on an assumption of smooth changes in emissivity and uses historical values of spectral emissivity and temperature for estimating current spectral emissivity. The algorithm, its constituent steps and accompanying parameters are described and discussed. A thorough sensitivity analysis of the method is carried out through simulations. No rigorous instrument calibration is needed for the presented method and it is therefore industrially tractable. (paper)

  13. Wavelength calibration of imaging spectrometer using atmospheric absorption features

    Science.gov (United States)

    Zhou, Jiankang; Chen, Yuheng; Chen, Xinhua; Ji, Yiqun; Shen, Weimin

    2012-11-01

    Imaging spectrometer is a promising remote sensing instrument widely used in many filed, such as hazard forecasting, environmental monitoring and so on. The reliability of the spectral data is the determination to the scientific communities. The wavelength position at the focal plane of the imaging spectrometer will change as the pressure and temperature vary, or the mechanical vibration. It is difficult for the onboard calibration instrument itself to keep the spectrum reference accuracy and it also occupies weight and the volume of the remote sensing platform. Because the spectral images suffer from the atmospheric effects, the carbon oxide, water vapor, oxygen and solar Fraunhofer line, the onboard wavelength calibration can be processed by the spectral images themselves. In this paper, wavelength calibration is based on the modeled and measured atmospheric absorption spectra. The modeled spectra constructed by the atmospheric radiative transfer code. The spectral angle is used to determine the best spectral similarity between the modeled spectra and measured spectra and estimates the wavelength position. The smile shape can be obtained when the matching process across all columns of the data. The present method is successful applied on the Hyperion data. The value of the wavelength shift is obtained by shape matching of oxygen absorption feature and the characteristics are comparable to that of the prelaunch measurements.

  14. An investigation into the long-term impact of the calibration of software estimation models using raw historical data

    OpenAIRE

    Shadle, Daryl Allen.

    1994-01-01

    Approved for public release, distribution unlimited The benefit of software cost estimation is universally recognized as one of the cornerstones of effective software project management and control. Despite the advances of computer-based estimation tools, their accuracy remains largely inadequate, and their utility among software development practitioners is limited. Consequently, the optimal estimation of software cost remains an elusive goal of most project managers. Central to this issu...

  15. SCIAMACHY Level 1 data: calibration concept and in-flight calibration

    Science.gov (United States)

    Lichtenberg, G.; Kleipool, Q.; Krijger, J. M.; van Soest, G.; van Hees, R.; Tilstra, L. G.; Acarreta, J. R.; Aben, I.; Ahlers, B.; Bovensmann, H.; Chance, K.; Gloudemans, A. M. S.; Hoogeveen, R. W. M.; Jongma, R. T. N.; Noël, S.; Piters, A.; Schrijver, H.; Schrijvers, C.; Sioris, C. E.; Skupin, J.; Slijkhuis, S.; Stammes, P.; Wuttke, M.

    2006-11-01

    The calibration of SCIAMACHY was thoroughly checked since the instrument was launched on-board ENVISAT in February 2002. While SCIAMACHY's functional performance is excellent since launch, a number of technical difficulties have appeared, that required adjustments to the calibration. The problems can be separated into three types: (1) Those caused by the instrument and/or platform environment. Among these are the high water content in the satellite structure and/or MLI layer. This results in the deposition of ice on the detectors in channels 7 and 8 which seriously affects the retrievals in the IR, mostly because of the continuous change of the slit function caused by scattering of the light through the ice layer. Additionally a light leak in channel 7 severely hampers any retrieval from this channel. (2) Problems due to errors in the on-ground calibration and/or data processing affecting for example the radiometric calibration. A new approach based on a mixture of on-ground and in-flight data is shortly described here. (3) Problems caused by principal limitations of the calibration concept, e.g. the possible appearance of spectral structures after the polarisation correction due to unavoidable errors in the determination of atmospheric polarisation. In this paper we give a complete overview of the calibration and problems that still have to be solved. We will also give an indication of the effect of calibration problems on retrievals where possible. Since the operational processing chain is currently being updated and no newly processed data are available at this point in time, for some calibration issues only a rough estimate of the effect on Level 2 products can be given. However, it is the intention of this paper to serve as a future reference for detailed studies into specific calibration issues.

  16. Calibration of a turbidity meter for making estimates of total suspended solids concentrations and beam attenuation coefficients in field experiments

    Science.gov (United States)

    Usry, J. W.; Whitlock, C. H.

    1981-01-01

    Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.

  17. MCNPx computational estimation of the calibration factor of an In vivo counter for {sup 18}F-FDG activity incorporated in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Melo M, B.; Ferreira F, T. C.; Duarte V, K.; Da Silva, T. A. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Ribeiro de C, T. P., E-mail: bmm@cdtn.br [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Programa de Pos-graduacao em Ciencias e Tecnicas, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    In previous work, the computational modeling of the Centro de Desenvolvimento da Tecnologia Nuclear in vivo counter for estimation of {sup 18}F-FGD activity incorporated into workers brains was validated. Here, we studied the calibration factor (Cf) for seven distinct voxelized computational phantoms including the reference models from ICRP 110. Computational simulations were also carried out to study the effect of increasing the distance between the detector and the brain up to 100 cm. The degree of correlation among geometric and anatomical parameters of the computational models and the calibration factors were also evaluated. The morphological diversity of the computational phantoms resulted Cf variations greater than 38% (39.8 ± 0.2 to 64.6 ± 0.5 Bq.CPS{sup -1}). Despite the variations, Cf has been reduced by the increasing distance, although the remarkable decrease in counting efficiency makes prohibitive this geometry. These findings suggest that head anatomic parameters can be used to improve Cf estimation. (Author)

  18. MCNPx computational estimation of the calibration factor of an In vivo counter for "1"8F-FDG activity incorporated in the brain

    International Nuclear Information System (INIS)

    Melo M, B.; Ferreira F, T. C.; Duarte V, K.; Da Silva, T. A.; Ribeiro de C, T. P.

    2016-10-01

    In previous work, the computational modeling of the Centro de Desenvolvimento da Tecnologia Nuclear in vivo counter for estimation of "1"8F-FGD activity incorporated into workers brains was validated. Here, we studied the calibration factor (Cf) for seven distinct voxelized computational phantoms including the reference models from ICRP 110. Computational simulations were also carried out to study the effect of increasing the distance between the detector and the brain up to 100 cm. The degree of correlation among geometric and anatomical parameters of the computational models and the calibration factors were also evaluated. The morphological diversity of the computational phantoms resulted Cf variations greater than 38% (39.8 ± 0.2 to 64.6 ± 0.5 Bq.CPS"-"1). Despite the variations, Cf has been reduced by the increasing distance, although the remarkable decrease in counting efficiency makes prohibitive this geometry. These findings suggest that head anatomic parameters can be used to improve Cf estimation. (Author)

  19. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    Science.gov (United States)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  20. Regionalisation of a distributed method for flood quantiles estimation: Revaluation of local calibration hypothesis to enhance the spatial structure of the optimised parameter

    Science.gov (United States)

    Odry, Jean; Arnaud, Patrick

    2016-04-01

    The SHYREG method (Aubert et al., 2014) associates a stochastic rainfall generator and a rainfall-runoff model to produce rainfall and flood quantiles on a 1 km2 mesh covering the whole French territory. The rainfall generator is based on the description of rainy events by descriptive variables following probability distributions and is characterised by a high stability. This stochastic generator is fully regionalised, and the rainfall-runoff transformation is calibrated with a single parameter. Thanks to the stability of the approach, calibration can be performed against only flood quantiles associated with observated frequencies which can be extracted from relatively short time series. The aggregation of SHYREG flood quantiles to the catchment scale is performed using an areal reduction factor technique unique on the whole territory. Past studies demonstrated the accuracy of SHYREG flood quantiles estimation for catchments where flow data are available (Arnaud et al., 2015). Nevertheless, the parameter of the rainfall-runoff model is independently calibrated for each target catchment. As a consequence, this parameter plays a corrective role and compensates approximations and modelling errors which makes difficult to identify its proper spatial pattern. It is an inherent objective of the SHYREG approach to be completely regionalised in order to provide a complete and accurate flood quantiles database throughout France. Consequently, it appears necessary to identify the model configuration in which the calibrated parameter could be regionalised with acceptable performances. The revaluation of some of the method hypothesis is a necessary step before the regionalisation. Especially the inclusion or the modification of the spatial variability of imposed parameters (like production and transfer reservoir size, base flow addition and quantiles aggregation function) should lead to more realistic values of the only calibrated parameter. The objective of the work presented

  1. Calibration of Flick standards

    International Nuclear Information System (INIS)

    Thalmann, Ruedi; Spiller, Jürg; Küng, Alain; Jusko, Otto

    2012-01-01

    Flick standards or magnification standards are widely used for an efficient and functional calibration of the sensitivity of form measuring instruments. The results of a recent measurement comparison have shown to be partially unsatisfactory and revealed problems related to the calibration of these standards. In this paper the influence factors for the calibration of Flick standards using roundness measurement instruments are discussed in detail, in particular the bandwidth of the measurement chain, residual form errors of the device under test, profile distortions due to the diameter of the probing element and questions related to the definition of the measurand. The different contributions are estimated using simulations and are experimentally verified. Also alternative methods to calibrate Flick standards are investigated. Finally the practical limitations of Flick standard calibration are shown and the usability of Flick standards both to calibrate the sensitivity of roundness instruments and to check the filter function of such instruments is analysed. (paper)

  2. Dual-energy digital mammography: Calibration and inverse-mapping techniques to estimate calcification thickness and glandular-tissue ratio

    International Nuclear Information System (INIS)

    Kappadath, S. Cheenu; Shaw, Chris C.

    2003-01-01

    Breast cancer may manifest as microcalcifications in x-ray mammography. Small microcalcifications, essential to the early detection of breast cancer, are often obscured by overlapping tissue structures. Dual-energy imaging, where separate low- and high-energy images are acquired and synthesized to cancel the tissue structures, may improve the ability to detect and visualize microcalcifications. Transmission measurements at two different kVp values were made on breast-tissue-equivalent materials under narrow-beam geometry using an indirect flat-panel mammographic imager. The imaging scenario consisted of variable aluminum thickness (to simulate calcifications) and variable glandular ratio (defined as the ratio of the glandular-tissue thickness to the total tissue thickness) for a fixed total tissue thickness--the clinical situation of microcalcification imaging with varying tissue composition under breast compression. The coefficients of the inverse-mapping functions used to determine material composition from dual-energy measurements were calculated by a least-squares analysis. The linear function poorly modeled both the aluminum thickness and the glandular ratio. The inverse-mapping functions were found to vary as analytic functions of second (conic) or third (cubic) order. By comparing the model predictions with the calibration values, the root-mean-square residuals for both the cubic and the conic functions were ∼50 μm for the aluminum thickness and ∼0.05 for the glandular ratio

  3. Estimation of the soil heat flux/net radiation ratio based on spectral vegetation indexes in high-latitude Arctic areas

    International Nuclear Information System (INIS)

    Jacobsen, A.; Hansen, B.U.

    1999-01-01

    The vegetation communities in the Arctic environment are very sensitive to even minor climatic variations and therefore the estimation of surface energy fluxes from high-latitude vegetated areas is an important subject to be pursued. This study was carried out in July-August and used micro meteorological data, spectral reflectance signatures, and vegetation biomass to establish the relation between the soil heat flux/net radiation (G / Rn) ratio and spectral vegetation indices (SVIs). Continuous measurements of soil temperature and soil heat flux were used to calculate the surface ground heat flux by use of conventional methods, and the relation to surface temperature was investigated. Twenty-seven locations were established, and six samples per location, including the measurement of the surface temperature and net radiation to establish the G/Rn ratio and simultaneous spectral reflectance signatures and wet biomass estimates, were registered. To obtain regional reliability, the locations were chosen in order to represent the different Arctic vegetation communities in the study area; ranging from dry tundra vegetation communities (fell fields and dry dwarf scrubs) to moist/wet tundra vegetation communities (snowbeds, grasslands and fens). Spectral vegetation indices, including the simple ratio vegetation index (RVI) and the normalized difference vegetation index (NDVI), were calculated. A comparison of SVIs to biomass proved that RVI gave the best linear expression, and NDVI the best exponential expression. A comparison of SVIs and the surface energy flux ratio G / Rn proved that NDVI gave the best linear expression. SPOT HRV images from July 1989 and 1992 were used to map NDVI and G / Rn at a regional scale. (author)

  4. Major Mergers in CANDELS up to z=3: Calibrating the Close-Pair Method Using Semi-Analytic Models and Baryonic Mass Ratio Estimates

    Science.gov (United States)

    Mantha, Kameswara; McIntosh, Daniel H.; Conselice, Christopher; Cook, Joshua S.; Croton, Darren J.; Dekel, Avishai; Ferguson, Henry C.; Hathi, Nimish; Kodra, Dritan; Koo, David C.; Lotz, Jennifer M.; Newman, Jeffrey A.; Popping, Gergo; Rafelski, Marc; Rodriguez-Gomez, Vicente; Simmons, Brooke D.; Somerville, Rachel; Straughn, Amber N.; Snyder, Gregory; Wuyts, Stijn; Yu, Lu; Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) Team

    2018-01-01

    Cosmological simulations predict that the rate of merging between similar-mass massive galaxies should increase towards early cosmic-time. We study the incidence of major (stellar mass ratio SMR 10.3 galaxies spanning 01.5 in strong disagreement with theoretical merger rate predictions. On the other hand, if we compare to a simulation-tuned, evolving timescale prescription from Snyder et al., 2017, we find that the merger rate evolution agrees with theory out to z=3. These results highlight the need for robust calibrations on the complex and presumably redshift-dependent pair-to-merger-rate conversion factors to improve constraints of the empirical merger history. To address this, we use a unique compilation of mock datasets produced by three independent state-of-the-art Semi-Analytic Models (SAMs). We present preliminary calibrations of the close-pair observability timescale and outlier fraction as a function of redshift, stellar-mass, mass-ratio, and local over-density. Furthermore, to verify the hypothesis by previous empirical studies that SMR-selection of major pairs may be biased, we present a new analysis of the baryonic (gas+stars) mass ratios of a subset of close pairs in our sample. For the first time, our preliminary analysis highlights that a noticeable fraction of SMR-selected minor pairs (SMR>4) have major baryonic-mass ratios (BMR<4), which indicate that merger rates based on SMR selection may be under-estimated.

  5. Partial least squares methods for spectrally estimating lunar soil FeO abundance: A stratified approach to revealing nonlinear effect and qualitative interpretation

    Science.gov (United States)

    Li, Lin

    2008-12-01

    Partial least squares (PLS) regressions were applied to lunar highland and mare soil data characterized by the Lunar Soil Characterization Consortium (LSCC) for spectral estimation of the abundance of lunar soil chemical constituents FeO and Al2O3. The LSCC data set was split into a number of subsets including the total highland, Apollo 16, Apollo 14, and total mare soils, and then PLS was applied to each to investigate the effect of nonlinearity on the performance of the PLS method. The weight-loading vectors resulting from PLS were analyzed to identify mineral species responsible for spectral estimation of the soil chemicals. The results from PLS modeling indicate that the PLS performance depends on the correlation of constituents of interest to their major mineral carriers, and the Apollo 16 soils are responsible for the large errors of FeO and Al2O3 estimates when the soils were modeled along with other types of soils. These large errors are primarily attributed to the degraded correlation FeO to pyroxene for the relatively mature Apollo 16 soils as a result of space weathering and secondary to the interference of olivine. PLS consistently yields very accurate fits to the two soil chemicals when applied to mare soils. Although Al2O3 has no spectrally diagnostic characteristics, this chemical can be predicted for all subset data by PLS modeling at high accuracies because of its correlation to FeO. This correlation is reflected in the symmetry of the PLS weight-loading vectors for FeO and Al2O3, which prove to be very useful for qualitative interpretation of the PLS results. However, this qualitative interpretation of PLS modeling cannot be achieved using principal component regression loading vectors.

  6. Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the amphi-Pacific Muehlenbeckia.

    Directory of Open Access Journals (Sweden)

    Tanja M Schuster

    Full Text Available The buckwheat family Polygonaceae is a diverse group of plants and is a good model for investigating biogeography, breeding systems, coevolution with symbionts such as ants and fungi, functional trait evolution, hybridization, invasiveness, morphological plasticity, pollen morphology and wood anatomy. The main goal of this study was to obtain age estimates for Polygonaceae by calibrating a Bayesian phylogenetic analysis, using a relaxed molecular clock with fossil data. Based on the age estimates, we also develop hypotheses about the historical biogeography of the Southern Hemisphere group Muehlenbeckia. We are interested in addressing whether vicariance or dispersal could account for the diversification of Muehlenbeckia, which has a "Gondwanan" distribution. Eighty-one species of Polygonaceae were analysed with MrBayes to infer species relationships. One nuclear (nrITS and three chloroplast markers (the trnL-trnF spacer region, matK and ndhF genes were used. The molecular data were also analysed with Beast to estimate divergence times. Seven calibration points including fossil pollen and a leaf fossil of Muehlenbeckia were used to infer node ages. Results of the Beast analyses indicate an age of 110.9 (exponential/lognormal priors/118.7 (uniform priors million years (Myr with an uncertainty interval of (90.7-125.0 Myr for the stem age of Polygonaceae. This age is older than previously thought (Maastrichtian, approximately 65.5-70.6 Myr. The estimated divergence time for Muehlenbeckia is 41.0/41.6 (39.6-47.8 Myr and its crown clade is 20.5/22.3 (14.2-33.5 Myr old. Because the breakup of Gondwana occurred from 95-30 Myr ago, diversification of Muehlenbeckia is best explained by oceanic long-distance and maybe stepping-stone dispersal rather than vicariance. This study is the first to give age estimates for clades of Polygonaceae and functions as a jumping-off point for future studies on the historical biogeography of the family.

  7. Proposal of a calibration protocol of gamma chambers for estimation of the radionuclides incorporation in emergency situations

    International Nuclear Information System (INIS)

    Dantas, B.M.; Lucena, E.; Dantas, A.L.A.; Araujo, F.; Melo, D.; Teran, M.; Paolino, A.; Hermida, J.C.; Rojo, A.; Puerta, J.A.; Morales, J.; Lopez B, G.M.; Alfaro, M.; Ruiz, M.A.; Videla, R.; Pinones, O.; Gonzalez, S.; Navarro, T.; Cruz S, R.

    2006-01-01

    In the last years in several countries has come increasing the concern with the possibility of accidents related to the transport and manipulation of open sources used in nuclear medicine. This carried out to the search of alternative methods for the monitoring of workers and individuals of the public exposed to the radionuclides incorporation like 131 I, 201 Tl, 153 Sm among others. One of the options to assist the demand for monitoring of the radionuclides incorporation is the use of gamma chambers that are medical diagnostic equipment available in the own centers of nuclear medicine. The gamma chambers are used to obtain images of patient to which are administered a radionuclide of well-known activity with diagnostic purposes. These equipment have among its components elements that spectrometric systems like those used in the evaluation of the internal incorporation for direct measurements, reason why besides its use for diagnosis by image they can be gauged with anthropomorphic simulators and also with punctual sources for the quantification of the radionuclides activity, distributed homogeneously in the human body or located in specific organs. This work presents the development of a calibration protocol of gamma chambers for the in vivo determination of radionuclides and it proposes the implementation of the protocol in centers of nuclear medicine of the 9 countries participants of the project OAS-ARCAL-RLA/9/049-LXXVIII - Harmonization of procedures of internal dosimetry (Argentina, Brazil, Colombia, Cuba, Chile, Mexico, Peru, Uruguay and Spain). The protocol is the base to establish an integrated net to attend in the response to emergencies using nuclear medicine centers of public hospitals of the region. The proposal is an additional alternative for the monitoring of people in emergency situations where it is possible and feasible the use of the gamma chambers. This would avoid the person's transport with incorporation suspicion for a conventional whole

  8. Experimental Validation of an Efficient Fan-Beam Calibration Procedure for k-Nearest Neighbor Position Estimation in Monolithic Scintillator Detectors

    Science.gov (United States)

    Borghi, Giacomo; Tabacchini, Valerio; Seifert, Stefan; Schaart, Dennis R.

    2015-02-01

    Monolithic scintillator detectors can achieve excellent spatial resolution and coincidence resolving time. However, their practical use for positron emission tomography (PET) and other applications in the medical imaging field is still limited due to drawbacks of the different methods used to estimate the position of interaction. Common statistical methods for example require the collection of an extensive dataset of reference events with a narrow pencil beam aimed at a fine grid of reference positions. Such procedures are time consuming and not straightforwardly implemented in systems composed of many detectors. Here, we experimentally demonstrate for the first time a new calibration procedure for k-nearest neighbor ( k-NN) position estimation that utilizes reference data acquired with a fan beam. The procedure is tested on two detectors consisting of 16 mm ×16 mm ×10 mm and 16 mm ×16 mm ×20 mm monolithic, Ca-codoped LSO:Ce crystals and digital photon counter (DPC) arrays. For both detectors, the spatial resolution and the bias obtained with the new method are found to be practically the same as those obtained with the previously used method based on pencil-beam irradiation, while the calibration time is reduced by a factor of 20. Specifically, a FWHM of 1.1 mm and a FWTM of 2.7 mm were obtained using the fan-beam method with the 10 mm crystal, whereas a FWHM of 1.5 mm and a FWTM of 6 mm were achieved with the 20 mm crystal. Using a fan beam made with a 4.5 MBq 22Na point-source and a tungsten slit collimator with 0.5 mm aperture, the total measurement time needed to acquire the reference dataset was 3 hours for the thinner crystal and 2 hours for the thicker one.

  9. Automatic Estimation of Volumetric Breast Density Using Artificial Neural Network-Based Calibration of Full-Field Digital Mammography: Feasibility on Japanese Women With and Without Breast Cancer.

    Science.gov (United States)

    Wang, Jeff; Kato, Fumi; Yamashita, Hiroko; Baba, Motoi; Cui, Yi; Li, Ruijiang; Oyama-Manabe, Noriko; Shirato, Hiroki

    2017-04-01

    Breast cancer is the most common invasive cancer among women and its incidence is increasing. Risk assessment is valuable and recent methods are incorporating novel biomarkers such as mammographic density. Artificial neural networks (ANN) are adaptive algorithms capable of performing pattern-to-pattern learning and are well suited for medical applications. They are potentially useful for calibrating full-field digital mammography (FFDM) for quantitative analysis. This study uses ANN modeling to estimate volumetric breast density (VBD) from FFDM on Japanese women with and without breast cancer. ANN calibration of VBD was performed using phantom data for one FFDM system. Mammograms of 46 Japanese women diagnosed with invasive carcinoma and 53 with negative findings were analyzed using ANN models learned. ANN-estimated VBD was validated against phantom data, compared intra-patient, with qualitative composition scoring, with MRI VBD, and inter-patient with classical risk factors of breast cancer as well as cancer status. Phantom validations reached an R 2 of 0.993. Intra-patient validations ranged from R 2 of 0.789 with VBD to 0.908 with breast volume. ANN VBD agreed well with BI-RADS scoring and MRI VBD with R 2 ranging from 0.665 with VBD to 0.852 with breast volume. VBD was significantly higher in women with cancer. Associations with age, BMI, menopause, and cancer status previously reported were also confirmed. ANN modeling appears to produce reasonable measures of mammographic density validated with phantoms, with existing measures of breast density, and with classical biomarkers of breast cancer. FFDM VBD is significantly higher in Japanese women with cancer.

  10. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  11. Estimation of atmospheric columnar organic matter (OM) mass concentration from remote sensing measurements of aerosol spectral refractive indices

    Science.gov (United States)

    Zhang, Ying; Li, Zhengqiang; Sun, Yele; Lv, Yang; Xie, Yisong

    2018-04-01

    Aerosols have adverse effects on human health and air quality, changing Earth's energy balance and lead to climate change. The components of aerosol are important because of the different spectral characteristics. Based on the low hygroscopic and high scattering properties of organic matter (OM) in fine modal atmospheric aerosols, we develop an inversion algorithm using remote sensing to obtain aerosol components including black carbon (BC), organic matter (OM), ammonium nitrate-like (AN), dust-like (DU) components and aerosol water content (AW). In the algorithm, the microphysical characteristics (i.e. volume distribution and complex refractive index) of particulates are preliminarily separated to fine and coarse modes, and then aerosol components are retrieved using bimodal parameters. We execute the algorithm using remote sensing measurements of sun-sky radiometer at AERONET site (Beijing RADI) in a period from October of 2014 to January of 2015. The results show a reasonable distribution of aerosol components and a good fit for spectral feature calculations. The mean OM mass concentration in atmospheric column is account for 14.93% of the total and 56.34% of dry and fine-mode aerosol, being a fairly good correlation (R = 0.56) with the in situ observations near the surface layer.

  12. Phase I Forest Area Estimation Using Landsat TM and Iterative Guided Spectral Class Rejection: Assessment of Possible Training Data Protocols

    Science.gov (United States)

    John A. Scrivani; Randolph H. Wynne; Christine E. Blinn; Rebecca F. Musy

    2001-01-01

    Two methods of training data collection for automated image classification were tested in Virginia as part of a larger effort to develop an objective, repeatable, and low-cost method to provide forest area classification from satellite imagery. The derived forest area estimates were compared to estimates derived from a traditional photo-interpreted, double sample. One...

  13. Estimates of soil erosion and deposition of cultivated soil of Nakhla watershed, Morocco, using 137Cs technique and calibration models

    International Nuclear Information System (INIS)

    Bouhlassa, S.; Moukhchane, M.; Aiachi, A.

    2000-01-01

    Despite the effective threat of erosion, for soil preservation and productivity in Morocco, there is still only limited information on rates of soil loss involved. This study is aimed to establish long-term erosion rates on cultivated land in the Nakhla watershed located in the north of the country, using 137 Cs technique. Two sampling strategies were adopted. The first is aimed at establishing areal estimates of erosion, whereas the second, based on a transect approach, intends to determine point erosion. Twenty-one cultivated sites and seven undisturbed sites apparently not affected by erosion or deposition were sampled to 35 cm depth. Nine cores were collected along the transect of 149 m length. The assessment of erosion rates with models varying in complexity from the simple Proportional Model to more complex Mass Balance Models which attempts to include the processes controlling the redistribution of 137 Cs in soil, enables us to demonstrate the significance of soil erosion problem on cultivated land. Erosion rates rises up to 50 t ha -1 yr -1 . The 137 Cs derived erosion rates provide a reliable representation of water erosion pattern in the area, and indicate the importance of tillage process on the redistribution of 137 Cs in soil. For aggrading sites a Constant Rate Supply (CRS) Model had been adapted and introduced to estimate easily the depositional rate. (author) [fr

  14. Calibration factor or calibration coefficient?

    International Nuclear Information System (INIS)

    Meghzifene, A.; Shortt, K.R.

    2002-01-01

    Full text: The IAEA/WHO network of SSDLs was set up in order to establish links between SSDL members and the international measurement system. At the end of 2001, there were 73 network members in 63 Member States. The SSDL network members provide calibration services to end-users at the national or regional level. The results of the calibrations are summarized in a document called calibration report or calibration certificate. The IAEA has been using the term calibration certificate and will continue using the same terminology. The most important information in a calibration certificate is a list of calibration factors and their related uncertainties that apply to the calibrated instrument for the well-defined irradiation and ambient conditions. The IAEA has recently decided to change the term calibration factor to calibration coefficient, to be fully in line with ISO [ISO 31-0], which recommends the use of the term coefficient when it links two quantities A and B (equation 1) that have different dimensions. The term factor should only be used for k when it is used to link the terms A and B that have the same dimensions A=k.B. However, in a typical calibration, an ion chamber is calibrated in terms of a physical quantity such as air kerma, dose to water, ambient dose equivalent, etc. If the chamber is calibrated together with its electrometer, then the calibration refers to the physical quantity to be measured per electrometer unit reading. In this case, the terms referred have different dimensions. The adoption by the Agency of the term coefficient to express the results of calibrations is consistent with the 'International vocabulary of basic and general terms in metrology' prepared jointly by the BIPM, IEC, ISO, OIML and other organizations. The BIPM has changed from factor to coefficient. The authors believe that this is more than just a matter of semantics and recommend that the SSDL network members adopt this change in terminology. (author)

  15. THE DETECTION RATE OF EARLY UV EMISSION FROM SUPERNOVAE: A DEDICATED GALEX/PTF SURVEY AND CALIBRATED THEORETICAL ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer [Department of Particle Physics and Astrophysics, Faculty of Physics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kulkarni, Shrinivas R.; Kasliwal, Mansi M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Ben-Ami, Sagi [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Ctr. for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chelouche, Doron; Rafter, Stephen [Physics Department, Faculty of Natural Sciences, University of Haifa, 31905 Haifa (Israel); Behar, Ehud; Laor, Ari [Physics Department, Technion Israel Institute of Technology, 32000 Haifa (Israel); Poznanski, Dovi; Nakar, Ehud; Maoz, Dan [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Trakhtenbrot, Benny [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27 Zurich 8093 (Switzerland); Neill, James D.; Barlow, Thomas A.; Martin, Christofer D., E-mail: noam.ganot@gmail.com [California Institute of Technology, 1200 East California Boulevard, MC 278-17, Pasadena, CA 91125 (United States); Collaboration: ULTRASAT Science Team; WTTH consortium; GALEX Science Team; Palomar Transient Factory; and others

    2016-03-20

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R{sub ⊙}, explosion energies of 10{sup 51} erg, and ejecta masses of 10 M{sub ⊙}. Exploding blue supergiants and Wolf–Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (∼0.5 SN per deg{sup 2}), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  16. On chromatic and geometrical calibration

    DEFF Research Database (Denmark)

    Folm-Hansen, Jørgen

    1999-01-01

    The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the correct interpolation method is described. For the chromatic issues of calibration we present the acquisition of colour and multi-spectral images, the chromatic aberrations and the various lens/camera based non-uniformities of the illumination of the image plane. It is described how the monochromatic...... to design calibration targets for both geometrical and chromatic calibration are described. We present some possible systematical errors on the detection of the objects in the calibration targets, if viewed in a non orthogonal angle, if the intensities are uneven or if the image blurring is uneven. Finally...

  17. Estimation of Rayleigh-wave spectral ratio from microtremors using a three-component single-station seismograph; Itten sanseibun bido kansoku ni motozuita Rayleigh ha shinpukuhi no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Mizutani, K; Saito, t [Iwate University, Iwate (Japan). Faculty of Engineering

    1997-10-22

    Discussions were given on the possibility of estimating Rayleigh-wave spectral ratio utilizing phase difference between horizontal movements and vertical movements by using a three-component single-station seismograph. The test has selected as an observation point a location in the city of Kushiro where a pulp and paper mill generating microtremors is the focal point, and the underground structure at that point has been estimated by using the vertical array observation method. The observation system has used three components of a velocity type seismograph having a natural period of one second, an amplifier and an analog data recorder. As a result of the discussions, the following matters were made clear: the spectral ratio with a phase difference of 90 degrees agrees with the frequency at a peak trough of the theoretical Rayleigh-wave spectral ratio; the values of the spectral ratio at the phase difference of 90 degrees and the values of the theoretical Rayleigh-wave spectral ratio correspond well excepting in frequency bands of the peak trough; and these results suggest that the Rayleigh-wave spectral ratio may be estimated by utilizing the phase difference between horizontal movements and vertical movements. Estimation of the underground structure by using the inverse analysis of this Rayleigh-wave spectral ratio is expected in the future. 6 refs., 5 figs., tab.

  18. The use of double laser pulses for the atomic-emission spectral estimation of uranium content in biological samples

    International Nuclear Information System (INIS)

    Patapovich, M.P.; Umreiko, D.S.; Zajogin, A.P.; Buloichik, J.I.

    2012-01-01

    This paper is aimed at the development of the techniques for estimation of the uranium content in biological objects (hair) using the atomic-emission laser analysis with a sufficient accuracy and high processing rate. (authors)

  19. Ibis ground calibration

    International Nuclear Information System (INIS)

    Bird, A.J.; Barlow, E.J.; Tikkanen, T.; Bazzano, A.; Del Santo, M.; Ubertini, P.; Blondel, C.; Laurent, P.; Lebrun, F.; Di Cocco, G.; Malaguti, E.; Gabriele, M.; La Rosa, G.; Segreto, A.; Quadrini, E.; Volkmer, R.

    2003-01-01

    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system

  20. Comparing Broad-Band and Red Edge-Based Spectral Vegetation Indices to Estimate Nitrogen Concentration of Crops Using Casi Data

    Science.gov (United States)

    Wang, Yanjie; Liao, Qinhong; Yang, Guijun; Feng, Haikuan; Yang, Xiaodong; Yue, Jibo

    2016-06-01

    In recent decades, many spectral vegetation indices (SVIs) have been proposed to estimate the leaf nitrogen concentration (LNC) of crops. However, most of these indices were based on the field hyperspectral reflectance. To test whether they can be used in aerial remote platform effectively, in this work a comparison of the sensitivity between several broad-band and red edge-based SVIs to LNC is investigated over different crop types. By using data from experimental LNC values over 4 different crop types and image data acquired using the Compact Airborne Spectrographic Imager (CASI) sensor, the extensive dataset allowed us to evaluate broad-band and red edge-based SVIs. The result indicated that NDVI performed the best among the selected SVIs while red edge-based SVIs didn't show the potential for estimating the LNC based on the CASI data due to the spectral resolution. In order to search for the optimal SVIs, the band combination algorithm has been used in this work. The best linear correlation against the experimental LNC dataset was obtained by combining the 626.20nm and 569.00nm wavebands. These wavelengths correspond to the maximal chlorophyll absorption and reflection position region, respectively, and are known to be sensitive to the physiological status of the plant. Then this linear relationship was applied to the CASI image for generating an LNC map, which can guide farmers in the accurate application of their N fertilization strategies.

  1. Compact radiometric microwave calibrator

    International Nuclear Information System (INIS)

    Fixsen, D. J.; Wollack, E. J.; Kogut, A.; Limon, M.; Mirel, P.; Singal, J.; Fixsen, S. M.

    2006-01-01

    The calibration methods for the ARCADE II instrument are described and the accuracy estimated. The Steelcast coated aluminum cones which comprise the calibrator have a low reflection while maintaining 94% of the absorber volume within 5 mK of the base temperature (modeled). The calibrator demonstrates an absorber with the active part less than one wavelength thick and only marginally larger than the mouth of the largest horn and yet black (less than -40 dB or 0.01% reflection) over five octaves in frequency

  2. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Carrier nature of speech; modulation spectrum; spectral dynamics ... the relationships between phonetic values of sounds and their short-term spectral envelopes .... the number of free parameters that need to be estimated from training data.

  3. Estimate of Small Stiffness and Damping Ratio in Residual Soil Using Spectral Analysis of Surface Wave Method

    Directory of Open Access Journals (Sweden)

    Bawadi Nor Faizah

    2016-01-01

    Full Text Available Research in the important parameters for modeling the dynamic behavior of soils has led to rapid development of the small strain stiffness and damping ratio for use in the seismic method. It is because, the experimental determination of the damping ratio is problematic, especially for hard soils sample. Many researchers have proved that the surface wave method is a reliable tool to determine shear wave velocity and damping ratio profiles at a site with very small strains level. Surface wave methods based on Rayleigh waves propagation and the resulting attenuation curve can become erroneous when higher modes contribute to the soil’s response. In this study, two approaches has been used to determine the shear strain amplitude and damping ratio of residual soils at small strain level using Spectral Analysis of Surface Wave (SASW method. One is to derive shear strain amplitude from the frequency-response curve and the other is to derive damping ratio from travel-time data. Then, the results are compared to the conventional method.

  4. Using ground-based spectral reflectance sensors and photography to estimate shoot N concentration and dry matter of potato

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Jabloun, Mohamed; Plauborg, Finn

    2018-01-01

    Two years experiments were set up to evaluate the performance of different vegetation indices (VI) to estimate shoot N concentration (Nc) and shoot dry matter (DM) for a potato crop grown under different nitrogen (N) treatments. Possibilities to improve the performance of VI using normalization b...

  5. Comparison of leaf color chart observations with digital photographs and spectral measurements for estimating maize leaf chlorophyll content

    Science.gov (United States)

    Crop nitrogen management is important world-wide, as much for small fields as it is for large operations. Developed as a non-destructive aid for estimating nitrogen content in rice crops, leaf color charts (LCC) are a numbered series of plastic panels that range from yellowgreen to dark green. By vi...

  6. Advanced image processing approach for ET estimation with remote sensing data of varying spectral, spatial and temporal resolutions

    Science.gov (United States)

    Sudhanshu Panda; Devendra Amatya; Young Kim; Ge Sun

    2016-01-01

    Evapotranspiration (ET) is one of the most important hydrologic parameters for vegetation growth, carbon sequestration, and other associated biodiversity study and analysis. Plant stomatal conductance, leaf area index, canopy temperature, soil moisture, and wind speed values generally correlate well with ET. It is difficult to estimate these hydrologic parameters of...

  7. Evaluation of the AMSR-E Data Calibration Over Land

    Science.gov (United States)

    Njoku, E.; Chan, T.; Crosson, W.; Limaye, A.

    2004-01-01

    Land observations by the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), particularly of soil and vegetation moisture changes, have numerous applications in hydrology, ecology and climate. Quantitative retrieval of soil and vegetation parameters relies on accurate calibration of the brightness temperature measurements. Analyses of the spectral and polarization characteristics of early versions of the AMSR-E data revealed significant calibration biases over land at 6.9 GHz. The biases were estimated and removed in the current archived version of the data Radiofrequency interference (RFI) observed at 6.9 GHz is more difficult to quanti@ however. A calibration analysis of AMSR-E data over land is presented in this paper for a complete annual cycle from June 2002 through September 2003. The analysis indicates the general high quality of the data for land applications (except for RFI), and illustrates seasonal trends of the data for different land surface types and regions.

  8. Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project – Part 1: calibration, urban enhancements, and uncertainty estimates

    Directory of Open Access Journals (Sweden)

    K. R. Verhulst

    2017-07-01

    Full Text Available We report continuous surface observations of carbon dioxide (CO2 and methane (CH4 from the Los Angeles (LA Megacity Carbon Project during 2015. We devised a calibration strategy, methods for selection of background air masses, calculation of urban enhancements, and a detailed algorithm for estimating uncertainties in urban-scale CO2 and CH4 measurements. These methods are essential for understanding carbon fluxes from the LA megacity and other complex urban environments globally. We estimate background mole fractions entering LA using observations from four extra-urban sites including two marine sites located south of LA in La Jolla (LJO and offshore on San Clemente Island (SCI, one continental site located in Victorville (VIC, in the high desert northeast of LA, and one continental/mid-troposphere site located on Mount Wilson (MWO in the San Gabriel Mountains. We find that a local marine background can be established to within  ∼  1 ppm CO2 and  ∼  10 ppb CH4 using these local measurement sites. Overall, atmospheric carbon dioxide and methane levels are highly variable across Los Angeles. Urban and suburban sites show moderate to large CO2 and CH4 enhancements relative to a marine background estimate. The USC (University of Southern California site near downtown LA exhibits median hourly enhancements of  ∼  20 ppm CO2 and  ∼  150 ppb CH4 during 2015 as well as  ∼  15 ppm CO2 and  ∼  80 ppb CH4 during mid-afternoon hours (12:00–16:00 LT, local time, which is the typical period of focus for flux inversions. The estimated measurement uncertainty is typically better than 0.1 ppm CO2 and 1 ppb CH4 based on the repeated standard gas measurements from the LA sites during the last 2 years, similar to Andrews et al. (2014. The largest component of the measurement uncertainty is due to the single-point calibration method; however, the uncertainty in the background mole fraction is much

  9. Forward Global Photometric Calibration of the Dark Energy Survey

    Science.gov (United States)

    Burke, D. L.; Rykoff, E. S.; Allam, S.; Annis, J.; Bechtol, K.; Bernstein, G. M.; Drlica-Wagner, A.; Finley, D. A.; Gruendl, R. A.; James, D. J.; Kent, S.; Kessler, R.; Kuhlmann, S.; Lasker, J.; Li, T. S.; Scolnic, D.; Smith, J.; Tucker, D. L.; Wester, W.; Yanny, B.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; García-Bellido, J.; Gruen, D.; Gutierrez, G.; Honscheid, K.; Kuehn, K.; Kuropatkin, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.; DES Collaboration

    2018-01-01

    Many scientific goals for the Dark Energy Survey (DES) require the calibration of optical/NIR broadband b = grizY photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a “Forward Global Calibration Method (FGCM)” for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broadband survey imaging itself and models of the instrument and atmosphere to estimate the spatial and time dependences of the passbands of individual DES survey exposures. “Standard” passbands that are typical of the passbands encountered during the survey are chosen. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude {m}b{std} in the standard system. This “chromatic correction” to the standard system is necessary to achieve subpercent calibrations and in particular, to resolve ambiguity between the broadband brightness of a source and the shape of its SED. The FGCM achieves a reproducible and stable photometric calibration of standard magnitudes {m}b{std} of stellar sources over the multiyear Y3A1 data sample with residual random calibration errors of σ =6{--}7 {mmag} per exposure. The accuracy of the calibration is uniform across the 5000 {\\deg }2 DES footprint to within σ =7 {mmag}. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than 5 {mmag} for main-sequence stars with 0.5< g-i< 3.0.

  10. Forward Global Photometric Calibration of the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Burke, D. L.; Rykoff, E. S.; Allam, S.; Annis, J.; Bechtol, K.; Bernstein, G. M.; Drlica-Wagner, A.; Finley, D. A.; Gruendl, R. A.; James, D. J.; Kent, S.; Kessler, R.; Kuhlmann, S.; Lasker, J.; Li, T. S.; Scolnic, D.; Smith, J.; Tucker, D. L.; Wester, W.; Yanny, B.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; García-Bellido, J.; Gruen, D.; Gutierrez, G.; Honscheid, K.; Kuehn, K.; Kuropatkin, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.

    2017-12-28

    Many scientific goals for the Dark Energy Survey (DES) require calibration of optical/NIR broadband $b = grizY$ photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a "Forward Global Calibration Method (FGCM)" for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broad-band survey imaging itself and models of the instrument and atmosphere to estimate the spatial- and time-dependence of the passbands of individual DES survey exposures. "Standard" passbands are chosen that are typical of the passbands encountered during the survey. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude $m_b^{\\mathrm{std}}$ in the standard system. This "chromatic correction" to the standard system is necessary to achieve sub-percent calibrations. The FGCM achieves reproducible and stable photometric calibration of standard magnitudes $m_b^{\\mathrm{std}}$ of stellar sources over the multi-year Y3A1 data sample with residual random calibration errors of $\\sigma=5-6\\,\\mathrm{mmag}$ per exposure. The accuracy of the calibration is uniform across the $5000\\,\\mathrm{deg}^2$ DES footprint to within $\\sigma=7\\,\\mathrm{mmag}$. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than $5\\,\\mathrm{mmag}$ for main sequence stars with $0.5

  11. Spectral analysis of 99mTc-HMPAO for estimating cerebral blood flow. A comparison with H215O PET

    International Nuclear Information System (INIS)

    Takasawa, Masashi; Murase, Kenya; Oku, Naohiko

    2004-01-01

    Cerebral blood flow (CBF) can be quantified non-invasively using the brain perfusion index (BPI), which is determined using radionuclide angiographic data obtained through the use of technetium-99m hexamethylpropylene amine oxime ( 99m Tc-HMPAO). The BPI is generally calculated using graphical analysis (GA). In this study, BPI was measured using spectral analysis (SA), and the usefulness of SA was compared with that of GA. Thirteen patients with various brain diseases and four healthy male volunteers were examined using radionuclide angiography with 99m Tc-HMPAO. The BPI was measured for each subject using both SA and GA. In the four healthy volunteers, the BPI was examined at rest and after the intravenous administration of 1 g of acetazolamide (ACZ). An H 2 15 O PET examination was also performed in the 13 patients; the BPI S and BPI G values were compared with the CBF measurements obtained using H 2 15 O PET (CBF PET ). The BPI values obtained by SA (BPI S ) (x) and by GA (BPI G ) (y) were correlated (y=0.568x+0.055, r=0.901) in the 13 patients and four healthy volunteers at rest, although the BPI G values were underestimated by 36.1±7.5% (mean±SD) compared with the BPI S values. The degree of underestimation tended to increase with increasing BPL s values. The increase in the BPI S was 32.1±8.0% after the intravenous administration of ACZ, while the increase in BPI G was only 8.1±2.8%. This discrepancy was considered to be the result of the BPI G values being affected by the first-pass extraction fraction of the tracer. Although both BPI S and BPI G values were significantly correlated with the CBF PET values, the correlation coefficient for BPI S was higher than that for BPI G (BPI S :r=0.881;BPI G :r=0.832). These results suggest that SA produces a more reliable BPI for quantifying CBF using 99m Tc-HMPAO than the conventional method using GA. The SA method should be especially useful for activation studies involving pharmacological intervention and

  12. Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Imran Khan

    2018-01-01

    Full Text Available Uplink and Downlink channel estimation in massive Multiple Input Multiple Output (MIMO systems is an intricate issue because of the increasing channel matrix dimensions. The channel feedback overhead using traditional codebook schemes is very large, which consumes more bandwidth and decreases the overall system efficiency. The purpose of this paper is to decrease the channel estimation overhead by taking the advantage of sparse attributes and also to optimize the Energy Efficiency (EE of the system. To cope with this issue, we propose a novel approach by using Compressed-Sensing (CS, Block Iterative-Support-Detection (Block-ISD, Angle-of-Departure (AoD and Structured Compressive Sampling Matching Pursuit (S-CoSaMP algorithms to reduce the channel estimation overhead and compare them with the traditional algorithms. The CS uses temporal-correlation of time-varying channels to produce Differential-Channel Impulse Response (DCIR among two CIRs that are adjacent in time-slots. DCIR has greater sparsity than the conventional CIRs as it can be easily compressed. The Block-ISD uses spatial-correlation of the channels to obtain the block-sparsity which results in lower pilot-overhead. AoD quantizes the channels whose path-AoDs variation is slower than path-gains and such information is utilized for reducing the overhead. S-CoSaMP deploys structured-sparsity to obtain reliable Channel-State-Information (CSI. MATLAB simulation results show that the proposed CS based algorithms reduce the feedback and pilot-overhead by a significant percentage and also improve the system capacity as compared with the traditional algorithms. Moreover, the EE level increases with increasing Base Station (BS density, UE density and lowering hardware impairments level.

  13. Cardiac parasympathetic outflow during dynamic exercise in humans estimated from power spectral analysis of P-P interval variability.

    Science.gov (United States)

    Takahashi, Makoto; Nakamoto, Tomoko; Matsukawa, Kanji; Ishii, Kei; Watanabe, Tae; Sekikawa, Kiyokazu; Hamada, Hironobu

    2016-03-01

    What is the central question of this study? Should we use the high-frequency (HF) component of P-P interval as an index of cardiac parasympathetic nerve activity during moderate exercise? What is the main finding and its importance? The HF component of P-P interval variability remained even at a heart rate of 120-140 beats min(-1) and was further reduced by atropine, indicating incomplete cardiac vagal withdrawal during moderate exercise. The HF component of R-R interval is invalid as an estimate of cardiac parasympathetic outflow during moderate exercise; instead, the HF component of P-P interval variability should be used. The high-frequency (HF) component of R-R interval variability has been widely used as an indirect estimate of cardiac parasympathetic (vagal) outflow to the sino-atrial node of the heart. However, we have recently found that the variability of the R-R interval becomes much smaller during dynamic exercise than that of the P-P interval above a heart rate (HR) of ∼100 beats min(-1). We hypothesized that cardiac parasympathetic outflow during dynamic exercise with a higher intensity may be better estimated using the HF component of P-P interval variability. To test this hypothesis, the HF components of both P-P and R-R interval variability were analysed using a Wavelet transform during dynamic exercise. Twelve subjects performed ergometer exercise to increase HR from the baseline of 69 ± 3 beats min(-1) to three different levels of 100, 120 and 140 beats min(-1). We also examined the effect of atropine sulfate on the HF components in eight of the 12 subjects during exercise at an HR of 140 beats min(-1) . The HF component of P-P interval variability was significantly greater than that of R-R interval variability during exercise, especially at the HRs of 120 and 140 beats min(-1). The HF component of P-P interval variability was more reduced by atropine than that of R-R interval variability. We conclude that cardiac parasympathetic outflow to the

  14. Estimation of chromophoric dissolved organic matter (CDOM) and photosynthetic activity of estuarine phytoplankton using a multiple-fixed-wavelength spectral fluorometer.

    Science.gov (United States)

    Goldman, Emily A; Smith, Erik M; Richardson, Tammi L

    2013-03-15

    The utility of a multiple-fixed-wavelength spectral fluorometer, the Algae Online Analyser (AOA), as a means of quantifying chromophoric dissolved organic matter (CDOM) and phytoplankton photosynthetic activity was tested using algal cultures and natural communities from North Inlet estuary, South Carolina. Comparisons of AOA measurements of CDOM to those by spectrophotometry showed a significant linear relationship, but increasing amounts of background CDOM resulted in progressively higher over-estimates of chromophyte contributions to a simulated mixed algal community. Estimates of photosynthetic activity by the AOA at low irradiance (≈ 80 μmol quanta m(-2) s(-1)) agreed well with analogous values from the literature for the chlorophyte, Dunaliella tertiolecta, but were substantially lower than previous measurements of the maximum quantum efficiency of photosystem II (F(v)/F(m)) in Thalassiosira weissflogii (a diatom) and Rhodomonas salina (a cryptophyte). When cells were exposed to high irradiance (1500 μmol quanta m(-2) s(-1)), declines in photosynthetic activity with time measured by the AOA mirrored estimates of cellular fluorescence capacity using the herbicide 3'-(3, 4-dichlorophenyl)-1',1'-dimethyl urea (DCMU). The AOA shows promise as a tool for the continuous monitoring of phytoplankton community composition, CDOM, and the group-specific photosynthetic activity of aquatic ecosystems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. THE X-RAY POWER SPECTRAL DENSITY FUNCTION AND BLACK HOLE MASS ESTIMATE FOR THE SEYFERT ACTIVE GALACTIC NUCLEUS IC 4329a

    International Nuclear Information System (INIS)

    Markowitz, A.

    2009-01-01

    We present the X-ray broadband power spectral density function (PSD) of the X-ray-luminous Seyfert IC 4329a, constructed from light curves obtained via Rossi X-ray Timing Explorer monitoring and an XMM-Newton observation. Modeling the 3-10 keV PSD using a broken power-law PSD shape, a break in power-law slope is significantly detected at a temporal frequency of 2.5 +2.5 -1.7 x 10 -6 Hz, which corresponds to a PSD break timescale T b of 4.6 +10.1 -2.3 days. Using the relation between T b , black hole mass M BH , and bolometric luminosity as quantified by McHardy and coworkers, we infer a black hole mass estimate of M BH = 1.3 +1.0 -0.3 x 10 8 M sun and an accretion rate relative to Eddington of 0.21 +0.06 -0.10 for this source. Our estimate of M BH is consistent with other estimates, including that derived by the relation between M BH and stellar velocity dispersion. We also present PSDs for the 10-20 and 20-40 keV bands; they lack sufficient temporal frequency coverage to reveal a significant break, but are consistent with the same PSD shape and break frequency as in the 3-10 keV band.

  16. The cost of uniqueness in groundwater model calibration

    Science.gov (United States)

    Moore, Catherine; Doherty, John

    2006-04-01

    Calibration of a groundwater model requires that hydraulic properties be estimated throughout a model domain. This generally constitutes an underdetermined inverse problem, for which a solution can only be found when some kind of regularization device is included in the inversion process. Inclusion of regularization in the calibration process can be implicit, for example through the use of zones of constant parameter value, or explicit, for example through solution of a constrained minimization problem in which parameters are made to respect preferred values, or preferred relationships, to the degree necessary for a unique solution to be obtained. The "cost of uniqueness" is this: no matter which regularization methodology is employed, the inevitable consequence of its use is a loss of detail in the calibrated field. This, in turn, can lead to erroneous predictions made by a model that is ostensibly "well calibrated". Information made available as a by-product of the regularized inversion process allows the reasons for this loss of detail to be better understood. In particular, it is easily demonstrated that the estimated value for an hydraulic property at any point within a model domain is, in fact, a weighted average of the true hydraulic property over a much larger area. This averaging process causes loss of resolution in the estimated field. Where hydraulic conductivity is the hydraulic property being estimated, high averaging weights exist in areas that are strategically disposed with respect to measurement wells, while other areas may contribute very little to the estimated hydraulic conductivity at any point within the model domain, this possibly making the detection of hydraulic conductivity anomalies in these latter areas almost impossible. A study of the post-calibration parameter field covariance matrix allows further insights into the loss of system detail incurred through the calibration process to be gained. A comparison of pre- and post-calibration

  17. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    In this paper, penalized regression using the L-1 norm on the estimated parameters is proposed for chemometric je calibration. The algorithm is of the lasso type, introduced by Tibshirani in 1996 as a linear regression method with bound on the absolute length of the parameters, but a modification...

  18. Calibration and LOD/LOQ estimation of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs expressed in E. coli using a four-parameter logistic model.

    Science.gov (United States)

    Lee, K R; Dipaolo, B; Ji, X

    2000-06-01

    Calibration is the process of fitting a model based on reference data points (x, y), then using the model to estimate an unknown x based on a new measured response, y. In DNA assay, x is the concentration, and y is the measured signal volume. A four-parameter logistic model was used frequently for calibration of immunoassay when the response is optical density for enzyme-linked immunosorbent assay (ELISA) or adjusted radioactivity count for radioimmunoassay (RIA). Here, it is shown that the same model or a linearized version of the curve are equally useful for the calibration of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs and calculation of performance measures of the assay.

  19. THE AKARI 2.5-5.0 μm SPECTRAL ATLAS OF TYPE-1 ACTIVE GALACTIC NUCLEI: BLACK HOLE MASS ESTIMATOR, LINE RATIO, AND HOT DUST TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohyeong; Im, Myungshin; Kim, Ji Hoon; Jun, Hyunsung David; Lee, Seong-Kook [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Woo, Jong-Hak; Lee, Hyung Mok; Lee, Myung Gyoon [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Nakagawa, Takao; Matsuhara, Hideo; Wada, Takehiko; Takagi, Toshinobu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Oyabu, Shinki [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Ohyama, Youichi, E-mail: dohyeong@astro.snu.ac.kr, E-mail: mim@astro.snu.ac.kr [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2015-01-01

    We present 2.5-5.0 μm spectra of 83 nearby (0.002 < z < 0.48) and bright (K < 14 mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0 μm spectral region contains emission lines such as Brβ (2.63 μm), Brα (4.05 μm), and polycyclic aromatic hydrocarbons (3.3 μm), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ∼1100 K and ∼220 K, respectively, rather than the commonly cited hot dust temperature of 1500 K.

  20. LANL MTI calibration team experience

    Science.gov (United States)

    Bender, Steven C.; Atkins, William H.; Clodius, William B.; Little, Cynthia K.; Christensen, R. Wynn

    2004-01-01

    The Multispectral Thermal Imager (MTI) was designed as an imaging radiometer with absolute calibration requirements established by Department of Energy (DOE) mission goals. Particular emphasis was given to water surface temperature retrieval using two mid wave and three long wave infrared spectral bands, the fundamental requirement was a surface temperature determination of 1K at the 68% confidence level. For the ten solar reflective bands a one-sigma radiometric performance goal of 3% was established. In order to address these technical challenges a calibration facility was constructed containing newly designed sources that were calibrated at NIST. Additionally, the design of the payload and its onboard calibration system supported post launch maintenance and update of the ground calibration. The on-orbit calibration philosophy also included vicarious techniques using ocean buoys, playas and other instrumented sites; these became increasingly important subsequent to an electrical failure which disabled the onboard calibration system. This paper offers various relevant lessons learned in the eight-year process of reducing to practice the calibration capability required by the scientific mission. The discussion presented will include observations pertinent to operational and procedural issues as well as hardware experiences; the validity of some of the initial assumptions will also be explored.

  1. Solid laboratory calibration of a nonimaging spectroradiometer.

    Science.gov (United States)

    Schaepman, M E; Dangel, S

    2000-07-20

    Field-based nonimaging spectroradiometers are often used in vicarious calibration experiments for airborne or spaceborne imaging spectrometers. The calibration uncertainties associated with these ground measurements contribute substantially to the overall modeling error in radiance- or reflectance-based vicarious calibration experiments. Because of limitations in the radiometric stability of compact field spectroradiometers, vicarious calibration experiments are based primarily on reflectance measurements rather than on radiance measurements. To characterize the overall uncertainty of radiance-based approaches and assess the sources of uncertainty, we carried out a full laboratory calibration. This laboratory calibration of a nonimaging spectroradiometer is based on a measurement plan targeted at achieving a calibration. The individual calibration steps include characterization of the signal-to-noise ratio, the noise equivalent signal, the dark current, the wavelength calibration, the spectral sampling interval, the nonlinearity, directional and positional effects, the spectral scattering, the field of view, the polarization, the size-of-source effects, and the temperature dependence of a particular instrument. The traceability of the radiance calibration is established to a secondary National Institute of Standards and Technology calibration standard by use of a 95% confidence interval and results in an uncertainty of less than ?7.1% for all spectroradiometer bands.

  2. Calibration of a low background gas-flow proportional counter to estimate "2"3"4Th activity in coastal waters

    International Nuclear Information System (INIS)

    Cuesta, E.; Lozano, R.L.; Miguel, E.G. San; Casas-Ruiz, M.; Bolívar, J.P.

    2016-01-01

    This paper relates the calibration of a low background gas-flow proportional counter. This calibration has been used to determine low activity of "2"3"4Th in coastal water samples. Two methods were used to prepare calibration samples: Evaporation and Electrodeposition. First method was rejected due to the lack of reproducibility because the different geometry adopted by the drops of tracer once dried on the disk. On the contrary, through the second method, similar efficiencies were obtained in all detectors with an average of 0.401±0.004. In this paper, the whole procedure to obtain "2"3"4Th activity in dissolution as well as in particulate matter has been detailed, and all the algorithms needed to calculate activities and efficiencies are shown. Finally, two experiments have been designed in order to validate the calibration of the beta counter and the method to determine "2"3"4Th in coastal waters with high concentration of particulate matter. - Highlights: • This paper shows a Home-made calibration using two methods to prepare calibration samples. • The algorithms needed to obtain Th-234 activity concentrations are described in full detail. • This is the first time Th-234 has been determined in water samples from Huelva Estuary.

  3. Scaling relationship between corner frequencies and seismic moments of ultra micro earthquakes estimated with coda-wave spectral ratio -the Mponeng mine in South Africa

    Science.gov (United States)

    Wada, N.; Kawakata, H.; Murakami, O.; Doi, I.; Yoshimitsu, N.; Nakatani, M.; Yabe, Y.; Naoi, M. M.; Miyakawa, K.; Miyake, H.; Ide, S.; Igarashi, T.; Morema, G.; Pinder, E.; Ogasawara, H.

    2011-12-01

    Scaling relationship between corner frequencies, fc, and seismic moments, Mo is an important clue to understand the seismic source characteristics. Aki (1967) showed that Mo is proportional to fc-3 for large earthquakes (cubic law). Iio (1986) claimed breakdown of the cubic law between fc and Mo for smaller earthquakes (Mw law holds even for micro earthquakes (-1 4) by using high quality data observed at a deep borehole (Abercrombie, 1995; Ogasawara et al., 2001; Hiramatsu et al., 2002; Yamada et al., 2007). In order to clarify the scaling relationship for smaller earthquakes (Mw Africa. We used 4 tri-axial accelerometers of three-component that have a flat response up to 25 kHz. They were installed to be 10 to 30 meters apart from each other at 3,300 meters deep. During the period from 2008/10/14 to 2008/10/30 (17 days), 8,927 events were recorded. We estimated fc and Mo for 60 events (-3 Common practice is using direct waves from adjacent events. However, there were only 5 event pairs with the distance between them less than 20 meters and Mw difference over one. In addition, the observation array is very small (radius less than 30 m), which means that effects of directivity and radiation pattern on direct waves are similar at all stations. Hence, we used spectral ratio of coda waves, since these effects are averaged and will be effectively reduced (Mayeda et al., 2007; Somei et al., 2010). Coda analysis was attempted only for relatively large 20 events (we call "coda events" hereafter) that have coda energy large enough for analysis. The results agree with those of the direct S-wave analysis for the same events, though the latter showed more scattering in fc-Mo trend. So, we combine the results from the both analyses to examine the fc-Mo trend down to very small events. Therefore, we adopted fc and (relative) Mo estimated from coda spectral ratios for coda events, while we adopted them from direct spectra for other events despite of their lower reliability. We

  4. Instrumentation calibration

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-08-01

    Procedures for the calibration of different types of laboratory equipment are described. Provisions for maintaining the integrity of reference and working standards traceable back to a national standard are discussed. Methods of validation and certification methods are included. An appendix lists available publications and services of national standardizing agencies

  5. A comparative analysis of spectral exponent estimation techniques for 1/f(β) processes with applications to the analysis of stride interval time series.

    Science.gov (United States)

    Schaefer, Alexander; Brach, Jennifer S; Perera, Subashan; Sejdić, Ervin

    2014-01-30

    The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f)=1/f(β). The scaling exponent β is thus often interpreted as a "biomarker" of relative health and decline. This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. FIMS Wavelength Calibration via Airglow Line Observations

    Directory of Open Access Journals (Sweden)

    Dae-Hee Lee

    2004-12-01

    Full Text Available Far-ultraviolet Imaging Spectrograph (FIMS is the main payload of the Korea's first scientific micro satellite STSAT-1, which was launched at Sep. 27 2003 successfully. Major objective of FIMS is observing hot gas in the Galaxy in FUV bands to diagnose the energy flow models of the interstellar medium. Supernova remnants, molecular clouds, and Aurora emission in the geomagnetic pole regions are specific targets for pointing observation. Although the whole system was calibrated before launch, it is essential to perform on-orbit calibration for data analysis. For spectral calibration, we observed airglow lines in the atmosphere since they provide good spectral references. We identify and compare the observed airglow lines with model calculations, and correct the spectral distortion appeared in the detector system to improve the spectral resolution of the system.

  7. Test surfaces useful for calibration of surface profilometers

    Science.gov (United States)

    Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z

    2013-12-31

    The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.

  8. Calibration of amino acid racemization (AAR) kinetics in United States mid-Atlantic Coastal Plain Quaternary mollusks using 87Sr/ 86Sr analyses: Evaluation of kinetic models and estimation of regional Late Pleistocene temperature history

    Science.gov (United States)

    Wehmiller, J.F.; Harris, W.B.; Boutin, B.S.; Farrell, K.M.

    2012-01-01

    The use of amino acid racemization (AAR) for estimating ages of Quaternary fossils usually requires a combination of kinetic and effective temperature modeling or independent age calibration of analyzed samples. Because of limited availability of calibration samples, age estimates are often based on model extrapolations from single calibration points over wide ranges of D/L values. Here we present paired AAR and 87Sr/ 86Sr results for Pleistocene mollusks from the North Carolina Coastal Plain, USA. 87Sr/ 86Sr age estimates, derived from the lookup table of McArthur et al. [McArthur, J.M., Howarth, R.J., Bailey, T.R., 2001. Strontium isotopic stratigraphy: LOWESS version 3: best fit to the marine Sr-isotopic curve for 0-509 Ma and accompanying Look-up table for deriving numerical age. Journal of Geology 109, 155-169], provide independent age calibration over the full range of amino acid D/L values, thereby allowing comparisons of alternative kinetic models for seven amino acids. The often-used parabolic kinetic model is found to be insufficient to explain the pattern of racemization, although the kinetic pathways for valine racemization and isoleucine epimerization can be closely approximated with this function. Logarithmic and power law regressions more accurately represent the racemization pathways for all amino acids. The reliability of a non-linear model for leucine racemization, developed and refined over the past 20 years, is confirmed by the 87Sr/ 86Sr age results. This age model indicates that the subsurface record (up to 80m thick) of the North Carolina Coastal Plain spans the entire Quaternary, back to ???2.5Ma. The calibrated kinetics derived from this age model yield an estimate of the effective temperature for the study region of 11??2??C., from which we estimate full glacial (Last Glacial Maximum - LGM) temperatures for the region on the order of 7-10??C cooler than present. These temperatures compare favorably with independent paleoclimate information

  9. SDSS-IV/MaNGA: SPECTROPHOTOMETRIC CALIBRATION TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Renbin; Sánchez-Gallego, José R. [Department of Physics and Astronomy, University of Kentucky, 505 Rose St., Lexington, KY 40506-0057 (United States); Tremonti, Christy; Bershady, Matthew A.; Eigenbrot, Arthur; Wake, David A. [Department of Astronomy, University of Winsconsin-Madison, 475 N. Charter Street, Madison, WI 53706-1582 (United States); Law, David R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Schlegel, David J. [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8160 (United States); Bundy, Kevin [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Drory, Niv [McDonald Observatory, Department of Astronomy, University of Texas at Austin, 1 University Station, Austin, TX 78712-0259 (United States); MacDonald, Nicholas [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Bizyaev, Dmitry [Apache Point Observatory, P.O. Box 59, sunspot, NM 88349 (United States); Blanc, Guillermo A. [Departamento de Astronomía, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago (Chile); Blanton, Michael R.; Hogg, David W. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Cherinka, Brian [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Gunn, James E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Harding, Paul [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Sánchez, Sebastian F., E-mail: yanrenbin@uky.edu [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, A.P. 70-264, 04510 Mexico D.F. (Mexico); and others

    2016-01-15

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), one of three core programs in the Sloan Digital Sky Survey-IV, is an integral-field spectroscopic survey of roughly 10,000 nearby galaxies. It employs dithered observations using 17 hexagonal bundles of 2″ fibers to obtain resolved spectroscopy over a wide wavelength range of 3600–10300 Å. To map the internal variations within each galaxy, we need to perform accurate spectral surface photometry, which is to calibrate the specific intensity at every spatial location sampled by each individual aperture element of the integral field unit. The calibration must correct only for the flux loss due to atmospheric throughput and the instrument response, but not for losses due to the finite geometry of the fiber aperture. This requires the use of standard star measurements to strictly separate these two flux loss factors (throughput versus geometry), a difficult challenge with standard single-fiber spectroscopy techniques due to various practical limitations. Therefore, we developed a technique for spectral surface photometry using multiple small fiber-bundles targeting standard stars simultaneously with galaxy observations. We discuss the principles of our approach and how they compare to previous efforts, and we demonstrate the precision and accuracy achieved. MaNGA's relative calibration between the wavelengths of Hα and Hβ has an rms of 1.7%, while that between [N ii] λ6583 and [O ii] λ3727 has an rms of 4.7%. Using extinction-corrected star formation rates and gas-phase metallicities as an illustration, this level of precision guarantees that flux calibration errors will be sub-dominant when estimating these quantities. The absolute calibration is better than 5% for more than 89% of MaNGA's wavelength range.

  10. SDSS-IV/MaNGA: SPECTROPHOTOMETRIC CALIBRATION TECHNIQUE

    International Nuclear Information System (INIS)

    Yan, Renbin; Sánchez-Gallego, José R.; Tremonti, Christy; Bershady, Matthew A.; Eigenbrot, Arthur; Wake, David A.; Law, David R.; Schlegel, David J.; Bundy, Kevin; Drory, Niv; MacDonald, Nicholas; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Hogg, David W.; Cherinka, Brian; Gunn, James E.; Harding, Paul; Sánchez, Sebastian F.

    2016-01-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), one of three core programs in the Sloan Digital Sky Survey-IV, is an integral-field spectroscopic survey of roughly 10,000 nearby galaxies. It employs dithered observations using 17 hexagonal bundles of 2″ fibers to obtain resolved spectroscopy over a wide wavelength range of 3600–10300 Å. To map the internal variations within each galaxy, we need to perform accurate spectral surface photometry, which is to calibrate the specific intensity at every spatial location sampled by each individual aperture element of the integral field unit. The calibration must correct only for the flux loss due to atmospheric throughput and the instrument response, but not for losses due to the finite geometry of the fiber aperture. This requires the use of standard star measurements to strictly separate these two flux loss factors (throughput versus geometry), a difficult challenge with standard single-fiber spectroscopy techniques due to various practical limitations. Therefore, we developed a technique for spectral surface photometry using multiple small fiber-bundles targeting standard stars simultaneously with galaxy observations. We discuss the principles of our approach and how they compare to previous efforts, and we demonstrate the precision and accuracy achieved. MaNGA's relative calibration between the wavelengths of Hα and Hβ has an rms of 1.7%, while that between [N ii] λ6583 and [O ii] λ3727 has an rms of 4.7%. Using extinction-corrected star formation rates and gas-phase metallicities as an illustration, this level of precision guarantees that flux calibration errors will be sub-dominant when estimating these quantities. The absolute calibration is better than 5% for more than 89% of MaNGA's wavelength range

  11. Calibration of the degree of linear polarization measurements of the polarized Sun-sky radiometer based on the POLBOX system.

    Science.gov (United States)

    Li, Zhengqiang; Li, Kaitao; Li, Li; Xu, Hua; Xie, Yisong; Ma, Yan; Li, Donghui; Goloub, Philippe; Yuan, Yinlin; Zheng, Xiaobing

    2018-02-10

    Polarization observation of sky radiation is the frontier approach to improve the remote sensing of atmospheric components, e.g., aerosol and clouds. The polarization calibration of the ground-based Sun-sky radiometer is the basis for obtaining accurate degree of linear polarization (DOLP) measurement. In this paper, a DOLP calibration method based on a laboratory polarized light source (POLBOX) is introduced in detail. Combined with the CE318-DP Sun-sky polarized radiometer, a calibration scheme for DOLP measurement is established for the spectral range of 440-1640 nm. Based on the calibration results of the Sun-sky radiometer observation network, the polarization calibration coefficient and the DOLP calibration residual are analyzed statistically. The results show that the DOLP residual of the calibration scheme is about 0.0012, and thus it can be estimated that the final DOLP calibration accuracy of this method is about 0.005. Finally, it is verified that the accuracy of the calibration results is in accordance with the expected results by comparing the simulated DOLP with the vector radiative transfer calculations.

  12. A comparative analysis of spectral exponent estimation techniques for 1/fβ processes with applications to the analysis of stride interval time series

    Science.gov (United States)

    Schaefer, Alexander; Brach, Jennifer S.; Perera, Subashan; Sejdić, Ervin

    2013-01-01

    Background The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f) = 1/fβ. The scaling exponent β is thus often interpreted as a “biomarker” of relative health and decline. New Method This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. Results The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Comparison with Existing Methods: Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. Conclusions The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. PMID:24200509

  13. Using Ridge Regression Models to Estimate Grain Yield from Field Spectral Data in Bread Wheat (Triticum Aestivum L. Grown under Three Water Regimes

    Directory of Open Access Journals (Sweden)

    Javier Hernandez

    2015-02-01

    Full Text Available Plant breeding based on grain yield (GY is an expensive and time-consuming method, so new indirect estimation techniques to evaluate the performance of crops represent an alternative method to improve grain yield. The present study evaluated the ability of canopy reflectance spectroscopy at the range from 350 to 2500 nm to predict GY in a large panel (368 genotypes of wheat (Triticum aestivum L. through multivariate ridge regression models. Plants were treated under three water regimes in the Mediterranean conditions of central Chile: severe water stress (SWS, rain fed, mild water stress (MWS; one irrigation event around booting and full irrigation (FI with mean GYs of 1655, 4739, and 7967 kg∙ha−1, respectively. Models developed from reflectance data during anthesis and grain filling under all water regimes explained between 77% and 91% of the GY variability, with the highest values in SWS condition. When individual models were used to predict yield in the rest of the trials assessed, models fitted during anthesis under MWS performed best. Combined models using data from different water regimes and each phenological stage were used to predict grain yield, and the coefficients of determination (R2 increased to 89.9% and 92.0% for anthesis and grain filling, respectively. The model generated during anthesis in MWS was the best at predicting yields when it was applied to other conditions. Comparisons against conventional reflectance indices were made, showing lower predictive abilities. It was concluded that a Ridge Regression Model using a data set based on spectral reflectance at anthesis or grain filling represents an effective method to predict grain yield in genotypes under different water regimes.

  14. Calibration of the hard x-ray detectors for the FOXSI solar sounding rocket

    Science.gov (United States)

    Athiray, P. S.; Buitrago-Casas, Juan Camilo; Bergstedt, Kendra; Vievering, Juliana; Musset, Sophie; Ishikawa, Shin-nosuke; Glesener, Lindsay; Takahashi, Tadayuki; Watanabe, Shin; Courtade, Sasha; Christe, Steven; Krucker, Säm.; Goetz, Keith; Monson, Steven

    2017-08-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment conducts direct imaging and spectral observation of the Sun in hard X-rays, in the energy range 4 to 20 keV. These high-sensitivity observations are used to study particle acceleration and coronal heating. FOXSI is designed with seven grazing incidence optics modules that focus X-rays onto seven focal plane detectors kept at a 2m distance. FOXSI-1 was flown with seven Double-sided Si Strip Detectors (DSSD), and two of them were replaced with CdTe detectors for FOXSI-2. The upcoming FOXSI-3 flight will carry DSSD and CdTe detectors with upgraded optics for enhanced sensitivity. The detectors are calibrated using various radioactive sources. The detector's spectral response matrix was constructed with diagonal elements using a Gaussian approximation with a spread (sigma) that accounts for the energy resolution of the detector. Spectroscopic studies of past FOXSI flight data suggest that the inclusion of lower energy X-rays could better constrain the spectral modeling to yield a more precise temperature estimation of the hot plasma. This motivates us to carry out an improved calibration to better understand the finer-order effects on the spectral response, especially at lower energies. Here we report our improved calibration of FOXSI detectors using experiments and Monte-Carlo simulations.

  15. Basis material decomposition in spectral CT using a semi-empirical, polychromatic adaption of the Beer-Lambert model

    Science.gov (United States)

    Ehn, S.; Sellerer, T.; Mechlem, K.; Fehringer, A.; Epple, M.; Herzen, J.; Pfeiffer, F.; Noël, P. B.

    2017-01-01

    Following the development of energy-sensitive photon-counting detectors using high-Z sensor materials, application of spectral x-ray imaging methods to clinical practice comes into reach. However, these detectors require extensive calibration efforts in order to perform spectral imaging tasks like basis material decomposition. In this paper, we report a novel approach to basis material decomposition that utilizes a semi-empirical estimator for the number of photons registered in distinct energy bins in the presence of beam-hardening effects which can be termed as a polychromatic Beer-Lambert model. A maximum-likelihood estimator is applied to the model in order to obtain estimates of the underlying sample composition. Using a Monte-Carlo simulation of a typical clinical CT acquisition, the performance of the proposed estimator was evaluated. The estimator is shown to be unbiased and efficient according to the Cramér-Rao lower bound. In particular, the estimator is capable of operating with a minimum number of calibration measurements. Good results were obtained after calibration using less than 10 samples of known composition in a two-material attenuation basis. This opens up the possibility for fast re-calibration in the clinical routine which is considered an advantage of the proposed method over other implementations reported in the literature.

  16. Antarctic ice sheet thickness estimation using the horizontal-to-vertical spectral ratio method with single-station seismic ambient noise

    Directory of Open Access Journals (Sweden)

    P. Yan

    2018-03-01

    Full Text Available We report on a successful application of the horizontal-to-vertical spectral ratio (H / V method, generally used to investigate the subsurface velocity structures of the shallow crust, to estimate the Antarctic ice sheet thickness for the first time. Using three-component, five-day long, seismic ambient noise records gathered from more than 60 temporary seismic stations located on the Antarctic ice sheet, the ice thickness measured at each station has comparable accuracy to the Bedmap2 database. Preliminary analysis revealed that 60 out of 65 seismic stations on the ice sheet obtained clear peak frequencies (f0 related to the ice sheet thickness in the H / V spectrum. Thus, assuming that the isotropic ice layer lies atop a high velocity half-space bedrock, the ice sheet thickness can be calculated by a simple approximation formula. About half of the calculated ice sheet thicknesses were consistent with the Bedmap2 ice thickness values. To further improve the reliability of ice thickness measurements, two-type models were built to fit the observed H / V spectrum through non-linear inversion. The two-type models represent the isotropic structures of single- and two-layer ice sheets, and the latter depicts the non-uniform, layered characteristics of the ice sheet widely distributed in Antarctica. The inversion results suggest that the ice thicknesses derived from the two-layer ice models were in good concurrence with the Bedmap2 ice thickness database, and that ice thickness differences between the two were within 300 m at almost all stations. Our results support previous finding that the Antarctic ice sheet is stratified. Extensive data processing indicates that the time length of seismic ambient noise records can be shortened to two hours for reliable ice sheet thickness estimation using the H / V method. This study extends the application fields of the H / V method and provides an effective and independent way to measure

  17. Bedload transport measurements with impact plate geophones in two Austrian mountain streams (Fischbach and Ruetz): system calibration, grain size estimation, and environmental signal pick-up

    Science.gov (United States)

    Rickenmann, Dieter; Fritschi, Bruno

    2017-10-01

    The Swiss plate geophone system is a bedload surrogate measuring technique that has been installed in more than 20 streams, primarily in the European Alps. Here we report about calibration measurements performed in two mountain streams in Austria. The Fischbach and Ruetz gravel-bed streams are characterized by important runoff and bedload transport during the snowmelt season. A total of 31 (Fischbach) and 21 (Ruetz) direct bedload samples were obtained during a 6-year period. Using the number of geophone impulses and total transported bedload mass for each measurement to derive a calibration function results in a strong linear relation for the Fischbach, whereas there is only a poor linear calibration relation for the Ruetz measurements. Instead, using geophone impulse rates and bedload transport rates indicates that two power law relations best represent the Fischbach data, depending on transport intensity; for lower transport intensities, the same power law relation is also in reasonable agreement with the Ruetz data. These results are compared with data and findings from other field sites and flume studies. We further show that the observed coarsening of the grain size distribution with increasing bedload flux can be qualitatively reproduced from the geophone signal, when using the impulse counts along with amplitude information. Finally, we discuss implausible geophone impulse counts that were recorded during periods with smaller discharges without any bedload transport, and that are likely caused by vehicle movement very near to the measuring sites.

  18. Convenient method for estimating underground s-wave velocity structure utilizing horizontal and vertical components microtremor spectral ratio; Bido no suiheido/jogedo supekutoru hi wo riyoshita kan`i chika s ha sokudo kozo suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Yoshioka, M; Saito, T [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.

  19. Amplitude Models for Discrimination and Yield Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.

  20. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  1. Observatory Magnetometer In-Situ Calibration

    Directory of Open Access Journals (Sweden)

    A Marusenkov

    2011-07-01

    Full Text Available An experimental validation of the in-situ calibration procedure, which allows estimating parameters of observatory magnetometers (scale factors, sensor misalignment without its operation interruption, is presented. In order to control the validity of the procedure, the records provided by two magnetometers calibrated independently in a coil system have been processed. The in-situ estimations of the parameters are in very good agreement with the values provided by the coil system calibration.

  2. Derivation of the canopy conductance from surface temperature and spectral indices for estimating evapotranspiration in semiarid vegetation; Monitorizacion de conductancia en vegetacion semiarida a partir de indices espectrales y temperatura de supeficie

    Energy Technology Data Exchange (ETDEWEB)

    Morillas, L.; Garcia, M.; Zarco-Tejada, P.; Ladron de Guevara, M.; Villagarcia, L.; Were, A.; Domingo, F.

    2009-07-01

    This work evaluates the possibilities for estimating stomata conductance (C) and leaf transpiration (Trf) at the ecosystem scale from radiometric indices and surface temperature. The relationships found between indices and the transpiration component of the water balance in a semiarid tussock ecosystem in SE Spain are discussed. Field data were collected from spring 2008 until winter 2009 in order to observe the annual variability of the relationships and the behaviour of spectral indices and surface temperature. (Author) 11 refs.

  3. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  4. Self-Calibration of CMB Polarimeters

    Science.gov (United States)

    Keating, Brian

    2013-01-01

    Precision measurements of the polarization of the cosmic microwave background (CMB) radiation, especially experiments seeking to detect the odd-parity "B-modes", have far-reaching implications for cosmology. To detect the B-modes generated during inflation the flux response and polarization angle of these experiments must be calibrated to exquisite precision. While suitable flux calibration sources abound, polarization angle calibrators are deficient in many respects. Man-made polarized sources are often not located in the antenna's far-field, have spectral properties that are radically different from the CMB's, are cumbersome to implement and may be inherently unstable over the (long) duration these searches require to detect the faint signature of the inflationary epoch. Astrophysical sources suffer from time, frequency and spatial variability, are not visible from all CMB observatories, and none are understood with sufficient accuracy to calibrate future CMB polarimeters seeking to probe inflationary energy scales of ~1000 TeV. CMB TB and EB modes, expected to identically vanish in the standard cosmological model, can be used to calibrate CMB polarimeters. By enforcing the observed EB and TB power spectra to be consistent with zero, CMB polarimeters can be calibrated to levels not possible with man-made or astrophysical sources. All of this can be accomplished without any loss of observing time using a calibration source which is spectrally identical to the CMB B-modes. The calibration procedure outlined here can be used for any CMB polarimeter.

  5. Estimated of associated uncertainties of the linearity test of dose calibrators; Estimativa das incertezas associadas ao teste de linearidade de calibradores de dose

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Carlos H.S.; Peixoto, Jose G.P., E-mail: chenrique@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), RIo de Janeiro, RJ (Brazil)

    2013-07-01

    Activimeters determine the activity of radioactive samples and them are validated by performance tests. This research determined the expanded uncertainties associated to the linearity test. Were used three dose calibrators and three sources of {sup 99}Tc{sup m} for testing using recommended protocol by the IAEA, which considered the decay of radioactive samples. The expanded uncertainties evaluated were not correlated with each other and their analysis considered a rectangular probability distribution. The results are also presented in graphical form by the function of normalized activity measured in terms of conventional true value. (author)

  6. FTIR Calibration Methods and Issues

    Science.gov (United States)

    Perron, Gaetan

    Over the past 10 years, several space-borne FTIR missions were launched for atmospheric research, environmental monitoring and meteorology. One can think of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) launched by the European Space Agency, the Atmospheric Chemistry Experiment (ACE) launched by the Canadian Space Agency, the Tropospheric Emission Spectrometer (TES) launched by NASA and the Infrared Atmospheric Sounding Interferometer (IASI) launched by Eumetsat in Europe. Others are near to be launched, namely the Cross-track Infrared Sounder (CrIS) from the Integrated Program Of- fice in the United States and the Thermal And Near infrared Sensor for carbon Observation (TANSO) from the Japan Aerospace Exploration Agency. Moreover, several missions under definition foresee the use of this technology as sensor, e.g. Meteosat Third Generation (MTG), Eumetsat Polar System (EPS) and the Premier mission, one of the six candidates of the next ESA Earth Explorer Core Mission. In order to produce good quality products, calibration is essential. Calibrated data is the output of three main sub-systems that are tightly coupled: the instrument, the calibration targets and the level 1B processor. Calibration requirements must be carefully defined and propagated to each sub-system. Often, they are carried out by different parties which add to the complexity. Under budget and schedule pressure, some aspects are sometimes neglected and jeopardized final quality. For space-borne FTIR, level 1B outputs are spectra that are radiometrically, spectrally calibrated and geolocated. Radiometric calibration means to assign an intensity value in units to the y-axis. Spectral calibration means to assign to the x-axis the proper frequency value in units. Finally, geolocated means to assign a target position over the earth geoid i.e. longitude, latitude and altitude. This paper will present calibration methods and issues related to space-borne FTIR missions, e.g. two

  7. Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes

    KAUST Repository

    Kobayashi, Hiroyuki; Tsuchiya, Kousuke; Ogino, Kenji; Vacha, Martin

    2012-01-01

    Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.

  8. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland

    Directory of Open Access Journals (Sweden)

    Smarzyńska Karolina

    2016-06-01

    Full Text Available Soil and Water Assessment Tool (SWAT ver. 2005 was applied to study water balance and nitrogen load pathways in a small agricultural watershed in the lowlands of central Poland. The natural flow regime of the Zgłowiączka River was strongly modified by human activity (deforestation and installation of a subsurface drainage system to facilitate stable crop production. SWAT was calibrated for daily and monthly discharge and monthly nitrate nitrogen load. Model efficiency was tested using manual techniques (subjective and evaluation statistics (objective. Values of Nash–Sutcliffe efficiency coefficient (NSE, coefficient of determination (R2 and percentage of bias for daily/monthly discharge simulations and monthly load indicated good or very good fit of simulated discharge and nitrate nitrogen load to the observed data set. Model precision and accuracy of fit was proved in validation. The calibrated and validated SWAT was used to assess water balance and nitrogen fluxes in the watershed. According to the results, the share of tile drainage in water yield is equal to 78%. The model analysis indicated the most significant pathway of NO3-N to surface waters in the study area, namely the tile drainage combined with lateral flow. Its share in total NO3-N load amounted to 89%. Identification of nitrogen fluxes in the watershed is crucial for decision makers in order to manage water resources and to implement the most effective measures to limit diffuse pollution from arable land to surface waters.

  9. Planck 2013 results. IX. HFI spectral response

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (including out-of-band signal rejection) of all HFI detectors. This was determined by measuring the output of a continuously scanned Fourier transform spectrometer coupled with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. Ver...

  10. Linear Calibration – Is It so Simple?

    International Nuclear Information System (INIS)

    Arsova, Diana; Babanova, Sofia; Mandjukov, Petko

    2009-01-01

    Calibration procedure is an important part of instrumental analysis. Usually it is not the major uncertainty source in whole analytical procedure. However, improper calibration might cause a significant bias of the analytical results from the real (certified) value. Standard Gaussian linear regression is the most frequently used mathematical approach for estimation of calibration function parameters. In the present article are discussed some not quite popular, but highly recommended in certain cases methods for parameter estimation, such as: weighted regression, orthogonal regression, robust regression, bracketing calibration etc. Some useful approximations are also presented. Special attention is paid to the statistical criteria which to be used for selection of proper calibration model. Standard UV-VIS spectrometric procedure for determination of phosphates in water was used as a practical example. Several different approaches for estimation of the contribution of calibration to the general un-certainty of the analytical result are presented and compared

  11. JUNO E/J/SS WAVES CALIBRATED SURVEY FULL RESOLUTION V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Juno Waves calibrated full resolution survey data set includes all low rate science electric spectral densities from 50Hz to 41MHz and magnetic spectral...

  12. Multivariate calibration applied to the quantitative analysis of infrared spectra

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, D.M.

    1991-01-01

    Multivariate calibration methods are very useful for improving the precision, accuracy, and reliability of quantitative spectral analyses. Spectroscopists can more effectively use these sophisticated statistical tools if they have a qualitative understanding of the techniques involved. A qualitative picture of the factor analysis multivariate calibration methods of partial least squares (PLS) and principal component regression (PCR) is presented using infrared calibrations based upon spectra of phosphosilicate glass thin films on silicon wafers. Comparisons of the relative prediction abilities of four different multivariate calibration methods are given based on Monte Carlo simulations of spectral calibration and prediction data. The success of multivariate spectral calibrations is demonstrated for several quantitative infrared studies. The infrared absorption and emission spectra of thin-film dielectrics used in the manufacture of microelectronic devices demonstrate rapid, nondestructive at-line and in-situ analyses using PLS calibrations. Finally, the application of multivariate spectral calibrations to reagentless analysis of blood is presented. We have found that the determination of glucose in whole blood taken from diabetics can be precisely monitored from the PLS calibration of either mind- or near-infrared spectra of the blood. Progress toward the non-invasive determination of glucose levels in diabetics is an ultimate goal of this research. 13 refs., 4 figs.

  13. Near-infrared metallicities, radial velocities, and spectral types for 447 nearby M dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Newton, Elisabeth R.; Charbonneau, David; Irwin, Jonathan; Berta-Thompson, Zachory K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rojas-Ayala, Barbara [Centro de Astrofsica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Covey, Kevin [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Lloyd, James P., E-mail: enewton@cfa.harvard.edu [Department of Astronomy, Cornell University, 226 Space Sciences Building, Ithaca, NY 14853 (United States)

    2014-01-01

    We present metallicities, radial velocities, and near-infrared (NIR) spectral types for 447 M dwarfs determined from moderate resolution (R ≈ 2000) NIR spectra obtained with the NASA Infrared Telescope Facility (IRTF)/SpeX. These M dwarfs are primarily targets of the MEarth Survey, a transiting planet survey searching for super Earths around mid-to-late M dwarfs within 33 pc. We present NIR spectral types for each star and new spectral templates for the IRTF in the Y, J, H, and K-bands, created using M dwarfs with near-solar metallicities. We developed two spectroscopic distance calibrations that use NIR spectral type or an index based on the curvature of the K-band continuum. Our distance calibration has a scatter of 14%. We searched 27 NIR spectral lines and 10 spectral indices for metallicity sensitive features, taking into account correlated noise in our estimates of the errors on these parameters. We calibrated our relation using 36 M dwarfs in common proper pairs with an F-, G-, or K-type star of known metallicity. We validated the physical association of these pairs using proper motions, radial velocities, and spectroscopic distance estimates. Our resulting metallicity calibration uses the sodium doublet at 2.2 μm as the sole indicator for metallicity. It has an accuracy of 0.12 dex inferred from the scatter between the metallicities of the primaries and the estimated metallicities of the secondaries. Our relation is valid for NIR spectral types from M1V to M5V and for –1.0 dex < [Fe/H] < +0.35 dex. We present a new color-color metallicity relation using J – H and J – K colors that directly relates two observables: the distance from the M dwarf main sequence and equivalent width of the sodium line at 2.2 μm. We used radial velocities of M dwarf binaries, observations at different epochs, and comparison between our measurements and precisely measured radial velocities to demonstrate a 4 km s{sup –1} accuracy.

  14. Developement of the method for realization of spectral irradiance scale featuring system of spectral comparisons

    International Nuclear Information System (INIS)

    Skerovic, V; Zarubica, V; Aleksic, M; Zekovic, L; Belca, I

    2010-01-01

    Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.

  15. Developement of the method for realization of spectral irradiance scale featuring system of spectral comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Skerovic, V; Zarubica, V; Aleksic, M [Directorate of measures and precious metals, Optical radiation Metrology department, Mike Alasa 14, 11000 Belgrade (Serbia); Zekovic, L; Belca, I, E-mail: vladanskerovic@dmdm.r [Faculty of Physics, Department for Applied physics and metrology, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2010-10-15

    Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.

  16. A Simple Spectral Observer

    Directory of Open Access Journals (Sweden)

    Lizeth Torres

    2018-05-01

    Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.

  17. Estimating Pasture Quality of Fresh Vegetation Based on Spectral Slope of Mixed Data of Dry and Fresh Vegetation—Method Development

    Directory of Open Access Journals (Sweden)

    Rachel Lugassi

    2015-06-01

    Full Text Available The main objective of the present study was to apply a slope-based spectral method to both dry and fresh pasture vegetation. Differences in eight spectral ranges were identified across the near infrared-shortwave infrared (NIR-SWIR that were indicative of changes in chemical properties. Slopes across these ranges were calculated and a partial least squares (PLS analytical model was constructed for the slopes vs. crude protein (CP and neutral detergent fiber (NDF contents. Different datasets with different numbers of fresh/dry samples were constructed to predict CP and NDF contents. When using a mixed-sample dataset with dry-to-fresh ratios of 85%:15% and 75%:25%, the correlations of CP (R2 = 0.95, in both and NDF (R2 = 0.84 and 0.82, respectively were almost as high as when using only dry samples (0.97 and 0.85, respectively. Furthermore, satisfactory correlations were obtained with a dry-to-fresh ratio of 50%:50% for CP (R2 = 0.92. The results of our study are especially encouraging because CP and NDF contents could be predicted even though some of the selected spectral regions were directly affected by atmospheric water vapor or water in the plants.

  18. Estimation of stops' spectral place cues using multitaper techniques Estimação das características espectrais relacionadas com o ponto de articulação de oclusivas utilizando a técnica multitaper

    Directory of Open Access Journals (Sweden)

    Marisa Lobo Lousada

    2012-01-01

    Full Text Available This study focuses on the spectral characteristics of the European Portuguese stops /p, b, t, d, k, g/ produced by six native speakers. We analysed the spectral peaks and troughs by means of multitaper spectra and performed a parameterisation of the stop spectra using slope and moment measures. In comparison to traditional spectral estimations, multitaper is more exact and, more importantly, not limited to a stationary signal length necessary for the analysis window. Therefore, it is well-suited for the rather short duration of the burst of a stop. Results show that the burst characteristics vary with place of articulation. While the global spectral frequencies match the data in classical literature, it is shown that other spectral measures in our data do not follow the typical classical spectral patterns. It is discussed whether these differences are due to the use of different methodology, or substantial cross-linguistic differences in the spectral characteristics.Este estudo analisa as caraterísticas espetrais das oclusivas /p, b, t, d, k, g/ do Português Europeu produzidas por seis informantes nativos. Procedeu-se à análise dos picos e dos vales espetrais (espetros multitaper e à parametrização das caraterísticas espetrais através da análise dos declives dos espetros e do cálculo dos momentos de distribuição. Comparativamente às análises espetrais tradicionais, a análise multitaper permite um maior controlo da variância associada a este tipo de sinais fazendo uso de apenas uma curta janela, o que se adequa às caraterísticas do burst das oclusivas. Os resultados mostram que as caraterísticas do burst variam de acordo com o ponto de articulação. As frequências espetrais obtidas correspondem aos resultados publicados na literatura clássica. No entanto, verifica-se que outras medidas espetrais, no presente estudo, não estão de acordo com os padrões espetrais clássicos. É discutido se estas diferenças se devem ao uso

  19. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Luo, Jing; Yang, Yongying; Zhou, Yudi; Zhang, Yupeng; Duan, Lulin; Su, Lin; Yang, Liming; Shen, Yibing; Wang, Kaiwei; Bai, Jian

    2015-05-04

    A field-widened Michelson interferometer (FWMI) is developed to act as the spectral discriminator in high-spectral-resolution lidar (HSRL). This realization is motivated by the wide-angle Michelson interferometer (WAMI) which has been used broadly in the atmospheric wind and temperature detection. This paper describes an independent theoretical framework about the application of the FWMI in HSRL for the first time. In the framework, the operation principles and application requirements of the FWMI are discussed in comparison with that of the WAMI. Theoretical foundations for designing this type of interferometer are introduced based on these comparisons. Moreover, a general performance estimation model for the FWMI is established, which can provide common guidelines for the performance budget and evaluation of the FWMI in the both design and operation stages. Examples incorporating many practical imperfections or conditions that may degrade the performance of the FWMI are given to illustrate the implementation of the modeling. This theoretical framework presents a complete and powerful tool for solving most of theoretical or engineering problems encountered in the FWMI application, including the designing, parameter calibration, prior performance budget, posterior performance estimation, and so on. It will be a valuable contribution to the lidar community to develop a new generation of HSRLs based on the FWMI spectroscopic filter.

  20. Remote sensing of species diversity using Landsat 8 spectral variables

    Science.gov (United States)

    Madonsela, Sabelo; Cho, Moses Azong; Ramoelo, Abel; Mutanga, Onisimo

    2017-11-01

    The application of remote sensing in biodiversity estimation has largely relied on the Normalized Difference Vegetation Index (NDVI). The NDVI exploits spectral information from red and near infrared bands of Landsat images and it does not consider canopy background conditions hence it is affected by soil brightness which lowers its sensitivity to vegetation. As such NDVI may be insufficient in explaining tree species diversity. Meanwhile, the Landsat program also collects essential spectral information in the shortwave infrared (SWIR) region which is related to plant properties. The study was intended to: (i) explore the utility of spectral information across Landsat-8 spectrum using the Principal Component Analysis (PCA) and estimate alpha diversity (α-diversity) in the savannah woodland in southern Africa, and (ii) define the species diversity index (Shannon (H‧), Simpson (D2) and species richness (S) - defined as number of species in a community) that best relates to spectral variability on the Landsat-8 Operational Land Imager dataset. We designed 90 m × 90 m field plots (n = 71) and identified all trees with a diameter at breast height (DbH) above 10 cm. H‧, D2 and S were used to quantify tree species diversity within each plot and the corresponding spectral information on all Landsat-8 bands were extracted from each field plot. A stepwise linear regression was applied to determine the relationship between species diversity indices (H‧, D2 and S) and Principal Components (PCs), vegetation indices and Gray Level Co-occurrence Matrix (GLCM) texture layers with calibration (n = 46) and test (n = 23) datasets. The results of regression analysis showed that the Simple Ratio Index derivative had a higher relationship with H‧, D2 and S (r2= 0.36; r2= 0.41; r2= 0.24 respectively) compared to NDVI, EVI, SAVI or their derivatives. Moreover the Landsat-8 derived PCs also had a higher relationship with H‧ and D2 (r2 of 0.36 and 0.35 respectively) than the

  1. Core barrel motion calibration factor calculation

    International Nuclear Information System (INIS)

    Shahrokhi, F.; Robinson, J.C.

    1976-01-01

    Neutron transport theory calculations were performed to obtain a calibration factor for inferring core-barrel motion from spectral density data using excore ionization chambers in PWRs. The analysis of core-barrel movement was based on the postulate that the movement is a cantilevered type, with the preferred direction x-x'

  2. Scalar Calibration of Vector Magnetometers

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz

    2000-01-01

    The calibration parameters of a vector magnetometer are estimated only by the use of a scalar reference magnetometer. The method presented in this paper differs from those previously reported in its linearized parametrization. This allows the determination of three offsets or signals in the absence...

  3. Calibration of denaturing agarose gels for molecular weight estimation of DNA: size determination of the single-stranded genomes of parvoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, C.E. (Oak Ridge National Lab., TN); Schmoyer, R.L.; Bates, R.C.; Mitra, S.

    1982-01-01

    Vertical slab gel electrophoresis of DNA with CH/sub 3/HgOH-containing agarose produces sharp bands whose mobilities are suitable for size estimation of single-stranded DNA containing 600 to 20,000 bases. The relationship of electrophoretic mobility to size of DNA over this range is a smooth, S-shaped function, and an empirical model was developed to express the relationship. The model involves terms in squared and reciprocal mobilities, and produced excellent fit of known standard markers to measured mobilities. It was used to estimate the sizes of six parvovirus DNAs: Kilham rat virus (KRV), H-1, LuIII, and minute virus of mice (MVM) DNAs had molecular weights of 1.66 to 1.70 x 10/sup 6/, while the molecular weight of bovine parvovirus (BPV) DNA was 1.84 x 10/sup 6/ and that of adenoassociated virus (AAV) DNA was 1.52 x 10/sup 6/.

  4. Calibration of the Herschel SPIRE Fourier Transform Spectrometer

    OpenAIRE

    Swinyard, Bruce; Polehampton, E. T.; Hopwood, R.; Valtchanov, I.; Lu, N.; Fulton, T.; Benielli, D.; Imhof, P.; Marchili, N.; Baluteau, J.- P.; Bendo, G. J.; Ferlet, M.; Griffin, Matthew Jason; Lim, T. L.; Makiwa, G.

    2014-01-01

    The Herschel Spectral and Photometric REceiver (SPIRE) instrument consists of an imaging photometric camera and an imaging Fourier Transform Spectrometer (FTS), both operating over a frequency range of ∼450–1550 GHz. In this paper, we briefly review the FTS design, operation, and data reduction, and describe in detail the approach taken to relative calibration (removal of instrument signatures) and absolute calibration against standard astronomical sources. The calibration scheme assumes a sp...

  5. In-flight spectral performance monitoring of the Airborne Prism Experiment.

    Science.gov (United States)

    D'Odorico, Petra; Alberti, Edoardo; Schaepman, Michael E

    2010-06-01

    Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption features present in the Sun, atmosphere, or ground, and their stability. The assessment of instrument performance in two different environments, e.g., laboratory and airborne, using precisely the same calibration reference, has not been possible so far. The Airborne Prism Experiment (APEX), an airborne dispersive pushbroom imaging spectrometer, uses an onboard in-flight characterization (IFC) facility, which makes it possible to monitor the sensor's performance in terms of spectral, radiometric, and geometric stability in flight and in the laboratory. We discuss in detail a new method for the monitoring of spectral instrument performance. The method relies on the monitoring of spectral shifts by comparing instrument-induced movements of absorption features on ground and in flight. Absorption lines originate from spectral filters, which intercept the full field of view (FOV) illuminated using an internal light source. A feature-fitting algorithm is used for the shift estimation based on Pearson's correlation coefficient. Environmental parameter monitoring, coregistered on board with the image and calibration data, revealed that differential pressure and temperature in the baffle compartment are the main driving parameters explaining the trend in spectral performance deviations in the time and the space (across-track) domains, respectively. The results presented in this paper show that the system in its current setup needs further improvements to reach a stable performance. Findings provided useful guidelines for the instrument revision currently under way. The main aim of the revision is the stabilization of the instrument for a range of temperature and pressure conditions

  6. The spectral irradiance traceability chain at PTB

    International Nuclear Information System (INIS)

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-01-01

    Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Système international d’unités, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck’s radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed

  7. The spectral irradiance traceability chain at PTB

    Energy Technology Data Exchange (ETDEWEB)

    Sperfeld, P.; Pape, S.; Nevas, S. [Physikalisch-Technische Bundesanstalt, Bundesallee 10, 381160 Braunschweig (Germany)

    2013-05-10

    Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties

  8. Efficient Estimation of Spectral Moments and the Polarimetric Variables on Weather Radars, Sonars, Sodars, Acoustic Flow Meters, Lidars, and Similar Active Remote Sensing Instruments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method for estimation of Doppler spectrum, its moments, and polarimetric variables on pulsed weather radars which uses over sampled echo components at a rate...

  9. The method of separation for evolutionary spectral density estimation of multi-variate and multi-dimensional non-stationary stochastic processes

    KAUST Repository

    Schillinger, Dominik; Stefanov, Dimitar; Stavrev, Atanas

    2013-01-01

    -variate geometric imperfection models from strongly narrow-band measurements in I-beams and cylindrical shells. Finally, the application of the method of separation based estimates for the stochastic buckling analysis of the example structures is briefly discussed

  10. DEM Calibration Approach: design of experiment

    Science.gov (United States)

    Boikov, A. V.; Savelev, R. V.; Payor, V. A.

    2018-05-01

    The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.

  11. Radionuclide calibrators performance evaluation

    International Nuclear Information System (INIS)

    Mora Ramirez, E.; Zeledon Fonseca, P.; Jimenez Cordero, M.

    2008-01-01

    Radionuclide calibrators are used to estimate accurately activity prior to administration to a patient, so it is very important that this equipment meets its performance requirements. The purpose of this paper is to compare the commercially available 'Calicheck' (Calcorp. Inc), used to assess linearity, versus the well-known source decay method, and also to show our results after performing several recommended quality control tests. The parameters that we wanted to evaluate were carried on using the Capintec CRC-15R and CRC-15 β radionuclide calibrators. The evaluated tests were: high voltage, display, zero adjust, background, reproducibility, source constancy, accuracy, precision and linearity. The first six tests were evaluated on the daily practice, here we analyzed the 2007 recorded data; and the last three were evaluated once a year. During the daily evaluation both calibrators performance were satisfactory comparing with the manufacture's requirements. The accuracy test show result within the ± 10% allowed for a field instrument. Precision performance is within the ± 1 % allowed. On the other hand, the linearity test shows that using the source decay method the relative coefficient is 0.9998, for both equipment and using the Calicheck the relative coefficient is 0.997. However, looking the percentage of error, during the 'Calicheck' test, its range goes from 0.0 % up to -25.35%, and using the source decay method, the range goes from 0.0 % up to -31.05 %, taking into account both instruments. Checking the 'Calicheck' results we can see that the results varying randomly, but using the source decay method the percentage of error increase as the source activity decrease. We conclude that both devices meet its manufactures requirements, in the case of the linearity using the decay method, decreasing the activity source, increasing the percentage of error, this may happen because of the equipment age. (author)

  12. Spectral CT of the extremities with a silicon strip photon counting detector

    Science.gov (United States)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized regularization.

  13. Radiometric Calibration of Osmi Imagery Using Solar Calibration

    Directory of Open Access Journals (Sweden)

    Dong-Han Lee

    2000-12-01

    Full Text Available OSMI (Ocean Scanning Multi-Spectral Imager raw image data (Level 0 were acquired and radiometrically corrected. We have applied two methods, using solar & dark calibration data from OSMI sensor and comparing with the SeaWiFS data, to the radiometric correction of OSMI raw image data. First, we could get the values of the gain and the offset for each pixel and each band from comparing the solar & dark calibration data with the solar input radiance values, calculated from the transmittance, BRDF (Bidirectional Reflectance Distribution Function and the solar incidence angle (¥â,¥è of OSMI sensor. Applying this calibration data to OSMI raw image data, we got the two odd results, the lower value of the radiometric corrected image data than the expected value, and the Venetian Blind Effect in the radiometric corrected image data. Second, we could get the reasonable results from comparing OSMI raw image data with the SeaWiFS data, and get a new problem of OSMI sensor.

  14. Mechanics of log calibration

    International Nuclear Information System (INIS)

    Waller, W.C.; Cram, M.E.; Hall, J.E.

    1975-01-01

    For any measurement to have meaning, it must be related to generally accepted standard units by a valid and specified system of comparison. To calibrate well-logging tools, sensing systems are designed which produce consistent and repeatable indications over the range for which the tool was intended. The basics of calibration theory, procedures, and calibration record presentations are reviewed. Calibrations for induction, electrical, radioactivity, and sonic logging tools will be discussed. The authors' intent is to provide an understanding of the sources of errors, of the way errors are minimized in the calibration process, and of the significance of changes in recorded calibration data

  15. Calibrated infrared ground/air radiometric spectrometer

    Science.gov (United States)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  16. Accuracy of contrast-enhanced spectral mammography for estimating residual tumor size after neoadjuvant chemotherapy in patients with breast cancer: a feasibility study.

    Science.gov (United States)

    Barra, Filipe Ramos; de Souza, Fernanda Freire; Camelo, Rosimara Eva Ferreira Almeida; Ribeiro, Andrea Campos de Oliveira; Farage, Luciano

    2017-01-01

    To assess the feasibility of contrast-enhanced spectral mammography (CESM) of the breast for assessing the size of residual tumors after neoadjuvant chemotherapy (NAC). In breast cancer patients who underwent NAC between 2011 and 2013, we evaluated residual tumor measurements obtained with CESM and full-field digital mammography (FFDM). We determined the concordance between the methods, as well as their level of agreement with the pathology. Three radiologists analyzed eight CESM and FFDM measurements separately, considering the size of the residual tumor at its largest diameter and correlating it with that determined in the pathological analysis. Interobserver agreement was also evaluated. The sensitivity, specificity, positive predictive value, and negative predictive value were higher for CESM than for FFDM (83.33%, 100%, 100%, and 66% vs. 50%, 50%, 50%, and 25%, respectively). The CESM measurements showed a strong, consistent correlation with the pathological findings (correlation coefficient = 0.76-0.92; intraclass correlation coefficient = 0.692-0.886). The correlation between the FFDM measurements and the pathological findings was not statistically significant, with questionable consistency (intraclass correlation coefficient = 0.488-0.598). Agreement with the pathological findings was narrower for CESM measurements than for FFDM measurements. Interobserver agreement was higher for CESM than for FFDM (0.94 vs. 0.88). CESM is a feasible means of evaluating residual tumor size after NAC, showing a good correlation and good agreement with pathological findings. For CESM measurements, the interobserver agreement was excellent.

  17. Accuracy of contrast-enhanced spectral mammography for estimating residual tumor size after neoadjuvant chemotherapy in patients with breast cancer: a feasibility study

    Directory of Open Access Journals (Sweden)

    Filipe Ramos Barra

    Full Text Available Abstract Objective: To assess the feasibility of contrast-enhanced spectral mammography (CESM of the breast for assessing the size of residual tumors after neoadjuvant chemotherapy (NAC. Materials and methods: In breast cancer patients who underwent NAC between 2011 and 2013, we evaluated residual tumor measurements obtained with CESM and full-field digital mammography (FFDM. We determined the concordance between the methods, as well as their level of agreement with the pathology. Three radiologists analyzed eight CESM and FFDM measurements separately, considering the size of the residual tumor at its largest diameter and correlating it with that determined in the pathological analysis. Interobserver agreement was also evaluated. Results: The sensitivity, specificity, positive predictive value, and negative predictive value were higher for CESM than for FFDM (83.33%, 100%, 100%, and 66% vs. 50%, 50%, 50%, and 25%, respectively. The CESM measurements showed a strong, consistent correlation with the pathological findings (correlation coefficient = 0.76-0.92; intraclass correlation coefficient = 0.692-0.886. The correlation between the FFDM measurements and the pathological findings was not statistically significant, with questionable consistency (intraclass correlation coefficient = 0.488-0.598. Agreement with the pathological findings was narrower for CESM measurements than for FFDM measurements. Interobserver agreement was higher for CESM than for FFDM (0.94 vs. 0.88. Conclusion: CESM is a feasible means of evaluating residual tumor size after NAC, showing a good correlation and good agreement with pathological findings. For CESM measurements, the interobserver agreement was excellent.

  18. Comparative study of the efficiency of computed univariate and multivariate methods for the estimation of the binary mixture of clotrimazole and dexamethasone using two different spectral regions

    Science.gov (United States)

    Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Lotfy, Hayam Mahmoud; Shehata, Mostafa Abdel-Aty

    2018-04-01

    Three methods of analysis are conducted that need computational procedures by the Matlab® software. The first is the univariate mean centering method which eliminates the interfering signal of the one component at a selected wave length leaving the amplitude measured to represent the component of interest only. The other two multivariate methods named PLS and PCR depend on a large number of variables that lead to extraction of the maximum amount of information required to determine the component of interest in the presence of the other. Good accurate and precise results are obtained from the three methods for determining clotrimazole in the linearity range 1-12 μg/mL and 75-550 μg/mL with dexamethasone acetate 2-20 μg/mL in synthetic mixtures and pharmaceutical formulation using two different spectral regions 205-240 nm and 233-278 nm. The results obtained are compared statistically to each other and to the official methods.

  19. Providing radiometric traceability for the calibration home base of DLR by PTB

    Energy Technology Data Exchange (ETDEWEB)

    Taubert, D. R.; Hollandt, J.; Sperfeld, P.; Pape, S.; Hoepe, A.; Hauer, K.-O. [Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, 10587 Berlin (Germany); Gege, P.; Schwarzmaier, T.; Lenhard, K.; Baumgartner, A. [Deutsches Zentrum fuer Luft- und Raumfahrt, Institut fuer Methodik der Fernerkundung, 82234 Oberpfaffenhofen (Germany)

    2013-05-10

    A dedicated calibration technique was applied for the calibration of the spectral radiance transfer standard (RASTA) of the German Aerospace Center (DLR) at the Physikalisch-Technische Bundesanstalt (PTB), consisting of two independent but complementing calibration procedures to provide redundancy and smallest possible calibration uncertainties. Procedure I included two calibration steps: In a first step the optical radiation source of RASTA, an FEL lamp, was calibrated in terms of its spectral irradiance E{sub {lambda}}({lambda}) in the wavelength range from 350 nm to 2400 nm using the PTB Spectral Irradiance Calibration Equipment (SPICE), while in a second step the spectral radiance factor {beta}{sub 0 Degree-Sign :45 Degree-Sign }({lambda}) of the RASTA reflection standard was calibrated in a 0 Degree-Sign :45 Degree-Sign -viewing geometry in the wavelength range from 350 nm to 1700 nm at the robot-based gonioreflectometer facility of PTB. The achieved relative standard uncertainties (k= 1) range from 0.6 % to 3.2 % and 0.1 % to 0.6 % respectively. Procedure II was completely independent from procedure I and allowed to cover the entire spectral range of RASTA from 350 nm to 2500 nm. In the second procedure, the 0 Degree-Sign :45 Degree-Sign -viewing geometry spectral radiance L{sub {lambda},0 Degree-Sign :45 Degree-Sign }({lambda}) of RASTA was directly calibrated at the Spectral Radiance Comparator Facility (SRCF) of PTB. The relative uncertainties for this calibration procedure range from 0.8 % in the visible up to 7.5 % at 2500 nm (k= 1). In the overlapping spectral range of both calibration procedures the calculated spectral radiance L{sub {lambda},0 Degree-Sign :45 Degree-Sign ,calc}({lambda}) from procedure I is in good agreement with the direct measurement of procedure II, i.e. well within the combined expanded uncertainties (k= 2) of both procedures.

  20. Comparative analysis of spectral unmixing and neural networks for estimating small diameter tree above-ground biomass in the State of Mississippi

    Science.gov (United States)

    Moham P. Tiruveedhula; Joseph Fan; Ravi R. Sadasivuni; Surya S. Durbha; David L. Evans

    2010-01-01

    The accumulation of small diameter trees (SDTs) is becoming a nationwide concern. Forest management practices such as fire suppression and selective cutting of high grade timber have contributed to an overabundance of SDTs in many areas. Alternative value-added utilization of SDTs (for composite wood products and biofuels) has prompted the need to estimate their...

  1. Compact blackbody calibration sources for in-flight calibration of spaceborne infrared instruments

    Science.gov (United States)

    Scheiding, S.; Driescher, H.; Walter, I.; Hanbuch, K.; Paul, M.; Hartmann, M.; Scheiding, M.

    2017-11-01

    High-emissivity blackbodies are mandatory as calibration sources in infrared radiometers. Besides the requirements on the high spectral emissivity and low reflectance, constraints regarding energy consumption, installation space and mass must be considered during instrument design. Cavity radiators provide an outstanding spectral emissivity to the price of installation space and mass of the calibration source. Surface radiation sources are mainly limited by the spectral emissivity of the functional coating and the homogeneity of the temperature distribution. The effective emissivity of a "black" surface can be optimized, by structuring the substrate with the aim to enlarge the ratio of the surface to its projection. Based on the experiences of the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) calibration source MBB3, the results of the surface structuring on the effective emissivity are described analytically and compared to the experimental performance. Different geometries are analyzed and the production methods are discussed. The high-emissivity temperature calibration source features values of 0.99 for wavelength from 5 μm to 10 μm and emissivity larger than 0.95 for the spectral range from 10 μm to 40 μm.

  2. Insulin production rate in normal man as an estimate for calibration of continuous intravenous insulin infusion in insulin-dependent diabetic patients.

    Science.gov (United States)

    Waldhäusl, W K; Bratusch-Marrain, P R; Francesconi, M; Nowotny, P; Kiss, A

    1982-01-01

    This study examines the feasibility of deriving the 24-h insulin requirement of insulin-dependent diabetic patients who were devoid of any endogenous insulin release (IDD) from the insulin-production rate (IPR) of healthy man (basal, 17 mU/min; stimulated 1.35 U/12.5 g glucose). To this end, continuous intravenous insulin infusion (CIVII) was initiated at a precalculated rate of 41.2 +/- 4.6 (SD) U/24 h in IDD (N - 12). Blood glucose profiles were compared with those obtained during intermittent subcutaneous (s.c.) insulin therapy (IIT) and those of healthy controls (N = 7). Regular insulin (Hoechst CS) was infused with an adapted Mill Hill Infuser at a basal infusion rate of 1.6 U/h (6:00 a.m. to 8:00 p.m.), and of 0.8 U/h from 8:00 p.m. to 6:00 a.m. Preprandial insulin (3.2-6.4 U) was added for breakfast, lunch, and dinner. Daily individual food intake totaled 7688 +/- 784 kJ (1836 +/- 187 kcal)/24 h including 184 +/- 37 g of glucose. Proper control of blood glucose (BG) (mean BG 105 +/- 10 mg/dl; mean amplitude of glycemic excursions 54 +/- 18 mg/dl; and 1 h postprandial BG levels not exceeding 160 mg/dl) and of plasma concentrations of beta-hydroxybutyrate and lactate was maintained by 41.4 +/- 4.4 U insulin/24 h. Although BG values only approximated the upper normal range as seen in healthy controls, they were well within the range reported by others during CIVII. Therefore, we conclude that in adult IDD completely devoid of endogenous insulin (1) the IPR of normal man can be used during CIVII as an estimate for the patient's minimal insulin requirement per 24 h, and (2) this approach allows for a blood glucose profile close to the upper range of a normal control group. Thus, deriving a patient's daily insulin dose from the insulin production rate of healthy man may add an additional experimental protocol which aids in making general calculations of a necessary insulin dose instead of using trial and error or a closed-loop insulin infusion system.

  3. Synthesis Polarimetry Calibration

    Science.gov (United States)

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  4. Another look at volume self-calibration: calibration and self-calibration within a pinhole model of Scheimpflug cameras

    International Nuclear Information System (INIS)

    Cornic, Philippe; Le Besnerais, Guy; Champagnat, Frédéric; Illoul, Cédric; Cheminet, Adam; Le Sant, Yves; Leclaire, Benjamin

    2016-01-01

    We address calibration and self-calibration of tomographic PIV experiments within a pinhole model of cameras. A complete and explicit pinhole model of a camera equipped with a 2-tilt angles Scheimpflug adapter is presented. It is then used in a calibration procedure based on a freely moving calibration plate. While the resulting calibrations are accurate enough for Tomo-PIV, we confirm, through a simple experiment, that they are not stable in time, and illustrate how the pinhole framework can be used to provide a quantitative evaluation of geometrical drifts in the setup. We propose an original self-calibration method based on global optimization of the extrinsic parameters of the pinhole model. These methods are successfully applied to the tomographic PIV of an air jet experiment. An unexpected by-product of our work is to show that volume self-calibration induces a change in the world frame coordinates. Provided the calibration drift is small, as generally observed in PIV, the bias on the estimated velocity field is negligible but the absolute location cannot be accurately recovered using standard calibration data. (paper)

  5. ORNL calibrations facility

    International Nuclear Information System (INIS)

    Berger, C.D.; Gupton, E.D.; Lane, B.H.; Miller, J.H.; Nichols, S.W.

    1982-08-01

    The ORNL Calibrations Facility is operated by the Instrumentation Group of the Industrial Safety and Applied Health Physics Division. Its primary purpose is to maintain radiation calibration standards for calibration of ORNL health physics instruments and personnel dosimeters. This report includes a discussion of the radioactive sources and ancillary equipment in use and a step-by-step procedure for calibration of those survey instruments and personnel dosimeters in routine use at ORNL

  6. Quantitative Spectral Radiance Measurements in the HYMETS Arc Jet

    Science.gov (United States)

    Danehy, Paul M.; Hires, Drew V.; Johansen, Craig T.; Bathel, Brett F.; Jones, Stephen B.; Gragg, Jeffrey G.; Splinter, Scott C.

    2012-01-01

    Calibrated spectral radiance measurements of gaseous emission spectra have been obtained from the HYMETS (Hypersonic Materials Environmental Test System) 400 kW arc-heated wind tunnel at NASA Langley Research Center. A fiber-optic coupled spectrometer collected natural luminosity from the flow. Spectral radiance measurements are reported between 340 and 1000 nm. Both Silicon Carbide (SiC) and Phenolic Impregnated Carbon Ablator (PICA) samples were placed in the flow. Test gases studied included a mostly-N2 atmosphere (95% nitrogen, 5% argon), a simulated Earth Air atmosphere (75% nitrogen, 20% oxygen, 5% argon) and a simulated Martian atmosphere (71% carbon dioxide, 24% nitrogen, 5% argon). The bulk enthalpy of the flow was varied as was the location of the measurement. For the intermediate flow enthalpy tested (20 MJ/kg), emission from the Mars simulant gas was about 10 times higher than the Air flow and 15 times higher than the mostly-N2 atmosphere. Shock standoff distances were estimated from the spectral radiance measurements. Within-run, run-to-run and day-to-day repeatability of the emission were studied, with significant variations (15-100%) noted.

  7. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data - potential of unmanned aerial vehicle imagery

    Science.gov (United States)

    Roosjen, Peter P. J.; Brede, Benjamin; Suomalainen, Juha M.; Bartholomeus, Harm M.; Kooistra, Lammert; Clevers, Jan G. P. W.

    2018-04-01

    In addition to single-angle reflectance data, multi-angular observations can be used as an additional information source for the retrieval of properties of an observed target surface. In this paper, we studied the potential of multi-angular reflectance data for the improvement of leaf area index (LAI) and leaf chlorophyll content (LCC) estimation by numerical inversion of the PROSAIL model. The potential for improvement of LAI and LCC was evaluated for both measured data and simulated data. The measured data was collected on 19 July 2016 by a frame-camera mounted on an unmanned aerial vehicle (UAV) over a potato field, where eight experimental plots of 30 × 30 m were designed with different fertilization levels. Dozens of viewing angles, covering the hemisphere up to around 30° from nadir, were obtained by a large forward and sideways overlap of collected images. Simultaneously to the UAV flight, in situ measurements of LAI and LCC were performed. Inversion of the PROSAIL model was done based on nadir data and based on multi-angular data collected by the UAV. Inversion based on the multi-angular data performed slightly better than inversion based on nadir data, indicated by the decrease in RMSE from 0.70 to 0.65 m2/m2 for the estimation of LAI, and from 17.35 to 17.29 μg/cm2 for the estimation of LCC, when nadir data were used and when multi-angular data were used, respectively. In addition to inversions based on measured data, we simulated several datasets at different multi-angular configurations and compared the accuracy of the inversions of these datasets with the inversion based on data simulated at nadir position. In general, the results based on simulated (synthetic) data indicated that when more viewing angles, more well distributed viewing angles, and viewing angles up to larger zenith angles were available for inversion, the most accurate estimations were obtained. Interestingly, when using spectra simulated at multi-angular sampling configurations as

  8. Fabrication and calibration of FORTIS

    Science.gov (United States)

    Fleming, Brian T.; McCandliss, Stephan R.; Kaiser, Mary Elizabeth; Kruk, Jeffery; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Rapchun, David A.; Lyness, Eric; Moseley, S. H.; Siegmund, Oswald; Vallerga, John; Martin, Adrian

    2011-09-01

    The Johns Hopkins University sounding rocket group is entering the final fabrication phase of the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); a sounding rocket borne multi-object spectro-telescope designed to provide spectral coverage of 43 separate targets in the 900 - 1800 Angstrom bandpass over a 30' x 30' field-of- view. Using "on-the-fly" target acquisition and spectral multiplexing enabled by a GSFC microshutter array, FORTIS will be capable of observing the brightest regions in the far-UV of nearby low redshift (z ~ 0.002 - 0.02) star forming galaxies to search for Lyman alpha escape, and to measure the local gas-to-dust ratio. A large area (~ 45 mm x 170 mm) microchannel plate detector built by Sensor Sciences provides an imaging channel for targeting flanked by two redundant spectral outrigger channels. The grating is ruled directly onto the secondary mirror to increase efficiency. In this paper, we discuss the recent progress made in the development and fabrication of FORTIS, as well as the results of early calibration and characterization of our hardware, including mirror/grating measurements, detector performance, and early operational tests of the microshutter arrays.

  9. Fuel conditioning facility electrorefiner volume calibration

    International Nuclear Information System (INIS)

    Bucher, R.G.; Orechwa, Y.

    1995-01-01

    In one of the electrometallurgical process steps of the Fuel Conditioning Facility (FCF), die in-process nuclear material is dissolved in the electrorefiner tank in an upper layer of a mixture of liquid LiCl-KCl salt and a lower layer of liquid cadmium. The electrorefiner tank, as most process tanks, is not a smooth right-circular cylinder for which a single linear volume calibration curve could be fitted over the whole height of the tank. Rather, the tank contains many internal components, which cause systematic deviations from a single linear function. The nominal operating temperature of the electrorefiner is 500 degrees C although the salt and cadmium are introduced at 410 degrees C. The operating materials and temperatures preclude multiple calibration runs at operating conditions. In order to maximize the calibration information, multiple calibration runs were performed with water at room temperature. These data allow identification of calibration segments, and preliminary estimation of the calibration function and calibration uncertainties. The final calibration function is based on a combination of data from die water calibrations and the measurements made during the filling of the electrorefiner with salt and cadmium for operation

  10. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  11. A novel multivariate approach using science-based calibration for direct coating thickness determination in real-time NIR process monitoring.

    Science.gov (United States)

    Möltgen, C-V; Herdling, T; Reich, G

    2013-11-01

    This study demonstrates an approach, using science-based calibration (SBC), for direct coating thickness determination on heart-shaped tablets in real-time. Near-Infrared (NIR) spectra were collected during four full industrial pan coating operations. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film up to a film thickness of 28 μm. The application of SBC permits the calibration of the NIR spectral data without using costly determined reference values. This is due to the fact that SBC combines classical methods to estimate the coating signal and statistical methods for the noise estimation. The approach enabled the use of NIR for the measurement of the film thickness increase from around 8 to 28 μm of four independent batches in real-time. The developed model provided a spectroscopic limit of detection for the coating thickness of 0.64 ± 0.03 μm root-mean square (RMS). In the commonly used statistical methods for calibration, such as Partial Least Squares (PLS), sufficiently varying reference values are needed for calibration. For thin non-functional coatings this is a challenge because the quality of the model depends on the accuracy of the selected calibration standards. The obvious and simple approach of SBC eliminates many of the problems associated with the conventional statistical methods and offers an alternative for multivariate calibration. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  13. Identification of variables for site calibration and power curve assessment in complex terrain. Task 8, a literature survey on theory and practice of parameter identification, specification and estimation (ISE) techniques

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, J.P.; Leendertse, G.P. [ECN Wind, Petten (Netherlands)

    2001-04-01

    This document presents the literature survey results on Identification, Specification and Estimation (ISE) techniques for variables within the SiteParIden project. Besides an overview of the different general techniques also an overview is given on EU funded wind energy projects where some of these techniques have been applied more specifically. The main problem in applications like power performance assessment and site calibration is to establish an appropriate model for predicting the considered dependent variable with the aid of measured independent (explanatory) variables. In these applications detailed knowledge on what the relevant variables are and how their precise appearance in the model would be is typically missing. Therefore, the identification (of variables) and the specification (of the model relation) are important steps in the model building phase. For the determination of the parameters in the model a reliable variable estimation technique is required. In EU funded wind energy projects the linear regression technique is the most commonly applied tool for the estimation step. The linear regression technique may fail in finding reliable parameter estimates when the model variables are strongly correlated, either due to the experimental set-up or because of their particular appearance in the model. This situation of multicollinearity sometimes results in unrealistic parameter values, e.g. with the wrong algebraic sign. It is concluded that different approaches, like multi-binning can provide a better way of identifying the relevant variables. However further research in these applications is needed and it is recommended that alternative methods (neural networks, singular value decomposition etc.) should also be tested on their usefulness in a succeeding project. Increased interest in complex terrains, as feasible locations for wind farms, has also emphasised the need for adequate models. A common standard procedure to prescribe the statistical

  14. ESTABLISHING BRDF CALIBRATION CAPABILITIES THROUGH SHORTWAVE INFRARED

    OpenAIRE

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laborato...

  15. PU Vulpeculae at the time of spectral change in 1987

    Science.gov (United States)

    Gochermann, J.

    1991-10-01

    A flux-calibrated, low-resolution spectrum of the symbiotic variable PU Vul was obtained when it was changing from an absorption to an emission spectrum in August 1987. The spectral type of the hot component was derived from the Balmer discontinuity, the temperature derived by a Planck curve and by synthetic photometry deduced from the spectrum. A B6 Ia-Iab shell star with a temperature of 13,500 +/-300 K and reddened by interstellar extinction E(B-V) = 0.50 m was found, which harmonizes well with the expectations of Kenyon (1986) about the evolution of PU Vul. An upper limit for the distance of PU Vul was estimated as r = 5.6 +1.5/-1.1 kpc.

  16. Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM

    International Nuclear Information System (INIS)

    Stamatikos, Michael; Sakamoto, Taka; Band, David L.

    2008-01-01

    We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E peak ) values, for a conservative annual estimate of ∼30 GRBs. The addition of BAT's spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the ∼20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade.

  17. Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM

    International Nuclear Information System (INIS)

    Stamatikos, Michael; Sakamoto, Takanori; Band, David L.

    2008-01-01

    We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E peak ) values, for a conservative annual estimate of ∼30 GRBs. The addition of BAT/s spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the ∼20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade

  18. GOSAT and OCO-2 Inter-comparison on Measured Spectral Radiance and Retrieved Carbon Dioxide

    Science.gov (United States)

    Kataoka, F.; Kuze, A.; Shiomi, K.; Suto, H.; Crisp, D.; Bruegge, C. J.; Schwandner, F. M.

    2016-12-01

    TANSO-FTS onboard GOSAT and grating spectrometer on OCO-2 use different measurement techniques to measure carbon dioxide (CO2) and molecular oxygen (O2). Both instruments observe sunlight reflected from the Earth's surface in almost the same spectral range. As a first step in cross calibrating these two instruments, we compared spectral radiance observations within the three short wave infrared (SWIR) spectral bands centered on the O2 A-band (O2A), the weak CO2 band near 1.6 microns (Weak-CO2) and 2.06 micons (Strong-CO2) bands at temporally coincident and spatially collocated points. In this work, we reconciled the different size of the footprints and evaluated at various types of surface targets such as ocean, desert and forest. For radiometric inter-comparisons, we consider long term instrument sensitivity degradation in orbit and differences in viewing geometry and associated differences in surface bidirectional reflectance distribution function (BRDF). Measured spectral radiances agree very well within 5% for all bands. This presentation will summarize these comparisons of GOSAT and OCO-2 spectral radiance observations and associated estimates of carbon dioxide and related parameters retrieved with the same algorithm at matchup points. We will also discuss instrument related uncertainties from various target observations.

  19. Estimations of Nitrogen Concentration in Sugarcane Using Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Poonsak Miphokasap

    2018-04-01

    Full Text Available This study aims to estimate the spatial variation of sugarcane Canopy Nitrogen Concentration (CNC using spectral data, which were measured from a spaceborne hyperspectral image. Stepwise Multiple Linear Regression (SMLR and Support Vector Regression (SVR were applied to calibrate and validate the CNC estimation models. The raw spectral reflectance was transformed into a First-Derivative Spectrum (FDS and absorption features to remove the spectral noise and finally used as input variables. The results indicate that the estimation models developed by non-linear SVR based Radial Basis Function (RBF kernel yield the higher correlation coefficient with CNC compared with the models computed by SMLR. The best model shows the coefficient of determination value of 0.78 and Root Mean Square Error (RMSE value of 0.035% nitrogen. The narrow sensitive spectral wavelengths for quantifying nitrogen content in the combined cultivar environments existed mainly in the electromagnetic spectrum of the visible-red, longer portion of red edge, shortwave infrared regions and far-near infrared. The most important conclusion from this experiment is that spectral signals from the space hyperspectral data contain the meaningful information for quantifying sugarcane CNC across larger geographic areas. The nutrient deficient areas could be corrected by applying suitable farm management.

  20. A Comparative Investigation of the Combined Effects of Pre-Processing, Wavelength Selection, and Regression Methods on Near-Infrared Calibration Model Performance.

    Science.gov (United States)

    Wan, Jian; Chen, Yi-Chieh; Morris, A Julian; Thennadil, Suresh N

    2017-07-01

    Near-infrared (NIR) spectroscopy is being widely used in various fields ranging from pharmaceutics to the food industry for analyzing chemical and physical properties of the substances concerned. Its advantages over other analytical techniques include available physical interpretation of spectral data, nondestructive nature and high speed of measurements, and little or no need for sample preparation. The successful application of NIR spectroscopy relies on three main aspects: pre-processing of spectral data to eliminate nonlinear variations due to temperature, light scattering effects and many others, selection of those wavelengths that contribute useful information, and identification of suitable calibration models using linear/nonlinear regression . Several methods have been developed for each of these three aspects and many comparative studies of different methods exist for an individual aspect or some combinations. However, there is still a lack of comparative studies for the interactions among these three aspects, which can shed light on what role each aspect plays in the calibration and how to combine various methods of each aspect together to obtain the best calibration model. This paper aims to provide such a comparative study based on four benchmark data sets using three typical pre-processing methods, namely, orthogonal signal correction (OSC), extended multiplicative signal correction (EMSC) and optical path-length estimation and correction (OPLEC); two existing wavelength selection methods, namely, stepwise forward selection (SFS) and genetic algorithm optimization combined with partial least squares regression for spectral data (GAPLSSP); four popular regression methods, namely, partial least squares (PLS), least absolute shrinkage and selection operator (LASSO), least squares support vector machine (LS-SVM), and Gaussian process regression (GPR). The comparative study indicates that, in general, pre-processing of spectral data can play a significant

  1. Atmospheric stellar parameters for large surveys using FASMA, a new spectral synthesis package

    Science.gov (United States)

    Tsantaki, M.; Andreasen, D. T.; Teixeira, G. D. C.; Sousa, S. G.; Santos, N. C.; Delgado-Mena, E.; Bruzual, G.

    2018-02-01

    In the era of vast spectroscopic surveys focusing on Galactic stellar populations, astronomers want to exploit the large quantity and good quality of data to derive their atmospheric parameters without losing precision from automatic procedures. In this work, we developed a new spectral package, FASMA, to estimate the stellar atmospheric parameters (namely effective temperature, surface gravity and metallicity) in a fast and robust way. This method is suitable for spectra of FGK-type stars in medium and high resolution. The spectroscopic analysis is based on the spectral synthesis technique using the radiative transfer code, MOOG. The line list is comprised of mainly iron lines in the optical spectrum. The atomic data are calibrated after the Sun and Arcturus. We use two comparison samples to test our method, (i) a sample of 451 FGK-type dwarfs from the high-resolution HARPS spectrograph; and (ii) the Gaia-ESO benchmark stars using both high and medium resolution spectra. We explore biases in our method from the analysis of synthetic spectra covering the parameter space of our interest. We show that our spectral package is able to provide reliable results for a wide range of stellar parameters, different rotational velocities, different instrumental resolutions and for different spectral regions of the VLT-GIRAFFE spectrographs, used amongst others for the Gaia-ESO survey. FASMA estimates stellar parameters in less than 15 m for high-resolution and 3 m for medium-resolution spectra. The complete package is publicly available to the community.

  2. Validation of a densimeter calibration procedure for a secondary calibration laboratory

    International Nuclear Information System (INIS)

    Alpizar Herrera, Juan Carlos

    2014-01-01

    A survey was conducted to quantify the need for calibration of a density measurement instrument at the research units at the Sede Rodrigo Facio of the Universidad de Costa Rica. A calibration procedure was documented for the instrument that presented the highest demand in the survey by the calibration service. A study of INTE-ISO/IEC 17025: 2005 and specifically in section 5.4 of this standard was done, to document the procedure for calibrating densimeters. Densimeter calibration procedures and standards were sought from different national and international sources. The method of hydrostatic weighing or Cuckow method was the basis of the defined procedure. Documenting the calibration procedure and creating other documents was performed for data acquisition log, intermediate calculation log and calibration certificate copy. A veracity test was performed using as reference laboratory a laboratory of calibration secondary national as part of the validation process of the documented procedure. The results of the E_n statistic of 0.41; 0.34 and 0.46 for the calibration points 90%, 50% and 10% were obtained for the densimeter scale respectively. A reproducibility analysis of the method was performed with satisfactory results. Different suppliers were contacted to estimate the economic costs of the equipment and materials, needed to develop the documented method of densimeter calibration. The acquisition of an analytical balance was recommended, instead of a precision scale, in order to improve the results obtained with the documented method [es

  3. The Calibration Home Base for Imaging Spectrometers

    Directory of Open Access Journals (Sweden)

    Johannes Felix Simon Brachmann

    2016-08-01

    Full Text Available The Calibration Home Base (CHB is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric calibration as well as the characterization of sensor signal dependency on polarization are realized in a precise and highly automated fashion. This allows to carry out a wide range of time consuming measurements in an ecient way. The implementation of ISO 9001 standards in all procedures ensures a traceable quality of results. Spectral measurements in the wavelength range 380–1000 nm are performed to a wavelength uncertainty of +- 0.1 nm, while an uncertainty of +-0.2 nm is reached in the wavelength range 1000 – 2500 nm. Geometric measurements are performed at increments of 1.7 µrad across track and 7.6 µrad along track. Radiometric measurements reach an absolute uncertainty of +-3% (k=1. Sensor artifacts, such as caused by stray light will be characterizable and correctable in the near future. For now, the CHB is suitable for the characterization of pushbroom sensors, spectrometers and cameras. However, it is planned to extend the CHBs capabilities in the near future such that snapshot hyperspectral imagers can be characterized as well. The calibration services of the CHB are open to third party customers from research institutes as well as industry.

  4. A simple optical spectral calibration technique for pulsed THz sources

    NARCIS (Netherlands)

    Wijnen, F.J.P.; G. Berden,; Jongma, R.T.

    2010-01-01

    We have quantified the sensitivity of a simple method to measurethe frequency spectrum of pulsed terahertz (THz) radiation. The THzpulses are upconverted to the optical regime by sideband generation in a zinctelluride (ZnTe) crystal using a continuous wave (cw) narrow-bandwidthnear-infrared laser. A

  5. Invited Article: Deep Impact instrument calibration

    International Nuclear Information System (INIS)

    Klaasen, Kenneth P.; Mastrodemos, Nickolaos; A'Hearn, Michael F.; Farnham, Tony; Groussin, Olivier; Ipatov, Sergei; Li Jianyang; McLaughlin, Stephanie; Sunshine, Jessica; Wellnitz, Dennis; Baca, Michael; Delamere, Alan; Desnoyer, Mark; Thomas, Peter; Hampton, Donald; Lisse, Carey

    2008-01-01

    Calibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified. The point spread functions (PSFs) of the medium resolution instrument and its twin impactor targeting sensor are near the theoretical minimum [∼1.7 pixels full width at half maximum (FWHM)]. However, the high resolution instrument camera was found to be out of focus with a PSF FWHM of ∼9 pixels. The charge coupled device (CCD) read noise is ∼1 DN. Electrical cross-talk between the CCD detector quadrants is correctable to <2 DN. The IR spectrometer response nonlinearity is correctable to ∼1%. Spectrometer read noise is ∼2 DN. The variation in zero-exposure signal level with time and spectrometer temperature is not fully characterized; currently corrections are good to ∼10 DN at best. Wavelength mapping onto the detector is known within 1 pixel; spectral lines have a FWHM of ∼2 pixels. About 1% of the IR detector pixels behave badly and remain uncalibrated. The spectrometer exhibits a faint ghost image from reflection off a beamsplitter. Instrument absolute radiometric calibration accuracies were determined generally to <10% using star imaging. Flat-field calibration reduces pixel-to-pixel response differences to ∼0.5% for the cameras and <2% for the spectrometer. A standard calibration image processing pipeline is used to produce archival image files for analysis by researchers.

  6. Invited Article: Deep Impact instrument calibration.

    Science.gov (United States)

    Klaasen, Kenneth P; A'Hearn, Michael F; Baca, Michael; Delamere, Alan; Desnoyer, Mark; Farnham, Tony; Groussin, Olivier; Hampton, Donald; Ipatov, Sergei; Li, Jianyang; Lisse, Carey; Mastrodemos, Nickolaos; McLaughlin, Stephanie; Sunshine, Jessica; Thomas, Peter; Wellnitz, Dennis

    2008-09-01

    Calibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified. The point spread functions (PSFs) of the medium resolution instrument and its twin impactor targeting sensor are near the theoretical minimum [ approximately 1.7 pixels full width at half maximum (FWHM)]. However, the high resolution instrument camera was found to be out of focus with a PSF FWHM of approximately 9 pixels. The charge coupled device (CCD) read noise is approximately 1 DN. Electrical cross-talk between the CCD detector quadrants is correctable to <2 DN. The IR spectrometer response nonlinearity is correctable to approximately 1%. Spectrometer read noise is approximately 2 DN. The variation in zero-exposure signal level with time and spectrometer temperature is not fully characterized; currently corrections are good to approximately 10 DN at best. Wavelength mapping onto the detector is known within 1 pixel; spectral lines have a FWHM of approximately 2 pixels. About 1% of the IR detector pixels behave badly and remain uncalibrated. The spectrometer exhibits a faint ghost image from reflection off a beamsplitter. Instrument absolute radiometric calibration accuracies were determined generally to <10% using star imaging. Flat-field calibration reduces pixel-to-pixel response differences to approximately 0.5% for the cameras and <2% for the spectrometer. A standard calibration image processing pipeline is used to produce archival image files for analysis by researchers.

  7. Spectral Compressive Sensing with Polar Interpolation

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Dadkhahi, Hamid; F. Duarte, Marco

    2013-01-01

    . In this paper, we introduce a greedy recovery algorithm that leverages a band-exclusion function and a polar interpolation function to address these two issues in spectral compressive sensing. Our algorithm is geared towards line spectral estimation from compressive measurements and outperforms most existing...

  8. A polychromatic adaption of the Beer-Lambert model for spectral decomposition

    Science.gov (United States)

    Sellerer, Thorsten; Ehn, Sebastian; Mechlem, Korbinian; Pfeiffer, Franz; Herzen, Julia; Noël, Peter B.

    2017-03-01

    We present a semi-empirical forward-model for spectral photon-counting CT which is fully compatible with state-of-the-art maximum-likelihood estimators (MLE) for basis material line integrals. The model relies on a minimum calibration effort to make the method applicable in routine clinical set-ups with the need for periodic re-calibration. In this work we present an experimental verifcation of our proposed method. The proposed method uses an adapted Beer-Lambert model, describing the energy dependent attenuation of a polychromatic x-ray spectrum using additional exponential terms. In an experimental dual-energy photon-counting CT setup based on a CdTe detector, the model demonstrates an accurate prediction of the registered counts for an attenuated polychromatic spectrum. Thereby deviations between model and measurement data lie within the Poisson statistical limit of the performed acquisitions, providing an effectively unbiased forward-model. The experimental data also shows that the model is capable of handling possible spectral distortions introduced by the photon-counting detector and CdTe sensor. The simplicity and high accuracy of the proposed model provides a viable forward-model for MLE-based spectral decomposition methods without the need of costly and time-consuming characterization of the system response.

  9. Improving Photometric Calibration of Meteor Video Camera Systems

    Science.gov (United States)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera bandpass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at approx. 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  10. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  11. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    Matthews, P.J.; Song, J.J.

    1993-01-01

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  12. Spectral ellipsometry of nanodiamond composite

    International Nuclear Information System (INIS)

    Yastrebov, S.G.; Ivanov-Omskij, V.I.; Gordeev, S.K.; Garriga, M.; Alonso, I.A.

    2006-01-01

    Methods of spectral ellipsometry were applied for analysis of optical properties of nanodiamond based composite in spectral region 1.4-5 eV. The nanocomposite was synthesized by molding of ultradispersed nanodiamond powder in the course of heterogeneous chemical reaction of decomposition of methane, forming pyrocarbon interconnecting nanodiamond grains. The energy of σ + π plasmon of pyrocarbon component of nanodiamond composite was restored which proves to be ∼ 24 eV; using this value, an estimation was done of pyrocarbon matrix density, which occurs to be 2 g/cm 3 [ru

  13. Calibration curves for biological dosimetry

    International Nuclear Information System (INIS)

    Guerrero C, C.; Brena V, M. . E-mail cgc@nuclear.inin.mx

    2004-01-01

    The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of 60 Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)

  14. The Use of Color Sensors for Spectrographic Calibration

    Science.gov (United States)

    Thomas, Neil B.

    2018-04-01

    The wavelength calibration of spectrographs is an essential but challenging task in many disciplines. Calibration is traditionally accomplished by imaging the spectrum of a light source containing features that are known to appear at certain wavelengths and mapping them to their location on the sensor. This is typically required in conjunction with each scientific observation to account for mechanical and optical variations of the instrument over time, which may span years for certain projects. The method presented here investigates the usage of color itself instead of spectral features to calibrate a spectrograph. The primary advantage of such a calibration is that any broad-spectrum light source such as the sky or an incandescent bulb is suitable. This method allows for calibration using the full optical pathway of the instrument instead of incorporating separate calibration equipment that may introduce errors. This paper focuses on the potential for color calibration in the field of radial velocity astronomy, in which instruments must be finely calibrated for long periods of time to detect tiny Doppler wavelength shifts. This method is not restricted to radial velocity, however, and may find application in any field requiring calibrated spectrometers such as sea water analysis, cellular biology, chemistry, atmospheric studies, and so on. This paper demonstrates that color sensors have the potential to provide calibration with greatly reduced complexity.

  15. Multidetector calibration for mass spectrometers

    International Nuclear Information System (INIS)

    Bayne, C.K.; Donohue, D.L.; Fiedler, R.

    1994-06-01

    The International Atomic Energy Agency's Safeguards Analytical Laboratory has performed calibration experiments to measure the different efficiencies among multi-Faraday detectors for a Finnigan-MAT 261 mass spectrometer. Two types of calibration experiments were performed: (1) peak-shift experiments and (2) peak-jump experiments. For peak-shift experiments, the ion intensities were measured for all isotopes of an element in different Faraday detectors. Repeated measurements were made by shifting the isotopes to various Faraday detectors. Two different peak-shifting schemes were used to measure plutonium (UK Pu5/92138) samples. For peak-jump experiments, ion intensities were measured in a reference Faraday detector for a single isotope and compared with those measured in the other Faraday detectors. Repeated measurements were made by switching back-and-forth between the reference Faraday detector and a selected Faraday detector. This switching procedure is repeated for all Faraday detectors. Peak-jump experiments were performed with replicate measurements of 239 Pu, 187 Re, and 238 U. Detector efficiency factors were estimated for both peak-jump and peak-shift experiments using a flexible calibration model to statistically analyze both types of multidetector calibration experiments. Calculated detector efficiency factors were shown to depend on both the material analyzed and the experimental conditions. A single detector efficiency factor is not recommended for each detector that would be used to correct routine sample analyses. An alternative three-run peak-shift sample analysis should be considered. A statistical analysis of the data from this peak-shift experiment can adjust the isotopic ratio estimates for detector differences due to each sample analysis

  16. Calibration of moisture monitors

    International Nuclear Information System (INIS)

    Gutierrez, R.L.

    1979-02-01

    A method for calibrating an aluminum oxide hygrometer against an optical chilled mirror dew-point hygrometer has been established. A theoretical cross-point line of dew points from both hygrometers and a maximum moisture content of 10 ppM/sub v/ are used to define an area for calibrating the sensor probes of the aluminum oxide hygrometer

  17. Site Calibration report

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Vesth, Allan

    The report describes site calibration measurements carried out on a site in Denmark. The measurements are carried out in accordance to Ref. [1]. The site calibration is carried out before a power performance measurement on a given turbine to clarify the influence from the terrain on the ratio...

  18. Topics in Statistical Calibration

    Science.gov (United States)

    2014-03-27

    Natural cubic spline speed di st 110 B.2 The calibrate function The most basic calibration problem, the one often encountered in more advanced ...0040-1706, 1537-2723. A. M. Mood, F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics. McGraw-Hill, Auckland , U.A, 1974. ISBN

  19. THE FUTURE SPACEBORNE HYPERSPECTRAL IMAGER ENMAP: ITS IN-FLIGHT RADIOMETRIC AND GEOMETRIC CALIBRATION CONCEPT

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2012-07-01

    Full Text Available The German Aerospace Center DLR – namely the Earth Observation Center EOC and the German Space Operations Center GSOC – is responsible for the establishment of the ground segment of the future German hyperspectral satellite mission EnMAP (Environmental Mapping and Analysis Program. The Earth Observation Center has long lasting experiences with air- and spaceborne acquisition, processing, and analysis of hyperspectral image data. In the first part of this paper, an overview of the radiometric in-flight calibration concept including dark value measurements, deep space measurements, internal lamps measurements and sun measurements is presented. Complemented by pre-launch calibration and characterization these analyses will deliver a detailed and quantitative assessment of possible changes of spectral and radiometric characteristics of the hyperspectral instrument, e.g. due to degradation of single elements. A geometric accuracy of 100 m, which will be improved to 30 m with respect to a used reference image, if it exists, will be achieved by ground processing. Therfore, and for the required co-registration accuracy between SWIR and VNIR channels, additional to the radiometric calibration, also a geometric calibration is necessary. In the second part of this paper, the concept of the geometric calibration is presented in detail. The geometric processing of EnMAP scenes will be based on laboratory calibration results. During repeated passes over selected calibration areas images will be acquired. The update of geometric camera model parameters will be done by an adjustment using ground control points, which will be extracted by automatic image matching. In the adjustment, the improvements of the attitude angles (boresight angles, the improvements of the interior orientation (view vector and the improvements of the position data are estimated. In this paper, the improvement of the boresight angles is presented in detail as an example. The other

  20. The Future Spaceborne Hyperspectral Imager Enmap: its In-Flight Radiometric and Geometric Calibration Concept

    Science.gov (United States)

    Schneider, M.; Müller, R.; Krawzcyk, H.; Bachmann, M.; Storch, T.; Mogulsky, V.; Hofer, S.

    2012-07-01

    The German Aerospace Center DLR - namely the Earth Observation Center EOC and the German Space Operations Center GSOC - is responsible for the establishment of the ground segment of the future German hyperspectral satellite mission EnMAP (Environmental Mapping and Analysis Program). The Earth Observation Center has long lasting experiences with air- and spaceborne acquisition, processing, and analysis of hyperspectral image data. In the first part of this paper, an overview of the radiometric in-flight calibration concept including dark value measurements, deep space measurements, internal lamps measurements and sun measurements is presented. Complemented by pre-launch calibration and characterization these analyses will deliver a detailed and quantitative assessment of possible changes of spectral and radiometric characteristics of the hyperspectral instrument, e.g. due to degradation of single elements. A geometric accuracy of 100 m, which will be improved to 30 m with respect to a used reference image, if it exists, will be achieved by ground processing. Therfore, and for the required co-registration accuracy between SWIR and VNIR channels, additional to the radiometric calibration, also a geometric calibration is necessary. In the second part of this paper, the concept of the geometric calibration is presented in detail. The geometric processing of EnMAP scenes will be based on laboratory calibration results. During repeated passes over selected calibration areas images will be acquired. The update of geometric camera model parameters will be done by an adjustment using ground control points, which will be extracted by automatic image matching. In the adjustment, the improvements of the attitude angles (boresight angles), the improvements of the interior orientation (view vector) and the improvements of the position data are estimated. In this paper, the improvement of the boresight angles is presented in detail as an example. The other values and combinations

  1. Calibration of UV instruments and limitations on accuracy

    International Nuclear Information System (INIS)

    Clare, J.F.; Hamlin, J.D.

    1993-01-01

    Instruments measuring UV radiation may be classified as either spectrometers or broadband monitors; whilst the former determine irradiance as a function of wavelength the latter measure a summation of spectral irradiance weighted by some instrument response function which may be designed to approximate a desired action spectrum. For both classes a proper calibration requires the determination of the instrument's absolute spectral responsivity across the relevant wave-band together with an adequate determination of the wavelengths involved. (author). 7 refs

  2. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  3. The GERDA calibration system

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, Laura; Froborg, Francis; Tarka, Michael; Bruch, Tobias; Ferella, Alfredo [Physik-Institut, Universitaet Zuerich (Switzerland); Collaboration: GERDA-Collaboration

    2012-07-01

    A system with three identical custom made units is used for the energy calibration of the GERDA Ge diodes. To perform a calibration the {sup 228}Th sources are lowered from the parking positions at the top of the cryostat. Their positions are measured by two independent modules. One, the incremental encoder, counts the holes in the perforated steel band holding the sources, the other measures the drive shaft's angular position even if not powered. The system can be controlled remotely by a Labview program. The calibration data is analyzed by an iterative calibration algorithm determining the calibration functions for different energy reconstruction algorithms and the resolution of several peaks in the {sup 228}Th spectrum is determined. A Monte Carlo simulation using the GERDA simulation software MAGE has been performed to determine the background induced by the sources in the parking positions.

  4. Sandia WIPP calibration traceability

    International Nuclear Information System (INIS)

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities

  5. Spectral dimension in causal set quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Mizera, Sebastian

    2014-01-01

    We evaluate the spectral dimension in causal set quantum gravity by simulating random walks on causal sets. In contrast to other approaches to quantum gravity, we find an increasing spectral dimension at small scales. This observation can be connected to the nonlocality of causal set theory that is deeply rooted in its fundamentally Lorentzian nature. Based on its large-scale behaviour, we conjecture that the spectral dimension can serve as a tool to distinguish causal sets that approximate manifolds from those that do not. As a new tool to probe quantum spacetime in different quantum gravity approaches, we introduce a novel dimensional estimator, the causal spectral dimension, based on the meeting probability of two random walkers, which respect the causal structure of the quantum spacetime. We discuss a causal-set example, where the spectral dimension and the causal spectral dimension differ, due to the existence of a preferred foliation. (paper)

  6. Calibrating page sized Gafchromic EBT3 films

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, W.; Maes, F.; Heide, U. A. van der; Van den Heuvel, F. [Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Department ESAT/PSI-Medical Image Computing, Medical Imaging Research Center, KU Leuven, Herestraat 49, 3000 Leuven (Belgium); Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Department of Radiation Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium)

    2013-01-15

    Purpose: The purpose is the development of a novel calibration method for dosimetry with Gafchromic EBT3 films. The method should be applicable for pretreatment verification of volumetric modulated arc, and intensity modulated radiotherapy. Because the exposed area on film can be large for such treatments, lateral scan errors must be taken into account. The correction for the lateral scan effect is obtained from the calibration data itself. Methods: In this work, the film measurements were modeled using their relative scan values (Transmittance, T). Inside the transmittance domain a linear combination and a parabolic lateral scan correction described the observed transmittance values. The linear combination model, combined a monomer transmittance state (T{sub 0}) and a polymer transmittance state (T{sub {infinity}}) of the film. The dose domain was associated with the observed effects in the transmittance domain through a rational calibration function. On the calibration film only simple static fields were applied and page sized films were used for calibration and measurements (treatment verification). Four different calibration setups were considered and compared with respect to dose estimation accuracy. The first (I) used a calibration table from 32 regions of interest (ROIs) spread on 4 calibration films, the second (II) used 16 ROIs spread on 2 calibration films, the third (III), and fourth (IV) used 8 ROIs spread on a single calibration film. The calibration tables of the setups I, II, and IV contained eight dose levels delivered to different positions on the films, while for setup III only four dose levels were applied. Validation was performed by irradiating film strips with known doses at two different time points over the course of a week. Accuracy of the dose response and the lateral effect correction was estimated using the dose difference and the root mean squared error (RMSE), respectively. Results: A calibration based on two films was the optimal

  7. Calibrating page sized Gafchromic EBT3 films

    International Nuclear Information System (INIS)

    Crijns, W.; Maes, F.; Heide, U. A. van der; Van den Heuvel, F.

    2013-01-01

    Purpose: The purpose is the development of a novel calibration method for dosimetry with Gafchromic EBT3 films. The method should be applicable for pretreatment verification of volumetric modulated arc, and intensity modulated radiotherapy. Because the exposed area on film can be large for such treatments, lateral scan errors must be taken into account. The correction for the lateral scan effect is obtained from the calibration data itself. Methods: In this work, the film measurements were modeled using their relative scan values (Transmittance, T). Inside the transmittance domain a linear combination and a parabolic lateral scan correction described the observed transmittance values. The linear combination model, combined a monomer transmittance state (T 0 ) and a polymer transmittance state (T ∞ ) of the film. The dose domain was associated with the observed effects in the transmittance domain through a rational calibration function. On the calibration film only simple static fields were applied and page sized films were used for calibration and measurements (treatment verification). Four different calibration setups were considered and compared with respect to dose estimation accuracy. The first (I) used a calibration table from 32 regions of interest (ROIs) spread on 4 calibration films, the second (II) used 16 ROIs spread on 2 calibration films, the third (III), and fourth (IV) used 8 ROIs spread on a single calibration film. The calibration tables of the setups I, II, and IV contained eight dose levels delivered to different positions on the films, while for setup III only four dose levels were applied. Validation was performed by irradiating film strips with known doses at two different time points over the course of a week. Accuracy of the dose response and the lateral effect correction was estimated using the dose difference and the root mean squared error (RMSE), respectively. Results: A calibration based on two films was the optimal balance between

  8. Calibração regional e local da equação de Hargreaves para estimativa da evapotranspiração de referência Regional and local calibration of Hargreaves equation for estimating reference evapotranspiration

    Directory of Open Access Journals (Sweden)

    Diego Simões Fernandes

    2012-06-01

    estimating ETo, and demands only maximum and minimum temperature data. However, this equation requires local calibration. This paper examines the potential of using the Hargreaves equation adjusted to estimate the ETo in Goiás State. For this, the Hargreaves empiric parameters, HC (empirical Hargreaves coefficient and HE (empirical Hargreaves exponent, were adjusted considering two procedures, local adjustment (HGL - Hargreaves local adjustment and regional adjustment (HGR - Hargreaves regional adjustment. For HGL, the adjustment of empiric parameters was done for each weather station. For HGR, the adjustment of empiric parameters was done considering the data set of all weather stations. The Hargreaves equation adjusted by both processes, local and regional, showed values of 17.95 and 21.93% for ERQM respectively, considering the full range of climatic data. The Hargreaves equation adjusted by both processes is an option to estimate the daily values of ETo in Goiás State where there are available data limitation.

  9. Calibration of reference KAP-meters at SSDL and cross calibration of clinical KAP-meters

    International Nuclear Information System (INIS)

    Hetland, Per O.; Friberg, Eva G.; Oevreboe, Kirsti M.; Bjerke, Hans H.

    2009-01-01

    In the summer of 2007 the secondary standard dosimetry laboratory (SSDL) in Norway established a calibration service for reference air-kerma product meter (KAP-meter). The air-kerma area product, PKA, is a dosimetric quantity that can be directly related to the patient dose and used for risk assessment associated with different x-ray examinations. The calibration of reference KAP-meters at the SSDL gives important information on parameters influencing the calibration factor for different types of KAP-meters. The use of reference KAP-meters calibrated at the SSDL is an easy and reliable way to calibrate or verify the PKA indicated by the x-ray equipment out in the clinics. Material and methods. Twelve KAP-meters were calibrated at the SSDL by use of the substitution method at five diagnostic radiation qualities (RQRs). Results. The calibration factors varied from 0.94 to 1.18. The energy response of the individual KAP-meters varied by a total of 20% between the different RQRs and the typical chamber transmission factors ranged from 0.78 to 0.91. Discussion. It is important to use a calibrated reference KAP-meter and a harmonised calibration method in the PKA calibration in hospitals. The obtained uncertainty in the PKA readings is comparable with other calibration methods if the information in the calibration certificate is correct used, corrections are made and proper positioning of the KAP-chamber is performed. This will ensure a reliable estimate of the patient dose and a proper optimisation of conventional x-ray examinations and interventional procedures

  10. An Investigation of a Novel Cross-Calibration Method of FY-3C/VIRR against NPP/VIIRS in the Dunhuang Test Site

    Directory of Open Access Journals (Sweden)

    Caixia Gao

    2016-01-01

    Full Text Available Radiometric cross-calibration of Earth observation sensors is an effective approach to evaluate instrument calibration performance, identify and diagnose calibration anomalies, and quantify the consistency of measurements from different sensors. In this study a novel cross-calibration method is proposed, taking into account the spectral and viewing angle differences adequately; the method is applied to the FY-3C/Visible Infrared Radiometer (VIRR, taking the Suomi National Polar-Orbiting Partnership (NPP/Visible Infrared Imaging Radiometer Suite (VIIRS as a reference. The results show that the relative difference between the two sets increases from January to May 2014, and becomes lower for the data on 24 July, 11 September, and 16 September, within approximately 10%. This phenomenon is caused by the updating of the calibration coefficients in the VIRR datasets with results from a vicarious method on June 2014. After performing an approximate estimation of the uncertainty, it is demonstrated that this calibration has a total uncertainty of 5.5%–6.0%, which is mainly from the uncertainty of the Bidirectional Reflectance Distribution Function model.

  11. The Fresnel Zone Light Field Spectral Imager

    Science.gov (United States)

    2017-03-23

    detection efficiency for weak signals . Additionally, further study should be done on spectral calibration methods for a FZLFSI. When dealing with weak ... detection assembly. The different image formation planes for each wavelength are constructed synthetically through processing the collected light ...a single micro-lens image. This character- istic also holds for wavelengths other than the design wavelength. 36 modified light field PSF is detected

  12. Spectral Irradiance Measurements Based on Detector

    International Nuclear Information System (INIS)

    Lima, M S; Menegotto, T; Duarte, I; Da Silva, T Ferreira; Alves, L C; Alvarenga, A D; Almeida, G B; Couceiro, I B; Teixeira, R N

    2015-01-01

    This paper presents the preliminary results of the realization of absolute spectral irradiance scale at INMETRO in the ultraviolet, visible and infrared regions using filter radiometers as secondary standards. In the construction of these instruments are used, at least, apertures, interference filters and a trap detector. In the assembly of the trap detectors it was necessary to characterize several photocells in spatial uniformity and shunt resistance. All components were calibrated and these results were analyzed to mount the filter radiometer

  13. Vicarious Calibration of Beijing-1 Multispectral Imagers

    Directory of Open Access Journals (Sweden)

    Zhengchao Chen

    2014-02-01

    Full Text Available For on-orbit calibration of the Beijing-1 multispectral imagers (Beijing-1/MS, a field calibration campaign was performed at the Dunhuang calibration site during September and October of 2008. Based on the in situ data and images from Beijing-1 and Terra/Moderate Resolution Imaging Spectroradiometer (MODIS, three vicarious calibration methods (i.e., reflectance-based, irradiance-based, and cross-calibration were used to calculate the top-of-atmosphere (TOA radiance of Beijing-1. An analysis was then performed to determine or identify systematic and accidental errors, and the overall uncertainty was assessed for each individual method. The findings show that the reflectance-based method has an uncertainty of more than 10% if the aerosol optical depth (AOD exceeds 0.2. The cross-calibration method is able to reach an error level within 7% if the images are selected carefully. The final calibration coefficients were derived from the irradiance-based data for 6 September 2008, with an uncertainty estimated to be less than 5%.

  14. Calibrating the neutron moisture meter: Precision and economy

    International Nuclear Information System (INIS)

    Akhter, J.; Waheed, R.A.; Hignett, C.T.; Greacen, E.L.

    2000-01-01

    Established laboratory and field calibration procedures for the neutron moisture meter are demonstrated on a uniform soil and alternative, low cost procedures on a duplex, less uniform soil. The effect of field variability on the calibration methodology is discussed with the aim of optimising calibration reliability at minimal cost. The difference between calibration for a soil material, or for a field (a range of soil materials) is considered. In particular, calibration for the estimation of water content change is shown to be a different problem from calibration for the estimation of water content in a variable field. Techniques aimed at detecting field variability problems during calibration are suggested, and methods for optimising the results for the intended use of the instrument are outlined. Pairing of calibration tubes, alternative methods of analysis of calibration data, and use of other information from the field to measure its variability, can improve the precision of calibration procedures to the point where minimal calibration effort, with careful analysis, can provide reliable results. (author)

  15. Advancing Absolute Calibration for JWST and Other Applications

    Science.gov (United States)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  16. Calibration of RB reactor power

    International Nuclear Information System (INIS)

    Sotic, O.; Markovic, H.; Ninkovic, M.; Strugar, P.; Dimitrijevic, Z.; Takac, S.; Stefanovic, D.; Kocic, A.; Vranic, S.

    1976-09-01

    The first and only calibration of RB reactor power was done in 1962, and the obtained calibration ratio was used irrespective of the lattice pitch and core configuration. Since the RB reactor is being prepared for operation at higher power levels it was indispensable to reexamine the calibration ratio, estimate its dependence on the lattice pitch, critical level of heavy water and thickness of the side reflector. It was necessary to verify the reliability of control and dosimetry instruments, and establish neutron and gamma dose dependence on reactor power. Two series of experiments were done in June 1976. First series was devoted to tests of control and dosimetry instrumentation and measurements of radiation in the RB reactor building dependent on reactor power. Second series covered measurement of thermal and epithermal neuron fluxes in the reactor core and calculation of reactor power. Four different reactor cores were chosen for these experiments. Reactor pitches were 8, 8√2, and 16 cm with 40, 52 and 82 fuel channels containing 2% enriched fuel. Obtained results and analysis of these results are presented in this document with conclusions related to reactor safe operation

  17. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  18. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  19. Calibration procedure for Slocum glider deployed optical instruments.

    Science.gov (United States)

    Cetinić, Ivona; Toro-Farmer, Gerardo; Ragan, Matthew; Oberg, Carl; Jones, Burton H

    2009-08-31

    Recent developments in the field of the autonomous underwater vehicles allow the wide usage of these platforms as part of scientific experiments, monitoring campaigns and more. The vehicles are often equipped with sensors measuring temperature, conductivity, chlorophyll a fluorescence (Chl a), colored dissolved organic matter (CDOM) fluorescence, phycoerithrin (PE) fluorescence and spectral volume scattering function at 117 degrees, providing users with high resolution, real time data. However, calibration of these instruments can be problematic. Most in situ calibrations are performed by deploying complementary instrument packages or water samplers in the proximity of the glider. Laboratory calibrations of the mounted sensors are difficult due to the placement of the instruments within the body of the vehicle. For the laboratory calibrations of the Slocum glider instruments we developed a small calibration chamber where we can perform precise calibrations of the optical instruments aboard our glider, as well as sensors from other deployment platforms. These procedures enable us to obtain pre- and post-deployment calibrations for optical fluorescence instruments, which may differ due to the biofouling and other physical damage that can occur during long-term glider deployments. We found that biofouling caused significant changes in the calibration scaling factors of fluorescent sensors, suggesting the need for consistent and repetitive calibrations for gliders as proposed in this paper.

  20. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  1. Calibration and Limitations of the Mg II Line-based Black Hole Masses

    Science.gov (United States)

    Woo, Jong-Hak; Le, Huynh Anh N.; Karouzos, Marios; Park, Dawoo; Park, Daeseong; Malkan, Matthew A.; Treu, Tommaso; Bennert, Vardha N.

    2018-06-01

    We present single-epoch black hole mass ({M}BH}) calibrations based on the rest-frame ultraviolet (UV) and optical measurements of Mg II 2798 Å and Hβ 4861 Å lines and the active galactic nucleus (AGN) continuum, using a sample of 52 moderate-luminosity AGNs at z ∼ 0.4 and z ∼ 0.6 with high-quality Keck spectra. We combine this sample with a large number of luminous AGNs from the Sloan Digital Sky Survey to increase the dynamic range for a better comparison of UV and optical velocity and luminosity measurements. With respect to the reference {M}BH} based on the line dispersion of Hβ and continuum luminosity at 5100 Å, we calibrate the UV and optical mass estimators by determining the best-fit values of the coefficients in the mass equation. By investigating whether the UV estimators show a systematic trend with Eddington ratio, FWHM of Hβ, Fe II strength, or UV/optical slope, we find no significant bias except for the slope. By fitting the systematic difference of Mg II-based and Hβ-based masses with the L 3000/L 5100 ratio, we provide a correction term as a function of the spectral index as ΔC = 0.24 (1 + α λ ) + 0.17, which can be added to the Mg II-based mass estimators if the spectral slope can be well determined. The derived UV mass estimators typically show >∼0.2 dex intrinsic scatter with respect to the Hβ-based {M}BH}, suggesting that the UV-based mass has an additional uncertainty of ∼0.2 dex, even if high-quality rest-frame UV spectra are available.

  2. Nimbus-7 Earth radiation budget calibration history. Part 1: The solar channels

    Science.gov (United States)

    Kyle, H. Lee; Hoyt, Douglas V.; Hickey, John R.; Maschhoff, Robert H.; Vallette, Brenda J.

    1993-01-01

    The Earth Radiation Budget (ERB) experiment on the Nimbus-7 satellite measured the total solar irradiance plus broadband spectral components on a nearly daily basis from 16 Nov. 1978, until 16 June 1992. Months of additional observations were taken in late 1992 and in 1993. The emphasis is on the electrically self calibrating cavity radiometer, channel 10c, which recorded accurate total solar irradiance measurements over the whole period. The spectral channels did not have inflight calibration adjustment capabilities. These channels can, with some additional corrections, be used for short-term studies (one or two solar rotations - 27 to 60 days), but not for long-term trend analysis. For channel 10c, changing radiometer pointing, the zero offsets, the stability of the gain, the temperature sensitivity, and the influences of other platform instruments are all examined and their effects on the measurements considered. Only the question of relative accuracy (not absolute) is examined. The final channel 10c product is also compared with solar measurements made by independent experiments on other satellites. The Nimbus experiment showed that the mean solar energy was about 0.1 percent (1.4 W/sqm) higher in the excited Sun years of 1979 and 1991 than in the quiet Sun years of 1985 and 1986. The error analysis indicated that the measured long-term trends may be as accurate as +/- 0.005 percent. The worse-case error estimate is +/- 0.03 percent.

  3. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  4. SRHA calibration curve

    Data.gov (United States)

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  5. BES online calibration system

    International Nuclear Information System (INIS)

    Zhang Bingyun; Li Xiaonan; Zhu Kejun; Zhang Jiawen; Gong Mingyu

    2003-01-01

    We constructed BES (Beijing Spectrometer) online calibration system to ensure the coherence of readout electronic channels due to huge data volume in high energy physics experiment. This paper describes the structure of hardware and software, and its characteristic and function

  6. Calibrated Properties Model

    International Nuclear Information System (INIS)

    Ahlers, C.F.; Liu, H.H.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M and O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions

  7. Calibrated Properties Model

    International Nuclear Information System (INIS)

    Ahlers, C.; Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These pr