WorldWideScience

Sample records for calibrated groundwater flow

  1. GROUNDWATER FLOW MODEL CALIBRATION USING WATER LEVEL MEASUREMENTS AT SHORT INTERVALS

    Science.gov (United States)

    Groundwater flow models are usually calibrated with respect to water level measurements collected at intervals of several months or even years. Measurements of these kinds are not sensitive to sudden or short stress conditions, such as impact from stormwater drainage flow or flas...

  2. Model Calibration of a Groundwater Flow Analysis for an Underground Structure Using Data Assimilation Technique

    Science.gov (United States)

    Yamamoto, S.; Honda, M.; Sakurai, H.

    2015-12-01

    Model calibration of groundwater flow analysis is a difficult task, especially in the complicated hydrogeological condition, because available information about hydrogeological properties is very limited. This often causes non-negligible differences between predicted results and real observations. We applied the Ensemble Kalman Filter (EnKF), which is a type of data assimilation technique, to groundwater flow simulation in order to obtain a valid model that can reproduce accurately the observations. Unlike conventional manual calibration, this scheme not only makes the calibration work efficient but also provides an objective approach not depending on the skills of engineers.In this study, we focused on estimating hydraulic conductivities of bedrocks and fracture zones around an underground fuel storage facility. Two different kinds of groundwater monitoring data were sequentially assimilated into the unsteady groundwater flow model via the EnKF.Synthetic test results showed that estimated hydraulic conductivities matched their true values and our method works well in groundwater flow analysis. Further, influences of each observation in the state updating process were quantified through sensitivity analysis.To assess the feasibility under practical conditions, the assimilation experiments using real field measurements were performed. The results showed that the identified model was able to approximately simulate the behavior of groundwater flow. On the other hand, it was difficult to reproduce the observation data correctly in a specific local area. This suggests that inaccurate area is included in the assumed hydrogeological conceptual model of this site, and could be useful information for the model validation.

  3. A new approach to calibrate steady groundwater flow models with time series of head observations

    Science.gov (United States)

    Obergfell, C.; Bakker, M.; Maas, C.

    2012-04-01

    We developed a new method to calibrate aquifer parameters of steady-state well field models using measured time series of head fluctuations. Our method is an alternative to standard pumping tests and is based on time series analysis using parametric impulse response functions. First, the pumping influence is isolated from the overall groundwater fluctuation observed at monitoring wells around the well field, and response functions are determined for each individual well. Time series parameters are optimized using a quasi-Newton algorithm. For one monitoring well, time series model parameters are also optimized by means of SCEM-UA, a Markov Chain Monte Carlo algorithm, as a control on the validity of the parameters obtained by the faster quasi-Newton method. Subsequently, the drawdown corresponding to an average yearly pumping rate is calculated from the response functions determined by time series analysis. The drawdown values estimated with acceptable confidence intervals are used as calibration targets of a steady groundwater flow model. A case study is presented of the drinking water supply well field of Waalwijk (Netherlands). In this case study, a uniform aquifer transmissivity is optimized together with the conductance of ditches in the vicinity of the well field. Groundwater recharge or boundary heads do not have to be entered, which eliminates two import sources of uncertainty. The method constitutes a cost-efficient alternative to pumping tests and allows the determination of pumping influences without changes in well field operation.

  4. Python tools for rapid development, calibration, and analysis of generalized groundwater-flow models

    Science.gov (United States)

    Starn, J. J.; Belitz, K.

    2014-12-01

    National-scale water-quality data sets for the United States have been available for several decades; however, groundwater models to interpret these data are available for only a small percentage of the country. Generalized models may be adequate to explain and project groundwater-quality trends at the national scale by using regional scale models (defined as watersheds at or between the HUC-6 and HUC-8 levels). Coast-to-coast data such as the National Hydrologic Dataset Plus (NHD+) make it possible to extract the basic building blocks for a model anywhere in the country. IPython notebooks have been developed to automate the creation of generalized groundwater-flow models from the NHD+. The notebook format allows rapid testing of methods for model creation, calibration, and analysis. Capabilities within the Python ecosystem greatly speed up the development and testing of algorithms. GeoPandas is used for very efficient geospatial processing. Raster processing includes the Geospatial Data Abstraction Library and image processing tools. Model creation is made possible through Flopy, a versatile input and output writer for several MODFLOW-based flow and transport model codes. Interpolation, integration, and map plotting included in the standard Python tool stack also are used, making the notebook a comprehensive platform within on to build and evaluate general models. Models with alternative boundary conditions, number of layers, and cell spacing can be tested against one another and evaluated by using water-quality data. Novel calibration criteria were developed by comparing modeled heads to land-surface and surface-water elevations. Information, such as predicted age distributions, can be extracted from general models and tested for its ability to explain water-quality trends. Groundwater ages then can be correlated with horizontal and vertical hydrologic position, a relation that can be used for statistical assessment of likely groundwater-quality conditions

  5. Estimating regional-scale permeability-depth relations in a fractured-rock terrain using groundwater-flow model calibration

    Science.gov (United States)

    Sanford, Ward E.

    2017-03-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  6. Estimating regional-scale permeability-depth relations in a fractured-rock terrain using groundwater-flow model calibration

    Science.gov (United States)

    Sanford, Ward E.

    2016-11-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  7. Integrating a calibrated groundwater flow model with error-correcting data-driven models to improve predictions

    Science.gov (United States)

    Demissie, Yonas K.; Valocchi, Albert J.; Minsker, Barbara S.; Bailey, Barbara A.

    2009-01-01

    SummaryPhysically-based groundwater models (PBMs), such as MODFLOW, contain numerous parameters which are usually estimated using statistically-based methods, which assume that the underlying error is white noise. However, because of the practical difficulties of representing all the natural subsurface complexity, numerical simulations are often prone to large uncertainties that can result in both random and systematic model error. The systematic errors can be attributed to conceptual, parameter, and measurement uncertainty, and most often it can be difficult to determine their physical cause. In this paper, we have developed a framework to handle systematic error in physically-based groundwater flow model applications that uses error-correcting data-driven models (DDMs) in a complementary fashion. The data-driven models are separately developed to predict the MODFLOW head prediction errors, which were subsequently used to update the head predictions at existing and proposed observation wells. The framework is evaluated using a hypothetical case study developed based on a phytoremediation site at the Argonne National Laboratory. This case study includes structural, parameter, and measurement uncertainties. In terms of bias and prediction uncertainty range, the complementary modeling framework has shown substantial improvements (up to 64% reduction in RMSE and prediction error ranges) over the original MODFLOW model, in both the calibration and the verification periods. Moreover, the spatial and temporal correlations of the prediction errors are significantly reduced, thus resulting in reduced local biases and structures in the model prediction errors.

  8. Pathline-calibrated groundwater flow models of Nile Valley aquifers, Esna, upper Egypt

    Science.gov (United States)

    Brikowski, Tom H.; Faid, Abdallah

    2006-06-01

    Strongly concentrated agriculture along the River Nile in Egypt, combined with hydrologic changes related to the construction of the Aswan High Dam in the 1970's, has led to increasing salinization and waterlogging of agricultural areas. Successful control and remediation of these problems requires accurate understanding of the shallow Quaternary aquifers within the Nile Valley. While extensive conceptual models have been developed by the Egyptian RIGW, published numerical models have yet to incorporate all features of the conceptual model. In particular, marine affinity of some shallow groundwaters within the valley (Cl -as the predominant anion) indicates significant leakage from deeper Cretaceous aquifers into the shallow Quaternary aquifers, a feature that is not present in current models. In this study, groundwater profile modeling incorporating the bedrock leakage demonstrates that its shallow appearance requires hydraulic separation of surficial from deep-recharged zones of the Quaternary aquifer. This separation occurs near the boundary between reclaimed and traditional agricultural lands, which is also the primary site of waterlogging. Apparently, excessive recharge presumed to occur beneath the reclaimed lands does not penetrate deeply, and therefore might be easily remediated with shallow drains. Profound similarities exist between the Nile Valley salinization cases and the occurrence of shallow 'nuisance water' in desert southwestern U.S. cities (e.g. Las Vegas). The U.S. experience with this problem may provide useful guidance in addressing Nile Valley salinization and waterlogging issues in the future. In general, irrigation-related recharge from the reclaimed lands in the Nile Valley may have a much more localized impact on traditional lands than previously thought.

  9. Calibration of Models Using Groundwater Age (Invited)

    Science.gov (United States)

    Sanford, W. E.

    2009-12-01

    Water-resource managers are frequently concerned with the long-term ability of a groundwater system to deliver volumes of water for both humans and ecosystems under natural and anthropogenic stresses. Analysis of how a groundwater system responds to such stresses usually involves the construction and calibration of a numerical groundwater-flow model. The calibration procedure usually involves the use of both groundwater-level and flux observations. Water-level data are often more abundant, and thus the availability of flux data can be critical, with well discharge and base flow to streams being most often available. Lack of good flux data however is a common occurrence, especially in more arid climates where the sustainability of the water supply may be even more in question. Environmental tracers are frequently being used to estimate the “age” of a water sample, which represents the time the water has been in the subsurface since its arrival at the water table. Groundwater ages provide flux-related information and can be used successfully to help calibrate groundwater models if porosity is well constrained, especially when there is a paucity of other flux data. As several different methods of simulating groundwater age and tracer movement are possible, a review is presented here of the advantages, disadvantages, and potential pitfalls of the various numerical and tracer methods used in model calibration. The usefulness of groundwater ages for model calibration depends on the ability both to interpret a tracer so as to obtain an apparent observed age, and to use a numerical model to obtain an equivalent simulated age observation. Different levels of simplicity and assumptions accompany different methods for calculating the equivalent simulated age observation. The advantages of computational efficiency in certain methods can be offset by error associated with the underlying assumptions. Advective travel-time calculation using path-line tracking in finite

  10. Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media

    Science.gov (United States)

    Cooley, R.L.; Christensen, S.

    2006-01-01

    Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector ?? that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation ????*, where ?? is an interpolation matrix and ??* is a stochastic vector of parameters. Vector ??* has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(????*) written in terms of the approximate inputs is in error with respect to the same model function written in terms of ??, ??,f(??), which is assumed to be nearly exact. The difference f(??) - f(????*), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate ??* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(??) and f(????*) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is

  11. Hydrochemical tracers in the middle Rio Grande Basin, USA: 2. Calibration of a groundwater-flow model

    Science.gov (United States)

    Sanford, Ward E.; Plummer, L. Niel; McAda, Douglas P.; Bexfield, Laura M.; Anderholm, Scott K.

    The calibration of a groundwater model with the aid of hydrochemical data has demonstrated that low recharge rates in the Middle Rio Grande Basin may be responsible for a groundwater trough in the center of the basin and for a substantial amount of Rio Grande water in the regional flow system. Earlier models of the basin had difficulty reproducing these features without any hydrochemical data to constrain the rates and distribution of recharge. The objective of this study was to use the large quantity of available hydrochemical data to help calibrate the model parameters, including the recharge rates. The model was constructed using the US Geological Survey's software MODFLOW, MODPATH, and UCODE, and calibrated using 14C activities and the positions of certain flow zones defined by the hydrochemical data. Parameter estimation was performed using a combination of nonlinear regression techniques and a manual search for the minimum difference between field and simulated observations. The calibrated recharge values were substantially smaller than those used in previous models. Results from a 30,000-year transient simulation suggest that recharge was at a maximum about 20,000 years ago and at a minimum about 10,000 years ago. Le calibrage d'un modèle hydrogéologique avec l'aide de données hydrochimiques a démontré que la recharge relativement faible dans le Grand Bassin du Middle Rio est vraisemblablement responsable d'une dépression des eaux souterraines dans le centre du bassin et de la présence d'une quantité substantielle d'eau du Rio Grande dans l'aquifère du Groupe de Santa Fe. Les modèles antérieurs avaient des difficultés à reproduire ses conclusions sans l'aide de données hydrochimiques pour contraindre les taux et la distribution de la recharge. L'objectif de cette étude était d'utiliser une grande quantité de données hydrochimiques permettant de calibrer les paramètres du modèle, et notamment les taux de recharge. Le modèle a

  12. Transient calibration of a groundwater-flow model of Chimacum Creek Basin and vicinity, Jefferson County, Washington: a supplement to Scientific Investigations Report 2013-5160

    Science.gov (United States)

    Jones, Joseph L.; Johnson, Kenneth H.

    2013-01-01

    A steady-state groundwater-flow model described in Scientific Investigations Report 2013-5160, ”Numerical Simulation of the Groundwater-Flow System in Chimacum Creek Basin and Vicinity, Jefferson County, Washington” was developed to evaluate potential future impacts of growth and of water-management strategies on water resources in the Chimacum Creek Basin. This supplement to that report describes the unsuccessful attempt to perform a calibration to transient conditions on the model. The modeled area is about 64 square miles on the Olympic Peninsula in northeastern Jefferson County, Washington. The geologic setting for the model area is that of unconsolidated deposits of glacial and interglacial origin typical of the Puget Sound Lowlands. The hydrogeologic units representing aquifers are Upper Aquifer (UA, roughly corresponding to recessional outwash) and Lower Aquifer (LA, roughly corresponding to advance outwash). Recharge from precipitation is the dominant source of water to the aquifer system; discharge is primarily to marine waters below sea level and to Chimacum Creek and its tributaries. The model is comprised of a grid of 245 columns and 313 rows; cells are a uniform 200 feet per side. There are six model layers, each representing one hydrogeologic unit: (1) Upper Confining unit (UC); (2) Upper Aquifer unit (UA); (3) Middle Confining unit (MC); (4) Lower Aquifer unit (LA); (5) Lower Confining unit (LC); and (6) Bedrock unit (OE). The transient simulation period (October 1994–September 2009) was divided into 180 monthly stress periods to represent temporal variations in recharge, discharge, and storage. An attempt to calibrate the model to transient conditions was unsuccessful due to instabilities stemming from oscillations in groundwater discharge to and recharge from streamflow in Chimacum Creek. The model as calibrated to transient conditions has mean residuals and standard errors of 0.06 ft ±0.45 feet for groundwater levels and 0.48 ± 0.06 cubic

  13. SPECIFIC SOLUTIONS GROUNDWATER FLOW EQUATION

    OpenAIRE

    Syahruddin, Muhammad Hamzah

    2014-01-01

    Geophysic publication Groundwater flow under surface, its usually slow moving, so that in laminer flow condition can find analisys using the Darcy???s law. The combination between Darcy law and continuity equation can find differential Laplace equation as general equation groundwater flow in sub surface. Based on Differential Laplace Equation is the equation that can be used to describe hydraulic head and velocity flow distribution in porous media as groundwater. In the modeling Laplace e...

  14. Resolving discrepancies between hydraulic and chemical calibration data for seawater intrusion groundwater flow models by considering climate-driven sea level change.

    Energy Technology Data Exchange (ETDEWEB)

    J. Chapman; A. Hassan; K. Pohlmann

    2001-10-18

    Groundwater models of seawater intrusion environments can be calibrated using both hydraulic and chemical information. The possible impact of the long-term transient process of sea level change is difficult to identify, but important to accurate simulation of present conditions. The response times of the pressure and chemical fields to major fluctuations in sea level change are investigated

  15. Use of large-scale transient stresses and a coupled adjoint-sensitivity/kriging approach to calibrate a groundwater-flow model at the WIPP (Waste Isolation Pilot Plant) site

    Energy Technology Data Exchange (ETDEWEB)

    Beauheim, R.L. (Sandia National Labs., Albuquerque, NM (USA)); LaVenue, A.M. (INTERA, Inc., Albuquerque, NM (USA))

    1990-01-01

    A coupled adjoint-sensitivity/kriging approach was used to calibrate a groundwater-flow model to 10 years of human-induced transient hydraulic stresses at the WIPP site in New Mexico, USA. Transmissivity data obtained from local-scale hydraulic tests were first kriged to define an initial transmissivity distribution. Steady-state model calibration was then performed employing adjoint-sensitivity techniques to identify regions where transmissivity changes would improve the model fit to the observed steady-state heads. Subsequent transient calibration to large-scale hydraulic stresses created by shaft construction and long-term pumping tests aided in the identification of smaller scale features not detected during steady-state calibration. This transient calibration resulted in a much more reliable and defendable model for use in performance-assessment calculations. 7 refs., 6 figs.

  16. POSIVA groundwater flow measuring techniques

    Energy Technology Data Exchange (ETDEWEB)

    Oehberg, A. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Rouhiainen, P. [PRG-Tec Oy (Finland)

    2000-08-01

    packers divide the test section into four sectors. The length of the test section between the inflatable packers is two metres. Flow guides are available at the moment for boreholes with diameters 56 mm and 76 mm. The flow sensors operate using a thermal pulse principle. The flow sensors must be calibrated for the acquisition of quantitative information. The sensitivity of the instrument is better than 1 ml/in (millilitre per hour) for the flow across a borehole which corresponds to a flux value of about 2 10-9 m/s. In addition to the flow rate determination across the borehole, the system also makes it possible to determine the approximate direction of flow across the borehole. Both methods have been used to determine hydraulic connections between adjacent boreholes by measuring flow responses in a borehole caused by pumping in another borehole. The suite offered by the Posiva Flow Log tools includes also Electric Conductivity (EC) measurements from the fracture-specific water in the borehole test section. It has been found convenient to conduct EC measurements in connection with the detailed flow logging. In this way hydraulically conductive fractures can be located during the same logging phase as EC values are attained from the most conductive fractures. The results of both the EC and the detailed flow logging measurements give valuable information for the determination of groundwater sampling points. The objective of EC measurement is to determine the distribution of the content of Total Dissolved Solids (TDS) in the groundwater. The detailed flow logging makes it possible to stop on a fracture and to measure there as long as the water volume within the test section is flushed well enough to get a reliable EC reading. EC readings are measured from fractures with higher flow rates than the pre-set limit. In this report all groundwater flow techniques developed by Posiva are presented including the methods and different logging tools. Some background on the

  17. Megacity pumping and preferential flow threaten groundwater quality

    Science.gov (United States)

    Khan, Mahfuzur R.; Koneshloo, Mohammad; Knappett, Peter S. K.; Ahmed, Kazi M.; Bostick, Benjamin C.; Mailloux, Brian J.; Mozumder, Rajib H.; Zahid, Anwar; Harvey, Charles F.; van Geen, Alexander; Michael, Holly A.

    2016-09-01

    Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arsenic-contaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (>150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide.

  18. Simulation of Groundwater Flow, Denpasar-Tabanan Groundwater Basin, Bali Province

    Directory of Open Access Journals (Sweden)

    Heryadi Tirtomihardjo

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i3.123Due to the complex structure of the aquifer systems and its hydrogeological units related with the space in which groundwater occurs, groundwater flows were calculated in three-dimensional method (3D Calculation. The geometrical descritization and iteration procedures were based on an integrated finite difference method. In this paper, all figures and graphs represent the results of the calibrated model. Hence, the model results were simulated by using the actual input data which were calibrated during the simulation runs. Groundwater flow simulation of the model area of the Denpasar-Tabanan Groundwater Basin (Denpasar-Tabanan GB comprises steady state run, transient runs using groundwater abstraction in the period of 1989 (Qabs-1989 and period of 2009 (Qabs-2009, and prognosis run as well. Simulation results show, in general, the differences of calculated groundwater heads and observed groundwater heads at steady and transient states (Qabs-1989 and Qabs-2009 are relatively small. So, the groundwater heads situation simulated by the prognosis run (scenario Qabs-2012 are considerably valid and can properly be used for controlling the plan of groundwater utilization in Denpasar-Tabanan GB.

  19. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    : Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  20. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    : Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  1. Evolution of Unsteady Groundwater Flow Systems

    Science.gov (United States)

    Liang, Xing; Jin, Menggui; Niu, Hong

    2016-04-01

    Natural groundwater flow is usually transient, especially in long time scale. A theoretical approach on unsteady groundwater flow systems was adopted to highlight some of the knowledge gaps in the evolution of groundwater flow systems. The specific consideration was focused on evolution of groundwater flow systems from unsteady to steady under natural and mining conditions. Two analytical solutions were developed, using segregation variable method to calculate the hydraulic head under steady and unsteady flow conditions. The impact of anisotropy ratio, hydraulic conductivity (K) and specific yield (μs) on the flow patterns were analyzed. The results showed that the area of the equal velocity region increased and the penetrating depth of the flow system decreased while the anisotropy ratio (ɛ = °Kx-/Kz--) increased. Stagnant zones were found in the flow field where the directions of streamlines were opposite. These stagnant zones moved up when the horizontal hydraulic conductivity increased. The results of the study on transient flow indicated a positive impact on hydraulic head with an increase of hydraulic conductivity, while a negative effect on hydraulic head was observed when the specific yield was enhanced. An unsteady numerical model of groundwater flow systems with annual periodic recharge was developed using MODFLOW. It was observed that the transient groundwater flow patterns were different from that developed in the steady flow under the same recharge intensity. The water table fluctuated when the recharge intensity altered. The monitoring of hydraulic head and concentration migration revealed that the unsteady recharge affected the shallow local flow system more than the deep regional flow system. The groundwater flow systems fluctuated with the action of one or more pumping wells. The comparison of steady and unsteady groundwater flow observation indicated that the unsteady flow patterns cannot be simulated by the steady model when the condition

  2. Regional groundwater flow modeling of the Geba basin, northern Ethiopia

    Science.gov (United States)

    Gebreyohannes, Tesfamichael; De Smedt, Florimond; Walraevens, Kristine; Gebresilassie, Solomon; Hussien, Abdelwassie; Hagos, Miruts; Amare, Kassa; Deckers, Jozef; Gebrehiwot, Kindeya

    2017-01-01

    The Geba basin is one of the most food-insecure areas of the Tigray regional state in northern Ethiopia due to recurrent drought resulting from erratic distribution of rainfall. Since the beginning of the 1990s, rain-fed agriculture has been supported through small-scale irrigation schemes mainly by surface-water harvesting, but success has been limited. Hence, use of groundwater for irrigation purposes has gained considerable attention. The main purpose of this study is to assess groundwater resources in the Geba basin by means of a MODFLOW modeling approach. The model is calibrated using observed groundwater levels, yielding a clear insight into the groundwater flow systems and reserves. Results show that none of the hydrogeological formations can be considered as aquifers that can be exploited for large-scale groundwater exploitation. However, aquitards can be identified that can support small-scale groundwater abstraction for irrigation needs in regions that are either designated as groundwater discharge areas or where groundwater levels are shallow and can be tapped by hand-dug wells or shallow boreholes.

  3. 40 CFR 1065.340 - Diluted exhaust flow (CVS) calibration.

    Science.gov (United States)

    2010-07-01

    ... the flow meter has been calibrated with such a restriction. (e) PDP calibration. Calibrate a positive-displacement pump (PDP) to determine a flow-versus-PDP speed equation that accounts for flow leakage...

  4. Dry calibration of ultrasonic gas flow meters

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, G.; Lansing, J.

    1997-07-01

    At present in most European countries it is customary that turbine meters, or the newer ultrasonic gas flow meters, when used in fiscal metering or custody transfer metering applications, are calibrated in a test facility by comparison to standards or reference devices. For reason of practical and operational drawbacks, costs involved and availability of only a limited number of calibration facilities, another way of meter verification is advantageous. For orifice metering the practice of dry calibration is well established; that is, meter verification is based upon examination of the geometry and installation of the orifice plate and a function check of the read out devices. Although for turbine meters a flow (wet) calibration may be a necessity, it will be shown that ultrasonic gas flow meters can be dry calibrated in the same way as orifice meters. As a basis for the acceptance of a dry calibration procedure for ultrasonic gas flow meters, a sensitivity analysis of the relevant variables with respect to the meter's accuracy is presented. Further test results are presented that demonstrate the feasibility of the concept of dry calibration applied to ultrasonic gas flow meters. (author)

  5. Numerical modeling of geothermal groundwater flow in karst aquifer system in eastern Weibei, Shaanxi Province, China

    Institute of Scientific and Technical Information of China (English)

    LI Ming; LI GuoMin; YANG Liao; DANG XueYa; ZHAO ChunHu; HOU GuangCai; ZHANG MaoSheng

    2007-01-01

    The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei,Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.

  6. Gradual Variation Analysis for Groundwater Flow

    CERN Document Server

    Chen, Li

    2010-01-01

    Groundwater flow in Washington DC greatly influences the surface water quality in urban areas. The current methods of flow estimation, based on Darcy's Law and the groundwater flow equation, can be described by the diffusion equation (the transient flow) and the Laplace equation (the steady-state flow). The Laplace equation is a simplification of the diffusion equation under the condition that the aquifer has a recharging boundary. The practical way of calculation is to use numerical methods to solve these equations. The most popular system is called MODFLOW, which was developed by USGS. MODFLOW is based on the finite-difference method in rectangular Cartesian coordinates. MODFLOW can be viewed as a "quasi 3D" simulation since it only deals with the vertical average (no z-direction derivative). Flow calculations between the 2D horizontal layers use the concept of leakage. In this project, we have established a mathematical model based on gradually varied functions for groundwater data volume reconstruction. T...

  7. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  8. Site scale groundwater flow in Haestholmen

    Energy Technology Data Exchange (ETDEWEB)

    Loefman, J. [VTT Energy, Espoo (Finland)

    1999-05-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal - of spent nuclear fuel. This study represents the groundwater flow modelling at Haestholmen, and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Haestholmen. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Haestholmen. The present topography together with a mathematical model describing the land uplift at the Haestholmen area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography and by the highly transmissive fracture zones. Near the surface the flow spreads out to offshore and to the lower areas of topography in all directions away from

  9. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  10. Calibration and use of continuous heat-type automated seepage meters for submarine groundwater discharge measurements

    Science.gov (United States)

    Mwashote, B.M.; Burnett, W.C.; Chanton, J.; Santos, I.R.; Dimova, N.; Swarzenski, P.W.

    2010-01-01

    Submarine groundwater discharge (SGD) assessments were conducted both in the laboratory and at a field site in the northeastern Gulf of Mexico, using a continuous heat-type automated seepage meter (seepmeter). The functioning of the seepmeter is based on measurements of a temperature gradient in the water between downstream and upstream positions in its flow pipe. The device has the potential of providing long-term, high-resolution measurements of SGD. Using a simple inexpensive laboratory set-up, we have shown that connecting an extension cable to the seepmeter has a negligible effect on its measuring capability. Similarly, the observed influence of very low temperature (???3 ??C) on seepmeter measurements can be accounted for by conducting calibrations at such temperatures prior to field deployments. Compared to manual volumetric measurements, calibration experiments showed that at higher water flow rates (>28 cm day-1 or cm3 cm-2 day-1) an analog flowmeter overestimated flow rates by ???7%. This was apparently due to flow resistance, turbulence and formation of air bubbles in the seepmeter water flow tubes. Salinity had no significant effect on the performance of the seepmeter. Calibration results from fresh water and sea water showed close agreement at a 95% confidence level significance between the data sets from the two media (R2 = 0.98). Comparatively, the seepmeter SGD measurements provided data that are comparable to manually-operated seepage meters, the radon geochemical tracer approach, and an electromagnetic (EM) seepage meter. ?? 2009 Elsevier Ltd.

  11. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  12. The 2016 groundwater flow model for Dane County, Wisconsin

    Science.gov (United States)

    Parsen, Michael J.; Bradbury, Kenneth R.; Hunt, Randall J.; Feinstein, Daniel T.

    2016-01-01

    A new groundwater flow model for Dane County, Wisconsin, replaces an earlier model developed in the 1990s by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). This modeling study was conducted cooperatively by the WGNHS and the USGS with funding from the Capital Area Regional Planning Commission (CARPC). Although the overall conceptual model of the groundwater system remains largely unchanged, the incorporation of newly acquired high-quality datasets, recent research findings, and improved modeling and calibration techniques have led to the development of a more detailed and sophisticated model representation of the groundwater system. The new model is three-dimensional and transient, and conceptualizes the county’s hydrogeology as a 12-layer system including all major unlithified and bedrock hydrostratigraphic units and two high-conductivity horizontal fracture zones. Beginning from the surface down, the model represents the unlithified deposits as two distinct model layers (1 and 2). A single layer (3) simulates the Ordovician sandstone and dolomite of the Sinnipee, Ancell, and Prairie du Chien Groups. Sandstone of the Jordan Formation (layer 4) and silty dolostone of the St. Lawrence Formation (layer 5) each comprise separate model layers. The underlying glauconitic sandstone of the Tunnel City Group makes up three distinct layers: an upper aquifer (layer 6), a fracture feature (layer 7), and a lower aquifer (layer 8). The fracture layer represents a network of horizontal bedding-plane fractures that serve as a preferential pathway for groundwater flow. The model simulates the sandstone of the Wonewoc Formation as an upper aquifer (layer 9) with a bedding-plane fracture feature (layer 10) at its base. The Eau Claire aquitard (layer 11) includes shale beds within the upper portion of the Eau Claire Formation. This layer, along with overlying bedrock units, is mostly absent in the preglacially eroded valleys along

  13. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.; Thorne, Paul D.; Orr, Samuel; Mckinley, Mathew I.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  14. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the

  15. Geomorphic aspects of groundwater flow

    Science.gov (United States)

    LaFleur, Robert G.

    The many roles that groundwater plays in landscape evolution are becoming more widely appreciated. In this overview, three major categories of groundwater processes and resulting landforms are considered: (1) Dissolution creates various karst geometries, mainly in carbonate rocks, in response to conditions of recharge, geologic setting, lithology, and groundwater circulation. Denudation and cave formation rates can be estimated from kinetic and hydraulic parameters. (2) Groundwater weathering generates regoliths of residual alteration products at weathering fronts, and subsequent exhumation exposes corestones, flared slopes, balanced rocks, domed inselbergs, and etchplains of regional importance. Groundwater relocation of dissolved salts creates duricrusts of various compositions, which become landforms. (3) Soil and rock erosion by groundwater processes include piping, seepage erosion, and sapping, important agents in slope retreat and headward gully migration. Thresholds and limits are important in many chemical and mechanical groundwater actions. A quantitative, morphometric approach to groundwater landforms and processes is exemplified by selected studies in carbonate and clastic terrains of ancient and recent origins. Résumé Les rôles variés joués par les eaux souterraines dans l'évolution des paysages deviennent nettement mieux connus. La revue faite ici prend en considération trois grandes catégories de processus liés aux eaux souterraines et les formes associées: (1) La dissolution crée des formes karstiques variées, surtout dans les roches carbonatées, en fonction des conditions d'alimentation, du cadre géologique, de la lithologie et de la circulation des eaux souterraines. Les taux d'érosion et de formation des grottes peuvent être estimés à partir de paramètres cinétiques et hydrauliques. (2) L'érosion par les eaux souterraines donne naissance à des régolites, résidus d'altération sur des fronts d'altération, et l'exhumation r

  16. 40 CFR 1065.325 - Intake-flow calibration.

    Science.gov (United States)

    2010-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Flow-Related Measurements § 1065.325... recommend using a calibration subsonic venturi, ultrasonic flow meter or laminar flow element. We recommend... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Intake-flow calibration....

  17. A conceptual framework of groundwater flow in some crystalline aquifers in Southeastern Ghana

    Science.gov (United States)

    Yidana, Sandow Mark; Ganyaglo, Samuel; Banoeng-Yakubo, Bruce; Akabzaa, Thomas

    2011-02-01

    A conceptual groundwater flow model was developed for the crystalline aquifers in southeastern part of the Eastern region, Ghana. The objective was to determine approximate levels of groundwater recharge, estimate aquifer hydraulic parameters, and then test various scenarios of groundwater extraction under the current conditions of recharge. A steady state groundwater flow model has been calibrated against measured water levels of 19 wells in the area. The resulting recharge is estimated to range from 8.97 × 10 -5 m/d to 7.14 × 10 -4 m/d resulting in a basin wide average recharge of about 9.6% of total annual precipitation, which results in a basin wide quantitative recharge of about 2.4 million m 3/d in the area. This compares to recharge estimated from the chloride mass balance of 7.6% of precipitation determined in this study. The general groundwater flow in the area has also been determined to conform to the general northeast-southwest structural grain of the country. The implication is that the general hydrogeology is controlled by post genetic structural entities imposed on the rocks to create ingresses for sufficient groundwater storage and transport. Calibrated aquifer hydraulic conductivities range between 0.99 m/d and over 19.4 m/d. There is a significant contribution of groundwater discharge to stream flow in the study area. Increasing groundwater extraction will have an effect on stream flow. This study finds that the current groundwater extraction levels represent only 0.17% of the annual recharge from precipitation, and that groundwater can sustain future increased groundwater demands from population growth and industrialization.

  18. Modeling groundwater flow on massively parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, S.F.; Falgout, R.D.; Fogwell, T.W.; Tompson, A.F.B.

    1994-12-31

    The authors will explore the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. An interdisciplinary team of mathematicians, computer scientists, hydrologists, and environmental engineers is developing a sophisticated simulation code for use on workstation clusters and MPPs. To date, they have concentrated on modeling flow in the saturated zone (single phase), which requires the solution of a large linear system. they will discuss their implementation of preconditioned conjugate gradient solvers. The preconditioners under consideration include simple diagonal scaling, s-step Jacobi, adaptive Chebyshev polynomial preconditioning, and multigrid. They will present some preliminary numerical results, including simulations of groundwater flow at the LLNL site. They also will demonstrate the code`s scalability.

  19. Multiphase groundwater flow near cooling plutons

    Science.gov (United States)

    Hayba, D.O.; Ingebritsen, S.E.

    1997-01-01

    We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

  20. Site scale groundwater flow in Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Loefman, J. [VTT Energy, Espoo (Finland)

    1999-03-01

    Groundwater flow modelling on the site scale has been an essential part of site investigation work carried out at different locations since 1986. The objective of the modelling has been to provide results that characterise the groundwater flow conditions deep in the bedrock. The main result quantities can be used for evaluation of the investigation sites and of the preconditions for safe final disposal of spent nuclear fuel. This study represents the latest modelling effort at Olkiluoto (Finland), and it comprises the transient flow analysis taking into account the effects of density variations and the repository as well as the post-glacial land uplift. The analysis is performed by means of numerical finite element simulation of coupled and transient groundwater flow and solute transport carried out up to 10000 years into the future. This work provides also the results for the site-specific data needs for the block scale groundwater flow modelling at Olkiluoto. Conceptually the fractured bedrock is divided into hydraulic units: the planar fracture zones and the remaining part of the bedrock. The equivalent-continuum (EC) model is applied so that each hydraulic unit is treated as a homogeneous and isotropic continuum with representative average characteristics. All the fracture zones are modelled explicitly and represented by two-dimensional finite elements. A site-specific simulation model for groundwater flow and solute transport is developed on the basis of the latest hydrogeological and hydrogeochemical field investigations at Olkiluoto. The present groundwater table and topography together with a mathematical model describing the land uplift at the Olkiluoto area are employed as a boundary condition at the surface of the model. The overall flow pattern is mostly controlled by the local variations in the topography. Below the island of Olkiluoto the flow direction is mostly downwards, while near the shoreline and below the sea water flows horizontally and

  1. A Fully Bayesian Approach to Improved Calibration and Prediction of Groundwater Models With Structure Error

    Science.gov (United States)

    Xu, T.; Valocchi, A. J.

    2014-12-01

    Effective water resource management typically relies on numerical models to analyse groundwater flow and solute transport processes. These models are usually subject to model structure error due to simplification and/or misrepresentation of the real system. As a result, the model outputs may systematically deviate from measurements, thus violating a key assumption for traditional regression-based calibration and uncertainty analysis. On the other hand, model structure error induced bias can be described statistically in an inductive, data-driven way based on historical model-to-measurement misfit. We adopt a fully Bayesian approach that integrates a Gaussian process error model to account for model structure error to the calibration, prediction and uncertainty analysis of groundwater models. The posterior distributions of parameters of the groundwater model and the Gaussian process error model are jointly inferred using DREAM, an efficient Markov chain Monte Carlo sampler. We test the usefulness of the fully Bayesian approach towards a synthetic case study of surface-ground water interaction under changing pumping conditions. We first illustrate through this example that traditional least squares regression without accounting for model structure error yields biased parameter estimates due to parameter compensation as well as biased predictions. In contrast, the Bayesian approach gives less biased parameter estimates. Moreover, the integration of a Gaussian process error model significantly reduces predictive bias and leads to prediction intervals that are more consistent with observations. The results highlight the importance of explicit treatment of model structure error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification. In addition, the data-driven error modelling approach is capable of extracting more information from observation data than using a groundwater model alone.

  2. Connections between groundwater flow and transpiration partitioning

    Science.gov (United States)

    Maxwell, Reed M.; Condon, Laura E.

    2016-07-01

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  3. Estimating groundwater exchange with lakes: 2. Calibration of a three-dimensional, solute transport model to a stable isotope plume

    Science.gov (United States)

    Krabbenhoft, David P.; Anderson, Mary P.; Bowser, Carl J.

    1990-01-01

    A three-dimensional groundwater flow and solute transport model was calibrated to a plume of water described by measurements of δ18O and used to calculate groundwater inflow and outflow rates at a lake in northern Wisconsin. The flow model was calibrated to observed hydraulic gradients and estimated recharge rates. Calibration of the solute transport submodel to the configuration of a stable isotope (18O) plume in the contiguous aquifer on the downgradient side of the lake provides additional data to constrain the model. A good match between observed and simulated temporal variations in plume configuration indicates that the model closely simulated the dynamics of the real system. The model provides information on natural variations of rates of groundwater inflow, lake water outflow, and recharge to the water table. Inflow and outflow estimates compare favorably with estimates derived by the isotope mass balance method (Krabbenhoft et al., this issue). Model simulations agree with field observations that show groundwater inflow rates are more sensitive to seasonal variations in recharge than outflow.

  4. Patterns in groundwater chemistry resulting from groundwater flow

    Science.gov (United States)

    Stuyfzand, Pieter J.

    Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic-methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500m in the flow direction is shown to correspond with about 5000yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Résumé Les écoulements souterrains influencent les différents types hydrochimiques, parce que l'écoulement réduit le mélange par diffusion, porte les marques chimiques de changements biologiques et anthropiques dans la zone d'alimentation et lessive le système aquifère. Ces types dans leur ensemble sont surtout déterminés par des différences dans le flux d'eau météorique traversant le sous-sol. Dans les "hydrosomes" (masses d'eau d'origine déterminée), les lignes marquant une évolution prograde (séquence de faciès) se développent normalement dans la direction de l'écoulement souterrain : depuis des fluctuations fortes de la

  5. Groundwater ages from the freshwater zone of the Edwards aquifer, Uvalde County, Texas—Insights into groundwater flow and recharge

    Science.gov (United States)

    Hunt, Andrew G.; Landis, Gary P.; Faith, Jason R.

    2016-02-23

    Tritium–helium-3 groundwater ages of the Edwards aquifer in south-central Texas were determined as part of a long-term study of groundwater flow and recharge in the Edwards and Trinity aquifers. These ages help to define groundwater residence times and to provide constraints for calibration of groundwater flow models. A suite of 17 samples from public and private supply wells within Uvalde County were collected for active and noble gases, and for tritium–helium-3 analyses from the confined and unconfined parts of the Edwards aquifer. Samples were collected from monitoring wells at discrete depths in open boreholes as well as from integrated pumped well-head samples. The data indicate a fairly uniform groundwater flow system within an otherwise structurally complex geologic environment comprised of regionally and locally faulted rock units, igneous intrusions, and karst features within carbonate rocks. Apparent ages show moderate, downward average, linear velocities in the Uvalde area with increasing age to the east along a regional groundwater flow path. Though the apparent age data show a fairly consistent distribution across the study area, many apparent ages indicate mixing of both modern (less than 60 years) and premodern (greater than 60 years) waters. This mixing is most evident along the “bad water” line, an arbitrary delineation of 1,000 milligrams per liter dissolved solids that separates the freshwater zone of the Edwards aquifer from the downdip saline water zone. Mixing of modern and premodern waters also is indicated within the unconfined zone of the aquifer by high excess helium concentrations in young waters. Excess helium anomalies in the unconfined aquifer are consistent with possible subsurface discharge of premodern groundwater from the underlying Trinity aquifer into the younger groundwater of the Edwards aquifer.

  6. Pumpage for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents ground-water discharged from the Death Valley regional ground-water flow system (DVRFS) through pumped wells. Pumping from wells in...

  7. Modelling of the groundwater flow in Baltic Artesian Basin

    Science.gov (United States)

    Virbulis, J.; Sennikovs, J.; Bethers, U.

    2012-04-01

    Baltic Artesian Basin (BAB) is a multi-layered complex hydrogeological system underlying about 480'000 km2 in the territory of Latvia, Lithuania, Estonia, Poland, Russia, Belarus and the Baltic Sea. The model of the geological structure contains 42 layers including aquifers and aquitards from Cambrian up to the Quaternary deposits. The finite element method was employed for the calculation of the steady state three-dimensional groundwater flow with free surface. The horizontal and vertical hydraulic conductivities of geological materials were assumed constant in each of the layers. The Precambrian basement forms the impermeable bottom of the model. The zero water exchange is assumed through the side boundaries of BAB. Simple hydrological model is applied on the surface. The level of the lakes, rivers and the sea is fixed as constant hydraulic head in corresponding mesh points. The infiltration is set as a flux boundary condition elsewhere. Instead of extensive coupling with hydrology model, a constant mean value of 70 mm/year was assumed as an infiltration flux for the whole BAB area and this value was adjusted during the automatic calibration process. Averaged long-term water extraction was applied at the water supply wells with large debits. In total 49 wells in Lithuania (total abstraction 45000 m3/day), 161 in Latvia (184000 m3/day) and 172 in Estonia (24000 m3/day) are considered. The model was calibrated on the statistically weighted (using both spatial and temporal weighting function) borehole water level measurements applying automatic parameter optimization method L-BFGS-B for hydraulic conductivities of each layer. The steady-stade calculations were performed for the situations corresponding to undisturbed situation (1950-ies), intensive groundwater use (1980-ies) and present state situation (after 2000). The distribution of piezometric heads and principal flows inside BAB was analyzed based on the model results. The results demonstrate that generally the

  8. Conceptual model and numerical simulation of the groundwater-flow system of Bainbridge Island, Washington

    Science.gov (United States)

    Frans, Lonna M.; Bachmann, Matthew P.; Sumioka, Steve S.; Olsen, Theresa D.

    2011-01-01

    Groundwater is the sole source of drinking water for the population of Bainbridge Island. Increased use of groundwater supplies on Bainbridge Island as the population has grown over time has created concern about the quantity of water available and whether saltwater intrusion will occur as groundwater usage increases. A groundwater-flow model was developed to aid in the understanding of the groundwater system and the effects of groundwater development alternatives on the water resources of Bainbridge Island. Bainbridge Island is underlain by unconsolidated deposits of glacial and nonglacial origin. The surficial geologic units and the deposits at depth were differentiated into aquifers and confining units on the basis of areal extent and general water-bearing characteristics. Eleven principal hydrogeologic units are recognized in the study area and form the basis of the groundwater-flow model. A transient variable-density groundwater-flow model of Bainbridge Island and the surrounding area was developed to simulate current (2008) groundwater conditions. The model was calibrated to water levels measured during 2007 and 2008 using parameter estimation (PEST) to minimize the weighted differences or residuals between simulated and measured hydraulic head. The calibrated model was used to make some general observations of the groundwater system in 2008. Total flow through the groundwater system was about 31,000 acre-ft/ yr. The recharge to the groundwater system was from precipitation and septic-system returns. Groundwater flow to Bainbridge Island accounted for about 1,000 acre-ft/ yr or slightly more than 5 percent of the recharge amounts. Groundwater discharge was predominately to streams, lakes, springs, and seepage faces (16,000 acre-ft/yr) and directly to marine waters (10,000 acre-ft/yr). Total groundwater withdrawals in 2008 were slightly more than 6 percent (2,000 acre-ft/yr) of the total flow. The calibrated model was used to simulate predevelopment conditions

  9. Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model

    Science.gov (United States)

    Mfumu Kihumba, Antoine; Vanclooster, Marnik; Ndembo Longo, Jean

    2017-02-01

    This study assessed the vulnerability of groundwater against pollution in the Kinshasa region, DR Congo, as a support of a groundwater protection program. The parametric vulnerability model (DRASTIC) was modified and calibrated to predict the intrinsic vulnerability as well as the groundwater pollution risk. The method uses groundwater body specific parameters for the calibration of the factor ratings and weightings of the original DRASTIC model. These groundwater specific parameters are inferred from the statistical relation between the original DRASTIC model and observed nitrate pollution for a specific period. In addition, site-specific land use parameters are integrated into the method. The method is fully embedded in a Geographic Information System (GIS). Following these modifications, the correlation coefficient between groundwater pollution risk and observed nitrate concentrations for the 2013-2014 survey improved from r = 0.42, for the original DRASTIC model, to r = 0.61 for the calibrated model. As a way to validate this pollution risk map, observed nitrate concentrations from another survey (2008) are compared to pollution risk indices showing a good degree of coincidence with r = 0.51. The study shows that a calibration of a vulnerability model is recommended when vulnerability maps are used for groundwater resource management and land use planning at the regional scale and that it is adapted to a specific area.

  10. Shallow groundwater in the Matanuska-Susitna Valley, Alaska—Conceptualization and simulation of flow

    Science.gov (United States)

    Kikuchi, Colin P.

    2013-01-01

    estimated during field investigations on several small streams. Regional groundwater flow patterns were characterized by synthesizing previous water-table maps with a synoptic water-level measurement conducted during 2009. Time-series water-level data were collected at groundwater and lake monitoring stations over the study period (2009–present). Comparison of historical groundwater-level records with time-series groundwater-level data collected during this study showed similar patterns in groundwater-level fluctuation in response to precipitation. Groundwater-age data collected during previous studies show that water moves quickly through the groundwater system, suggesting that the system responds quickly to changes in climate forcing. Similarly, the groundwater system quickly returns to long-term average conditions following variability due to seasonal or interannual changes in precipitation. These analyses indicate that the groundwater system is in a state of dynamic equilibrium, characterized by water-level fluctuation about a constant average state, with no long-term trends in aquifer-system storage. To address the second study goal, a steady-state groundwater flow model was developed to simulate regional groundwater flow patterns. The groundwater flow model was bounded by physically meaningful hydrologic features, and appropriate internal model boundaries were specified on the basis of conceptualization of the groundwater system resulting in a three-layer model. Calibration data included 173 water‑level measurements and 18 measurements of streamflow gains and losses along small streams. Comparison of simulated and observed heads and flows showed that the model accurately simulates important regional characteristics of the groundwater flow system. This model is therefore appropriate for studying regional-scale groundwater availability. Mismatch between model-simulated and observed hydrologic quantities is likely because of the coarse grid size of the model and

  11. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Hassan; J. Chapman

    2008-11-01

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of

  12. Numerical simulation of groundwater flow at Puget Sound Naval Shipyard, Naval Base Kitsap, Bremerton, Washington

    Science.gov (United States)

    Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.

    2016-08-18

    Information about groundwater-flow paths and locations where groundwater discharges at and near Puget Sound Naval Shipyard is necessary for understanding the potential migration of subsurface contaminants by groundwater at the shipyard. The design of some remediation alternatives would be aided by knowledge of whether groundwater flowing at specific locations beneath the shipyard will eventually discharge directly to Sinclair Inlet of Puget Sound, or if it will discharge to the drainage system of one of the six dry docks located in the shipyard. A 1997 numerical (finite difference) groundwater-flow model of the shipyard and surrounding area was constructed to help evaluate the potential for groundwater discharge to Puget Sound. That steady-state, multilayer numerical model with homogeneous hydraulic characteristics indicated that groundwater flowing beneath nearly all of the shipyard discharges to the dry-dock drainage systems, and only shallow groundwater flowing beneath the western end of the shipyard discharges directly to Sinclair Inlet.Updated information from a 2016 regional groundwater-flow model constructed for the greater Kitsap Peninsula was used to update the 1997 groundwater model of the Puget Sound Naval Shipyard. That information included a new interpretation of the hydrogeologic units underlying the area, as well as improved recharge estimates. Other updates to the 1997 model included finer discretization of the finite-difference model grid into more layers, rows, and columns, all with reduced dimensions. This updated Puget Sound Naval Shipyard model was calibrated to 2001–2005 measured water levels, and hydraulic characteristics of the model layers representing different hydrogeologic units were estimated with the aid of state-of-the-art parameter optimization techniques.The flow directions and discharge locations predicted by this updated model generally match the 1997 model despite refinements and other changes. In the updated model, most

  13. Development of a numerical model to simulate groundwater flow in the shallow aquifer system of Assateague Island, Maryland and Virginia

    Science.gov (United States)

    Masterson, John P.; Fienen, Michael N.; Gesch, Dean B.; Carlson, Carl S.

    2013-01-01

    A three-dimensional groundwater-flow model was developed for Assateague Island in eastern Maryland and Virginia to simulate both groundwater flow and solute (salt) transport to evaluate the groundwater system response to sea-level rise. The model was constructed using geologic and spatial information to represent the island geometry, boundaries, and physical properties and was calibrated using an inverse modeling parameter-estimation technique. An initial transient solute-transport simulation was used to establish the freshwater-saltwater boundary for a final calibrated steady-state model of groundwater flow. This model was developed as part of an ongoing investigation by the U.S. Geological Survey Climate and Land Use Change Research and Development Program to improve capabilities for predicting potential climate-change effects and provide the necessary tools for adaptation and mitigation of potentially adverse impacts.

  14. Crash test for groundwater recharge models: The effects of model complexity and calibration period on groundwater recharge predictions

    Science.gov (United States)

    Moeck, Christian; Von Freyberg, Jana; Schrimer, Maria

    2016-04-01

    An important question in recharge impact studies is how model choice, structure and calibration period affect recharge predictions. It is still unclear if a certain model type or structure is less affected by running the model on time periods with different hydrological conditions compared to the calibration period. This aspect, however, is crucial to ensure reliable predictions of groundwater recharge. In this study, we quantify and compare the effect of groundwater recharge model choice, model parametrization and calibration period in a systematic way. This analysis was possible thanks to a unique data set from a large-scale lysimeter in a pre-alpine catchment where daily long-term recharge rates are available. More specifically, the following issues are addressed: We systematically evaluate how the choice of hydrological models influences predictions of recharge. We assess how different parameterizations of models due to parameter non-identifiability affect predictions of recharge by applying a Monte Carlo approach. We systematically assess how the choice of calibration periods influences predictions of recharge within a differential split sample test focusing on the model performance under extreme climatic and hydrological conditions. Results indicate that all applied models (simple lumped to complex physically based models) were able to simulate the observed recharge rates for five different calibration periods. However, there was a marked impact of the calibration period when the complete 20 years validation period was simulated. Both, seasonal and annual differences between simulated and observed daily recharge rates occurred when the hydrological conditions were different to the calibration period. These differences were, however, less distinct for the physically based models, whereas the simpler models over- or underestimate the observed recharge depending on the considered season. It is, however, possible to reduce the differences for the simple models by

  15. 40 CFR 1065.330 - Exhaust-flow calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Exhaust-flow calibration. 1065.330 Section 1065.330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... installing a flow meter with an off-site calibration, we recommend that you consider the effects of...

  16. Numerical simulation of groundwater flow in Dar es Salaam Coastal Plain (Tanzania)

    Science.gov (United States)

    Luciani, Giulia; Sappa, Giuseppe; Cella, Antonella

    2016-04-01

    They are presented the results of a groundwater modeling study on the Coastal Aquifer of Dar es Salaam (Tanzania). Dar es Salaam is one of the fastest-growing coastal cities in Sub-Saharan Africa, with with more than 4 million of inhabitants and a population growth rate of about 8 per cent per year. The city faces periodic water shortages, due to the lack of an adequate water supply network. These two factors have determined, in the last ten years, an increasing demand of groundwater exploitation, carried on by quite a number of private wells, which have been drilled to satisfy human demand. A steady-state three dimensional groundwater model has been set up by the MODFLOW code, and calibrated with the UCODE code for inverse modeling. The aim of the model was to carry out a characterization of groundwater flow system in the Dar es Salaam Coastal Plain. The inputs applied to the model included net recharge rate, calculated from time series of precipitation data (1961-2012), estimations of average groundwater extraction, and estimations of groundwater recharge, coming from zones, outside the area under study. Parametrization of the hydraulic conductivities was realized referring to the main geological features of the study area, based on available literature data and information. Boundary conditions were assigned based on hydrogeological boundaries. The conceptual model was defined in subsequent steps, which added some hydrogeological features and excluded other ones. Calibration was performed with UCODE 2014, using 76 measures of hydraulic head, taken in 2012 referred to the same season. Data were weighted on the basis of the expected errors. Sensitivity analysis of data was performed during calibration, and permitted to identify which parameters were possible to be estimated, and which data could support parameters estimation. Calibration was evaluated based on statistical index, maps of error distribution and test of independence of residuals. Further model

  17. Wave-Induced Groundwater Flows in a Freshwater Beach Aquifer

    Science.gov (United States)

    Malott, S. S.; Robinson, C. E.; O'Carroll, D. M.

    2014-12-01

    Wave-induced recirculation across the sediment-water interface can impact the transport of pollutants through a beach aquifer and their ultimate flux into coastal waters. The fate of nutrients (e.g. from septic and agricultural sources) and fecal indicator bacteria (e.g. E. coil) near the sediment-water interface are of particular concern as these pollutants often lead to degradation of recreational water quality and nearshore ecosystems. This paper presents detailed field measurements of groundwater flows in a freshwater beach aquifer on Lake Huron over periods of intensified wave conditions. Quantifying wave-driven processes in a freshwater beach aquifer enables wave effects to be studied in isolation from density and tidal effects that complicate groundwater flows in marine beaches. Water exchange across the sediment-water interface and groundwater flow patterns were measured using groundwater wells, arrays of vertically nested pressure transducers and manometers. Results show that wave action induces rapid infiltration/exfiltration across the sediment-water interface and a larger recirculation cell through the beach aquifer. Field data is used to validate a numerical groundwater model of wave-induced groundwater flows. While prior studies have simulated the effects of waves on beach groundwater flows, this study is the first attempt to validate these sophisticated modeling approaches. Finally, field data illustrating the impact of wave-induced groundwater flows on nutrient and bacteria fate and transport in beach aquifers will also be presented.

  18. Ground-water flow related to streamflow and water quality

    Science.gov (United States)

    Van Voast, W. A.; Novitzki, R.P.

    1968-01-01

    A ground-water flow system in southwestern Minnesota illustrates water movement between geologic units and between the land surface and the subsurface. The flow patterns indicate numerous zones of ground-water recharge and discharge controlled by topography, varying thicknesses of geologic units, variation in permeabilities, and the configuration of the basement rock surface. Variations in streamflow along a reach of the Yellow Medicine River agree with the subsurface flow system. Increases and decreases in runoff per square mile correspond, apparently, to ground-water discharge and recharge zones. Ground-water quality variations between calcium sulfate waters typical of the Quaternary drift and sodium chloride waters typical of the Cretaceous rocks are caused by mixing of the two water types. The zones of mixing are in agreement with ground-water flow patterns along the hydrologic section.

  19. Groundwater dating for understanding nitrogen in groundwater systems - Time lag, fate, and detailed flow path ways

    Science.gov (United States)

    Morgenstern, Uwe; Hadfield, John; Stenger, Roland

    2014-05-01

    Nitrate contamination of groundwater is a problem world-wide. Nitrate from land use activities can leach out of the root zone of the crop into the deeper part of the unsaturated zone and ultimately contaminate the underlying groundwater resources. Nitrate travels with the groundwater and then discharges into surface water causing eutrophication of surface water bodies. To understand the source, fate, and future nitrogen loads to ground and surface water bodies, detailed knowledge of the groundwater flow dynamics is essential. Groundwater sampled at monitoring wells or discharges may not yet be in equilibrium with current land use intensity due to the time lag between leaching out of the root zone and arrival at the sampling location. Anoxic groundwater zones can act as nitrate sinks through microbial denitrification. However, the effect of denitrification on overall nitrate fluxes depends on the fraction of the groundwater flowing through such zones. We will show results from volcanic aquifers in the central North Island of New Zealand where age tracers clearly indicate that the groundwater discharges into large sensitive lakes like Lake Taupo and Lake Rotorua are not yet fully realising current land use intensity. The majority of the water discharging into these lakes is decades and up to over hundred years old. Therefore, increases in dairy farming over the last decades are not yet reflected in these old water discharges, but over time these increased nitrate inputs will eventually work their way through the large groundwater systems and increasing N loads to the lakes are to be expected. Anoxic zones are present in some of these aquifers, indicating some denitrification potential, however, age tracer results from nested piezo wells show young groundwater in oxic zones indicating active flow in these zones, while anoxic zones tend to have older water indicating poorer hydraulic conductivity in these zones. Consequently, to evaluate the effect of denitrification

  20. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    Science.gov (United States)

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-10-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  1. Pareto optimal calibration of highly nonlinear reactive transport groundwater models using particle swarm optimization

    Science.gov (United States)

    Siade, A. J.; Prommer, H.; Welter, D.

    2014-12-01

    Groundwater management and remediation requires the implementation of numerical models in order to evaluate the potential anthropogenic impacts on aquifer systems. In many situations, the numerical model must, not only be able to simulate groundwater flow and transport, but also geochemical and biological processes. Each process being simulated carries with it a set of parameters that must be identified, along with differing potential sources of model-structure error. Various data types are often collected in the field and then used to calibrate the numerical model; however, these data types can represent very different processes and can subsequently be sensitive to the model parameters in extremely complex ways. Therefore, developing an appropriate weighting strategy to address the contributions of each data type to the overall least-squares objective function is not straightforward. This is further compounded by the presence of potential sources of model-structure errors that manifest themselves differently for each observation data type. Finally, reactive transport models are highly nonlinear, which can lead to convergence failure for algorithms operating on the assumption of local linearity. In this study, we propose a variation of the popular, particle swarm optimization algorithm to address trade-offs associated with the calibration of one data type over another. This method removes the need to specify weights between observation groups and instead, produces a multi-dimensional Pareto front that illustrates the trade-offs between data types. We use the PEST++ run manager, along with the standard PEST input/output structure, to implement parallel programming across multiple desktop computers using TCP/IP communications. This allows for very large swarms of particles without the need of a supercomputing facility. The method was applied to a case study in which modeling was used to gain insight into the mobilization of arsenic at a deepwell injection site

  2. Scaling of flow and transport behavior in heterogeneous groundwater systems

    Science.gov (United States)

    Scheibe, Timothy; Yabusaki, Steven

    1998-11-01

    Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on

  3. General Separations Area (GSA) Groundwater Flow Model Update: Hydrostratigraphic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-21

    This document describes the assembly, selection, and interpretation of hydrostratigraphic data for input to an updated groundwater flow model for the General Separations Area (GSA; Figure 1) at the Department of Energy’s (DOE) Savannah River Site (SRS). This report is one of several discrete but interrelated tasks that support development of an updated groundwater model (Bagwell and Flach, 2016).

  4. Calibration of transient groundwater models using time series analysis and moment matching

    NARCIS (Netherlands)

    Bakker, M.; Maas, K.; Von Asmuth, J.R.

    2008-01-01

    A comprehensive and efficient approach is presented for the calibration of transient groundwater models. The approach starts with the time series analysis of the measured heads in observation wells using all active stresses as input series, which may include rainfall, evaporation, surface water leve

  5. Regional Groundwater Processes and Flow Dynamics from Age Tracer Data

    Science.gov (United States)

    Morgenstern, Uwe; Stewart, Mike K.; Matthews, Abby

    2016-04-01

    Age tracers are now used in New Zealand on regional scales for quantifying the impact and lag time of land use and climate change on the quantity and quality of available groundwater resources within the framework of the National Policy Statement for Freshwater Management 2014. Age tracers provide measurable information on the dynamics of groundwater systems and reaction rates (e.g. denitrification), essential for conceptualising the regional groundwater - surface water system and informing the development of land use and groundwater flow and transport models. In the Horizons Region of New Zealand, around 200 wells have tracer data available, including tritium, SF6, CFCs, 2H, 18O, Ar, N2, CH4 and radon. Well depths range from shallower wells in gravel aquifers in the Horowhenua and Tararua districts, and deeper wells in the aquifers between Palmerston North and Wanganui. Most of the groundwater samples around and north of the Manawatu River west of the Tararua ranges are extremely old (>100 years), even from relatively shallow wells, indicating that these groundwaters are relatively disconnected from fresh surface recharge. The groundwater wells in the Horowhenua tap into a considerably younger groundwater reservoir with groundwater mean residence time (MRT) of 10 - 40 years. Groundwater along the eastern side of the Tararua and Ruahine ranges is significantly younger, typically groundwater recharge rates, as deduced from groundwater depth and MRT, are extremely low in the central coastal area, consistent with confined groundwater systems, or with upwelling of old groundwater close to the coast. Very low vertical recharge rates along the Manawatu River west of the Manawatu Gorge indicate upwelling groundwater conditions in this area, implying groundwater discharge into the river is more likely here than loss of river water into the groundwater system. High recharge rates observed at several wells in the Horowhenua area and in the area east of the Tararua and

  6. Groundwater flow model for the Little Plover River basin in Wisconsin’s Central Sands

    Science.gov (United States)

    Ken Bradbury,; Fienen, Michael; Maribeth Kniffin,; Jacob Krause,; Westenbroek, Stephen M.; Leaf, Andrew T.; Barlow, Paul M.

    2017-01-01

    explicitly includes all high-capacity wells in the model domain and simulates seasonal variations in recharge and well pumping. The model represents the Little Plover River, and other significant streams and drainage ditches in the model domain, as fully connected to the groundwater system, computes stream base flow resulting from groundwater discharge, and routes the flow along the stream channel. A separate soil-water-balance (SWB) model was used to develop groundwater recharge arrays as input for the groundwater flow model. The SWB model uses topography, soils, land use, and climatic data to estimate recharge as deep drainage from the soil zone. The SWB model explicitly includes recharge originating as irrigation water, and computes irrigation using techniques similar to those used by local irrigation operators. The groundwater flow model uses the U.S. Geological Survey’s MODFLOW modeling code which is freely available, widely accepted, and commonly used by the groundwater community. The groundwater flow model and the SWB model use identical high-resolution numerical grids having model cells 100 feet on a side, with physical properties assigned to each grid cell. This grid allows accurate geographic placement of wells, streams, and other model features. The 3-dimensional grid has three layers; layers 1 and 2 represent the sand and gravel aquifer and layer 3 represents the underlying sandstone. The distribution of material properties in the model (hydraulic conductivity, aquifer thickness, etc.) comes from previous published geologic studies of the region, updated by calibration to recent streamflow and groundwater level data. The SWB model operates on a daily time step. The groundwater flow model was calibrated to monthly stress periods with time steps ranging from 1 to 16 days. More detailed time discretization is possible. The groundwater model was calibrated to water-level and streamflow data collected during 2013 and 2014 by adjusting model parameters (primarily

  7. Permafrost thaw in a nested groundwater-flow system

    Science.gov (United States)

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  8. PUMa - modelling the groundwater flow in Baltic Sedimentary Basin

    Science.gov (United States)

    Kalvane, G.; Marnica, A.; Bethers, U.

    2012-04-01

    In 2009-2012 at University of Latvia and Latvia University of Agriculture project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" is implemented financed by the European Social Fund. The aim of the project is to develop groundwater research in Latvia by establishing interdisciplinary research group and modelling system covering groundwater flow in the Baltic Sedimentary Basin. Researchers from fields like geology, chemistry, mathematical modelling, physics and environmental engineering are involved in the project. The modelling system is used as a platform for addressing scientific problems such as: (1) large-scale groundwater flow in Baltic Sedimentary Basin and impact of human activities on it; (2) the evolution of groundwater flow since the last glaciation and subglacial groundwater recharge; (3) the effects of climate changes on shallow groundwater and interaction of hydrographical network and groundwater; (4) new programming approaches for groundwater modelling. Within the frame of the project most accessible geological information such as description of geological wells, geological maps and results of seismic profiling in Latvia as well as Estonia and Lithuania are collected and integrated into modelling system. For example data form more then 40 thousands wells are directly used to automatically generate the geological structure of the model. Additionally a groundwater sampling campaign is undertaken. Contents of CFC, stabile isotopes of O and H and radiocarbon are the most significant parameters of groundwater that are established in unprecedented scale for Latvia. The most important modelling results will be published in web as a data set. Project number: 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Project web-site: www.puma.lu.lv

  9. Research on flow characteristics of deep groundwater by environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Jun; Miyaoka, Kunihide [Tsukuba Univ., Ibaraki (Japan); Sakurai, Hideyuki; Senoo, Muneaki; Kumata, Masahiro; Mukai, Masayuki; Watanabe, Kazuo; Ouchi, Misao

    1996-01-01

    In this research, as the technique for grasping the behavior of groundwater in deep rock bed which is important as the factor of disturbing the natural barrier in the formation disposal of high level radioactive waste, the method of utilizing the environmental isotopes contained in groundwater as natural tracer was taken up, and by setting up the concrete field of investigation, through the forecast of flow by the two or three dimensional groundwater flow analysis using a computer, the planning and execution of water sampling, the analysis of various environmental isotopes, the interpretation based on those results of measurement and so on, the effectiveness of the investigation technique used was verified, and the real state of the behavior of deep groundwater in the district being studied was clarified. In this research, Imaichi alluvial fan located in northern Kanto plain was taken as the object. In fiscal year 1996, three-dimensional steady state groundwater flow simulation was carried out based on the data related to shallow groundwater and surface water systems, and the places where active groundwater flow is expected were selected, and boring will be carried out there. The analysis model and the results are reported. (K.I.)

  10. Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo catchment, New Zealand

    Directory of Open Access Journals (Sweden)

    M. A. Gusyev

    2013-03-01

    Full Text Available Here we present a general approach of calibrating transient transport models to tritium concentrations in river waters developed for the MT3DMS/MODFLOW model of the western Lake Taupo catchment, New Zealand. Tritium has a known pulse-shaped input to groundwater systems due to the bomb tritium in the early 1960s and, with its radioactive half-life of 12.32 yr, allows for the determination of the groundwater age. In the transport model, the tritium input (measured in rainfall passes through the groundwater system, and the simulated tritium concentrations are matched to the measured tritium concentrations in the river and stream outlets for the Waihaha, Whanganui, Whareroa, Kuratau and Omori catchments from 2000–2007. For the Kuratau River, tritium was also measured between 1960 and 1970, which allowed us to fine-tune the transport model for the simulated bomb-peak tritium concentrations. In order to incorporate small surface water features in detail, an 80 m uniform grid cell size was selected in the steady-state MODFLOW model for the model area of 1072 km2. The groundwater flow model was first calibrated to groundwater levels and stream baseflow observations. Then, the transient tritium transport MT3DMS model was matched to the measured tritium concentrations in streams and rivers, which are the natural discharge of the groundwater system. The tritium concentrations in the rivers and streams correspond to the residence time of the water in the groundwater system (groundwater age and mixing of water with different age. The transport model output showed a good agreement with the measured tritium values. Finally, the tritium-calibrated MT3DMS model is applied to simulate groundwater ages, which are used to obtain groundwater age distributions with mean residence times (MRTs in streams and rivers for the five catchments. The effect of regional and local hydrogeology on the simulated groundwater ages is investigated by demonstrating groundwater ages

  11. Potential structural barriers to ground-water flow, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional geologic structures designated as potential ground-water flow barriers in an approximately 45,000...

  12. Groundwater-flow model of the northern High Plains aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming

    Science.gov (United States)

    Peterson, Steven M.; Flynn, Amanda T.; Traylor, Jonathan P.

    2016-12-13

    The High Plains aquifer is a nationally important water resource underlying about 175,000 square miles in parts of eight states: Colorado, Kansas, Oklahoma, Nebraska, New Mexico, South Dakota, Texas, and Wyoming. Droughts across much of the Northern High Plains from 2001 to 2007 have combined with recent (2004) legislative mandates to elevate concerns regarding future availability of groundwater and the need for additional information to support science-based water-resource management. To address these needs, the U.S. Geological Survey began the High Plains Groundwater Availability Study to provide a tool for water-resource managers and other stakeholders to assess the status and availability of groundwater resources.A transient groundwater-flow model was constructed using the U.S. Geological Survey modular three-dimensional finite-difference groundwater-flow model with Newton-Rhapson solver (MODFLOW–NWT). The model uses an orthogonal grid of 565 rows and 795 columns, and each grid cell measures 3,281 feet per side, with one variably thick vertical layer, simulated as unconfined. Groundwater flow was simulated for two distinct periods: (1) the period before substantial groundwater withdrawals, or before about 1940, and (2) the period of increasing groundwater withdrawals from May 1940 through April 2009. A soil-water-balance model was used to estimate recharge from precipitation and groundwater withdrawals for irrigation. The soil-water-balance model uses spatially distributed soil and landscape properties with daily weather data and estimated historical land-cover maps to calculate spatial and temporal variations in potential recharge. Mean annual recharge estimated for 1940–49, early in the history of groundwater development, and 2000–2009, late in the history of groundwater development, was 3.3 and 3.5 inches per year, respectively.Primary model calibration was completed using statistical techniques through parameter estimation using the parameter

  13. An update of the Death Valley regional groundwater flow system transient model, Nevada and California

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.; Faunt, Claudia C.; Pavelko, Michael T.; Hill, Mary C.

    2017-01-19

    Since the original publication of the Death Valley regional groundwater flow system (DVRFS) numerical model in 2004, more information on the regional groundwater flow system in the form of new data and interpretations has been compiled. Cooperators such as the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, the Department of Energy, and Nye County, Nevada, recognized a need to update the existing regional numerical model to maintain its viability as a groundwater management tool for regional stakeholders. The existing DVRFS numerical flow model was converted to MODFLOW-2005, updated with the latest available data, and recalibrated. Five main data sets were revised: (1) recharge from precipitation varying in time and space, (2) pumping data, (3) water-level observations, (4) an updated regional potentiometric map, and (5) a revision to the digital hydrogeologic framework model.The resulting DVRFS version 2.0 (v. 2.0) numerical flow model simulates groundwater flow conditions for the Death Valley region from 1913 to 2003 to correspond to the time frame for the most recently published (2008) water-use data. The DVRFS v 2.0 model was calibrated by using the Tikhonov regularization functionality in the parameter estimation and predictive uncertainty software PEST. In order to assess the accuracy of the numerical flow model in simulating regional flow, the fit of simulated to target values (consisting of hydraulic heads and flows, including evapotranspiration and spring discharge, flow across the model boundary, and interbasin flow; the regional water budget; values of parameter estimates; and sensitivities) was evaluated. This evaluation showed that DVRFS v. 2.0 simulates conditions similar to DVRFS v. 1.0. Comparisons of the target values with simulated values also indicate that they match reasonably well and in some cases (boundary flows and discharge) significantly better than in DVRFS v. 1.0.

  14. Boundary of the ground-water flow model by IT Corporation (1996), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the steady-state ground-water flow model built by IT Corporation (1996). The regional, 20-layer ground-water flow...

  15. Material-property zones used in the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Zones in this data set represent spatially contiguous areas that influence ground-water flow in the Death Valley regional ground-water flow system (DVRFS), an...

  16. Investigations of groundwater system and simulation of regional groundwater flow for North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    2013-01-01

    .7 ft) representing shallow weathered rock and saprolite up to 200 m (656 ft) representing deeper dipping bedrock. The model did not include detailed structure to account for local-scale differences in hydraulic properties, with the result that local-scale groundwater flow may not be well simulated. Additional detailed multi-well aquifer tests would be needed to establish the extent of interconnection between intervals at the local scale to address remediation of contamination at each source area. This regional groundwater-flow model was calibrated against measured groundwater levels (1996, 2000, and 2005) and base flow estimated from selected streamflow measurements by use of nonlinear-regression parameter-estimation algorithms to determine hydraulic conductivity and anisotropy of hydraulic conductivity, streambed hydraulic conductivity, and recharge during calibration periods. Results of the simulation using the calibrated regional model indicate that the aquifer appears to be anisotropic where hydraulic conductivity is greatest parallel to the orientation of bedding of the formations underlying the area and least in the cross-bed direction. The maximum hydraulic conductivity is aligned with the average regional strike of the formations, which is “subhorizontal” in the model because the altitudes of the beds and model cells vary in the strike, as well as dip, direction. Estimated subhorizontal hydraulic conductivities (in strike direction parallel to dipping beds) range from 0.001 to 1.67 meters per day (0.0032 to 5.5 feet per day). The ratio of minimum (dip direction) to maximum (strike direction) subhorizontal hydraulic conductivity ranges from 1/3.1 to 1/8.6, and the ratio of vertical to horizontal hydraulic conductivity ranges from 1/1 to 1/478. However, limited available field data precluded rigorous calibration of vertical anisotropy in the model. Estimated recharge rates corresponding to calibration periods in 1996, 2000, and 2005 are 150, 109, and 124

  17. Steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system

    Science.gov (United States)

    Brooks, Lynette E.; Masbruch, Melissa D.; Sweetkind, Donald S.; Buto, Susan G.

    2014-01-01

    This report describes the construction, calibration, evaluation, and results of a steady-state numerical groundwater flow model of the Great Basin carbonate and alluvial aquifer system that was developed as part of the U.S. Geological Survey National Water Census Initiative to evaluate the nation’s groundwater availability. The study area spans 110,000 square miles across five states. The numerical model uses MODFLOW-2005, and incorporates and tests complex hydrogeologic and hydrologic elements of a conceptual understanding of an interconnected groundwater system throughout the region, including mountains, basins, consolidated rocks, and basin fill. The level of discretization in this model has not been previously available throughout the study area.

  18. Simulation of Groundwater Flow in the Coastal Plain Aquifer System of Virginia

    Science.gov (United States)

    Heywood, Charles E.; Pope, Jason P.

    2009-01-01

    75 percent of the total groundwater withdrawn from Coastal Plain aquifers during the year 2000. Unreported self-supplied withdrawals were simulated in the groundwater model by specifying their probable locations, magnitudes, and aquifer assignments on the basis of a separate study of domestic-well characteristics in Virginia. The groundwater flow model was calibrated to 7,183 historic water-level observations from 497 observation wells with the parameter-estimation codes UCODE-2005 and PEST. Most water-level observations were from the Potomac aquifer system, which permitted a more complex spatial distribution of simulated hydraulic conductivity within the Potomac aquifer than was possible for other aquifers. Zone, function, and pilot-point approaches were used to distribute assigned hydraulic properties within the aquifer system. The good fit (root mean square error = 3.6 feet) of simulated to observed water levels and reasonableness of the estimated parameter values indicate the model is a good representation of the physical groundwater flow system. The magnitudes and temporal and spatial distributions of residuals indicate no appreciable model bias. The model is intended to be useful for predicting changes in regional groundwater levels in the confined aquifer system in response to future pumping. Because the transient release of water stored in low-permeability confining units is simulated, drawdowns resulting from simulated pumping stresses may change substantially through time before reaching steady state. Consequently, transient simulations of water levels at different future times will be more accurate than a steady-state simulation for evaluating probable future aquifer-system responses to proposed pumping.

  19. Hydrogeologic Setting and Ground-Water Flow in the Leetown Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; Weary, David J.; Paybins, Katherine S.; Pierce, Herbert A.

    2007-01-01

    The Leetown Science Center is a research facility operated by the U.S. Geological Survey that occupies approximately 455-acres near Kearneysville, Jefferson County, West Virginia. Aquatic and fish research conducted at the Center requires adequate supplies of high-quality, cold ground water. Three large springs and three production wells currently (in 2006) supply water to the Center. The recent construction of a second research facility (National Center for Cool and Cold Water Aquaculture) operated by the U.S. Department of Agriculture and co-located on Center property has placed additional demands on available water resources in the area. A three-dimensional steady-state finite-difference ground-water flow model was developed to simulate ground-water flow in the Leetown area and was used to assess the availability of ground water to sustain current and anticipated future demands. The model also was developed to test a conceptual model of ground-water flow in the complex karst aquifer system in the Leetown area. Due to the complexity of the karst aquifer system, a multidisciplinary research study was required to define the hydrogeologic setting. Geologic mapping, surface- and borehole-geophysical surveys, stream base-flow surveys, and aquifer tests were conducted to provide the hydrogeologic data necessary to develop and calibrate the model. It would not have been possible to develop a numerical model of the study area without the intensive data collection and methods developments components of the larger, more comprehensive hydrogeologic investigation. Results of geologic mapping and surface-geophysical surveys verified the presence of several prominent thrust faults and identified additional faults and other complex geologic structures (including overturned anticlines and synclines) in the area. These geologic structures are known to control ground-water flow in the region. Results of this study indicate that cross-strike faults and fracture zones are major

  20. Hot-wire calibration in subsonic/transonic flow regimes

    Science.gov (United States)

    Nagabushana, K. A.; Ash, Robert L.

    1995-01-01

    A different approach for calibrating hot-wires, which simplifies the calibration procedure and reduces the tunnel run-time by an order of magnitude was sought. In general, it is accepted that the directly measurable quantities in any flow are velocity, density, and total temperature. Very few facilities have the capability of varying the total temperature over an adequate range. However, if the overheat temperature parameter, a(sub w), is used to calibrate the hot-wire then the directly measurable quantity, voltage, will be a function of the flow variables and the overheat parameter i.e., E = f(u,p,a(sub w), T(sub w)) where a(sub w) will contain the needed total temperature information. In this report, various methods of evaluating sensitivities with different dependent and independent variables to calibrate a 3-Wire hot-wire probe using a constant temperature anemometer (CTA) in subsonic/transonic flow regimes is presented. The advantage of using a(sub w) as the independent variable instead of total temperature, t(sub o), or overheat temperature parameter, tau, is that while running a calibration test it is not necessary to know the recovery factor, the coefficients in a wire resistance to temperature relationship for a given probe. It was deduced that the method employing the relationship E = f (u,p,a(sub w)) should result in the most accurate calibration of hot wire probes. Any other method would require additional measurements. Also this method will allow calibration and determination of accurate temperature fluctuation information even in atmospheric wind tunnels where there is no ability to obtain any temperature sensitivity information at present. This technique greatly simplifies the calibration process for hot-wires, provides the required calibration information needed in obtaining temperature fluctuations, and reduces both the tunnel run-time and the test matrix required to calibrate hotwires. Some of the results using the above techniques are presented

  1. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  2. Nitrate fluxes to groundwater under citrus orchards in a Mediterranean climate: observations, calibrated models, simulations and agro-hydrological conclusions.

    Science.gov (United States)

    Kurtzman, Daniel; Shapira, Roi H; Bar-Tal, Asher; Fine, Pinchas; Russo, David

    2013-08-01

    Nitrate contamination of groundwater under land used for intensive-agriculture is probably the most worrisome agro-hydrological sustainability problem worldwide. Vadose-zone samples from 0 to 9 m depth under citrus orchards overlying an unconfined aquifer were analyzed for variables controlling water flow and the fate and transport of nitrogen fertilizers. Steady-state estimates of water and NO3-N fluxes to groundwater were found to vary spatially in the ranges of 90-330 mm yr(-1) and 50-220 kg ha(-1) yr(-1), respectively. Calibration of transient models to two selected vadose-zone profiles required limiting the concentration of NO3-N in the solution that is taken up by the roots to 30 mg L(-1). Results of an independent lysimeter experiment showed a similar nitrogen-uptake regime. Simulations of past conditions revealed a significant correlation between NO3-N flux to groundwater and the previous year's precipitation. Simulations of different nitrogen-application rates showed that using half of the nitrogen fertilizer added to the irrigation water by farmers would reduce average NO3-N flux to groundwater by 70%, decrease root nitrogen uptake by 20% and reduce the average pore water NO3-N concentration in the deep vadose zone to below the Israeli drinking water standard; hence this rate of nitrogen application was found to be agro-hydrologically sustainable. Beyond the investigation of nitrate fluxes to groundwater under citrus orchards and the interesting case-study aspects, this work demonstrates a methodology that enables skillful decisions concerning joint sustainability of both the water resource and agricultural production in a common environmental setting.

  3. Using time-lapse gravity for groundwater model calibration: An application to alluvial aquifer storage

    DEFF Research Database (Denmark)

    Christiansen, Lars; Binning, Philip John; Rosbjerg, Dan

    2011-01-01

    The estimation of hydrological model parameters by calibration to field data is a critical step in the modeling process. However, calibration often fails because of parameter correlation. Here it is shown that time-lapse gravity data can be combined with hydraulic head data in a coupled...... hydrogeophysical inversion to decrease parameter correlation in groundwater models. This is demonstrated for a model of riverbank infiltration where combined inversion successfully constrains hydraulic conductivity and specific yield in both an analytical and a numerical groundwater model. A sensitivity study...... shows that time-lapse gravity data are especially useful to constrain specific yield. Furthermore, we demonstrate that evapotranspiration, and riverbed conductance are better constrained by coupled inversion to gravity and head data than to head data alone. When estimating the four parameters...

  4. Analytic solutions for unconfined groundwater flow over a stepped base

    Science.gov (United States)

    Fitts, Charles R.; Strack, Otto D. L.

    1996-03-01

    Two new exact solutions are presented for uniform unconfined groundwater flow over a stepped base; one for a step down in the direction of flow, the other for a step up in the direction of flow. These are two-dimensional solutions of Laplace's equation in the vertical plane, and are derived using the hodograph method and conformal mappings on Riemann surfaces. The exact solutions are compared with approximate one-dimensional solutions which neglect the resistance to vertical flow. For small horizontal hydraulic gradients typical of regional groundwater flow, little error is introduced by neglecting the vertical resistance to flow. This conclusion may be extended to two-dimensional analytical models in the horizontal plane, which neglect the vertical resistance to flow and treat the aquifer base as a series of flat steps.

  5. Horizontal flow barriers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional features simulated as horizontal flow barriers in the Death Valley regional ground-water flow system...

  6. Simulation of groundwater flow in the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Thomas, Jonathan V.

    2014-01-01

    The Edwards-Trinity aquifer, a major aquifer in the Pecos County region of western Texas, is a vital groundwater resource for agricultural, industrial, and public supply uses. Resource managers would like to better understand the future availability of water in the Edwards-Trinity aquifer in the Pecos County region and the effects of the possible increase or temporal redistribution of groundwater withdrawals. To that end, the U.S. Geological Survey (USGS), in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1, completed a comprehensive, integrated analysis of available hydrogeologic data to develop a groundwater-flow model of the Edwards-Trinity and related aquifers in parts of Brewster, Jeff Davis, Pecos, and Reeves Counties. Following calibration, the model was used to evaluate the sustainability of recent (2008) and projected water-use demands on groundwater resources in the study area.

  7. Numerical simulations of groundwater flow at New Jersey Shallow Shelf

    Science.gov (United States)

    Fehr, Annick; Patterson, Fabian; Lofi, Johanna; Reiche, Sönke

    2016-04-01

    During IODP Expedition 313, three boreholes were drilled in the so-called New Jersey transect. Hydrochemical studies revealed the groundwater situation as more complex than expected, characterized by several sharp boundaries between fresh and saline groundwater. Two conflicting hypotheses regarding the nature of these freshwater reservoirs are currently debated. One hypothesis is that these reservoirs are connected with onshore aquifers and continuously recharged by seaward-flowing groundwater. The second hypothesis is that fresh groundwater was emplaced during the last glacial period. In addition to the petrophysical properties measured during IODP 313 expedition, Nuclear Magnetic Resonance (NMR) measurements were performed on samples from boreholes M0027, M0028 and M0029 in order to deduce porosities and permeabilities. These results are compared with data from alternative laboratory measurements and with petrophysical properties inferred from downhole logging data. We incorporate these results into a 2D numerical model that reflects the shelf architecture as known from drillings and seismic data to perform submarine groundwater flow simulations. In order to account for uncertainties related to the spatial distribution of physical properties, such as porosity and permeability, systematic variation of input parameters was performed during simulation runs. The target is to test the two conflicting hypotheses of fresh groundwater emplacements offshore New Jersey and to improve the understanding of fluid flow processes at marine passive margins.

  8. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    Science.gov (United States)

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to

  9. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  10. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

    1996-09-01

    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  11. New dating method: Groundwater residence time estimated from the 4He accumulation rate calibrated by using cosmogenic and subsurface-produced 36Cl

    Directory of Open Access Journals (Sweden)

    Habermehl M. A.

    2012-04-01

    Full Text Available Groundwater contains dissolved He, and its concentration increases with the residence time of the groundwater. Thus, if the 4He accumulation rate is constant, the dissolved 4He concentration in ground-water is equivalent to the residence time. Since accumulation mechanisms are not easily separated in the field, we estimate the total He accumulation rate during the half-life of 36Cl (3.01 × 105 years. We estimated the 4He accumulation rate, calibrated using both cosmogenic and subsurface-produced 36Cl, in the Great Artesian Basin (GAB, Australia, and the subsurface-produced 36Cl increase at the Äspö Hard Rock Laboratory, Sweden. 4He accumulation rates range from (1.9±0.3 × 10−11 to (15±6 × 10−11 ccSTP·cm−3·y−1 in GAB and (1.8 ±0.7 × 10−8 ccSTP·cm−3·y−1 at Äspö. We confirmed a ground-water flow with a residence time of 0.7-1.06 Ma in GAB and stagnant groundwater with the long residence time of 4.5 Ma at Äspö. Therefore, the groundwater residence time can be deduced from the dissolved 4He concentration and the 4He accumulation rate calibrated by 36Cl, provided that 4He accumulation, groundwater flow, and other geo-environmental conditions have remained unchanged for the required amount of geological time.

  12. Multivariate analyses and end-member mixing to characterize karst groundwater flow

    Science.gov (United States)

    Long, A. J.; Valder, J. F.

    2011-12-01

    End-member mixing (EMM) is a simple modeling approach that is used to estimate the mixing proportions of different waters contributing to sampled sites. This approach has advantages for karst aquifers and groundwater in caves because no assumptions need to be made regarding the presence, locations, or dimensions of conduits. Principal component analysis (PCA) applied to hydrochemical data is useful for assessing hydrochemical data to be used in EMM and for determining appropriate constraints on the EMM model. The combination of these two methods has been used to a limited extent to characterize groundwater flow and has excellent potential for further development and application, but aspects of this approach are unresolved. Previous similar approaches typically have assumed that the extreme-value samples identified by PCA represent end members. The approach we present is different from previous work in that (1) end members were not assumed to have been sampled but rather were estimated and constrained by prior knowledge; (2) end-member mixing was quantified in relation to hydrogeologic domains, which focuses model results on major hydrologic processes; (3) a method to select an appropriate number of end members using a series of cluster analyses is presented; and (4) conservative tracers were weighted preferentially in model calibration, which distributed model errors of optimized values, or residuals, more appropriately than otherwise would be the case. The latter item also provides an estimate of the relative influence of geochemical evolution along flow paths in comparison to mixing. This method was applied to groundwater in Wind Cave and an associated karst aquifer in the Black Hills of South Dakota, USA. The EMM model was used to test a hypothesis that five different end-member waters are mixed in the groundwater system comprising five hydrogeologic domains. The model estimated that Wind Cave received most of its groundwater inflow from local surface recharge

  13. Complex groundwater flow systems as traveling agent models

    CERN Document Server

    López-Corona, Oliver; Escolero, Oscar; González, Tomás; Morales-Casique, Eric

    2014-01-01

    Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits a complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.

  14. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain. The...

  15. Boundary of the area contributing flow to the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the area contributing ground-water flow to the Death Valley regional ground-water flow-system (DVRFS) model domain....

  16. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    Science.gov (United States)

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    public-supply wells in Clark County may be receiving a component of water that recharged in areas that are more conducive to contaminant entry. The aquifer sensitivity maps illustrate a critical deficiency in the DRASTIC methodology: the failure to account for the dynamics of the ground-water flow system. DRASTIC indices calculated for a particular location thus do not necessarily reflect the conditions of the ground-water resources at the recharge areas to that particular location. Each hydrogeologic unit was also mapped to highlight those areas that will eventually receive flow from recharge areas with on-site waste-disposal systems. Most public-supply wells in southern Clark County may eventually receive a component of water that was recharged from on-site waste-disposal systems.Traveltimes from particle tracking were used to estimate the minimum and maximum age of ground water within each model-grid cell. Chlorofluorocarbon (CFC)-age dating of ground water from 51 wells was used to calibrate effective porosity values used for the particle- tracking program by comparison of ground-water ages determined through the use of the CFC-age dating with those calculated by the particle- tracking program. There was a 76 percent agreement in predicting the presence of modern water in the 51 wells as determined using CFCs and calculated by the particle-tracking program. Maps showing the age of ground water were prepared for all the hydrogeologic units. Areas with the youngest ground-water ages are expected to be at greatest risk for contamination from anthropogenic sources. Comparison of these maps with maps of public- supply wells in Clark County indicates that most of these wells may withdraw ground water that is, in part, less than 100 years old, and in many instances less than 10 years old. Results of the analysis showed that a single particle-tracking analysis simulating advective transport can be used to evaluate ground-water vulnerability for any part of a ground-wate

  17. Model grid and infiltration values for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the model grid and infiltration values simulated in the transient ground-water flow model of the Death Valley regional ground-water...

  18. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge occurs...

  19. Discharge areas for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents discharge areas in the Death Valley regional ground-water flow system (DVRFS) transient model. Natural ground-water discharge...

  20. Evaluation of Parameter Uncertainty Reduction in Groundwater Flow Modeling Using Multiple Environmental Tracers

    Science.gov (United States)

    Arnold, B. W.; Gardner, P.

    2013-12-01

    Calibration of groundwater flow models for the purpose of evaluating flow and aquifer heterogeneity typically uses observations of hydraulic head in wells and appropriate boundary conditions. Environmental tracers have a wide variety of decay rates and input signals in recharge, resulting in a potentially broad source of additional information to constrain flow rates and heterogeneity. A numerical study was conducted to evaluate the reduction in uncertainty during model calibration using observations of various environmental tracers and combinations of tracers. A synthetic data set was constructed by simulating steady groundwater flow and transient tracer transport in a high-resolution, 2-D aquifer with heterogeneous permeability and porosity using the PFLOTRAN software code. Data on pressure and tracer concentration were extracted at well locations and then used as observations for automated calibration of a flow and transport model using the pilot point method and the PEST code. Optimization runs were performed to estimate parameter values of permeability at 30 pilot points in the model domain for cases using 42 observations of: 1) pressure, 2) pressure and CFC11 concentrations, 3) pressure and Ar-39 concentrations, and 4) pressure, CFC11, Ar-39, tritium, and He-3 concentrations. Results show significantly lower uncertainty, as indicated by the 95% linear confidence intervals, in permeability values at the pilot points for cases including observations of environmental tracer concentrations. The average linear uncertainty range for permeability at the pilot points using pressure observations alone is 4.6 orders of magnitude, using pressure and CFC11 concentrations is 1.6 orders of magnitude, using pressure and Ar-39 concentrations is 0.9 order of magnitude, and using pressure, CFC11, Ar-39, tritium, and He-3 concentrations is 1.0 order of magnitude. Data on Ar-39 concentrations result in the greatest parameter uncertainty reduction because its half-life of 269

  1. A preliminary analysis of the hydrogeological conditions and groundwater flow in some parts of a crystalline aquifer system: Afigya Sekyere South District, Ghana

    Science.gov (United States)

    Yidana, Sandow Mark; Essel, Stephen Kwaku; Addai, Millicent Obeng; Fynn, Obed Fiifi

    2015-04-01

    A steady state groundwater flow model was calibrated to simulate the complex groundwater flow pattern in some crystalline aquifer systems in north-central Ghana. The objective was to develop the general geometry of the groundwater system and also estimate spatial variations in the hydraulic conductivity field as part of efforts to thoroughly investigate the general hydrogeology and groundwater conditions of aquifers in the area. The calibrated model was used in a limited fashion to simulate some scenarios of groundwater development in the terrain. The results suggest the dominance of local groundwater flow systems resulting from local variabilities in the hydraulic conductivity field and the topography. Estimated horizontal hydraulic conductivities range between 1.04 m/d and 15.25 m/d, although most of the areas consist of hydraulic conductivities in the range of 1.04 m/d and 5.5 m/d. Groundwater flow is apparently controlled by discrete entities with limited spatial interconnectivities. Recharge rates estimated at calibration range between 4.3% and 13% of the annual rainfall in the terrain. The analysis suggests that under the current recharge rates, the system can sustain increasing groundwater abstraction rates by up to 50% with minimal drawdown in the hydraulic head for the entire terrain. However, with decreasing groundwater recharge as would be expected in the wake of climate change/variability in the area, increased groundwater abstraction by up to 50% can lead to drastic drawdowns by more than 25% if recharge reduces by up to 50% of the current levels. This study strongly recommend the protection of some of the local groundwater recharge areas identified in this study and the promotion of local recharge through the development of dugouts and other conduits to encourage recharge.

  2. Simulation of groundwater flow and saltwater movement in the Onslow County area, North Carolina: predevelopment-2010

    Science.gov (United States)

    Fine, Jason M.; Kuniansky, Eve L.

    2014-01-01

    Onslow County, North Carolina, is located within the designated Central Coastal Plain Capacity Use Area (CCPCUA). The CCPCUA was designated by law as a result of groundwater level declines of as much as 200 feet during the past four decades within aquifers in rocks of Cretaceous age in the central Coastal Plain of North Carolina and a depletion of water in storage from increased groundwater withdrawals in the area. The declines and depletion of water in storage within the Cretaceous aquifers increase the potential for saltwater migration—both lateral encroachment and upward leakage of brackish water. Within the CCPCUA, a reduction in groundwater withdrawals over a period of 16 years from 2003 to 2018 is mandated. Under the CCPCUA rules, withdrawals in excess of 100,000 gallons per day from any of the Cretaceous aquifer well systems are subject to water-use reductions of as much as 75 percent. To assess the effects of the CCPCUA rules and to assist with groundwater-management decisions, a numerical model was developed to simulate the groundwater flow and chloride concentrations in the surficial Castle Hayne, Beaufort, Peedee, and Black Creek aquifers in the Onslow County area. The model was used to (1) simulate groundwater flow from 1900 to 2010; (2) assess chloride movement throughout the aquifer system; and (3) create hypothetical scenarios of future groundwater development. After calibration of a groundwater flow model and conversion to a variable-density model, five scenarios were created to simulate future groundwater conditions in the Onslow County area: (1) full implementation of the CCPCUA rules with three phases of withdrawal reductions simulated through 2028; (2) implementation of only phase 1 withdrawal reductions of the CCPCUA rules and simulated through 2028; (3) implementation of only phases 1 and 2 withdrawal reductions of the CCPCUA rules and simulated through 2028; (4) full implementation of the CCPCUA rules with the addition of withdrawals from

  3. Groundwater flow and sorption processes in fractured rocks (I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Woo, Nam Chul; Yum, Byoung Woo; Choi, Young Sub; Chae, Byoung Kon; Kim, Jung Yul; Kim, Yoo Sung; Hyun, Hye Ja; Lee, Kil Yong; Lee, Seung Gu; Youn, Youn Yul; Choon, Sang Ki [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    This study is objected to characterize groundwater flow and sorption processes of the contaminants (ground-water solutes) along the fractured crystalline rocks in Korea. Considering that crystalline rock mass is an essential condition for using underground space cannot be overemphasized the significance of the characterizing fractured crystalline rocks. the behavior of the groundwater contaminants is studied in related to the subsurface structure, and eventually a quantitative technique will be developed to evaluate the impacts of the contaminants on the subsurface environments. The study has been carried at the Samkwang mine area in the Chung-Nam Province. The site has Pre-Cambrian crystalline gneiss as a bedrock and the groundwater flow system through the bedrock fractures seemed to be understandable with the study on the subsurface geologic structure through the mining tunnels. Borehole tests included core logging, televiewer logging, constant pressure fixed interval length tests and tracer tests. The results is summarized as follows; 1) To determine the hydraulic parameters of the fractured rock, the transient flow analysis produce better results than the steady - state flow analysis. 2) Based on the relationship between fracture distribution and transmissivities measured, the shallow part of the system could be considered as a porous and continuous medium due to the well developed fractures and weathering. However, the deeper part shows flow characteristics of the fracture dominant system, satisfying the assumptions of the Cubic law. 3) Transmissivities from the FIL test were averaged to be 6.12 x 10{sup -7}{sub m}{sup 2}{sub /s}. 4) Tracer tests result indicates groundwater flow in the study area is controlled by the connection, extension and geometry of fractures in the bedrock. 5) Hydraulic conductivity of the tracer-test interval was in maximum of 7.2 x 10{sup -6}{sub m/sec}, and the effective porosity of 1.8 %. 6) Composition of the groundwater varies

  4. Investigation of Groundwater Flow at Highway Construction Areas in Korea

    Science.gov (United States)

    Choi, Y.; Park, Y.; Ji, S.; Cheong, Y.; Yim, G.

    2006-05-01

    Contamination by acid rock drainage was found at highway construction areas in Korea, where pyrites were included in materials to raise the ground level. To remediate the acid rock drainage, groundwater flow direction and total flow rate were investigated in addition to the relationship between groundwater and surface water. Multiple boreholes were installed for geological structure surveys, pumping tests, slug test and tracer tests. Geological survey showed that a water-table aquifer system included a relatively homogeneous earthen layer and an underlying undisturbed alluvial layer. Transmissivity and storativity of the upper layer were investigated 0.1-2.6m2/day and 0.3 relatively by pumping tests. Hydraulic conductivity of the upper layer was investigated 0.1m/day by slug tests. Chloride ion was used in tracer tests, which included a natural gradient method and a push-pull method. In the natural gradient method, it was failed to detect chloride ion in groundwater. In the push-pull test, dispersivity ranges from 0.001m to 0.3m for several drift time. With the characteristic parameters from aquifer tests and tracer tests, numerical modeling techniques were used to evaluate groundwater flow directions and rates. Boundary conditions were decided to reflect geological and geographical boundaries, like concrete barriers, water divides and rivers. Numerical simulations showed the differences between groundwater flow before constructions and that after constructions. After the highway constructions are finished, groundwater direction changes seriously and total amount of the acid rock drainage is estimated 166.5m3/day. To find out the effect of precipitation changes, several numerical simulations were performed. It was shown that total amount of the acid rock drainage ranges from 73.8m3/day in the dry season to 323.6m3/day in the rainy season.

  5. 40 CFR 1065.320 - Fuel-flow calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Fuel-flow calibration. 1065.320 Section 1065.320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... recommend that you consider the effects of the tubing configuration upstream and downstream of the...

  6. Subregions of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the subregions of the transient ground-water flow model of the Death Valley regional ground-water flow system (DVRFS). Subregions are...

  7. Hydrogeology and simulation of groundwater flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas, 1891-2009

    Science.gov (United States)

    Kasmarek, Mark C.

    2012-01-01

    In cooperation with the Harris–Galveston Subsidence District, Fort Bend Subsidence District, and Lone Star Groundwater Conservation District, the U.S. Geological Survey developed and calibrated the Houston Area Groundwater Model (HAGM), which simulates groundwater flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system in Texas from predevelopment (before 1891) through 2009. Withdrawal of groundwater since development of the aquifer system has resulted in potentiometric surface (hydraulic head, or head) declines in the Gulf Coast aquifer system and land-surface subsidence (primarily in the Houston area) from depressurization and compaction of clay layers interbedded in the aquifer sediments.

  8. FINITE VOLUME METHOD OF MODELLING TRANSIENT GROUNDWATER FLOW

    Directory of Open Access Journals (Sweden)

    N. Muyinda

    2014-01-01

    Full Text Available In the field of computational fluid dynamics, the finite volume method is dominant over other numerical techniques like the finite difference and finite element methods because the underlying physical quantities are conserved at the discrete level. In the present study, the finite volume method is used to solve an isotropic transient groundwater flow model to obtain hydraulic heads and flow through an aquifer. The objective is to discuss the theory of finite volume method and its applications in groundwater flow modelling. To achieve this, an orthogonal grid with quadrilateral control volumes has been used to simulate the model using mixed boundary conditions from Bwaise III, a Kampala Surburb. Results show that flow occurs from regions of high hydraulic head to regions of low hydraulic head until a steady head value is achieved.

  9. Modeling of groundwater flow for Mujib aquifer, Jordan

    Indian Academy of Sciences (India)

    Fayez Abdulla; Tamer Al-Assa’d

    2006-06-01

    Jordan is an arid country with very limited water resources.Groundwater is the main source for its water supply.Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman,Madaba and Karak cities.High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore,proper groundwater management of Mujib aquifer is necessary;and groundwater flow modeling is essential for proper management.For this purpose,Mod flow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses.The model was calibrated for steady state condition by matching observed and simulated initial head counter lines.Drawdown data for the period 1985-1995 were used to calibrate the transient model by matching simulated drawdown with the observed one.Then,the transient model was validated by using drawdown data for the period 1996-2002.The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40 m/d. Calibrated speci fic yield ranges from 0.0001 to 0.15.The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106 m3, the total annual in flow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual out flow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates.Also the model is sensitive to specific yield.

  10. The impact of storativity on mixing in fluctuating groundwater flow

    Science.gov (United States)

    Pool, M.; Post, V.; Simmons, C. T.

    2013-12-01

    Mixing and dispersion in groundwater systems are dominated by spatial heterogeneity and temporal flow fluctuations. It has been found that fluctuations parallel to the main flow directions only mildly impact on solute dispersion and have little influence on mixing if the medium is homogeneous (de Dreuzy et al., 2007; Kinzelbach and Ackerer, 1986; Goode and Konikow, 1990). However, most these findings were obtained under the pseudo steady state assumption, that is zero storativity, which implies an instantaneous flow response to hydraulic perturbation. With non-zero storativity, fluctuations in the flow boundary conditions propagate through the aquifer with a finite speed, which leads to a more complex time-dependent flow field. This is particularly important for tidally dominated coastal aquifers where accurate quantification of mixing is essential for achieving ground-water sustainability. The strategic objective of this study is to identify the interplay between temporal fluctuations, storativity and mixing. We perform two and three-dimensional simulations of transient flow and solute transport under velocity-dependent local scale dispersion. Mixing is characterized by the spatial moments of concentration. The enhanced solute mixing is quantified by an apparent dispersion coefficient. We systematically analyze the dependence of this dispersion coefficient on fluctuation amplitude, period, as well as storativity. Most importantly, we find that solute dispersion increases consistently with storativity. This may have important implications for the understanding of mixing and reaction processes in unconfined groundwater systems. References: -de Dreuzy, J-R. ; Carrera, J. ; Dentz, M. ; Le Borgne, T. (2012) Asymptotic dispersion for two-dimensional highly heterogeneous permeability fields under temporally fluctuating flow, Water Resour. Res., 48, W01532 -Kinzelbach, W., and P. Ackerer (1986), Mode'isation de la propagation d'un contaminant dans un champ d

  11. Numerical simulation of the groundwater-flow system of the Kitsap Peninsula, west-central Washington

    Science.gov (United States)

    Frans, Lonna M.; Olsen, Theresa D.

    2016-05-05

    A groundwater-flow model was developed to improve understanding of water resources on the Kitsap Peninsula. The Kitsap Peninsula is in the Puget Sound lowland of west-central Washington, is bounded by Puget Sound on the east and by Hood Canal on the west, and covers an area of about 575 square miles. The peninsula encompasses all of Kitsap County, Mason County north of Hood Canal, and part of Pierce County west of Puget Sound. The peninsula is surrounded by saltwater, and the hydrologic setting is similar to that of an island. The study area is underlain by a thick sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and volcanic bedrock units that crop out in the central part of the study area. Twelve hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit form the basis of the groundwater-flow model.Groundwater flow on the Kitsap Peninsula was simulated using the groundwater-flow model, MODFLOW‑NWT. The finite difference model grid comprises 536 rows, 362 columns, and 14 layers. Each model cell has a horizontal dimension of 500 by 500 feet, and the model contains a total of 1,227,772 active cells. Groundwater flow was simulated for transient conditions. Transient conditions were simulated for January 1985–December 2012 using annual stress periods for 1985–2004 and monthly stress periods for 2005–2012. During model calibration, variables were adjusted within probable ranges to minimize differences between measured and simulated groundwater levels and stream baseflows. As calibrated to transient conditions, the model has a standard deviation for heads and flows of 47.04 feet and 2.46 cubic feet per second, respectively.Simulated inflow to the model area for the 2005–2012 period from precipitation and secondary recharge was 585,323 acre-feet per year (acre-ft/yr) (93 percent of total simulated inflow ignoring changes in storage), and simulated inflow from stream and lake leakage was 43

  12. Multivariate analyses with end-member mixing to characterize groundwater flow: Wind Cave and associated aquifers

    Science.gov (United States)

    Long, Andrew J.; Valder, Joshua F.

    2011-10-01

    SummaryPrincipal component analysis (PCA) applied to hydrochemical data has been used with end-member mixing to characterize groundwater flow to a limited extent, but aspects of this approach are unresolved. Previous similar approaches typically have assumed that the extreme-value samples identified by PCA represent end members. The method presented herein is different from previous work in that (1) end members were not assumed to have been sampled but rather were estimated and constrained by prior knowledge; (2) end-member mixing was quantified in relation to hydrogeologic domains, which focuses model results on major hydrologic processes; (3) a method to select an appropriate number of end members using a series of cluster analyses is presented; and (4) conservative tracers were weighted preferentially in model calibration, which distributed model errors of optimized values, or residuals, more appropriately than would otherwise be the case. The latter item also provides an estimate of the relative influence of geochemical evolution along flow paths in comparison to mixing. This method was applied to groundwater in Wind Cave and the associated karst aquifer in the Black Hills of South Dakota, USA. The end-member mixing model was used to test a hypothesis that five different end-member waters are mixed in the groundwater system comprising five hydrogeologic domains. The model estimated that Wind Cave received most of its groundwater inflow from local surface recharge with an additional 33% from an upgradient aquifer. Artesian springs in the vicinity of Wind Cave primarily received water from regional groundwater flow.

  13. Approaches to highly parameterized inversion-A guide to using PEST for groundwater-model calibration

    Science.gov (United States)

    Doherty, John E.; Hunt, Randall J.

    2010-01-01

    Highly parameterized groundwater models can create calibration difficulties. Regularized inversion-the combined use of large numbers of parameters with mathematical approaches for stable parameter estimation-is becoming a common approach to address these difficulties and enhance the transfer of information contained in field measurements to parameters used to model that system. Though commonly used in other industries, regularized inversion is somewhat imperfectly understood in the groundwater field. There is concern that this unfamiliarity can lead to underuse, and misuse, of the methodology. This document is constructed to facilitate the appropriate use of regularized inversion for calibrating highly parameterized groundwater models. The presentation is directed at an intermediate- to advanced-level modeler, and it focuses on the PEST software suite-a frequently used tool for highly parameterized model calibration and one that is widely supported by commercial graphical user interfaces. A brief overview of the regularized inversion approach is provided, and techniques for mathematical regularization offered by PEST are outlined, including Tikhonov, subspace, and hybrid schemes. Guidelines for applying regularized inversion techniques are presented after a logical progression of steps for building suitable PEST input. The discussion starts with use of pilot points as a parameterization device and processing/grouping observations to form multicomponent objective functions. A description of potential parameter solution methodologies and resources available through the PEST software and its supporting utility programs follows. Directing the parameter-estimation process through PEST control variables is then discussed, including guidance for monitoring and optimizing the performance of PEST. Comprehensive listings of PEST control variables, and of the roles performed by PEST utility support programs, are presented in the appendixes.

  14. Site scale groundwater flow in Olkiluoto - complementary simulations

    Energy Technology Data Exchange (ETDEWEB)

    Loefman, J. [VTT Energy, Espoo (Finland)

    2000-06-01

    This work comprises of the complementary simulations to the previous groundwater flow analysis at the Olkiluoto site. The objective is to study the effects of flow porosity, conceptual model for solute transport, fracture zones, land uplift and initial conditions on the results. The numerical simulations are carried out up to 10000 years into the future employing the same modelling approach and site-specific flow and transport model as in the previous work except for the differences in the case descriptions. The result quantities considered are the salinity and the driving force in the vicinity of the repository. The salinity field and the driving force are sensitive to the flow porosity and the conceptual model for solute transport. Ten-fold flow porosity and the dual-porosity approach retard the transport of solutes in the bedrock resulting in brackish groundwater conditions at the repository at 10000 years A.P. (in the previous work the groundwater in the repository turned into fresh). The higher driving forces can be attributed to the higher concentration gradients resulting from the opposite effects of the land uplift, which pushes fresh water deeper and deeper into the bedrock, and the higher flow porosity and the dual-porosity model, which retard the transport of solutes. The cases computed (unrealistically) without fracture zones and postglacial land uplift show that they both have effect on the results and can not be ignored in the coupled and transient groundwater flow analyses. The salinity field and the driving force are also sensitive to the initial salinity field especially at the beginning during the first 500 years A.P. The sensitivity will, however, diminish as soon as fresh water dilutes brackish and saline water and decreases the concentration gradients. Fresh water conditions result in also a steady state for the driving force in the repository area. (orig.)

  15. Structure and application of an interface program between a geographic-information system and a ground-water flow model

    Science.gov (United States)

    Van Metre, P.C.

    1990-01-01

    A computer-program interface between a geographic-information system and a groundwater flow model links two unrelated software systems for use in developing the flow models. The interface program allows the modeler to compile and manage geographic components of a groundwater model within the geographic information system. A significant savings of time and effort is realized in developing, calibrating, and displaying the groundwater flow model. Four major guidelines were followed in developing the interface program: (1) no changes to the groundwater flow model code were to be made; (2) a data structure was to be designed within the geographic information system that follows the same basic data structure as the groundwater flow model; (3) the interface program was to be flexible enough to support all basic data options available within the model; and (4) the interface program was to be as efficient as possible in terms of computer time used and online-storage space needed. Because some programs in the interface are written in control-program language, the interface will run only on a computer with the PRIMOS operating system. (USGS)

  16. Calibration of hydrologic models using flow-duration curves

    Science.gov (United States)

    Westerberg, I.; Younger, P.; Guerrero, J.; Beven, K.; Seibert, J.; Halldin, S.; Xu, C.

    2010-12-01

    The usefulness of hydrological models depends on their skill to mimic real-world hydrology as attested by some efficiency criterion. The suitability of traditional criteria, such as the Nash-Sutcliffe efficiency, for model calibration has been much debated. Discharge data are plentiful for a few decades around the 1970’s but much less available in the last decades since the reported number of discharge stations in the world has gone down substantially from the peak in the late 1970’s. At the same time global precipitation and climate data such as TRMM and ERA-Interim, used to drive hydrological models, have become more readily available in the last 10-20 years. This mismatch of observation time periods makes traditional model calibration difficult or even impossible for basins where there are no overlapping periods of model input and evaluation data. A new calibration method is proposed here that addresses this mismatch and at the same time accounts for uncertainty in discharge data. An estimation of the discharge-data uncertainty is used as a basis to set limits of acceptability for observed flow-duration curves. These limits are then used for model calibration and evaluation within a Generalised Likelihood Uncertainty Estimation (GLUE) framework. Advantages of the new approach include less risk of bias because of epistemic (knowledge) type input-output errors (e.g. no simulated discharge for an observed flow peak because of no rain gauges in the only part of the catchment where it rained), a calibration that addresses the model performance for the whole flow regime (low, medium and high flows) simultaneously and a more realistic uncertainty estimation since discharge uncertainty is addressed. The new method is most suitable for water-balance model applications. Additional limits of acceptability for snow-routine parameters will be needed in basins with snow and frozen soils.

  17. Calibration of hydrological models using flow-duration curves

    Directory of Open Access Journals (Sweden)

    I. K. Westerberg

    2011-07-01

    Full Text Available The degree of belief we have in predictions from hydrologic models will normally depend on how well they can reproduce observations. Calibrations with traditional performance measures, such as the Nash-Sutcliffe model efficiency, are challenged by problems including: (1 uncertain discharge data, (2 variable sensitivity of different performance measures to different flow magnitudes, (3 influence of unknown input/output errors and (4 inability to evaluate model performance when observation time periods for discharge and model input data do not overlap. This paper explores a calibration method using flow-duration curves (FDCs to address these problems. The method focuses on reproducing the observed discharge frequency distribution rather than the exact hydrograph. It consists of applying limits of acceptability for selected evaluation points (EPs on the observed uncertain FDC in the extended GLUE approach. Two ways of selecting the EPs were tested – based on equal intervals of discharge and of volume of water. The method was tested and compared to a calibration using the traditional model efficiency for the daily four-parameter WASMOD model in the Paso La Ceiba catchment in Honduras and for Dynamic TOPMODEL evaluated at an hourly time scale for the Brue catchment in Great Britain. The volume method of selecting EPs gave the best results in both catchments with better calibrated slow flow, recession and evaporation than the other criteria. Observed and simulated time series of uncertain discharges agreed better for this method both in calibration and prediction in both catchments. An advantage with the method is that the rejection criterion is based on an estimation of the uncertainty in discharge data and that the EPs of the FDC can be chosen to reflect the aims of the modelling application, e.g. using more/less EPs at high/low flows. While the method appears less sensitive to epistemic input/output errors than previous use of limits of

  18. Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico

    Science.gov (United States)

    González-Herrera, Roger; Sánchez-y-Pinto, Ismael; Gamboa-Vargas, José

    2002-09-01

    The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7-10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity. Résumé. Le modèle conceptuel classique de l'aquifère karstique libre de la péninsule du Yucatan (Mexique) consiste en une lentille d'eau douce flottant sur une eau salée plus dense qui pénètre à plus de 40 km à l'intérieur des terres. La transmissivité de l'aquifère est très élevée, en sorte que le gradient hydraulique est très faible, compris entre 7 et 10 mm/km dans la plus grande partie du nord de la péninsule. Le modèle AQUIFER a été utilisé pour explorer les écoulements souterrains régionaux dans cet

  19. Model calibration criteria for estimating ecological flow characteristics

    Science.gov (United States)

    Vis, Marc; Knight, Rodney; Poole, Sandra; Wolfe, William; Seibert, Jan; Breuer, Lutz; Kraft, Philipp

    2016-01-01

    Quantification of streamflow characteristics in ungauged catchments remains a challenge. Hydrological modeling is often used to derive flow time series and to calculate streamflow characteristics for subsequent applications that may differ from those envisioned by the modelers. While the estimation of model parameters for ungauged catchments is a challenging research task in itself, it is important to evaluate whether simulated time series preserve critical aspects of the streamflow hydrograph. To address this question, seven calibration objective functions were evaluated for their ability to preserve ecologically relevant streamflow characteristics of the average annual hydrograph using a runoff model, HBV-light, at 27 catchments in the southeastern United States. Calibration trials were repeated 100 times to reduce parameter uncertainty effects on the results, and 12 ecological flow characteristics were computed for comparison. Our results showed that the most suitable calibration strategy varied according to streamflow characteristic. Combined objective functions generally gave the best results, though a clear underprediction bias was observed. The occurrence of low prediction errors for certain combinations of objective function and flow characteristic suggests that (1) incorporating multiple ecological flow characteristics into a single objective function would increase model accuracy, potentially benefitting decision-making processes; and (2) there may be a need to have different objective functions available to address specific applications of the predicted time series.

  20. Numerical Simulation of Groundwater Flow, Resource Optimization, and Potential Effects of Prolonged Drought for the Citizen Potawatomi Nation Tribal Jurisdictional Area, Central Oklahoma

    Science.gov (United States)

    Ryter, Derek W.; Kunkel, Christopher D.; Peterson, Steven M.; Traylor, Jonathan P.

    2015-08-13

    A hydrogeological study including two numerical groundwater-flow models was completed for the Citizen Potawatomi Nation Tribal Jurisdictional Area of central Oklahoma. One numerical groundwater-flow model, the Citizen Potawatomi Nation model, encompassed the jurisdictional area and was based on the results of a regional-scale hydrogeological study and numerical groundwater flow model of the Central Oklahoma aquifer, which had a geographic extent that included the Citizen Potawatomi Nation Tribal Jurisdictional Area. The Citizen Potawatomi Nation numerical groundwater-flow model included alluvial aquifers not in the original model and improved calibration using automated parameter-estimation techniques. The Citizen Potawatomi Nation numerical groundwater-flow model was used to analyze the groundwater-flow system and the effects of drought on the volume of groundwater in storage and streamflow in the North Canadian River. A more detailed, local-scale inset model was constructed from the Citizen Potawatomi Nation model to estimate available groundwater resources for two Citizen Potawatomi Nation economic development zones near the North Canadian River, the geothermal supply area and the Iron Horse Industrial Park.

  1. Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater-surface water catchment model

    DEFF Research Database (Denmark)

    Hansen, Anne Lausten; Refsgaard, Jens Christian; Christensen, Britt Stenhøj Baun;

    2013-01-01

    the catchment. In this study, a coupled groundwater-surface water model based on the MIKE SHE code was developed for the 4.7 km2 Lillebæk catchment in Denmark, where tile drain flow is a major contributor to the stream discharge. The catchment model was calibrated in several steps by incrementally including...... the observation data into the calibration to see the effect on model performance of including diverse data types, especially tile drain discharge. For the Lillebæk catchment, measurements of hydraulic head, daily stream discharge, and daily tile drain discharge from five small (1–4 ha) drainage areas exist....... The results showed that including tile drain data in the calibration of the catchment model improved its general performance for hydraulic heads and stream discharges. However, the model failed to correctly describe the local-scale dynamics of the tile drain discharges, and, furthermore, including the drain...

  2. Groundwater Flow Through a Constructed Treatment Wetland

    Science.gov (United States)

    2002-03-01

    references present techniques for flow net construction (Freeze and Cherry, 1979; Cedergren , 1989; Fetter, 1994; Kresic, 1997). All of these authors...Brix, H. “Functions of Macrophytes in Constructed Wetlands,” Water Science & Technology, 29(4): 71-78 (1994). Cedergren , H.R. Seepage

  3. Hydrology and numerical simulation of groundwater flow and streamflow depletion by well withdrawals in the Malad-Lower Bear River Area, Box Elder County, Utah

    Science.gov (United States)

    Stolp, Bernard J.; Brooks, Lynette E.; Solder, John

    2017-03-28

    The Malad-Lower Bear River study area in Box Elder County, Utah, consists of a valley bounded by mountain ranges and is mostly agricultural or undeveloped. The Bear and Malad Rivers enter the study area with a combined average flow of about 1,100,000 acre-feet per year (acre-ft/yr), and this surface water dominates the hydrology. Groundwater occurs in consolidated rock and basin fill. Groundwater recharge occurs from precipitation in the mountains and moves through consolidated rock to the basin fill. Recharge occurs in the valley from irrigation. Groundwater discharge occurs to rivers, springs and diffuse seepage areas, evapotranspiration, field drains, and wells. Groundwater, including springs, is a source for municipal and domestic water supply. Although withdrawal from wells is a small component of the groundwater budget, there is concern that additional groundwater development will reduce the amount of flow in the Malad River. Historical records of surface-water diversions, land use, and groundwater levels indicate relatively stable hydrologic conditions from the 1960s to the 2010s, and that current groundwater development has had little effect on the groundwater system. Average annual recharge to and discharge from the groundwater flow system are estimated to be 164,000 and 228,000 acre-ft/yr, respectively. The imbalance between recharge and discharge represents uncertainties resulting from system complexities, and the possibility of groundwater inflow from surrounding basins.This study reassesses the hydrologic system, refines the groundwater budget, and creates a numerical groundwater flow model that is used to analyze the effects of groundwater withdrawals on surface water. The model uses the detailed catalog of locations and amounts of groundwater recharge and discharge defined during this study. Calibrating the model to adequately simulate recharge, discharge, and groundwater levels results in simulated aquifer properties that can be used to understand

  4. Correlation between permeability and groundwater flow patterns in carbonate rocks

    Science.gov (United States)

    Park, Y.; Lee, J.; Park, Y.; Keehm, Y.

    2011-12-01

    Groundwater flow in carbonate rocks is controlled by many factors such as degree of fracture and pore development, weathering and diagenesis. Among these factors, fracture is main factor and can form main flow path. Also, flow patterns in carbonate area are decided by these factors. This study was performed to understand factors controlling permeability and flow patterns in carbonate area and to evaluate correlation between permeability and flow patterns. Data used in this study were collected from many literatures and these data were analyzed and evaluated using graphic and statistical analysis. In many carbonate areas, branching conduit patterns were dominant. Of these areas, permeability was relatively high in areas where moving distance of flow was short and hydraulic gradient was steep. This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2009201030001A).

  5. The importance of shallow confining units to submarine groundwater flow

    Science.gov (United States)

    Bratton, J.F.

    2007-01-01

    In addition to variable density flow, the lateral and vertical heterogeneity of submarine sediments creates important controls on coastal aquifer systems. Submarine confining units produce semi-confined offshore aquifers that are recharged on shore. These low-permeability deposits are usually either late Pleistocene to Holocene in age, or date to the period of the last interglacial highstand. Extensive confining units consisting of peat form in tropical mangrove swamps, and in salt marshes and freshwater marshes and swamps at mid-latitudes. At higher latitudes, fine-grained glaciomarine sediments are widespread. The net effect of these shallow confining units is that groundwater from land often flows farther offshore before discharging than would normally be expected. In many settings, the presence of such confining units is critical to determining how and where pollutants from land will be discharged into coastal waters. Alternatively, these confining units may also protect fresh groundwater supplies from saltwater intrusion into coastal wells.

  6. Groundwater flow and mixing in a wetland–stream system

    DEFF Research Database (Denmark)

    Karan, Sachin; Engesgaard, Peter Knudegaard; Zibar, Majken Caroline Looms;

    2013-01-01

    We combined electrical resistivity tomography (ERT) on land and in a stream with zone-based hydraulic conductivities (from multi-level slug testing) to investigate the local geological heterogeneity of the deposits in a wetland–stream system. The detailed geology was incorporated into a numerical....... The presented approach of integrating such methods in groundwater–surface water exchange studies, proved efficient to obtain information of the controlling factors....... steady-state groundwater model that was calibrated against average head observations. The model results were tested against groundwater fluxes determined from streambed temperature measurements. Discharge varied up to one order of magnitude across the stream and the model was successful in capturing...... this variability. Water quality analyses from multi-level sampling underneath the streambed and in the wetland showed a stratification in groundwater composition with an aerobic shallow zone with oxygen and nitrate (top ∼3 m) overlying a reduced, anoxic zone. While NO3- concentrations up to 58 mg L−1 were found...

  7. Separation of base flow from streamflow using groundwater levels - illustrated for the Pang catchment (UK)

    NARCIS (Netherlands)

    Peters, E.; Lanen, van H.A.J.

    2005-01-01

    A new filter to separate base flow from streamflow has developed that uses observed groundwater levels. To relate the base flow to the observed groundwater levels, a non-linear relation was used. This relation is suitable for unconfined aquifers with deep groundwater levels that do not respond to in

  8. ShowFlow: A practical interface for groundwater modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tauxe, J.D.

    1990-12-01

    ShowFlow was created to provide a user-friendly, intuitive environment for researchers and students who use computer modeling software. What traditionally has been a workplace available only to those familiar with command-line based computer systems is now within reach of almost anyone interested in the subject of modeling. In the case of this edition of ShowFlow, the user can easily experiment with simulations using the steady state gaussian plume groundwater pollutant transport model SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any computer model. Included in this thesis is all the source code for both the ShowFlow application for Microsoft{reg sign} Windows{trademark} and the SSGPLUME model, a User's Guide, and a Developer's Guide for converting ShowFlow to run other model programs. 18 refs., 13 figs.

  9. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Science.gov (United States)

    2010-07-01

    ... calibration, particulate measurement. 92.117 Section 92.117 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement... orifice, a bellmouth nozzle, or a laminar flow element or an NIST traceable flow calibration device...

  10. Parallel Simulation of Groundwater Flow in the North China Plain

    Institute of Scientific and Technical Information of China (English)

    Tangpei Cheng; Jingli Shao; Yali Cui; Zeyao Mo; Zhong Han; Ling Li

    2014-01-01

    Numerical modeling is of crucial importance in understanding the behavior of regional groundwater system. However, the demand on modeling capability is intensive when performing high-resolution simulation over long time span. This paper presents the application of a parallel pro-gram to speed up the detailed modeling of the groundwater flow system in the North China Plain. The parallel program is implemented by rebuilding the well-known MODFLOW program on our parallel- computing framework, which is achieved by designing patch-based parallel data structures and algo-rithms but maintaining the compute flow and functionalities of MODFLOW. The detailed model with more than one million grids and a decade of time has been solved. The parallel simulation results were examined against the field observed data and these two data are generally in good agreement. For the comparison on solution time, the parallel program running on 32 cores is 6 times faster than the fastest MICCG-based MODFLOW program and 11 times faster than the GMG-based MODFLOW program. Therefore, remarkable computational time can be saved when using the parallel program, which facili-tates the rapid modeling and prediction of the groundwater flow system in the North China Plain.

  11. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system

    Science.gov (United States)

    Morway, Eric D.; Gates, Timothy K.; Niswonger, Richard G.

    2013-01-01

    Some of the world’s key agricultural production systems face big challenges to both water quantity and quality due to shallow groundwater that results from long-term intensive irrigation, namely waterlogging and salinity, water losses, and environmental problems. This paper focuses on water quantity issues, presenting finite-difference groundwater models developed to describe shallow water table levels, non-beneficial groundwater consumptive use, and return flows to streams across two regions within an irrigated alluvial river valley in southeastern Colorado, USA. The models are calibrated and applied to simulate current baseline conditions in the alluvial aquifer system and to examine actions for potentially improving these conditions. The models provide a detailed description of regional-scale subsurface unsaturated and saturated flow processes, thereby enabling detailed spatiotemporal description of groundwater levels, recharge to infiltration ratios, partitioning of ET originating from the unsaturated and saturated zones, and groundwater flows, among other variables. Hybrid automated and manual calibration of the models is achieved using extensive observations of groundwater hydraulic head, groundwater return flow to streams, aquifer stratigraphy, canal seepage, total evapotranspiration, the portion of evapotranspiration supplied by upflux from the shallow water table, and irrigation flows. Baseline results from the two regional-scale models are compared to model predictions under variations of four alternative management schemes: (1) reduced seepage from earthen canals, (2) reduced irrigation applications, (3) rotational lease fallowing (irrigation water leased to municipalities, resulting in temporary dry-up of fields), and (4) combinations of these. The potential for increasing the average water table depth by up to 1.1 and 0.7 m in the two respective modeled regions, thereby reducing the threat of waterlogging and lowering non-beneficial consumptive use

  12. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  13. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    Science.gov (United States)

    D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.

    2002-01-01

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this 'second-generation' regional model was to enhance the knowledge an understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-state representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration. The Death Valley regional ground-water flow system is situated within the southern Great Basin, a subprovince of the Basin and Range physiographic province, bounded by latitudes 35 degrees north and 38 degrees 15 minutes north and by longitudes 115 and 118 degrees west. Hydrology in the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow generally can be described as dominated by interbasinal flow and may be conceptualized as

  14. Hydrogeologic setting and simulation of groundwater flow near the Canterbury and Leadville Mine Drainage Tunnels, Leadville, Colorado

    Science.gov (United States)

    Wellman, Tristan P.; Paschke, Suzanne S.; Minsley, Burke; Dupree, Jean A.

    2011-01-01

    -current resistivity field survey was performed to evaluate the geologic structure of the study area. The results show that the Canterbury Tunnel is located in a downthrown structural block that is not in direct physical connection with the Leadville Mine Drainage Tunnel. The presence of this structural discontinuity implies there is no direct groundwater pathway between the tunnels along a laterally continuous bedrock unit. Water-quality results for pH and major-ion concentrations near the Canterbury Tunnel showed that acid mine drainage has not affected groundwater quality. Stable-isotope ratios of hydrogen and oxygen in water indicate that snowmelt is the primary source of groundwater recharge. On the basis of chlorofluorocarbon and tritium concentrations and mixing ratios for groundwater samples, young groundwater (groundwater recharged after 1953) was indicated at well locations upgradient from and in a fault block separate from the Canterbury Tunnel. Samples from sites downgradient from the Canterbury Tunnel were mixtures of young and old (pre-1953) groundwater and likely represent snowmelt recharge mixed with older regional groundwater that discharges from the bedrock units to the Arkansas River valley. Discharge from the Canterbury Tunnel contained the greatest percentage of old (pre-1953) groundwater with a mixture of about 25 percent young water and about 75 percent old water. A calibrated three-dimensional groundwater model representing high-flow conditions was used to evaluate large-scale flow characteristics of the groundwater and to assess whether a substantial hydraulic connection was present between the Canterbury Tunnel and Leadville Mine Drainage Tunnel. As simulated, the faults restrict local flow in many areas, but the fracture-damage zones adjacent to the faults allow groundwater to move along faults. Water-budget results indicate that groundwater flow across the lateral edges of the model controlled the majority of flow in and out of the aquifer (79 percent and

  15. Study on the Estimation of Groundwater Withdrawals Based on Groundwater Flow Modeling and Its Application in the North China Plain

    Institute of Scientific and Technical Information of China (English)

    Jingli Shao; Yali Cui; Qichen Hao; Zhong Han; Tangpei Cheng

    2014-01-01

    The amount of water withdrawn by wells is one of the quantitative variables that can be applied to estimate groundwater resources and further evaluate the human influence on ground-water systems. The accuracy for the calculation of the amount of water withdrawal significantly in-fluences the regional groundwater resource evaluation and management. However, the decentralized groundwater pumping, inefficient management, measurement errors and uncertainties have resulted in considerable errors in the groundwater withdrawal estimation. In this study, to improve the esti-mation of the groundwater withdrawal, an innovative approach was proposed using an inversion method based on a regional groundwater flow numerical model, and this method was then applied in the North China Plain. The principle of the method was matching the simulated water levels with the observation ones by adjusting the amount of groundwater withdrawal. In addition, uncertainty analysis of hydraulic conductivity and specific yield for the estimation of the groundwater with-drawal was conducted. By using the proposed inversion method, the estimated annual average groundwater withdrawal was approximately 24.92×109 m3 in the North China Plain from 2002 to 2008. The inversion method also significantly improved the simulation results for both hydrograph and the flow field. Results of the uncertainty analysis showed that the hydraulic conductivity was more sensitive to the inversion results than the specific yield.

  16. Boundary of the ground-water flow model by IT Corporation (1996), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the steady-state ground-water flow model built by IT Corporation (1996). The regional, 20-layer ground-water flow model...

  17. Altitudes of the top of model layers for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the altitudes of the tops of 16 model layers simulated in the Death Valley regional ground-water flow system (DVRFS) transient flow...

  18. Numerical simulation of groundwater flow in the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington

    Science.gov (United States)

    Ely, D. Matthew; Burns, Erick R.; Morgan, David S.; Vaccaro, John J.

    2014-01-01

    A three-dimensional numerical model of groundwater flow was constructed for the Columbia Plateau Regional Aquifer System (CPRAS), Idaho, Oregon, and Washington, to evaluate and test the conceptual model of the system and to evaluate groundwater availability. The model described in this report can be used as a tool by water-resource managers and other stakeholders to quantitatively evaluate proposed alternative management strategies and assess the long‑term availability of groundwater. The numerical simulation of groundwater flow in the CPRAS was completed with support from the Groundwater Resources Program of the U.S. Geological Survey Office of Groundwater.

  19. Simulation of groundwater flow in the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Clark, Brian R.; Bumgarner, Johnathan R.; Houston, Natalie A.; Foster, Adam L.

    2014-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and public supply uses in the Pecos County region of western Texas. The U.S. Geological Survey completed a comprehensive, integrated analysis of available hydrogeologic data to develop a numerical groundwater-flow model of the Edwards-Trinity and related aquifers in the study area in parts of Brewster, Jeff Davis, Pecos, and Reeves Counties. The active model area covers about 3,400 square miles of the Pecos County region of Texas west of the Pecos River, and its boundaries were defined to include the saturated areas of the Edwards-Trinity aquifer. The model is a five-layer representation of the Pecos Valley, Edwards-Trinity, Dockum, and Rustler aquifers. The Pecos Valley aquifer is referred to as the alluvial layer, and the Edwards-Trinity aquifer is divided into layers representing the Edwards part of the Edwards-Trinity aquifer and the Trinity part of the Edwards-Trinity aquifer, respectively. The calibration period of the simulation extends from 1940 to 2010. Simulated hydraulic heads generally were in good agreement with observed values; 1,684 out of 2,860 (59 percent) of the simulated values were within 25 feet of the observed value. The average root mean square error value of hydraulic head for the Edwards-Trinity aquifer was 34.2 feet, which was approximately 4 percent of the average total observed change in groundwater-level altitude (groundwater level). Simulated spring flow representing Comanche Springs exhibits a pattern similar to observed spring flow. Independent geochemical modeling corroborates results of simulated groundwater flow that indicates groundwater in the Edwards-Trinity aquifer in the Leon-Belding and Fort Stockton areas is a mixture of recharge from the Barilla and Davis Mountains and groundwater that has upwelled from the Rustler aquifer.

  20. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    Science.gov (United States)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-08-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  1. Development of a Fully Three-Dimensional Groundwater Flow Model for the A/M Area Using Data Fusion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-11-18

    SRS was established in the 1950s to produce plutonium, tritium, and other nuclear materials. The purpose of this work was to obtain the distribution of the parameters that effect groundwater flow and to calibrate a model for subsequent use in the development of corrective action programs in the A/M area.

  2. Simulation of the regional groundwater-flow system of the Menominee Indian Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Dunning, Charles P.

    2015-01-01

    A regional, two-dimensional, steady-state groundwater-flow model was developed to simulate the groundwater-flow system and groundwater/surface-water interactions within the Menominee Indian Reservation. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Menominee Indian Tribe of Wisconsin, to contribute to the fundamental understanding of the region’s hydrogeology. The objectives of the regional model were to improve understanding of the groundwater-flow system, including groundwater/surface-water interactions, and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate groundwater/surface-water interactions, provide a framework for simulating regional groundwater-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate groundwater-flow patterns at multiple scales. Simulations made with the regional model reproduce groundwater levels and stream base flows representative of recent conditions (1970–2013) and illustrate groundwater-flow patterns with maps of (1) the simulated water table and groundwater-flow directions, (2) probabilistic areas contributing recharge to high-capacity pumped wells, and (3) estimation of the extent of infiltrated wastewater from treatment lagoons.

  3. Regional-to-site scale groundwater flow in Romuvaara

    Energy Technology Data Exchange (ETDEWEB)

    Kattilakoski, E.; Koskinen, L. [VTT Energy, Espoo (Finland)

    1999-04-01

    The work describing numerical groundwater flow modelling at the Romuvaara site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Romuvaara over about 2 km{sup 2} large and 1 km deep volume. The site model in this work covers an area of about 12 km{sup 2}. The depth of the model is 2200 m. The site scale flow modelling produced characteristics of the deep groundwater flow and evaluated the impact of a spent fuel repository on the natural groundwater flow conditions. It treated the hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) for the block scale model, which describes the groundwater flow on the repository scale. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. The range of variation of the hydraulic gradient immediately outside the repository was studied in the direction of the flow

  4. Radioactive Seepage through Groundwater Flow from the Uranium Mines, Namibia

    Directory of Open Access Journals (Sweden)

    Tamiru Abiye

    2017-02-01

    Full Text Available The study focused on the seepage of uranium from unlined tailing dams into the alluvial aquifer in the Gawib River floodplain in Namibia where the region solely relies on groundwater for its economic activities as a result of arid climatic condition. The study reviewed previous works besides water sample collection and analyses for major ions, metals and environmental isotopes in addition to field tests on physico-chemical parameters (pH, Electrical Conductivity, Redox and T. Estimation of seepage velocity (true velocity of groundwater flow has been conducted in order to understand the extent of radioactive plume transport. The hydrochemistry, stable isotopes and tritium results show that there is uranium contamination from the unlined uranium tailings in the Gawib shallow aquifer system which suggests high permeability of the alluvial aquifer facilitating groundwater flow in the arid region. The radioactive contaminants could spread into the deeper aquifer system through the major structures such as joints and faults. The contamination plume could also spread downstream into the Swakop River unless serious interventions are employed. There is also a very high risk of the plume to reach the Atlantic Ocean through seasonal flash floods that occurs in the area.

  5. Deep Tunnel in Transversely Anisotropic Rock with Groundwater Flow

    Science.gov (United States)

    Bobet, Antonio

    2016-12-01

    Closed-form solutions for the stresses and deformations induced in the ground and tunnel liner are provided for a deep tunnel in a transversely anisotropic elastic rock, with anisotropic permeability, when subjected to groundwater seepage. Complex variable theory and conformal mapping are used to obtain the solutions; additional complex functions, necessary to prevent multiple solutions of the displacements, are included. The analytical solutions are verified by comparing their results from those of a finite element method. Simplified formulations are presented for tunnels with a perfectly flexible and completely incompressible liner. A spreadsheet is included that can be used to obtain stresses and displacements of the liner due to groundwater flow and far-field geostatic stresses.

  6. Groundwater flow modelling of the excavation and operational phases - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Laxemar. The inflow calculations were accompanied by a sensitivity study, which among other matters handled the impact of different deposition hole rejection criteria. The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled

  7. Groundwater Flow Model of Göksu Delta Coastal Aquifer System

    Science.gov (United States)

    Erdem Dokuz, Uǧur; Çelik, Mehmet; Arslan, Şebnem; Engin, Hilal

    2016-04-01

    the conceptual hydrogeological model of Göksu Delta coastal aquifer system, Göksu Delta is restricted by limestones from north and northwest and reaches up to 250 m in thickness in the southern part. Moreover, a combined aquifer system of confined and unconfined layers has been developed within the delta. The groundwater flow direction is towards south and southeast to the Mediterranean Sea. Data from this study were used to calibrate the flow model under steady-state and transient conditions by using MOFLOW. According to the calibrated model, alluvium aquifer is primarily recharged by limestone aquifer and partially by Göksu River. Discharge from the aquifer is generally towards the Mediterranean Sea and in part to Göksu River in the southern part of the delta. Transient calibration of the model for the year 2012 indicates that Göksu Delta groundwater system is extremely sensitive for groundwater exploitation for agricultural purposes.

  8. Calibrating a large-extent high-resolution coupled groundwater-land surface model using soil moisture and discharge data

    NARCIS (Netherlands)

    Sutanudjaja, E.H.; Beek, L.P.H. van; Jong, S.M. de; Geer, F.C. van; Bierkens, M.F.P.

    2014-01-01

    We explore the possibility of using remotely sensed soil moisture data and in situ discharge observations to calibrate a large-extent hydrological model. The model used is PCR-GLOBWB-MOD, which is a physically based and fully coupled groundwater-land surface model operating at a daily basis and havi

  9. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    areas in three drainages, the Wissahickon, Towamencin, and Neshaminy Creeks.Ground-water flow was simulated for different pumping patterns representing past and current conditions. The three-dimensional numerical flow model (MODFLOW) was automatically calibrated by use of a parameter estimation program (MODFLOWP). Steady-state conditions were assumed for the calibration period of 1996. Model calibration indicates that estimated recharge is 8.2 inches (208 millimeters) and the regional anisotropy ratio for the sedimentary-rock aquifer is about 11 to 1, with permeability greatest along strike. The regional anisotropy is caused by up- and down-dip termination of high-permeability bed-oriented features, which were not explicitly simulated in the regional-scale model. The calibrated flow model was used to compare flow directions and capture zones in Lansdale for conditions corresponding to relatively high pumping rates in 1994 and to lower pumping rates in 1997. Comparison of the 1994 and 1997 simulations indicates that wells pumped at the lower 1997 rates captured less ground water from known sites of contamination than wells pumped at the 1994 rates. Ground-water flow rates away from Lansdale increased as pumpage decreased in 1997.A preliminary evaluation of the relation between ground-water chemistry and conditions favorable for the degradation of chlorinated solvents was based on measurements of dissolved-oxygen concentration and other chemical constituents in water samples from 92 wells. About 18 percent of the samples contained less than or equal to 5 milligrams per liter dissolved oxygen, a concentration that indicates reducing conditions favorable for degradation of chlorinated solvents.

  10. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A.

    1995-12-31

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM). Results of comparisons of the ECM and DK model are also presented in Ho et al.

  11. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-01

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty (infiltration, fracture-matrix connectivity, fracture frequency, and matrix air entry pressure or van Genuchten {alpha}); and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM)). Results of comparisons of the ECM and DK model are also presented in Ho et al.

  12. Estimability of recharge through groundwater model calibration: Insights from a field-scale steady-state example

    Science.gov (United States)

    Knowling, Matthew J.; Werner, Adrian D.

    2016-09-01

    The ability of groundwater models to inform recharge through calibration is hampered by the correlation between recharge and aquifer parameters such as hydraulic conductivity (K), and the insufficient information content of observation datasets. These factors collectively result in non-uniqueness of parameter estimates. Previous studies that jointly estimate spatially distributed recharge and hydraulic parameters are limited to synthetic test cases and/or do not evaluate the effect of non-uniqueness. The extent to which recharge can be informed by calibration is largely unknown for practical situations, in which complexities such as parameter heterogeneities are inherent. In this study, a systematic investigation of recharge, inferred through model calibration, is undertaken using a series of numerical experiments that include varying degrees of hydraulic parameter information. The analysis involves the use of a synthetic reality, based on a regional-scale, highly parameterised, steady-state groundwater model of Uley South Basin, South Australia. Parameter identifiability is assessed to evaluate the ability of parameters to be estimated uniquely. Results show that a reasonable inference of recharge (average recharge error 100 K values across the 129 km2 study area). The introduction of pumping data into the calibration reduces error in both the average recharge and its spatial variability, whereas submarine groundwater discharge (as a calibration target) reduces average recharge error only. Nonetheless, the estimation of steady-state recharge through inverse modelling may be impractical for real-world settings, limited by the need for unrealistic amounts of hydraulic parameter and groundwater level data. This study provides a useful benchmark for evaluating the extent to which field-scale groundwater models can be used to inform recharge subject to practical data-availability limitations.

  13. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    Science.gov (United States)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    continuous tide on the coastal side. The integrated surface water-groundwater numerical model IRENE (Spanoudaki et al., 2009, Spanoudaki, 2010) was also used in the study, with the numerical model predictions being compared with experimental results, which provide a valuable database for model calibration and validation. IRENE couples the 3D, non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of hydrostatic pressure distribution, to the equations describing 3D saturated groundwater flow of constant density. The model uses the finite volume method with a cell-centered structured grid providing thus flexibility and accuracy in simulating irregular boundary geometries. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. References Ebrahimi, K., Falconer, R.A. and Lin B. (2007). Flow and solute fluxes in integrated wetland and coastal systems. Environmental Modelling and Software, 22 (9), 1337-1348. Hughes, S.A. (1995). Physical Modelling and Laboratory Techniques in Coastal Engineering. World Scientific Publishing Co. Pte. Ltd., Singapore. Kuan, W.K., Jin, G., Xin, P., Robinson, C. Gibbes, B. and Li. L. (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48 (2), doi:10.1029/2011WR010678. Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek

  14. Reduction of the ambiguity of karst aquifer modeling through pattern matching of groundwater flow and transport

    Science.gov (United States)

    Oehlmann, Sandra; Geyer, Tobias; Licha, Tobias; Sauter, Martin

    2014-05-01

    Distributive numerical simulations are an effective, process-based method for predicting groundwater resources and quality. They are based on conceptual hydrogeological models that characterize the properties of the catchment area and aquifer. Karst systems play an important role in water supply worldwide. Conceptual models are however difficult to build because of the highly developed heterogeneity of the systems. The geometry and properties of highly conductive karst conduits are generally unknown and difficult to characterize with field experiments. Due to these uncertainties numerical models of karst areas usually cannot simulate the hydraulic head distribution in the area, spring discharge and tracer breakthrough curves simultaneously on catchment scale. Especially in complex hydrogeological systems, this approach would reduce model ambiguity, which is prerequisite to predict groundwater resources and pollution risks. In this work, a distributive numerical groundwater flow and transport model was built for a highly heterogeneous karst aquifer in south-western Germany. For this aim, a solute transport interface for one-dimensional pipes was implemented in the software Comsol Multiphysics® and coupled to the standard three-dimensional solute transport interface for domains. The model was calibrated and hydraulic parameters could be obtained. The simulation was matched to the steady-state hydraulic head distribution in the model area, the spring discharge of several springs and the transport velocities of two tracer tests. Furthermore, other measured parameters such as hydraulic conductivity of the fissured matrix and the maximal karst conduit volume were available for model calibration. Parameter studies were performed for several karst conduit geometries to analyze their influence in a large-scale heterogeneous karst system. Results show that it is not only possible to derive a consistent flow and transport model for a 150 km2 karst area to be employed as a

  15. Groundwater Parameters and Flow Systems Near Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.K.

    1989-01-01

    Precipitation near Oak Ridge National Laboratory (ORNL) averages 132 cm/yr. About 76 cm/yr of water is consumed by evapotranspiration. The natural streamflow, which averages 56 cm/yr of water, consists of overland flow (about 21 cm/yr) from water bodies, wetlands, and impervious areas of groundwater discharge (about 35 cm/yr of water). Groundwater occurs in a stormflow zone that extends from the land surface to a depth of 0.3-2 m and in shallow and deeper aquifers that extend from the water table to the base of fresh water. in the stormflow zone, most water flows through macropores and mesopores, which have a volumetric porosity of about 0.002. In the vadose zone and below the water table, water flows through fractures that have a volumetric porosity in the range 1 x 10{sup -5} to 0.02. Water inflow occurs by precipitation and infiltration. infiltration that exceeds the soil water deficit forms a perched water table in the stormflow zone at the level where infiltration rate exceeds vertical hydraulic conductivity. Some water percolates down to the water table but the majority flows downslope to the streams. Recharge of the shallow aquifer is only about 3.2 cm/yr of water or 5.7% of streamflow. Most of the water that recharges the shallow aquifer is discharged by evapotranspiration above the water table. The remainder is discharged at springs and streams where the water table is within the stormflow zone. Digital models that permit unsaturated conditions and transient flows may be more appropriate than steady-state models of saturated flow for the ORNL area.

  16. Performance of calibration standards for antigen quantitation with flow cytometry.

    Science.gov (United States)

    Lenkei, R; Gratama, J W; Rothe, G; Schmitz, G; D'hautcourt, J L; Arekrans, A; Mandy, F; Marti, G

    1998-10-01

    In the frame of the activities initiated by the Task Force for Antigen Quantitation of the European Working Group on Clinical Cell Analysis (EWGCCA), an experiment was conducted to evaluate microbead standards used for quantitative flow cytometry (QFCM). An unified window of analysis (UWA) was established on three different instruments (EPICS XL [Coulter Corporation, Miami, FL], FACScan and FACS Calibur [Becton Dickinson, San Jose, CA]) with QC3 microbeads (FCSC, PR). By using this defined fluorescence intensity scale, the performance of several monoclonal antibodies directed to CD3, CD4, and CD8 (conjugated and unconjugated), from three manufacturers (BDIS, Coulter [Immunotech], and DAKO) was tested. In addition, the QIFI system (DAKO) and QuantiBRITE (BDIS), and a method of relative fluorescence intensity (RFI, method of Giorgi), were compared. mAbs reacting with three more antigens, CD16, CD19, and CD38 were tested on the FACScan instrument. Quantitation was carried out using a single batch of cryopreserved peripheral blood leukocytes, and all tests were performed as single color analyses. Significant correlations were observed between the antibody-binding capacity (ABC) values of the same CD antigen measured with various calibrators and with antibodies differing in respect to vendor, labeling and possible epitope recognition. Despite the significant correlations, the ABC values of most monoclonal antibodies differed by 20-40% when determined by the different fluorochrome conjugates and different calibrators. The results of this study indicate that, at the present stage of QFCM consistent ABC values may be attained between laboratories provided that a specific calibration system is used including specific calibrators, reagents, and protocols.

  17. The Effect of Flow on Pollution and Remediation in Groundwater

    Institute of Scientific and Technical Information of China (English)

    Moiwo J. Paul

    2003-01-01

    Flow, solute transport and pollution remediation through attenuation in unconsolidated porous media were investigated in this study. The variables used in the investigation include soil texture, porosity, topography and hydraulic conductivity. The study revealed that hydraulic conductivity is highly dependent on soil texture, porosity and topography.Hydraulic conductivity was noted to have a controlling influence on groundwater flow and residence time, and the degree of natural attenuation in hydrogeologic systems. Contaminant transport simulated with the MODFLOW Model revealed dominance of advective transport of contaminants in unconsolidated porous media. However, attenuation through sorption (linear isotherm equilibrium controlled) and reaction (first-order irreversible decay) also retarded contaminant plume migration. Thus natural attenuation was found to be highly feasible in clay formations due to low hydraulic conductivity and long groundwater residence times. Though natural attenuation processes including dispersion, diffusion, dilution, mixing, volatilization and biodegradation were not investigated for in this paper, it is shown to be a sound remediation technique of contaminated ground water due to its capacity to destroy or transform contaminants or at least retard their flow.

  18. Comparison of a karst groundwater model with and without discrete conduit flow

    Science.gov (United States)

    Saller, Stephen P.; Ronayne, Michael J.; Long, Andrew J.

    2013-01-01

    Karst aquifers exhibit a dual flow system characterized by interacting conduit and matrix domains. This study evaluated the coupled continuum pipe-flow framework for modeling karst groundwater flow in the Madison aquifer of western South Dakota (USA). Coupled conduit and matrix flow was simulated within a regional finite-difference model over a 10-year transient period. An existing equivalent porous medium (EPM) model was modified to include major conduit networks whose locations were constrained by dye-tracing data and environmental tracer analysis. Model calibration data included measured hydraulic heads at observation wells and estimates of discharge at four karst springs. Relative to the EPM model, the match to observation well hydraulic heads was substantially improved with the addition of conduits. The inclusion of conduit flow allowed for a simpler hydraulic conductivity distribution in the matrix continuum. Two of the high-conductivity zones in the EPM model, which were required to indirectly simulate the effects of conduits, were eliminated from the new model. This work demonstrates the utility of the coupled continuum pipe-flow method and illustrates how karst aquifer model parameterization is dependent on the physical processes that are simulated.

  19. Regional-to-site scale groundwater flow in Kivetty

    Energy Technology Data Exchange (ETDEWEB)

    Kattilakoski, E. [VTT Energy, Espoo (Finland); Meszaros, F. [The Relief Laboratory, Harskut (Hungary)

    1999-04-01

    The work describing numerical groundwater flow modelling at the Kivetty site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Kivetty over about 3 km{sup 2} large and 1 km deep volume. The site model in this work covers an area of about 16 km{sup 2}. The depth of the model is 2000 m. The site scale flow modelling produced characteristics of the deep groundwater flow both under the natural conditions and in the case of a spent fuel repository. The hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) was assessed for the block scale model. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. With the exception of the western part of Repository A the outlined repositories are located underneath Kumpuvuori, where the flow has a significant subvertical component. The horizontal component of the deep

  20. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    Science.gov (United States)

    Pool, D.R.; Dickinson, Jesse E.

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  1. Hydrogeology and simulation of ground-water flow at the Gettysburg Elevator Plant Superfund Site, Adams County, Pennsylvania

    Science.gov (United States)

    Low, Dennis J.; Goode, Daniel J.; Risser, Dennis W.

    2000-01-01

    to water can range from flowing at land surface to more than 71 feet below land surface. Potentiometric maps based on measured water levels at the Gettysburg Elevator Plant indicate ground water flows from west to east, towards Rock Creek. Multiple-well aquifer tests indicate the system is heterogeneous and flow is primarily in dipping beds that contain discrete secondary openings separated by less permeable beds. Water levels in wells open to the pumped bed, as projected along the dipping stratigraphy, are drawn down more than water levels in wells not open to the pumped bed. Ground-water flow was simulated for steady-state conditions prior to pumping and long-term average pumping conditions. The three-dimensional numerical flow model (MODFLOW) was calibrated by use of a parameter estimation program (MODFLOWP). Steady-state conditions were assumed for the calibration period of 1996. An effective areal recharge rate of 7 inches was used in model calibration. The calibrated flow model was used to evaluate the effectiveness of the current onsite and offsite extraction well system. The simulation results generally indicate that the extraction system effectively captures much of the ground-water recharge at the Gettysburg Elevator Plant and, hence, contaminated ground-water migrating from the site. Some of the extraction wells pump at low rates and have very small contributing areas. Results indicate some areal recharge onsite will move to offsite extraction wells.

  2. Analyses of surface and groundwater flow characteristics of the Ljubljana moor and water resources vulnerability to climate and land use change and groundwater overdraft

    Science.gov (United States)

    Globevnik, Lidija; Bracic Zeleznik, Branka

    2016-04-01

    One of the biggest water resource of Slovenian capital is groundwater of Ljubljana moor (Ljubljansko barje) aquifer. Quantity and quality of groundwater in Ljubljana moor aquifer directly depend on precipitation, surface water and riparian ecosystems of the Moor and indirectly by groundwater recharge from higher-lying mountainous karstic areas of forests and grasslands. Maintaining high groundwater level of the Ljubljana moor not only sustain stable water balance of aquifer, but also its riparian and wetland character. It also inhibit larger subsidence of the terrain. The paper addresses the vulnerability of the Ljubljana moor water resources to climate and land use change and due to groundwater overdraft. The results should help in selecting suitable mitigation measures and management of the Ljubljana moor area. We analyze surface and groundwater flow characteristics of water recharge area of one water work on the Ljubljana moor (Brest) from the point of view of climate change, changes in land use and water pumping practices. The I\\vska River, a tributary to the Ljubljanica River, recharges the area in the gravel bar, which lies just below the hills. We use existing data of meteorological, hydrological and hydrogeological monitoring and simulate rainfall-runoff processes. We use a conceptual semi-distributed rainfall-runoff model HBV-Light and simulate hydrological characteristics of the Ljubljana Moor (groundwater level fluctuations and recharge, surface - groundwater interchange) with two hydrodynamic models, DHI MIKE FLOOD (surface flow, 2D simulation) and DHI MIKE SHE (groundwater flow). For a calibration of runoff model HBV Light and MIKE SHE we use measured daily discharge data of the river I\\vska (1970-2010) and groundwater level data along the river (2010-2013) respectively. In groundwater modelling, we include the data of water pumping. Daily precipitation and temperature for period 2020 - 2050 are from ESAMBLE project for two GCM climate scenarios. We

  3. Nitrate Loads and Concentrations in Surface-Water Base Flow and Shallow Groundwater for Selected Basins in the United States, Water Years 1990-2006

    Science.gov (United States)

    Spahr, Norman E.; Dubrovsky, Neil M.; Gronberg, JoAnn M.; Franke, O. Lehn; Wolock, David M.

    2010-01-01

    Hydrograph separation was used to determine the base-flow component of streamflow for 148 sites sampled as part of the National Water-Quality Assessment program. Sites in the Southwest and the Northwest tend to have base-flow index values greater than 0.5. Sites in the Midwest and the eastern portion of the Southern Plains generally have values less than 0.5. Base-flow index values for sites in the Southeast and Northeast are mixed with values less than and greater than 0.5. Hypothesized flow paths based on relative scaling of soil and bedrock permeability explain some of the differences found in base-flow index. Sites in areas with impermeable soils and bedrock (areas where overland flow may be the primary hydrologic flow path) tend to have lower base-flow index values than sites in areas with either permeable bedrock or permeable soils (areas where deep groundwater flow paths or shallow groundwater flow paths may occur). The percentage of nitrate load contributed by base flow was determined using total flow and base flow nitrate load models. These regression-based models were calibrated using available nitrate samples and total streamflow or base-flow nitrate samples and the base-flow component of total streamflow. Many streams in the country have a large proportion of nitrate load contributed by base flow: 40 percent of sites have more than 50 percent of the total nitrate load contributed by base flow. Sites in the Midwest and eastern portion of the Southern Plains generally have less than 50 percent of the total nitrate load contributed by base flow. Sites in the Northern Plains and Northwest have nitrate load ratios that generally are greater than 50 percent. Nitrate load ratios for sites in the Southeast and Northeast are mixed with values less than and greater than 50 percent. Significantly lower contributions of nitrate from base flow were found at sites in areas with impermeable soils and impermeable bedrock. These areas could be most responsive to

  4. Hydrogeologic setting and simulation of groundwater flow near the Canterbury and Leadville Mine Drainage Tunnels, Leadville, Colorado

    Science.gov (United States)

    Wellman, Tristan P.; Paschke, Suzanne S.; Minsley, Burke; Dupree, Jean A.

    2011-01-01

    -current resistivity field survey was performed to evaluate the geologic structure of the study area. The results show that the Canterbury Tunnel is located in a downthrown structural block that is not in direct physical connection with the Leadville Mine Drainage Tunnel. The presence of this structural discontinuity implies there is no direct groundwater pathway between the tunnels along a laterally continuous bedrock unit. Water-quality results for pH and major-ion concentrations near the Canterbury Tunnel showed that acid mine drainage has not affected groundwater quality. Stable-isotope ratios of hydrogen and oxygen in water indicate that snowmelt is the primary source of groundwater recharge. On the basis of chlorofluorocarbon and tritium concentrations and mixing ratios for groundwater samples, young groundwater (groundwater recharged after 1953) was indicated at well locations upgradient from and in a fault block separate from the Canterbury Tunnel. Samples from sites downgradient from the Canterbury Tunnel were mixtures of young and old (pre-1953) groundwater and likely represent snowmelt recharge mixed with older regional groundwater that discharges from the bedrock units to the Arkansas River valley. Discharge from the Canterbury Tunnel contained the greatest percentage of old (pre-1953) groundwater with a mixture of about 25 percent young water and about 75 percent old water. A calibrated three-dimensional groundwater model representing high-flow conditions was used to evaluate large-scale flow characteristics of the groundwater and to assess whether a substantial hydraulic connection was present between the Canterbury Tunnel and Leadville Mine Drainage Tunnel. As simulated, the faults restrict local flow in many areas, but the fracture-damage zones adjacent to the faults allow groundwater to move along faults. Water-budget results indicate that groundwater flow across the lateral edges of the model controlled the majority of flow in and out of the aquifer (79 percent and

  5. Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh

    Science.gov (United States)

    Michael, H.A.; Voss, C.I.

    2009-01-01

    Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system. ?? US Government 2009.

  6. Groundwater recharge and flow on Montserrat, West Indies: Insights from groundwater dating

    Directory of Open Access Journals (Sweden)

    Brioch Hemmings

    2015-09-01

    New hydrological insights: δ2H and δ18O analysis indicates uniform recharge elevations for groundwaters on Montserrat. CFC-11 and CFC-12 analysis reveals age differences between isotopically similar, high elevation springs and low elevation aquifer waters. Low CFC concentrations within a confined low elevation aquifer suggest water ages of ∼45 years. High CFC concentrations in the northern and western springs are explained by rapid infiltration of cool (high CFC concentration rainfall into saturated compartments, with flow through the vadose zone to the phreatic zone dominated by compartment flow. Lower CFC concentrations in a number of aligned warmer springs suggest a contribution from older, warmer waters from depth. Temperatures and CFC concentrations indicate older component supply rates of up to 8 L/s to the highest yielding spring on Centre Hills, with contributions of up to 75% in the warmest spring waters.

  7. Groundwater flow modelling of periods with temperate climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Roberts, David; Swan, David (Serco Technical Consulting Services (United Kingdom)); Gylling, Bjoern; Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Laxemar-Simpevarp site during temperate climate conditions as a comparison to corresponding modelling carried out for Forsmark /Joyce et al. 2010/. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a Hydrogeological base case (reference case conceptualisation) and then an examination of various areas of uncertainty within the current understanding by a series of model variants. The Hydrogeological base case models at three different scales, 'repository', 'site' and 'regional' make use of a discrete fracture network (DFN) and equivalent continuous porous medium (ECPM) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 15,000 AD. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  8. Groundwater flow modelling of periods with temperate climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Swan, David (Serco Technical Consulting Services (United Kingdom)); Marsic, Niko (Kemakta Konsult AB (Sweden)); Follin, Sven (SF GeoLogic AB (Sweden))

    2010-11-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Forsmark site during temperate conditions; i.e. from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 12,000 AD. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a hydrogeological base case (reference case conceptualisation) and then in an examination of various areas of uncertainty within the current understanding by a series of model variants. The hydrogeological base case models at three different scales, 'repository', 'site' and 'regional', make use of continuous porous medium (CPM), equivalent continuous porous medium (ECPM) and discrete fracture network (DFN) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  9. Application of mathematical model for simulation of groundwater flow; Aplicacao de modelo matematico para simulacao do fluxo de agua subterranea

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho Filho, Carlos Alberto de; Branco, Otavio Eurico de Aquino [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Loureiro, Celso de Oliveira [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Sanitaria e Ambiental

    2000-07-01

    The main purpose of the present research work is the groundwater flow characterization of the aquifer system of the Engenho Nogueira Creek watershed basin, particularly within the limits of the Pampulha Campus of the Federal University of Minas Gerais and nearby. In order to reach the aforementioned goal, a numerical model was implemented for simulation the groundwater flow, using the MODFLOW code. The local hydrogeology consists of a porous granular aquifer placed above and hydraulically connected to a fractured aquifer, constituting a unique aquifer system, mixed and phreatic type, heterogeneous and anisotropic. The local hydrogeological system is strongly influenced by a complex drain system and by the Engenho Nogueira Creek. After calibration, it was possible to predict the average phreatic depth measured in the observation wells for the period in study with a standard deviation of 1.65 m and a correlation coefficient of 0.94. (author)

  10. Effects of anthropogenic water regulation and groundwater lateral flow on land processes

    Science.gov (United States)

    Zeng, Yujin; Xie, Zhenghui; Yu, Yan; Liu, Shuang; Wang, Linying; Zou, Jing; Qin, Peihua; Jia, Binghao

    2016-09-01

    Both anthropogenic water regulation and groundwater lateral flow essentially affect groundwater table patterns. Their relationship is close because lateral flow recharges the groundwater depletion cone, which is induced by over-exploitation. In this study, schemes describing groundwater lateral flow and human water regulation were developed and incorporated into the Community Land Model 4.5. To investigate the effects of human water regulation and groundwater lateral flow on land processes as well as the relationship between the two processes, three simulations using the model were conducted for the years 2003-2013 over the Heihe River Basin in northwestern China. Simulations showed that groundwater lateral flow driven by changes in water heads can essentially change the groundwater table pattern with the deeper water table appearing in the hillslope regions and shallower water table appearing in valley bottom regions and plains. Over the last decade, anthropogenic groundwater exploitation deepened the water table by approximately 2 m in the middle reaches of the Heihe River Basin and rapidly reduced the terrestrial water storage, while irrigation increased soil moisture by approximately 0.1 m3 m-3. The water stored in the mainstream of the Heihe River was also reduced by human surface water withdrawal. The latent heat flux was increased by 30 W m-2 over the irrigated region, with an identical decrease in sensible heat flux. The simulated groundwater lateral flow was shown to effectively recharge the groundwater depletion cone caused by over-exploitation. The offset rate is higher in plains than mountainous regions.

  11. SR-Site groundwater flow modelling methodology, setup and results

    Energy Technology Data Exchange (ETDEWEB)

    Selroos, Jan-Olof (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken three groundwater flow modelling studies. These are performed within the SR-Site project and represent time periods with different climate conditions. The simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. Three time periods are addressed; the Excavation and operational phases, the Initial period of temperate climate after closure, and the Remaining part of the reference glacial cycle. The present report is a synthesis of the background reports describing the modelling methodology, setup, and results. It is the primary reference for the conclusions drawn in a SR-Site specific context concerning groundwater flow during the three climate periods. These conclusions are not necessarily provided explicitly in the background reports, but are based on the results provided in these reports. The main results and comparisons presented in the present report are summarised in the SR-Site Main report.

  12. Hydrogeologic setting, hydraulic properties, and ground-water flow at the O-Field area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Banks, W.S.; Smith, B.S.; Donnelly, C.A.

    1996-01-01

    The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.

  13. Influence of vertical flows in wells on groundwater sampling.

    Science.gov (United States)

    McMillan, Lindsay A; Rivett, Michael O; Tellam, John H; Dumble, Peter; Sharp, Helen

    2014-11-15

    Pumped groundwater sampling evaluations often assume that horizontal head gradients predominate and the sample comprises an average of water quality variation over the well screen interval weighted towards contributing zones of higher hydraulic conductivity (a permeability-weighted sample). However, the pumping rate used during sampling may not always be sufficient to overcome vertical flows in wells driven by ambient vertical head gradients. Such flows are reported in wells with screens between 3 and 10m in length where lower pumping rates are more likely to be used during sampling. Here, numerical flow and particle transport modeling is used to provide insight into the origin of samples under ambient vertical head gradients and under a range of pumping rates. When vertical gradients are present, sample provenance is sensitive to pump intake position, pumping rate and pumping duration. The sample may not be drawn from the whole screen interval even with extended pumping times. Sample bias is present even when the ambient vertical flow in the wellbore is less than the pumping rate. Knowledge of the maximum ambient vertical flow in the well does, however, allow estimation of the pumping rate that will yield a permeability-weighted sample. This rate may be much greater than that recommended for low-flow sampling. In practice at monitored sites, the sampling bias introduced by ambient vertical flows in wells may often be unrecognized or underestimated when drawing conclusions from sampling results. It follows that care should be taken in the interpretation of sampling data if supporting flow investigations have not been undertaken.

  14. Understanding infiltration and groundwater flow at an artificial recharge facility using time-lapse gravity data

    Science.gov (United States)

    Kennedy, Jeffrey

    valuable for planning the location of pumping wells at a new facility. Gravity data were useful for calibration of a Modflow-NWT groundwater-flow model using the Unsaturated Zone Flow package to simulate recharge; the reduction in the posterior parameter distribution compared to the a priori estimate was substantial and similar to head data. In contrast to model-simulated head data, model-simulated gravity data were less sensitive to more distant model elements and more effective for calibration of a superposition-type model. Observed head data had a strong regional signal reflecting basin-scale conditions with only minor variation associated with individual recharge basins, and were therefore of limited usefulness for model calibration. Together, the methods developed by the study and interpretations they made possible suggest that gravity data are an effective way to better understand large-scale infiltration and groundwater movement.

  15. Development and calibration of buried wire gages for wall shear stress measurements in fluid flow

    Science.gov (United States)

    Murthy, Sreedhara V.; Steinle, Frank W.

    1988-01-01

    Special methods were developed to arrange 'Buried Wire Gage' inserts flush to the contoured flow surfaces of instrument plugs of a boundary-layer flow apparatus. The fabrication process was aimed at producing proper bonding of the sensor wire to the substrate surface, without causing excessive surface waviness. A large number of gages were built and first calibrated for the resistance-temperature characteristics. The gages were then installed in a flow calibration apparatus and operated from a constant temperature anemometer system for a series of flow settings to derive the calibration constants of each of the gages. The flow settings included a range of subsonic freestream Mach numbers in order to help establish the gage calibration characteristics for compressible flow fields. This paper provides a description of the buried wire gage technique, an explanation of the method evolved for making proper gages, the procedure for calibrating the gages and the results of measurements performed for determining the calibration constants.

  16. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

    Science.gov (United States)

    Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2016-08-01

    Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as

  17. The site-scale saturated zone flow model for Yucca Mountain: Calibration of different conceptual models and their impact on flow paths

    Science.gov (United States)

    Zyvoloski, G.; Kwicklis, E.; Eddebbarh, A.-A.; Arnold, B.; Faunt, C.; Robinson, B.A.

    2003-01-01

    This paper presents several different conceptual models of the Large Hydraulic Gradient (LHG) region north of Yucca Mountain and describes the impact of those models on groundwater flow near the potential high-level repository site. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain. This model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The numerical model is calibrated by matching available water level measurements using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM and parameter estimation software PEST) and model setup allows for efficient calibration of multiple conceptual models. Until now, the Large Hydraulic Gradient has been simulated using a low-permeability, east-west oriented feature, even though direct evidence for this feature is lacking. In addition to this model, we investigate and calibrate three additional conceptual models of the Large Hydraulic Gradient, all of which are based on a presumed zone of hydrothermal chemical alteration north of Yucca Mountain. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the potential repository that record differences in the predicted groundwater flow regime. The results show that Large Hydraulic Gradient can be represented with the alternate conceptual models that include the hydrothermally altered zone. The predicted pathways are mildly sensitive to the choice of the conceptual model and more sensitive to the quality of calibration in the vicinity on the repository. These differences are most likely due to different degrees of fit of model to data, and do not represent important differences in hydrologic conditions for the different conceptual models. ?? 2002 Elsevier Science B

  18. Lateral boundary of the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary and model domain of the area simulated by the transient ground-water flow model of the Death Valley regional...

  19. Initial hydraulic heads for the transient ground-water flow model, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the hydraulic-head values in 16 model layers used to initiate the transient simulation of the Death Valley regional ground-water flow...

  20. Numerical simulation of groundwater flow for the Yakima River basin aquifer system, Washington

    Science.gov (United States)

    Ely, D.M.; Bachmann, M.P.; Vaccaro, J.J.

    2011-01-01

    A regional, three-dimensional, transient numerical model of groundwater flow was constructed for the Yakima River basin aquifer system to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate proposed alternative management strategies that consider the interrelation between groundwater availability and surface-water resources.

  1. STRING 3: An Advanced Groundwater Flow Visualization Tool

    Science.gov (United States)

    Schröder, Simon; Michel, Isabel; Biedert, Tim; Gräfe, Marius; Seidel, Torsten; König, Christoph

    2016-04-01

    The visualization of 3D groundwater flow is a challenging task. Previous versions of our software STRING [1] solely focused on intuitive visualization of complex flow scenarios for non-professional audiences. STRING, developed by Fraunhofer ITWM (Kaiserslautern, Germany) and delta h Ingenieurgesellschaft mbH (Witten, Germany), provides the necessary means for visualization of both 2D and 3D data on planar and curved surfaces. In this contribution we discuss how to extend this approach to a full 3D tool and its challenges in continuation of Michel et al. [2]. This elevates STRING from a post-production to an exploration tool for experts. In STRING moving pathlets provide an intuition of velocity and direction of both steady-state and transient flows. The visualization concept is based on the Lagrangian view of the flow. To capture every detail of the flow an advanced method for intelligent, time-dependent seeding is used building on the Finite Pointset Method (FPM) developed by Fraunhofer ITWM. Lifting our visualization approach from 2D into 3D provides many new challenges. With the implementation of a seeding strategy for 3D one of the major problems has already been solved (see Schröder et al. [3]). As pathlets only provide an overview of the velocity field other means are required for the visualization of additional flow properties. We suggest the use of Direct Volume Rendering and isosurfaces for scalar features. In this regard we were able to develop an efficient approach for combining the rendering through raytracing of the volume and regular OpenGL geometries. This is achieved through the use of Depth Peeling or A-Buffers for the rendering of transparent geometries. Animation of pathlets requires a strict boundary of the simulation domain. Hence, STRING needs to extract the boundary, even from unstructured data, if it is not provided. In 3D we additionally need a good visualization of the boundary itself. For this the silhouette based on the angle of

  2. Groundwater flow modelling of an abandoned partially open repository

    Energy Technology Data Exchange (ETDEWEB)

    Bockgaard, Niclas (Golder Associates AB (Sweden))

    2010-12-15

    As a part of the license application, according to the nuclear activities act, for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study presented here serves as an input for analyses of so-called future human actions that may affect the repository. The objective of the work was to investigate the hydraulic influence of an abandoned partially open repository. The intention was to illustrate a pessimistic scenario of the effect of open tunnels in comparison to the reference closure of the repository. The effects of open tunnels were studied for two situations with different boundary conditions: A 'temperate' case with present-day boundary conditions and a generic future 'glacial' case with an ice sheet covering the repository. The results were summarized in the form of analyses of flow in and out from open tunnels, the effect on hydraulic head and flow in the surrounding rock volume, and transport performance measures of flow paths from the repository to surface

  3. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    Science.gov (United States)

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green

  4. Groundwater flow, quality (2007-10), and mixing in the Wind Cave National Park area, South Dakota

    Science.gov (United States)

    Long, Andrew J.; Ohms, Marc J.; McKaskey, Jonathan D.R.G.

    2012-01-01

    major hydrologic processes. Finally, conservative tracers were weighted preferentially in model calibration, which distributed model errors of optimized values, or residuals, more appropriately than would otherwise be the case The latter item also provides an estimate of the relative effect of geochemical evolution along flow paths in comparison to mixing. The end-member mixing model estimated that Wind Cave sites received 38 percent of their groundwater inflow from local surface recharge, 34 percent from the upgradient Precambrian aquifer, 26 percent from surface recharge to the west, and 2 percent from regional flow. Artesian springs primarily received water from end members assumed to represent regional groundwater flow. Groundwater samples were collected and analyzed for chlorofluorocarbons, dissolved gasses (argon, carbon dioxide, methane, nitrogen, and oxygen), and tritium at selected sites and used to estimate groundwater age. Apparent ages, or model ages, for the Madison aquifer in the study area indicate that groundwater closest to surface recharge areas is youngest, with increasing age in a downgradient direction toward deeper parts of the aquifer. Arsenic concentrations in samples collected for this study ranged from 0.28 to 37.1 micrograms per liter (μg/L) with a median value of 6.4 μg/L, and 32 percent of these exceeded 10 μg/L. The highest arsenic concentrations in and near the study area are approximately coincident with the outcrop of the Minnelusa Formation and likely originated from arsenic in shale layers in this formation. Sample concentrations of nitrate plus nitrite were less than 2 milligrams per liter for 92 percent of samples collected, which is not a concern for drinking-water quality. Water samples were collected in the park and analyzed for five trace metals (chromium, copper, lithium, vanadium, and zinc), the concentrations of which did not correlate with arsenic. Dye tracing indicated hydraulic connection between three water bodies in

  5. Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media

    Science.gov (United States)

    Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo

    2016-04-01

    different temporal lines and local time stepping control. Critical aspect of time integration accuracy is construction of spatial stencil due to accurate calculation of spatial derivatives. Since common approach applied for wavelets and splines uses a finite difference operator, we developed here collocation one including solution values and differential operator. In this way, new improved algorithm is adaptive in space and time enabling accurate solution for groundwater flow problems, especially in highly heterogeneous porous media with large lnK variances and different correlation length scales. In addition, differences between collocation and finite volume approaches are discussed. Finally, results show application of methodology to the groundwater flow problems in highly heterogeneous confined and unconfined aquifers.

  6. Groundwater flow modelling of the excavation and operational phases - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-07-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled.

  7. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    Science.gov (United States)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to

  8. Groundwater flow speed measurement using an electrolyte antenna

    Science.gov (United States)

    Crews, J. B.; Schumer, R.

    2015-12-01

    Most hydrogeophysical methods focus on subsurface structure, water content, and other properties that can be used to infer flow properties, but only the combination of self-potential and resistivity has thus far been used to estimate water flux. Exploiting the inverse relationship between the length of a wire antenna and its electrical resonant frequency, an aqueous electrolyte solution can be injected into a borehole, and the rate at which the leading edge of the plume advances can be determined by measuring the time-rate-of-change of the plume's electrical resonant frequency using a commercial antenna analyzer. Experiments were conducted to calibrate the relationship between the electrical resonant frequency of the electrolyte plume and its physical length in water-saturated porous media. Length-versus-resonant-frequency calibration obtained from measurements on wires housed in buried conduits representing preferential flow paths through a model aquifer exhibit close agreement with theoretical predictions based on theory describing the behavior of wire antennas in air. The advantages of this method for subsurface characterization include that it is 1) deployable by one person, 2) not dependent on inversion methods, 3) effective in a single borehole, and 4) not scale dependent.

  9. Ground-water flow and quality near Canon City, Colorado

    Science.gov (United States)

    Hearne, G.A.; Litke, D.W.

    1987-01-01

    Water in aquifers that underlie the Lincoln Park area near Canon City, Colorado, contains measurable concentrations of chemical constituents that are similar to those in raffinate (liquid waste) produced by a nearby uranium ore processing mill. The objective of this study was to expand the existing geohydrologic data base by collecting additional geohydrologic and water quality, in order to refine the description of the geohydrologic and geochemical systems in the study area. Geohydrologic data were collected from nine tests wells drilled in the area between the U.S. Soil Conservation Service dam and Lincoln Park. Lithologic and geophysical logs of these wells indicated that the section of Vermejo Formation penetrated consisted of interbedded sandstone and shale. The sandstone beds had a small porosity and small hydraulic conductivity. Groundwater flow from the U.S. Soil Conservation Service dam to Lincoln Park seemed to be along an alluvium-filled channel in the irregular and relatively undescribed topography of the Vermejo Formation subcrop. North of the De Weese Dye Ditch, the alluvium becomes saturated and groundwater generally flows to the northeast. Water samples from 28 sites were collected and analyzed for major ions and trace elements; selected water samples also were analyzed for stable isotopes; samples were collected from wells near the uranium ore processing mill, from privately owned wells in Lincoln Park, and from the test wells drilled in the intervening area. Results from the quality assurance samples indicate that cross-contamination between samples from different wells was avoided and that the data are reliable. Water in the alluvial aquifer underlying Lincoln Park is mainly a calcium bicarbonate type. Small variations in the composition of water in the alluvial aquifer appears to result from a reaction of water leaking from the De Weese Dye Ditch with alluvial material. Upward leakage from underlying aquifers does not seem to be significant in

  10. Simulating groundwater flow in karst aquifers with distributed parameter models—Comparison of porous-equivalent media and hybrid flow approaches

    Science.gov (United States)

    Kuniansky, Eve L.

    2016-09-22

    been developed that incorporate the submerged conduits as a one-dimensional pipe network within the aquifer rather than as discrete, extremely transmissive features in a porous-equivalent medium; these submerged conduit models are usually referred to as hybrid models and may include the capability to simulate both laminar and turbulent flow in the one-dimensional pipe network. Comparisons of the application of a porous-equivalent media model with and without turbulence (MODFLOW-Conduit Flow Process mode 2 and basic MODFLOW, respectively) and a hybrid (MODFLOW-Conduit Flow Process mode 1) model to the Woodville Karst Plain near Tallahassee, Florida, indicated that for annual, monthly, or seasonal average hydrologic conditions, all methods met calibration criteria (matched observed groundwater levels and average flows). Thus, the increased effort required, such as the collection of data on conduit location, to develop a hybrid model and its increased computational burden, is not necessary for simulation of average hydrologic conditions (non-laminar flow effects on simulated head and spring discharge were minimal). However, simulation of a large storm event in the Woodville Karst Plain with daily stress periods indicated that turbulence is important for matching daily springflow hydrographs. Thus, if matching streamflow hydrographs over a storm event is required, the simulation of non-laminar flow and the location of conduits are required. The main challenge in application of the methods and approaches for developing hybrid models relates to the difficulty of mapping conduit networks or having high-quality datasets to calibrate these models. Additionally, hybrid models have long simulation times, which can preclude the use of parameter estimation for calibration. Simulation of contaminant transport that does not account for preferential flow through conduits or extremely permeable zones in any approach is ill-advised. Simulation results in other karst aquifers or other

  11. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    Science.gov (United States)

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  12. Relation of streams, lakes, and wetlands to groundwater flow systems

    Science.gov (United States)

    Winter, Thomas C.

    Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus

  13. Comparison of function approximation, heuristic, and derivative-based methods for automatic calibration of computationally expensive groundwater bioremediation models

    Science.gov (United States)

    Mugunthan, Pradeep; Shoemaker, Christine A.; Regis, Rommel G.

    2005-11-01

    The performance of function approximation (FA) methods is compared to heuristic and derivative-based nonlinear optimization methods for automatic calibration of biokinetic parameters of a groundwater bioremediation model of chlorinated ethenes on a hypothetical and a real field case. For the hypothetical case, on the basis of 10 trials on two different objective functions, the FA methods had the lowest mean and smaller deviation of the objective function among all algorithms for a combined Nash-Sutcliffe objective and among all but the derivative-based algorithm for a total squared error objective. The best algorithms in the hypothetical case were applied to calibrate eight parameters to data obtained from a site in California. In three trials the FA methods outperformed heuristic and derivative-based methods for both objective functions. This study indicates that function approximation methods could be a more efficient alternative to heuristic and derivative-based methods for automatic calibration of computationally expensive bioremediation models.

  14. Dynamic material flow modeling: an effort to calibrate and validate aluminum stocks and flows in Austria.

    Science.gov (United States)

    Buchner, Hanno; Laner, David; Rechberger, Helmut; Fellner, Johann

    2015-05-01

    A calibrated and validated dynamic material flow model of Austrian aluminum (Al) stocks and flows between 1964 and 2012 was developed. Calibration and extensive plausibility testing was performed to illustrate how the quality of dynamic material flow analysis can be improved on the basis of the consideration of independent bottom-up estimates. According to the model, total Austrian in-use Al stocks reached a level of 360 kg/capita in 2012, with buildings (45%) and transport applications (32%) being the major in-use stocks. Old scrap generation (including export of end-of-life vehicles) amounted to 12.5 kg/capita in 2012, still being on the increase, while Al final demand has remained rather constant at around 25 kg/capita in the past few years. The application of global sensitivity analysis showed that only small parts of the total variance of old scrap generation could be explained by the variation of single parameters, emphasizing the need for comprehensive sensitivity analysis tools accounting for interaction between parameters and time-delay effects in dynamic material flow models. Overall, it was possible to generate a detailed understanding of the evolution of Al stocks and flows in Austria, including plausibility evaluations of the results. Such models constitute a reliable basis for evaluating future recycling potentials, in particular with respect to application-specific qualities of current and future national Al scrap generation and utilization.

  15. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.;

    2011-01-01

    in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto......Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels....

  16. Wellbore and groundwater temperature distribution eastern Snake River Plain, Idaho: Implications for groundwater flow and geothermal potential

    Science.gov (United States)

    McLing, Travis L.; Smith, Richard P.; Smith, Robert W.; Blackwell, David D.; Roback, Robert C.; Sondrup, Andrus J.

    2016-06-01

    A map of groundwater temperatures from the Eastern Snake River Plain (ESRP) regional aquifer can be used to identify and interpret important features of the aquifer, including aquifer flow direction, aquifer thickness, and potential geothermal anomalies. The ESRP is an area of high heat flow, yet most of this thermal energy fails to reach the surface, due to the heat being swept downgradient by the aquifer to the major spring complexes near Thousand Springs, ID, a distance of 300 km. Nine deep boreholes that fully penetrate the regional aquifer display three common features: (1) high thermal gradients beneath the aquifer, corresponding to high conductive heat flow in low-permeability hydrothermally-altered rocks; (2) isothermal temperature profiles within the aquifer, characteristic of an actively flowing groundwater; and (3) moderate thermal gradients in the vadose zone with values that indicate that over half of the geothermal heat flow is removed by advective transport in the regional aquifer system. This study utilized temperature data from 250 ESRP aquifer wells to evaluate regional aquifer flow direction, aquifer thickness, and potential geothermal anomalies. Because the thermal gradients are typically low in the aquifer, any measurement of groundwater temperature is a reasonable estimate of temperature throughout the aquifer thickness, allowing the construction of a regional aquifer temperature map for the ESRP. Mapped temperatures are used to identify cold thermal plumes associated with recharge from tributary valleys and adjacent uplands, and warm zones associated with geothermal input to the aquifer. Warm zones in the aquifer can have various causes, including local circulation of groundwater through the deep conductively dominated region, slow groundwater movement in low-permeability regions, or localized heat flow from deeper thermal features.

  17. Integrating Electrical Analogy and Computer Modeling of Groundwater Flow for Teaching Flownet Concepts

    Directory of Open Access Journals (Sweden)

    Murthy Kasi

    2013-10-01

    Full Text Available Laplace equation is the basic differential equation that governs the steady flow of a fluid through an isotropic and homogeneous porous medium and also the steady flow of current in a conducting medium. Therefore, a steady-state groundwater flow problem can be formulated as an analogous electrical current flow problem. A flow net, set of grids formed by orthogonally intersecting equipotential lines and flow lines, is a graphical solution to the equations of steady groundwater flow. By definition, flownet for the original groundwater problem and the corresponding analogous electrical problem should be similar. This feature allows the possibility of introducing the concepts of flownets to students using the easily demonstrable electrical counterpart of the problem in a laboratory setting. This paper discusses the efforts of the authors to widen the scope of an experiment already included in the Fluid Mechanics laboratory course of a Civil Engineering curriculum and to better teach flownet principles using the electrical analogy of groundwater flow problems. Students used a simple experimental setup to obtain flownets for selected groundwater flow situations with different boundary conditions using the electrical analogy concept. Students also used a groundwater flow computer model to obtain flownets for the same flow situations and compared the results. The laboratory lesson plan consisted of five steps: (i study and understand the selected physical groundwater problems, (ii conceptualize the corresponding analogous electrical problems (iii use the electrical analogy experimental setup to obtain flownets, (iv study and understand the mathematical formulation of the problems, and (v compare the analogous results with those obtained from a groundwater flow computer model. Sample results obtained by students are presented. The student feedback indicated that this approach resulted in an effective learning of the concepts involved.

  18. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    D' Agnese, F.A.; O' Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  19. Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh

    Science.gov (United States)

    Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke

    2016-04-01

    Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater

  20. Documentation of a groundwater flow model developed to assess groundwater availability in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    The U.S. Geological Survey developed a groundwater flow model for the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina as part of a detailed assessment of the groundwater availability of the area and included an evaluation of how these resources have changed over time from stresses related to human uses and climate trends. The assessment was necessary because of the substantial dependency on groundwater for agricultural, industrial, and municipal needs in this area.The three-dimensional, groundwater flow model developed for this investigation used the numerical code MODFLOW–NWT to represent changes in groundwater pumping and aquifer recharge from predevelopment (before 1900) to future conditions, from 1900 to 2058. The model was constructed using existing hydrogeologic and geospatial information to represent the aquifer system geometry, boundaries, and hydraulic properties of the 19 separate regional aquifers and confining units within the Northern Atlantic Coastal Plain aquifer system and was calibrated using an inverse modeling parameter-estimation (PEST) technique.The parameter estimation process was achieved through history matching, using observations of heads and flows for both steady-state and transient conditions. A total of 8,868 annual water-level observations from 644 wells from 1986 to 2008 were combined into 29 water-level observation groups that were chosen to focus the history matching on specific hydrogeologic units in geographic areas in which distinct geologic and hydrologic conditions were observed. In addition to absolute water-level elevations, the water-level differences between individual measurements were also included in the parameter estimation process to remove the systematic bias caused by missing hydrologic stresses prior to 1986. The total average residual of –1.7 feet was normally distributed for all head groups, indicating minimal bias. The average absolute residual value

  1. Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.

    Science.gov (United States)

    Dehkordi, S Emad; Schincariol, Robert A; Olofsson, Bo

    2015-01-01

    The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings.

  2. Field Continuous Measurement of Dissolved Gases with a CF-MIMS: Applications to the Physics and Biogeochemistry of Groundwater Flow.

    Science.gov (United States)

    Chatton, Eliot; Labasque, Thierry; de La Bernardie, Jérôme; Guihéneuf, Nicolas; Bour, Olivier; Aquilina, Luc

    2017-01-17

    In the perspective of a temporal and spatial exploration of aquatic environments (surface and groundwater), we developed a technique for field continuous measurements of dissolved gases with a precision better than 1% for N2, O2, CO2, He, Ar, 2% for Kr, 8% for Xe, and 3% for CH4, N2O and Ne. With a large resolution (from 1 × 10(-9) to 1 × 10(-2) ccSTP/g) and a capability of high frequency analysis (1 measure every 2 s), the CF-MIMS (Continuous Flow Membrane Inlet Mass Spectrometer) is an innovative tool allowing the investigation of a large panel of hydrological and biogeochemical processes in aquatic systems. Based on the available MIMS technology, this study introduces the development of the CF-MIMS (conception for field experiments, membrane choices, ionization) and an original calibration procedure allowing the quantification of mass spectral overlaps and temperature effects on membrane permeability. This study also presents two field applications of the CF-MIMS involving the well-logging of dissolved gases and the implementation of groundwater tracer tests with dissolved (4)He. The results demonstrate the analytical capabilities of the CF-MIMS in the field. Therefore, the CF-MIMS is a valuable tool for the field characterization of biogeochemical reactivity, aquifer transport properties, groundwater recharge, groundwater residence time and aquifer-river exchanges from few hours to several weeks experiments.

  3. Simulation of ground-water flow in the vicinity of Hyde Park landfill, Niagara Falls, New York

    Science.gov (United States)

    Maslia, M.L.; Johnston, R.H.

    1982-01-01

    The Hyde Park landfill is a 15-acre chemical waste disposal site located north of Niagara Falls, New York. Underlying the site in descending order are: (1) low permeability glacial till, (2) a moderately permeable fractured rock aquifer--the Lockport Dolomite, and (3) a low permeability unit--the Rochester Shale. The site is bounded on three sides by ground-water drains; the Niagara River Gorge, the Niagara Power Project canal, and the power project conduits. A finite element model was used to simulate ground-water flow along an east-west section through the Hyde Park site (from the power project conduits to the Niagara Gorge). Steady-state conditions were simulated with an average annual recharge rate of 5 inches per year. The calibrated model simulated measured water levels within 5 feet in the glacial till and upper unit of the Lockport Dolomite and approximated the configuration of the water table. Based on simulation, ground-water flow near the Hyde Park site can be summarized as follows: 1. Specific discharge (Darcy velocity) ranges from about 0.01 to 0.1 foot per day in the upper unit of the Lockport Dolomite to less than 0.00001 foot per day in the Rochester Shale. Real velocities are highest in the upper unit of the Lockport, ranging from about 1.5 to 4.8 feet per day. 2. A ground-water divide exists east of the landfill, indicating that all ground water originating near or flowing beneath the landfill will flow toward and discharge in the gorge. 3. The zone of highest velocities (and presumably greatest potential for transporting chemical contaminants) includes the upper unit of the Lockport and part of the lower unit of the Lockport Dolomite between the landfill and the gorge. The time required for ground water to move from the landfill to the gorge in the Lockport Dolomite is estimated to be 5 to 7 years.

  4. Groundwater flow system in the valley of Toluca, Mexico: an assay of natural radionuclide specific activities.

    Science.gov (United States)

    Segovia, N; Tamez, E; Peña, P; Carrillo, J; Acosta, E; Armienta, M A; Iturbe, J L

    1999-03-01

    Natural radionuclides and physicochemical parameters have been evaluated in groundwater samples from boreholes belonging to the drinking water supply system of the Toluca City, Mexico. The results obtained for radon and radium, together with the physicochemical parameters of the studied samples, indicate a fast and efficient recharge pattern. The presence of a local and a regional groundwater flows was also observed. The local flow belongs to shallower water, recognized by its low radon content and dissolved ions, as compared with the regional, deeper groundwater flow with a longer residence time.

  5. NON-LCL AND TRACER TEST FOR GROUNDWATER FLOW IN A SINGLE FRACTURE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The validity of Local Cubic Law (LCL) is an important issue to study groundwater flow and transport in fractured media. According to laboratory simulaion tests, the average velocity with a lower gradient in a single fracture is calculated by the LCL, which is compared with the measured average velocity. Then dye tracer test is designed and completed. The evidence for non-LCL is drawn from the results of the simulation tests and the dye tracer tests. Then the Reynolds number of groundwater is calculated, the critical value of Re for laminar flow is discussed in a single fracture under different conditions. The motion types for groundwater flow have been discussed.

  6. Simulation for the development of the continuous groundwater flow measurement technology

    Science.gov (United States)

    Kobayashi, Kaoru; Kumagai, Koki; Fujima, Ritsuko; Chikahisa, Hiroshi

    The flow of groundwater varies with time due to rainfall, atmospheric pressure change, tidal change, melting of snow during seasonal change, underground construction works etc. Therefore, to increase the precision of assessing in-situ groundwater flow characteristics, it is important to measure continuously the direction and velocity of the flow, in addition to obtaining accurate data for the afore mentioned environmental changes. The first part of this paper describes the development of a new device for measuring the direction and velocity of groundwater flow. The device was composed of a unique floating sensor with a hinge end at the bottom, which enabled continuous measurement of groundwater flow based on image data processing technique. In the second part, discussion is focused on clarifying the optimum cross-section shape and the behavior of the float sensor in saltwater and freshwater using numerical analysis.

  7. Laboratory Validation of Passive Flow Focusing of Horizontal Wells for in Situ Groundwater Remediation

    Science.gov (United States)

    DiMarco, A.; Crimi, M.; Holsen, T.; Bellona, C.; Kumarage, P.; Divine, C.; O'Fallon, T.

    2014-12-01

    A new concept for in situgroundwater remediation was recently developed where drilled horizontal wells filled with granular treatment media are installed in the direction of groundwater flow. Due to the differences in hydraulic conductivity (K) of the media in the well and the surrounding aquifer, groundwater is "focused" into the well and treated (Figure 1). Initial computer simulations demonstrate that the horizontal well will have a substantial capture zone making this a viable and appealing remediation strategy. In this work, a laboratory scale model was constructed to validate the computer simulations and determine the expected capture zone of a horizontal well under a range of hydraulic conductivity differentials. We have built a physical model to replicate a horizontal well in a confined aquifer. The model is constructed inside a 55-gallon drum packed with sand and water is pumped into the bottom of the drum and flows upward through the system. Within the aquifer, we installed a 1" screened well packed with lime-soda beads. To define the capture zone, we placed manometers in the aquifer. Finally, a constant head is applied to the system (Figure 2 and 3). Initial tests have shown that the 1" well with a hydraulic conductivity 65 times greater than the surrounding aquifer (kwell= 1.3 cm/sec vs. kaquifer= 0.02cm/sec) will capture a significant percentage (over 80% in some configurations) of the water applied to the system. A tracer test has shown that the water velocity in the well is substantially higher than the aquifer. Manometer readings confirm the flowfield effects of the well and these data are being used to calibrate numerical models. The presentation will focus on the observed behavior of the physical model under varying applied head and hydraulic conductivities and discuss the potential design implications for full-scale application.

  8. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2

    Science.gov (United States)

    Xu, Zexuan; Hu, Bill X.; Davis, Hal; Kish, Stephen

    2015-11-01

    In this study, a groundwater flow cycling in a karst springshed and an interaction between two springs, Spring Creek Springs and Wakulla Springs, through a subground conduit network are numerically simulated using CFPv2, the latest research version of MODFLOW-CFP (Conduit Flow Process). The Spring Creek Springs and Wakulla Springs, located in a marine estuary and 11 miles inland, respectively, are two major groundwater discharge spots in the Woodville Karst Plain (WKP), North Florida, USA. A three-phase conceptual model of groundwater flow cycling between the two springs and surface water recharge from a major surface creek (Lost Creek) was proposed in various rainfall conditions. A high permeable subground karst conduit network connecting the two springs was found by tracer tests and cave diving. Flow rate of discharge, salinity, sea level and tide height at Spring Creek Springs could significantly affect groundwater discharge and water stage at Wakulla Springs simultaneously. Based on the conceptual model, a numerical hybrid discrete-continuum groundwater flow model is developed using CFPv2 and calibrated by field measurements. Non-laminar flows in conduits and flow exchange between conduits and porous medium are implemented in the hybrid coupling numerical model. Time-variable salinity and equivalent freshwater head boundary conditions at the submarine spring as well as changing recharges have significant impacts on seawater/freshwater interaction and springs' discharges. The developed numerical model is used to simulate the dynamic hydrological process and quantitatively represent the three-phase conceptual model from June 2007 to June 2010. Simulated results of two springs' discharges match reasonably well to measurements with correlation coefficients 0.891 and 0.866 at Spring Creeks Springs and Wakulla Springs, respectively. The impacts of sea level rise on regional groundwater flow field and relationship between the inland springs and submarine springs are

  9. Simulations of groundwater flow, transport, and age in Albuquerque, New Mexico, for a study of transport of anthropogenic and natural contaminants (TANC) to public-supply wells

    Science.gov (United States)

    Heywood, Charles E.

    2013-01-01

    Vulnerability to contamination from manmade and natural sources can be characterized by the groundwater-age distribution measured in a supply well and the associated implications for the source depths of the withdrawn water. Coupled groundwater flow and transport models were developed to simulate the transport of the geochemical age-tracers carbon-14, tritium, and three chlorofluorocarbon species to public-supply wells in Albuquerque, New Mexico. A separate, regional-scale simulation of transport of carbon-14 that used the flow-field computed by a previously documented regional groundwater flow model was calibrated and used to specify the initial concentrations of carbon-14 in the local-scale transport model. Observations of the concentrations of each of the five chemical species, in addition to water-level observations and measurements of intra-borehole flow within a public-supply well, were used to calibrate parameters of the local-scale groundwater flow and transport models. The calibrated groundwater flow model simulates the mixing of “young” groundwater, which entered the groundwater flow system after 1950 as recharge at the water table, with older resident groundwater that is more likely associated with natural contaminants. Complexity of the aquifer system in the zone of transport between the water table and public-supply well screens was simulated with a geostatistically generated stratigraphic realization based upon observed lithologic transitions at borehole control locations. Because effective porosity was simulated as spatially uniform, the simulated age tracers are more efficiently transported through the portions of the simulated aquifer with relatively higher simulated hydraulic conductivity. Non-pumping groundwater wells with long screens that connect aquifer intervals having different hydraulic heads can provide alternate pathways for contaminant transport that are faster than the advective transport through the aquifer material. Simulation of

  10. Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain

    Science.gov (United States)

    Szabo, Z.; Rice, D.E.; Plummer, L.N.; Busenberg, E.; Drenkard, S.; Schlosser, P.

    1996-01-01

    Groundwater age dating through the combination of transient tracer methods (chlorofluorocarbons (CFCs) and tritium/helium 3 (3H/3He)) and groundwater flow path analysis is useful for investigating groundwater travel times, flow patterns, and recharge rates, as demonstrated by this study of the homogeneous shallow, unconfined Kirkwood-Cohansey aquifer system in the southern New Jersey coastal plain. Water samples for age dating were collected from three sets of nested observation wells (10 wells) with 1.5-m-long screens located near groundwater divides. Three steady state finite difference groundwater flow models were calibrated by adjusting horizontal and vertical hydraulic conductivities to match measured heads and head differences (range, 0.002-0.23 m) among the nested wells, with a uniform recharge rate of 0.46 m per year and porosities of 0.35 (sand) and 0.45 (silt) that were assumed constant for all model simulations and travel time calculations. The simulated groundwater travel times increase with depth in the aquifer, ranging from about 1.5 to 6.5 years for the shallow wells (screen bottoms 3-4 m below the water table), from about 10 to 25 years for the medium-depth wells (screen bottoms 8-19 m below the water table), and from about 30 to more than 40 years for the deep wells (screen bottoms 24-26 m below the water table). Apparent groundwater ages based on CFC- and 3H/3He-dating techniques and model-based travel times could not be statistically differentiated, and all were strongly correlated with depth. Confinement of 3He was high because of the rapid vertical flow velocity (of the order of 1 m/yr), resulting in clear delineation of groundwater travel times based on the 3H/3He-dating technique. The correspondence between the 3H/3He and CFC ages indicates that dispersion has had a minimal effect on the tracer-based ages of water in this aquifer. Differences between the tracer-based apparent ages for seven of the 10 samples were smaller than the error values

  11. Regional groundwater flow and geochemical evolution in the Amacuzac River Basin, Mexico

    Science.gov (United States)

    Morales-Casique, Eric; Guinzberg-Belmont, Jacobo; Ortega-Guerrero, Adrián

    2016-11-01

    An approach is presented to investigate the regional evolution of groundwater in the basin of the Amacuzac River in Central Mexico. The approach is based on groundwater flow cross-sectional modeling in combination with major ion chemistry and geochemical modeling, complemented with principal component and cluster analyses. The hydrogeologic units composing the basin, which combine aquifers and aquitards both in granular, fractured and karstic rocks, were represented in sections parallel to the regional groundwater flow. Steady-state cross-section numerical simulations aided in the conceptualization of the groundwater flow system through the basin and permitted estimation of bulk hydraulic conductivity values, recharge rates and residence times. Forty-five water locations (springs, groundwater wells and rivers) were sampled throughout the basin for chemical analysis of major ions. The modeled gravity-driven groundwater flow system satisfactorily reproduced field observations, whereas the main geochemical processes of groundwater in the basin are associated to the order and reactions in which the igneous and sedimentary rocks are encountered along the groundwater flow. Recharge water in the volcanic and volcano-sedimentary aquifers increases the concentration of HCO3 -, Mg2+ and Ca2+ from dissolution of plagioclase and olivine. Deeper groundwater flow encounters carbonate rocks, under closed CO2 conditions, and dissolves calcite and dolomite. When groundwater encounters gypsum lenses in the shallow Balsas Group or the deeper Huitzuco anhydrite, gypsum dissolution produces proportional increased concentration of Ca2+ and SO4 2-; two samples reflected the influence of hydrothermal fluids and probably halite dissolution. These geochemical trends are consistent with the principal component and cluster analyses.

  12. A comparison of calibration techniques for hot-wires operated in subsonic compressible slip flows

    Science.gov (United States)

    Jones, Gregory S.; Stainback, P. C.; Nagabushana, K. A.

    1992-01-01

    This paper focuses on the correlation of constant temperature anemometer voltages to velocity, density, and total temperature in the transonic slip flow regime. Three different calibration schemes were evaluated. The ultimate use of these hot-wire calibrations is to obtain fluctuations in the flow variables. Without the appropriate mean flow sensitivities of the heated wire, the measurements of these fluctuations cannot be accurately determined.

  13. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico

    Directory of Open Access Journals (Sweden)

    A. Hernández-Antonio

    2015-02-01

    Full Text Available Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater and 87% (hydrothermal water, and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.

  14. Simulation of Regional Ground-Water Flow in the Suwannee River Basin, Northern Florida and Southern Georgia

    Science.gov (United States)

    Planert, Michael

    2007-01-01

    -lying surficial and underlying Upper Floridan aquifers. The Upper Floridan aquifer is present throughout the study area and is extremely permeable and typically capable of transmitting large volumes of water. This high permeability largely is due to the widening of fractures and formation of conduits within the aquifer through dissolu-tion of the limestone by infiltrating water. This process has also produced numerous karst features such as springs, sinking streams, and sinkholes. A model of the Upper Floridan aquifer was created to better understand the ground-water system and to provide resource managers a tool to evaluate ground-water and surface-water interactions in the Suwannee River Basin. The model was developed to simulate a single Upper Floridan aquifer layer. Recharge datasets were developed to represent a net flux of water to the top of the aquifer or the water table during a period when the system was assumed to be under steady-state conditions (September 1990). A potentiometric-surface map representing water levels during September 1990 was prepared for the Suwannee River Water Management District (SRWMD), and the heads from those wells were used for calibration of the model. Additionally, flows at gaging sites for the Suwannee, Alapaha, Withlacoochee, Santa Fe, Fenholloway, Aucilla, Ecofina, and Steinhatchee Rivers were used during the calibration process to compare to model computed flows. Flows at seven first-magnitude springs selected by the SRWMD also were used to calibrate the model. Calibration criterion for matching potentiometric heads was to attain an absolute residual mean error of 5 percent or less of the head gradient of the system which would be about 5 feet. An absolute residual mean error of 4.79 feet was attained for final calibration. Calibration criterion for matching streamflow was based on the quality of measurements made in the field. All measurements used were rated ?good,? so the desire was for simulated values to be wi

  15. Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2006-05-01

    The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in

  16. Groundwater response to the 2014 pulse flow in the Colorado River Delta

    Science.gov (United States)

    Kennedy, Jeffrey; Rodriguez-Burgueno, Eliana; Ramirez-Hernandez, Jorge

    2016-01-01

    During the March-May 2014 Colorado River Delta pulse flow, approximately 102 × 106 m3 (82,000 acre-feet) of water was released into the channel at Morelos Dam, with additional releases further downstream. The majority of pulse flow water infiltrated and recharged the regional aquifer. Using groundwater-level and microgravity data we mapped the spatial and temporal distribution of changes in aquifer storage associated with pulse flow. Surface-water losses to infiltration were greatest around the Southerly International Boundary, where a lowered groundwater level owing to nearby pumping created increased storage potential as compared to other areas with shallower groundwater. Groundwater levels were elevated for several months after the pulse flow but had largely returned to pre-pulse levels by fall 2014. Elevated groundwater levels in the limitrophe (border) reach extended about 2 km to the east around the midway point between the Northerly and Southerly International Boundaries, and about 4 km to the east at the southern end. In the southern part of the delta, although total streamflow in the channel was less due to upstream infiltration, augmented deliveries through irrigation canals and possible irrigation return flows created sustained increases in groundwater levels during summer 2014. Results show that elevated groundwater levels and increases in groundwater storage were relatively short lived (confined to calendar year 2014), and that depressed water levels associated with groundwater pumping around San Luis, Arizona and San Luis Rio Colorado, Sonora cause large, unavoidable infiltration losses of in-channel water to groundwater in the vicinity.

  17. Study area boundary for the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set represents the Death Valley regional ground-water flow system (DVRFS) study area which encompasses approximately 100,000-square kilometers in...

  18. Groundwater Discharge Area for the Diamond Valley Flow System, Central Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  19. Hydrogeologic map of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset represents the surface hydrogeology of an approximately 45,000 square-kilometer area of the Death Valley regional ground-water flow system...

  20. Net infiltration of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Recharge in the Death Valley regional ground-water flow system (DVRFS) was estimated from net infiltration simulated by Hevesi and others (2003) using a...

  1. Evapotranspiration Units for the Diamond Valley Flow System Groundwater Discharge Area, Central Nevada, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  2. MODFLOW-NWT 2016 groundwater flow model for Dane County, Wisconsin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A new groundwater flow model was created for Dane County, Wisconsin, to replace an earlier model developed in the 1990s by the Wisconsin Geological and Natural...

  3. Calibration of the 7—Equation Transition Model for High Reynolds Flows at Low Mach

    Science.gov (United States)

    Colonia, S.; Leble, V.; Steijl, R.; Barakos, G.

    2016-09-01

    The numerical simulation of flows over large-scale wind turbine blades without considering the transition from laminar to fully turbulent flow may result in incorrect estimates of the blade loads and performance. Thanks to its relative simplicity and promising results, the Local-Correlation based Transition Modelling concept represents a valid way to include transitional effects into practical CFD simulations. However, the model involves coefficients that need tuning. In this paper, the γ—equation transition model is assessed and calibrated, for a wide range of Reynolds numbers at low Mach, as needed for wind turbine applications. An aerofoil is used to evaluate the original model and calibrate it; while a large scale wind turbine blade is employed to show that the calibrated model can lead to reliable solutions for complex three-dimensional flows. The calibrated model shows promising results for both two-dimensional and three-dimensional flows, even if cross-flow instabilities are neglected.

  4. Documentation of finite-difference model for simulation of three-dimensional ground-water flow

    Science.gov (United States)

    Trescott, Peter C.; Larson, S.P.

    1976-01-01

    User experience has indicated that the documentation of the model of three-dimensional ground-water flow (Trescott and Larson, 1975) should be expanded. This supplement is intended to fulfill that need. The original report emphasized the theory of the strongly implicit procedure, instructions for using the groundwater-flow model, and practical considerations for application. (See also W76-02962 and W76-13085) (Woodard-USGS)

  5. Mass flow-rate control unit to calibrate hot-wire sensors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Uensal, B. [FMP Technology GmbH, Erlangen (Germany); Haddad, K. [FMP Technology GmbH, Erlangen (Germany); Friedrich-Alexander-Universitaet Erlangen-Nuernberg, LSTM-Erlangen, Institute of Fluid Mechanics, Erlangen (Germany); Al-Salaymeh, A.; Eid, Shadi [University of Jordan, Mechanical Engineering Department, Faculty of Engineering and Technology, Amman (Jordan)

    2008-02-15

    Hot-wire anemometry is a measuring technique that is widely employed in fluid mechanics research to study the velocity fields of gas flows. It is general practice to calibrate hot-wire sensors against velocity. Calibrations are usually carried out under atmospheric pressure conditions and these suggest that the wire is sensitive to the instantaneous local volume flow rate. It is pointed out, however, that hot wires are sensitive to the instantaneous local mass flow rate and, of course, also to the gas heat conductivity. To calibrate hot wires with respect to mass flow rates per unit area, i.e., with respect to ({rho}U), requires special calibration test rigs. Such a device is described and its application is summarized within the ({rho}U) range 0.1-25 kg/m{sup 2} s. Calibrations are shown to yield the same hot-wire response curves for density variations in the range 1-7 kg/m{sup 3}. The application of the calibrated wires to measure pulsating mass flows is demonstrated, and suggestions are made for carrying out extensive calibrations to yield the ({rho}U) wire response as a basis for advanced fluid mechanics research on ({rho}U) data in density-varying flows. (orig.)

  6. Numerical flow models and their calibration using tracer based ages: Chapter 10

    Science.gov (United States)

    Sanford, W.

    2013-01-01

    Any estimate of ‘age’ of a groundwater sample based on environmental tracers requires some form of geochemical model to interpret the tracer chemistry (chapter 3) and is, therefore, referred to in this chapter as a tracer model age. the tracer model age of a groundwater sample can be useful for obtaining information on the residence time and replenishment rate of an aquifer system, but that type of data is most useful when it can be incorporated with all other information that is known about the groundwater system under study. groundwater fl ow models are constructed of aquifer systems because they are usually the best way of incorporating all of the known information about the system in the context of a mathematical framework that constrains the model to follow the known laws of physics and chemistry as they apply to groundwater flow and transport. It is important that the purpose or objective of the study be identified first before choosing the type and complexity of the model to be constructed, and to make sure such a model is necessary. The purpose of a modelling study is most often to characterize the system within a numerical framework, such that the hydrological responses of the system can be tested under potential stresses that might be imposed given future development scenarios. As this manual discusses dating as it applies to old groundwater, most readers are likely to be interested in studying regional groundwater flow systems and their water resource potential.

  7. A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh

    Science.gov (United States)

    Islam, Md Bayzidul; Firoz, A. B. M.; Foglia, Laura; Marandi, Andres; Khan, Abidur Rahman; Schüth, Christoph; Ribbe, Lars

    2017-01-01

    The water resources that supply most of the megacities in the world are under increased pressure because of land transformation, population growth, rapid urbanization, and climate-change impacts. Dhaka, in Bangladesh, is one of the largest of 22 growing megacities in the world, and it depends on mainly groundwater for all kinds of water needs. The regional groundwater-flow model MODFLOW-2005 was used to simulate the interaction between aquifers and rivers in steady-state and transient conditions during the period 1981-2013, to assess the impact of development and climate change on the regional groundwater resources. Detailed hydro-stratigraphic units are described according to 150 lithology logs, and a three-dimensional model of the upper 400 m of the Greater Dhaka area was constructed. The results explain how the total abstraction (2.9 million m3/d) in the Dhaka megacity, which has caused regional cones of depression, is balanced by recharge and induced river leakage. The simulated outcome shows the general trend of groundwater flow in the sedimentary Holocene aquifers under a variety of hydrogeological conditions, which will assist in the future development of a rational and sustainable management approach.

  8. Numerical simulation of the groundwater-flow system in Chimacum Creek Basin and vicinity, Jefferson County, Washington

    Science.gov (United States)

    Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.

    2013-01-01

    A groundwater-flow model was developed to evaluate potential future effects of growth and of water-management strategies on water resources in the Chimacum Creek Basin. The model covers an area of about 64 square miles (mi2) on the Olympic Peninsula in northeastern Jefferson County, Washington. The Chimacum Creek Basin drains an area of about 53 mi2 and consists of Chimacum Creek and its tributary East Fork Chimacum Creek, which converge near the town of Chimacum and discharge to Port Townsend Bay near the town of Irondale. The topography of the model area consists of north-south oriented, narrow, regularly spaced parallel ridges and valleys that are characteristic of fluted glaciated surfaces. Thick accumulations of peat occur along the axis of East Fork Chimacum Creek and provide rich soils for agricultural use. The study area is underlain by a north-thickening sequence of unconsolidated glacial (till and outwash) and interglacial (fluvial and lacustrine) deposits, and sedimentary and igneous bedrock units that crop out along the margins and the western interior of the model area. Six hydrogeologic units in the model area form the basis of the groundwater-flow model. They are represented by model layers UC (upper confining), UA (upper aquifer), MC (middle confining), LA (lower aquifer), LC (lower confining), and OE (bedrock). Groundwater flow in the Chimacum Creek Basin and vicinity was simulated using the groundwater-flow model, MODFLOW-2005. The finite-difference model grid comprises 245 columns, 313 rows, and 6 layers. Each model cell has a horizontal dimension of 200 × 200 feet (ft). The thickness of model layers varies throughout the model area and ranges from 5 ft in the non-bedrock units to more than 2,400 ft in the bedrock. Groundwater flow was simulated for steady-state conditions, which were simulated for calibration of the model using average recharge, discharge, and water levels for the 180-month period October 1994–September 2009. The model as

  9. Cup anemometer calibration: effect of flow velocity distribution

    Science.gov (United States)

    Piccato, A.; Spazzini, P. G.; Malvano, R.

    2011-10-01

    The effects of different working conditions and specifically of different velocity profiles on the output of a commercial cup anemometer were analysed experimentally. A simple mathematical model is also presented and provides results in line with the experiments. Results show that a cup anemometer with certain geometrical features can be calibrated through a rotating drag rig by correcting for the bias on the instrument output. The increase in uncertainty caused by this systematic correction was evaluated and applied to the results. The correction was validated by checking the compatibility of calibrations of a cup anemometer at the rotating rig and in a wind tunnel.

  10. Multi-metric calibration of hydrological model to capture overall flow regimes

    Science.gov (United States)

    Zhang, Yongyong; Shao, Quanxi; Zhang, Shifeng; Zhai, Xiaoyan; She, Dunxian

    2016-08-01

    Flow regimes (e.g., magnitude, frequency, variation, duration, timing and rating of change) play a critical role in water supply and flood control, environmental processes, as well as biodiversity and life history patterns in the aquatic ecosystem. The traditional flow magnitude-oriented calibration of hydrological model was usually inadequate to well capture all the characteristics of observed flow regimes. In this study, we simulated multiple flow regime metrics simultaneously by coupling a distributed hydrological model with an equally weighted multi-objective optimization algorithm. Two headwater watersheds in the arid Hexi Corridor were selected for the case study. Sixteen metrics were selected as optimization objectives, which could represent the major characteristics of flow regimes. Model performance was compared with that of the single objective calibration. Results showed that most metrics were better simulated by the multi-objective approach than those of the single objective calibration, especially the low and high flow magnitudes, frequency and variation, duration, maximum flow timing and rating. However, the model performance of middle flow magnitude was not significantly improved because this metric was usually well captured by single objective calibration. The timing of minimum flow was poorly predicted by both the multi-metric and single calibrations due to the uncertainties in model structure and input data. The sensitive parameter values of the hydrological model changed remarkably and the simulated hydrological processes by the multi-metric calibration became more reliable, because more flow characteristics were considered. The study is expected to provide more detailed flow information by hydrological simulation for the integrated water resources management, and to improve the simulation performances of overall flow regimes.

  11. Groundwater Flow Field Distortion by Monitoring Wells and Passive Flux Meters.

    Science.gov (United States)

    Verreydt, G; Bronders, J; Van Keer, I; Diels, L; Vanderauwera, P

    2015-01-01

    Due to differences in hydraulic conductivity and effects of well construction geometry, groundwater lateral flow through a monitoring well typically differs from groundwater flow in the surrounding aquifer. These differences must be well understood in order to apply passive measuring techniques, such as passive flux meters (PFMs) used for the measurement of groundwater and contaminant mass fluxes. To understand these differences, lab flow tank experiments were performed to evaluate the influences of the well screen, the surrounding filter pack and the presence of a PFM on the natural groundwater flux through a monitoring well. The results were compared with analytical calculations of flow field distortion based on the potential theory of Drost et al. (1968). Measured well flow field distortion factors were found to be lower than calculated flow field distortion factors, while measured PFM flow field distortion factors were comparable to the calculated ones. However, this latter is not the case for all conditions. The slotted geometry of the well screen seems to make a correct analytical calculation challenging for conditions where flow field deviation occurs, because the potential theory assumes a uniform flow field. Finally, plots of the functional relationships of the distortion of the flow field with the hydraulic conductivities of the filter screen, surrounding filter pack and corresponding radii make it possible to design well construction to optimally function during PFM applications.

  12. A fully coupled depth-integrated model for surface water and groundwater flows

    Science.gov (United States)

    Li, Yuanyi; Yuan, Dekui; Lin, Binliang; Teo, Fang-Yenn

    2016-11-01

    This paper presents the development of a fully coupled surface water and groundwater flow model. The governing equations of the model are derived based on a control volume approach, with the velocity profiles of the two types of flows being both taken into consideration. The surface water and groundwater flows are both modelled based on the unified equations and the water exchange and interaction between the two types of flows can be taken into account. The model can be used to simulate the surface water and groundwater flows simultaneously with the same numerical scheme without other effort being needed to link them. The model is not only suitable for the porous medium consisting of fine sediments, but also for coarse sediments and crushed rocks by adding a quadratic friction term. Benchmark tests are conducted to validate the model. The model predictions agree well with the data.

  13. Methods for Using Ground-Water Model Predictions to Guide Hydrogeologic Data Collection, with Applications to the Death Valley Regional Ground-Water Flow System

    Energy Technology Data Exchange (ETDEWEB)

    Claire R. Tiedeman; M.C. Hill; F.A. D' Agnese; C.C. Faunt

    2001-07-31

    Calibrated models of ground-water systems can provide substantial information for guiding data collection. This work considers using such models to guide hydrogeologic data collection for improving model predictions, by identifying model parameters that are most important to the predictions. Identification of these important parameters can help guide collection of field data about parameter values and associated flow-system features that can lead to improved predictions. Methods for identifying parameters important to predictions include prediction scaled sensitivities (PSS), which account for uncertainty on individual parameters as well as prediction sensitivity to parameters, and a new ''value of improved information'' (VOII) method, which includes the effects of parameter correlation in addition to individual parameter uncertainty and prediction sensitivity. The PSS and VOII methods are demonstrated using a model of the Death Valley regional ground-water flow system. The predictions of interest are advective-transport paths originating at sites of past underground nuclear testing. Results show that for two paths evaluated, the most important parameters include a subset of five or six of the 23 defined model parameters. Some of the parameters identified as most important are associated with flow-system attributes that do not lie in the immediate vicinity of the paths. Results also indicate that the PSS and VOII methods can identify different important parameters. Because the methods emphasize somewhat different criteria for parameter importance, it is suggested that parameters identified by both methods be carefully considered in subsequent data collection efforts aimed at improving model predictions.

  14. MODFLOW datasets for simulations of groundwater flow with downscaled global climate model data for the Suwannee River Basin, Florida

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A previously-developed groundwater model of the Suwannee River Basin was modified and calibrated to represent transient conditions. A simulation of recent conditions...

  15. Analysis of groundwater recoverable resource by numerical method in Linfen Basin of Shanxi, North China

    Institute of Scientific and Technical Information of China (English)

    Liping BAI; Yeyao WANG; Jinsheng WANG

    2008-01-01

    Calculation of the groundwater recoverable resource is the main part of groundwater resource evaluation. The three-dimensional groundwater flow model in Linfen Basin was established by GMS software. Then the numerical model was calibrated by observed groundwater level from February to December in 2 000. Based on the calibrated model, the groundwater recoverable resource is calculated. The simulation result shows that under the given value of the groundwater recoverable resource, the groundwater level would decrease significantly in the first 1 000 days, while the water level would drop slowly in 1 000 to 2 000 days, and the water level change tend to be stable after 2000 days.

  16. Simulation of groundwater flow, effects of artificial recharge, and storage volume changes in the Equus Beds aquifer near the city of Wichita, Kansas well field, 1935–2008

    Science.gov (United States)

    Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.

    2013-01-01

    The Equus Beds aquifer is a primary water-supply source for Wichita, Kansas and the surrounding area because of shallow depth to water, large saturated thickness, and generally good water quality. Substantial water-level declines in the Equus Beds aquifer have resulted from pumping groundwater for agricultural and municipal needs, as well as periodic drought conditions. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project to store and later recover groundwater, and to form a hydraulic barrier to the known chloride-brine plume near Burrton, Kansas. In October 2009, the U.S. Geological Survey, in cooperation with the city of Wichita, began a study to determine groundwater flow in the area of the Wichita well field, and chloride transport from the Arkansas River and Burrton oilfield to the Wichita well field. Groundwater flow was simulated for the Equus Beds aquifer using the three-dimensional finite-difference groundwater-flow model MODFLOW-2000. The model simulates steady-state and transient conditions. The groundwater-flow model was calibrated by adjusting model input data and model geometry until model results matched field observations within an acceptable level of accuracy. The root mean square (RMS) error for water-level observations for the steady-state calibration simulation is 9.82 feet. The ratio of the RMS error to the total head loss in the model area is 0.049 and the mean error for water-level observations is 3.86 feet. The difference between flow into the model and flow out of the model across all model boundaries is -0.08 percent of total flow for the steady-state calibration. The RMS error for water-level observations for the transient calibration simulation is 2.48 feet, the ratio of the RMS error to the total head loss in the model area is 0.0124, and the mean error for water-level observations is 0.03 feet. The RMS error calculated for observed and simulated base flow gains or losses for the

  17. Site-scale groundwater flow modelling of Ceberg

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D. [Duke Engineering and Services (United States); Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden)

    1999-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) SR 97 study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Ceberg, which adopts input parameters from the SKB study site near Gideaa, in northern Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister locations. A series of variant cases addresses uncertainties in the inference of parameters and the model of conductive fracturezones. The study uses HYDRASTAR, the SKB stochastic continuum (SC) groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position, and the advective travel times and paths through the geosphere. The volumetric flow balance between the regional and site-scale models suggests that the nested modelling and associated upscaling of hydraulic conductivities preserve mass balance only in a general sense. In contrast, a comparison of the base and deterministic (Variant 4) cases indicates that the upscaling is self-consistent with respect to median travel time and median canister flux. These suggest that the upscaling of hydraulic conductivity is approximately self-consistent but the nested modelling could be improved. The Base Case yields the following results for a flow porosity of {epsilon}{sub f} 10{sup -4} and a flow-wetted surface area of a{sub r} = 0.1 m{sup 2}/(m{sup 3} rock): The median travel time is 1720 years. The median canister flux is 3.27x10{sup -5} m/year. The median F-ratio is 1.72x10{sup 6} years/m. The base case and the deterministic variant suggest that the variability of the travel times within

  18. Derivation, calibration and verification of macroscopic model for urban traffic flow. Part 2

    CERN Document Server

    Alekseenko, Andrey E; Kholodov, Aleksandr S; Goreva, Anna I; Kurzhanskiy, Alexander A; Chehovich, Yuriy V; Starozhilets, Vsevolod M

    2016-01-01

    In this paper, we propose a unified procedure for calibration of macroscopic second-order multilane traffic models. The focus is on calibrating the fundamental diagram using the combination stationary detector data and GPS traces. GPS traces are used in estimation of the deceleration wave speed. Thus calibrated model adequately represents the three phases of traffic: free flow, synchronized flow and the wide moving jam. The proposed approach was validated in simulation using stationary detection data and GPS traces from the Moscow Ring Road. Simulation showed that the proposed second-order model is more accurate than the first-order LWR model.

  19. Groundwater-flow model and effects of projected groundwater use in the Ozark Plateaus Aquifer System in the vicinity of Greene County, Missouri - 1907-2030

    Science.gov (United States)

    Richards, Joseph M.

    2010-01-01

    the aquifer in relatively short periods of time. Pumpage rates in the model area increased from 1,093,268 cubic feet per day in 1962 to 2,693,423 cubic feet per day in 1987 to 4,330,177 cubic feet per day in 2006. Annual precipitation ranged from 25.21 inches in 1953 to 62.45 inches in 1927 from 1915 to 2006 in the model area. Recharge to the model was calculated as 2.53 percent of the annual precipitation and was varied annually. Recharge was distributed over the model area based on land slope and was adjusted in the city limits of Springfield to account for the impervious surface. A groundwater model with annual stress periods from 1907 to 2030 was developed using a transient calibration period from 1987 to 2006 and a prediction period from 2007 to 2030 to simulate flow in the Springfield Plateau aquifer and the Ozark aquifer. For the model area of approximately 2,870 square miles, the model hydrogeologic units and hydraulic properties were discretized into 253 rows, 316 columns, and 3 layers with the layer boundaries crossing hydrogeologic unit boundaries in some areas. The horizontal cell spacing was 1,000 feet by 1,000 feet. The model was calibrated by minimizing the difference between simulated head and observed water levels and simulated and observed flows in rivers and springs. Population and the associated groundwater use were estimated for 12 communities and the unincorporated area of Greene County based on past growth. Each was analyzed individually, and a low and high annual rate of growth relative to the 2006 population was computed for each community or group. Low growth rates ranged from 0.215 percent per year in Springfield to 6.997 percent per year in Rogersville. Total growth from 2006 to 2030 at the low growth rate ranged from 5.2 percent in Springfield to 167.9 percent in Rogersville. High growth rates ranged from 0.236 percent per year in Springfield to 7.345 percent per year in Rogersville. Total growth from 2006 to 2030 at the high g

  20. Investigating groundwater flow between Edwards and Trinity aquifers in central Texas.

    Science.gov (United States)

    Wong, C I; Kromann, J S; Hunt, B B; Smith, B A; Banner, J L

    2014-01-01

    Understanding the nature of communication between aquifers can be challenging when using traditional physical and geochemical groundwater sampling approaches. This study uses two multiport wells completed within Edwards and Trinity aquifers in central Texas to determine the degree of groundwater inter-flow between adjacent aquifers. Potentiometric surfaces, hydraulic conductivities, and groundwater major ion concentrations and Sr isotope values were measured from multiple zones within three hydrostratigraphic units (Edwards and Upper and Middle Trinity aquifers). Physical and geochemical data from the multiport wells were combined with historical measurements of groundwater levels and geochemical compositions from the region to characterize groundwater flow and identify controls on the geochemical compositions of the Edwards and Trinity aquifers. Our results suggest that vertical groundwater flow between Edwards and Middle Trinity aquifers is likely limited by low permeability, evaporite-rich units within the Upper and Middle Trinity. Potentiometric surface levels in both aquifers vary with changes in wet vs. dry conditions, indicating that recharge to both aquifers occurs through distinct recharge areas. Geochemical compositions in the Edwards, Upper, and Middle Trinity aquifers are distinct and likely reflect groundwater interaction with different lithologies (e.g., carbonates, evaporites, and siliceous sediments) as opposed to mixing of groundwater between the aquifers. These results have implications for the management of these aquifers as they indicate that, under current conditions, pumping of either aquifer will likely not induce vertical cross-formational flow between the aquifers. Inter-flow between the Trinity and the Edwards aquifers, however, should be reevaluated as pumping patterns and hydrogeologic conditions change.

  1. An Investigation of Groundwater Flow on a Coastal Barrier using Multi Electrode Profiling

    DEFF Research Database (Denmark)

    Poulsen, Søren Erbs; Christensen, Steen; Rasmussen, Keld Rømer;

    2008-01-01

    probes, having closely spaced electrodes from above the groundwater table to a depth of 5 m below sea level, have been installed and tested. Using this system we will monitor resistivity and thus groundwater salinity variations in space and time. Analyzing the measurements using density dependent......Preliminary geophysical and hydrogeological investigations indicate that multi-electrode profiling (MEP) can be used to monitor groundwater salinity on a coastal barrier where a shallow thin aquifer discharges to the North Sea. A monitoring system including five groups of piezometers and five MEP...... groundwater modeling we hope to be able to quantify how time varying recharge, tides, and storms hitting the barrier affect groundwater flow and discharge to the sea. At the conference we will present monitoring results from the winter and spring 2008....

  2. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  3. Simulation of groundwater flow and hydrologic effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the Pinelands of southern New Jersey

    Science.gov (United States)

    Charles, Emmanuel G.; Nicholson, Robert S.

    2012-01-01

    The Kirkwood-Cohansey aquifer system is an important source of present and future water supply in southern New Jersey. Because this unconfined aquifer system also supports sensitive wetland and aquatic habitats within the New Jersey Pinelands (Pinelands), water managers and policy makers need up-to-date information, data, and projections that show the effects of potential increases in groundwater withdrawals on these habitats. Finite-difference groundwater flow models (MODFLOW) were constructed for three drainage basins (McDonalds Branch Basin, 14.3 square kilometers (km2); Morses Mill Stream Basin, 21.63 km2; and Albertson Brook Basin, 52.27 km2) to estimate the effects of potential increases in groundwater withdrawals on water levels and the base-flow portion of streamflow, in wetland and aquatic habitats. Three models were constructed for each drainage basin: a transient model consisting of twenty-four 1-month stress periods (October 2004 through September 2006); a transient model to simulate the 5- to 10-day aquifer tests that were performed as part of the study; and a high-resolution, steady-state model used to assess long-term effects of increased groundwater withdrawals on water levels in wetlands and on base flow. All models were constructed with the same eight-layer structure. The smallest horizontal cell dimensions among the three model areas were 150 meters (m) for the 24-month transient models, 10 m for the steady-state models, and 3 m for the transient aquifer-test models. Boundary flows of particular interest to this study and represented separately are those for wetlands, streams, and evapotranspiration. The final variables calibrated from both transient models were then used in steady-state models to assess the long-term effects of increased groundwater withdrawals on water levels in wetlands and on base flow. Results of aquifer tests conducted in the three study areas illustrate the effects of withdrawals on water levels in wetlands and on base

  4. Bedrock Hydrogeology - Groundwater flow modelling. Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Uppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Oden, Magnus [SKB, Stockholm (Sweden)

    2013-05-15

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain.

  5. Geochemical and isotopic investigations on groundwater residence time and flow in the Independence Basin, Mexico

    Science.gov (United States)

    Mahlknecht, J.; Gárfias-Solis, J.; Aravena, R.; Tesch, R.

    2006-06-01

    The Independence Basin in the semi-arid Guanajuato state of central Mexico is facing serious groundwater resources deficiency due to an increasing demand linked to a rapid population growth and agricultural development. This problem is aggravated by an inadequate evaluation of groundwater resources in the region. Geochemistry and isotopic tracers were used in order to investigate the groundwater flow system and estimate the groundwater residence time. The groundwater is characterized by low salinity with some exceptions associated to a contribution of more saline groundwater from deep formations. The predominant reactions are CO 2 gas dissolution, carbonate dissolution, albite weathering, kaolinite and chalcedony precipitation. Six principal hydrochemical zones were recognized, which provided information on plausible recharge sources and groundwater chemical evolution. The 14C concentration varies between 19 and 94 pmc. The high 14C values indicating recent recharge are observed at the basin margins and a trend to lower 14C values is observed along the modern groundwater flow paths. The groundwater residence time according to radiocarbon estimations ranges between recent and ˜11 ka. The residence time distribution matches the regional important discharge zones west in the basin center (from Dolores Hidalgo and southwest from Doctor Mora). Hydrochemical tracers are in general agreement with the predeveloped and current hydraulic-head configuration, however, show some inconsistencies with the predeveloped head in the downgradient areas, which means that the impact by gradually increasing groundwater extraction during the last decades is reflected on radiocarbon age distribution. Geochemical evidences imply that the recharge input from the northern basin area is insignificant.

  6. A theory for modeling ground-water flow in heterogeneous media

    Science.gov (United States)

    Cooley, Richard L.

    2004-01-01

    Construction of a ground-water model for a field area is not a straightforward process. Data are virtually never complete or detailed enough to allow substitution into the model equations and direct computation of the results of interest. Formal model calibration through optimization, statistical, and geostatistical methods is being applied to an increasing extent to deal with this problem and provide for quantitative evaluation and uncertainty analysis of the model. However, these approaches are hampered by two pervasive problems: 1) nonlinearity of the solution of the model equations with respect to some of the model (or hydrogeologic) input variables (termed in this report system characteristics) and 2) detailed and generally unknown spatial variability (heterogeneity) of some of the system characteristics such as log hydraulic conductivity, specific storage, recharge and discharge, and boundary conditions. A theory is developed in this report to address these problems. The theory allows construction and analysis of a ground-water model of flow (and, by extension, transport) in heterogeneous media using a small number of lumped or smoothed system characteristics (termed parameters). The theory fully addresses both nonlinearity and heterogeneity in such a way that the parameters are not assumed to be effective values. The ground-water flow system is assumed to be adequately characterized by a set of spatially and temporally distributed discrete values, ?, of the system characteristics. This set contains both small-scale variability that cannot be described in a model and large-scale variability that can. The spatial and temporal variability in ? are accounted for by imagining ? to be generated by a stochastic process wherein ? is normally distributed, although normality is not essential. Because ? has too large a dimension to be estimated using the data normally available, for modeling purposes ? is replaced by a smoothed or lumped approximation y?. (where y is a

  7. Hydrogeological and Groundwater Flow Model for C, K, L, and P Reactor Areas, Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.

    1999-02-24

    A regional groundwater flow model encompassing approximately 100 mi{sup 2} surrounding the C, K. L. and P reactor areas has been developed. The Reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department.

  8. Groundwater-flow model for the Wood River Valley aquifer system, south-central Idaho

    Science.gov (United States)

    Fisher, Jason C.; Bartolino, James R.; Wylie, Allan H.; Sukow, Jennifer; McVay, Michael

    2016-06-27

    A three-dimensional numerical model of groundwater flow was developed for the Wood River Valley (WRV) aquifer system, Idaho, to evaluate groundwater and surface-water availability at the regional scale. This mountain valley is located in Blaine County and has a drainage area of about 2,300 square kilometers (888 square miles). The model described in this report can serve as a tool for water-rights administration and water-resource management and planning. The model was completed with support from the Idaho Department of Water Resources, and is part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the WRV. A highly reproducible approach was taken for constructing the WRV groundwater-flow model. The collection of datasets, source code, and processing instructions used to construct and analyze the model was distributed as an R statistical-computing and graphics package.

  9. Relationships between basic soils-engineering equations and basic ground-water flow equations

    Science.gov (United States)

    Jorgensen, Donald G.

    1980-01-01

    The many varied though related terms developed by ground-water hydrologists and by soils engineers are useful to each discipline, but their differences in terminology hinder the use of related information in interdisciplinary studies. Equations for the Terzaghi theory of consolidation and equations for ground-water flow are identical under specific conditions. A combination of the two sets of equations relates porosity to void ratio and relates the modulus of elasticity to the coefficient of compressibility, coefficient of volume compressibility, compression index, coefficient of consolidation, specific storage, and ultimate compaction. Also, transient ground-water flow is related to coefficient of consolidation, rate of soil compaction, and hydraulic conductivity. Examples show that soils-engineering data and concepts are useful to solution of problems in ground-water hydrology.

  10. Documentation of a groundwater flow model developed to assess groundwater availability in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    Science.gov (United States)

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    The U.S. Geological Survey developed a groundwater flow model for the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina as part of a detailed assessment of the groundwater availability of the area and included an evaluation of how these resources have changed over time from stresses related to human uses and climate trends. The assessment was necessary because of the substantial dependency on groundwater for agricultural, industrial, and municipal needs in this area.

  11. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...

  12. Groundwater flow and solute transport modelling from within R: Development of the RMODFLOW and RMT3DMS packages.

    Science.gov (United States)

    Rogiers, Bart

    2015-04-01

    Since a few years, an increasing number of contributed R packages is becoming available, in the field of hydrology. Hydrological time series analysis packages, lumped conceptual rainfall-runoff models, distributed hydrological models, weather generators, and different calibration and uncertainty estimation methods are all available. Also a few packages are available for solving partial differential equations. Subsurface hydrological modelling is however still seldomly performed in R, or with codes interfaced with R, despite the fact that excellent geostatistical packages, model calibration/inversion options and state-of-the-art visualization libraries are available. Moreover, other popular scientific programming languages like matlab and python have packages for pre- and post-processing files of MODFLOW (Harbaugh 2005) and MT3DMS (Zheng 2010) models. To fill this gap, we present here the development versions of the RMODFLOW and RMT3DMS packages, which allow pre- and post-processing MODFLOW and MT3DMS input and output files from within R. File reading and writing functions are currently available for different packages, and plotting functions are foreseen making use of the ggplot2 package (plotting system based on the grammar of graphics; Wickham 2009). The S3 generic-function object oriented programming style is used for this. An example is provided, making modifications to an existing model, and visualization of the model output. References Harbaugh, A. (2005). MODFLOW-2005: The US Geological Survey Modular Ground-water Model--the Ground-water Flow Process, U.S. Geological Survey Techniques and Methods 6-A16 (p. 253). Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer New York, 2009. Zheng, C. (2010). MT3DMS v5.3, a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Supplemental User's Guide. (p. 56).

  13. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; Guy Roemer

    2002-09-01

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

  14. Five-point Element Scheme of Finite Analytic Method for Unsteady Groundwater Flow

    Institute of Scientific and Technical Information of China (English)

    Xiang Bo; Mi Xiao; Ji Changming; Luo Qingsong

    2007-01-01

    In order to improve the finite analytic method's adaptability for irregular unit, by using coordinates rotation technique this paper establishes a five-point element scheme of finite analytic method. It not only solves unsteady groundwater flow equation but also gives the boundary condition. This method can be used to calculate the three typical questions of groundwater. By compared with predecessor's computed result, the result of this method is more satisfactory.

  15. Identifying Components of Groundwater Flow, Flux, and Storage in Tuolumne Meadows, Yosemite, California

    Science.gov (United States)

    Vialpando, M., III; Lowry, C.; Visser, A.; Moran, J. E.; Esser, B. K.

    2015-12-01

    High elevation meadows in the Sierra Nevada of California, USA represent mixing zones between surface water and groundwater. Quantifying the exchange between stream water and groundwater, and the residence time of water stored in meadow sediments will allow examination of the possible buffer effect that groundwater has on meadows and streams. This in turn has implications for the resilience of the ecosystem as well as the downstream communities that are dependent upon runoff for water supply. Stream flow was measured and water samples were collected along a 5 km reach of the Tuolumne River and adjacent wells during both spring runoff and baseflow. Water samples were analyzed for concentrations of dissolved noble gases and anions, sulfur-35, tritium and radon to study surface water-groundwater interactions and residence times. Although lower than average because of the ongoing drought in California, discharge in early July 2015 was about 35 times that measured during the previous fall. During baseflow, a small component of fracture flow (2%) is identified using dissolved helium. Radon, anions and stream discharge identify reaches of groundwater discharge. Anions show a steady increase in the groundwater component over the western portion of the meadow during baseflow, and over 50% of stream water is exchanged with meadow groundwater, without a net gain or loss of stream flow. Sulfur-35 and tritium results indicated that groundwater contributing to stream flow has recharged within the previous two years. With the current drought, estimated as the most severe in 1200 years, accurate estimations of water availability are becoming increasingly important to water resource managers.

  16. Documentation of a groundwater flow model (SJRRPGW) for the San Joaquin River Restoration Program study area, California

    Science.gov (United States)

    Traum, Jonathan A.; Phillips, Steven P.; Bennett, George Luther; Zamora, Celia; Metzger, Loren F.

    2014-01-01

    the natural heterogeneity of aquifer-system materials within the model domain. In addition, the stream properties were updated from the CVHM to better simulate stream-aquifer interactions, and water-budget subregions were refined to better simulate agricultural water supply and demand. External boundary conditions were derived from the CVHM. The SJRRPGW was calibrated for April 1961 to September 2003 by using groundwater-level observations from 133 wells and streamflow observations from 19 streamgages. The model was calibrated using public-domain parameter estimation software (PEST) in a semi-automated manner. The simulated groundwater-level elevations and trends (including seasonal fluctuations) and surface-water flow magnitudes and trends reasonably matched observed data. The calibrated model is planned to be used to assess the potential effects of restoration flows on agricultural lands and the relative capabilities of proposed SJRRP actions to reduce these effects.

  17. Review: Impact of underground structures on the flow of urban groundwater

    Science.gov (United States)

    Attard, Guillaume; Winiarski, Thierry; Rossier, Yvan; Eisenlohr, Laurent

    2016-02-01

    Property economics favours the vertical development of cities but flow of groundwater can be affected by the use of underground space in them. This review article presents the state of the art regarding the impact of disturbances caused by underground structures (tunnels, basements of buildings, deep foundations, etc.) on the groundwater flow in urban aquifers. The structures built in the underground levels of urban areas are presented and organised in terms of their impact on flow: obstacle to the flow or disturbance of the groundwater budget of the flow system. These two types of disturbance are described in relation to the structure area and the urban area. The work reviewed shows, on one hand, the individual impacts of different urban underground structures, and on the other, their cumulative impacts on flow, using real case studies. Lastly, the works are placed in perspective regarding the integration of underground structures with the aim of operational management of an urban aquifer. The literature presents deterministic numerical modelling as a tool capable of contributing to this aim, in that it helps to quantify the effect of an underground infrastructure project on groundwater flow, which is crucial for decision-making processes. It can also be an operational decision-aid tool for choosing construction techniques or for formulating strategies to manage the water resource.

  18. Structural Controls on Groundwater Flow in Basement Terrains: Geophysical, Remote Sensing, and Field Investigations in Sinai

    KAUST Repository

    Mohamed, Lamees

    2015-07-09

    An integrated [very low frequency (VLF) electromagnetic, magnetic, remote sensing, field, and geographic information system (GIS)] study was conducted over the basement complex in southern Sinai (Feiran watershed) for a better understanding of the structural controls on the groundwater flow. The increase in satellite-based radar backscattering values following a large precipitation event (34 mm on 17–18 January 2010) was used to identify water-bearing features, here interpreted as preferred pathways for surface water infiltration. Findings include: (1) spatial analysis in a GIS environment revealed that the distribution of the water-bearing features (conductive features) corresponds to that of fractures, faults, shear zones, dike swarms, and wadi networks; (2) using VLF (43 profiles), magnetic (7 profiles) techniques, and field observations, the majority (85 %) of the investigated conductive features were determined to be preferred pathways for groundwater flow; (3) northwest–southeast- to north–south-trending conductive features that intersect the groundwater flow (southeast to northwest) at low angles capture groundwater flow, whereas northeast–southwest to east–west features that intersect the flow at high angles impound groundwater upstream and could provide potential productive well locations; and (4) similar findings are observed in central Sinai: east–west-trending dextral shear zones (Themed and Sinai Hinge Belt) impede south to north groundwater flow as evidenced by the significant drop in hydraulic head (from 467 to 248 m above mean sea level) across shear zones and by reorientation of regional flow (south–north to southwest–northeast). The adopted integrated methodologies could be readily applied to similar highly fractured basement arid terrains elsewhere. © 2015 Springer Science+Business Media Dordrecht

  19. Calibrating Lattice Boltzmann flow simulations and estimating uncertainty in the permeability of complex porous media

    Science.gov (United States)

    Hosa, Aleksandra; Curtis, Andrew; Wood, Rachel

    2016-08-01

    A common way to simulate fluid flow in porous media is to use Lattice Boltzmann (LB) methods. Permeability predictions from such flow simulations are controlled by parameters whose settings must be calibrated in order to produce realistic modelling results. Herein we focus on the simplest and most commonly used implementation of the LB method: the single-relaxation-time BGK model. A key parameter in the BGK model is the relaxation time τ which controls flow velocity and has a substantial influence on the permeability calculation. Currently there is no rigorous scheme to calibrate its value for models of real media. We show that the standard method of calibration, by matching the flow profile of the analytic Hagen-Poiseuille pipe-flow model, results in a BGK-LB model that is unable to accurately predict permeability even in simple realistic porous media (herein, Fontainebleau sandstone). In order to reconcile the differences between predicted permeability and experimental data, we propose a method to calibrate τ using an enhanced Transitional Markov Chain Monte Carlo method, which is suitable for parallel computer architectures. We also propose a porosity-dependent τ calibration that provides an excellent fit to experimental data and which creates an empirical model that can be used to choose τ for new samples of known porosity. Our Bayesian framework thus provides robust predictions of permeability of realistic porous media, herein demonstrated on the BGK-LB model, and should therefore replace the standard pipe-flow based methods of calibration for more complex media. The calibration methodology can also be extended to more advanced LB methods.

  20. Simulation of groundwater flow and hydrologic effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the Pinelands of southern New Jersey

    Science.gov (United States)

    Charles, Emmanuel G.; Nicholson, Robert S.

    2012-01-01

    The Kirkwood-Cohansey aquifer system is an important source of present and future water supply in southern New Jersey. Because this unconfined aquifer system also supports sensitive wetland and aquatic habitats within the New Jersey Pinelands (Pinelands), water managers and policy makers need up-to-date information, data, and projections that show the effects of potential increases in groundwater withdrawals on these habitats. Finite-difference groundwater flow models (MODFLOW) were constructed for three drainage basins (McDonalds Branch Basin, 14.3 square kilometers (km2); Morses Mill Stream Basin, 21.63 km2; and Albertson Brook Basin, 52.27 km2) to estimate the effects of potential increases in groundwater withdrawals on water levels and the base-flow portion of streamflow, in wetland and aquatic habitats. Three models were constructed for each drainage basin: a transient model consisting of twenty-four 1-month stress periods (October 2004 through September 2006); a transient model to simulate the 5- to 10-day aquifer tests that were performed as part of the study; and a high-resolution, steady-state model used to assess long-term effects of increased groundwater withdrawals on water levels in wetlands and on base flow. All models were constructed with the same eight-layer structure. The smallest horizontal cell dimensions among the three model areas were 150 meters (m) for the 24-month transient models, 10 m for the steady-state models, and 3 m for the transient aquifer-test models. Boundary flows of particular interest to this study and represented separately are those for wetlands, streams, and evapotranspiration. The final variables calibrated from both transient models were then used in steady-state models to assess the long-term effects of increased groundwater withdrawals on water levels in wetlands and on base flow. Results of aquifer tests conducted in the three study areas illustrate the effects of withdrawals on water levels in wetlands and on base

  1. Quantitative Analysis of Groundwater Flow near a Partially Penetrating River under Riverside Pumping

    Institute of Scientific and Technical Information of China (English)

    WANG Bingchen; ZHENG Xilai; QIAN Hui; LIN Guoqing; XU Qiant

    2004-01-01

    According to practical geological and hydrogeological conditions of riverside water-supply well fields in northwestern China, an ideal hydrogeological model has been generalized and a three-dimensional mathematical model has been set up. A finite difference method was applied to simulating groundwater flow near a partially penetrating river under riverside pumping, and to analyzing the effects of river width, partial penetration and permeability of riverbed sediments on groundwater recharges. Results show that riverside pumping may cause groundwater to flow beneath the partially penetrating river, and that river width, penetration and riverbed permeability obviously influence flows from the partially penetrating river and constant-head boundaries. However, the pumping output is mainly from the partially penetrating river.

  2. Groundwater Abstraction for Irrigation and Its Impacts on Low Flows in a Watershed in Northwest Germany

    Directory of Open Access Journals (Sweden)

    Hartmut Wittenberg

    2015-07-01

    Full Text Available Low flows of the Ilmenau River (1434 km2 in northwest Germany have decreased by about 25% over the last 50 years. In the same period, moderate climate changes have taken place and annual groundwater abstractions for sprinkler irrigation have increased by up to 50 hm3 (million m3, with a strong variation due to the respective prevailing weather conditions. Time-series analyses with multiple regression analysis allow detecting and quantifying different influences on low flows. It is also shown that farmers allocate irrigation water volumes carefully according to seasonal precipitation and temperatures. Decline of groundwater levels in summer and the low flow situation are aggravated by the cumulative effect of higher irrigation in drier years. Groundwater recharge and recovery of the water table have been observed subsequently during the winter season.

  3. Electrode Calibration with a Microfluidic Flow Cell for Fast-scan Cyclic Voltammetry

    OpenAIRE

    Sinkala, Elly; McCutcheon, James E.; Schuck, Matt; Schmidt, Eric; Roitman, Mitchell F.; Eddington, David T.

    2012-01-01

    Fast-scan cyclic voltammetry (FSCV) is a common analytical electrochemistry tool used to measure chemical species. It has recently been adapted for measurement of neurotransmitters such as dopamine in awake and behaving animals (in vivo). Electrode calibration is an essential step in FSCV to relate observed current to concentration of a chemical species. However, existing methods require multiple components, which reduce the ease of calibrations. To this end, a microfluidic flow cell (µFC) wa...

  4. A tidal creek water budget: Estimation of groundwater discharge and overland flow using hydrologic modeling in the Southern Everglades

    Science.gov (United States)

    Michot, Béatrice; Meselhe, Ehab A.; Rivera-Monroy, Victor H.; Coronado-Molina, Carlos; Twilley, Robert R.

    2011-07-01

    Taylor Slough is one of the natural freshwater contributors to Florida Bay through a network of microtidal creeks crossing the Everglades Mangrove Ecotone Region (EMER). The EMER ecological function is critical since it mediates freshwater and nutrient inputs and controls the water quality in Eastern Florida Bay. Furthermore, this region is vulnerable to changing hydrodynamics and nutrient loadings as a result of upstream freshwater management practices proposed by the Comprehensive Everglades Restoration Program (CERP), currently the largest wetland restoration project in the USA. Despite the hydrological importance of Taylor Slough in the water budget of Florida Bay, there are no fine scale (˜1 km 2) hydrodynamic models of this system that can be utilized as a tool to evaluate potential changes in water flow, salinity, and water quality. Taylor River is one of the major creeks draining Taylor Slough freshwater into Florida Bay. We performed a water budget analysis for the Taylor River area, based on long-term hydrologic data (1999-2007) and supplemented by hydrodynamic modeling using a MIKE FLOOD (DHI, http://dhigroup.com/) model to evaluate groundwater and overland water discharges. The seasonal hydrologic characteristics are very distinctive (average Taylor River wet vs. dry season outflow was 6 to 1 during 1999-2006) with a pronounced interannual variability of flow. The water budget shows a net dominance of through flow in the tidal mixing zone, while local precipitation and evapotranspiration play only a secondary role, at least in the wet season. During the dry season, the tidal flood reaches the upstream boundary of the study area during approximately 80 days per year on average. The groundwater field measurements indicate a mostly upwards-oriented leakage, which possibly equals the evapotranspiration term. The model results suggest a high importance of groundwater contribution to the water salinity in the EMER. The model performance is satisfactory

  5. Site-scale groundwater flow modelling of Aberg

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D. [Duke Engineering and Services (United States); Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden)

    1998-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) SR 97 study is a comprehensive performance assessment illustrating the results for three hypothetical repositories in Sweden. In support of SR 97, this study examines the hydrogeologic modelling of the hypothetical site called Aberg, which adopts input parameters from the Aespoe Hard Rock Laboratory in southern Sweden. This study uses a nested modelling approach, with a deterministic regional model providing boundary conditions to a site-scale stochastic continuum model. The model is run in Monte Carlo fashion to propagate the variability of the hydraulic conductivity to the advective travel paths from representative canister locations. A series of variant cases addresses uncertainties in the inference of parameters and the boundary conditions. The study uses HYDRASTAR, the SKB stochastic continuum groundwater modelling program, to compute the heads, Darcy velocities at each representative canister position and the advective travel times and paths through the geosphere. The nested modelling approach and the scale dependency of hydraulic conductivity raise a number of questions regarding the regional to site-scale mass balance and the method`s self-consistency. The transfer of regional heads via constant head boundaries preserves the regional pattern recharge and discharge in the site-scale model, and the regional to site-scale mass balance is thought to be adequate. The upscaling method appears to be approximately self-consistent with respect to the median performance measures at various grid scales. A series of variant cases indicates that the study results are insensitive to alternative methods on transferring boundary conditions from the regional model to the site-scale model. The flow paths, travel times and simulated heads appear to be consistent with on-site observations and simple scoping calculations. The variabilities of the performance measures are quite high for the Base Case, but the

  6. Outline of the integrated simulation system (GEOMASS system) to evaluate groundwater flow and application to groundwater simulation in the Tono area

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Kaoru; Saegusa, Hiromitsu [Japan Nuclear Cycle Development Inst., Toki, Gifu (Japan). Tono Geoscience Center

    2003-03-01

    The Tono Geoscience Center (TGC) has been developing the GEOMASS system since 1997 to evaluate the groundwater flow at depth in a rock mass. The system provides an integrated simulation system environment for both model development and groundwater flow simulations. The integrated simulation system allows users to use resources efficiently. The system also allows users to make rapid improvement of their models as data increases. Also, it is possible to perform more realistic groundwater flow simulations due to the capability of modeling the rock mass as a continuum with discrete hydro-structural features in the rock. TGC tested the operation and usefulness of the GEOMASS system by applying to groundwater flow simulations in the Tono area, Gifu Prefecture. TGC confirmed that the system is very useful for complex geological models and multiple modeling. (author)

  7. Modelling the effect of buried valleys on groundwater flow: case study in Ventspils vicinity, Latvia

    Science.gov (United States)

    Delina, Aija; Popovs, Konrads; Bikse, Janis; Retike, Inga; Babre, Alise; Kalvane, Gunta

    2015-04-01

    Buried subglacial valleys are widely distributed in glaciated regions and they can have great influence on groundwater flow and hence on groundwater resources. The aim of this study is to evaluate the effect of the buried valleys on groundwater flow in a confined aquifer (Middle Devonian Eifelian stage Arukila aquifer, D2ar) applying numerical modelling. The study area is located at vicinity of Ventspils Town, near wellfield Ogsils where number of the buried valleys with different depth and filling material are present. Area is located close to the Baltic Sea at Piejūra lowland Rinda plain and regional groundwater flow is towards sea. Territory is covered by thin layer of Quaternary sediments in thicknesses of 10 to 20 meters although Prequaternary sediments are exposed at some places. Buried valleys are characterized as narrow, elongated and deep formations that is be filled with various, mainly Pleistocene glacigene sediments - either till loam of different ages or sand and gravel or interbedding of both above mentioned. The filling material of the valleys influences groundwater flow in the confined aquifers which is intercepted by the valleys. It is supposed that glacial till loam filled valleys serves as a barrier to groundwater flow and as a recharge conduit when filled with sand and gravel deposits. Numerical model was built within MOSYS modelling system (Virbulis et al. 2012) using finite element method in order to investigate buried valley influence on groundwater flow in the study area. Several conceptual models were tested in numerical model depending on buried valley filling material: sand and gravel, till loam or mixture of them. Groundwater flow paths and travel times were studied. Results suggested that valley filled with glacial till is acting as barrier and it causes sharp drop of piezometric head and downward flow. Valley filled with sand and gravel have almost no effect on piezometric head distribution, however it this case buried valleys

  8. Lateral boundary of the steady-state ground-water flow model by D'Agnese and others (2002), Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the lateral boundary of the area simulated by the steady-state ground-water flow model of the Death Valley regional ground-water flow...

  9. Boundary of the ground-water flow model by D'Agnese and others (1997), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the boundary of the ground-water flow model by D'Agnese and others (1997). This steady-state, 3-layer ground-water flow model was...

  10. Reconstructing the groundwater flow in the Baltic Basin during the Last glaciation

    Science.gov (United States)

    Saks, T.; Sennikovs, J.; Timuhins, A.; Kalvāns, A.

    2012-04-01

    In last decades it has been discussed that most large ice sheets tend to reside on warm beds even in harsh clima tic conditions and subglacial melting occurs due to geothermal heat flow and deformation heat of the ice flow. However the subglacial groundwater recharge and flow conditions have been addressed in only few studies. The aim of this study is to establish the groundwater flow pattern in the Baltic Basin below the Scandinavian ice sheet during the Late Weichselian glaciation. The calculation results are compared to the known distribution of the groundwater body of the glacial origin found in Cambrian - Vendian (Cm-V) aquifer in the Northern Estonia which is believed to have originated as a result of subglacial meltwater infiltration during the reoccurring glaciations. Steady state regional groundwater flow model of the Baltic Basin was used to simulate the groundwater flow beneath the ice sheet with its geometry adjusted to reflect the subglacial topography. Ice thickness modelling data (Argus&Peltier, 2010) was used for the setup of the boundary conditions: the meltwater pressure at the ice bed was assumed equal to the overlying ice mass. The modelling results suggest two main recharge areas of the Cm-V aquifer system, and reversed groundwater flow that persisted for at least 14 thousand years. Model results show that the groundwater flow velocities in the Cm-V aquifer in the recharge area in N-Estonia beneath the ice sheet exceeded the present velocities by a factor of 10 on average. The calculated meltwater volume recharged into the Cm-V aquifer system during the Late Weichselian corresponds roughly to the estimated, however, considering the fact, that the study area has been glaciated at least 4 times this is an overestimation. The modeling results attest the hypothesis of light dO18 groundwater glacial origin in the Cm-V aquifer system, however the volumes, timing and processes involved in the meltwater intrusion are yet to be explored. This study was

  11. Study of electrokinetic effects to quantify groundwater flow

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.R. [Sandia National Lab., Albuquerque, NM (United States); Haupt, R.W. [MIT Lincoln Lab., Lexington, MA (United States)

    1997-04-01

    An experimental study of electrokinetic effects (streaming potential) in earth materials was undertaken. The objective was to evaluate the measurement of electrokinetic effects as a method of monitoring and predicting the movement of groundwater, contaminant plumes, and other fluids in the subsurface. The laboratory experiments verified that the electrokinetic effects in earth materials are prominent, repeatable, and can be described well to first order by a pair of coupled differential equations.

  12. Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow Equation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available The classical Darcy law is generalized by regarding the water flow as a function of a noninteger order derivative of the piezometric head. This generalized law and the law of conservation of mass are then used to derive a new equation for groundwater flow. Two methods including Frobenius and Adomian decomposition method are used to obtain an asymptotic analytical solution to the generalized groundwater flow equation. The solution obtained via Frobenius method is valid in the vicinity of the borehole. This solution is in perfect agreement with the data observed from the pumping test performed by the institute for groundwater study on one of their boreholes settled on the test site of the University of the Free State. The test consisted of the pumping of the borehole at the constant discharge rate Q and monitoring the piezometric head for 350 minutes. Numerical solutions obtained via Adomian method are compared with the Barker generalized radial flow model for which a fractal dimension for the flow is assumed. Proposition for uncertainties in groundwater studies was given.

  13. Direction of ground-water flow and ground-water quality near a landfill in Falmouth, Massachusetts

    Science.gov (United States)

    Persky, J.H.

    1986-01-01

    A landfill in Falmouth, Massachusetts, is upgradient of a pond used for municipal water supply, but analysis of groundwater flow directions and groundwater quality indicates that leachate from the landfill does not threaten the municipal water supply. A network of water table observation wells was established, and water table altitudes were measured in these wells on several dates in 1981. Water quality analyses and specific conductance measurements were made on water samples from several wells in the vicinity of the landfill between October 1980 and April 1983. A water table altitude contour map of the area between the landfill and Long Pond for April 16-17, 1981, indicates that the direction of groundwater flow is primarily southwest from the landfill to Buzzards Bay. A similar map for September 2, 1981--a time at which the water table was unusually low--indicates the possibility of groundwater discharge to Long Pond from the landfill site. Groundwater quality beneath the landfill exceeded U.S. EPA water quality criteria for domestic water supply for manganese and total dissolved solids. Concentrations as high as 52 mg/L of nitrogen as ammonia and 4,500 micrograms/L (ug/L) of manganese were found. Concentrations of ammonia, manganese, calcium, potassium, and alkalinity exceeded local background levels by more than a factor of 100; specific-conductance levels and concentrations of hardness, barium, chloride, sodium, magnesium, iron, and strontium exceeded local background levels by more than a factor of 10; and cadmium concentrations exceeded local background levels by more than a factor of 5. Water quality analyses and field specific conductance measurements indicate the presence of a volume of leachate extending south-southwest from the landfill. Average chloride concentrations of landfill leachate, precipitation on the surface of Long Pond, and recharge from the remainder of the recharge area were 180, 3, and 9 mg/L, respectively. No significant degradation of

  14. Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12

    Science.gov (United States)

    Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.

    2016-07-29

    The Diamond Valley flow system consists of six hydraulically connected hydrographic areas in central Nevada. The general down-gradient order of the areas are southern and northern Monitor Valleys, Antelope Valley, Kobeh Valley, Stevens Basin, and Diamond Valley. Groundwater flow in the Diamond Valley flow system terminates at a large playa in the northern part of Diamond Valley. Concerns relating to continued water-resources development of the flow system resulted in a phased hydrologic investigation that began in 2005 by the U.S. Geological Survey in cooperation with Eureka County. This report presents the culmination of the phased investigation to increase understanding of the groundwater resources of the basin-fill aquifers in the Diamond Valley flow system through evaluations of groundwater chemistry and budgets. Groundwater chemistry was characterized using major ions and stable isotopes from groundwater and precipitation samples. Groundwater budgets accounted for all inflows, outflows, and changes in storage, and were developed for pre-development (pre-1950) and recent (average annual 2011–12) conditions. Major budget components include groundwater discharge by evapotranspiration and groundwater withdrawals; groundwater recharge by precipitation, and interbasin flow; and storage change.

  15. 40 CFR 1065.640 - Flow meter calibration calculations.

    Science.gov (United States)

    2010-07-01

    ....013 V rev = 0.03166 m3/rev (2) PDP slip correction factor, Ks (s/rev): ER13JY05.065 Example: f nPDP... judgment. Note that the equation for the flow coefficient, C f, is based on the ideal gas assumption that... follows: ER13JY05.067 Where: C d = Discharge coefficient, as determined in paragraph (c)(1) of...

  16. Flow system boundary by D'Agnese and others (1997) for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital data set defines the flow-system boundary encompassing the regional ground-water flow model by D'Agnese and others (1997). The boundary encompasses an...

  17. Groundwater flow systems in the great Aletsch glacier region (Valais, Switzerland)

    Science.gov (United States)

    Alpiger, Andrea; Loew, Simon

    2014-05-01

    Groundwater flow systems in Alpine areas are often complex and challenging to investigate due to special topographic and climatic conditions governing groundwater recharge and bedrock flow. Studies seeking to characterize high-alpine groundwater systems remain rare, but are of high interest, e.g. for water supply, hydropower systems, traffic tunnels or rock slope deformation and landslide hazards. The goal of this study is to better understand the current and past groundwater flow systems of the UNESCO World Heritage mountain ridge separating the great Aletsch glacier and the Rhone valley, considering climatic and glacier fluctuations during the Lateglacial and Holocene periods. This ridge is crossed by a hydropower bypass drift (Riederhornstollen) and is composed of fractured crystalline rocks overlain by various types of landslides and glacial deposits. Surface hydrology observations (fracture properties, groundwater seepage, spring lines and physico-chemical parameters) and hydropower drift inflow measurements contributed to the characterization of bedrock hydraulic conductivities and preferential groundwater pathways. Basic conceptual hydrogeological models were tested with observed drift inflows and the occurrence of springs using free-surface, variably saturated, vertical 2D groundwater flow models (using the code SEEP/W from GeoStudio 2007). Already simple two-layer models, representing profile sections orthogonal to the mountain ridge, provided useful results. Simulations show that differences in the occurrence of springs on each side of the mountain ridge are likely caused by the occurrence of glacial till (generating perched groundwater), the deep-seated sagging landslide mass, faults and asymmetric ridge topography, which together force the main groundwater flow direction to be oriented towards the Rhone valley, even from beyond the mountain ridge. Surprisingly, the most important springs (those with high discharge rates) are located at high elevations

  18. Groundwater Flow and Thermal Modeling to Support a Preferred Conceptual Model for the Large Hydraulic Gradient North of Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, D.; Oberlander, P.

    2007-12-18

    The purpose of this study is to report on the results of a preliminary modeling framework to investigate the causes of the large hydraulic gradient north of Yucca Mountain. This study builds on the Saturated Zone Site-Scale Flow and Transport Model (referenced herein as the Site-scale model (Zyvoloski, 2004a), which is a three-dimensional saturated zone model of the Yucca Mountain area. Groundwater flow was simulated under natural conditions. The model framework and grid design describe the geologic layering and the calibration parameters describe the hydrogeology. The Site-scale model is calibrated to hydraulic heads, fluid temperature, and groundwater flowpaths. One area of interest in the Site-scale model represents the large hydraulic gradient north of Yucca Mountain. Nearby water levels suggest over 200 meters of hydraulic head difference in less than 1,000 meters horizontal distance. Given the geologic conceptual models defined by various hydrogeologic reports (Faunt, 2000, 2001; Zyvoloski, 2004b), no definitive explanation has been found for the cause of the large hydraulic gradient. Luckey et al. (1996) presents several possible explanations for the large hydraulic gradient as provided below: The gradient is simply the result of flow through the upper volcanic confining unit, which is nearly 300 meters thick near the large gradient. The gradient represents a semi-perched system in which flow in the upper and lower aquifers is predominantly horizontal, whereas flow in the upper confining unit would be predominantly vertical. The gradient represents a drain down a buried fault from the volcanic aquifers to the lower Carbonate Aquifer. The gradient represents a spillway in which a fault marks the effective northern limit of the lower volcanic aquifer. The large gradient results from the presence at depth of the Eleana Formation, a part of the Paleozoic upper confining unit, which overlies the lower Carbonate Aquifer in much of the Death Valley region. The

  19. Examination of groundwater flow scales and results of water balance observation in the regional hydrogeological study project field.

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Tomoya; Inaba, Kaoru; Saegusa, Hiromitsu; Takeuchi, Shinji [Japan Nuclear Cycle Development Inst., Tono Geoscience Center, Toki, Gifu (Japan)

    2002-09-01

    The Tono Geoscience center has been continuing water balance observation since fiscal 1998, and examining groundwater recharge into the basement rock. This report analyzes water balance at seven catchments in the regional hydrogeological study project field, and the applicability of area precipitation, an important item of water balance analysis, is examined. The result of the examination is shown below. Values of groundwater recharge in the small-scale catchments, such as upstream and downstream of the Shobagawa, are influence by the local groundwater flow system. But, those in the Shobagawa catchment are influenced by the larger groundwater flow system. The plane distribution of groundwater recharge matches the result of the distribution of groundwater flow analysis. (author)

  20. A Calibration of the Preston Tube in Liquid Flow Systems.

    Science.gov (United States)

    1979-12-01

    connected to a 40 in. mercury manometer bank. Two total pressure probe installations are available, with one located at the extreme outflow end of the pipe...versatile and assured both good probe alignment to the flow and negligible probe interference effects. The probe was connected to a single 30 in. mercury ... manometer which gave readings accurate to .05 in. Hg as did the 40 in. manometer bank. 17 *r4 $4 P., 0 ~r54 so 18 Additional features of the oil pipe

  1. Determination of calibration function in thermal field flow fractionation under thermal field programming.

    Science.gov (United States)

    Pastil, Luisa; Ventosa, Edgar A; Mingozzi, Ines; Dondi, Francesco

    2006-05-01

    A new procedure for determining the calibration function able to relate retention and operative parameters to molecular weight of the species in thermal field flow (ThFFF) under thermal field programming (TFP) conditions is presented. The procedure involves determining the average values of retention parameters under TFP and determining a numerical function related to the temperature variations that occur during TFP. The calibration parameters are obtained by a procedure fitting the retention and operative parameters that hold true at the beginning of the TFP. The procedure is closely related to the one previously developed to calibrate the retention time axis under TFP ThFFF and, together, they constitute a full calibration procedure. Experimental validation was performed with reference to polystyrene (PS)-decalin and PS-THF systems. The calibration functions here obtained were compared to those derived by the classical procedure at constant thermal field ThFFF to obtain the calibration function at variable cold wall temperatures. Excellent agreement was found in all cases proving "universality" of the ThFFF calibration concept, i.e. it is independent of the particular system on which it was determined and can thus be extended to ThFFF operating under TFP. The new procedure is simpler than the classical one since it requires less precision in setting the instrumentation and can be obtained with fewer experiments. The potential applications for the method are discussed.

  2. Electrode calibration with a microfluidic flow cell for fast-scan cyclic voltammetry.

    Science.gov (United States)

    Sinkala, Elly; McCutcheon, James E; Schuck, Matthew J; Schmidt, Eric; Roitman, Mitchell F; Eddington, David T

    2012-07-07

    Fast-scan cyclic voltammetry (FSCV) is a common analytical electrochemistry tool used to measure chemical species. It has recently been adapted for measurement of neurotransmitters such as dopamine in awake and behaving animals (in vivo). Electrode calibration is an essential step in FSCV to relate observed current to concentration of a chemical species. However, existing methods require multiple components, which reduce the ease of calibrations. To this end, a microfluidic flow cell (μFC) was developed as a simple device to switch between buffer and buffer with a known concentration of the analyte of interest--in this case dopamine--in a microfluidic Y-channel. The ability to quickly switch solutions yielded electrode calibrations with faster rise times and that were more stable at peak current values. The μFC reduced the number of external electrical components and produced linear calibrations over a range of concentrations. To demonstrate this, an electrode calibrated with the μFC was used in FSCV recordings from a rat during the delivery of food reward--a stimulus that reliably evokes a brief increase in current due to the oxidation of dopamine. Using the linear calibration, dopamine concentrations were determined from the current responses evoked during the behavioral task. The μFC is able to easily and quickly calibrate FSCV electrode responses to chemical species for both in vitro and in vivo experiments.

  3. DS-777 Spatial Location of Gages with Total Flow and estimated Base Flow, for the Predevelopment Simulation Period for the Northern High Plains Groundwater-Flow Model in Parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Baseflow is the portion of streamflow derived from groundwater flow. It is an important component of the groundwater budget, and can be estimated using known total...

  4. Blockage effect on the flow around a cylinder probe in calibration

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-wei; WEI Jun

    2007-01-01

    Flow around a 2-D cylinder pressure probe placed in uniform flow, free jet flow, and wind tunnel flow was analyzed with potential flow theory and simulated with numerical method. Blockage effect was investigated under several typical flow Mach numbers. The result from numerical simulation shows a similar trend to the one from potential flow method while varies in quantity. Wind tunnel walls accelerate the flow near the probe and thus produce a blockage effect;Boundary of free jet flow, however, decelerates the flow and thus produces a "negative" blockage effect. A maximum incoming Mach number exists when the probe is calibrated in wind tunnel in high subsonic condition due to choking caused by shocks and shock induced separation. The critical Mach number varies with blockage ratio, which makes high Mach number impossible to achieve in large blockage ratio condition. The blockage effect itself is unavoidable for calibration or measurement although a sufficiently small blockage ratio brings minor effect. Correction can be implemented based on the numerical simulation result presented in this paper and further works.

  5. Simulation of ground-water flow and solute transport in the Glen Canyon aquifer, East-Central Utah

    Science.gov (United States)

    Freethey, Geoffrey W.; Stolp, Bernard J.

    2010-01-01

    The extraction of methane from coal beds in the Ferron coal trend in central Utah started in the mid-1980s. Beginning in 1994, water from the extraction process was pressure injected into the Glen Canyon aquifer. The lateral extent of the aquifer that could be affected by injection is about 7,600 square miles. To address regional-scale effects of injection over a decadal time frame, a conceptual model of ground-water movement and transport of dissolved solids was formulated. A numerical model that incorporates aquifer concepts was then constructed and used to simulate injection. The Glen Canyon aquifer within the study area is conceptualized in two parts-an active area of ground-water flow and solute transport that exists between recharge areas in the San Rafael Swell and Desert, Waterpocket Fold, and Henry Mountains and discharge locations along the Muddy, Dirty Devil, San Rafael, and Green Rivers. An area of little or negligible ground-water flow exists north of Price, Utah, and beneath the Wasatch Plateau. Pressurized injection of coal-bed methane production water occurs in this area where dissolved-solids concentrations can be more than 100,000 milligrams per liter. Injection has the potential to increase hydrologic interaction with the active flow area, where dissolved-solids concentrations are generally less than 3,000 milligrams per liter. Pressurized injection of coal-bed methane production water in 1994 initiated a net addition of flow and mass of solutes into the Glen Canyon aquifer. To better understand the regional scale hydrologic interaction between the two areas of the Glen Canyon aquifer, pressurized injection was numerically simulated. Data constraints precluded development of a fully calibrated simulation; instead, an uncalibrated model was constructed that is a plausible representation of the conceptual flow and solute-transport processes. The amount of injected water over the 36-year simulation period is about 25,000 acre-feet. As a result

  6. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water.

    NARCIS (Netherlands)

    Grift, van der B.; Rozemeijer, J.C.; Griffioen, J.; Velde, van der Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and 5 P immobilization along the flow-path fro

  7. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  8. SITE-94. Glaciation and regional ground-water flow in the Fennoscandian shield

    Energy Technology Data Exchange (ETDEWEB)

    Provost, A.M.; Voss, C.I.; Neuzil, C.E. [US Geological Survey, Reston, VA (United States)

    1998-02-01

    Results from a regional-scale ground-water flow model of the Fennoscandian shield suggest that ground-water flow is strongly affected by surface conditions associated with climatic change and glaciation. The model was used to run a series of numerical simulations of variable-density ground-water flow in a 1500-km-long and approximately 10-km-deep cross-section that passes through southern Sweden. Ground-water flow and shield brine transport in the cross-sectional model are controlled by an assumed time evolution of surface conditions over the next 140 ka. The simulation results suggest that vertical movement of deep shield brines induced by the next few glacial cycles should not increase the concentration of dissolved solids significantly above present-day levels. However, the concentration of dissolved solids should decrease significantly at depths of up to several kilometers during periods of glacial melt water recharge. The melt water may reside in the subsurface for periods exceeding 10 ka and may bring oxygenated conditions to an otherwise reducing chemical environment 33 refs, 32 figs, 4 tabs

  9. The calibration and operation of a constant-temperature crossed-wire probe in supersonic flow

    Science.gov (United States)

    Fernando, E. M.; Donovan, J. F.; Smits, A. J.

    1987-01-01

    The calibration and operation of a constant-temperature crossed-wire probe in supersonic flow is considered. Crossed-wire probes offer considerable advantages over single, inclined wires: the kinematic shear stress can be derived from a single point measurement; the rms quantities can be derived from the same measurement, and the instantaneous quantities can be obtained as a continuous function of time. However, using a crossed-wire probe in supersonic flow is subject to the following practical difficulties: the problem of flow interference, where the shock waves from one wire and its supports interfere with the flow over the other wire; the necessity for high frequency response to resolve the spectral content, and the sensitivity of the results to small changes in the calibration constants. In the present contribution, each of these problems is addressed. Practical solutions are suggested, and some encouraging results are presented.

  10. Closing the irrigation deficit in Cambodia: Implications for transboundary impacts on groundwater and Mekong River flow

    Science.gov (United States)

    Erban, Laura E.; Gorelick, Steven M.

    2016-04-01

    Rice production in Cambodia, essential to food security and exports, is largely limited to the wet season. The vast majority (96%) of land planted with rice during the wet season remains fallow during the dry season. This is in large part due to lack of irrigation capacity, increases in which would entail significant consequences for Cambodia and Vietnam, located downstream on the Mekong River. Here we quantify the extent of the dry season "deficit" area in the Cambodian Mekong River catchment, using a recent agricultural survey and our analysis of MODIS satellite data. Irrigation of this land for rice production would require a volume of water up to 31% of dry season Mekong River flow to Vietnam. However, the two countries share an aquifer system in the Mekong Delta, where irrigation demand is increasingly met by groundwater. We estimate expansion rates of groundwater-irrigated land to be >10% per year in the Cambodian Delta using LANDSAT satellite data and simulate the effects of future expansion on groundwater levels over a 25-year period. If groundwater irrigation continues to expand at current rates, the water table will drop below the lift limit of suction pump wells, used for domestic supply by >1.5 million people, throughout much of the area within 15 years. Extensive groundwater irrigation jeopardizes access for shallow domestic water supply wells, raises the costs of pumping for all groundwater users, and may exacerbate arsenic contamination and land subsidence that are already widespread hazards in the region.

  11. Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

    2007-09-28

    subsequent modeling studies at Climax. The objectives of the Climax Mine sub-CAU work are to (1) provide simulated heads and groundwater flows for the northern boundaries of the Yucca Flat-Climax Mine CAU model, while incorporating alternative conceptualizations of the hydrogeologic system with their associated uncertainty, and (2) provide radionuclide fluxes from the three tests in the Climax stock using modeling techniques that account for groundwater flow in fractured granite. Meeting these two objectives required two different model scales. The northern boundary groundwater fluxes were addressed using the Death Valley Regional Flow System (DVRFS) model (Belcher, 2004) developed by the U.S. Geological Survey as a modeling framework, with refined hydrostratigraphy in a zone north of Yucca Flat and including Climax stock. Radionuclide transport was simulated using a separate model confined to the granite stock itself, but linked to regional groundwater flow through boundary conditions and calibration targets.

  12. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  13. Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit Airport, Nunavut, Canada

    Science.gov (United States)

    Shojae Ghias, Masoumeh; Therrien, René; Molson, John; Lemieux, Jean-Michel

    2016-12-01

    Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011-2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.

  14. Calibration of a Numerical Model for Heat Transfer and Fluid Flow in an Extruder

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov

    2016-01-01

    This paper discusses experiments performed in order to validate simulations on a fused deposition modelling (FDM) extruder. The nozzle has been simulated in terms of heat transfer and fluid flow. In order to calibrate and validate these simulations, experiments were performed giving a significant...

  15. First absolutely calibrated on-axis ion flow measurements in MST

    Science.gov (United States)

    Schott, B.; Baltzer, M.; Craig, D.; den Hartog, D. J.; Nishizawa, T.; Nornberg, M. D.

    2016-10-01

    Improvements in absolute calibration techniques allow for the first direct measurements of the flow profile in the core of MST. We use both active charge exchange recombination spectroscopy and passive emission near 343 nm to measure ion temperature and flow. It is generally assumed that O VI is the brightest passive emission source. However, we show that there are cases, such as high temperature, pulsed poloidal current drive (PPCD) plasmas where the passive emission is dominated by C VI. Differences in the fine structure for O VI and C VI result in a systematic velocity error of about 12 km/s if the wrong model is assumed. Active measurements, however, are relatively insensitive to background model choice. The dominant source of error in active velocity measurements remains the systematic errors in calibration. The first absolutely calibrated, localized toroidal velocity measurements were obtained using an updated calibration technique. During PPCD, the on-axis ion flow is up to 40 km/s larger than both the n = 6 mode velocity and the line-averaged ion velocity. These measurements provide the first direct look at the flow profile in the core of MST. This work has been supported by the US DOE and the Wheaton College summer research program.

  16. Dual-porosity modeling of groundwater recharge: testing a quick calibration using in situ moisture measurements, Areuse River Delta, Switzerland

    Science.gov (United States)

    Alaoui, Abdallah; Eugster, Werner

    A simple method for calibrating the dual-porosity MACRO model via in situ TDR measurements during a brief infiltration run (2.8 h) is proposed with the aim of estimating local groundwater recharge (GR). The recharge was modeled firstly by considering the entire 3 m of unsaturated soil, and secondly by considering only the topsoil to the zero-flux plane (0-0.70 m). The modeled recharge was compared against the GR obtained from field measurements. Measured GR was 313 mm during a 1-year period (15 October 1990-15 October 1991). The best simulation results were obtained when considering the entire unsaturated soil under equilibrium conditions excluding the macropore flow effect (330 mm), whereas under non-equilibrium conditions GR was overestimated (378 mm). Sensitivity analyses showed that the investigation of the topsoil is sufficient in estimating local GR in this case, since the water stored below this depth appears to be below the typical rooting depth of the vegetation and is not available for evapotranspiration. The modeled recharge under equilibrium conditions for the 0.7-m-topsoil layer was found to be 364 mm, which is in acceptable agreement with measurements. Une méthode simple pour la calibration du modèle à double porosité MACRO par des mesures TDR in situ durant un bref essai d'infiltration (2.8 h) a été proposée pour l'estimation locale de la recharge de la nappe (RN). La RN a été d'abord simulée en tenant compte de toute la zone non saturée (3 m) et ensuite, en considérant uniquement la couverture du sol entre zéro et le plan du flux nul (0.70 m). La RN simulée a été comparée à la RN observée. La RN mesurée durant une année (15 octobre 1990-15 octobre 1991) était de 313 mm. Les meilleures simulations ont été obtenues en tenant compte de toute la zone non saturée sous les conditions d'équilibre excluant le flux préférentiel (330 mm). Sous les conditions de non équilibre, la RN a été surestimée (378 mm). Les analyses de

  17. Use of rhodamine WT with XAD-7 resin for determining groundwater flow paths

    Science.gov (United States)

    Close, Murray E.; Stanton, Greg J.; Pang, Liping

    2002-06-01

    A passive sampling system for use with rhodamine WT (RWT) in groundwater tracing experiments was developed to assist in the characterisation of groundwater flow paths. Amberlite XAD-7 resin was found to be suitable for adsorption of RWT, which can then be extracted using an ethanol/water mix and analysed fluorometrically. Batch and column experiments showed that XAD-7 resin has a high RWT capacity. The adsorption was slightly dependent on pH, but was always above 75% under batch conditions. The resin had a high percentage mass recovery at flow velocities around 1.5 m/day, but this decreased with increasing flow velocities. Desorption of RWT off the resin in water is dependent on the flow velocity of water and the time after the peak RWT has passed. The mass of RWT extracted from the resin bags correlated very well with both the RWT mass flux in the water and the peak concentrations observed in the monitoring wells in a field experiment. The results of resin bags were reproducible in the field with a mean coefficient of variation equal to 16%. This method has been successfully applied to two field situations with different flow velocities to indicate groundwater flow paths.

  18. Relative blood flow changes measured using calibrated frequency-weighted Doppler power at different hematocrit levels.

    Science.gov (United States)

    Wallace, Sean; Logallo, Nicola; Faiz, Kashif W; Lund, Christian; Brucher, Rainer; Russell, David

    2014-04-01

    In theory, the power of a trans-cranial Doppler signal may be used to measure changes in blood flow and vessel diameter in addition to velocity. In this study, a flow index (FI) of relative changes in blood flow was derived from frequency-weighted Doppler power signals. The FI, plotted against velocity, was calibrated to the zero intercept with absent flow to reduce the effects of non-uniform vessel insonation. An area index was also calculated. FIs were compared with actual flow in four silicone tubes of different diameter at increasing flow rates and increasing hematocrit (Hct) in a closed-loop phantom model. FI values were strongly correlated with actual flow, at constant Hct, but varied substantially with changes in Hct. Percentage changes in area indexes, relative to the 4-mm tube, were strongly correlated with tube cross-sectional area. The implications of these results for in vivo use are discussed.

  19. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Ha; Kim, Won-Young; Lee, Seung-Gu [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. For the study of groundwater flow and sorption processes in fractured rocks, five boreholes were drilled. A stepwise and careful integration of various data obtained from field works and laboratory experiments were carried out to analyze groundwater flow in fractured rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of hydrogeological properties of fractured aquifers using geophysical borehole logging, pumping and slug tests, and continuous monitoring of groundwater level and quality, (4) evaluation of groundwater flow patterns using fluid flow modeling. The results obtained from these processes allow a qualitative interpretation of fractured aquifers in the study area. Column experiments of some reactive radionuclides were also performed to examine sorption processes of the radionuclides including retardation coefficients. In addition, analyses of fracture systems covered (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach was performed to determine various potential hazards which may result from the

  20. Large Scale Groundwater Flow Model for Ho Chi Minh City and its Catchment Area, Southern Vietnam

    Science.gov (United States)

    Sigrist, M.; Tokunaga, T.; Takizawa, S.

    2005-12-01

    Ho Chi Minh City (HCMC) has become a fast growing city in recent decades and is still growing at a high pace. The water demand for more than 7 million people has increased tremendously, too. Beside surface water, groundwater is used in big amounts to satisfy the need of water. By now, more than 200,000 wells have been developed with very little control. To investigate the sustainability of the water abstraction, a model had been built for the HCMC area and its surrounding. On the catchment scale (around 24,000km2); however, many questions have remained unsolved. In this study, we first gathered and complied geological and hydrogeological information as well as data on groundwater quality to get an idea on regional groundwater flow pattern and problems related to the temporal change of the groundwater situation. Two problems have been depicted by this study. One is the construction of a water reservoir upstream of the Saigon River. This construction has probably changed the water table of the unconfined aquifer, and hence, has significantly changed the properties of soils in some areas. The other problem is the distribution of salty groundwater. Despite the distance of more than 40km from the seashore, groundwater from some wells in and around HCMC shows high concentrations of chloride. Several wells started to produce non-potable water. The chloride concentrations show a complicated and patchy distribution below HCMC, suggesting the possibility of the remnant saltwater at the time of sediment deposition. On the other hand, seawater invades along the streams far beyond HCMC during the dry season and this might be one of the possible sources of salty groundwater by vertical infiltration. A large-scale geological model was constructed and transformed into a hydrogeological model to better understand and quantify the groundwater flow system and the origin of saltwater. Based on the constructed model and numerical calculation, we discuss the influence of reservoir

  1. Simulation of groundwater flow pathlines and freshwater/saltwater transition zone movement, Manhasset Neck, Nassau County, New York

    Science.gov (United States)

    Misut, Paul; Aphale, Omkar

    2014-01-01

    A density-dependent groundwater flow and solute transport model of Manhasset Neck, Long Island, New York, was used to analyze (1) the effects of seasonal stress on the position of the freshwater/saltwater transition zone and (2) groundwater flowpaths. The following were used in the simulation: 182 transient stress periods, representing the historical record from 1920 to 2011, and 44 transient stress periods, representing future hypothetical conditions from 2011 to 2030. Simulated water-level and salinity (chloride concentration) values are compared with values from a previously developed two-stress-period (1905–1944 and 1945–2005) model. The 182-stress-period model produced salinity (chloride concentration) values that more accurately matched the observed salinity (chloride concentration) values in response to hydrologic stress than did the two-stress-period model, and salinity ranged from zero to about 3 parts per thousand (equivalent to zero to 1,660 milligrams per liter chloride). The 182-stress-period model produced improved calibration statistics of water-level measurements made throughout the study area than did the two-stress-period model, reducing the Lloyd aquifer root mean square error from 7.0 to 5.2 feet. Decreasing horizontal and vertical hydraulic conductivities (fixed anisotropy ratio) of the Lloyd and North Shore aquifers by 20 percent resulted in nearly doubling the simulated salinity(chloride concentration) increase at Port Washington observation well N12508. Groundwater flowpath analysis was completed for 24 production wells to delineate water source areas. The freshwater/saltwater transition zone moved toward and(or) away from wells during future hypothetical scenarios.

  2. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana. Water Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    The report presents the results of a study to provide a quantitative evaluation of the ground-water flow system at the Julietta and Tibbs-Banta landfills and provide a general description of the ground-water quality beneath and near the two landfills. These objectives provide the information necessary to evaluate the effects of the landfills on ground-water quality. Geologic, hydrologic, and water-quality data were collected in 1985 and 1986 at the Julietta and Tibbs-Banta landfills to fulfill the study objectives. Ground-water models were used to investigate the flow systems and estimate the volume of flow at the landfills. The report includes descriptions of the data collection, geologic and hydrologic descriptions of the two landfills, and brief histories of trash and sludge disposal. Ground-water-flow models are described and estimates of the volume of flow are discussed. A description of the quality-assurance plan used in conjunction with the water-quality data collection and analysis is included. Water-quality data are presented with statistical summaries of ground-water quality related to well depth and position in the flow system.

  3. Perched groundwater-surface interactions and their consequences in stream flow generation in a semi-arid headwater catchment

    Science.gov (United States)

    Molenat, Jerome; Bouteffeha, Maroua; Raclot, Damien; Bouhlila, Rachida

    2013-04-01

    In semi-arid headwater catchment, it is usually admitted that stream flow comes predominantly from Hortonian overland flow (infiltration excess overland flow). Consequently, subsurface flow processes, and especially perched or shallow groundwater flow, have not been studied extensively. Here we made the assumption that perched groundwater flow could play a significant role in stream flow generation in semi-arid catchment. To test this assumption, we analyzed stream flow time series of a headwater catchment in the Tunisian Cap Bon region and quantified the flow fraction coming from groundwater discharge and that from overland flow. Furthermore, the dynamics of the perched groundwater was analyzed, by focusing on the different perched groundwater-surface interaction processes : diffuse and local infiltration, diffuse exfiltration, and direct groundwater discharge to the stream channel. This work is based on the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Results show that even though Hortonian overland flow was the main hydrological process governing the stream flow generation, groundwater discharge contribution to the stream channel annually accounted for from 10% to 20 % depending on the year. Furthermore, at some periods, rising of groundwater table to the soil surface in bottom land areas provided evidences of the occurrence of saturation excess overland flow processes during some storm events. Reference Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.

  4. Modelling the impact of a subsurface barrier on groundwater flow in the lower Palar River basin, southern India

    Science.gov (United States)

    Senthilkumar, M.; Elango, L.

    2011-06-01

    Groundwater modelling is widely used as a management tool to understand the behaviour of aquifer systems under different hydrological stresses, whether induced naturally or by humans. The objective of this study was to assess the effect of a subsurface barrier on groundwater flow in the Palar River basin, Tamil Nadu, southern India. Groundwater is supplied to a nearby nuclear power plant and groundwater also supplies irrigation, industrial and domestic needs. In order to meet the increasing demand for groundwater for the nuclear power station, a subsurface barrier/dam was proposed across Palar River to increase the groundwater heads and to minimise the subsurface discharge of groundwater into the sea. The groundwater model used in this study predicted that groundwater levels would increase by about 0.1-0.3 m extending out a distance of about 1.5-2 km from the upstream side of the barrier, while on the downstream side, the groundwater head would lower by about 0.1-0.2 m. The model also predicted that with the subsurface barrier in place the additional groundwater requirement of approximately 13,600 m3/day (3 million gallons (UK)/day) can be met with minimum decline in regional groundwater head.

  5. Quantification of anthropogenic impact on groundwater-dependent terrestrial ecosystem using geochemical and isotope tools combined with 3-D flow and transport modelling

    Science.gov (United States)

    Zurek, A. J.; Witczak, S.; Dulinski, M.; Wachniew, P.; Rozanski, K.; Kania, J.; Postawa, A.; Karczewski, J.; Moscicki, W. J.

    2015-02-01

    Groundwater-dependent ecosystems (GDEs) have important functions in all climatic zones as they contribute to biological and landscape diversity and provide important economic and social services. Steadily growing anthropogenic pressure on groundwater resources creates a conflict situation between nature and man which are competing for clean and safe sources of water. Such conflicts are particularly noticeable in GDEs located in densely populated regions. A dedicated study was launched in 2010 with the main aim to better understand the functioning of a groundwater-dependent terrestrial ecosystem (GDTE) located in southern Poland. The GDTE consists of a valuable forest stand (Niepolomice Forest) and associated wetland (Wielkie Błoto fen). It relies mostly on groundwater from the shallow Quaternary aquifer and possibly from the deeper Neogene (Bogucice Sands) aquifer. In July 2009 a cluster of new pumping wells abstracting water from the Neogene aquifer was set up 1 km to the northern border of the fen. A conceptual model of the Wielkie Błoto fen area for the natural, pre-exploitation state and for the envisaged future status resulting from intense abstraction of groundwater through the new well field was developed. The main aim of the reported study was to probe the validity of the conceptual model and to quantify the expected anthropogenic impact on the studied GDTE. A wide range of research tools was used. The results obtained through combined geologic, geophysical, geochemical, hydrometric and isotope investigations provide strong evidence for the existence of upward seepage of groundwater from the deeper Neogene aquifer to the shallow Quaternary aquifer supporting the studied GDTE. Simulations of the groundwater flow field in the study area with the aid of a 3-D flow and transport model developed for Bogucice Sands (Neogene) aquifer and calibrated using environmental tracer data and observations of hydraulic head in three different locations on the study area

  6. Variable-density groundwater flow simulations and particle tracking. Numerical modelling using DarcyTools. Preliminary site description of the Simpevarp area, version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven [SF GeoLogic AB, Stockholm (Sweden); Stigsson, Martin; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)

    2004-12-01

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden, Forsmark and Simpevarp. The investigations started in 2002 and have been planned since the late 1990s. The work presented here investigates the possibility of using hydrogeochemical measurements in deep boreholes to reduce parameter uncertainty in a regional modelling of groundwater flow in fractured rock. The work was conducted with the aim of improving the palaeohydrogeological understanding of the Simpevarp area and to give recommendations to the preparations of the next version of the Preliminary Site Description (1.2). The study is based on a large number of numerical simulations of transient variable density groundwater flow through a strongly heterogeneous and anisotropic medium. The simulations were conducted with the computer code DarcyTools, the development of which has been funded by SKB. DarcyTools is a flexible porous media code specifically designed to treat groundwater flow and salt transport in sparsely fractured crystalline rock and it is noted that some of the features presented in this report are still under development or subjected to testing and verification. The simulations reveal the sensitivity of the results to different hydrogeological modelling assumptions, e.g. the sensitivity to the initial groundwater conditions at 10,000 BC, the size of the model domain and boundary conditions, and the hydraulic properties of deterministically and stochastically modelled deformation zones. The outcome of these simulations was compared with measured salinities and calculated relative proportions of different water types (mixing proportions) from measurements in two deep core drilled boreholes in the Laxemar subarea. In addition to the flow simulations, the statistics of flow related transport parameters were calculated for particle flowpaths from repository depth to ground surface for two subareas within the

  7. Uncertainty in the modelling of spatial and temporal patterns of shallow groundwater flow paths: The role of geological and hydrological site information

    Science.gov (United States)

    Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland

    2016-03-01

    Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the

  8. Estimating shallow groundwater availability in small catchments using streamflow recession and instream flow requirements of rivers in South Africa

    Science.gov (United States)

    Ebrahim, Girma Y.; Villholth, Karen G.

    2016-10-01

    Groundwater is an important resource for multiple uses in South Africa. Hence, setting limits to its sustainable abstraction while assuring basic human needs is required. Due to prevalent data scarcity related to groundwater replenishment, which is the traditional basis for estimating groundwater availability, the present article presents a novel method for determining allocatable groundwater in quaternary (fourth-order) catchments through information on streamflow. Using established methodologies for assessing baseflow, recession flow, and instream ecological flow requirement, the methodology develops a combined stepwise methodology to determine annual available groundwater storage volume using linear reservoir theory, essentially linking low flows proportionally to upstream groundwater storages. The approach was trialled for twenty-one perennial and relatively undisturbed catchments with long-term and reliable streamflow records. Using the Desktop Reserve Model, instream flow requirements necessary to meet the present ecological state of the streams were determined, and baseflows in excess of these flows were converted into a conservative estimates of allocatable groundwater storages on an annual basis. Results show that groundwater development potential exists in fourteen of the catchments, with upper limits to allocatable groundwater volumes (including present uses) ranging from 0.02 to 3.54 × 106 m3 a-1 (0.10-11.83 mm a-1) per catchment. With a secured availability of these volume 75% of the years, variability between years is assumed to be manageable. A significant (R2 = 0.88) correlation between baseflow index and the drainage time scale for the catchments underscores the physical basis of the methodology and also enables the reduction of the procedure by one step, omitting recession flow analysis. The method serves as an important complementary tool for the assessment of the groundwater part of the Reserve and the Groundwater Resource Directed Measures in

  9. Groundwater flow and tritium migration from the SRS Old Burial Ground to Fourmile Branch

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.; Hamm, L.L.; Harris, M.K. [and others

    1996-04-01

    The objectives of this investigation are twofold. The initial goal is to devise and demonstrate a technique for directly incorporating fine-scale lithologic data into heterogeneous hydraulic conductivity fields, for improved groundwater flow and contaminant transport model accuracy. The ultimate goal is to rigorously simulate past and future tritium migration from the SRS Old Burial Ground towards Fourmile Branch, to better understand the effects of various remediation alternatives such as no action and capping. Large-scale variability in hydraulic conductivity is usually the main influence on field-scale groundwater flow patterns and dispersive transport, following the relative locations of recharge and discharge areas. Incorporating realistic hydraulic conductivity heterogeneity into flow and transport models is paramount to accurate simulations, particularly for contaminant migration. Sediment lithologic descriptions and geophysical logs typically offer finer spatial resolution, and therefore more potential information about heterogeneity, than other site characterization data.

  10. Temperature logging as an aid to understanding groundwater flow in boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Conaway, J.G.

    1987-01-01

    Borehole temperatures are affected by a range of physical phenomena, including drilling and engineering procedures, thermal resistivity of the rock, surface climatic changes, local heat sources and sinks, free convection of the borehole fluid, and water flows inside the borehole. As a result, temperature logs provide unique information not available from other logs. On the other hand, because the temperature log is sensitive to a variety of phenomena, one or more of these may obscure the effect being studied. In the case where groundwater is entering the borehole at one depth and exiting at another depth (or at the surface) the temperature disturbance resulting from this flow is likely to be a prominent feature of the temperature profile of the borehole. Because of this, water flows in boreholes are often a source of noise in temperature logs, obscuring the features of interest. Recently, however, unusual groundwater behavior was noted in several boreholes at the Nevada Test Site (NTS), and temperature logs were run as part of a program to study this phenomenon. In this case the groundwater flow has been the feature of interest in the logs, and the logs have been useful as an aid in understanding the water flow in those boreholes.

  11. Nested sampling algorithm for subsurface flow model selection, uncertainty quantification, and nonlinear calibration

    KAUST Repository

    Elsheikh, A. H.

    2013-12-01

    Calibration of subsurface flow models is an essential step for managing ground water aquifers, designing of contaminant remediation plans, and maximizing recovery from hydrocarbon reservoirs. We investigate an efficient sampling algorithm known as nested sampling (NS), which can simultaneously sample the posterior distribution for uncertainty quantification, and estimate the Bayesian evidence for model selection. Model selection statistics, such as the Bayesian evidence, are needed to choose or assign different weights to different models of different levels of complexities. In this work, we report the first successful application of nested sampling for calibration of several nonlinear subsurface flow problems. The estimated Bayesian evidence by the NS algorithm is used to weight different parameterizations of the subsurface flow models (prior model selection). The results of the numerical evaluation implicitly enforced Occam\\'s razor where simpler models with fewer number of parameters are favored over complex models. The proper level of model complexity was automatically determined based on the information content of the calibration data and the data mismatch of the calibrated model.

  12. Numerically quantifying the relative importance of topography and buoyancy in driving groundwater flow

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Both topography and buoyancy can drive groundwater flow;however,the interactions between them are still poorly understood.In this paper,the authors conduct numerical simulations of variable-density fluid flow and heat transport to quantify their relative importance.The finite element modeling experiments on a 2-D conceptual model reveal that the pattern of groundwater flow depends largely upon the relative magnitude of the flow rate due to topography alone and the flow rate due to buoyancy alone.When fluid velocity due to topography is greater than that due to buoyancy at large water table gradients,topography-driven ’forced convection’ overwhelms buoyancy-driven ’free convection’.When flow velocity due to buoyancy is greater than that due to topography at small water table gradients,mixed free and forced convection takes place.In this case,free convection becomes dominant,but topography-driven flow still plays an important role since it pushes the free convection cells to migrate laterally in the downhill direction.Consequently,hydrothermal fluid flow remains changing periodically with time and no steady state can be reached.The presence of a low-permeability layer near the surface helps eliminate the topography effect on the underlying free convection.

  13. A Validation Process for the Groundwater Flow and Transport Model of the Faultless Nuclear Test at Central Nevada Test Area

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan

    2003-01-01

    Many sites of groundwater contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This has created a need for tools and approaches that can be used to build confidence in model predictions and make it apparent to regulators, policy makers, and the public that these models are sufficient for decision making. This confidence building is a long-term iterative process and it is this process that should be termed ''model validation.'' Model validation is a process not an end result. That is, the process of model validation cannot always assure acceptable prediction or quality of the model. Rather, it provides safeguard against faulty models or inadequately developed and tested models. Therefore, development of a systematic approach for evaluating and validating subsurface predictive models and guiding field activities for data collection and long-term monitoring is strongly needed. This report presents a review of model validation studies that pertain to groundwater flow and transport modeling. Definitions, literature debates, previously proposed validation strategies, and conferences and symposia that focused on subsurface model validation are reviewed and discussed. The review is general in nature, but the focus of the discussion is on site-specific, predictive groundwater models that are used for making decisions regarding remediation activities and site closure. An attempt is made to compile most of the published studies on groundwater model validation and assemble what has been proposed or used for validating subsurface models. The aim is to provide a reasonable starting point to aid the development of the validation plan for the groundwater flow and transport model of the Faultless nuclear test conducted at the Central Nevada Test Area (CNTA). The review of previous studies on model validation shows that there does not exist a set of specific procedures and tests that can be easily adapted and

  14. Groundwater remediation engineering--Study on the flow distribution of air sparging using acetylene

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan-mei; ZHANG Ying; HUANG Guo-qiang; JIANG Bin; LI Xin-gang

    2005-01-01

    Air sparging(AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.

  15. Estimation of the pore pressure distribution from three dimensional groundwater flow model at mine sites in Korea

    Science.gov (United States)

    Kang, Sangsoo; Jang, Myounghwan; Kim, Gyoungman; Kim, Donghui; Kim, Daehoon; Baek, Hwanjo

    2016-04-01

    Mining activities continually change the groundwater flow and associated pore pressure distributions within the rockmass around the mine openings or the open-pit bench during the operational periods. As the pore pressure distributions may substantially affect the mechanical behaviour or stability of the rockmass, it is important to monitor the variation of pore pressure incurred by mining operation. The pore pressure distributions within the rockmass can be derived using a two- or three-dimensional finite element groundwater flow model, adopted to simulate the groundwater flow. While the groundwater inflow at mines has generally been dealt with respect to the working environment, detailed case studies on the distribution of pore water pressure related to the stability analysis of mine openings have been relatively rare in Korea. Recently, however, as the health and safety problems are emerged for sustainable mining practice, these issues are of the major concerns for the mining industries. This study aims to establish a three dimensional groundwater flow model to estimate the pore pressure distributions in order to employ as an input parameter for numerical codes such as the FLAC 3D. Also, the groundwater flow simulated can be used for de-watering design at a mine site. The MINEDW code, a groundwater flow model code specifically developed to simulate the complicated hydro-geologic conditions related to mining, has mainly been used in this study. Based on the data collected from field surveys and literature reviews, a conceptual model was established and sensitivity analysis was performed.

  16. Groundwater Flow and Salt Transport at a Sand Tailings Dam: Field Observations and Modelling Results.

    Science.gov (United States)

    Price, A. C.; Mendoza, C. A.

    2004-05-01

    Large volumes of sand tailings are produced during the extraction of bitumen from the oil sands of Northeastern Alberta. The long-term groundwater response and subsequent movement of water and solutes within the large permeable sand tailings storage areas is uncertain. At the Southwest Sand Storage (SWSS) Facility, located at Syncrude's Mildred Lake operations near Ft. McMurray, there is concern that salts from the tailings water may discharge to newly placed reclamation material that covers the sand tailings. This saline discharge water could destroy the reclamation soil structure and negatively impact vegetation. The steady-state groundwater flow and transient movement of salts at the local (bench and slope) and intermediate (pile) scales in the SWSS are investigated. Water levels, seepage and groundwater quality (including TDS) have been measured for over a year along two transects of piezometers installed in the SWSS. The field data have been used to complete traditional hydrogeological interpretations of the site, and to develop a conceptual model of flow and transport. The local and intermediate flow systems and salt transport in the dam are being evaluated with numerical models. The models will allow possible future hydrogeological behaviour of the structure to be tested. Preliminary results show differences in flow systems and salinity distribution that depend on the deposition of the SWSS. This research will facilitate better long-term environmental management of this and similar sites.

  17. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Ha [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. such properties of fractures stimulate a synthetic study on (1) analyses of fracture systems, and (2) characterization of groundwater flow and sorption processes in fractured rocks to establish a preliminary model for assessing suitable sites for industrial facilities. The analyses of fracture systems cover (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach is performed to determine various potential hazards which may result from the Quaternary or the Holocene tectonic movements. In addition, stepwise and careful integration of various data obtained from field works and laboratory experiments are carried out to analyze groundwater flow in fractures rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of conductive fractures using electrical conductivity, temperature, and flow logs, (4) identification of hydraulic connections between fractures using televiewer logs with tracer tests within specific zones. The results obtained from these processes allow a qualitative interpretation of groundwater flow patterns

  18. Effects of alongshore morphology on groundwater flow and solute transport in a nearshore aquifer

    Science.gov (United States)

    Zhang, Ying; Li, Ling; Erler, Dirk V.; Santos, Isaac; Lockington, David

    2016-02-01

    Variations of beach morphology in both the cross-shore and alongshore directions, associated with tidal creeks, are common at natural coasts, as observed at a field site on the east coast of Rarotonga, Cook Islands. Field investigations and three-dimensional (3-D) numerical simulations were conducted to study the nearshore groundwater flow and solute transport in such a system. The results show that the beach morphology, combined with tides, induced a significant alongshore flow and modified local pore water circulation and salt transport in the intertidal zone substantially. The bathymetry and hydraulic head of the creek enabled further and more rapid landward intrusion of seawater along the creek than in the aquifer, which created alongshore hydraulic gradient and solute concentration gradient to drive pore water flow and salt transport in the alongshore direction within the aquifer. The effects of the creek led to the formation of a saltwater plume in groundwater at an intermediate depth between fresher water zones on a cross-shore transect. The 3-D pore water flow in the nearshore zone was also complicated by the landward hydraulic head condition, resulting in freshwater drainage across the inland section of the creek while seawater infiltrating the seaward section. These results provided new insights into the complexity, intensity, and time scales of mixing among fresh groundwater, recirculating seawater and creek water in three dimensions. The 3-D characteristics of nearshore pore water flow and solute transport have important implications for studies of submarine groundwater discharge and associated chemical input to the coastal sea, and for evaluation of the beach habitat conditions.

  19. Towards SWOT data assimilation for hydrology : automatic calibration of global flow routing model parameters in the Amazon basin

    Science.gov (United States)

    Mouffe, M.; Getirana, A.; Ricci, S. M.; Lion, C.; Biancamaria, S.; Boone, A.; Mognard, N. M.; Rogel, P.

    2011-12-01

    The Surface Water and Ocean Topography (SWOT) mission is a swath mapping radar interferometer that will provide global measurements of water surface elevation (WSE). The revisit time depends upon latitude and varies from two (low latitudes) to ten (high latitudes) per 22-day orbit repeat period. The high resolution and the global coverage of the SWOT data open the way for new hydrology studies. Here, the aim is to investigate the use of virtually generated SWOT data to improve discharge simulation using data assimilation techniques. In the framework of the SWOT virtual mission (VM), this study presents the first results of the automatic calibration of a global flow routing (GFR) scheme using SWOT VM measurements for the Amazon basin. The Hydrological Modeling and Analysis Platform (HyMAP) is used along with the MOCOM-UA multi-criteria global optimization algorithm. HyMAP has a 0.25-degree spatial resolution and runs at the daily time step to simulate discharge, water levels and floodplains. The surface runoff and baseflow drainage derived from the Interactions Sol-Biosphère-Atmosphère (ISBA) model are used as inputs for HyMAP. Previous works showed that the use of ENVISAT data enables the reduction of the uncertainty on some of the hydrological model parameters, such as river width and depth, Manning roughness coefficient and groundwater time delay. In the framework of the SWOT preparation work, the automatic calibration procedure was applied using SWOT VM measurements. For this Observing System Experiment (OSE), the synthetical data were obtained applying an instrument simulator (representing realistic SWOT errors) for one hydrological year to HYMAP simulated WSE using a "true" set of parameters. Only pixels representing rivers larger than 100 meters within the Amazon basin are considered to produce SWOT VM measurements. The automatic calibration procedure leads to the estimation of optimal parametersminimizing objective functions that formulate the difference

  20. Construction of a groundwater-flow model for the Big Sioux Aquifer using airborne electromagnetic methods, Sioux Falls, South Dakota

    Science.gov (United States)

    Valder, Joshua F.; Delzer, Gregory C.; Carter, Janet M.; Smith, Bruce D.; Smith, David V.

    2016-09-28

    The city of Sioux Falls is the fastest growing community in South Dakota. In response to this continued growth and planning for future development, Sioux Falls requires a sustainable supply of municipal water. Planning and managing sustainable groundwater supplies requires a thorough understanding of local groundwater resources. The Big Sioux aquifer consists of glacial outwash sands and gravels and is hydraulically connected to the Big Sioux River, which provided about 90 percent of the city’s source-water production in 2015. Managing sustainable groundwater supplies also requires an understanding of groundwater availability. An effective mechanism to inform water management decisions is the development and utilization of a groundwater-flow model. A groundwater-flow model provides a quantitative framework for synthesizing field information and conceptualizing hydrogeologic processes. These groundwater-flow models can support decision making processes by mapping and characterizing the aquifer. Accordingly, the city of Sioux Falls partnered with the U.S. Geological Survey to construct a groundwater-flow model. Model inputs will include data from advanced geophysical techniques, specifically airborne electromagnetic methods.

  1. STOCHASTIC ANALYSIS OF GROUNDWATER FLOW SUBJECT TO RANDOM BOUNDARY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    SHI Liang-sheng; YANG Jin-zhong; CAI Shu-ying; LIN Lin

    2008-01-01

    A stochastic model was developed to simulate the flow in heterogeneous media subject to random boundary conditions.Approximate partial differential equations were derived based on the Karhunen-Loeve (KL) expansion and perturbation expansion. The effect of random boundary conditions on the two-dimensional flow was examined. It is shown that the proposed stochastic model is efficient to include the random boundary conditions. The random boundaries lead to the increase of head variance and velocity variance. The influence of the random boundary conditions on head uncertainty is exerted over the whole simulated region, while the randomness of the boundary conditions leads to the increase of the velocity variance in the vicinity of boundaries.

  2. Simulated potentiometric surface contours of prepumping conditions in layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 1 of the Death Valley regional ground-water flow...

  3. Simulated potentiometric surface contours of prepumping conditions in layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 16 of the Death Valley regional ground-water flow...

  4. Simulated potentiometric surface contours at end of simulation (1998) in model layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 1 of the Death Valley regional ground-water flow system...

  5. Simulated potentiometric surface contours at end of simulation (1998) in model layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 16 of the Death Valley regional ground-water flow system...

  6. Simulated potentiometric surface contours at end of simulation (1998) in model layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 16 of the Death Valley regional ground-water flow...

  7. Development of a three dimensional compressible flow calibration facility for thermal anemometry

    Science.gov (United States)

    Morrison, Evan Samson Sprung

    Measurements of unsteady, three-dimensional turbomachinery flowfields are needed to improve the computational models in predictive tools used in the design process of new turbomachines. Hot-wire anemometers, which offer a high frequency response for a relatively low cost, are one of the most common methods for investigating turbulent flows. Triple-wire sensors provide a means of obtaining simultaneous measurements of all three velocity components but require a significantly more complicated calibration scheme than single-wire sensors. In addition, the heat transfer from a hot-wire is dependent not only on the flow velocity but also the temperature and density, which must be accounted for through calibration and correction factors. To enable triple-wire hot-wire measurements in the Purdue 3-Stage Axial Compressor Facility, a new compressible flow calibration facility has been developed which can position the probe through a range of pitch and yaw angles and provide a means to derive temperature and density correction factors specific to each probe. A lookup table method is used to convert the voltage signals back to velocities and angles. The calibration facility can reach velocities in excess of 500 ft/s, temperatures up to 155°F and densities up to 0.090 lbm/ft3. The velocity is accurate to within 3.5 ft/s, temperature control accurate to within 1°F and density to within 5.5x10-5 lbm/ft3. A triple-wire fiber-film probe was used to validate the calibration method, and was able to resolve the three-dimensional flowfield downstream of a rotor.

  8. Effectiveness of a regional model calibrated to different parts of a flow regime in regionalisation

    Directory of Open Access Journals (Sweden)

    H. S. Kim

    2015-07-01

    Full Text Available The objective of this study was to reduce the parameter uncertainty which has an effect on the identification of the relationship between the catchment characteristics and the catchment response dynamics in ungauged catchments. A water balance model calibrated to represent the rainfall runoff characteristics over long time scales had a potential limitation in the modelling capacity to accurately predict the hydrological effects of non-stationary catchment response dynamics under different climate conditions (distinct wet and dry periods. The accuracy and precision of hydrological modelling predictions was assessed to yield a better understanding for the potential improvement of the model's predictability. In the assessment of model structure suitability to represent the non-stationary catchment response characteristics, there was a flow-dependent bias in the runoff simulations. In particular, over-prediction of the streamflow was dominant for the dry period. The poor model performance during the dry period was associated with the largely different impulse response estimates for the entire period and the dry period. The refined calibration approach was established based on assessment of model deficiencies. The rainfall–runoff models were separately calibrated to different parts of the flow regime, and the calibrated models for the separated time series were used to establish the regional models of relevant parts of the flow regime (i.e. wet and dry periods. The effectiveness of the parameter values for the refined approach in regionalisation was evaluated through investigating the accuracy of predictions of the regional models. The predictability was demonstrated using only the dry period to highlight the improvement in model performance easily veiled by the performance of the model for the whole period. The regional models from the refined calibration approach clearly enhanced the hydrological behaviour by improving the identification of the

  9. Fracture flow and groundwater compartmentalization in the Rollins Sandstone, Lower Mesaverde Group, Colorado, USA

    Science.gov (United States)

    Mayo, Alan L.; Koontz, Wendell

    2000-08-01

    This paper presents a site-specific conceptual model of groundwater flow in fractured damage zones associated with faulting in a package of sedimentary rocks. The model is based on the results of field and laboratory investigations. Groundwater and methane gas inflows from fault-fracture systems in the West Elk coal mine, Colorado, USA, have occurred with increasing severity. Inflows of 6, 160 and 500 L s-1 discharged almost instantaneously from three separate faults encountered in mine workings about 460 m below ground level. The faults are about 600 m apart. The δ 2H and δ 18O compositions of the fault-related inflow waters and the hydrodynamic responses of each fault inflow indicate that the groundwaters discharge from hydraulically isolated systems. 14C data indicate that the groundwaters are as much as 10,500 years old. Discharge temperatures are geothermal (≈30°C), which could indicate upwelling from depth. However, calculations of geothermal gradients, analysis of solute compositions of groundwater in potential host reservoirs, geothermometer calculations, and results of packer testing indicate that the fractured groundwater reservoir is the Rollins Sandstone (120 m thick) directly beneath the coal seams. The packer test also demonstrates that the methane gas is contained in the coal seams. A geothermal gradient of 70-80°C km-1, related to an underlying intrusion, is probably responsible for the slightly elevated discharge temperatures. Large discharge volumes, as great as 8.2×105 m3 from the 14 South East Headgate fault (14 SEHG), rapid declines in discharge rates, and vertical and horizontal permeability (matrix permeability generally <0.006 Darcy) indicate fracture flow. An in-mine pumping test demonstrates that the 14 SEHG fault has excellent hydraulic communication with fractures 50 m from the fault. Aeromagnetic data indicate that the faults are tectonically related to an igneous body that is several thousand meters below the coal seams

  10. Predicting groundwater flow system discharge in the river network at the watershed scale

    Science.gov (United States)

    Caruso, Alice; Ridolfi, Luca; Boano, Fulvio

    2016-04-01

    The interaction between rivers and aquifers affects the quality and the quantity of surface and subsurface water since it plays a crucial role for solute transport, nutrient cycling and microbial transformations. The groundwater-surface water interface, better known as hyporheic zone, has a functional significance for the biogeochemical and ecological conditions of the fluvial ecosystem since it controls the flux of groundwater solutes discharging into rivers, and vice versa. The hyporheic processes are affected by the complex surrounding aquifer because the groundwater flow system obstructs the penetration of stream water into the sediments. The impact of large-scale stream-aquifer interactions on small scale exchange has generally been analyzed at local scales of a river reach, or even smaller. However, a complete comprehension of how hyporheic fluxes are affected by the groundwater system at watershed scale is still missing. Evaluating this influence is fundamental to predict the consequences of hyporheic exchange on water quality and stream ecology. In order to better understand the actual structure of hyporheic exchange along the river network, we firstly examine the role of basin topography complexity in controlling river-aquifer interactions. To reach this target, we focus on the analysis of surface-subsurface water exchange at the watershed scale, taking into account the river-aquifer interactions induced by landscape topography. By way of a mathematical model, we aim to improve the estimation of the role of large scale hydraulic gradients on hyporheic exchange. The potential of the method is demonstrated by the analysis of a benchmark case's study, which shows how the topographic conformation influences the stream-aquifer interaction and induces a substantial spatial variability of the groundwater discharge even among adjacent reaches along the stream. The vertical exchange velocity along the river evidences a lack of autocorrelation. Both the groundwater

  11. Extended Calibration Technique of a Four-Hole Probe for Three-Dimensional Flow Measurements

    Directory of Open Access Journals (Sweden)

    Suresh Munivenkatareddy

    2016-01-01

    Full Text Available The present paper reports the development and nonnulling calibration technique to calibrate a cantilever type cylindrical four-hole probe of 2.54 mm diameter to measure three-dimensional flows. The probe is calibrated at a probe Reynolds number of 9525. The probe operative angular range is extended using a zonal method by dividing into three zones, namely, center, left, and right zone. Different calibration coefficients are defined for each zone. The attainable angular range achieved using the zonal method is ±60 degrees in the yaw plane and −50 to +30 degrees in the pitch plane. Sensitivity analysis of all the four calibration coefficients shows that probe pitch sensitivity is lower than the yaw sensitivity in the center zone, and extended left and right zones have lower sensitivity than the center zone. In addition, errors due to the data reduction program for the probe are presented. The errors are found to be reasonably small in all the three zones. However, the errors in the extended left and right zones have slightly larger magnitudes compared to those in the center zone.

  12. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    Energy Technology Data Exchange (ETDEWEB)

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable

  13. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal [In2Earth Modelling Ltd, Lausanne (Switzerland); Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden)

    2012-11-15

    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  14. Groundwater flow evaluation through backfilling materials of a surface coal mining site of Northeast Mexico

    Science.gov (United States)

    Gutierrez-Ojeda, C.; Martínez-Morales, M.; Ortíz-Flores, G.

    2013-05-01

    Surface coal mining at the Allende-Piedras Negras aquifer system requires the complete dewatering and removal of the aquifer. The aquifer contains several geologic layers of variable hydraulic conductivity. Backfilling material is composed of a mixture of permeable and impermeable layers and it was initially considered as impermeable. Exploratory drillings, pumping tests and a geophysical survey were performed in the backfilling materials and the surrounding unaltered materials in order to evaluate the natural groundwater flow modification due to the mining activities. Results of geophysical survey evidenced a saturated water table within the back filling material which was verified by exploratory drilling. Pumping tests showed that unaltered materials have a mean hydraulic conductivity of 34.5 m/day while the backfilling of 5.3 m/day. Although the mining activities reduce the hydraulic conductivity by almost an order of magnitude, it was corroborated the existence of a groundwater flow through the backfilling materials.

  15. DESIGN AND CALIBRATION OF A CAPILLARY FLOWMETER SET FOR MEASUREMENT OF GAS FLOWS

    Directory of Open Access Journals (Sweden)

    Menderes LEVENT

    1998-01-01

    Full Text Available In this study, design and calibration of a capillary flowmeter set was represented. The capillary flowmeters will be used for measurements of small gas flows having laminar flow regime. The gases (such as, nitrogen, argon, methane, hydrogen and carbon-dioxide supplied from high pressure gas bottles and passed through capillary flowmeters (1 to 3 at various times. Each capillary flowmeter was made of glass and calibrated with one or two gases. Outlet of the capillary flowmeters were connected to the needle valves which have been used for regulating gas flowrates of the capillary flowmeters. Gases individually passed to a bubble flowmeter, and residence time of gases are recorded by using a stop watch. Then, from collected experimental results actual gas flowrates through the capillary flowmeters are calculated by using Hagen-Poiseuille equation.

  16. Using multi-objective optimisation to integrate alpine regions in groundwater flow models

    Directory of Open Access Journals (Sweden)

    V. Rojanschi

    2005-01-01

    Full Text Available Within the research project GLOWA Danube, a groundwater flow model was developed for the Upper Danube basin. This paper reports on a preliminary study to include the alpine part of the catchment in the model. A conceptual model structure was implemented and tested using multi-objective optimisation analysis. The performance of the model and the identifiability of the parameters were studied. A possible over-parameterisation of the model was also tested using principal component analysis.

  17. The Mississippi Embayment Regional Aquifer Study (MERAS): Documentation of a Groundwater-Flow Model Constructed to Assess Water Availability in the Mississippi Embayment

    Science.gov (United States)

    Clark, Brian R.; Hart, Rheannon M.

    2009-01-01

    The Mississippi Embayment Regional Aquifer Study (MERAS) was conducted with support from the Groundwater Resources Program of the U.S. Geological Survey Office of Groundwater. This report documents the construction and calibration of a finite-difference groundwater model for use as a tool to quantify groundwater availability within the Mississippi embayment. To approximate the differential equation, the MERAS model was constructed with the U.S. Geological Survey's modular three-dimensional finite-difference code, MODFLOW-2005; the preconditioned conjugate gradient solver within MODFLOW-2005 was used for the numerical solution technique. The model area boundary is approximately 78,000 square miles and includes eight States with approximately 6,900 miles of simulated streams, 70,000 well locations, and 10 primary hydrogeologic units. The finite-difference grid consists of 414 rows, 397 columns, and 13 layers. Each model cell is 1 square mile with varying thickness by cell and by layer. The simulation period extends from January 1, 1870, to April 1, 2007, for a total of 137 years and 69 stress periods. The first stress period is simulated as steady state to represent predevelopment conditions. Areal recharge is applied throughout the MERAS model area using the MODFLOW-2005 Recharge Package. Irrigation, municipal, and industrial wells are simulated using the Multi-Node Well Package. There are 43 streams simulated by the MERAS model. Each stream or river in the model area was simulated using the Streamflow-Routing Package. The perimeter of the model area and the base of the flow system are represented as no-flow boundaries. The downgradient limit of each model layer is a no-flow boundary, which approximates the extent of water with less than 10,000 milligrams per liter of dissolved solids. The MERAS model was calibrated by making manual changes to parameter values and examining residuals for hydraulic heads and streamflow. Additional calibration was achieved through

  18. Calibration of a Numerical Model for Heat Transfer and Fluid Flow in an Extruder

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Nielsen, Jakob Skov

    2016-01-01

    This paper discusses experiments performed in order to validate simulations on a fused deposition modelling (FDM) extruder. The nozzle has been simulated in terms of heat transfer and fluid flow. In order to calibrate and validate these simulations, experiments were performed giving a significant...... dynamical parameters. This research sets the foundation for further research within melted extrusion based additive manufacturing. The heating process of the extruder will be described and a note on the material feeding will be given....

  19. A modified calculation model for groundwater flowing to horizontal seepage wells

    Indian Academy of Sciences (India)

    Wei Wang; Peng Chen; Qingqing Zheng; Xinyu Zheng; Kunming Lu

    2013-04-01

    The simulation models for groundwater flowing to horizontal seepage wells proposed by Wang and Zhang (2007) are based on the theory of coupled seepage-pipe flow model which treats the well pipe as a highly permeable medium. However, the limitations of the existing model were found during applications. Specifically, a high-resolution grid is required to depict the complex structure of horizontal seepage wells; the permeability of the screen or wall material of radiating bores is usually neglected; and the irregularly distributed radiating bores cannot be accurately simulated. A modified calculation model of groundwater flowing to a horizontal seepage well is introduced in this paper. The exchange flow between well pipe and aquifer couples the turbulent flow inside the horizontal seepage well with laminar flow in the aquifer. The modified calculation model can reliably calculate the pumpage of a real horizontal seepage well. The characteristics of radiating bores, including the diameter, the permeability of screen material and irregular distribution of radiating bores, can be accurately depicted using the modified model that simulates the scenario in which several horizontal seepage wells work together.

  20. Common problematic aspects of coupling hydrological models with groundwater flow models on the river catchment scale

    Directory of Open Access Journals (Sweden)

    R. Barthel

    2006-01-01

    Full Text Available Model coupling requires a thorough conceptualisation of the coupling strategy, including an exact definition of the individual model domains, the "transboundary" processes and the exchange parameters. It is shown here that in the case of coupling groundwater flow and hydrological models – in particular on the regional scale – it is very important to find a common definition and scale-appropriate process description of groundwater recharge and baseflow (or "groundwater runoff/discharge" in order to achieve a meaningful representation of the processes that link the unsaturated and saturated zones and the river network. As such, integration by means of coupling established disciplinary models is problematic given that in such models, processes are defined from a purpose-oriented, disciplinary perspective and are therefore not necessarily consistent with definitions of the same process in the model concepts of other disciplines. This article contains a general introduction to the requirements and challenges of model coupling in Integrated Water Resources Management including a definition of the most relevant technical terms, a short description of the commonly used approach of model coupling and finally a detailed consideration of the role of groundwater recharge and baseflow in coupling groundwater models with hydrological models. The conclusions summarize the most relevant problems rather than giving practical solutions. This paper aims to point out that working on a large scale in an integrated context requires rethinking traditional disciplinary workflows and encouraging communication between the different disciplines involved. It is worth noting that the aspects discussed here are mainly viewed from a groundwater perspective, which reflects the author's background.

  1. Investigation of uranium geochemistry along groundwater flow path in the Continental Intercalaire aquifer (Southern Tunisia).

    Science.gov (United States)

    Dhaoui, Z; Chkir, N; Zouari, K; Ammar, F Hadj; Agoune, A

    2016-06-01

    Environmental tracers ((2)H, (18)O, isotopes of Uranium) and geochemical processes occurring within groundwaters from the Continental Intercalaire (CI) in Southern Tunisia were used to understand the hydrodynamics and the recharge conditions of this aquifer. This study investigates the chemical and isotopic compositions of the CI groundwater. The water types are dominated by Na(+), SO4(2-), Cl(-) throughout most of the basin with a general increase in total dissolved solids from the Saharan Platform margins towards the Chotts region. Large scale groundwater flow paths are toward the Chotts region. The stable isotopes composition of the analyzed groundwater ranges from -8.8 to -6‰ vs V-SMOW for δ(18)O and from -67 to -40‰ vs V-SMOW for δ(2)H. The relatively enriched stable isotopes contents suggest the contribution of the Dahar sandstones outcrops in the current recharge of the CI aquifer in an arid context. However, the most depleted values in heavy isotopes indicate a paleorecharge of the aquifer under wetter conditions revealing a long residence time of groundwaters. The results from water samples using alpha spectrometry method indicate a range in (238)U concentrations and (234)U/(238)U activity ratios (AR) of 0.044-1.285 μg kg(-1) and 1.2 to 8.84 respectively. The geochemistry of uranium isotopes in groundwater is controlled by many factors, essentially, the influence of water rock interactions, the preferential dissolution of (234)U relative to (238)U due to alpha recoil and the mixing processes between different waters with distinct AR as well as (238)U concentrations.

  2. Summer Mean Enhanced Vegetation Index for the Diamond Valley Flow System Groundwater Discharge Area, Central Nevada, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data were created as part of a hydrologic study to characterize groundwater budgets and water quality in the Diamond Valley Flow System (DVFS), central Nevada....

  3. Regional groundwater flow model for C, K. L. and P reactor areas, Savannah River Site, Aiken, SC

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.

    2000-02-11

    A regional groundwater flow model encompassing approximately 100 mi2 surrounding the C, K, L, and P reactor areas has been developed. The reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department. The model provides a quantitative understanding of groundwater flow on a regional scale within the near surface aquifers and deeper semi-confined to confined aquifers. The model incorporates historical and current field characterization data up through Spring 1999. Model preprocessing is automated so that future updates and modifications can be performed quickly and efficiently. The CKLP regional reactor model can be used to guide characterization, perform scoping analyses of contaminant transport, and serve as a common base for subsequent finer-scale transport and remedial/feasibility models for each reactor area.

  4. MODFLOW-USG model of groundwater flow in the Wood River Valley aquifer system in Blaine County, Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional numerical groundwater flow model (MODFLOW-USG) was developed for the Wood River Valley (WRV) aquifer system, south-central Idaho, to evaluate...

  5. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA

    Science.gov (United States)

    Bertolo, P.; Wieczorek, G.F.

    2005-01-01

    This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004). To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content. We applied the one dimensional DAN (Dynamic ANalysis) model (Hungr, 1995) and the two-dimensional FLO2D model (O'Brien et al., 1993) to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris- flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities. After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening. European Geosciences Union ?? 2005 Author(s). This work is licensed under a Creative Commons License.

  6. Groundwater flow model of the Estonian oil shale mining area towards to innovative system

    Energy Technology Data Exchange (ETDEWEB)

    Lind, H. [Tallinn Univ. of Technology (Estonia). Dept. of Mining

    2010-07-01

    Changes in the Estonian groundwater regime are anticipated as oil shale deposits are mined. This paper described a dynamic groundwater flow model used to develop a 3-D groundwater elevation map of the Estonian oil shale mining area. The model was used to provide preliminary estimations of water inflow into the working underground mine areas. The model included 9 closed underground mines, 5 active mine sites, and 2 small open-cast sites. The closed mine sites were filled with water flowing in from the working mine sites. New mines and dewatering programs are planned for the future. A database from observation wells installed within the Keila-Kukruse aquifer was used to extract outputs and determine time steps. The model included 35 pumping stations from the active mine sites. The hydraulic properties for each model layer were defined in 4 model zones. Results of the model showed higher water in-flows from the closed underground sites than earlier predictions had anticipated. 9 refs., 1 tab., 4 figs.

  7. Groundwater flow due to a nonlinear wave set-up on a permeable beach

    Directory of Open Access Journals (Sweden)

    Anna Przyborska

    2014-06-01

    Full Text Available Water flow through the beach body plays an important role in the biological status of the organisms inhabiting the beach sand. For tideless seas, the groundwater flow in shallow water is governed entirely by the surface wave dynamics on the beach. As waves propagate towards the shore, they become steeper owing to the decreasing water depth and at some depth, the waves lose their stability and start to break. When waves break, their energy is dissipated and the spatial changes of the radiation stress give rise to changes in the mean sea level, known as the set-up. The mean shore pressure gradient due to the wave set-up drives the groundwater circulation within the beach zone. This paper discusses the circulation of groundwater resulting from a nonlinear set-up. The circulation of flow is compared with the classic Longuet-Higgins (1983 solution and the time series of the set-up is considered for a 24 h storm. Water infiltrates into the coastal aquifer on the upper part of the beach near the maximum run-up and exfiltration occurs on the lower part of the beach face near the breaking point.

  8. Partitioning groundwater recharge between rainfall infiltration and irrigation return flows using stable isotopes: the Crau aquifer.

    Science.gov (United States)

    Seraphin, Pierre; Vallet-Coulomb, Christine; Gonçalvès, Julio

    2016-04-01

    Traditional flood irrigation is used since the 16th century in the Crau plain (Southern France) for hay production. To supply this high consuming irrigation practice, water is diverted from the Durance River, originating from the Alps, and the large amount of irrigation return flows constitutes the main recharge of the Crau aquifer, which is in turn largely exploited for domestic, industrial and agricultural water use. A possible reduction of irrigation fluxes due to a need of water saving or to a future land-use change could endanger the groundwater resource. A robust quantification of the groundwater mass balance is thus required to assess a sustainable water management in the region. The high isotopic contrast between these exogenous irrigation waters and local precipitations allows the use of stable isotopes of water as conservative tracers to deduce their contributions to the surface recharge. An extensive groundwater sampling was performed to obtain δ18O and δ2H over the whole aquifer. Based on a new piezometric contour map, combined with a reestimate of the aquifer geometry, the isotopic data are implemented in a geostatistical approach to produce a conceptual equivalent-homogeneous reservoir, in order to apply a simple water and isotope mass balance mixing model. The isotopic composition of the two end-members is assessed, and the quantification of groundwater flows is then used to calculate the two recharge fluxes. Near to steady-state condition, the set of isotopic data treated by geostatistics leads to a recharge by irrigation of 5.20 ± 0.93 m3 s-1 i.e. 1173 ± 210 mm yr-1, and a natural recharge of 2.26 ± 0.91 m3 s-1 i.e. 132 ± 53 mm yr-1. Thus, 70 ± 9% of the effective surface recharge comes from the irrigation return flow, consistent with the literature (between 67% and 78%). This study constitutes a straightforward and independent approach to assess groundwater surface recharges with uncertainties and will help to constrain a future transient

  9. Partitioning groundwater recharge between rainfall infiltration and irrigation return flow using stable isotopes: The Crau aquifer

    Science.gov (United States)

    Séraphin, Pierre; Vallet-Coulomb, Christine; Gonçalvès, Julio

    2016-11-01

    This study reports an assessment of the water budget of the Crau aquifer (Southern France), which is poorly referenced in the literature. Anthropogenically controlled by a traditional irrigation practice, this alluvial type aquifer requires a robust quantification of the groundwater mass balance in order to establish sustainable water management in the region. In view of the high isotopic contrast between exogenous irrigation waters and local precipitations, stable isotopes of water can be used as conservative tracers to deduce their contributions to the surface recharge. Extensive groundwater sampling was performed to obtain δ18O and δ2H over the whole aquifer. Based on a new piezometric contour map, combined with an updated aquifer geometry, the isotopic data were implemented in a geostatistical approach to produce a conceptual equivalent homogeneous reservoir. This makes it possible to implement a parsimonious water and isotope mass-balance mixing model. The isotopic compositions of the two end-members were assessed, and the quantification of groundwater flows was then used to calculate the two recharge fluxes (natural and irrigation). Nearly at steady-state, the set of isotopic data treated by geostatistics gave a recharge by irrigation of 4.92 ± 0.89 m3 s-1, i.e. 1109 ± 202 mm yr-1, and a natural recharge of 2.19 ± 0.85 m3 s-1, i.e. 128 ± 50 mm yr-1. Thus, 69 ± 9% of the surface recharge is caused by irrigation return flow. This study constitutes a straightforward and independent approach to assess groundwater surface recharges including uncertainties and will help to constrain future transient groundwater models of the Crau aquifer.

  10. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

    Science.gov (United States)

    Migration_USER, IPDS; Wiley, Michael J.; Wilcox, Douglas A.

    2016-01-01

    The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  11. Groundwater occurrence and flow patterns in the Ishiagu mining area of southeastern Nigeria

    Institute of Scientific and Technical Information of China (English)

    I.C.EZEKWE; E.ODUBO; G.N.CHIMA; I.S.ONWUCHEKWA

    2012-01-01

    The Ishiagu area is a water scarce region and has played host to mining activities for more than four decades.Mining-related activities have become a threat to potable water supply in the area.This paper is an attempt to show the extent of this threat and in particular,investigate the regional groundwater occurrence and flow pattern based on GPS,water well and geological data.This basinwide model can be used for further groundwater assessment,pollution control and contaminant management.Groundwater occurs between 2.4 and 9 m in the Lekwesi-Lokpaukwu area; 1.5-3.7 m in the Ndi-Ugbugbor-Ayaragu axis and 1.2-4.6 m in the Ishiagu area.Recharge areas include the Leru-Amaubiri-Lekwesi sandstone hills and the lhetutu-Ugwuajirija mine field.While the ultimate sink of contamiants is the Ivo River system,other discharge axis is the Ishiagu-Ayaragu axis and the Ogwor Ndi-Ugbugbor zone.An unconfined and a confined (> 10)circulation groundwater system was inferred,and flow model reveals that a large part of Ishiag-Ayaragu and NdiUgbugbor part of the study area suffer polluted recharge from the Pb/Zn mining area.Groundwater was also subjected to hierarchical cluster analysis and the existence of 3-4 hydrological regimes,which revealed:Unpolluted recharge areas,areas affected by polluted recharge,a deep water and shallow water circulation and mine effluents.

  12. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution

    Directory of Open Access Journals (Sweden)

    T. Vogt

    2012-02-01

    Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone

  13. Using radon to understand parafluvial flows and the changing locations of groundwater inflows in the Avon River, southeast Australia

    Science.gov (United States)

    Cartwright, Ian; Hofmann, Harald

    2016-09-01

    Understanding the location and magnitude of groundwater inflows to rivers is important for the protection of riverine ecosystems and the management of connected groundwater and surface water systems. This study utilizes 222Rn activities and Cl concentrations in the Avon River, southeast Australia, to determine the distribution of groundwater inflows and to understand the importance of parafluvial flow on the 222Rn budget. The distribution of 222Rn activities and Cl concentrations implies that the Avon River contains alternating gaining and losing reaches. The location of groundwater inflows changed as a result of major floods in 2011-2013 that caused significant movement of the floodplain sediments. The floodplain of the Avon River comprises unconsolidated coarse-grained sediments with numerous point bars and sediment banks through which significant parafluvial flow is likely. The 222Rn activities in the Avon River, which are locally up to 3690 Bq m-3, result from a combination of groundwater inflows and the input of water from the parafluvial zone that has high 222Rn activities due to 222Rn emanation from the alluvial sediments. If the high 222Rn activities were ascribed solely to groundwater inflows, the calculated net groundwater inflows would exceed the measured increase in streamflow along the river by up to 490 % at low streamflows. Uncertainties in the 222Rn activities of groundwater, the gas transfer coefficient, and the degree of hyporheic exchange cannot explain a discrepancy of this magnitude. The proposed model of parafluvial flow envisages that water enters the alluvial sediments in reaches where the river is losing and subsequently re-enters the river in the gaining reaches with flow paths of tens to hundreds of metres. Parafluvial flow is likely to be important in rivers with coarse-grained alluvial sediments on their floodplains and failure to quantify the input of 222Rn from parafluvial flow will result in overestimating groundwater inflows to

  14. Hydrogeology and simulation of groundwater flow and analysis of projected water use for the Canadian River alluvial aquifer, western and central Oklahoma

    Science.gov (United States)

    Ellis, John H.; Mashburn, Shana L.; Graves, Grant M.; Peterson, Steven M.; Smith, S. Jerrod; Fuhrig, Leland T.; Wagner, Derrick L.; Sanford, Jon E.

    2017-02-13

    evapotranspiration and groundwater use, which were relatively minor discharge components.Objectives for the numerical groundwater-flow models included simulating groundwater flow in the Canadian River alluvial aquifer from 1981 to 2013 to address groundwater use and drought scenarios, including calculation of the EPS pumping rates. The EPS for the alluvial and terrace aquifers is defined by the Oklahoma Water Resources Board as the amount of fresh water that each landowner is allowed per year per acre of owned land to maintain a saturated thickness of at least 5 ft in at least 50 percent of the overlying land of the groundwater basin for a minimum of 20 years.The groundwater-flow models were calibrated to water-table altitude observations, streamgage base flows, and base-flow gain to the Canadian River. The Reach I water-table altitude observation root-mean-square error was 6.1 ft, and 75 percent of residuals were within ±6.7 ft of observed measurements. The average simulated stream base-flow residual at the Bridgeport streamgage (07228500) was 8.8 cubic feet per second (ft3/s), and 75 percent of residuals were within ±30 ft3/s of observed measurements. Simulated base-flow gain in Reach I was 8.8 ft3/s lower than estimated base-flow gain. The Reach II water-table altitude observation root-mean-square error was 4 ft, and 75 percent of residuals were within ±4.3 ft of the observations. The average simulated stream base-flow residual in Reach II was between 35 and 132 ft3/s. The average simulated base-flow gain residual in Reach II was between 11.3 and 61.1 ft3/s.Several future predictive scenarios were run, including estimating the EPS pumping rate for 20-, 40-, and 50-year life of basin scenarios, determining the effects of current groundwater use over a 50-year period into the future, and evaluating the effects of a sustained drought on water availability for both reaches. The EPS pumping rate was determined to be 1.35 acre-feet per acre per year ([acre-ft/acre]/yr) in Reach I

  15. Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon

    Science.gov (United States)

    Herrera, Nora B.; Burns, Erick R.; Conlon, Terrence D.

    2014-01-01

    Full appropriation of tributary streamflow during summer, a growing population, and agricultural needs are increasing the demand for groundwater in the Willamette Basin. Greater groundwater use could diminish streamflow and create seasonal and long-term declines in groundwater levels. The U.S. Geological Survey (USGS) and the Oregon Water Resources Department (OWRD) cooperated in a study to develop a conceptual and quantitative understanding of the groundwater-flow system of the Willamette Basin with an emphasis on the Central Willamette subbasin. This final report from the cooperative study describes numerical models of the regional and local groundwater-flow systems and evaluates the effects of pumping on groundwater and surface‑water resources. The models described in this report can be used to evaluate spatial and temporal effects of pumping on groundwater, base flow, and stream capture. The regional model covers about 6,700 square miles of the 12,000-square mile Willamette and Sandy River drainage basins in northwestern Oregon—referred to as the Willamette Basin in this report. The Willamette Basin is a topographic and structural trough that lies between the Coast Range and the Cascade Range and is divided into five sedimentary subbasins underlain and separated by basalts of the Columbia River Basalt Group (Columbia River basalt) that crop out as local uplands. From north to south, these five subbasins are the Portland subbasin, the Tualatin subbasin, the Central Willamette subbasin, the Stayton subbasin, and the Southern Willamette subbasin. Recharge in the Willamette Basin is primarily from precipitation in the uplands of the Cascade Range, Coast Range, and western Cascades areas. Groundwater moves downward and laterally through sedimentary or basalt units until it discharges locally to wells, evapotranspiration, or streams. Mean annual groundwater withdrawal for water years 1995 and 1996 was about 400 cubic feet per second; irrigation withdrawals

  16. Underground Test Area Subproject Phase I Data Analysis Task. Volume VI - Groundwater Flow Model Documentation Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-11-01

    Volume VI of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the groundwater flow model data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  17. Ground-water flow and quality in Wisconsin's shallow aquifer system

    Science.gov (United States)

    Kammerer, P.A.

    1995-01-01

    The areal concentration distribution of commonmineral constituents and properties of ground water in Wisconsin's shallow aquifer system are described in this report. Maps depicting the water quality and the altitude of the water table are included. The shallow aquifer system in Wisconsin, composed of unconsolidated sand and gravel and shallow bedrock, is the source of most potable ground-water supplies in the State. Most ground water in the shallow aquifer system moves in local flow systems, but it interacts with regional flow systems in some areas.

  18. Use of Groundwater Chemistry to Evaluate Subsurface Flow at Yucca Mountain, Nevada

    Science.gov (United States)

    Coleman, N. M.; Dam, W. L.

    2001-12-01

    Yucca Mountain, Nevada is a potential site for the disposal of high-level nuclear wastes. Groundwater at the site occurs in Tertiary volcanic tuffs and in Quaternary valley fill alluvium at lower elevations in the Amargosa Desert. Groundwater seeps downward to the water table through a thick unsaturated zone (UZ), then flows south and southeasterly from Yucca Mountain toward Fortymile Wash. The wash is a highly ephemeral watercourse that drains Fortymile Canyon and Jackass Flats southward. The wash crosses Highway 95 just west of Lathrop Wells, Nevada. Water table contours in Jackass Flats show that groundwater flow strongly converges on the axis of Fortymile Wash, indicating that the same structural conditions that cause topographic lows in the area also enhance the southerly flow of groundwater. Groundwater chemistry is being used to evaluate flow conditions at local and regional scales, and to help resolve technical issues concerning UZ and saturated zone (SZ) flow conditions and dilution processes. A number of perched zones have been found beneath Yucca Mt. in five different wells (Patterson et al., 1998). The major element chemistry of perched water is distinct from pore water chemistry in the UZ and more similar to the water chemistry of the SZ. The perched water is more dilute than the UZ pore waters, with generally lower chloride concentrations. The lower chloride concentration suggests that a fraction of the perched water is recharge that moves downward from the surface through fractures, and has less interaction with the host rock than pore waters. However, only 1 of 5 wells yielded perched water with bomb-pulse levels of tritium. Deuterium and O-18 stable isotope chemistry indicates that perched water has an intermediate composition when compared to SZ groundwater. It is isotopically heavier (less negative) than SZ water beneath Yucca Mountain, but lighter than groundwater from wells along Fortymile Wash where significant recharge occurs. The heaviest

  19. Three-dimensional geologic modeling and groundwater flow modeling of the Töllinperä aquifer in the Hitura nickel mine area, Finland – providing the framework for restoration and protection of the aquifer

    Directory of Open Access Journals (Sweden)

    Sami Saraperä

    2004-01-01

    Full Text Available Elevated concentrations of sulphate, chloride, and nickel were discovered in water samples taken from the Töllinperä aquifer in western Finland. The area is located adjacent to the tailings area of the Hitura nickel mine. Earlier studies revealed that the groundwater contamination resulted from tailings-derived mine waters leaking from a tailings impoundment area. The tailings area directly overlies the Weichselian esker system, part of which is the Töllinperä classified groundwater area. The observed groundwater and surface water contamination resulted in a need to characterize the subsurface geology in the whole area of the contaminated esker aquifer. The primary sedimentary units were introduced into a three-dimensional (3-D geologic model of the aquifer made with EarthVision geologic modeling software. The information obtained from the 3-D geological model was then introduced into a numerical groundwater flow model made with MODFLOW code, which was calibrated with MODFLOWP code.The results of this study were used to guide the sealing of the tailings impoundment in order to prevent the further contamination of the Töllinperä aquifer. The groundwater flow model was used to interpret and simulate the flow system, and to provide a plan to safely continue water supply to local inhabitants from the unpolluted parts of the aquifer.

  20. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  1. Simulation of groundwater flow, effects of artificial recharge, and storage volume changes in the Equus Beds aquifer near the city of Wichita, Kansas well field, 1935–2008

    Science.gov (United States)

    Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.

    2013-01-01

    The Equus Beds aquifer is a primary water-supply source for Wichita, Kansas and the surrounding area because of shallow depth to water, large saturated thickness, and generally good water quality. Substantial water-level declines in the Equus Beds aquifer have resulted from pumping groundwater for agricultural and municipal needs, as well as periodic drought conditions. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project to store and later recover groundwater, and to form a hydraulic barrier to the known chloride-brine plume near Burrton, Kansas. In October 2009, the U.S. Geological Survey, in cooperation with the city of Wichita, began a study to determine groundwater flow in the area of the Wichita well field, and chloride transport from the Arkansas River and Burrton oilfield to the Wichita well field. Groundwater flow was simulated for the Equus Beds aquifer using the three-dimensional finite-difference groundwater-flow model MODFLOW-2000. The model simulates steady-state and transient conditions. The groundwater-flow model was calibrated by adjusting model input data and model geometry until model results matched field observations within an acceptable level of accuracy. The root mean square (RMS) error for water-level observations for the steady-state calibration simulation is 9.82 feet. The ratio of the RMS error to the total head loss in the model area is 0.049 and the mean error for water-level observations is 3.86 feet. The difference between flow into the model and flow out of the model across all model boundaries is -0.08 percent of total flow for the steady-state calibration. The RMS error for water-level observations for the transient calibration simulation is 2.48 feet, the ratio of the RMS error to the total head loss in the model area is 0.0124, and the mean error for water-level observations is 0.03 feet. The RMS error calculated for observed and simulated base flow gains or losses for the

  2. Numerical groundwater flow modeling of the northern river catchment of the Lake Tana, Upper Blue Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    Nigussie Ayehu Asrie

    2016-06-01

    Full Text Available The study area is found North Western plateau in the North Gondar zone, Amhara regional state, Ethiopia. Its total surface coverage is 1887km2.The study area boundary was delineated from 90m Shutter Radar Terrain Mapping (SRTM digital elevation model (DEM using Global Mapper 8 software. Based on geologic information of the study area, unconfined subsurface flow condition was considered and simulated using MODFLOW 2000. The model calibration accounts the matching of the 58 observation point with simulated head with a permissible residual head of ±10m. 75% of the difference the observed and measured water level head in the study area is 5m. . The model was calibrated with mean error 0.506, absolute mean error 4.431m and standard deviation 6.083m. Based on the calibration process, the model is very sensitive in decreasing order change in recharge, hydraulic conductivity, and stream bed conductance. The simulated out flow of the model is 205.7Mm3/year which is nearly equal to simulated inflow with difference 2,887.45m3/yr. The base flow simulated discharge Megech River holds 35.8% of the out flow. The river contributed as recharge in to the aquifer that accounts to 15.3% of the inflow. Steady state withdrawal rates were increased by 15%, 35%, 55%, 75% and 100% to study the response of the system in this scenario. From the simulation results, one can observe that the development of a new groundwater sources would not pose appreciable impact in case of 15% and 35% withdrawal the head declines in this case is insignificant relative to the steady state withdrawal rate and the natural discharges were not altered highly. The simulation result indicated that the stream leakage decreased by 7.9% relative to the whole steady state value, but showed 14.9% decrease for Angereb, Keha, and Shinta river segments near the well field area. The water tables decline by 3.6m to18.8m in head observation in the well field area. The steady state simulated recharge was

  3. 40 CFR 86.120-94 - Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... calibration; particulate, methanol and formaldehyde measurement. 86.120-94 Section 86.120-94 Protection of... Procedures § 86.120-94 Gas meter or flow instrumentation calibration; particulate, methanol and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas...

  4. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Science.gov (United States)

    2010-07-01

    ... calibration; particulate, methanol, and formaldehyde measurement. 86.1320-90 Section 86.1320-90 Protection of... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to...

  5. FORMULAE FOR AVERAGE VELOCITY OF GROUNDWATER FLOW AND EXPERIMENTAL EVIDENCE OF NON-DARCY'S FLOW THROUGH A SINGLE FRACTURE

    Institute of Scientific and Technical Information of China (English)

    Qian Jia-zhong; Wang Jia-quan; Li Ru-zhong; Liu Yong

    2003-01-01

    The formulae for average velocity of groundwater flow in a single fracture were derived based on the characteristics of fracture properties and hydraulic methods. The results show that the average velocity is proportional to the square root of the hydraulic gradient. In order to verify the results, a laboratory model was established, and the experimental data were analyzed. Experimental results indicate that the relation between the average velocity and hydraulic gradient is nonlinear, and can be fitted with power functions. And for both the unconfined and confined flows, the value of the exponent of power functions are close to 0.5. Thus the experimental results agree well with those from the theoretical analysis. By comparing the calculated and measured values of the average velocity under the same conditions, the formulae presented herein are more effective than the traditional formula based on Darcy's Law. These results provide the evidences of non-Darcy's flow in single fracture.

  6. Modelling water flow and seasonal soil moisture dynamics in analluvial groundwater-fed wetland

    Directory of Open Access Journals (Sweden)

    I. Joris

    2003-01-01

    Full Text Available Complex interactions occur in riparian wetlands between groundwater, surface water and climatic conditions. Knowledge of the hydrology of these systems is necessary to understand their functioning and their value and models are a useful and probably essential tool to capture their hydrological complexity. In this study, a 2D-model describing saturated-unsaturated water flow is applied to a transect through a groundwater-fed riparian wetland located along the middle reach of the river Dijle. The transect has high levees close to the river and a depression further into the floodplain. Scaling factors are introduced to describe the variability of soil hydraulic properties along the transect. Preliminary model calculations for one year show a good agreement between model calculations and measurements and demonstrate the capability of the model to capture the internal groundwater dynamics. Seasonal variations in soil moisture are reproduced well by the model thus translating external hydrological boundary conditions to root zone conditions. The model proves to be a promising tool for assessing effects of changes in hydrological boundary conditions on vegetation type distribution and to gain more insight in the highly variable internal flow processes of riparian wetlands. Keywords: riparian wetland,eco-hydrology, upward seepage, floodplain hydrology

  7. Identifying key parameters to differentiate groundwater flow systems using multifactorial analysis

    Science.gov (United States)

    Menció, Anna; Folch, Albert; Mas-Pla, Josep

    2012-11-01

    SummaryMultivariate techniques are useful in hydrogeological studies to reduce the complexity of large-scale data sets, and provide more understandable insight into the system hydrology. In this study, principal component analysis (PCA) has been used as an exploratory method to identify the key parameters that define distinct flow systems in the Selva basin (NE Spain). In this statistical analysis, all the information obtained in hydrogeological studies (that is, hydrochemical and isotopic data, but also potentiometric data) is used. Additionally, cluster analysis, based on PCA results, allows the associations between samples to be identified, and thus, corroborates the occurrence of different groundwater fluxes. PCA and cluster analysis reveal that two main groundwater flow systems exist in the Selva basin, each with distinct hydrochemical, isotopic, and potentiometric features. Regional groundwater fluxes are associated with high F- contents, and confined aquifer layers; while local fluxes are linked to nitrate polluted unconfined aquifers with a different recharge rates. In agreement with previous hydrogeological studies, these statistical methods stand as valid screening tools to highlight the fingerprint variables that can be used as indicators to facilitate further, more arduous, analytical approaches and a feasible interpretation of the whole data set.

  8. Migration of contaminants in groundwater at a landfill: A case study. 1. Groundwater flow and plume delineation

    Science.gov (United States)

    MacFarlane, D. S.; Cherry, J. A.; Gillham, R. W.; Sudicky, E. A.

    1983-05-01

    A landfill-derived contaminant plume with a maximum width of ˜600 m, a length of ˜700 m and a maximum depth of 20 m in an unconfined sand aquifer was delineated by means of a monitoring network that includes standpipe piezometers, multilevel point-samplers and bundle-piezometers. The extent of detectable contamination caused by the landfill, which began operation in 1940 and which became inactive in 1976, was determined from the distributions of chloride, sulfate and electrical conductance in the sand aquifer, all of which have levels in the leachate that are greatly above those in uncontaminated groundwater. The maximum temperature of groundwater in the zone of contamination beneath the landfill is 12°C, which is 4-5°C above background. The thermal plume in the aquifer extends ˜150 m downgradient from the centre of the landfill. A slight transient water-table mound exists beneath the landfill in the late spring and summer in response to snowmelt and heavy rainfall. Beneath the landfill, the zone of leachate contamination extends to the bottom of the aquifer, apparently because of transient downward components of hydraulic gradient caused by the water-table mound and possibly because of the higher density and lower viscosity of the contaminated water. Values of hydraulic conductivity, which show variations due to local heterogeneity, were obtained from slug tests of piezometers, from pumping tests and from laboratory tests. Because of the inherent uncertainty in the aquifer parameter values, the 38-yr. frontal position of the plume calculated using the Darcy equation with the assumption of plug flow can differ from the observed frontal position by many hundreds of metres, although the use of mean parameter values produces a close agreement. The width of the plume is large relative to the width of the landfill and can be accounted for primarily by variable periods of lateral east- and westward flow caused by changes in water-table configuration due to the

  9. Groundwater flow analysis and dose rate estimates from releases to wells at a coastal site

    Energy Technology Data Exchange (ETDEWEB)

    Kattilakoski, E.; Suolanen, V. [VTT Energy, Espoo (Finland)

    2000-09-01

    In the groundwater flow modelling part of this work the effective dilution volume in the well scenario was estimated by means of transient simulations of groundwater flow and transport, which are coupled due to the varying salinity. Both deep, drilled wells and shallow surface wells in the vicinity of the repository were considered. The simulations covered the time period from the present to 1000 years after the present. Conceptually the fractured bedrock consists of planar fracture zones (with a high fracture density and a greater ability to conduct water) and the intact rock (in which the fracture density and the hydraulic conductivity are low). For them the equivalent-continuum model was applied separately. Thus, the fractured bedrock was considered as piecewise homogeneous (except for the depth dependence) and isotropic continuum with representative average characteristics. A generic simulation model for groundwater flow and solute transport was developed on the basis of geological, hydrogeological and hydrogeochemical data at a coastal area. The simulation model contains all the data necessary for the numerical simulations, i.e. the groundwater table and topography, salinity, the postglacial land uplift and sea level rise, the conceptual geometry of fracture zones, the hydraulic properties of the bedrock as well as the description of the modelling volume. The model comprises an area of about 26 km{sup 2}. It covers an island and the surrounding sea. The finite element code FEFTRA (formerly known as FEFLOW) was used in this work for the numerical solution. The channelling along the flow routes was found to be critical for the resulting in a well. A deep well may extend near the area of the deep flow routes, but in order to get flow routes into a shallow well, it has to be placed in the immediate vicinity of the discharge areas. According to the groundwater flow analyses the effective dilution volume of the well seems to vary from 30 000 m{sup 3}/a to 460 000 m

  10. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    Science.gov (United States)

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    the compilation of geographic, geologic, and hydrologic data and estimation of hydraulic properties and flows. The model was calibrated to historical surface-water and ground-water flow for the period 1891-1993. Sources of water to the regional ground-water flow system are natural and artificial recharge, coastal landward flow from the ocean (seawater intrusion), storage in the coarse-grained beds, and water from compaction of fine-grained beds (aquitards). Inflows used in the regional flow model simulation include streamflows routed through the major rivers and tributaries; infiltration of mountain-front runoff and infiltration of precipitation on bedrock outcrops and on valley floors; and artificial ground-water recharge of diverted streamflow, irrigation return flow, and treated sewage effluent. Most natural recharge occurs through infiltration (losses) of streamflow within the major rivers and tributaries and the numerous arroyos that drain the mountain fronts of the basin. Total simulated natural recharge was about 114,100 acre-feet per year (acre-ft/yr) for 1984-93: 27,800 acre-ft/yr of mountain-front and bedrock recharge, 24,100 acre-ft/yr of valley-floor recharge, and 62,200 acre-ft/yr of net streamflow recharge. Artificial recharge (spreading of diverted streamflow, irrigation return, and sewage effluent) is a major source of ground-water replenishment. During the 1984-93 simulation period, the average rate of artificial recharge at the spreading grounds was about 54,400 acre-ft/yr, 13 percent less than the simulated natural recharge rate for streamflow infiltration within the major rivers and tributaries. Estimated recharge from infiltration of irrigation return flow on the valley floors averaged about 51,000 acre-ft/yr, and treated sewage effluent averaged about 9,000 acre-ft/yr. Artificial recharge as streamflow diversion to the spreading grounds has occurred since 1929, and treated-sewage effluent has been discharged to stream channels since 1930. Under

  11. Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks

    Science.gov (United States)

    Butscher, Christoph; Einstein, Herbert H.; Huggenberger, Peter

    2011-11-01

    Swelling of clay-sulfate rocks is a major threat in tunneling. It is triggered by the transformation of the sulfate mineral anhydrite into gypsum as a result of water inflow in anhydrite-containing layers after tunnel excavation. The present study investigates the hydraulic effects of tunneling on groundwater flow and analyzes how hydraulic changes caused by excavation lead to water inflow into anhydrite-containing layers in the tunnel area. Numerical groundwater models are used to conduct scenario simulations that allow one to relate hydrogeological conditions to rock swelling. The influence of the topographic setting, the excavation-damaged zone around the tunnel, the sealing effect of the tunnel liner, and the geological configuration are analyzed separately. The analysis is performed for synthetic situations and is complemented by a case study from a tunnel in Switzerland. The results illustrate the importance of geological and hydraulic information when assessing the risk of swelling at an actual site.

  12. Investigating groundwater flow components in an Alpine relict rock glacier (Austria) using a numerical model

    Science.gov (United States)

    Pauritsch, Marcus; Wagner, Thomas; Winkler, Gerfried; Birk, Steffen

    2016-11-01

    Relict rock glaciers are complex hydrogeological systems that might act as relevant groundwater storages; therefore, the discharge behavior of these alpine landforms needs to be better understood. Hydrogeological and geophysical investigations at a relict rock glacier in the Niedere Tauern Range (Austria) reveal a slow and fast flow component that appear to be related to the heterogeneous structure of the aquifer. A numerical groundwater flow model was used to indicate the influence of important internal structures such as layering, preferential flow paths and aquifer-base topography. Discharge dynamics can be reproduced reasonably by both introducing layers of strongly different hydraulic conductivities or by a network of highly conductive channels within a low-conductivity zone. Moreover, the topography of the aquifer base influences the discharge dynamics, which can be observed particularly in simply structured aquifers. Hydraulic conductivity differences of three orders of magnitude are required to account for the observed discharge behavior: a highly conductive layer and/or channel network controlling the fast and flashy spring responses to recharge events, as opposed to less conductive sediment accumulations sustaining the long-term base flow. The results show that the hydraulic behavior of this relict rock glacier and likely that of others can be adequately represented by two aquifer components. However, the attempt to characterize the two components by inverse modeling results in ambiguity of internal structures when solely discharge data are available.

  13. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Rhen, Ingvar (SWECO Environment AB, Falun (Sweden)); Zugec, Nada (Bergab, Goeteborg (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report is concerned with the modelling of a repository at the Laxemar-Simpevarp site during periglacial and glacial climate conditions as a comparison to corresponding modelling carried out for Forsmark /Vidstrand et al. 2010/. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle at Laxemar. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 13,000 years. The simulation results comprise pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance and the bedrock hydraulic and transport properties

  14. Investigating groundwater flow components in an Alpine relict rock glacier (Austria) using a numerical model

    Science.gov (United States)

    Pauritsch, Marcus; Wagner, Thomas; Winkler, Gerfried; Birk, Steffen

    2017-03-01

    Relict rock glaciers are complex hydrogeological systems that might act as relevant groundwater storages; therefore, the discharge behavior of these alpine landforms needs to be better understood. Hydrogeological and geophysical investigations at a relict rock glacier in the Niedere Tauern Range (Austria) reveal a slow and fast flow component that appear to be related to the heterogeneous structure of the aquifer. A numerical groundwater flow model was used to indicate the influence of important internal structures such as layering, preferential flow paths and aquifer-base topography. Discharge dynamics can be reproduced reasonably by both introducing layers of strongly different hydraulic conductivities or by a network of highly conductive channels within a low-conductivity zone. Moreover, the topography of the aquifer base influences the discharge dynamics, which can be observed particularly in simply structured aquifers. Hydraulic conductivity differences of three orders of magnitude are required to account for the observed discharge behavior: a highly conductive layer and/or channel network controlling the fast and flashy spring responses to recharge events, as opposed to less conductive sediment accumulations sustaining the long-term base flow. The results show that the hydraulic behavior of this relict rock glacier and likely that of others can be adequately represented by two aquifer components. However, the attempt to characterize the two components by inverse modeling results in ambiguity of internal structures when solely discharge data are available.

  15. A Practically Validated Intelligent Calibration Circuit Using Optimized ANN for Flow Measurement by Venturi

    Science.gov (United States)

    Venkata, Santhosh Krishnan; Roy, Binoy Krishna

    2016-03-01

    Design of an intelligent flow measurement technique using venturi flow meter is reported in this paper. The objectives of the present work are: (1) to extend the linearity range of measurement to 100 % of full scale input range, (2) to make the measurement technique adaptive to variations in discharge coefficient, diameter ratio of venturi nozzle and pipe (β), liquid density, and liquid temperature, and (3) to achieve the objectives (1) and (2) using an optimized neural network. The output of venturi flow meter is differential pressure. It is converted to voltage by using a suitable data conversion unit. A suitable optimized artificial neural network (ANN) is added, in place of conventional calibration circuit. ANN is trained, tested with simulated data considering variations in discharge coefficient, diameter ratio between venturi nozzle and pipe, liquid density, and liquid temperature. The proposed technique is then subjected to practical data for validation. Results show that the proposed technique has fulfilled the objectives.

  16. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    Directory of Open Access Journals (Sweden)

    B. van der Grift

    2014-06-01

    Full Text Available The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II oxidation and P immobilization along the flow-path from groundwater to surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we investigated Fe(II oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II by O2. Seasonal changes in climatic conditions affected the Fe(II oxidation process. Lower pH and lower temperatures in winter (compared to summer resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than one week before complete oxidation of Fe(II is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilisation of dissolved P during the initial stage of the Fe(II oxidation proces which results in P-depleted water before Fe(II is competly depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III-phosphate precipitates. The formation of Fe(III-phosphates at redox gradients

  17. Hydrology and simulation of ground-water flow in Kamas Valley, Summit County, Utah

    Science.gov (United States)

    Brooks, L.E.; Stolp, B.J.; Spangler, L.E.

    2003-01-01

    Kamas Valley, Utah, is located about 50 miles east of Salt Lake City and is undergoing residential development. The increasing number of wells and septic systems raised concerns of water managers and prompted this hydrologic study. About 350,000 acre-feet per year of surface water flows through Kamas Valley in the Weber River, Beaver Creek, and Provo River, which originate in the Uinta Mountains east of the study area. The ground-water system in this area consists of water in unconsolidated deposits and consolidated rock; water budgets indicate very little interaction between consolidated rock and unconsolidated deposits. Most recharge to consolidated rock occurs at higher altitudes in the mountains and discharges to streams and springs upgradient of Kamas Valley. About 38,000 acre-feet per year of water flows through the unconsolidated deposits in Kamas Valley. Most recharge is from irrigation and seepage from major streams; most discharge is to Beaver Creek in the middle part of the valley. Long-term water-level fluctuations range from about 3 to 17 feet. Seasonal fluctuations exceed 50 feet. Transmissivity varies over four orders of magnitude in both the unconsolidated deposits and consolidated rock and is typically 1,000 to 10,000 feet squared per day in unconsolidated deposits and 100 feet squared per day in consolidated rock as determined from specific capacity. Water samples collected from wells, streams, and springs had nitrate plus nitrite concentrations (as N) substantially less than 10 mg/L. Total and fecal coliform bacteria were detected in some surface-water samples and probably originate from livestock. Septic systems do not appear to be degrading water quality. A numerical ground-water flow model developed to test the conceptual understanding of the ground-water system adequately simulates water levels and flow in the unconsolidated deposits. Analyses of model fit and sensitivity were used to refine the conceptual and numerical models.

  18. Spatial and temporal constraints on regional-scale groundwater flow in the Pampa del Tamarugal Basin, Atacama Desert, Chile

    Science.gov (United States)

    Jayne, Richard S.; Pollyea, Ryan M.; Dodd, Justin P.; Olson, Elizabeth J.; Swanson, Susan K.

    2016-12-01

    Aquifers within the Pampa del Tamarugal Basin (Atacama Desert, northern Chile) are the sole source of water for the coastal city of Iquique and the economically important mining industry. Despite this, the regional groundwater system remains poorly understood. Although it is widely accepted that aquifer recharge originates as precipitation in the Altiplano and Andean Cordillera to the east, there remains debate on whether recharge is driven primarily by near-surface groundwater flow in response to periodic flood events or by basal groundwater flux through deep-seated basin fractures. In addressing this debate, the present study quantifies spatial and temporal variability in regional-scale groundwater flow paths at 20.5°S latitude by combining a two-dimensional model of groundwater and heat flow with field observations and δ18O isotope values in surface water and groundwater. Results suggest that both previously proposed aquifer recharge mechanisms are likely influencing aquifers within the Pampa del Tamarugal Basin; however, each mechanism is operating on different spatial and temporal scales. Storm-driven flood events in the Altiplano readily transmit groundwater to the eastern Pampa del Tamarugal Basin through near-surface groundwater flow on short time scales, e.g., 100-101 years, but these effects are likely isolated to aquifers in the eastern third of the basin. In addition, this study illustrates a physical mechanism for groundwater originating in the eastern highlands to recharge aquifers and salars in the western Pampa del Tamarugal Basin over timescales of 104-105 years.

  19. Spatial and temporal constraints on regional-scale groundwater flow in the Pampa del Tamarugal Basin, Atacama Desert, Chile

    Science.gov (United States)

    Jayne, Richard S.; Pollyea, Ryan M.; Dodd, Justin P.; Olson, Elizabeth J.; Swanson, Susan K.

    2016-08-01

    Aquifers within the Pampa del Tamarugal Basin (Atacama Desert, northern Chile) are the sole source of water for the coastal city of Iquique and the economically important mining industry. Despite this, the regional groundwater system remains poorly understood. Although it is widely accepted that aquifer recharge originates as precipitation in the Altiplano and Andean Cordillera to the east, there remains debate on whether recharge is driven primarily by near-surface groundwater flow in response to periodic flood events or by basal groundwater flux through deep-seated basin fractures. In addressing this debate, the present study quantifies spatial and temporal variability in regional-scale groundwater flow paths at 20.5°S latitude by combining a two-dimensional model of groundwater and heat flow with field observations and δ18O isotope values in surface water and groundwater. Results suggest that both previously proposed aquifer recharge mechanisms are likely influencing aquifers within the Pampa del Tamarugal Basin; however, each mechanism is operating on different spatial and temporal scales. Storm-driven flood events in the Altiplano readily transmit groundwater to the eastern Pampa del Tamarugal Basin through near-surface groundwater flow on short time scales, e.g., 100-101 years, but these effects are likely isolated to aquifers in the eastern third of the basin. In addition, this study illustrates a physical mechanism for groundwater originating in the eastern highlands to recharge aquifers and salars in the western Pampa del Tamarugal Basin over timescales of 104-105 years.

  20. Groundwater flow dynamics in the complex aquifer system of Gidabo River Basin (Ethiopian Rift): a multi-proxy approach

    Science.gov (United States)

    Mechal, Abraham; Birk, Steffen; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra; Kebede, Seifu

    2017-03-01

    Hydrochemical and isotope data in conjunction with hydraulic head and spring discharge observations were used to characterize the regional groundwater flow dynamics and the role of the tectonic setting in the Gidabo River Basin, Ethiopian Rift. Both groundwater levels and hydrochemical and isotopic data indicate groundwater flow from the major recharge area in the highland and escarpment into deep rift floor aquifers, suggesting a deep regional flow system can be distinguished from the shallow local aquifers. The δ18O and δ2H values of deep thermal (≥30 °C) groundwater are depleted relative to the shallow (floor. Based on the δ18O values, the thermal groundwater is found to be recharged in the highland around 2,600 m a.s.l. and on average mixed with a proportion of 30 % shallow groundwater. While most groundwater samples display diluted solutions, δ13C data of dissolved inorganic carbon reveal that locally the thermal groundwater near fault zones is loaded with mantle CO2, which enhances silicate weathering and leads to anomalously high total dissolved solids (2,000-2,320 mg/l) and fluoride concentrations (6-15 mg/l) exceeding the recommended guideline value. The faults are generally found to act as complex conduit leaky barrier systems favoring vertical mixing processes. Normal faults dipping to the west appear to facilitate movement of groundwater into deeper aquifers and towards the rift floor, whereas those dipping to the east tend to act as leaky barriers perpendicular to the fault but enable preferential flow parallel to the fault plane.

  1. Numerical investigation for the impact of CO2 geologic sequestration on regional groundwater flow

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Zhang, K.; Karasaki, K.; Marui, A.; Uehara, H.; Nishikawa, N.

    2009-04-15

    Large-scale storage of carbon dioxide in saline aquifers may cause considerable pressure perturbation and brine migration in deep rock formations, which may have a significant influence on the regional groundwater system. With the help of parallel computing techniques, we conducted a comprehensive, large-scale numerical simulation of CO{sub 2} geologic storage that predicts not only CO{sub 2} migration, but also its impact on regional groundwater flow. As a case study, a hypothetical industrial-scale CO{sub 2} injection in Tokyo Bay, which is surrounded by the most heavily industrialized area in Japan, was considered, and the impact of CO{sub 2} injection on near-surface aquifers was investigated, assuming relatively high seal-layer permeability (higher than 10 microdarcy). A regional hydrogeological model with an area of about 60 km x 70 km around Tokyo Bay was discretized into about 10 million gridblocks. To solve the high-resolution model efficiently, we used a parallelized multiphase flow simulator TOUGH2-MP/ECO2N on a world-class high performance supercomputer in Japan, the Earth Simulator. In this simulation, CO{sub 2} was injected into a storage aquifer at about 1 km depth under Tokyo Bay from 10 wells, at a total rate of 10 million tons/year for 100 years. Through the model, we can examine regional groundwater pressure buildup and groundwater migration to the land surface. The results suggest that even if containment of CO{sub 2} plume is ensured, pressure buildup on the order of a few bars can occur in the shallow confined aquifers over extensive regions, including urban inlands.

  2. Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach

    Science.gov (United States)

    Geng, Xiaolong; Boufadel, Michel C.; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L.; Miller, Richard S.

    2014-09-01

    A numerical study was undertaken to investigate the effects of waves on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to waves. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate waves, which were the seaward boundary condition for MARUN. A no-wave case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that waves generated seawater-groundwater circulations in the swash and surf zones of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-wave case, waves significantly increased the residence time and spreading of inland-applied solutes in the beach. Waves also altered solute pathways and shifted the solute discharge zone further seaward. Residence Time Maps (RTM) revealed that the wave-induced residence time of the inland-applied solutes was largest near the solute exit zone to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated zone, the mass of the solute in the unsaturated zone, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated zone of the beach. This means of control was not addressed in prior studies.

  3. Simultaneous geologic scenario identification and flow model calibration with group-sparsity formulations

    Science.gov (United States)

    Golmohammadi, Azarang; Jafarpour, Behnam

    2016-06-01

    Adopting representative geologic connectivity scenarios is critical for reliable modeling and prediction of flow and transport processes in subsurface environments. Geologic scenarios are often developed by integrating several sources of information, including knowledge of the depositional environment, qualitative and quantitative data such as outcrop and well logs, and process-based geologic modeling. In general, flow and transport response data are usually not included in constructing geologic scenarios for a basin. Instead, these data are typically matched using a given prior geologic scenario as constraint. Since data limitations, modeling assumptions and subjective interpretations can lead to significant uncertainty in the adopted geologic scenarios, flow and transport data may also be useful for constraining the uncertainty in proposed geologic scenarios. Constraining geologic scenarios with flow-related data opens an interesting and challenging research area, which goes beyond the traditional model calibration formulations where the geologic scenario is assumed given. In this paper, a novel concept, known as group-sparsity regularization, is proposed as an effective formulation to constrain the uncertainty in the prior geologic scenario during subsurface flow model calibration. Given a collection of model realizations from several plausible geologic scenarios, the proposed method first applies the truncated singular value decomposition (TSVD) to compactly represent the models from each geologic scenario. The TSVD basis for representing each scenario forms a distinct group. The proposed approach searches over these groups (i.e., geologic scenarios) to eliminate inconsistent groups that are not supported by the observed flow/pressure data. The group-sparsity regularization minimizes a l1/l2mixed norm, where the l2-norm quantifies the contribution of each group and operates on the coefficients within the groups while the l1-norm, having a selection property, is

  4. Spatial Dynamic Optimization of Groundwater Use with Ecological Standards for Instream Flow

    Science.gov (United States)

    Brozovic, N.; Han, J.; Speir, C.

    2011-12-01

    Instream flow requirements for protected species in arid and semi-arid regions have created the need to reduce groundwater use adjacent to streams. We present an integrated hydrologic-economic model that optimizes agricultural groundwater use next to streams with flow standards. Policies to meet instream flow standards should aim to minimize the welfare losses to irrigated agriculture due to reduced pumping. Previous economic studies have proposed spatially targeted water allocations between groundwater irrigators and instream demands. However, these studies focused on meeting aggregate instream flow goals on a seasonal or yearly basis rather than meeting them on a continuous basis. Temporally aggregated goals ignore important intra-seasonal hydrologic effects and may not provide sufficient habitat quality for species of concern. We present an optimization model that solves for groundwater pumping allocations across space in a stream-aquifer system with instream flow goals that must be met on a daily basis. We combine an analytical model of stream depletion with a farm profit maximization model that includes cumulative crop yield damages from water stress. The objective is the minimization of agricultural losses from reduced groundwater use while minimum instream flow requirements for ecological needs are met on a daily basis. As a case study, we apply our model to the Scott River Basin in northern California. This is a region where stream depletion resulting from extensive irrigation has degraded habitat for Coho salmon, a species protected under the U.S. Endangered Species Act. Our results indicate the importance of considering the lag between the time at which pumping occurs and the time at which stream depletion related to that pumping occurs. In general, we find that wells located farther from the stream should be allocated more water in most hydrologic scenarios. However, we also find that the spatial and temporal distribution of optimal groundwater pumping

  5. Model Refinement and Simulation of Groundwater Flow in Clinton, Eaton, and Ingham Counties, Michigan

    Science.gov (United States)

    Luukkonen, Carol L.

    2010-01-01

    A groundwater-flow model that was constructed in 1996 of the Saginaw aquifer was refined to better represent the regional hydrologic system in the Tri-County region, which consists of Clinton, Eaton, and Ingham Counties, Michigan. With increasing demand for groundwater, the need to manage withdrawals from the Saginaw aquifer has become more important, and the 1996 model could not adequately address issues of water quality and quantity. An updated model was needed to better address potential effects of drought, locally high water demands, reduction of recharge by impervious surfaces, and issues affecting water quality, such as contaminant sources, on water resources and the selection of pumping rates and locations. The refinement of the groundwater-flow model allows simulations to address these issues of water quantity and quality and provides communities with a tool that will enable them to better plan for expansion and protection of their groundwater-supply systems. Model refinement included representation of the system under steady-state and transient conditions, adjustments to the estimated regional groundwater-recharge rates to account for both temporal and spatial differences, adjustments to the representation and hydraulic characteristics of the glacial deposits and Saginaw Formation, and updates to groundwater-withdrawal rates to reflect changes from the early 1900s to 2005. Simulations included steady-state conditions (in which stresses remained constant and changes in storage were not included) and transient conditions (in which stresses changed in annual and monthly time scales and changes in storage within the system were included). These simulations included investigation of the potential effects of reduced recharge due to impervious areas or to low-rainfall/drought conditions, delineation of contributing areas with recent pumping rates, and optimization of pumping subject to various quantity and quality constraints. Simulation results indicate

  6. River Flow Forecasting Using Neural Networks and Auto-Calibrated NAM Model with Shuffled Complex Evolution

    Science.gov (United States)

    Zakermoshfegh, M.; Ghodsian, M.; Salehi Neishabouri, S. A. A.; Shakiba, M.

    River flow forecasting is required to provide important information on a wide range of cases related to design and operation of river systems. Since there are a lot of parameters with uncertainties and non-linear relationships, the calibration of conceptual or physically-based models is often a difficult and time consuming procedure. So it is preferred to implement a heuristic black box model to perform a non-linear mapping between the input and output spaces without detailed consideration of the internal structure of the physical process. In this study, the capability of artificial neural networks for stream flow forecasting in Kashkan River in West of Iran is investigated and compared to a NAM model which is a lumped conceptual model with shuffled complex evolution algorithm for auto calibration. Multi Layer Perceptron and Radial Basis Function neural networks are introduced and implemented. The results show that the discharge can be more adequately forecasted by Multi Layer Perceptron neural network, compared to other implemented models, in case of both peak discharge and base flow forecasting.

  7. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    Science.gov (United States)

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    can occur and that the calibrated model resulted in smaller differences than the alternative models between simulated and interpreted ages and measured tracer concentrations in most, but not all, wells. Results of the first alternative model indicate that the distribution of young water in the upper confined aquifer is substantially different when well-bore leakage at known abandoned wells and test holes is removed from the model. In the second alternative model, simulated age near the bottom of the unconfined aquifer was younger than interpreted ages and simulated chlorofluorocarbon-11 concentrations in the upper confined aquifer were zero in five out of six wells because the conventional Well Package fails to account for flow between model layers though well bores. The third alternative model produced differences between simulated and interpreted ground-water ages and measured chlorofluorocarbon-11 concentrations that were comparable to the calibrated model. However, simulated hydraulic heads deviated from measured hydraulic heads by a greater amount than for the calibrated model. Even so, because the third alternative model simulates steady-state flow, additional analysis was possible using steady-state particle tracking to assess the contributing recharge area to a public supply well selected for analysis of factors contributing to well vulnerability. Results from particle-tracking software (MODPATH) using the third alternative model indicates that the contributing recharge area of the study public-supply well is a composite of elongated, seemingly isolated areas associated with wells that are screened in multiple aquifers. The simulated age distribution of particles at the study public-supply well indicates that all water younger than 58 years travels through well bores of wells screened in multiple aquifers. The age distribution from the steady-state model using MODPATH estimates the youngest 7 percent of the water to have a flow-weighted mean age

  8. FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units.

    Science.gov (United States)

    Castillo-Hair, Sebastian M; Sexton, John T; Landry, Brian P; Olson, Evan J; Igoshin, Oleg A; Tabor, Jeffrey J

    2016-07-15

    Flow cytometry is widely used to measure gene expression and other molecular biological processes with single cell resolution via fluorescent probes. Flow cytometers output data in arbitrary units (a.u.) that vary with the probe, instrument, and settings. Arbitrary units can be converted to the calibrated unit molecules of equivalent fluorophore (MEF) using commercially available calibration particles. However, there is no convenient, nonproprietary tool available to perform this calibration. Consequently, most researchers report data in a.u., limiting interpretation. Here, we report a software tool named FlowCal to overcome current limitations. FlowCal can be run using an intuitive Microsoft Excel interface, or customizable Python scripts. The software accepts Flow Cytometry Standard (FCS) files as inputs and is compatible with different calibration particles, fluorescent probes, and cell types. Additionally, FlowCal automatically gates data, calculates common statistics, and produces publication quality plots. We validate FlowCal by calibrating a.u. measurements of E. coli expressing superfolder GFP (sfGFP) collected at 10 different detector sensitivity (gain) settings to a single MEF value. Additionally, we reduce day-to-day variability in replicate E. coli sfGFP expression measurements due to instrument drift by 33%, and calibrate S. cerevisiae Venus expression data to MEF units. Finally, we demonstrate a simple method for using FlowCal to calibrate fluorescence units across different cytometers. FlowCal should ease the quantitative analysis of flow cytometry data within and across laboratories and facilitate the adoption of standard fluorescence units in synthetic biology and beyond.

  9. Effect of no-flow in the Lower Yellow River on groundwater formation and usage in areas along the banks

    Institute of Scientific and Technical Information of China (English)

    Jianfeng CAO; Xueyan YE; Kaijun WANG; Jiyi JIANG

    2008-01-01

    Frequent flow cutoff has a serious effect on the eco-environment of the region along the Lower Yellow River. The authors study the impact on lateral seepage quantity and groundwater cycling caused by cutoff of the Yellow River and compare it with that of the year 1999 through the numerical simulation model of ground-water flow system of the affected zone. The lateral seepage quantity decreased 53.8% on flow cutoff stage from Huayuankou to the river entrance and breaking time of 300 d. The lateral seepage quantity will decrease 46.3% if flow cutoff is from Jiahetan to the river entrance and breaking time is 300 d, and it will decrease 75.2% if flow cutoff occurs throughout the year. The lateral seepage quantity will decrease 19.8% if flow cutoff is from Luokou to the river entrance and breaking time is 300 d, and it will decrease 25.1% if flow cutoff occurs throughout the year. The lateral seepage quantity will decrease 4.7% if flow cutoff is from Lijin to the river entrance and flow cutoff occurs throughout the year. Flow cutoff of the Yellow River has a minor effect on the shape of ground-water flow domain of the affected zone. Thus, the bound-ary condition of the shallow groundwater system will not change. Although flow cutoffhas a major influence on the riverside source fields in the Lower Yellow River, it will not have a significant effect on groundwater resources macroscopically in the affected zone of the Yellow River due to its large storage capacity.

  10. Using isotopic, hydrogeochemical-tracer and temperature data to characterize recharge and flow paths in a complex karst groundwater flow system in northern China

    Science.gov (United States)

    Sun, Ziyong; Ma, Rui; Wang, Yanxin; Ma, Teng; Liu, Yunde

    2016-09-01

    Isotopic and hydrogeochemical analysis, combined with temperature investigation, was conducted to characterize the flow system in the carbonate aquifer at Taiyuan, northern China. The previous division of karst subsystems in Taiyuan, i.e. the Xishan (XMK), Dongshan (DMK) and Beishan (BMK) mountain systems, were also examined. The measured δD, δ 18O and 3He/4He in water indicate that both thermal and cold groundwaters have a meteoric origin rather than deep crustal origin. Age dating using 3H and 14C shows that groundwater samples from discharge zones along faults located at the margin of mountains in the XMK and DMK are a mixture of paleometeoric thermal waters and younger cold waters from local flow systems. 14C data suggest that the average age was about 10,000 years and 4,000 years for thermal and cold groundwater in discharge zones, respectively. Based on the data of temperature, water solute chemical properties, 14C, δ 34SSO4, 87Sr/86Sr and δ 18O, different flow paths in the XMK and DMK were distinguished. Shallow groundwater passes through the upper Ordovician formations, producing younger waters at the discharge zone (low temperature and ionic concentration and enriched D and 18O). Deep groundwater flows through the lower Ordovician and Cambrian formations, producing older waters at the discharge zone (high ionic concentration and temperature and depleted D and 18O). At the margin of mountains, groundwater in deep systems flows vertically up along faults and mixes with groundwater from shallow flow systems. By contrast, only a single flow system through the entire Cambrian to Ordovician formations occurs in the BMK.

  11. Theory and calibration of non-nulling seven-hole cone probes for use in complex flow measurement

    Science.gov (United States)

    Everett, K. N.; Durston, D. A.; Gerner, A. A.

    1982-01-01

    A seven-hole conical pressure probe capable of measuring flow conditions at angles up to 75 deg relative to its axis is described. The theoretical rationale of the seven-hole probe is developed and the calibration procedure outlined. Three-variable third order polynomials are used to represent local values of total pressure, static pressure, Mach number and relative flow angles. These flow conditions can be determined explicitly from measured probe pressures. Flow angles may be determined within 2.5 deg and Mach number within 0.05 with 95% certainty. The probe was calibrated in subsonic compressible and incompressible flows. Results of a calibration of four seven-hole probes are presented.

  12. The research of three-dimensional numerical simulation of groundwater-flow: taking the Ejina Basin, Northwest China as example

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Water is a primary controlling factor for economic development and ecological environmental protection in the inland river basins of arid western China. And it is groundwater, as the most important component of total water resources, that plays a dominant role in the development of western China. In recent years, the use-ratio of surface water has been raised, the groundwater recharge rate from surface water has been reduced, and groundwater has been exploited on a large scale. This has led to the decline of ground-water levels and the degradation of eco-environments in the Heihe watershed. Therefore, the study on the change in groundwater levels in recent years, as well as simulating and predicting groundwater levels in the future, have become very significant for im-proving the ecological environment of the Heihe River Basin, to coordinate the water contradiction among upper, middle and lower reaches of Heihe River Basin and to allocate the water resources. The purpose of this study is to analyze the groundwa-ter-level variations of the Ejina region based on a large scale, to develop and evaluate a conceptual groundwater model in Ejina Basin, to establish the groundwater flow model using the experimental observation data and combining Modular Three-Dimensional Groundwater Flow Model (MODFLOW) and GIS software, to simulate the regional hydrologic regime in re-cent 10 years and compare various water-delivery scenarios from midstream, and to determine which one would be the best plan for maintaining and recovering the groundwater levels and increasing the area of Ejina oasis. Finally this paper discusses the pos-sible vegetation changes of Ejina Basin in the future.

  13. Numerical modeling analysis of VOC removal processes in different aerobic vertical flow systems for groundwater remediation.

    Science.gov (United States)

    De Biase, Cecilia; Carminati, Andrea; Oswald, Sascha E; Thullner, Martin

    2013-11-01

    Vertical flow systems filled with porous medium have been shown to efficiently remove volatile organic contaminants (VOCs) from contaminated groundwater. To apply this semi-natural remediation strategy it is however necessary to distinguish between removal due to biodegradation and due to volatile losses to the atmosphere. Especially for (potentially) toxic VOCs, the latter needs to be minimized to limit atmospheric emissions. In this study, numerical simulation was used to investigate quantitatively the removal of volatile organic compounds in two pilot-scale water treatment systems: an unplanted vertical flow filter and a planted one, which could also be called a vertical flow constructed wetland, both used for the treatment of contaminated groundwater. These systems were intermittently loaded with contaminated water containing benzene and MTBE as main VOCs. The highly dynamic but permanently unsaturated conditions in the porous medium facilitated aerobic biodegradation but could lead to volatile emissions of the contaminants. Experimental data from porous material analyses, flow rate measurements, solute tracer and gas tracer test, as well as contaminant concentration measurements at the boundaries of the systems were used to constrain a numerical reactive transport modeling approach. Numerical simulations considered unsaturated water flow, transport of species in the aqueous and the gas phase as well as aerobic degradation processes, which made it possible to quantify the rates of biodegradation and volatile emissions and calculating their contribution to total contaminant removal. A range of degradation rates was determined using experimental results of both systems under two operation modes and validated by field data obtained at different operation modes applied to the filters. For both filters, simulations and experimental data point to high biodegradation rates, if the flow filters have had time to build up their removal capacity. For this case volatile

  14. PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.

    2010-01-01

    The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and

  15. Two grid iteration with a conjugate gradient fine grid smoother applied to a groundwater flow model

    Energy Technology Data Exchange (ETDEWEB)

    Hagger, M.J.; Spence, A.; Cliffe, K.A.

    1994-12-31

    This talk is concerned with the efficient solution of Ax=b, where A is a large, sparse, symmetric positive definite matrix arising from a standard finite element discretisation of the groundwater flow problem {triangledown}{sm_bullet}(k{triangledown}p)=0. Here k is the coefficient of rock permeability in applications and is highly discontinuous. The discretisation is carried out using the Harwell NAMMU finite element package, using, for 2D, 9 node biquadratic rectangular elements, and 27 node biquadratics for 3D. The aim is to develop a robust technique for iterative solutions of 3D problems based on a regional groundwater flow model of a geological area with sharply varying hydrogeological properties. Numerical experiments with polynomial preconditioned conjugate gradient methods on a 2D groundwater flow model were found to yield very poor results, converging very slowly. In order to utilise the fact that A comes from the discretisation of a PDE the authors try the two grid method as is well analysed from studies of multigrid methods, see for example {open_quotes}Multi-Grid Methods and Applications{close_quotes} by W. Hackbusch. Specifically they consider two discretisations resulting in stiffness matrices A{sub N} and A{sub n}, of size N and n respectively, where N > n, for both a model problem and the geological model. They perform a number of conjugate gradient steps on the fine grid, ie using A{sub N}, followed by an exact coarse grid solve, using A{sub n}, and then update the fine grid solution, the exact coarse grid solve being done using a frontal method factorisation of A{sub n}. Note that in the context of the standard two grid method this is equivalent to using conjugate gradients as a fine grid smoothing step. Experimental results are presented to show the superiority of the two grid iteration method over the polynomial preconditioned conjugate gradient method.

  16. Simulation of Partially Saturated - Saturated Flow in the Caspar Creek E-Road Groundwater System

    Science.gov (United States)

    Fisher, J.; Fisher, J.

    2001-12-01

    Over the past decade, the U.S. Forest Service has monitored the subsurface hillslope flow of the E-Road swale. The swale is located in the Caspar Creek watershed near Fort Bragg, California. In hydrologic year 1990 a logging road was built across the middle section of the hillslope followed by a total clearcut of the area during the following year. Development of the logging road has resulted in a large build up of subsurface waters upslope of the road. The increase in pore pressures behind the road is of major concern for slope stability and road failure. A conceptual model is developed to describe the movement of water within the E-Road groundwater system. The two-dimensional SUTRA model is used to describe both saturated and partially saturated flow within the system. SUTRA utilizes a finite element and integrated finite difference method to approximate the governing equation for flow. The model appears to reproduce the uniquely different frequency responses within the E-Road groundwater system. A comparison of simulated and historical piezometric responses demonstrates the model's inability to reproduce historical drainage rates. The low rates of simulated drainage are attributed to the absence of pipeflow within the model. Finally, road consolidation is associated with increased water pressures beneath the road bed.

  17. MODELING ON THE CYCLIC OPERATION OF STANDING COLUMN WELLS UNDER REGIONAL GROUNDWATER FLOW*

    Institute of Scientific and Technical Information of China (English)

    LEE Kun Sang

    2011-01-01

    Coupled hydrogeological-thermal simulation of the Standing Column Well (SCW) system is essential to provide an optimized configuration and operation schedule for boreholes on the site.This paper presents numerical investigations and thermo-hydraulic evaluation of standing column well system operating under cyclic flow regime.A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the heat exchange in the ground.The model includes the effects of convective and conductive heat transfer, heat loss to the adjacent confining strata, and hydraulic anisotropy.The operation scenario consists of cyclic injection and recovery and four periods per year to simulate the seasonal temperature conditions.For different parameters of the system, performances have been evaluated in terms of variations in recovery temperature.The calculated temperatures at the producing pipe are relatively constant within a certain range through the year and fluctuating quarterly a year.Pipe-to-pipe distance, injection/production rate, ground thickness, and permeability considered in the model are shown to impact the predicted temperature profiles at each stage and the recovery water temperature.The influence of pressure gradient, which determines the velocity of regional groundwater flow, is most substantial.

  18. Interpreting Variations in Groundwater Flows from Repeated Distributed Thermal Perturbation Tests.

    Science.gov (United States)

    Hausner, Mark B; Kryder, Levi; Klenke, John; Reinke, Richard; Tyler, Scott W

    2016-07-01

    To better understand the groundwater resources of southern Nye County, Nevada, a multipart distributed thermal perturbation sensing (DTPS) test was performed on a complex of three wells. These wells penetrate an alluvial aquifer that drains the Nevada National Security Site, and characterizing the hydraulic properties and flow paths of the regional groundwater flow system has proven very difficult. The well complex comprised one pumping well and two observation wells, both located 18 m from the pumping well. Using fiber-optic cables and line heaters, DTPS tests were performed under both stressed and unstressed conditions. Each test injects heat into the water column over a period of one to two days, and observes the rising temperature during heat injection and falling temperatures after heating ceases. Aquifer thermal properties are inferred from temperature patterns in the cased section of the wells, and fluxes through the 30-m screened section are estimated based on a model that incorporates conductive and advective heat fluxes. Vertical variations in flux are examined on a scale of tens of cm. The actively flowing zones of the aquifer change between the stressed and unstressed test, and anisotropy in the aquifer permeability is apparent from the changing fluxes between tests. The fluxes inferred from the DTPS tests are compared to solute tracer tests previously performed on the same site. The DTPS-based fluxes are consistent with the fastest solute transport observed in the tracer test, but appear to overestimate the mean flux through the system.

  19. Investigation of the effect of groundwater flow in a complex hydraulic situation

    Science.gov (United States)

    Simon, Szilvia; Balogh, Viktor; Tóth, Ádám; Mádl-Szönyi, Judit

    2016-04-01

    Groundwater flow systems are the subsurface elements of the hydrologic cycle, thus they have an important effect on surface water bodies and surface water-groundwater interaction processes. Moreover, groundwater flow systems are not simple, different driving forces govern and form different regimes with different behaviour. Their effects on surface systems differs, respectively. Based on this consideration, the characterization of the subsurface flow regimes and their operating mechanisms are crucial for the understanding of hydrological problems and situations at the surface. The Great Hungarian Plain can be handled as a natural laboratory, where several geological mechanisms act as groundwater driving forces. As a result, two main flow regimes, a gravity-driven, unconfined, and a confined, overpressured system could be separated (Tóth and Almási, 2001). The recharge and water budget of the systems, their spatial distribution, and their surface discharge features influence the possibilities of water withdrawal from them, their effect on the surface water bodies, vegetation, soil mechanisms and salinization etc. Numerical modelling with COMSOL Multiphysics was carried out for the Duna-Tisza Interfluve area of the Great Hungarian Plain, to characterize the two main flow regimes at three different scales. The aim of the study was to understand the flow distribution and their surface discharge character in quantitative way. The simulation was based on the understanding of the systems' operation from preproduction hydraulic head and pressure data analysis by Mádl-Szönyi and Tóth (2009). These data could serve as basis for the validation of the model. The results were interpreted and discussed focusing on the flow systems' possible influence on the surface salinization, lake water - groundwater interactions, inland water problems, land-use planning. It could be revealed that overpressured system is concentrated in the deep basin and the overpressure maintains

  20. Geomorphic, flood, and groundwater-flow characteristics of Bayfield Peninsula streams, Wisconsin, and implications for brook-trout habitat

    Science.gov (United States)

    Fitzpatrick, Faith A.; Peppler, Marie C.; Saad, David A.; Pratt, Dennis M.; Lenz, Bernard N.

    2015-01-01

    In 2002–03, the U.S. Geological Survey conducted a study of the geomorphic, flood, and groundwater-flow characteristics of five Bayfield Peninsula streams, Wisconsin (Cranberry River, Bark River, Raspberry River, Sioux River, and Whittlesey Creek) to determine the physical limitations for brook-trout habitat. The goals of the study were threefold: (1) to describe geomorphic characteristics and processes, (2) to determine how land-cover characteristics affect flood peaks, and (3) to determine how regional groundwater flow patterns affect base flow.

  1. Development of a functional relationship between port pressures and flow properties for the calibration and application of multihole probes to highly three-dimensional flows

    Energy Technology Data Exchange (ETDEWEB)

    Pisasale, A.J.; Ahmed, N.A. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, 2052, Sydney (Australia)

    2004-03-01

    It is common in the calibration of multihole probes to curve-fit the calibration data in order to determine a relationship between measured port pressures and flow properties. The parameters used in these techniques typically lack a theoretical background. In this article, a functional relationship is developed, based on theoretical considerations, that relates the port pressure directly to the flow properties and details a procedure that enables flow properties to be determined from the measured pressures of the multihole probe. The method is simple, easy to implement and provides a better understanding of the multihole probe operation in a three-dimensional flow. (orig.)

  2. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  3. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  4. MODELING OF RELATIONSHIP BETWEEN GROUNDWATER FLOW AND OTHER METEOROLOGICAL VARIABLES USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Şaban YURTÇU

    2006-02-01

    Full Text Available In this study, modeling of the effect of rainfall, flow and evaporation as independent variables on the change of underground water levels as dependent variables were investigated by fuzzy logic (FL. In the study, total 396 values taken from six observation stations belong to Afyon inferior basin in Akarçay from 1977 to 1989 years were used. Using the monthly average values of stations, the change of underground water level was modeled by FL. It is observed that the results obtained from FL and the observations are compatible with each other. This shows FL modeling can be used to estimate groundwater levels from the appropriate meteorological value.

  5. Numerical simulation of seepage flow field in groundwater source heat pump system and its influence on temperature field

    Institute of Scientific and Technical Information of China (English)

    Jihua HU; Yanjun ZHANG; Danyan DU; Gang WU; Ziwang YU; Chen WANG; Fuquan NI

    2008-01-01

    Energy utilization in the aquifers is a new technology closely related to development of heat pump technique. It is significant for the flow distribution to be predicted in the aquifer surrounding the Groundwater Source Heat Pump System (GSHPS). The authors presented a new concept of "flow transfixion" by analyzing general features of aquifers, and then discussed interaction of the flow transfixion with the heat transfixion, which has practical significance to projects. A numerical model of groundwater flow was established based on the basic tenets of water-heat transferring in the aquifer. On this basis the flow field and the temperature field of GSHPS for a site in Shenyang City were numerically simulated. The basis of the flow transfixion was obtained; it was discussed for the influence of the flow transfixion on the heat transfixion. To a certain extent, the study offers some reference for the projects' design of GSHP in the studied area.

  6. Analysis of Aquifer Response, Groundwater Flow, and PlumeEvolution at Site OU 1, Former Fort Ord, California

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.

    2005-02-24

    This report presents a continuation from Oldenburg et al. (2002) of analysis of the hydrogeology, In-Situ Permeable Flow Sensor (ISPFS) results, aquifer response, and changes in the trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County. Fuels and solvents were burned on a portion of OU 1 called the Fire Drill Area (FDA) during airport fire suppression training between 1962 and 1985. This activity resulted in soil and groundwater contamination in the unconfined A-aquifer. In the late 1980's, soil excavation and bioremediation were successful in remediating soil contamination at the site. Shortly thereafter, a groundwater pump, treat, and recharge system commenced operation. This system has been largely successful at remediating groundwater contamination at the head of the groundwater plume. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In the analyses presented here, we augment our prior work (Oldenburg et al., 2002) with new information including treatment-system totalizer data, recent water-level and chemistry data, and data collected from new wells to discern trends in contaminant migration and groundwater flow that may be useful for ongoing remediation efforts. Some conclusions from the prior study have been modified based on these new analyses, and these are pointed out clearly in this report.

  7. Effects of geological structures on groundwater flow and quality in hardrock regions of northern Tirunelveli district, southern India

    Indian Academy of Sciences (India)

    M Senthilkumar; R Arumugam; D Gnanasundar; D S C Thambi; E Sampath Kumar

    2015-03-01

    Geological and structural influences on groundwater flow and quality were evaluated in the present study in the hardrock regions of Tirunelveli District, southern India. Groundwater is a major source of freshwater in this region to cater to the requirements of domestic and agricultural activity, as there are no surface water resources. Geologically, the area is characterized by charnockites and garnetiferous biotite gneiss. Groundwater in this region is found to occur in the weathered portion under unconfined condition and in fractured/fissured portions under unconfined to semi-confined condition. Existence of deep-seated fractures are minimal. Lineaments/dykes play a major role in the occurrence and movement of groundwater in the region. Lineaments/dykes of the study area can be broadly divided into two types: north–south and west–east oriented structures. Analysis and field observations revealed that the north–south dykes act as a barrier of groundwater while the west–east oriented structures behave as a carrier of groundwater. Both quality and quantity of groundwater is different on the upstream and downstream sides of the dyke. Hence, it is conclusive that the west–east oriented dykes in this region are highly potential and act as a conduit for groundwater movement from recharge areas to the discharge area.

  8. A novel method for the in situ calibration of flow effects on a phosphate passive sampler.

    Science.gov (United States)

    Sara O'Brien, Dominique; Chiswell, Barry; Mueller, Jochen F

    2009-01-01

    Monitoring of nutrients including phosphate in the aquatic environment remains a challenge. In the last decade passive sampling techniques have been developed that facilitates the time integrated monitoring of phosphate (P) through the use of an iron hydroxide (ferrihydrite) to sequester dissolved phosphate from solution. These methods rely on established techniques to negate the effects of flow (and associated turbulence) and control the rate at which chemicals accumulate within passive samplers. In this study we present a phosphate sampler within which a suspension of ferrihydrite is contained behind a commercially available membrane. Accumulation of dissolved phosphates into the P-sampler is governed by the rate at which ions are diffusing through the membrane and the water boundary layer (WBL). As the WBL changes subject to flow we have adopted an in situ calibration technique based on the dissolution of gypsum to predict the change in the rate of uptake dependent on flow. Here we demonstrate that the loss of gypsum from the passive flow monitor (PFM) can be used to predict the sampling rate (the volume of water extracted per day) for phosphate as a function of water velocity. The outcome of this study presents a new in-field tool for more accurate prediction of the effect of flow/turbulence on the uptake kinetics into passive samplers that is controlled by the diffusion of the chemical of interest through the stagnant water boundary layer.

  9. Application of a fully-integrated groundwater-surface water flow model in municipal asset management

    Science.gov (United States)

    Bowman, L. K.; Unger, A.; Jones, J. P.

    2014-12-01

    Access to affordable potable water is critical in the development and maintenance of urban centres. Given that water is a public good in Canada, all funds related to operation and maintenance of the drinking water and wastewater networks must come from consumers. An asset management system can be put in place by municipalities to more efficiently manage their water and wastewater distribution system to ensure proper use of these funds. The system works at the operational, tactical, and strategic levels, thus ensuring optimal scheduling of operation and maintenance activities, as well as prediction of future water demand scenarios. At the operational level, a fully integrated model is used to simulate the groundwater-surface water interaction of the Laurel Creek Watershed, of which 80% is urbanized by the City of Waterloo. Canadian municipalities typically lose 13% of their potable water through leaks in watermains and sanitary sewers, and sanitary sewers often generate substantial inflows from fractures in pipe walls. The City of Waterloo sanitary sewers carry an additional 10,000 cubic meters of water to wastewater treatment plants. Therefore, watermain and sanitary sewers present a significant impact on the groundwater-surface water interaction, as well as the affordability of the drinking water and wastewater networks as a whole. To determine areas of concern within the network, the integrated groundwater-surface water model also simulates flow through the City of Waterloo's watermain and sanitary sewer networks. The final model will be used to assess the interaction between measured losses of water from the City of Waterloo's watermain system, infiltration into the sanitary sewer system adjacent to the watermains, and the response of the groundwater system to deteriorated sanitary sewers or to pipes that have been recently renovated. This will ultimately contribute to the City of Waterloo's municipal asset management plan.

  10. MODFLOW-NWT groundwater flow model used to evaluate conditions in the Northern High Plains Aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming: U.S. Geological Survey data release

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional groundwater flow model was developed to characterize groundwater resources and the interaction of groundwater with streams and other hydrologic...

  11. Unsaturated Groundwater Flow Beneath Upper Mortandad Canyon, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dander, David Carl [Univ. of Arizona, Tucson, AZ (United States)

    1998-10-15

    Mortandad Canyon is a discharge site for treated industrial effluents containing radionuclides and other chemicals at Los Alamos National Laboratory, New Mexico. This study was conducted to develop an understanding of the unsaturated hydrologic behavior below the canyon floor. The main goal of this study was to evaluate the hypothetical performance of the vadose zone above the water table. Numerical simulations of unsaturated groundwater flow at the site were conducted using the Finite Element Heat and Mass Transfer (FEHM) code. A two-dimensional cross-section along the canyon's axis was used to model flow between an alluvial groundwater system and the regional aquifer approximately 300 m below. Using recharge estimated from a water budget developed in 1967, the simulations showed waters from the perched water table reaching the regional aquifer in 13.8 years, much faster than previously thought. Additionally, simulations indicate that saturation is occurring in the Guaje pumice bed an d that the Tshirege Unit 1B is near saturation. Lithologic boundaries between the eight materials play an important role in flow and solute transport within the system. Horizontal flow is shown to occur in three thin zones above capillary barriers; however, vertical flow dominates the system. Other simulations were conducted to examine the effects of changing system parameters such as varying recharge inputs, varying the distribution of recharge, and bypassing fast-path fractured basalt of uncertain extent and properties. System sensitivity was also explored by changing model parameters with respect to size and types of grids and domains, and the presence of dipping stratigraphy.

  12. Three-dimensional model for multi-component reactive transport with variable density groundwater flow

    Science.gov (United States)

    Mao, X.; Prommer, H.; Barry, D.A.; Langevin, C.D.; Panteleit, B.; Li, L.

    2006-01-01

    PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. ?? 2004 Elsevier Ltd. All rights reserved.

  13. Accelerating groundwater flow simulation in MODFLOW using JASMIN-based parallel computing.

    Science.gov (United States)

    Cheng, Tangpei; Mo, Zeyao; Shao, Jingli

    2014-01-01

    To accelerate the groundwater flow simulation process, this paper reports our work on developing an efficient parallel simulator through rebuilding the well-known software MODFLOW on JASMIN (J Adaptive Structured Meshes applications Infrastructure). The rebuilding process is achieved by designing patch-based data structure and parallel algorithms as well as adding slight modifications to the compute flow and subroutines in MODFLOW. Both the memory requirements and computing efforts are distributed among all processors; and to reduce communication cost, data transfers are batched and conveniently handled by adding ghost nodes to each patch. To further improve performance, constant-head/inactive cells are tagged and neglected during the linear solving process and an efficient load balancing strategy is presented. The accuracy and efficiency are demonstrated through modeling three scenarios: The first application is a field flow problem located at Yanming Lake in China to help design reasonable quantity of groundwater exploitation. Desirable numerical accuracy and significant performance enhancement are obtained. Typically, the tagged program with load balancing strategy running on 40 cores is six times faster than the fastest MICCG-based MODFLOW program. The second test is simulating flow in a highly heterogeneous aquifer. The AMG-based JASMIN program running on 40 cores is nine times faster than the GMG-based MODFLOW program. The third test is a simplified transient flow problem with the order of tens of millions of cells to examine the scalability. Compared to 32 cores, parallel efficiency of 77 and 68% are obtained on 512 and 1024 cores, respectively, which indicates impressive scalability.

  14. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  15. Local vs. Regional Groundwater Flow Delineation from Stable Isotopes at Western North America Springs.

    Science.gov (United States)

    Springer, Abraham E; Boldt, Elizabeth M; Junghans, Katie M

    2017-01-01

    The recharge location for many springs is unknown because they can be sourced from proximal, shallow, atmospheric sources or long-traveled, deep, regional aquifers. The stable isotope ((18) O and (2) H) geochemistry of springs water can provide cost-effective indications of relative flow path distance without the expense of drilling boreholes, conducting geophysical studies, or building groundwater flow models. Locally sourced springs generally have an isotopic signature similar to local precipitation for that region and elevation. Springs with a very different isotopic composition than local meteoric inputs likely have non-local recharge, representing a regional source. We tested this local vs. regional flow derived hypothesis with data from a new, large springs isotopic database from studies across Western North America in Arizona, Nevada, and Alberta. The combination of location-specific precipitation data with stable isotopic groundwater data provides an effective method for flow path determination at springs. We found springs in Arizona issue from a mix of regional and local recharge sources. These springs have a weak elevation trend across 1588 m of elevation where higher elevation springs are only slightly more depleted than low elevation springs with a δ(18) O variation of 5.9‰. Springs sampled in Nevada showed a strong elevation-isotope relationship with high-elevation sites discharging depleted waters and lower elevation springs issuing enriched waters; only a 2.6‰ difference exists in (18) O values over an elevation range of more than 1500 m. Alberta's springs are mostly sourced from local flow systems and show a moderate elevation trend of 1200 m, but the largest range in δ(18) O, 7.1‰.

  16. Taking into account the temporal variation of hydraulic conductivity when calibrating overland flow models on tilled fields.

    Science.gov (United States)

    Chahinian, N.; Andrieux, P.; Moussa, R.; Voltz, M.

    2003-04-01

    Tillage operations are known to change the structure of agricultural soils. In this paper we seek a calibration methodology to take into account the impact of tillage on overland flow simulation at the scale of a tilled field located in southern France. The study site is a 3240 m2 vineyard equipped with a Venturi flume and a tipping bucket rain gauge. 20 monitored rainfall events were used for the study, equally divided between calibration and validation sets. The overland flow model used consists of a modified Green &Ampt equation to simulate infiltration, a surface detention module, and an overland flow routing module based on the unit hydrograph concept. The model parameters that were calibrated for each event are the saturated hydraulic conductivity and the random roughness. The calibrated Ks values decreased monotonously according to the total amount of rainfall since tillage. No clear relationship was observed between the random roughness and cumulated rainfall. A regression curve was fitted to the calibrated Ks values. This curve was then used to determine Ks values for any rainfall event considering the total rainfall since tillage. Fairly good agreement was observed between the simulated and measured hydrographs of the calibration set. The validation results were relatively poorer but remain satisfactory given the uncertainties related to the initial soil moisture conditions. The calibration methodology developed seems robust and may be transposed to other sites.

  17. Unsaturated-zone fast-path flow calculations for Yucca Mountain groundwater travel time analyses (GWTT-94)

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, B.W.; Altman, S.J. [Sandia National Labs., Albuquerque, NM (United States); Robey, T.H. [Spectra Research Institute, Albuquerque, NM (United States)] [and others

    1995-08-01

    Evaluation of groundwater travel time (GWTT) is required as part of the investigation of the suitability of Yucca Mountain as a potential high-level nuclear-waste repository site. The Nuclear Regulatory Commission`s GWTT regulation is considered to be a measure of the intrinsic ability of the site to contain radionuclide releases from the repository. The work reported here is the first step in a program to provide an estimate of GWTT at the Yucca Mountain site in support of the DOE`s Technical Site Suitability and as a component of a license application. Preliminary estimation of the GWTT distribution in the unsaturated zone was accomplished using a numerical model of the physical processes of groundwater flow in the fractured, porous medium of the bedrock. Based on prior investigations of groundwater flow at the site, fractures are thought to provide the fastest paths for groundwater flow; conditions that lead to flow in fractures were investigated and simulated. Uncertainty in the geologic interpretation of Yucca Mountain was incorporated through the use of geostatistical simulations, while variability of hydrogeologic parameters within each unit was accounted for by the random sampling of parameter probability density functions. The composite-porosity formulation of groundwater flow was employed to simulate flow in both the matrix and fracture domains. In this conceptualization, the occurrence of locally saturated conditions within the unsaturated zone is responsible for the initiation of fast-path flow through fractures. The results of the GWTT-94 study show that heterogeneity in the hydraulic properties of the model domain is an important factor in simulating local regions of high groundwater saturation. Capillary-pressure conditions at the surface boundary influence the extent of the local saturation simulated.

  18. Simulation of the effects of rainfall and groundwater use on historical lake water levels, groundwater levels, and spring flows in central Florida

    Science.gov (United States)

    O'Reilly, Andrew M.; Roehl, Edwin A.; Conrads, Paul A.; Daamen, Ruby C.; Petkewich, Matthew D.

    2014-01-01

    The urbanization of central Florida has progressed substantially in recent decades, and the total population in Lake, Orange, Osceola, Polk, and Seminole Counties more than quadrupled from 1960 to 2010. The Floridan aquifer system is the primary source of water for potable, industrial, and agricultural purposes in central Florida. Despite increases in groundwater withdrawals to meet the demand of population growth, recharge derived by infiltration of rainfall in the well-drained karst terrain of central Florida is the largest component of the long-term water balance of the Floridan aquifer system. To complement existing physics-based groundwater flow models, artificial neural networks and other data-mining techniques were used to simulate historical lake water level, groundwater level, and spring flow at sites throughout the area. Historical data were examined using descriptive statistics, cluster analysis, and other exploratory analysis techniques to assess their suitability for more intensive data-mining analysis. Linear trend analyses of meteorological data collected by the National Oceanic and Atmospheric Administration at 21 sites indicate 67 percent of sites exhibited upward trends in air temperature over at least a 45-year period of record, whereas 76 percent exhibited downward trends in rainfall over at least a 95-year period of record. Likewise, linear trend analyses of hydrologic response data, which have varied periods of record ranging in length from 10 to 79 years, indicate that water levels in lakes (307 sites) were about evenly split between upward and downward trends, whereas water levels in 69 percent of wells (out of 455 sites) and flows in 68 percent of springs (out of 19 sites) exhibited downward trends. Total groundwater use in the study area increased from about 250 million gallons per day (Mgal/d) in 1958 to about 590 Mgal/d in 1980 and remained relatively stable from 1981 to 2008, with a minimum of 559 Mgal/d in 1994 and a maximum of 773

  19. Bias and Uncertainty in Regression-Calibrated Models of Groundwater Flow in Heterogeneous Media

    DEFF Research Database (Denmark)

    Cooley, R.L.; Christensen, Steen

    2006-01-01

    of the approximate inputs is in error with respect to the same model function written in terms of β, f(β), which is assumed to be nearly exact. The difference f(β) – f(γθ*), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too......, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(β) and f(γθ*) are small, then most of the biases are small and the correction factors...... are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is large to test robustness of the methodology. Numerical results conform with the theoretical analysis....

  20. Evaluating least absolute deviation regression as an inverse model in groundwater flow calibration

    Science.gov (United States)

    Huddleston, John Matthew

    Though information regarding children's mental health is increasing, and we know that approximately 20% of children meet criteria for a mental disorder, little is known about the characteristics of the child client population at community mental health clinics. This study is an exploratory analysis of the demographic and treatment characteristics of the child client population at a psychology training clinic/community mental health center. Demographic and treatment information is presented and compared across various service categories as well as diagnostic categories. Comparisons between those served during the first six years and those served during the second six years of the study period are also made. Results are discussed in terms of generalizability of results as well as available information from the literature.

  1. Influence of groundwater flow on the estimation of subsurface thermal parameters

    Science.gov (United States)

    Verdoya, Massimo; Chiozzi, Paolo

    2016-09-01

    We investigated the influence of groundwater flow on the thermal tests performed in borehole heat exchangers to infer the underground thermal properties. Temperature-time signals were simulated with a moving line source (MLS) model under different hypotheses of Darcy velocity. Periodic and random noise was included in the synthetic data obtained with this model in order to mimic high-frequency disturbances caused by several possible sources (e.g. equipment instability and changes in environmental conditions during the experiment) that often occur in real signals. The subsurface thermal conductivity, the Darcy velocity and the borehole thermal resistance were inferred by minimising the root-mean-square error between the synthetic dataset and the model. The calculated thermal and hydraulic parameters were consistent with the "a priori" values. The optimisation procedure results were then tested with the infinite line source (ILS) model. For a Darcy velocity exceeding 10-7 m s-1, ILS largely overestimates thermal conductivity. The approach relying on the MLS model was finally tested with real temperature-time data and produced reliable estimates of thermal conductivity, Darcy velocity and borehole thermal resistance. The inferred groundwater flow was cross checked by means of an independent method based on the analysis of temperature-depth logs recorded under thermal equilibrium conditions. Such a test validates the Darcy velocity inferred with the MLS approach.

  2. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    Energy Technology Data Exchange (ETDEWEB)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  3. Automatic calibration of a global flow routing model in the Amazon basin using virtual SWOT data

    Science.gov (United States)

    Rogel, P. Y.; Mouffe, M.; Getirana, A.; Ricci, S. M.; Lion, C.; Mognard, N. M.; Biancamaria, S.; Boone, A.

    2012-12-01

    The Surface Water and Ocean Topography (SWOT) wide swath altimetry mission will provide a global coverage of surface water elevation, which will be used to help correct water height and discharge prediction from hydrological models. Here, the aim is to investigate the use of virtually generated SWOT data to improve water height and discharge simulation using calibration of model parameters (like river width, river depth and roughness coefficient). In this work, we use the HyMAP model to estimate water height and discharge on the Amazon catchment area. Before reaching the river network, surface and subsurface runoff are delayed by a set of linear and independent reservoirs. The flow routing is performed by the kinematic wave equation.. Since the SWOT mission has not yet been launched, virtual SWOT data are generated with a set of true parameters for HyMAP as well as measurement errors from a SWOT data simulator (i.e. a twin experiment approach is implemented). These virtual observations are used to calibrate key parameters of HyMAP through the minimization of a cost function defining the difference between the simulated and observed water heights over a one-year simulation period. The automatic calibration procedure is achieved using the MOCOM-UA multicriteria global optimization algorithm as well as the local optimization algorithm BC-DFO that is considered as a computational cost saving alternative. First, to reduce the computational cost of the calibration procedure, each spatially distributed parameter (Manning coefficient, river width and river depth) is corrupted through the multiplication of a spatially uniform factor that is the only factor optimized. In this case, it is shown that, when the measurement errors are small, the true water heights and discharges are easily retrieved. Because of equifinality, the true parameters are not always identified. A spatial correction of the model parameters is then investigated and the domain is divided into 4 regions

  4. Groundwater Flow Systems and Their Response to Climate Change: A Need for a Water-System View Approach

    Directory of Open Access Journals (Sweden)

    Joel J. Carrillo-Rivera

    2012-01-01

    Full Text Available Problem statement: The interest in early hydrogeological studies was the aquifer unit, as it is the physical media that stores and permits groundwater transfers from the recharge zone to the discharge zone, making groundwater available to boreholes for water extraction. Approach: Recently, the aquifer concept has been complemented by the groundwater flow system theory, where groundwater may be defined by local, intermediate and regional flow systems. This implies that groundwater may travel from one aquifer unit to another aquifer unit (or more located above or below the former. Water in a local flow system takes months or several years to travel from the recharge to the discharge zone. These flows usually transfer the best natural quality water, so a reduction in precipitation would lessen recharge and diminish stored water, making them more vulnerable to contamination and variability in climatic conditions. Thus, there is a need to define local flows and to enhance actions to protect them from contamination and inefficient extraction. Results: In contrast to local flows, intermediate and regional flows travel from a region, or country, into another, with their recharge processes usually taking place in a zone located far away from the discharge zone (natural or by boreholes. There is a need of groundwater flow systems evaluation by means of an integrated wide system-view analysis of partial evidence represented by surface (soil and vegetation covers as well as hydraulic, isotopic and chemical groundwater characterization in the related geological media where the depth of actual basement rock is paramount as well as discharge areas. The flow system definition may assist in extraction management strategies to control related issues as subsidence, obtained the water quality change, desiccation of springs and water bodies, soil erosion, flooding response, contamination processes in recharge areas, among others; many of which could be efficiently

  5. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  6. Evaluation of the groundwater flow model for southern Utah and Goshen Valleys, Utah, updated to conditions through 2011, with new projections and groundwater management simulations

    Science.gov (United States)

    Brooks, Lynette E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Southern Utah Valley Municipal Water Association, updated an existing USGS model of southern Utah and Goshen Valleys for hydrologic and climatic conditions from 1991 to 2011 and used the model for projection and groundwater management simulations. All model files used in the transient model were updated to be compatible with MODFLOW-2005 and with the additional stress periods. The well and recharge files had the most extensive changes. Discharge to pumping wells in southern Utah and Goshen Valleys was estimated and simulated on an annual basis from 1991 to 2011. Recharge estimates for 1991 to 2011 were included in the updated model by using precipitation, streamflow, canal diversions, and irrigation groundwater withdrawals for each year. The model was evaluated to determine how well it simulates groundwater conditions during recent increased withdrawals and drought, and to determine if the model is adequate for use in future planning. In southern Utah Valley, the magnitude and direction of annual water-level fluctuation simulated by the updated model reasonably match measured water-level changes, but they do not simulate as much decline as was measured in some locations from 2000 to 2002. Both the rapid increase in groundwater withdrawals and the total groundwater withdrawals in southern Utah Valley during this period exceed the variations and magnitudes simulated during the 1949 to 1990 calibration period. It is possible that hydraulic properties may be locally incorrect or that changes, such as land use or irrigation diversions, occurred that are not simulated. In the northern part of Goshen Valley, simulated water-level changes reasonably match measured changes. Farther south, however, simulated declines are much less than measured declines. Land-use changes indicate that groundwater withdrawals in Goshen Valley are possibly greater than estimated and simulated. It is also possible that irrigation

  7. Simulation of the shallow groundwater-flow system near Mole Lake, Forest County, Wisconsin

    Science.gov (United States)

    Fienen, Michael N.; Juckem, Paul F.; Hunt, Randall J.

    2011-01-01

    The shallow groundwater system near Mole Lake, Forest County, Wis. was simulated using a previously calibrated regional model. The previous model was updated using newly collected water-level measurements and refinements to surface-water features. The updated model was then used to calculate the area contributing recharge for one existing and two proposed pumping locations on lands of the Sokaogon Chippewa Community. Delineated 1-, 5-, and 10-year areas contributing recharge for existing and proposed wells extend from the areas of pumping to the northeast of the pumping locations. Steady-state pumping was simulated for two scenarios: a base pumping scenario using pumping rates that reflect what the Tribe expects to pump and a high pumping scenario, in which the rate was set to the maximum expected from wells installed in this area. In the base pumping scenario, pumping rates of 32 gallons per minute (gal/min; 46,000 gallons per day (gal/d)) from the existing well and 30 gal/min (43,000 gal/d) at each of the two proposed wells were simulated. The high pumping scenario simulated a rate of 70 gal/min (101,000 gal/d) from each of the three pumping wells to estimate of the largest areas contributing recharge that might be expected given what is currently known about the shallow groundwater system. The areas contributing recharge for both the base and high pumping scenarios did not intersect any modeled surface-water bodies; however, the high pumping scenario had a larger areal extent than the base pumping scenario and intersected a septic separator.

  8. The deep hydrogeologic flow system underlying the Oak Ridge Reservation -- Assessing the potential for active groundwater flow and origin of the brine

    Energy Technology Data Exchange (ETDEWEB)

    Nativ, R. [Hebrew Univ. of Jerusalem (Israel). Dept. of Soil and Water Sciences; Halleran, A.; Hunley, A. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1997-08-01

    The deep hydrogeologic system underlying the Oak Ridge Reservation (ORR) contains contaminants such as radionuclides, heavy metals, nitrates, and organic compounds. The groundwater in the deep system is saline and has been considered to be stagnant in previous studies. This study was designed to address the following questions: is groundwater in the deep system stagnant; is contaminant migration controlled by diffusion only or is advection a viable mechanism; where are the potential outlet points? On the basis of existing and newly collected data, the nature of saline groundwater flow and potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial and temporal temperature variations at depth, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. The observations suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active, freshwater-bearing units. Influx of recent water does occur. Groundwater volumes involved in this flow are likely to be small. The origin of the saline groundwater was assessed by using existing and newly acquired chemical and isotopic data. The proposed model that best fits the data is modification of residual brine from which halite has been precipitated. Other models, such as ultrafiltration and halite dissolution, were also evaluated.

  9. A coupled groundwater-flow-modelling and vulnerability-mapping methodology for karstic terrain management

    Science.gov (United States)

    Kavouri, Konstantina P.; Karatzas, George P.; Plagnes, Valérie

    2017-02-01

    A coupled groundwater-flow-modelling and vulnerability-mapping methodology for the management of karst aquifers with spatial variability is developed. The methodology takes into consideration the duality of flow and recharge in karst and introduces a simple method to integrate the effect of temporal storage in the unsaturated zone. In order to investigate the applicability of the developed methodology, simulation results are validated against available field measurement data. The criteria maps from the PaPRIKa vulnerability-mapping method are used to document the groundwater flow model. The FEFLOW model is employed for the simulation of the saturated zone of Palaikastro-Chochlakies karst aquifer, in the island of Crete, Greece, for the hydrological years 2010-2012. The simulated water table reproduces typical karst characteristics, such as steep slopes and preferred drain axes, and is in good agreement with field observations. Selected calculated error indicators—Nash-Sutcliffe efficiency (NSE), root mean squared error (RMSE) and model efficiency (E')—are within acceptable value ranges. Results indicate that different storage processes take place in different parts of the aquifer. The north-central part seems to be more sensitive to diffuse recharge, while the southern part is affected primarily by precipitation events. Sensitivity analysis is performed on the parameters of hydraulic conductivity and specific yield. The methodology is used to estimate the feasibility of artificial aquifer recharge (AAR) at the study area. Based on the developed methodology, guidelines were provided for the selection of the appropriate AAR scenario that has positive impact on the water table.

  10. Scarce data in hydrology and hydrogeology: Estimation and modelling of groundwater recharge for a numerical groundwater flow model in a semi-arid to arid catchment

    Science.gov (United States)

    Gräbe, Agnes; Schulz, Stephan; Rödiger, Tino; Kolditz, Olaf

    2013-04-01

    Water resources are strongly limited in semi-arid to arid regions and groundwater constitutes often the only possibility for fresh water for the population and industry. An understanding of the hydrological processes and the estimation of magnitude of water balance parameters also includes the knowledge of processes of groundwater recharge. For the sustainable management of water resources, it is essential to estimate the potential groundwater recharge under the given climatic conditions. We would like to present the results of a hydrological model, which is based on the HRU- concept and intersected the parameters of climatic conditions, topography, geology, soil, vegetation and land use to calculate the groundwater recharge. This model was primarily developed for humid area applications and has now been adapted to the regional conditions in the semi-arid to arid region. It was quite a challenge to understand the hydrological processes in the semi-arid to arid study area and to implement those findings (e.g. routing [Schulz (in prep.)]) into the model structure. Thus we compared the existing approaches for groundwater recharge estimations (chloride mass balance [Marei et. al 2000], empirical relations such as rainfall and base flow-relation [Goldschmidt 1960; Guttman 2000; Hughes 2008; Issar 1993; Lerner 1990; De Vries et. al 2002]) with the results of our numerical model. References: De Vries, J. J., I. Simmers (2002): Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal (2002) 10: 5-17. DOI 10.1007/s10040-001-0171-7. Guttman, J., 2000. Multi-Lateral Project B: Hydrogeology of the Eastern Aquifer in the Judea Hills and Jordan Valley. Mekorot Water Company, Report 468, p. 36. Hughes, A. G., M. M. Mansour, N. S. Robins (2008): Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeology Journal (2008) 16: 845-854. DOI 10.1007/s10040-008-0273-6 Issar, A. S. (1993

  11. Deduction of groundwater flow regime in a basaltic aquifer using geochemical and isotopic data: The Golan Heights, Israel case study

    Science.gov (United States)

    Dafny, Elad; Burg, Avi; Gvirtzman, Haim

    2006-11-01

    SummaryGroundwater flow-paths through shallow-perch and deep-regional basaltic aquifers at the Golan Heights, Israel, are reconstructed by using groundwater chemical and isotopic compositions. Groundwater chemical composition, which changes gradually along flow-paths due to mineral dissolution and water-rock interaction, is used to distinguish between shallow-perched and deep-regional aquifers. Groundwater replenishment areas of several springs are identified based on the regional depletion in rainwater δ18O values as a function of elevation (-0.25‰ per 100 m). Tritium concentrations assist in distinguishing between pre-bomb and post-bomb recharged rainwater. It was found that waters emerging through the larger springs are lower in δ18O than surrounding meteoric water and poor in tritium; thus, they are inferred to originate in high-elevation regions up to 20 km away from their discharge points and at least several decades ago. These results verify the numerically simulated groundwater flow field proposed in a previous study, which considered the geological configuration, water mass balance and hydraulic head spatial distribution.

  12. Estimated potentiometric surface by D'Agnese and others (1998), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — D'Agnese and others (1998) developed a potentiometric surface to conceptualize the regional ground-water flow system and to construct numerical flow models of the...

  13. Three-dimensional mathematical model to simulate groundwater flow in the lower Palar River basin, southern India

    Science.gov (United States)

    Senthilkumar, M.; Elango, L.

    A three-dimensional mathematical model to simulate regional groundwater flow was used in the lower Palar River basin, in southern India. The study area is characterised by heavy ion of groundwater for agricultural, industrial and drinking water supplies. There are three major pumping stations on the riverbed apart from a number of wells distributed over the area. The model simulates groundwater flow over an area of about 392 km2 with 70 rows, 40 columns, and two layers. The model simulated a transient-state condition for the period 1991-2001. The model was calibrated for steady- and transient-state conditions. There was a reasonable match between the computed and observed heads. The transient model was run until the year 2010 to forecast groundwater flow under various scenarios of overpumping and less recharge. Based on the modelling results, it is shown that the aquifer system is stable at the present rate of pumping, excepting for a few locations along the coast where the groundwater head drops from 0.4 to 1.81 m below sea level during the dry seasons. Further, there was a decline in the groundwater head by 0.9 to 2.4 m below sea level in the eastern part of the area when the aquifer system was subjected to an additional groundwater withdrawal of 2 million gallons per day (MGD) at a major pumping station. Les mod