WorldWideScience

Sample records for calhoun station unit

  1. FIND: Fort Calhoun Station, Unit 2

    International Nuclear Information System (INIS)

    Williams, W.H.

    1976-07-01

    This index is presented for the microfiche material of Docket 50548 which concerns the application of Omaha Public Power District to build and operate Fort Calhoun Station, Unit 2. The information includes both application and review material dated from September 1975 through March 1976. There are five amendments to the PSAR and one supplement to the ER which have been incorporated by reference into the respective reports. Docket RESAR-3 is used as a reference for portions of the PSAR

  2. Fort Calhoun Station, Unit 2. License application, PSAR, general information

    International Nuclear Information System (INIS)

    1975-09-01

    Application for construction and operating licenses for Calhoun-2 Reactor is presented. Financial data concerning the Omaha Public Power District and the Nebraska Public Power District are included. (DCC)

  3. Liquid radwaste processing history at Fort Calhoun Nuclear Station

    International Nuclear Information System (INIS)

    Bilau, A.; Rutar, F.

    1989-01-01

    This report presents a historical perspective of liquid radwaste processing at the Fort Calhoun Unit 1 Nuclear Power Station, located in east central Nebraska. Of particular interest is the textual and graphical comparison of the operational implications of the various waste processing methods employed in the last ten years at the Fort Calhoun Station. Fort Calhoun's waste collection and processing systems are described in detail. These process systems include evaporation and solidification employing an in-plant drum solidification system. This solidification system was later replaced with vendor solidification services which solidified wastes in large liners. Ultimately, the plant converted its processing operation to ion exchange cleanup using ion selective media. The operational and economic impact of each of these process systems is discussed including overall costs, personnel exposure, capital expenditure requirements, burial volumes generated, maintenance and reliability assessments. Operational goals and performance criteria employed in the decision-making process for selection of the optimal technology are discussed, including the impact of various influent and effluent requirements

  4. Computerized training program usage at the Fort Calhoun Nuclear Power Station

    International Nuclear Information System (INIS)

    Ruzic, D.H.; Reed, W.H.; Lawton, R.K.; Fluehr, J.J.

    1987-01-01

    The increased US Nuclear Regulatory Commission and Institute of Nuclear Power Operations (INPO) interest in the nuclear power industry training programs resulted in the Omaha Public Power District staff at the Fort Calhoun Nuclear Power Station investigating the potential for computerizing their recently accredited training records, student training requirements, and the process of determining student certification status. Additional areas that were desirable were a computerized question data bank with random test generation, maintaining history of question usage, and tracking of the job task analysis process and course objectives. SCI Software's online personnel training information management system (OPTIM) was selected, subsequent to a bid evaluation, to provide these features while operating on the existing corporate IBM mainframe

  5. Fort Calhoun Station, Unit 1. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Net electrical power generated was 604,751.4 MHWH(e) with the reactor on line 2,049.9 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, abnormal occurrences, and environmental monitoring. (FS)

  6. Fort Calhoun Station, Unit 1. Annual operation report: January-December 1977 (including environmental report)

    International Nuclear Information System (INIS)

    1978-02-01

    Net electrical energy generated in 1977 was 2,922,683.7 MWH with the generator on line 6,959.8 hours. Information is presented concerning operations, power generation, shutdowns, maintenance, changes, tests, experiments, occupational personnel radiation exposures, and primary coolant chemistry. Data on radioactive effluent releases, meteorology, environmental monitoring, and potential radiation doses to individuals for July 7, 1977 to December 31, 1977 are also included

  7. 78 FR 66385 - Omaha Public Power District Fort Calhoun Station, Unit 1; Exemption

    Science.gov (United States)

    2013-11-05

    ... Nuclear Energy Institute (NEI) 06-11, ``Managing Personnel Fatigue at Nuclear Power Reactor Sites...), no environmental impact statement or environmental assessment is required to be prepared in..., regulations, and orders of the U.S. Nuclear Regulatory Commission (NRC) now or hereafter in effect. The...

  8. Fort Calhoun Station, Unit 1. Semiannual report, July--December 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated was 1,562,051.4 MWH(e) with the reactor on line 3,858.6 hrs. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, primary coolant, chemistry, occupational radiation exposure, release of radioactive materials, and environmental monitoring

  9. 78 FR 37592 - Omaha Public Power District, Fort Calhoun Station, Unit 1; Exemption

    Science.gov (United States)

    2013-06-21

    ... provide licensees flexibility in scheduling required days off when accommodating the more intense work... implement the less restrictive work-hour requirements of 10 CFR 26.205(d)(4) to allow flexibility in... requirements for maximum average work hours in 10 CFR 26.205(d)(7). However, 10 CFR 26.205(d)(4) provides that...

  10. 76 FR 63668 - Omaha Public Power District; Fort Calhoun Station, Unit 1; Exemption

    Science.gov (United States)

    2011-10-13

    ... emergency plans biennially with full participation by each offsite authority having a role under the... organization personnel are familiar with their duties and to test the adequacy of emergency plans. Additionally... emergency response organization personnel are familiar with their duties, to test the adequacy of emergency...

  11. 76 FR 63671 - Omaha Public Power District, Fort Calhoun Station, Unit 1; Exemption

    Science.gov (United States)

    2011-10-13

    ... significant effect on the quality of the human environment (January 3, 2011; 76 FR 187). This exemption is... Regulatory Commission. Michele G. Evans, Director, Division of Operating Reactor Licensing, Office of Nuclear...

  12. 75 FR 10835 - Omaha Public Power District, Fort Calhoun Station, Unit 1, Environmental Assessment and Finding...

    Science.gov (United States)

    2010-03-09

    ...). There will be no change to radioactive effluents that affect radiation exposures to plant workers and... to historical and cultural resources. There would be no impact to socioeconomic resources. Therefore...

  13. Technical evaluation report on the proposed amendment to the technical specifications on the reactor protection system and the engineered safety features actuation system for Ft. Calhoun, Unit No. 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the application to amend the Technical Specifications for the Ft. Calhoun Unit No. 1 Nuclear Generating Plant. The review criteria are based on the Technical Specifications of St. Lucie and Calvert Cliffs, IEEE Standards, Combustion Engineering Standard Technical Specifications, and the Code of Federal Regulations. The evaluation compares the submittal made by the licensee with the NRC staff position and the review criteria and presents the reviewer's conclusion on the acceptability of the application to amend the Technical Specifications

  14. An aerial radiological survey of the Fort Calhoun Nuclear Power Plant and surrounding area, Fort Calhoun, Nebraska

    International Nuclear Information System (INIS)

    1994-05-01

    An aerial radiological survey was conducted over the Fort Calhoun Nuclear Power Plant in Fort Calhoun, Nebraska, during the period June 19 through June 28, 1993. The survey was conducted at an altitude of 150 feet (46 meters) over a 25-square-mile (65-square-kilometer) area centered on the power station. The purpose of the survey was to document the terrestrial gamma radiation environment of the Fort Calhoun Nuclear Power Plant and surrounding area. The results of the aerial survey are reported as inferred gamma radiation exposure rates at 1 meter above ground level in the form of a contour map. Outside the plant boundary, exposure rates were found to vary between 6 and 12 microroentgens per hour and were attributed to naturally-occurring uranium, thorium, and potassium. The aerial data were compared to ground-based benchmark exposure rate measurements and radionuclide assays of soil samples obtained within the survey boundary. The ground-based measurements were found to be in good agreement with those inferred from the aerial measuring system. A previous survey was conducted on August 9 and 10, 1972, before the plant began operation. Exposure rates measured in both surveys were consistent with normal terrestrial background

  15. 2012 South Carolina DNR Lidar: Calhoun County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,300 square miles in Calhoun, Aiken, Barnwell, Edgefield, McCormick, and Abbeville counties in South Carolina. This metadata...

  16. Antenna unit and radio base station therewith

    Science.gov (United States)

    Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru

    2007-04-10

    Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.

  17. Information management needs for Fort Calhoun's design basis reconstitution project

    International Nuclear Information System (INIS)

    Beach, D.R.; Erickson, E.A.; Gambhir, S.K.; Parsons, R.D.

    1989-01-01

    While the need for information management is not new to the nuclear industry or Omaha Public Power District (OPPD), the interrelationship among design information, multiple systems, and design basis issues has necessitated the management of this information in new ways. The project team involved in the reconstitution of the design basis for OPPD's Fort Calhoun nuclear station has experienced the need for the developed effective methods for managing the vast amount of interrelated information associated with this effort. This management of information has been necessary to ensure that design basis documents (DBDs) adequately reflect the interrelated nature of component, system, and plant design; are complete and accurate; and are produced and maintained in a cost-effective manner. Fort Calhoun's aggressive design basis reconstitution project began in early 1987. The present scope of the project includes the production of 52 system and plant level DBDs; currently the project is ∼50% complete with DBDs in various stages of completion, from pilot DBDs through DBDs with approved formats, which have been issued for use. The experience in producing these documents has lead to a growing understanding of the special need for information management in each stage of the project. The development of the information tracking and management processes for the various stages of DBD development has proven to be cost-effective and gives a level of assurance that information has been included in the DBDs consistently and accurately

  18. 76 FR 40754 - Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units...

    Science.gov (United States)

    2011-07-11

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0100; Docket Nos. 50-413 and 50-414; Docket Nos. 50-369 and 50-370; Docket Nos. 50-269, 50-270, And 50-287] Duke Energy Carolinas, LLC Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3; Notice...

  19. Space vehicle field unit and ground station system

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2017-09-19

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  20. Station black out of Fukushima Daiichi Nuclear Power Station Unit 1 was not caused by tsunamis

    International Nuclear Information System (INIS)

    Ito, Yoshinori

    2013-01-01

    Station black out (SBO) of Fukushima Daiichi Nuclear Power Station Unit 1 would be concluded to be caused before 15:37 on March 11, 2011 because losses of emergency ac power A system was in 15:36 and ac losses of B system in 15:37 according to the data published by Tokyo Electric Power Co. (TEPCO) in May 10, 2013. Tsunami attacked the site of Fukushima Daiichi Nuclear Power Station passed through the position of wave amplitude meter installed at 1.5 km off the coast after 15:35 and it was also recognized tsunami arrived at the coast of Unit 4 sea side area around in 15:37 judging from a series of photographs taken from the south side of the site and general knowledge of wave propagation. From a series of photographs and witness testimony, tsunami didn't attack Fukushima Daiichi Nuclear Power Station uniformly and tsunami's arrival time at the site of Unit 1 would be far later than arrival time at the coast of Unit 4 sea side area, which suggested it would be around in 15:39. TEPCO insisted tsunami passed through 1.5 km off the coast around in 15:33 and clock of wave amplitude meter was incorrect, which might be wrong. Thus SBO of Fukushima Daiichi Nuclear Power Station Unit 1 occurred before tsunami's arrival at the site of Unit 1 and was not caused by tsunami. (T. Tanaka)

  1. Multi-Unit Aspects of the Pickering Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Morison, W. G. [Atomic Energy of Canada Ltd, Sheridan Park, ON (Canada)

    1968-04-15

    The Pickering nuclear generating station is located on the north shore of Lake Ontario, about 20 miles east of the city of Toronto, Canada. The station has been planned and laid out on an eight-unit station, four units of which have now been authorized for construction. Each of these four units consists of a single heavy-water moderated and cooled CANDU-type reactor and auxiliaries coupled to a single tandem compound turbine generator with a net output of approximately 500 MW(e). The units are identical and are scheduled to come into operation at intervals of one year from 1970 to 1973. The station has been planned with central facilities for: administration maintenance laboratories, stores, change rooms, decontamination and waste management services. A common control centre, cooling water intake and discharge system, and spent fuel storage bay for four units has been arranged. A feature of the multi-unit station is a common containment system. Cost savings in building a number of identical units on the same site result from a single exclusion area, shared engineering costs, equipment purchase contracts for four identical components, and efficient use of construction plant. Operating cost savings are anticipated in the use of a common operating and maintenance staff and spare parts inventory. The plant has been arranged to minimize problems of operating, commissioning and constructing units at the same time on the same site. The layout and construction sequence have been arranged so that the first unit can be commissioned and operated with little or no interference from the construction forces working on succeeding units. During the construction phase barriers will be erected in the common control centre between operating control equipment and that being installed. Operations and construction personnel will enter the plant by separate routes and work in areas separated by physical barriers. (author)

  2. 75 FR 8346 - Proposed CERCLA Administrative Settlement; Anderson-Calhoun Mine and Mill Site, Leadpoint, WA

    Science.gov (United States)

    2010-02-24

    ...-Calhoun Mine and Mill Site, Leadpoint, WA AGENCY: Environmental Protection Agency (EPA). ACTION: Notice...-Calhoun Mine and Mill Site in Leadpoint, Washington, with settling party Blue Tee Corporation. The... Anderson-Calhoun Mine and Mill Site in Leadpoint, Washington, EPA Docket No. CERCLA-10-2010-0105 and should...

  3. FIND: Douglas Point Nuclear Generating Station, Units 1 and 2

    International Nuclear Information System (INIS)

    Moore, M.M.

    1975-12-01

    This index is presented as a guide to microfiche items 1 through 136 in Docket 50448, which was assigned to Potomac Electric Power Company's Application for Licenses to construct and operate Douglas Point Nuclear Generating Station, Units 1 and 2. Information received from August, 1973 through July, 1975 is included

  4. Preoperation of Hamaoka Nuclear Power Station Unit No. 4

    International Nuclear Information System (INIS)

    Fukuyo, Tadashi; Kurata, Satoshi

    1994-01-01

    Chubu Electric Power Co. finished preoperation of Hamaoka Nuclear Power Station Unit No. 4 in September, 1993. Although unit 4 has the same reactor design as unit 3, its rated electrical output (1,137MW) is 37MW more than that of unit 3. This increase was achieved mainly by adopting a Moisture Separater Heater in the turbine system. We started preoperation of unit 4 in November 1992 and performed various tests at electrical outputs of 20%, 50%, 75%, and 100%. We finished preoperation without any scram or other major problems and obtained satisfactory results for the functions and performance of the plant. This paper describes the major results of unit 4 preoperation. (author)

  5. 76 FR 24538 - Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station...

    Science.gov (United States)

    2011-05-02

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-413 and 50-414; NRC-2011-0100; Docket Nos. 50-369 and 50-370; Docket Nos. 50-269, 50-270, and 50-287] Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; McGuire Nuclear Station, Units 1 and 2; Oconee Nuclear Station, Units 1, 2, and 3...

  6. Evaluation of River Bend Station Unit 1 Technical Specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-08-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the River Bend Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the River Bend T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The River Bend Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  7. Evaluation of Shoreham Nuclear Power Station, Unit 1 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-08-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Shoreham Nuclear Power Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumptions of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Shoreham T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Shoreham Nuclear Power Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  8. Evaluation of Waterford Steam Electric Station Unit 3 technical specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-09-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Waterford Steam Electric Station Unit 3 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the Waterford T/S. Several discrepancies were identified and subsequently resolved by the cognizant NRC reviewer. Pending completion of the resolutions noted in Part 3 of this report, the Waterford Steam Electric Station Unit 3 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  9. 76 FR 19148 - PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1...

    Science.gov (United States)

    2011-04-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311, 50-354; NRC-2009-0390 and NRC-2009-0391] PSEG Nuclear, LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Units 1 and 2..., DPR-70, and DPR-75 for an additional 20 years of operation for the Hope Creek Generating Station (HCGS...

  10. Concrete works in Igata Nuclear Power Station Unit-2

    International Nuclear Information System (INIS)

    Yanase, Hidemasa

    1981-01-01

    The construction of Igata Nuclear Power Station Unit-2 was started in February, 1978, and is scheduled to start the commercial operation in March, 1982. Construction works are to be finished by August, 1981. The buildings of Igata Nuclear Power Station are composed of large cross section concrete for the purpose of shielding and the resistance to earth quakes. In response to this, moderate heat Portland cement has been employed, and in particular, the heat of hydration has been controlled. In this report, also fine and coarse aggregates, admixtures and chemical admixtures, and further, the techniques to improve the quality are described. Concrete preparation plant was installed in the power station site. Fresh concrete was carried with agitator body trucks from the preparation plant to the unloading point, and from there with pump trucks. Placing of concrete was carried out, striving to obtain homogeneous and dense concrete by using rod type vibrators. Further, concrete was placed in low slump (8 - 15 cm) to reduce water per unit volume, and its temperature was also carefully controlled, e.g., cold water (temperature of mixing water was about 10 deg C) was used in summer season (end of June to end of September). As a result, the control target was almost satisfied. As for testing and inspection, visual appearance test was done as well as material testing in compliance with JIS and other standards. (Wakatsuki, Y.)

  11. Commerical electric power cost studies. Capital cost addendum multi-unit coal and nuclear stations

    International Nuclear Information System (INIS)

    1977-09-01

    This report is the culmination of a study performed to develop designs and associated capital cost estimates for multi-unit nuclear and coal commercial electric power stations, and to determine the distribution of these costs among the individual units. This report addresses six different types of 2400 MWe (nominal) multi-unit stations as follows: Two Unit PWR Station-1139 MWe Each, Two Unit BWR Station-1190 MWe Each, Two Unit High Sulfur Coal-Fired Station-1232 MWe Each, Two Unit Low Sulfur Coal-Fired Station-1243 MWe Each, Three Unit High Sulfur Coal-Fired Station-794 MWe Each, Three Unit Low Sulfur Coal-Fired Station-801 MWe Each. Recent capital cost studies performed for ERDA/NRC of single unit nuclear and coal stations are used as the basis for developing the designs and costs of the multi-unit stations. This report includes the major study groundrules, a summary of single and multi-unit stations total base cost estimates, details of cost estimates at the three digit account level and plot plan drawings for each multi-unit station identified

  12. 75 FR 36700 - Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit 1; Environmental...

    Science.gov (United States)

    2010-06-28

    ...; Three Mile Island Nuclear Station, Unit 1; Environmental Assessment and Finding of No Significant Impact... Company, LLC (the licensee), for operation of Three Mile Island Nuclear Station, Unit 1 (TMI-1), located... Three Mile Island Nuclear Station, Units 1 and 2, NUREG-0552, dated December 1972, and Generic...

  13. Poultry litter power station in the United Kingdom

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Poultry litter has presented a waste disposal problem to the poultry industry in many parts of the United Kingdom. The plant at Eye is a small to medium scale power station, fired using poultry litter. The 12.7 MW of electricity generated is supplied, through the local utility, to the National Grid. The spent litter that constitutes the fuel is made up of excrement and animal bedding (usually 90% excrement and 10% straw or wood shavings). It comes from large climate-controlled buildings (broiler houses) where birds, reared for meat production, are allowed to roam freely. (UK)

  14. Snubber reduction program at the Byron Station, Unit 1

    International Nuclear Information System (INIS)

    Arterburn, J.; Bakhtiari, S.

    1987-01-01

    Commonwealth Edison Company's (CECo's) Byron Station, unit 1, was originally designed with approximately 1200 snubbers supporting the plant's large- and small-bore piping systems. This relatively large number of snubbers is attributed to excessive conservatism in nuclear piping codes and regulations effective during the original piping design. A recent pilot program at CECo's LaSalle County Station, a boiling water reactor plant, demonstrated that a 50% or greater reduction in total snubber population is achievable in plants of this design vintage. Based on the successful results of the pilot program, CECo initiated a full scale snubber reduction program at Byron, a pressurized water reactor plant of the same vintage at the LaSalle County Station. The benefits from a reduced snubber population are described. To realize the maximum potential benefits, all snubbers in the plant were prioritized in order of desirability for removal. The priority designations are discussed. The major results from phase 1 of the Byron program are summarized. The NRC inspection of the project addressed a variety of issues and is discussed. The conclusions that can be drawn from the phase 1 program are summarized

  15. 75 FR 6223 - PSEG Nuclear LLC; Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1...

    Science.gov (United States)

    2010-02-08

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-272, 50-311 and 50-354; NRC-2010-0043] PSEG Nuclear LLC; Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1 and 2...-70, and DPR-75, issued to PSEG Nuclear LLC (PSEG, the licensee), for operation of the Hope Creek...

  16. 78 FR 77726 - Exelon Generation Company, LLC Three Mile Island Nuclear Station, Unit 1

    Science.gov (United States)

    2013-12-24

    ... Three Mile Island Nuclear Station, Unit 1 AGENCY: Nuclear Regulatory Commission. ACTION: Exemption... License No. DPR-50, which authorizes operation of the Three Mile Island Nuclear Station, Unit 1 (TMI-1... Facility Operating License No. DPR-50, which authorizes operation of the Three Mile Island Nuclear Station...

  17. Main unit electrical protection at Sizewell 'B' power station

    International Nuclear Information System (INIS)

    Fischer, A.; Keates, T.

    1992-01-01

    For any power station, reliable electrical protection of the main generating units (generators plus generator transformers) has important commercial implications. Spurious trips cause loss of generation and consequent loss of revenue, while failure to rapidly isolate a fault leads to unnecessary damage and again, loss of generation and revenue. While these conditions apply equally to Sizewell B there are additional factors to be taken into consideration. A spurious trip of a main generating unit may lead to a trip of the reactor with an associated challenge to the shutdown and core cooling plant. The generator transformers, besides exporting power from the generators to the 400 kV National Grid, also import power from the Grid to the 11 kV Main Electrical System, which in turn is the preferred source of supply to the Essential Electrical System. The Main Unit Protection is designed to clear generator faults leaving this off-site power route intact. Hence failure to operate correctly could affect the integrity of the Essential Electrical Supplies. (Author)

  18. MINAC radiography performed on susquehanna Steam Electric Station Unit 1

    International Nuclear Information System (INIS)

    Bognet, J.C.

    1986-01-01

    Ten welds were volumetrically examined with a manual and automated ultrasonic (UT) system during a Susquehanna Steam Electric Station (SES) Unit 1 preservice inspection. The automated system had been recently developed and several problems were encountered in this first field application. The ten welds examined had a Sweepolet-to-Risor weld configuration, which further complicated the examination effort. This weld configuration has corrosion-resistant cladding applied to the outside and inside circumference and, as a result of an installation/removal/reinstallation sequence during plant construction, is often referred to as the double weld. After several attempts to obtain interpretable UT data failed (e.g., repeatable data), the examination effort was terminated. PP and L opted to pursue using the Miniature Linear Accelerator (MINAC) to perform radiographic examination. The results were referenced in the Susquehanna SES Unit 1 outage summary report and submitted to the NRC. The total effort was viewed as a complete success with no impact to the overall outage duration. All welds previously attempted by automated and manual UT were successfully examined using the MINAC

  19. Ergonomic implementation and work station design for quilt manufacturing unit.

    Science.gov (United States)

    Vinay, Deepa; Kwatra, Seema; Sharma, Suneeta; Kaur, Nirmal

    2012-05-01

    Awkward, extreme and repetitive postures have been associated with work related musculoskeletal disorders and injury to the lowerback of workers engaged in quilting manufacturing unit. Basically quilt are made manually by hand stitch and embroidery on the quilts which was done in squatting posture on the floor. Mending, stain removal, washing and packaging were some other associated work performed on wooden table. their work demands to maintain a continuous squatting posture which leads to various injuries related to low back and to calf muscles. The present study was undertaken in Tarai Agroclimatic Zone of Udham Singh Nagar District of Uttarakhand State with the objective to study the physical and physiological parameters as well as the work station layout of the respondent engaged on quilt manufacturing unit. A total of 30 subjects were selected to study the drudgery involved in quilt making enterprise and to make the provision of technology option to reduce the drudgery as well as musculoskeletal disorders, thus enhancing the productivity and comfortability. Findings of the investigation show that majority of workers (93.33 per cent) were female and very few (6.66 per cent) were the male with the mean age of 24.53±6.43. The body mass index and aerobic capacity (lit/min) values were found as 21.40±4.13 and 26.02±6.44 respectively. Forty per cent of the respondents were having the physical fitness index of high average whereas 33.33 per cent of the respondents had low average physical fitness. All the assessed activities involved to make the quilt included a number of the steps which were executed using two types of work station i.e squatting posture on floor and standing posture using wooden table. A comparative study of physiological parameters was also done in the existing conditions as well as in improved conditions by introducing low height chair and wooden spreader to hold the load of quilt while working, to improve the work posture of the worker. The

  20. Case Study of Multi-Unit Risk: Multi-Unit Station Black-Out

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kyemin; Jang, Seung-cheol [KAERI, Daejeon (Korea, Republic of); Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    After Fukushima Daiichi Accident, importance and public concern for Multi-Unit Risk (MUR) or Probabilistic Safety Assessment (PSA) have been increased. Most of nuclear power plant sites in the world have more than two units. These sites have been facing the problems of MUR or accident such as Fukushima. In case of South Korea, there are generally more than four units on the same site and even more than ten units are also expected. In other words, sites in South Korea also have been facing same problems. Considering number of units on the same site, potential of these problems may be larger than other countries. The purpose of this paper is to perform case study based on another paper submitted in the conference. MUR is depended on various site features such as design, shared systems/structures, layout, environmental condition, and so on. Considering various dependencies, we assessed Multi-Unit Station Black-out (MSBO) accident based on Hanul Unit 3 and 4 model. In this paper, case study for multi-unit risk or PSA had been performed. Our result was incomplete to assess total multi-unit risk because of two challenging issues. First, economic impact had not been evaluated to estimate multi-unit risk. Second, large uncertainties were included in our result because of various assumptions. These issues must be resolved in the future.

  1. Case Study of Multi-Unit Risk: Multi-Unit Station Black-Out

    International Nuclear Information System (INIS)

    Oh, Kyemin; Jang, Seung-cheol; Heo, Gyunyoung

    2015-01-01

    After Fukushima Daiichi Accident, importance and public concern for Multi-Unit Risk (MUR) or Probabilistic Safety Assessment (PSA) have been increased. Most of nuclear power plant sites in the world have more than two units. These sites have been facing the problems of MUR or accident such as Fukushima. In case of South Korea, there are generally more than four units on the same site and even more than ten units are also expected. In other words, sites in South Korea also have been facing same problems. Considering number of units on the same site, potential of these problems may be larger than other countries. The purpose of this paper is to perform case study based on another paper submitted in the conference. MUR is depended on various site features such as design, shared systems/structures, layout, environmental condition, and so on. Considering various dependencies, we assessed Multi-Unit Station Black-out (MSBO) accident based on Hanul Unit 3 and 4 model. In this paper, case study for multi-unit risk or PSA had been performed. Our result was incomplete to assess total multi-unit risk because of two challenging issues. First, economic impact had not been evaluated to estimate multi-unit risk. Second, large uncertainties were included in our result because of various assumptions. These issues must be resolved in the future

  2. 77 FR 50533 - Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit 3

    Science.gov (United States)

    2012-08-21

    ....; Millstone Power Station, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... search, select ``ADAMS Public Documents'' and then select ``Begin Web- based ADAMS Search.'' For problems... Optimized ZIRLO\\TM\\ fuel rod cladding in future core reload applications for Millstone Power Station, Unit 3...

  3. Aerial Photography and Imagery, Ortho-Corrected - 2013 Digital Orthophotos - Calhoun County

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This metadata describes the digital ortho imagery covering Calhoun and Gulf Counties, FL. This 1"=200' scale imagery is comprised of natural color orthoimagery with...

  4. Enhanced Hourly Wind Station Data for the Contiguous United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. Enhanced Hourly Wind Station Data is digital data set DSI-6421, archived at the National Centers for Environmental Information (NCEI; formerly National Climatic...

  5. 75 FR 52045 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental...

    Science.gov (United States)

    2010-08-24

    ... Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental Assessment and Finding of No.... NPF-74, issued to Arizona Public Service Company (APS, the licensee), for operation of Palo Verde... Statement for the Palo Verde Nuclear Generating Station, NUREG-0841, dated February 1982. Agencies and...

  6. Method of sharing mobile unit state information between base station routers

    NARCIS (Netherlands)

    Bosch, H.G.P.; Mullender, Sape J.; Polakos, Paul Anthony; Rajkumar, Ajay; Sundaram, Ganapathy S.

    2007-01-01

    The present invention provides a method of operating a first base station router. The method may include transmitting state information associated with at least one inactive mobile unit to at least one second base station router. The state information is usable to initiate an active session with the

  7. Method of sharing mobile unit state information between base station routers

    NARCIS (Netherlands)

    Bosch, H.G.P.; Mullender, Sape J.; Polakos, Paul Anthony; Rajkumar, Ajay; Sundaram, Ganapathy S.

    2010-01-01

    The present invention provides a method of operating a first base station router. The method may include transmitting state information associated with at least one inactive mobile unit to at least one second base station router. The state information is usable to initiate an active session with the

  8. Optimal selection of Orbital Replacement Unit on-orbit spares - A Space Station system availability model

    Science.gov (United States)

    Schwaab, Douglas G.

    1991-01-01

    A mathematical programing model is presented to optimize the selection of Orbital Replacement Unit on-orbit spares for the Space Station. The model maximizes system availability under the constraints of logistics resupply-cargo weight and volume allocations.

  9. Evaluation of High-Performance Rooftop HVAC Unit Naval Air Station Key West, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Howett, Daniel H. [ORNL; Desjarlais, Andre Omer [ORNL; Cox, Daryl [ORNL

    2018-01-01

    This report documents performance of a high performance rooftop HVAC unit (RTU) at Naval Air Station Key West, FL. This report was sponsored by the Federal Energy Management Program as part of the "High Performance RTU Campaign".

  10. 75 FR 8757 - Nebraska Public Power District, Cooper Nuclear Station, Unit 1; Notice of Availability of the...

    Science.gov (United States)

    2010-02-25

    ..., Cooper Nuclear Station, Unit 1; Notice of Availability of the Draft Supplement 41 to the Generic... Renewal of Cooper Nuclear Station, Unit 1 Notice is hereby given that the U.S. Nuclear Regulatory... operating license DPR-46 for an additional 20 years of operation for Cooper Nuclear Station, Unit 1 (CNS-1...

  11. Accident analysis of Fukushima Daiichi Nuclear Power Station unit 1

    International Nuclear Information System (INIS)

    Kobayashi, Masahide; Narabayashi, Tadashi; Tsuji, Masashi; Chiba, Go; Nagata, Yasunori; Shimoe, Tomohiro

    2015-01-01

    As a result of the Great East Japan Earthquake that occurred on 11 March 2011, all AC and DC power at the Fukushima Daiichi NPP units 1 to 3 were lost soon after the tsunami. The core cooling function was lost, and the cores of units 1 to 3 were damaged. The purpose of this work is to clarify the progress of the accident in unit 1, which was damaged the earliest among the 3 units. Therefore, an original severe accident analysis code was developed, and the progress of the accident was evaluated from the analysis results and the actual data. As a result, the leakage path from a pressure vessel was clarified, and some lessons and knowledge were gained. (author)

  12. Statistical analysis of the Ft. Calhoun reactor coolant pump system

    International Nuclear Information System (INIS)

    Heising, Carolyn D.

    1998-01-01

    In engineering science, statistical quality control techniques have traditionally been applied to control manufacturing processes. An application to commercial nuclear power plant maintenance and control is presented that can greatly improve plant safety. As a demonstration of such an approach to plant maintenance and control, a specific system is analyzed: the reactor coolant pumps (RCPs) of the Ft. Calhoun nuclear power plant. This research uses capability analysis, Shewhart X-bar, R-charts, canonical correlation methods, and design of experiments to analyze the process for the state of statistical control. The results obtained show that six out of ten parameters are under control specifications limits and four parameters are not in the state of statistical control. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators Such a system would provide operators with ample time to respond to possible emergency situations and thus improve plant safety and reliability. (author)

  13. Statistical analysis of the Ft. Calhoun reactor coolant pump system

    International Nuclear Information System (INIS)

    Patel, Bimal; Heising, C.D.

    1997-01-01

    In engineering science, statistical quality control techniques have traditionally been applied to control manufacturing processes. An application to commercial nuclear power plant maintenance and control is presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) of the Ft. Calhoun nuclear power plant. This research uses capability analysis, Shewhart X-bar, R charts, canonical correlation methods, and design of experiments to analyze the process for the state of statistical control. The results obtained show that six out of ten parameters are under control specification limits and four parameters are not in the state of statistical control. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with ample time to respond to possible emergency situations and thus improve plant safety and reliability. (Author)

  14. Counter rotating type hydroelectric unit suitable for tidal power station

    International Nuclear Information System (INIS)

    Kanemoto, T; Suzuki, T

    2010-01-01

    The counter rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures,was proposed to utilize effectively the tidal power. In the unit, the front and the rear runners counter drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the flow direction at the front runner inlet, because the angular momentum through the rear runner must coincides with that through the front runner. That is, the flow runs in the axial direction at the rear runner outlet while the axial inflow at the front runner inlet. Such operations are suitable for working at the seashore with rising and falling tidal flows, and the unit may be able to take place of the traditional bulb type turbines. The tandem runners were operated at the on-cam conditions, in keeping the induced frequency constant. The output and the hydraulic efficiency are affected by the adjustment of the front and the blade setting angles. The both optimum angles giving the maximum output and/or efficiency were presented at the various discharges/heads. To promote more the tidal power generation by this type unit, the runners were also modified so as to be suitable for both rising and falling flows. The hydraulic performances are acceptable while the output is determined mainly by the trailing edge profiles of the runner blades.

  15. Daily snow depth measurements from 195 stations in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Allison, L.J. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center

    1997-02-01

    This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

  16. 76 FR 24064 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3, Notice...

    Science.gov (United States)

    2011-04-29

    ... Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3, Notice of Issuance of Renewed... Company (licensee), the operator of the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (PVNGS... Plants: Supplement 43, Regarding Palo Verde Nuclear Generating Station,'' issued January 2011, discusses...

  17. Instructor station of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Wu Fanghui

    1996-01-01

    The instructor station of Full Scope Simulator for Qinshan 300 MW Nuclear Power Unit is based on SGI graphic workstation. The operation system is real time UNIX, and the development of man-machine interface, mainly depends on standard X window system, special for X TOOLKITS and MOTIF. The instructor station has been designed to increase training effectiveness and provide the most flexible environment possible to enhance its usefulness. Based on experiences in the development of the instructor station, many new features have been added including I/O panel diagrams, simulation diagrams, graphic operation of malfunction, remote function and I/O overrides etc

  18. Diagnostic testing and repair of Hollingsworth Generating Station`s Unit One

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This paper presents a case history of the diagnosis of a hydroelectric generator problem and the corrections implemented. The problem involved an excessive rotor imbalance coupled with a static air gap imbalance that cause severe load-sensitive vibrations. The problem constrained the plant from operating the generator unit throughout the range of its nameplate rating and caused periodic failure of the generator guide and thrust bearing. The paper describes the vibration survey and mechanical survey of the generator rotor, the pre-overhaul diagnosis, the repairs undertaken to the rotor, and the generator performance after the repair, with comparison to the pre-repair condition. The paper concludes with a discussion of the economic, operational, and logistic issues involved in the overhaul.

  19. Diagnostic testing and repair of Hollingsworth Generating Station`s Unit One

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, R.; Epple, W.; Stevenson, D. [Great Lakes Power Ltd., Sault Ste. Marie, ON (Canada); Brotherton, L.; Crahan, M.; Ghate, A.

    1995-12-31

    A case history of the diagnosis and corrections implemented to resolve vibration problems in a 22,222 kVA hydroelectric generator was presented. The problem prevented the utility from operating the unit throughout the range of its nameplate rating and caused periodic failures of the generator`s guide and thrust bearing. Tests identified that the rim assembly was fastened onto the spider in a manner that resulted in tilting of the rim with respect to the axis of rotation, consequently, there was an unbalanced generator static air gap. A unique repair was implemented to fully restore the rim assembly to its proper position. Problems associated with carrying out such major in-situ repairs in a remote environment and within a scheduled maintenance outage were discussed. Economic benefits and costs associated with the repair were also discussed.

  20. Retrofitting and operation solid radwaste system Dresden Station, Units 2 and 3

    International Nuclear Information System (INIS)

    Testa, J.; Homer, J.C.

    1982-01-01

    Units 2 and 3 at Dresden Station are twin 794 MW (net) BWR units that became operational in 1970 and 1971. The waste streams are typical of BWR stations, namely, bead resin and filter sludge (powdered resins and diatomaceous earth), evaporator concentrate containing approximately 25% dissolved solids and dry active waste. The original solid radwaste system utilized cement for solidification in open top 55 gallon drums. Remote handling was provided by means of a monorail with moving platforms supporting the drums. A relatively light-weight compactor was used to compact DAW into 55 gallon drums. Difficulties were experienced with this system

  1. Evolution of soil, ecosystem, and critical zone research at the USDA FS Calhoun Experimental Forest

    Science.gov (United States)

    Daniel deB. Richter; Allan R. Bacon; Sharon A. Billings; Dan Binkley; Marilyn Buford; Mac Callaham; Amy E. Curry; Ryan L. Fimmen; A. Stuart Grandy; Paul R. Heine; Michael Hofmockel; Jason A. Jackson; Elisabeth LeMaster; Jianwei Li; Daniel Markewitz; Megan L. Mobley; Mary W. Morrison; Michael S. Strickland; Thomas Waldrop; Carol G. Wells

    2015-01-01

    The US Department of Agriculture (USDA) Forest Service Calhoun Experimental Forest was organized in 1947 on the southern Piedmont to engage in research that today is called restoration ecology, to improve soils, forests, and watersheds in a region that had been severely degraded by nearly 150 years farming. Today, this 2,050-ha research forest is managed by the Sumter...

  2. Pitchblende deposits at the Wood and Calhoun mines, Central City mining district, Gilpin County, Colorado

    Science.gov (United States)

    Moore, Frank R.; Butler, C.R.

    1952-01-01

    Pitchblende has been mined in commercial quantities from four gold- and silver-bearing pyrite-sphalerite-galena veins that occur in an area about one-half mile square on the south side of Quartz Hill, Central City district, Gilpin County, Colo. These veins are the Kirk, the German-Belcher, the Wood, and the Calhoun. Two of these veins, the Wood and the Calhoun, were studied in an attempt to determine the geologic factors favorable for pitchblende deposition. All accessible workings at the Wood and East Calhoun mines were mapped by tape and compass, and the distribution of radioactivity was studied in the field. Channel and chip samples were taken for chemical assay to compare radioactivity with uranium content. The pitchblende-bearing veins cat both pre-Cambrian granite gneiss and quartz-biotite schist; however, the gneiss was the more favorable host rock. Two bostonite porphyry dikes of Tertiary(?) age were crosscut by the Wood and Calhoun veins. The pitchblende occurs in lenses erratically distributed along the veins and in stringers extending outward from the veins. In the lenses it forms hard'. masses, but elsewhere it is Soft and powdery. The pitchblende is contemporaneous with the pyrite bat earlier than the sphalerite and galena in the same vein. All the observed pitchblende was at depths of less than 400 ft. The veins probably cannot be mined profitably for the pitchblende alone under present conditions.

  3. 77 FR 11533 - Anniston PCB Superfund Site, Anniston, Calhoun County, Alabama; Notice of Amended Settlement

    Science.gov (United States)

    2012-02-27

    ... ENVIRONMENTAL PROTECTION AGENCY [CERCLA-04-2012-3763; FRL 9637-7] Anniston PCB Superfund Site... past response costs concerning the Anniston PCB Superfund Site located in Anniston, Calhoun County.... Submit your comments by Site name Anniston PCB by one of the following methods: www.epa.gov/region4...

  4. Rate of generation of tritium during the operation of Tsuruga Power Station Unit No. 2

    International Nuclear Information System (INIS)

    Funamoto, Hisao; Yoshinari, Masaharu; Fukuda, Masayuki; Makino, Shinichi; Watari, Tuneo

    1994-01-01

    Total amount of 3 H activity in primary coolant due to the operation of Tsuruga Power Station Unit No. 2 was estimated. The 3 H inventory was measured for samples from the spent fuel pool, primary coolant and miscellaneous tanks. From the result of the measurement and the data of environmental release of 3 H, the rate of generation of 3 H in the reactor was found to be 25 TBq/GWa. Since Tsuruga Power Station Unit No. 2 is a PWR type reactor, we presume that most of the 3 H in primary coolant is formed by 10 B(n, 2α) 3 H reaction. It is necessary to release about 23 TBq/GWa of 3 H to maintain the station inventory at the present level. (author)

  5. In core reload design for cycle 4 of Daya Bay nuclear power station both units

    International Nuclear Information System (INIS)

    Zhang Zongyao; Liu Xudong; Xian Chunyu; Li Dongsheng; Zhang Hong; Liu Changwen; Rui Min; Wang Yingming; Zhao Ke; Zhang Hong; Xiao Min

    1998-01-01

    The basic principles and the contents of the reload design for Daya Bay nuclear power station are briefly introduced. The in core reload design results, and the comparison between the calculated values and the measured values of both units the fourth cycle are also given. The reload design results of the two units satisfy all the economic requirements and safety criteria. The experimented results shown that the predicated values are tally good with all the measurement values

  6. Technical specifications: Seabrook Station, Unit 1 (Docket No. 50-443)

    International Nuclear Information System (INIS)

    1990-03-01

    The Seabrook Station, Unit 1 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  7. Oconee Nuclear Station, Units 1, 2, and 3. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Information is presented concerning operations, performance characteristics, changes, tests, inspections, containment leak tests, maintenance, primary coolant chemistry, station staff changes, reservoir investigations, plume mapping, and operational environmental radioactivity monitoring data for oconee Units 1, 2, and 3. The non-radiological environmental surveillance program is also described. (FS)

  8. 77 FR 59679 - Central Vermont Public Service Corporation (Millstone Power Station, Unit 3); Order Approving...

    Science.gov (United States)

    2012-09-28

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0044; Docket No. 50-423] Central Vermont Public Service Corporation (Millstone Power Station, Unit 3); Order Approving Application Regarding Corporate Restructuring and Conforming Amendment I Dominion Nuclear Connecticut, Inc. (DNC), Central Vermont Public Service...

  9. Environmental management at the Grand Rapids Generating Station following the Unit No.1 headcover failure

    International Nuclear Information System (INIS)

    Windsor, D.C.

    1993-01-01

    Failure of the headcover of Unit 1 in the Grand Rapids generating station in March, 1992 caused the station to flood, releasing several thousand gallons of oil and removing the station from service for several weeks. Environmental considerations were a considerable part of the station restoration activities, reservoir and flow management programs and responses to public concerns arising from the accident. A major oil spill containment and cleanup program was undertaken, with station cleanup and debris disposal carried out in a manner acceptable to environmental authorities. Reservoir spillage was necessitated by the station shutdown. The spill recreated fish habitat in the spillway and walleye spawning were documented. A compensation program was developed to respond to problems caused by debris flushed from the spillway channel. On spill termination, a fish salvage program removed fish from a scour hole in the spillway channel. A proactive program of public information provided local residents with the facts about the incident and response program, and allayed concerns about public safety. 4 refs., 2 figs

  10. Quality control for the construction of Ikata Nuclear Power Station No. 2 Unit

    International Nuclear Information System (INIS)

    Onishi, Akiyoshi

    1983-01-01

    In the construction of No. 2 unit in Ikata Nuclear Power Station, Shikoku Electric Power Co., the quality control was practiced making effective use of the experience in preceding stations including the Three Mile Island station, U.S., and improving those. The construction works were also performed in consideration of ensuring the safe running of No. 1 unit in commercial operation. In this report, first the outline of No. 2 unit facility and the quality control in the construction processes are described sequentially. For the comprehensive quality control activity over a series of plant design, manufacturing, installation and commissioning processes, the quality control policy was fixed, the system was established, the plan was prepared, and the quality control was promoted as planned and systematically. The outline of the quality control in each stage is described as follows. Design stage: It was implemented for the confirmation of applicable standards and references, the management of drawings submitted for approval, the selection of materials used, the coordination among sub-contractors, design change and the reflection of experience in preceding stations. Manufacturing stage. It was performed for material control, manufacturing management, factory test and control. Installation stage. It was practiced for the management of installation works, the inspection during the installation, and the check-up and control after the installation. Several quality control items were implemented also in the method of construction works and construction management. (Wakatsuki, Y.)

  11. Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2002-04-01

    Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

  12. 76 FR 72007 - ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security...

    Science.gov (United States)

    2011-11-21

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-295 and 50-304; NRC-2011-0244] ZionSolutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Security Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt Pressurized Water Reactor...

  13. 75 FR 15745 - Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-03-30

    ...] Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3; Exemption 1.0 Background The Arizona Public Service Company (APS, the licensee) is the holder of Facility... Generating Station (PVNGS), Units 1, 2, and 3, respectively. The licenses provide, among other things, that...

  14. 75 FR 8149 - Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-02-23

    ...] Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3... NPF-74, issued to the Arizona Public Service Company (APS, or the licensee), for operation of the Palo Verde Nuclear Generating Station (PVNGS, the facility), Units 1, 2, and 3, respectively, located in...

  15. 75 FR 43572 - Duke Energy Carolinas, LLC, McGuire Nuclear Station, Units 1 and 2; Environmental Assessment and...

    Science.gov (United States)

    2010-07-26

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-369 and 50-370; NRC-2010-0259] Duke Energy Carolinas, LLC, McGuire Nuclear Station, Units 1 and 2; Environmental Assessment and Finding of No Significant... Energy Carolinas, LLC (the licensee), for operation of the McGuire Nuclear Station, Units 1 and 2...

  16. 75 FR 43571 - Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; Environmental Assessment And...

    Science.gov (United States)

    2010-07-26

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-413 and 50-414; NRC-2010-0260] Duke Energy Carolinas, LLC; Catawba Nuclear Station, Units 1 and 2; Environmental Assessment And Finding of No Significant... Energy Carolinas, LLC (the licensee), for operation of the Catawba Nuclear Station, Units 1 and 2...

  17. Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika

    2014-01-01

    This study compares Photovoltaic (PV) power stations between Germany and the United States to examine which country more efficiently provides renewable energy in their usages. For the comparative analysis, this study utilizes Data Envelopment Analysis (DEA) as a methodology to evaluate the performance of PV power stations from the perspective of both solar and land usages. A total of one hundred sixty PV power stations (eighty in Germany and eighty in the United States) are used for this comparison. The demand for sustainable energy and energy security has been rapidly increasing over the past decade because of concerns about environment and limited resources. PV solutions are one of many renewable technologies that are being developed to satisfy a recent demand of electricity. Germany is the world's top installer and consumer of PV power and the United States is one of the top five nations. Germany leads the way in installed PV capacity even though the nation has less solar resources and land area. Due to limited solar resources, low insolation and sunshine, and land area, the United States should have a clear advantage over Germany. However, the empirical result of this study exhibits that PV power stations in Germany operate more efficiently than those of the United States even if the latter has many solar and land advantages. The surprising result indicates that the United States has room for improvement when it comes to utilizing solar and land resources and needs to reform the solar policy. For such a purpose, Feed-In Tariff (FIT) may be an effective energy policy at the state level in the United States because the FIT provides investors such as utility companies and other types of energy firms with financial incentives to develop large PV power stations and generation facilities for other renewable energy. It may be true that the FIT is a powerful policy tool to promote PV and other renewable installation and support a reduction of an amount of greenhouse

  18. Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)

    International Nuclear Information System (INIS)

    1997-11-01

    This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy's (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, open-quotes Corrective Action Strategyclose quotes (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles

  19. Audit of Wolf Creek Generating Station, Unit 1 technical specifications. Final technical evaluation report

    International Nuclear Information System (INIS)

    Stromberg, H.M.

    1985-07-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Wolf Creek Generating Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumptions of the Final Safety Analysis Report (FSAR) as amended, the requirements of the Safety Evaluation Report (SER) as supplemented, and the Comments and Responses to the Wolf Creek Technical Specification Draft Inspection Report. A comparative audit of the FSAR as amended, the SER as supplemented, and the Draft Inspection Report was performed with the Wolf Creek T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Wolf Creek Generating Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR, SER, and Draft Inspection Report

  20. Black Fox Station, Units 1 and 2. Application for construction permits and operating licenses

    International Nuclear Information System (INIS)

    1975-01-01

    An application to construct and operate Black Fox Station, Units 1 and 2, is presented. The two BWR type reactors will have a rated core thermal power of 3579 MW(t) and a net electrical power of approximately 1150 MW(e). The facility will be located in Inola Township, 23 miles east of Tulsa on the east side of the Verdigris River in Rogers County, Oklahoma

  1. Technical Specifications, Comanche Peak Steam Electric Station, Unit 1 (Docket No. 50-445)

    International Nuclear Information System (INIS)

    1990-04-01

    The Technical Specifications for Comanche Peak Steam Electric Station, Unit 1 were prepared by the US Nuclear Regulatory Commission. They set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility, as set forth in Section 50.36 of Title 10 of the Code of Federal Regulations Part 50, for the protection of the health and safety of the public

  2. Surry Power Station, Units 1 and 2. Semiannual operating report, July--December 1974

    International Nuclear Information System (INIS)

    1974-01-01

    Net electric power generated by Surry Unit 1 was 6,930,353 MWH with the generator on line for 10,417.7 hours. Net electric power generated by Unit 2 was 5,699,299 MWH with the generator on line for 8,384.2 hours. Information is presented concerning operation, radioactive effluent releases, solid radioactive wastes, fuel shipments, occurrences in which temperature limitations on the condenser cooling water discharge were exceeded, changes in station organization, occupational personnel radiation exposure, nonradiological monitoring including thermal, physical, and biological programs, and the radiological environmental monitoring program. (U.S.)

  3. Centrifugal Compressor Unit-based Heat Energy Recovery at Compressor Stations

    Directory of Open Access Journals (Sweden)

    V. S. Shadrin

    2016-01-01

    Full Text Available About 95% of the electricity consumed by air compressor stations around the world, is transformed into thermal energy, which is making its considerable contribution to global warming. The present article dwells on the re-use (recovery of energy expended for air compression.The article presents the energy analysis of the process of compressing air from the point of view of compressor drive energy conversion into heat energy. The temperature level of excess heat energy has been estimated in terms of a potential to find the ways of recovery of generated heat. It is shown that the temperature level formed by thermal energy depends on the degree of air compression and the number of stages of the compressor.Analysis of technical characteristics of modern equipment from leading manufacturers, as well as projects of the latest air compressor stations have shown that there are two directions for the recovery of heat energy arising from the air compression: Resolving technological problems of compressor units. The use of the excess heat generation to meet the technology objectives of the enterprise. This article examines the schematic diagrams of compressor units to implement the idea of heat recovery compression to solve technological problems: Heating of the air in the suction line during operation of the compressor station in winter conditions. Using compression heat to regenerate the adsorbent in the dryer of compressed air.The article gives an equity assessment of considered solutions in the total amount of heat energy of compressor station. Presented in the present work, the analysis aims to outline the main vectors of technological solutions that reduce negative impacts of heat generation of compressor stations on the environment and creating the potential for reuse of energy, i.e. its recovery.

  4. The decommissioning of commercial magnox gas cooled reactor power stations in the United Kingdom

    International Nuclear Information System (INIS)

    Holt, G.

    1998-01-01

    There are nine commercial Magnox gas-cooled reactor power stations in the United Kingdom. Three of these stations have been shutdown and are being decommissioning, and plans have also been prepared for the eventual decommissioning of the remaining operational stations. The preferred strategy for the decommissioning of the Magnox power stations has been identified as 'Safestore' in which the decommissioning activities are carried out in a number of steps separated by quiescent periods of care and maintenance. The final clearance of the site could be deferred for up to 135 years following station shutdown so as to obtain maximum benefit from radioactive decay. The first step in the decommissioning strategy is to defuel the reactors and transport all spent and new fuel off the site. This work has been completed at all three shutdown stations. Decommissioning work is continuing on the three sites and has involved activities such as dismantling, decontamination, recycling and disposal of some plant and structures, and the preparation of others for retention on the site for a period of care and maintenance. Significant experience has been gained in the practical application of decommissioning, with successful technologies and processes being identified for a wide range of activities. For example, large and small metallic and concrete structures, some with complex geometries, have been successfully decontaminated. Also, the reactors have been prepared for a long period of care and maintenance, with instrumentation and sampling systems having been installed to monitor their continuing integrity. All of this work has been done under careful safety, technical, and financial control. (author)

  5. WIND SPEED AND ATMOSPHERIC STABILITY TRENDS FOR SELECTED UNITED STATES SURFACE STATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R; Allen H. Weber, A

    2006-11-01

    Recently it has been suggested that global warming and a decrease in mean wind speeds over most land masses are related. Decreases in near surface wind speeds have been reported by previous investigators looking at records with time spans of 15 to 30 years. This study focuses on United States (US) surface stations that have little or no location change since the late 1940s or the 1950s--a time range of up to 58 years. Data were selected from 62 stations (24 of which had not changed location) and separated into ten groups for analysis. The group's annual averages of temperature, wind speed, and percentage of Pasquill-Gifford (PG) stability categories were fitted with linear least squares regression lines. The results showed that the temperatures have increased for eight of the ten groups as expected. Wind speeds have decreased for nine of the ten groups. The mean slope of the wind speed trend lines for stations within the coterminous US was -0.77 m s{sup -1} per century. The percentage frequency of occurrence for the neutral (D) PG stability category decreased, while that for the unstable (B) and the stable (F) categories increased in almost all cases except for the group of stations located in Alaska.

  6. Emergency operating instruction improvements at San Onofre Nuclear Generating Station Units 2 and 3

    International Nuclear Information System (INIS)

    Trillo, M.W.; Smith, B.H.

    1989-01-01

    In late 1987, San Onofre nuclear generating station (SONGS) began an extensive upgrade of the units 2 and 3 emergency operating instructions (EOIs). The original intent of this program was to incorporate revised generic guidance and to correct problems that were identified by operators. While this program was in progress, the US Nuclear Regulatory Commission (NRC) conducted a series of audits of emergency operating procedure (EOP) development and maintenance programs as 16 commercial nuclear facilities in the United States. These audits included four stations with Combustion Engineering-designed nuclear steam supply systems. (One of these audits included a review of preupgrade SONGS units 2 and 3 EOIs.) Significant industrywide comments resulted from these audits. The NRC has stated its intent to continue the review and audit of EOIs and the associated maintenance programs at all US commercial nuclear facilities. The units 2 and 3 EOI upgrade program developed procedural improvements and procedural program maintenance improvements that address many of the existing audit comments that have been received by the industry. Other resulting improvements may be useful in minimizing NRC comments in future such audits. Specific improvements are discussed. The upgrade program resulted in benefits that were not originally anticipated. The results of this program can be of significant use by other utilities in addressing the industrywide concerns that have been raised in recent NRC audits of EOP development and maintenance programs

  7. Start-up test of Fukushima Daini Nuclear Power Station Unit No.3

    International Nuclear Information System (INIS)

    Inomata, Toshio; Umezu, Akira; Kajikawa, Makoto; Koibuchi, Hiroshi; Netsu, Nobuhiko.

    1986-01-01

    In Unit 3 of the Fukushima Nuclear Power Station II (daini), a BWR power plant of output 1,100 MW, commercial operation was started in June 1985. Its start-up test was finished successfully in about nine months. That is, new equipments introduced were demonstration tested. Though the items of testing are increased, the start-up test took short time, resulting in construction period only 54.7 months of the Unit 3, the shortest in the world. During the test, there was no scramming other than the planned. Described are the following: an outline of the Unit 3, the items of its improvement and standardization, including the new equipments, preparations for the start-up test, the start-up test and its evaluation. (Mori, K.)

  8. Analysis of a station blackout transient at the Kori units 3/4

    International Nuclear Information System (INIS)

    Bang, Young Seok; Kim, Hho Jung

    1992-01-01

    A transient analysis of station blackout accident is performed to evaluate the plant specific capability to cope with the accident at the Kori Units 3/4. The RELAP5/MOD3/5m5 code and full three loop modelling scheme are used in the calculation. The leak flow from reactor coolant system due to a failure of reactor coolant pump seal following the accident is assumed to be 25 gpm and the turbine driven aux feedwater unavailable. As a result, it is found that no core uncovery occurs in the plant until 7100 sec following a station blackout, the steam generator has a decay heat removal capability until 3100 sec, and the natural circulation over the reactor coolant loop until the complete loop seal voiding are observed. And the Nuclear Plant Analyzer is used and found to be effective in improving the phenomenological understanding on the accident

  9. Integrated base stations and a method of transmitting data units in a communications system for mobile devices

    NARCIS (Netherlands)

    Bosch, H.G.P.; Mullender, Sape J.; Narlikar, G.J.; Samuel, L.G.; Yagati, L.N.

    2006-01-01

    Integrated base stations and a method of transmitting data units in a communications system for mobile devices. In one embodiment, an integrated base station includes a communications processor having a protocol stack configured with a media access control layer and a physical layer.

  10. Technical Specifications, Seabrook Station, Unit 1 (Docket No. 50-443). Appendix ''A'' to License No. NPF-56

    International Nuclear Information System (INIS)

    1986-10-01

    This report provides specifications for the Seabrook Station Unit 1 reactor concerning: safety limits and limiting safety settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  11. Technical specifications, Beaver Valley Power Station, Unit 2 (Docket No. 50-412): Appendix ''A'' to License No. NPF-73

    International Nuclear Information System (INIS)

    1987-08-01

    This report presents information concerning the Beaver Valley Power Station Unit 2 Reactor. Topics under discussion include: safety limits and limiting safety system settings; limiting condition for operation and surveillance requirements; design features; and administrative controls

  12. North Anna Power Station - Unit 1: Overview of steam generator replacement project activities

    International Nuclear Information System (INIS)

    Gettler, M.W.; Bayer, R.K.; Lippard, D.W.

    1993-01-01

    The original steam generators at Virginia Electric and Power Company's (Virginia Power) North Anna Power Station (NAPS) Unit 1 have experienced corrosion-related degradation that require periodic inspection and plugging of steam generator tubes to ensure their continued safe and reliable operation. Despite improvements in secondary water chemistry, continued tube degradation in the steam generators necessitated the removal from service of approximately 20.3 percent of the tubes by plugging, (18.6, 17.3, and 25.1 for steam generators A, B, and C, respectively). Additionally, the unit power was limited to 95 % during, its last cycle of operation. Projections of industry and Virginia Power experience indicated the possibility of mid-cycle inspections and reductions in unit power. Therefore, economic considerations led to the decision to repair the steam generators (i.e., replace the steam generator lower assemblies). Three new Model 51F Steam Generator lower assembly units were ordered from Westinghouse. Virginia Power contracted Bechtel Power Corporation to provide the engineering and construction support to repair the Unit 1 steam generators. On January 4, 1993, after an extended coastdown period, North Anna Unit 1 was brought off-line and the 110 day (breaker-to-breaker) Steam Generator Replacement Project (SGRP) outage began. As of this paper, the outage is still in progress

  13. Introduction of construction management system for preparation work of Shimane Nuclear Power Station Unit-3

    International Nuclear Information System (INIS)

    Sasaki, Yutaka; Tsumura, Isamu; Hayashi, Minoru; Nakamoto, Kenji

    2005-01-01

    The construction management system aims to have information on the construction management between the Chugoku Electric Power Co. Inc. and each contractor, and to work efficiently. The system has been operating during about half year. The system manages the manufacturing process, safety and quality. The aims, development process, characteristics, network construction of the system are reported. As outline of the construction management system, functions and construction management of each process, safety and quality and ITV camera are explained. The system will be used at construction of Shimane nuclear power station unit-3. (S.Y.)

  14. Construction of Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Yamanari, Shozo; Miyahara, Ryohei; Umezawa, Takeshi; Teshiba, Ichiro

    2006-01-01

    Construction of the Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc. (advanced boiling-water reactor; output: 1.358 mega watts) was begun in August 1999 and it will resume commercial operation in March 2006 as scheduled. Hitachi contributed effectually toward realizing the project with supply of a complete set of the advanced nuclear reactor and turbine-generator system with the latest design and construction technology in harmony. Large-scale modular structures for installation and a computer-aided engineering system for work procedure and schedule management were applied with the utmost priority placed on work efficiency, safety and quality assurance. (T.Tanaka)

  15. Probabilistic fire risk assessment for Koeberg Nuclear Power Station Unit 1

    International Nuclear Information System (INIS)

    Grobbelaar, J.F.; Foster, N.A.S.; Luesse, L.J.

    1995-01-01

    A probabilistic fire risk assessment was done for Koeberg Nuclear Power Station Unit 1. Areas where fires are likely to start were identified. Equipment important to safety, as well as their power and/or control cable routes were identified in each fire confinement sector. Fire confinement sectors where internal initiating events could be caused by fire were identified. Detection failure and suppression failure fault trees and event trees were constructed. The core damage frequency associated with each fire confinement sector was calculated, and important fire confinement sectors were identified. (author)

  16. Final environmental statement for Shoreham Nuclear Power Station, Unit 1: (Docket No. 50-322)

    International Nuclear Information System (INIS)

    1977-10-01

    The proposed action is the issuance of an Operating License to the Long Island Lighting Company (LILCO) for the startup and operation of the Shoreham Nuclear Power Station, Unit 1 (the plant) located on the north shore of Long Island, the State of New York, County of Suffolk, in the town of Brookhaven. The Shoreham station will employ a boiling-water reactor (BWR), which will operate at a thermal output of 2436 MW leading to a gross output of 846 MWe and a net output of about 820 MWe. The unit will be cooled by once-through flow of water from the Long Island Sound. One nuclear unit with a net capacity of 820 MWe will be added to the generating resources of the Long Island Lighting Company. This will have a favorable effect on reserve margins and provide a cost savings of approximately $62.1 million (1980 dollars) in production costs in 1980 if the unit comes on line as scheduled; additional cost savings will be realized in subsequent years. Approximately 100 acres (40 hectares) of the 500-acre (202-hectare) site of rural (mostly wooded) land owned by the applicant have been cleared. Most of this will be unavailable for other uses during at least the 40-year life of the plant. No offsite acreage has been or will be cleared. Land in the vicinity of the site has undergone some residential development that is typical for all of this area of Long Island. The operation of Shoreham Unit 1 will have insignificant impacts on this and other types of land uses in the vicinity of the site. 33 figs., 56 tabs

  17. Start-up tests of Kashiwazakikariwa Nuclear Power Station Unit No.2 and No.5

    International Nuclear Information System (INIS)

    Fueki, Kensuke; Aoki, Shiro; Tanaka, Yasuhisa; Yahagi, Kimitoshi

    1991-01-01

    The Kashiwazakikariwa Nuclear Power Station Units No.5 and No.2 started commercial operation on April 10 and September 28 of 1990 respectively. As the result of the application of the First and Second LWR Improvement and Standardization Program, the plants were designed aiming at improvement of reliability, operation, and maintenance while maintaining safety. Construction of the plants took 6.5 to 7 years for completion, during which period the last 10 months were spent for the start up tests program. Start up tests were carried out under deliberate management to assure that the plants can operate safely and steadily at the prescribed operating points, and the schedules and tests item modifications adopted in Unit No.2 and No.5 were verified under the start up tests program. (author)

  18. Efficient erection of a piping unit in a nuclear power station

    International Nuclear Information System (INIS)

    Halstrick, V.; Peters, G.

    1986-01-01

    In consideration of the negative experience gathered in the past extensive project logistics are required for the erection of piping units in a nuclear power station in order to be able to recognize and master the numerous influences and different marginal conditions with reasonable certainty and at an early stage. The utilization of requirements from the analysis of experience for the conception of project management begins with the erection planning and results in check lists for the execution of erection. During production planning these check lists are verified for realization. Because of the extensive data, EDP-aided systems are applied for checking and controlling the flow of information and material. A dialogue-aided system is presented for project planning and controlling which enables a transparent and farsighted execution of a project. By means of comparable piping units it is demonstrated that due to the created controlling system a great success becomes obvious in relation to the past. (orig.) [de

  19. Simplified conversions between specific conductance and salinity units for use with data from monitoring stations

    Science.gov (United States)

    Schemel, Laurence E.

    2001-01-01

    The U.S. Geological Survey, Bureau of Reclamation, and the California Department of Water Resources maintain a large number of monitoring stations that record specific conductance, often referred to as “electrical conductivity,” in San Francisco Bay Estuary and the Sacramento-San Joaquin Delta. Specific conductance units that have been normalized to a standard temperature are useful in fresh waters, but conversion to salinity units has some considerable advantages in brackish waters of the estuary and Delta. For example, salinity is linearly related to the mixing ratio of freshwater and seawater, which is not the case for specific conductance, even when values are normalized to a standard temperature. The Practical Salinity Scale 1978 is based on specific conductance, temperature, and pressure measurements of seawater and freshwater mixtures (Lewis 1980 and references therein). Equations and data that define the scale make possible conversions between specific conductance and salinity values.

  20. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  1. Water electrolysis plants for hydrogen and oxygen production. Shipped to Tsuruga Power Station Unit No.1, and Tokai No.2 power station, the Japan Atomic Power Co

    International Nuclear Information System (INIS)

    Ueno, Syuichi; Sato, Takao; Ishikawa, Nobuhide

    1997-01-01

    Ebara's water electrolysis plants have been shipped to Tsuruga Power Station Unit No.1, (H 2 generation rate: 11 Nm 3 /h), and Tokai No.2 Power Station (H 2 generation rate: 36 Nm 3 /h), Japan Atomic Power Co. An outcome of a business agreement between Nissho Iwai Corporation and Norsk Hydro Electrolysers (Norway), this was the first time that such water electrolysis plants were equipped in Japanese boiling water reactor power stations. Each plant included an electrolyser (for generating hydrogen and oxygen), an electric power supply, a gas compression system, a dehumidifier system, an instrumentation and control system, and an auxiliary system. The plant has been operating almost continuously, with excellent feedback, since March 1997. (author)

  2. Second periodic safety review of Angra Nuclear Power Station, unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Carlos F.O.; Crepaldi, Roberto; Freire, Enio M., E-mail: ottoncf@tecnatom.com.br, E-mail: emfreire46@gmail.com, E-mail: robcrepaldi@hotmail.com [Tecnatom do Brasil Engenharia e Servicos Ltda, Rio de Janeiro, RJ (Brazil); Campello, Sergio A., E-mail: sacampe@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This paper describes the second Periodic Safety Review (PSR2-A1) of Angra Nuclear Power Station, Unit 1, prepared by Eletrobras Eletronuclear S.A. and Tecnatom do Brasil Engenharia e Servicos Ltda., during Jul.2013-Aug.2014, covering the period of 2004-2013. The site, in Angra dos Reis-RJ, Brazil, comprises: Unit 1, (640 MWe, Westinghouse PWR, operating), Unit 2 (1300 MWe, KWU/Areva, operating) and Unit 3 (1405 MWe, KWU/Areva, construction). The PSR2-A1 attends the Standards 1.26-Safety in Operation of Nuclear Power Plants, Brazilian Nuclear Regulatory Commission (CNEN), and IAEA.SSG.25-Periodic Safety Review of Nuclear Power Plants. Within 18 months after each 10 years operation, the operating organization shall perform a plant safety review, to investigate the evolution consequences of safety code and standards, regarding: Plant design; structure, systems and components behavior; equipment qualification; plant ageing management; deterministic and probabilistic safety analysis; risk analysis; safety performance; operating experience; organization and administration; procedures; human factors; emergency planning; radiation protection and environmental radiological impacts. The Review included 6 Areas and 14 Safety Parameters, covered by 33 Evaluations.After document evaluations and discussions with plant staff, it was generated one General and 33 Specific Guide Procedures, 33 Specific and one Final Report, including: Description, Strengths, Deficiencies, Areas for Improvement and Conclusions. An Action Plan was prepared by Electronuclear for the recommendations. It was concluded that the Unit was operated within safety standards and will attend its designed operational lifetime, including possible life extensions. The Final Report was submitted to CNEN, as one requisite for renewal of the Unit Permanent Operation License. (author)

  3. Second periodic safety review of Angra Nuclear Power Station, unit 1

    International Nuclear Information System (INIS)

    Martins, Carlos F.O.; Crepaldi, Roberto; Freire, Enio M.; Campello, Sergio A.

    2015-01-01

    This paper describes the second Periodic Safety Review (PSR2-A1) of Angra Nuclear Power Station, Unit 1, prepared by Eletrobras Eletronuclear S.A. and Tecnatom do Brasil Engenharia e Servicos Ltda., during Jul.2013-Aug.2014, covering the period of 2004-2013. The site, in Angra dos Reis-RJ, Brazil, comprises: Unit 1, (640 MWe, Westinghouse PWR, operating), Unit 2 (1300 MWe, KWU/Areva, operating) and Unit 3 (1405 MWe, KWU/Areva, construction). The PSR2-A1 attends the Standards 1.26-Safety in Operation of Nuclear Power Plants, Brazilian Nuclear Regulatory Commission (CNEN), and IAEA.SSG.25-Periodic Safety Review of Nuclear Power Plants. Within 18 months after each 10 years operation, the operating organization shall perform a plant safety review, to investigate the evolution consequences of safety code and standards, regarding: Plant design; structure, systems and components behavior; equipment qualification; plant ageing management; deterministic and probabilistic safety analysis; risk analysis; safety performance; operating experience; organization and administration; procedures; human factors; emergency planning; radiation protection and environmental radiological impacts. The Review included 6 Areas and 14 Safety Parameters, covered by 33 Evaluations.After document evaluations and discussions with plant staff, it was generated one General and 33 Specific Guide Procedures, 33 Specific and one Final Report, including: Description, Strengths, Deficiencies, Areas for Improvement and Conclusions. An Action Plan was prepared by Electronuclear for the recommendations. It was concluded that the Unit was operated within safety standards and will attend its designed operational lifetime, including possible life extensions. The Final Report was submitted to CNEN, as one requisite for renewal of the Unit Permanent Operation License. (author)

  4. Damodar Valley Corporation, Chandrapura Unit 2 Thermal Power Station Residual Life Assessment Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The BHEL/NTPC/PFC/TVA teams assembled at the DVC`s Chadrapura station on July 19, 1994, to assess the remaining life of Unit 2. The workscope was expanded to include major plant systems that impact the unit`s ability to sustain generation at 140 MW (Units 1-3 have operated at average rating of about 90 MW). Assessment was completed Aug. 19, 1994. Boiler pressure parts are in excellent condition except for damage to primary superheater header/stub tubes and economizer inlet header stub tubes. The turbine steam path is in good condition except for damage to LP blading; the spar rotor steam path is in better condition and is recommended for Unit 2. Nozzle box struts are severely cracked from the flame outs; the cracks should not be repaired. HP/IP rotor has surface cracks at several places along the steam seal areas; these cracks are shallow and should be machined out. Detailed component damage assessments for above damaged components have been done. The turbine auxiliary systems have been evaluated; cooling tower fouling/blockage is the root cause for the high turbine back pressure. The fuel processing system is one of the primary root causes for limiting unit capacity. The main steam and hot reheat piping systems were conservatively designed and have at least 30 years left;deficiencies needing resolution include restoration of insulation, replacement of 6 deformed hanger clamp/bolts, and adjustment of a few hanger settings. The cold reheat piping system is generally in good condition; some areas should be re-insulated and the rigid support clamps/bolts should be examined. The turbine extraction piping system supports all appeared to be functioning normally.

  5. Analysis of internal events for the Unit 1 of the Laguna Verde nuclear power station

    International Nuclear Information System (INIS)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R.

    1993-01-01

    This volume presents the results of the starter event analysis and the event tree analysis for the Unit 1 of the Laguna Verde nuclear power station. The starter event analysis includes the identification of all those internal events which cause a disturbance to the normal operation of the power station and require mitigation. Those called external events stay beyond the reach of this study. For the analysis of the Laguna Verde power station eight transient categories were identified, three categories of loss of coolant accidents (LOCA) inside the container, a LOCA out of the primary container, as well as the vessel break. The event trees analysis involves the development of the possible accident sequences for each category of starter events. Events trees by systems for the different types of LOCA and for all the transients were constructed. It was constructed the event tree for the total loss of alternating current, which represents an extension of the event tree for the loss of external power transient. Also the event tree by systems for the anticipated transients without scram was developed (ATWS). The events trees for the accident sequences includes the sequences evaluation with vulnerable nucleus, that is to say those sequences in which it is had an adequate cooling of nucleus but the remoting systems of residual heat had failed. In order to model adequately the previous, headings were added to the event tree for developing the sequences until the point where be solved the nucleus state. This process includes: the determination of the failure pressure of the primary container, the evaluation of the environment generated in the reactor building as result of the container failure or cracked of itself, the determination of the localization of the components in the reactor building and the construction of boolean expressions to estimate the failure of the subordinated components to an severe environment. (Author)

  6. CNSS plant concept, capital cost, and multi-unit station economics

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    United Engineers and Constructors (UE and C) and the Babcock and Wilcox Company (B and W) have performed several studies over the last eight years related to small integral pressurized water reactors. These reactors include the 365 MWt (100 MWe) Consolidated Nuclear Steam Generator (CNSG) and the 1200 MWt Consolidated Nuclear Steam System (CNSS). The studies, mostly performed under contract to the Oak Ridge National Laboratory, have led to a 1250 MWt (400 MWe) Consolidated Nuclear Steam System (CNSS) plant concept, with unique design and cost features. This report contains an update of earlier studies of the CNSS reactor and balance-of-plant concept design, capital costs, and multi-unit plant economics incorporating recent design developments, improvements, and post-TMI-2 upgrades. The economic evaluation compares the total system economic impact of a phased, three stage 400 MWe CNSS implementation program, i.e., a three-unit station, to the installation of a single 1200 MWe Pressurized Water Reactor (PWR) into a typical USA utility system.

  7. CNSS plant concept, capital cost, and multi-unit station economics

    International Nuclear Information System (INIS)

    1984-07-01

    United Engineers and Constructors (UE and C) and the Babcock and Wilcox Company (B and W) have performed several studies over the last eight years related to small integral pressurized water reactors. These reactors include the 365 MWt (100 MWe) Consolidated Nuclear Steam Generator (CNSG) and the 1200 MWt Consolidated Nuclear Steam System (CNSS). The studies, mostly performed under contract to the Oak Ridge National Laboratory, have led to a 1250 MWt (400 MWe) Consolidated Nuclear Steam System (CNSS) plant concept, with unique design and cost features. This report contains an update of earlier studies of the CNSS reactor and balance-of-plant concept design, capital costs, and multi-unit plant economics incorporating recent design developments, improvements, and post-TMI-2 upgrades. The economic evaluation compares the total system economic impact of a phased, three stage 400 MWe CNSS implementation program, i.e., a three-unit station, to the installation of a single 1200 MWe Pressurized Water Reactor (PWR) into a typical USA utility system

  8. Socio-economic impacts of nuclear generating stations: Crystal River Unit 3 case study

    International Nuclear Information System (INIS)

    Bergmann, P.A.

    1982-07-01

    This report documents a case study of the socio-economic impacts of the construction and operation of the Crystal River Unit 3 nuclear power station. It is part of a major post-licensing study of the socio-economic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period 1980 to 1981. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socio-economic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined

  9. Fire Stations

    Data.gov (United States)

    Department of Homeland Security — Fire Stations in the United States Any location where fire fighters are stationed or based out of, or where equipment that such personnel use in carrying out their...

  10. Summary of plant life management evaluation for Onagawa Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    Nodate, Kazumi

    2014-01-01

    The Onagawa Nuclear Power Station Unit-1 (Onagawa NPS-1) began commercial operation on June 1, 1984, and has reached 30-year from starting of operation on June of 2014. To that end, we implemented the Plant Life Management (PLM) evaluation for Onagawa NPS-1 as our first experience. We decided on a Long-term Maintenance Management Policy from result of the evaluation, and then applied the Safety-Regulations change approval application on November 6, 2013 and its correcting application on April 16, 2014. Our application was approved on May 21, 2014 through investigation by the Nuclear Regulatory Agency. Also at implementation of the PLM evaluation, we considered effects of the Great East Japan Earthquake that occurred on March 11, 2011 against ageing phenomena. In this paper, we introduce summary of PLM evaluation for Onagawa NPS-1 and the evaluation that considered effects of the Great East Japan Earthquake. (author)

  11. Radiological Effluent Technical Specifications (RETS) implementation: Zion Generating Station Units 1 and 2

    International Nuclear Information System (INIS)

    Serrano, W.; Akers, D.W.; Duce, S.W.; Mandler, J.W.; Simpson, F.B.; Young, T.E.

    1985-06-01

    A review of the Radiological Effluent Technical Specifications (RETS) of the Zion Generating Station Units 1 and 2 was performed. The principal review guidelines used were NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants,'' and Draft 7 of NUREG-0472, Revision 3, ''Radiological Effluent Technical Specifications for Pressurized Water Reactors.'' Draft submittals were discussed with the Licensee by both EG and G and the NRC staff until all items requiring changes to the Technical Specifications were resolved. The Licensee then submitted final proposed RETS to the NRC which were evaluated and found to be in compliance with the NRC review guidelines. The proposed Offsite Dose Calculation Manual was reviewed and generally found to be consistent with the NRC review guidelines. 35 refs., 2 figs., 1 tab

  12. Summary of commissioning of Hamaoka Nuclear Power Station Unit No.5

    International Nuclear Information System (INIS)

    Wakunaga, T.; Sekine, Y.; Yamada, K.; Nakamura, Y.; Kawahara, M.

    2006-01-01

    The Hamaoka Nuclear Power Station Unit No.5 was put into commercial operation in January 2005, which is the 1380 MWe advanced boiling water reactor (ABWR) incorporating design improvements and latest technologies of safer operation, reliability and maintenance. For example, S-FMCRD (Sealless Fine-Motion Control Rod Drive) was equipped to eliminate the use of seal housing by adopting a magnetic coupling and also ASD (Adjustable Speed Drive- the multiple drive power supply to reactor internal pumps) that can drive two or three Recirculation Internal Pumps with a large-capacity inverter. The reactor start-up tests were performed about for eleven months from February 2004 to confirm the plant's required performance including design change points. (T. Tanaka)

  13. Results of the 5th regular inspection of Unit 1 in the Hamaoka Nuclear Power Station

    International Nuclear Information System (INIS)

    1983-01-01

    The 5th regular inspection of Unit 1 in the Hamaoka Nuclear Power Station was carried out from March 27 to July 27, 1982. Inspection was made on the reactor proper, reactor cooling system, instrumentation/control system, radiation control facility, etc. By the examinations of external appearance, leakage, performance, etc., no abnormality was observed. In the regular inspection, personnel exposure dose was all below the permissible level. The works done during the inspection were the following: the replacement of control rod drives, the replacement of core support-plate plugs, the repair of steam piping, steam extraction pipes and feed water heaters, the repair of a waste-liquid concentrator, the installation of barriers and leak detectors, the installation of drain sump monitors in a containment vessel, the replacement of concentrated liquid waste pumps, the employment of type B fuel. (Mori, K.)

  14. Draft environmental impact statement. River Bend Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Federal financing of an undivided ownership interest of River Bend Nuclear Power Station Unit 1 on a 3293-acre site near St. Francisville, Louisiana is proposed in a supplement to the final environmental impact statement of September 1974. The facility would consist of a boiling-water reactor that would produce a maximum of 2894 megawatts (MW) of electrical power. A design level of 3015 MW of electric power could be realized at some time in the future. Exhaust steam would be cooled by mechanical cooling towers using makeup water obtained from and discharged to the Mississippi River. Power generated by the unit would be transmitted via three lines totaling 140 circuit miles traversing portions of the parishes of West Feliciana, East Feliciana, East Baton Rouge, West Baton Rouge, Pointe Coupee, and Iberville. The unit would help the applicant meet the power needs of rural electric consumers in the region, and the applicant would contribute significanlty to area tax base and employment rolls during the life of the unit. Construction related activities would disturb 700 forested acres on the site and 1156 acres along the transmission routes. Of the 60 cubic feet per second (cfs) taken from the river, 48 cfs would evaporate during the cooling process and 12 cfs would return to the river with dissolved solids concentrations increased by 500%. The terrace aquifer would be dewatered for 16 months in order to lower the water table at the building site, and Grants Bayou would be transformed from a lentic to a lotic habitat during this period. Fogging and icing due to evaporation and drift from the cooling towers would increase slightly. During the construction period, farming, hunting, and fishing on the site would be suspended, and the social infractructure would be stressed due to the influx of a maximum of 2200 workers

  15. Paleoecology of the Late Pennsylvanian-age Calhoun coal bed and implications for long-term dynamics of wetland ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Debra A. [US Geological Survey, 926A National Center, Reston (VA 20192 USA); Phillips, Tom L. [Department of Plant Biology, University of Illinois, Urbana (IL 61801 USA); Lesnikowska, Alicia D. [Box 24, Rt. 2, Vineyard Haven (MA 02568 USA); DiMichele, William A. [Department of Paleobiology, NMNH, Smithsonian Institution, Washington (DC 20560 USA)

    2007-01-02

    Quantitative plant assemblage data from coal balls, miospores, megaspores, and compression floras from the Calhoun coal bed (Missourian) of the Illinois Basin (USA) are used to interpret spatial and temporal changes in plant communities in the paleo-peat swamp. Coal-ball and miospore floras from the Calhoun coal bed are dominated strongly by tree ferns, and pteridosperms and sigillarian lycopsids are subdominant, depending on geographic location within the coal bed. Although the overall composition of Calhoun peat-swamp assemblages is consistent both temporally and spatially, site-to-site differences and short-term shifts in species dominance indicate local topographic and hydrologic control on species composition within the broader context of the swamp. Statistical comparison of the Calhoun miospore assemblages with those from other Late Pennsylvanian coal beds suggests that the same basic species pool was represented in each peat-swamp landscape and that the relative patterns of dominance and diversity were persistent from site to site. Therefore, it appears that the relative patterns of proportional dominance stayed roughly the same from one coal bed to the next during Late Pennsylvanian glacially-driven climatic oscillations. (author)

  16. Lessons learned from the seismic reevaluation of San Onofre Nuclear Generating Station, Unit 1

    International Nuclear Information System (INIS)

    Russell, M.J.; Shieh, L.C.; Tsai, N.C.; Cheng, T.M.

    1987-01-01

    A seismic reevaluation program was conducted for the San Onofre Nuclear Generating Station, Unit No. 1 (SONGS 1). SEP was created by the NRC to provide (1) an assessment of the significance of differences between current technical positions on safety issues and those that existed when a particular plant was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. The Systematic Evaluation Program (SEP) seismic review for SONGS 1 was exacerbated by the results of an evaluation of an existing capable fault near the site during the design review for Units 2 and 3, which resulted in a design ground acceleration of 0.67g. Southern California Edison Company (SCE), the licensee for SONGS 1, realized that a uniform application of existing seismic criteria and methods would not be feasible for the upgrading of SONGS 1 to such a high seismic requirement. Instead, SCE elected to supplement existing seismic criteria and analysis methods by developing criteria and methods closer to the state of the art in seismic evaluation techniques

  17. Manufacture of steam generator units and components for the AGR power stations at Heysham II and Torness

    Energy Technology Data Exchange (ETDEWEB)

    Glasgow, J R; Parkin, K [N.E.I. Nuclear Systems Ltd., Gateshead, Tyne and Wear (United Kingdom)

    1984-07-01

    The current AGR Steam Generator is a development of the successful once-through units supplied for the Oldbury Magnox and Hinkley B/Hunterston B AGR power stations. In this paper a brief outline of the evolution of the steam generator design from the earlier gas cooled reactor stations is presented. A description of the main items of fabrication development is given. The production facilities for the manufacture of the units are described. Reference is also made to some of the work on associated components. The early experience on the construction site of installation of the steam generators is briefly outlined. (author)

  18. Manufacture of steam generator units and components for the AGR power stations at Heysham II and Torness

    International Nuclear Information System (INIS)

    Glasgow, J.R.; Parkin, K.

    1984-01-01

    The current AGR Steam Generator is a development of the successful once-through units supplied for the Oldbury Magnox and Hinkley B/Hunterston B AGR power stations. In this paper a brief outline of the evolution of the steam generator design from the earlier gas cooled reactor stations is presented. A description of the main items of fabrication development is given. The production facilities for the manufacture of the units are described. Reference is also made to some of the work on associated components. The early experience on the construction site of installation of the steam generators is briefly outlined. (author)

  19. Ring thermal shield piping modification at Pickering Nuclear Generating Station 'A' Unit 1

    International Nuclear Information System (INIS)

    Brown, R.; Cobanoglu, M.M.

    1995-01-01

    Each of the four Pickering Nuclear Generating Station A (PNGSA) CANDU units was constructed with its reactor and dump tank surrounded by a concrete Calandria Vault (CV). The Ring Thermal Shield (RTS) system at PNGSA units is a water cooled structure with internal cooling channels with the purpose of attenuating excessive heat flux from the calandria shell to the end shield rings and adjoining concrete (Figure 1). In newer CANDU units the reactor calandria vessel is surrounded by a large water filled shield tank which eliminates the requirement for the RTS system. The RTS structures are situated in the space between the calandria and the vault walls. Each RTS is assembled from eight flat sided carbon steel segments, tilted towards the calandria and supported from the end shield rings. Cooling water to the RTS is supplied by carbon steel cooling pipes with a portion of the pipe run embedded in the vault walls. Flow through each RTS is divided into two independent circuits, having an inlet and an outlet cooling line. There are four locations of RTS inlet and outlet cooling lines. The inlet lines are located at the bottom and the outlet lines at the top of the RTS. The 'L' shaped section of RTS inlet and outlet cooling lines, from the RTS waterbox to the start of embedded portion at the concrete wall, had become defective due to corrosion induced by excessive Moisture levels in the calandria vaults. An on-line leak sealing capability was developed and placed in service in all four PNGSA units. However, a leak found during the 1994 Unit 1 outage was too large,to seal with the current capability, forcing Ontario Hydro (OH) to develop a method to replace the corroded pipes. The repair project was subject to some lofty performance targets. All tools had to be able to withstand dose rates of up to 3000 Rem/hour. These tools, along with procedures and personnel had to successfully repair the RTS system within 6 months otherwise a costly outage extension would result. This

  20. Alteration in reactor installation (addition of Unit 2) in Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. (inquiry)

    International Nuclear Information System (INIS)

    1983-01-01

    An inquiry was made by the Ministry of International Trade and Industry to Nuclear Safety Commission on the addition of Unit 2 in Shimane Nuclear Power Station of The Chugoku Electric Power Co., Inc., concerning the technical capability of Chugoku Electric Power Co., Inc., and the plant safety. The NSC requested the Committee on Examination of Reactor Safety to make a deliberation on this subject. Both the technical capability and the safety of Unit 1 were already confirmed by MITI. Unit 2 to be newly added in the Shimane Nuclear Power Station is a BWR power plant with electric output of 820 MW. The examination made by MITI is described: the technical capability of Chugoku Electric Power Co., Inc., the safety of Unit 2 about its siting, reactor proper, reactor cooling system, radioactive waste management, etc. (J.P.N.)

  1. Use of Physio-Hydrological Units for SMOS Validation at the Valencia Anchor Station Study Area

    Science.gov (United States)

    Millán-Scheiding, C.; Antolín, C.; Marco, J.; Soriano, M. P.; Torre, E.; Requena, F.; Carbó, E.; Cano, A.; Lopez-Baeza, E.

    2009-04-01

    The SMOS space mission will soil moisture over the continents and ocean surface salinity with the sufficient resolution to be used in global climate change studies. With the aim of validating SMOS land data and products at the Valencia Anchor Station site (VAS) in a Mediterranean Ecosystem area of Spain, we have designed a sample methodology using a subdivision of the landscape in environmental units related to the spatial variability of soil moisture (Millán-Scheiding, 2006; Lopez-Baeza, et al. 2008). These physio-hydrological units are heterogeneously structured entities which present a certain degree of internal uniformity of hydrological parameters. The units are delimited by integrating areas with the same physio-morphology, soil type, vegetation, geology and topography (Flugel, et al 2003; Millán-Scheiding et al, 2007). Each of these units presented over the same pedological characteristics, vegetation cover, and landscape position should have a certain degree of internal uniformity in its hydrological parameters and therefore similar soil moisture (SM). The main assumption for each unit is that the dynamical variation of the hydrological parameters within one unit should be minimum compared to the dynamics of another unit. This methodology will hopefully provide an effective sampling design consisting of a reduced number of measuring points, sparsely distributed over the area, or alternatively, using SM validation networks where each sampling point is located where it is representative of the mean soil moisture of a complete unit area. The Experimental Plan for the SMOS Validation Rehearsal Campaign at the VAS area of April-May 2008 used this environmental subdivision in the selection and sampling of over 21.000 soil moisture points in a control area of 10 x 10 km2. The ground measurements were carried out during 4 nights corresponding to a drying out period of the soil. The sampling consisted of 700 plots with 4 volumetric SM cylinders and 7 Delta-T Theta

  2. Site preparation and excavation works for the foundation of station main building among construction works for No. 1 unit in Kashiwazaki-Kariwa Nuclear Pwer Station

    International Nuclear Information System (INIS)

    Ueyama, Koreyasu

    1982-01-01

    Tokyo Electric Power Co., Inc., is planning the nuclear power station of final capacity 8,000 MW (7 units) in the region spread over Kashiwazaki City and Kariwa Village in Niigata Prefecture. For No. 1 unit (1100 MWe BWR), the reactor installation license was obtained in September, 1977, the site preparation and road construction started in April, 1978, and harbour construction works started in August, 1979. The construction works are now at the peak, and the overall progressing rate as of the end of June, 1982, is about 51 %. The site is a hilly region of dune along the coast of the Sea of Japan, and No. 1 unit is located in the southern part of the site. This paper reports on the outline of the project, site preparation and excavation works for the foundation of the station main building. For the site preparation and the excavation works for the foundation the main building, the shape of slope cutting, the design of landslide-preventing wall for the vertical excavation for the reactor complex building, and the construction plan and the result are reported. For underground water impermeable wall works, its outline, groundwater condition, groundwater simulation analysis, the investigation of wall installation, the wall structure and construction are described in detail. Also the outline of the control of slope face measurement, the control standards and the measured results are reported. (Wakatsuki, Y.)

  3. Site preparation and excavation works for the foundation of station main building among construction works for No. 1 unit in Kashiwazaki-Kariwa Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Koreyasu [Tokyo Electric Power Co., Inc. (Japan)

    1982-09-01

    Tokyo Electric Power Co., Inc., is planning the nuclear power station of final capacity 8,000 MW (7 units) in the region spread over Kashiwazaki City and Kariwa Village in Niigata Prefecture. For No. 1 unit (1100 MWe BWR), the reactor installation license was obtained in September, 1977, the site preparation and road construction started in April, 1978, and harbour construction works started in August, 1979. The construction works are now at the peak, and the overall progressing rate as of the end of June, 1982, is about 51 %. The site is a hilly region of dune along the coast of the Sea of Japan, and No. 1 unit is located in the southern part of the site. This paper reports on the outline of the project, site preparation and excavation works for the foundation of the station main building. For the site preparation and the excavation works for the foundation the main building, the shape of slope cutting, the design of landslide-preventing wall for the vertical excavation for the reactor complex building, and the construction plan and the result are reported. For underground water impermeable wall works, its outline, groundwater condition, groundwater simulation analysis, the investigation of wall installation, the wall structure and construction are described in detail. Also the outline of the control of slope face measurement, the control standards and the measured results are reported.

  4. Final Environmental Statement related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1985-09-01

    This Final Environmental Statement contains the second assessment of the environmental impact associated with Beaver Valley Power Station Unit 2 pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental benefits and costs, and concludes that the action called for is the issuance of an operating license for Beaver Valley Unit 2

  5. 78 FR 32278 - Vogtle Electric Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to...

    Science.gov (United States)

    2013-05-29

    ... Generating Station, Units 3 and 4; Southern Nuclear Operating Company; Change to Information in Tier 1, Table... Nuclear Operating Company, Inc., and Georgia Power Company, Oglethorpe Power Corporation, Municipal... Table 3.3-1, ``Definition of Wall Thicknesses for Nuclear Island Buildings, Turbine Buildings, and Annex...

  6. 75 FR 13606 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-03-22

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. STN 50-528, STN 50-529, and STN 50-530; NRC-2010-0114] Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3; Environmental...-74, issued to Arizona Public Service Company (APS, the licensee), for operation of the Palo Verde...

  7. 75 FR 53985 - Arizona Public Service Company, et al., Palo Verde Nuclear Generating Station, Unit 3; Temporary...

    Science.gov (United States)

    2010-09-02

    ... NUCLEAR REGULATORY COMMISSION [Docket No. STN 50-530; NRC-2010-0281] Arizona Public Service Company, et al., Palo Verde Nuclear Generating Station, Unit 3; Temporary Exemption 1.0 Background Arizona Public Service Company (APS, the licensee) is the holder of Facility Operating License No. NPF-74, which...

  8. 76 FR 79228 - Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy...

    Science.gov (United States)

    2011-12-21

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-018 and 52-019; NRC-2008-0170] Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy Carolinas, LLC AGENCY: Nuclear.... SUMMARY: Notice is hereby given that the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Army Corps...

  9. 78 FR 77508 - Duke Energy Carolinas, LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined...

    Science.gov (United States)

    2013-12-23

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-018 and 52-019; NRC-2008-0170] Duke Energy Carolinas, LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined Licenses Application Review AGENCY: Nuclear Regulatory Commission. ACTION: Final environmental impact statement; availability...

  10. 78 FR 40200 - Duke Energy Carolinas, LLC, Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel...

    Science.gov (United States)

    2013-07-03

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 72-1004, 72-40, 50-269, 50-270, and 50-287; NRC-2013-0135] Duke Energy Carolinas, LLC, Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel Storage Installation; Environmental Assessment and Finding of No Significant Impact AGENCY: Nuclear...

  11. 78 FR 45575 - Duke Energy Carolinas, LLC; Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel...

    Science.gov (United States)

    2013-07-29

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos.: 72-1004, 72-40, 50-269, 50-270, 50-287; and NRC-2013- 0135] Duke Energy Carolinas, LLC; Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel Storage Installation AGENCY: Nuclear Regulatory Commission. ACTION: Exemption; issuance. SUMMARY: The NRC...

  12. Technical Specifications: Clinton Power Station, Unit No. 1 (Docket No. 50-461): Appendix ''A'' to License No. NPF-62

    International Nuclear Information System (INIS)

    1987-04-01

    The Clinton Power Station, Unit No. 1 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR 50 for the protection of the health and safety of the public

  13. Technical Specifications, Seabrook Station, Unit 1 (Docket No. 50-443): Appendix ''A'' to License No. NPF-67

    International Nuclear Information System (INIS)

    1989-05-01

    The Seabrook Station, Unit 1 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  14. Safety evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1. Docket No. 50-322

    International Nuclear Information System (INIS)

    1983-02-01

    Supplement No. 3 to the Safety Evaluation Report of Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have come to light since the previous supplement was issued

  15. Draft Environmental Statement related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1984-12-01

    This Draft Environmental Statement contains the second assessment of the environmental impact associated with Beaver Valley Power Station Unit 2 pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental benefits and costs

  16. Station blackout transient at the Browns Ferry Unit 1 Plant: a severe accident sequence analysis (SASA) program study

    International Nuclear Information System (INIS)

    Schultz, R.R.

    1982-01-01

    Operating plant transients are of great interest for many reasons, not the least of which is the potential for a mild transient to degenerate to a severe transient yielding core damage. Using the Browns Ferry (BF) Unit-1 plant as a basis of study, the station blackout sequence was investigated by the Severe Accident Sequence Analysis (SASA) Program in support of the Nuclear Regulatory Commission's Unresolved Safety Issue A-44: Station Blackout. A station blackout transient occurs when the plant's AC power from a comemrcial power grid is lost and cannot be restored by the diesel generators. Under normal operating conditions, f a loss of offsite power (LOSP) occurs [i.e., a complete severance of the BF plants from the Tennessee Valley Authority (TVA) power grid], the eight diesel generators at the three BF units would quickly start and power the emergency AC buses. Of the eight diesel generators, only six are needed to safely shut down all three units. Examination of BF-specific data show that LOSP frequency is low at Unit 1. The station blackout frequency is even lower (5.7 x 10 - 4 events per year) and hinges on whether the diesel generators start. The frequency of diesel generator failure is dictated in large measure by the emergency equipment cooling water (EECW) system that cools the diesel generators

  17. Conformance to Regulatory Guide 1.97, Beaver Valley Power Station, Unit No. 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    Stoffel, J.W.; Udy, A.C.

    1985-11-01

    This EG and G Idaho, Inc., report reviews the submittals for Regulatory Guide 1.97 for Unit No. 2 of the Beaver Valley Power Station and identifies areas of nonconformance to the regulatory guide. Exceptions to Regulatory Guide 1.97 are evaluated and those areas where sufficient basis for acceptability is not provided are identified

  18. 77 FR 35079 - License Renewal Application for Seabrook Station, Unit 1 ; NextEra Energy Seabrook, LLC

    Science.gov (United States)

    2012-06-12

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-443; NRC-2010-0206] License Renewal Application for Seabrook Station, Unit 1 ; NextEra Energy Seabrook, LLC AGENCY: Nuclear Regulatory Commission. ACTION: License renewal application; intent to prepare supplement to draft [[Page 35080

  19. 78 FR 29158 - In the Matter of Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Approving...

    Science.gov (United States)

    2013-05-17

    ... and DPR-48] In the Matter of Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order... formed for the purpose of acquiring ES, Inc. and is held by certain investment fund entities organized by... Environmental Management Programs, in writing, of such receipt no later than one (1) business day prior to the...

  20. 78 FR 22347 - GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain...

    Science.gov (United States)

    2013-04-15

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-320; NRC-2013-0065] GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain Security Requirements AGENCY: Nuclear... and State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission...

  1. Conformance to Regulatory Guide 1.97, River Bend Station, Unit No. 1 (Docket No. 50-458)

    International Nuclear Information System (INIS)

    Udy, A.C.

    1985-08-01

    This EG and G, Inc., report reviews the submittals for Regulatory Guide 1.97, Revision 3, for the River Bend Station, Unit No. 1. Any exception to Regulatory Guide 1.97 is evaluated and those areas where sufficient basis for acceptability is not provided are identified. 8 refs

  2. Efforts to perform safe and efficient decommissioning for Tsuruga Power Station Unit 1

    International Nuclear Information System (INIS)

    Saito, Shiro; Yamauchi, Toyoaki; Austin, Colin R.

    2017-01-01

    Tsuruga Power Station Unit-1 (Tsuruga-1) started commercial operation in March 1970, and the decision to terminate operation was made in 2015. In April 2016, JAPC signed an agreement with Energy Solutions (ES) on strategic cooperation for domestic D and D projects for introduction of successful international experiences. As a first step in this cooperation, D and D know-how developed by ES in the US is being applied to Tsuruga-1 with verifying its applicability to domestic D and D projects. One of the efforts is human resource development. JAPC has also started introduction of ES's project management method to the Tsuruga-1 project for solid project management and the base line is currently being prepared. Regarding the waste disposal paths, application document of approval for measurement and evaluation of clearance material was submitted in September 2016. However the disposal paths for waste are not established in Japan. It is necessary to cooperate with the government, utilities and local stakeholders to establish waste disposal paths. Because it is also important to obtain the understanding from local communities, JAPC and ES will try positively to utilize local companies for D and D works. JAPC and ES believe that their relationship will ensure success of the Tsuruga-1 NPP decommissioning project. (author)

  3. Results of the 4th regular inspection in Unit 1 of the Mihama Nuclear Power Station

    International Nuclear Information System (INIS)

    1981-01-01

    The 4th regular inspection of Unit 1 in the Mihama Nuclear Power Station was made from July, 1975, to December, 1980, on its reactor and associated facilities. The respective stages of inspection during the years are described. The inspection by external appearance examination, disassembling leakage inspection and performance tests indicated crackings in piping for fuel-replacement water tank, the container penetration of recirculation pipe for residual-heat removal, and main steam-relief valve, and leakage in one fuel assembly. Radiation exposure of the personnel during the inspection was less than the permissible dose. Radiation exposure data for the personnel are given in tables. The improvements and repairs done accordingly were as follows: reapir of the piping for a fuel-replacement tank and recirculation piping for residual-heat removal, replacement of the main steam-relief valve, plugging of heating tubes for the steam-generator, replacement of pins and covers for control-rod guide pipes, improvement of safety protection system and installation of rare gas monitor. (J.P.N.)

  4. Operation and management of United Central Piping LPG supply stations in Shenzhen

    Energy Technology Data Exchange (ETDEWEB)

    Lai Yankai

    1997-11-01

    Shenzhen has based its city gas development project on the eventual conversion to natural gas supply by way of central piping LPG supply stations. To fully exploit the potential gas supply capability of every central piping station and cut down the total running cost, we have been connecting the existing supply stations and their piping system into a network, which not only provided a more reliable gas supply performance, but can greatly simplify the evacuation of gas stations from the ever-expanding downtown areas to suburbs. Through this way, the periodic gas stock held by individual stations can be transferred to storage terminal or stations of enough holding capability; the supplying distance has been much lengthened and the gas volume held in the piping system increased; gas supply covered by small stations has been shifted to new and large stations. By linking these stations, we are able to provide pipeline LP gas supply for a large area, and in the same time lay down the pipeline infrastructure for the upcoming LNG supply so that an easy conversion to LNG supply can be secured as soon as the projected LNG terminal is put to service. (au)

  5. CLIMATE CHANGE FUEL CELL PROGRAM UNITED STATES COAST GUARD AIR STATION CAPE COD BOURNE, MASSACHUSETTS

    Energy Technology Data Exchange (ETDEWEB)

    John K. Steckel Jr

    2004-06-30

    This report covers the first year of operation of a fuel cell power plant, installed by PPL Spectrum, Inc. (PPL) under contract with the United States Coast Guard (USCG), Research and Development Center (RDC). The fuel cell was installed at Air Station Cape Cod in Bourne, MA. The project had the support of the Massachusetts Technology Collaborative (MTC), the Department of Energy (DOE), and Keyspan Energy. PPL selected FuelCell Energy, Inc. (FCE) and its fuel cell model DFC{reg_sign}300 for the contract. Grant contributions were finalized and a contract between PPL and the USCG for the manufacture, installation, and first year's maintenance of the fuel cell was executed on September 24, 2001. As the prime contractor, PPL was responsible for all facets of the project. All the work was completed by PPL through various subcontracts, including the primary subcontract with FCE for the manufacture, delivery, and installation of the fuel cell. The manufacturing and design phases proceeded in a relatively timely manner for the first half of the project. However, during latter stages of manufacture and fuel cell testing, a variety of issues were encountered that ultimately resulted in several delivery delays, and a number of contract modifications. Final installation and field testing was completed in April and May 2003. Final acceptance of the fuel cell was completed on May 16, 2003. The fuel cell has operated successfully for more than one year. The unit achieved an availability rate of 96%, which exceeded expectations. The capacity factor was limited because the unit was set at 155 kW (versus a nameplate of 250 kW) due to the interconnection with the electric utility. There were 18 shutdowns during the first year and most were brief. The ability of this plant to operate in the island mode improved availability by 3 to 4%. Events that would normally be shutdowns were simply island mode events. The mean time between failure was calculated at 239 hours, or slightly

  6. Microprocessor control unit of thyristor regulator of microhydroelectric power station ballast load

    International Nuclear Information System (INIS)

    Nomokonova, Yu; Bogdanov, E

    2014-01-01

    The operational principle of microhydroelectric power station ballast load is presented. The comparative overview of the mathematical modeling methods is performed. The ranges of thyristors optimal work are shown as a result of the regulator regimes analysis. Shows the necessity of regulation the ballast load in microhydroelectric power station with help of developed algorithm of the program for microprocessor control

  7. Data book of examination of the ruptured pipe at the Hamaoka Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    2002-03-01

    In order to investigate root cause of the pipe rupture, which took place at the Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company on November 7, 2001, a task force was established within the Nuclear and Industrial Safety Agency (NISA) and initiated a detailed investigation of the ruptured pipe. The Japan Atomic Energy Research Institute (JAERI) was asked from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in response to the request from NISA to cooperate as an independent neutral organization with NISA and perform an examination of the ruptured pipe independently from Chubu Electric Power Company. JAERI accepted the request by considering the fact that JAERI is an integrated research institution for nuclear research and development, a prime research institution for nuclear safety research, a research institution with experience of root-cause investigation of various nuclear incidents and accidents of domestic as well as overseas, and a research institution provided with advanced examination facilities necessary for examination of the ruptured pipe. The JAERI examination group was formed at the Tokai Research Establishment and conducted detailed and thorough examination of the pieces taken from the ruptured pipe primarily in the Reactor Fuel Examination Facility (RFEF) with the use of tools such as scanning electron microscopes and other equipments. Purpose of examination was to provide technical information in order to identify causes of the pipe rupture through examination of the pieces taken from the ruptured region of the pipe. The result of the present examination has already been reported to NISA and has also been published as the JAERI-Tech report No.2001-94. This report is a data book containing the detailed data obtained by the present examination. (author)

  8. Report of examination of the ruptured pipe at the Hamaoka Nuclear Power Station Unit-1

    International Nuclear Information System (INIS)

    2001-12-01

    In order to investigate root cause of the pipe rupture, which took place at the Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company on November 7, 2001, a task force was established within the Nuclear and Industrial Safety Agency (NISA) and initiated a detailed investigation of the ruptured pipe. The Japan Atomic Energy Research Institute (JAERI) was asked from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in response to the request from NISA to cooperate as an independent neutral organization with NISA and perform an examination of the ruptured pipe independently from Chubu Electric Power Company. JAERI accepted the request by considering the fact that JAERI is an integrated research institution for nuclear research and development, a prime research institution for nuclear safety research, a research institution with experience of root-cause investigation of various nuclear incidents and accidents of domestic as well as overseas, and a research institution provided with advanced examination facilities necessary for examination of the ruptured pipe. The JAERI examination group was formed at the Tokai Research Establishment and conducted detailed and thorough examination of the pieces taken from the ruptured pipe primarily in the Reactor Fuel Examination Facility (RFEF) with the use of tools such as scanning electron microscopes and other equipments. Purpose of examination was to provide technical information in order to identify causes of the pipe rupture through examination of the pieces taken from the ruptured region of the pipe. The following findings and conclusion were made as the result of the present examination. (1) Wall thickness of the pipe was significantly reduced in the ruptured region. (2) Dimple pattern resulting from ductile fracture by shearing was observed in the fracture surfaces of nearly all of the pieces and no indication of fatigue crack growth was found. (3) Microstructure showed a typical carbon

  9. Inversion of Multi-Station Schumann Resonance Background Records for Global Lightning Activity in Absolute Units

    Science.gov (United States)

    Williams, E. R.; Mushtak, V. C.; Guha, A.; Boldi, R. A.; Bor, J.; Nagy, T.; Satori, G.; Sinha, A. K.; Rawat, R.; Hobara, Y.; Sato, M.; Takahashi, Y.; Price, C. G.; Neska, M.; Alexander, K.; Yampolski, Y.; Moore, R. C.; Mitchell, M. F.; Fraser-Smith, A. C.

    2014-12-01

    Every lightning flash contributes energy to the TEM mode of the natural global waveguide that contains the Earth's Schumann resonances. The modest attenuation at ELF (0.1 dB/Mm) allows for the continuous monitoring of the global lightning with a small number of receiving stations worldwide. In this study, nine ELF receiving sites (in Antarctica (3 sites), Hungary, India, Japan, Poland, Spitsbergen and USA) are used to provide power spectra at 12-minute intervals in two absolutely calibrated magnetic fields and occasionally, one electric field, with up to five resonance modes each. The observables are the extracted modal parameters (peak intensity, peak frequency and Q-factor) for each spectrum. The unknown quantities are the geographical locations of three continental lightning 'chimneys' and their lightning source strengths in absolute units (C2 km2/sec). The unknowns are calculated from the observables by the iterative inversion of an evolving 'sensitivity matrix' whose elements are the partial derivatives of each observable for all receiving sites with respect to each unknown quantity. The propagation model includes the important day-night asymmetry of the natural waveguide. To overcome the problem of multiple minima (common in inversion problems of this kind), location information from the World Wide Lightning Location Network has been used to make initial guess solutions based on centroids of stroke locations in each chimney. Results for five consecutive days in 2009 (Jan 7-11) show UT variations with the African chimney dominating on four of five days, and America dominating on the fifth day. The amplitude variations in absolute source strength exceed that of the 'Carnegie curve' of the DC global circuit by roughly twofold. Day-to-day variations in chimney source strength are of the order of tens of percent. Examination of forward calculations performed with the global inversion solution often show good agreement with the observed diurnal variations at

  10. A Cryogenic Test Station for the Pre-series 2400 W @ 1.8 K Refrigeration Units for the LHC

    CERN Document Server

    Claudet, S; Gully, P; Jäger, B; Millet, F; Roussel, P; Tavian, L

    2002-01-01

    The cooling capacity below 2 K for the superconducting magnets in the Large Hadron Collider (LHC), at CERN, will be provided by eight refrigeration units at 1.8 K, each of them coupled to a 4.5 K refrigerator. The supply of the series units is linked to successful testing and acceptance of the pre-series delivered by the two selected vendors. To properly assess the performance of specific components such as cold compressors and some process specificities a dedicated test station is necessary. The test station is able to process up to 130 g/s between 4.5 & 20 K and aims at simulating the steady and transient operational modes foreseen for the LHC. After recalling the basic characteristics of the 1.8 K refrigeration units and the content of the acceptance tests of the pre-series, the principle of the test cryostat is detailed. The components of the test station and corresponding layout are described. The first testing experience is presented as well as preliminary results of the pre-series units.

  11. AECL's participation in the commissioning of Point Lepreau generating station unit 1

    International Nuclear Information System (INIS)

    Chawla, S.; Singh, K.; Yerramilli, S.

    1983-05-01

    Support from Atomic Energy of Canada Ltd. (AECL) to Point Lepreau during the commissioning program has been in the form of: seconded staff for commissioning program management, preparation of commissioning procedures, and hands-on commissioning of several systems; analysis of test results; engineering service for problem solving and modifications; design engineering for changes and additions; procurement of urgently-needed parts and materials; technological advice; review of operational limits; interpretation of design manuals and assistance with and preparation of submissions to regulatory authorities; and development of equipment and procedures for inspection and repairs. This, together with AECL's experience in the commissioning of other 600 MWe stations, Douglas Point and Ontario Hydro stations, provides AECL with a wide range of expertise for providing operating station support services for CANDU stations

  12. Application of a hazard and operability study method to hazard evaluation of a chemical unit of the power station.

    Science.gov (United States)

    Habibi, E; Zare, M; Barkhordari, A; Mirmohammadi, Sj; Halvani, Ghh

    2008-12-28

    The aim of this study was to identify the hazards, evaluate their risk factors and determine the measure for promotion of the process and reduction of accidents in the chemical unit of the power station. In this case and qualitative study, HAZOP technique was used to recognize the hazards and problems of operations on the chemical section at power station. Totally, 126 deviations were documented with various causes and consequences. Ranking and evaluation of identified risks indicate that the majority of deviations were categorized as "acceptable" and less than half of that were "unacceptable". The highest calculated risk level (1B) related to both the interruption of acid entry to the discharge pumps and an increased density of the acid. About 27% of the deviations had the lowest risk level (4B). The identification of hazards by HAZOP indicates that it could, systemically, assess and criticize the process of consumption or production of acid and alkali in the chemical unit of power plant.

  13. Safety evaluation report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1987-03-01

    This report, Supplement No. 4 to the Safety Evaluation Report for the application filed by the Duquesne Light Company et al. (the applicant) for a license to operate the Beaver Valley Power Station, Unit 2 (Docket No. 50-412), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved when the Safety Evaluation Report and its Supplements 1, 2, and 3 were published

  14. Safety evaluation report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1986-05-01

    This report, Supplement No. 1 to the Safety Evaluation Report for the application filed by the Duquesne Light Company et al. (the applicant) for a license to operate the Beaver valley Power Station, Unit 2 (Docket No. 50-412), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time the Safety Evaluation Report was published

  15. Draft environmental statement related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1984-07-01

    This Draft Environmental Statement contains the second assessment of the environmental impact associated with the operation of Millstone Nuclear Power Station, Unit 3, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs

  16. Safety Evaluation Report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322)

    International Nuclear Information System (INIS)

    1989-04-01

    Supplement 10 (SSER 10) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  17. Dresden Nuclear Power Station, Unit No. 1: Primary cooling system chemical decontamination: Draft environmental statement (Docket No. 50-10)

    International Nuclear Information System (INIS)

    1980-05-01

    The staff has considered the environmental impact and economic costs of the proposed primary cooling system chemical decontamination at Dresden Nuclear Power Station, Unit 1. The staff has focused this statement on the occupational radiation exposure associated with the proposed Unit 1 decontamination program, on alternatives to chemical decontamination, and on the environmental impact of the disposal of the solid radioactive waste generated by this decontamination. The staff has concluded that the proposed decontamination will not significantly affect the quality of the human environment. Furthermore, any impacts from the decontamination program are outweighed by its benefits. 2 figs., 7 tabs

  18. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    Science.gov (United States)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; hide

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  19. Research at United States Antarctic stations during the International Magnetosphere Study

    International Nuclear Information System (INIS)

    Rosenberg, T.J.

    1982-01-01

    During the International Magnetospheric Study (IMS) the U.S. operated programs at McMurdo, Siple, South Pole, and Palmer stations and at the Soviet Vostok station. Details concerning measurement locations are considered, and program summaries are provided. The programs are related to the study of geomagnetic variations, magnetic pulsations in the polar cap, cosmic noise absorption, VLF radio waves, auroral photometry, the morphology and dynamics of visible auroral forms, cosmic ray intensity variations, and auroral infrasonic waves. One program is based on the utilization of VHF Doppler auroral radar

  20. Considerations for increasing unit 1 spent fuel pool capacity at the Laguna Verde station

    International Nuclear Information System (INIS)

    Vera, A.

    1992-01-01

    To increase the spent fuel storage capacity at the Laguna Verde Station in a safe and economical manner and assure a continuous operation of the first Mexican Nuclear Plant, Comision Federal de Electricidad (CFE), the Nation's Utility, seeked alternatives considering the overall world situation, the safety and licensing aspects, as well as the economics and the extent of the nuclear program of Mexico. This paper describes the alternatives considered, their evaluation and how the decision taken by CFE in this field, provides the Laguna Verde Station with a maximum of 37 years storage capacity plus full core reserve

  1. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    Science.gov (United States)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  2. Upgrading of fire protection arrangements at Magnox power stations in the United Kingdom

    International Nuclear Information System (INIS)

    Zhu, L.H.

    1998-01-01

    The methodology used in conducting fire hazard assessments at Magnox Reactor power stations operated by Magnox Electric plc is described. The assessments use a deterministic approach. This includes the identification of essential plant and the associated supporting systems required for the safe trip, shutdown and post-trip cooling of the reactor, assessment of the location of the essential plant and the vulnerability of these plant in the presence of a fire, assessment of essential functions against the effects of a fire and identification of improvements to the fire protection arrangements. Practical aspects of fire protection engineering on operating power stations are discussed and examples of improvements in protection described. (author)

  3. System Definition Document: Reactor Data Necessary for Modeling Plutonium Disposition in Catawba Nuclear Station Units 1 and 2

    International Nuclear Information System (INIS)

    Ellis, R.J.

    2000-01-01

    The US Department of Energy (USDOE) has contracted with Duke Engineering and Services, Cogema, Inc., and Stone and Webster (DCS) to provide mixed-oxide (MOX) fuel fabrication and reactor irradiation services in support of USDOE's mission to dispose of surplus weapons-grade plutonium. The nuclear station units currently identified as mission reactors for this project are Catawba Units 1 and 2 and McGuire Units 1 and 2. This report is specific to Catawba Nuclear Station Units 1 and 2, but the details and materials for the McGuire reactors are very similar. The purpose of this document is to present a complete set of data about the reactor materials and components to be used in modeling the Catawba reactors to predict reactor physics parameters for the Catawba site. Except where noted, Duke Power Company or DCS documents are the sources of these data. These data are being used with the ORNL computer code models of the DCS Catawba (and McGuire) pressurized-water reactors

  4. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - UNITED STATES NAVAL BASE NORFOLK NAVAL AIR STATION

    Science.gov (United States)

    This report summarizes work conducted at the U.S. Navy's Naval Base Norfolk, Naval Air Station (NAS) located at Sewells Point in Norfolk, Virginia, under the U.S. Environmental Protection Agency's (EPA) Waste Reduction Evaluations at Federal Sites (WREAFS) Program. This project w...

  5. Surry Power Station, Units 1 and 2. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Net electric power generated by Unit 1 was 2,315,124 MWH(e) and Unit 2 generated 2,062,954 MWH(e) with Unit 1 generator on line for 3,157.8 hrs and Unit 2 on line for 2,881.2 hrs. Information is presented concerning power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, abnormal occurrences, and environmental monitoring. (FS)

  6. Forward and backward evolution of the Calhoun CZO: the effect of natural and anthropogenic disturbances

    Science.gov (United States)

    Bonetti, S.; Porporato, A. M.

    2017-12-01

    The time evolution of a landscape topography through erosional and depositional mechanisms is modified by both human and natural disturbances. This is particularly evident in the Calhoun Critical Zone Observatory, where decades of land-use resulted in a distinct topography with gullies, interfluves, hillslopes and significantly eroded areas. Understanding the role of different geomorphological processes that led to these conditions is crucial to reconstruct sediment and soil carbon fluxes, predict critical conditions of landscape degradation, and implement strategies of land recovery. To model these dynamics, an analytical theory of the drainage area (which represents a surrogate for water surface runoff responsible for fluvial incision) is used to evolve ridge and valley lines. Furthermore, the coupled dynamics of surface water runoff and landscape evolution is analyzed theoretically and numerically to detect thresholds leading to either stable landscape configurations or critical conditions of land erosion. Observed erosional cycles due to vegetation disturbances are explored and used to predict future evolutions under various levels of anthropogenic disturbance.

  7. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1992-09-01

    This document supplement 25 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, and 24 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several Unit 1 licensing items resolved since Supplement 24 was issued

  8. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Unit 2 (Docket No. 50-446)

    International Nuclear Information System (INIS)

    1993-02-01

    Supplement 26 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Unit 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, 23, 24, and 25 to that report were published. This supplement deals primarily with Unit 2 issues; however, it also references evaluations for several licensing issues that relate to Unit 1, which have been resolved since Supplement 25 was issued

  9. Experience and development of on-line BWR surveillance system at Onagawa nuclear power station unit-1

    International Nuclear Information System (INIS)

    Kishi, A.; Chiba, K.; Kato, K.; Ebata, S.; Ando, Y.; Sakamoto, H.

    1986-01-01

    ONAGAWA nuclear power station Unit-1 (Tohoku Electric Power Co.) is a BWR-4 nuclear power station of 524 MW electric power which started commercial operation in June 1984. To attain high reliability and applicability for ONAGAWA-1, Tohoku Electric Power Co. and Toshiba started a Research and Development project on plant surveillance and diagnosis from April 1982. Main purposes of this project are to: (1) Develop an on-line surveillance system and acquire its operating experience at a commercial BWR, (2) Assist in plant operation and maintenance by data acquisition and analysis, (3) Develop a new technique for plant surveillance and diagnosis. An outline of the project, operating experience gained from the on-line surveillance system and an introduction to new diagnosis techniques are reported in this paper. (author)

  10. Case study on the use of PSA methods: Station blackout risk at Millstone Unit 3

    International Nuclear Information System (INIS)

    1991-04-01

    In Westinghouse pressurized water reactors, severe accidents sequences resulting from station blackout have been recognized to be significant contributors to risk of core damage and public consequences. To properly quantify the risk of station blackout it is necessary to consider all possible types of core damage scenarios. Having obtained an accurate representation of the types of core damage scenarios involved specific areas of vulnerability can be pinpointed for further improvement. In performing this analysis it was decided to use time dependent probabilistic safety assessment method to provide a more realistic treatment of time dependent failure and recovery. Overview of the analysis, calculation procedures and methods, interpretation of the results are discussed. Peer review process is described. 13 refs, 19 figs

  11. Maintenance model for the No. 2 1300 MW unit at Philippsburg nuclear power station

    International Nuclear Information System (INIS)

    Gamer, M.; Jaeger, E.; Woehrle, G.

    1983-01-01

    In 1979 a maintenance model to the scale 1:1 was constructed for the second extension of Philippsburg Nuclear Power Station. The objective of this model, the building of which was completed at the end of 1982, the physical arrangement of the overall maintenance regime and the practice-oriented application of the ergonomics, in particular in relation to the optimization of the man-machine interface, are described. (orig.) [de

  12. Technical Specifications, Braidwood Station, Unit Nos. 1 and 2 (Docket Nos. STN 50-456 and STN 50-457). Appendix ''A'' to License No. NPF-59

    International Nuclear Information System (INIS)

    1986-10-01

    Information is presented for Braidwood Station Unit Nos. 1 and 2 in the areas of: safety limits and limiting safety system settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  13. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT UNITED STATES ARMY CORPS OF ENGINEERS PITTSBURGH ENGINEER WAREHOUSE AND REPAIR STATION AND EMSWORTH LOCKS AND DAMS PITTSBURGH, PENNSYLVANIA

    Science.gov (United States)

    This report summarizes work conducted at the United States Army Corps of Engineers (USACE) Pittsburgh Engineering Warehouse and Repair Station (PEWARS) and Emsworth Locks and Dams in Pittsburgh, Pennsylvania under the U.S. Environmental Protection Agency's (EPA's) Waste Reduction...

  14. Damage of the Unit 1 reactor building overhead bridge crane at Onagawa Nuclear Power Station caused by the Great East Japan Earthquake and its repair works

    International Nuclear Information System (INIS)

    Sugamata, Norihiko

    2014-01-01

    The driving shaft bearings of the Unit 1 overhead bridge crane were damaged by the Great East Japan Earthquake at Onagawa Nuclear Power Station. The situation, investigation and repair works of the bearing failure are introduced in this paper. (author)

  15. Technical specifications, Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423). Appendix ''A'' to License No. NPF-49

    International Nuclear Information System (INIS)

    1986-01-01

    Information is presented concerning specifications on the following aspects of the Millstone Nuclear Power Station, Unit No. 3: safety limits and limiting safety system settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  16. The competitive economics of a middle aged multi unit nuclear generating station

    International Nuclear Information System (INIS)

    Talbot, K.H.

    1994-01-01

    In 1992 Ontario Hydro's 15 year old 4 x 850 MWe Candu, Bruce A Nuclear Generating Station was predicted to need considerable capital investment to replace pressure tubes, steam generators and other prematurely ageing equipment in order to restore the station to high performance. Over the subsequent two years the station has undergone 2 major economic assessment studies which have confirmed the economic viability of continued operation of the plant. Declining demand for electricity in Ontario combined with a excess of generating capacity and a need to stabilise electricity rates have however forced significant operational cost reductions and reduced capital availability for rehabilitation work, it's medium and long term future remains in question. This presentation offers a practical illustration of the need to maintain steady high performance from nuclear generating plant via the appropriate life management techniques. The avoidance of mid life infusion of capital is considered as essential if nuclear generation is to successfully survive major changes in economic conditions. 2 tabs., 7 figs

  17. Dresden Nuclear Power Station, Units 1, 2, and 3. Annual operating report: January thru December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical energy generated by Unit 1 was 953,015.5 MWH with the generator on line 7,399.37 hrs. Unit 2 generated 4,371,553.689 MWH with the generator on line 6,664.58 hrs while Unit 3 generated 4,034,251 MWH with the generator on line 7,234.86 hrs. Information is presented concerning operations, maintenance, and shutdowns

  18. Indian Point Station, Units 1, 2, and 3. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Unit 1 remained in a shutdown condition pending a decision by the Company on the installation of an ECCS as required by NRC. Net electrical power generated by Unit 2 was 2,267,654 MWH with the unit on line 3,056.45 hrs. Unit 3 generated 1,872,947 MWH and was on line 2,286.01 hrs. Information is presented concerning operations, reportable events, corrective maintenance, fuel performance, radioactivity releases, shutdowns, primary coolant chemistry, and occupational radiation exposures

  19. Measurement of gamma ray flux within the containment building at the first unit of Kori nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. W.; Kim, K. D.; Yoon, C. H.; Han, J. M.; Hu, Y. H. [Korea Hydraulic and Nuclear Power Company, Taejon (Korea, Republic of)

    2004-07-01

    To evaluate gamma ray dose response of GM counter being used for monitoring of gamma ray field in nuclear power plants, gamma ray energy spectra and fluxes were obtained for three positions at the unit 1 of the Kori nuclear power station. By applying the response values of Eberline's E112B survey meter to the results, the doses represented on the survey meter were overestimated from 1.31 to 1.37 times when compared to the real doses for these three positions.

  20. Management of main generator condition during long term plant shut down at Higashidori Nuclear Power Station Unit 1

    International Nuclear Information System (INIS)

    Kato, Seiji

    2014-01-01

    Higashidori Nuclear Power Station Unit 1 shut down on February 6, 2011 to start 4th refuel outage. On March 11, 2011, we keep going refuel outage on this moment a large earthquake occurred and tsunami was generated following it which called 'Great East Japan Earthquake'. Refuel outage takes 3 ∼ 5 months normally but Higashidori NPS still keeping shut down over 3 years due to some issues. In this paper, we introduce about management of Main generator condition during long term plant shut down situation in addition to normal plant shut down situation to keep well. (author)

  1. Safety Evaluation Report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1987-05-01

    This report, Supplement No. 5 to the Safety Evaluation Report for the application filed by the Duquesne Light Company et al. (the applicant) for a license to operate the Beaver Valley Power Station, Unit 2 (Docket No. 50-412), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved when the Safety Evaluation Report and its Supplements 1, 2, 3, and 4 were published

  2. Safety Evaluation Report related to the operation of Clinton Power Station, Unit No. 1, Docket No. 50-461

    International Nuclear Information System (INIS)

    1983-05-01

    Supplement No. 2 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc., as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplement No. 1

  3. Safety evaluation report related to the operation of Clinton Power Station, Unit No. 1 (Docket No. 50-461)

    International Nuclear Information System (INIS)

    1987-03-01

    Supplement No. 8 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc., as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of items that have been resolved by the staff since Supplement No. 7 was issued

  4. Safety evaluation report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1984-07-01

    The Safety Evaluation Report for the application filed by Northeast Nuclear Energy Company, as applicant and agent for the owners, for a license to operate the Millstone Nuclear Power Station Unit 3 (Docket No. 50-423), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in the town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  5. Safety Evaluation Report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1985-10-01

    This Safety Evaluation Report on the application filed by Duquesne Light Company, as applicant and agent for the owners, for a license to operate the Beaver Valley Power Station Unit 2 (Docket No. 50-412) has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Shippingport Borough, Beaver County, Pennsylvania, on the south bank of the Ohio River. Subject to the favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  6. Technical evaluation of RETS-required reports for Browns Ferry Nuclear Power Station, Units 1, 2, and 3, for 1983

    International Nuclear Information System (INIS)

    Young, T.E.; Magleby, E.H.

    1985-01-01

    A review was performed of reports required by federal regulations and the plant-specific radiological effluent technical specifications (RETS) for operations conducted at Tennessee Valley Authority's Browns Ferry Nuclear Station, Units 1, 2, and 3, during 1983. The two periodic reports reviewed were (a) the Effluents and Waste Disposal Semiannual Report, First Half 1983 and (b) the Effluents and Waste Disposal Semiannual Report, Second Half 1983. The principal review guidelines were the plant's specific RETs and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably complete and consistent with the review guidelines

  7. Technical evaluation of RETS-required reports for Rancho Seco Nuclear Generating Station, Unit 1 for 1983

    International Nuclear Information System (INIS)

    Magleby, E.H.; Young, T.E.

    1985-01-01

    A review of the reports required by Federal regulations and the plant-specific Radiological Effluent Technical Specifications (RETS) for operations conducted during 1983 was performed. The periodic reports reviewed for the Rancho Seco Nuclear Generating Station, Unit 1 were the Semiannual Effluent Release Report, January 1, 1983 to June 30, 1983 and the Radiation Exposure, Environmental Protection, Effluent and Waste Disposal Report. The principal review guidelines were the plant's specific RETS which were based on NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably complete and consistent with the review guidelines

  8. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382)

    International Nuclear Information System (INIS)

    1985-03-01

    Supplement 10 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the licensee since the Safety Evaluation Report and its nine previous supplements were issued

  9. Safety evaluation report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1985-09-01

    The Safety Evaluation Report issued in August 1984 provided the results of the NRC staff review of Northeast Nuclear Energy Company's application for a license to operate the Millstone Nuclear Power Station, Unit No. 3. Supplement No. 1 to that report, issued in March 1985 updated the information contained in the Safety Evaluation Report and addressed the ACRS Report issued on September 10, 1984. The Report, Supplement No. 2 updates the information contained in the Safety Evaluation Report and Supplement No. 1 and addresses prior unresolved items. The facility is located in Waterford Township, New London, Connecticut. 11 refs., 9 tabs

  10. International Space Station United States Laboratory Module Water Recovery Management Subsystem Verification from Flight 5A to Stage ULF2

    Science.gov (United States)

    Williams, David E.; Labuda, Laura

    2009-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system comprises of seven subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), Vacuum System (VS), Water Recovery and Management (WRM), and Waste Management (WM). This paper provides a summary of the nominal operation of the United States (U.S.) Laboratory Module WRM design and detailed element methodologies utilized during the Qualification phase of the U.S. Laboratory Module prior to launch and the Qualification of all of the modification kits added to it from Flight 5A up and including Stage ULF2.

  11. Safety evaluation report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412)

    International Nuclear Information System (INIS)

    1987-08-01

    This report, Supplement No. 6 to the Safety Evaluation Report for the application filed by the Duquesne Light Company et al. (the licensee) for a license to operate the Beaver Valley Power Station, Unit 2 (Docket No. 50-412), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved when the Safety Evaluation Report and its Supplements 1, 2, 3, 4, and 5 were published

  12. Quad-Cities Station, Units 1 and 2. Annual report, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated by Unit 1 was 2,246,757 MWh(e) with the generator on line 4,287.5 hrs while Unit 2 generated 1,729,147 MWh(e) with the generator on line 3,056.21 hrs. Information is presented concerning operations, power generation, shutdowns, maintenance, changes, tests, and experiments

  13. Quad-Cities Station, Units 1 and 2. Semiannual operating report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Unit 1 generated 2,024,125 net electrical MWH and the generator was on line 3162.6 hours. Unit 2 generated 746,184 net electrical MWH and was on line 1475.3 hrs. Data is included concerning operations, power generation, shutdowns, maintenance, changes, and tests. (FS)

  14. Quad-Cities Station, Units 1 and 2. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Net electrical power generated by Unit 1 was 3,393,062 MWH with the generator on line 5,703.0 hrs. Unit 2 generated 4,304,684 MWH with the generator on line 7,145.3 hrs. Information is presented concerning modifications, maintenance, power generation, shutdowns, occupational radiation exposures, and organization

  15. Outline of construction and facility features of Onagawa nuclear power station Unit No. 2

    International Nuclear Information System (INIS)

    Umimura, Yoshiharu; Tsunoda, Ryohei; Watanabe, Kazunori

    1996-01-01

    Tohoku Electric Power Company promotes development of various power sources to provide a stable supply of electricity in the future, and nuclear power takes a leading part. In August 1989, construction of Onagawa nuclear power plant Unit No. 2 (825MW) was started, following Unit No. 1 (524MW) which went on line in 1984 as Tohoku Electric's first nuclear power plant unit. Unit No. 2 began commercial operation in July 1995 through satisfactory construction work such as RPV hydraulic test in March 1994, fuel loading in October 1994, and various startup tests in each power stage. The design and construction of Unit No. 2 reflect construction and operation experience gained from Unit No. 1, and the latest technology, including that of the LWR Improvement and Standardization Program, was adopted to enhance facility reliability, improve operation and maintenance performance, and reduce worker dosage. Features of the facility, construction techniques, and a description of preoperation of Onagawa nuclear power plant Unit No. 2 are described in this paper. (author)

  16. Combined Solar Charging Stations and Energy Storage Units Allocation for Electric Vehicles by Considering Uncertainties

    DEFF Research Database (Denmark)

    Yousefi Khanghah, Babak; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    Electric vehicles (EVs) are becoming a key feature of smart grids. EVs will be embedded in the smart grids as a mobile load-storage with probabilistic behavior. In order to manage EVs as flexible loads, charging stations (CSs) have essential roles. In this paper, a new method for optimal sitting...... are considered based on time-of-use (TOU) demand response programs (DRPs). In order to solve the optimization problem considering uncertainty of load growth, electricity price, initial state of charge of batteries and solar power generation, genetic algorithm method using Monte-Carlo simulation is used...

  17. Construction and start-up tests for Unit No. 5 of Fukushima Daiichi Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T; Sunami, Y; Ishii, N; Yokojima, T [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1978-12-01

    This unit, with an output capacity of 874 MWe, was completed by Toshiba last April on the basis of the actual operation records of the units previously completed and the experience in construction. Since its completion it has continued very excellent operation, with no emergency stop. This article is a description of the Unit 5, about: (1) the design and major points of improvement; (2) the construction work and cleaning of the plant; and (3) the operation tests, the use of the first automatic fuel exchanger, and the plant management system including the rust-preventive measures for two years since the oil-crisis.

  18. Peach Bottom Atomic Power Station, Units 2 and 3. Annual operating report: January--December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Unit 2 experienced 11 forced outages, 5 power reductions, and one major refueling outage which lasted about 3 months during which time the feedwater spargers were replaced. Net electrical power generated was 5,569,633 MWH with the generator on line 5,998 hrs. Unit 3 experienced 17 forced outages, 11 power reductions and 2 major outages. The first refueling outage began 12/24/77. Net electrical power generated was 6,049,644 MWH with the unit on line 6,829 hrs. Information is presented concerning operations, personnel exposures, radioactive releases, maintenance, and irradiated fuel examination

  19. Browns Ferry Nuclear Power Station, Units 1 and 2. Semiannual report, July--December 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Both units remained shutdown during this period. The majority of the operational activities concerned identification, removal, and repair of cables and trays damaged by the fire. Scheduled modifications, inspections, and testing were performed

  20. Pilgrim Nuclear Power Station, Unit 1. Annual operating report for 1976

    International Nuclear Information System (INIS)

    Net electrical power generated was 2,415,511 MWH with the generator on line 5,333.6 hrs. Information is presented concerning operations, procedure changes, tests, experiments, maintenance, unit shutdowns and power reductions, and radiation doses to personnel

  1. Salem Nuclear Generating Station, Unit 1. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Initial reactor criticality was achieved 12/11/76 and power generation began 12/25/76. Information is presented concerning operation, maintenance, procedure and specification changes, power generation, unit shutdowns and forced power reductions, testing, and personnel radiation exposures

  2. High efficiency-large capacity circulating water pump for Hamaoka Nuclear Power Station unit No.3

    International Nuclear Information System (INIS)

    Ito, Akihiko; Sasamuro, Takemi; Takeda, Hirohisa.

    1988-01-01

    No.3 plant in the Hamaoka Nuclear Power Station, Chube Electric Power Co., Inc. is the latest plant of 1100 MW class BWR type, which began the commercial operation in August, 1987. The seawater intake and discharge system of this plant is composed of the channel exceeding 2 km in the total length from the intake tower to the discharge port. The circulating water pump installed in this system has the capacity of 1620 m 3 /min and the total head of 16.5 m, which are the largest in the world. It attained the efficiency as high as more than 90%. Three pumps supply seawater to three-body condensers. The design of the impeller and the casing for obtaining high efficiency, the structural design for facilitating maintenance, the manufacture of a model pump and the performance test using it and so on are reported. The most important item in the manufacture was the form of the onebody impeller weighing 4.5t. The confirmation of the performance of the actual machines was carried out as a part of the synthetic function confirmation test at the power station, and the flow rate was measured with Pitot tubes and ultrasonic flowmeters. (Kako, I.)

  3. Patterns in Soil Electrical Resistivity Across Land Uses in the Calhoun Critical Zone Observatory Landscape

    Science.gov (United States)

    Markewitz, D.; Sutter, L.; Richter, D. D., Jr.

    2017-12-01

    Soil Electrical Resistivity Tomography (ERT) was measured across the Calhoun Critical Zone Observatory in relation to land use cover. ERT can help identify patterns in soil and saprolite physical attributes and moisture content through multiple meters. ERT data were generated with an AGI Supersting R8 with a 28 probe dipole-dipole array on a 1.5 meter spacing providing information through the upper 9 m. In Nov/Dec 2016 ten soil pits were dug to 3m depth in agricultural fields, pine forests, and hardwood forests across the CCZO and ERT measures were taken centered on these pits. ERT values ranged from 200 to 2500 Ohm-m. ERT patterns in the agricultural field demonstrated a limited resistivity gradient (200-700 Ohm-m) appearing moist throughout. In contrast, research areas under pine and hardwood forest had stronger resistivity gradients reflecting both moisture and physical attributes (i.e., texture or rock content). For example, research area 2 under pine had an area of higher resistivity that correlated with a band of saprolite that was readily visible in the exposed profile. In research area 7 and 8 that included both pine and hardwood forest resistivity gradients had contradictory patterns of high to low resistivity from top to bottom. In research area 7 resistivity was highest at the surface and decreased with depth, a common pattern when water table is at depth. In research area 8 the inverse was observed with low resistivity above and resistivity increasing with depth, a pattern observed in upper landscape positions on ridges with moist clay above dry saprolite. ERT patterns did reflect a large difference in the measured agricultural fields compared to forest while other difference appeared to reflect landscape position.

  4. An introduction to the installation of Unit 5 at Revelstoke Generating Station

    International Nuclear Information System (INIS)

    1994-07-01

    The Revelstoke hydroelectric power plant in British Columbia has four generating units with a total capacity of 1843 MW. The plant was designed as a six-unit facility, with space provided in the powerhouse for two additional units in Bays 5 and 6. It is proposed to install a fifth unit at Revelstoke, which will increase capacity by ca 460 MW. No additional land or transmission facilities will be required for this project, whose estimated direct construction cost is $90 million. The new unit is felt to be needed because of anticipated capacity shortfalls that could occur on the British Columbia Hydro system as early as 1996 or as late as 2004. Preliminary engineering and environmental studies are reviewed, and the public consultation program and procurement plan for the project are outlined. Potential impacts on land use and heritage resources appear negligible, and recreation use of Revelstoke Reservoir is not expected to be significantly impacted. Changes in reservoir fluctuations with Unit 5 in place will be minimal. 4 figs

  5. Final environmental statement related to the operation of Clinton Power Station, Unit No. 1. Docket No. 50-461

    International Nuclear Information System (INIS)

    1982-05-01

    This final environmental statement contains the second assessment of the environmental impact associated with operation of Clinton Power Station Unit 1 pursuant to the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51, as amended, of the NRC's regulations. This statement examines: the affected environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land-use and terrestrial- and aquatic-ecological impacts will be small. Air-quality impacts will also be small. However, steam fog from the station's cooling lake has the potential for reducing visibility over nearby roads and bridges. A fog-monitoring program for roads and ridges near the lake has been recommended. Impacts to historic and prehistoric sites will be negligible. Chemical discharges to Lake Clinton and Salt Creek are expected to have no appreciable impacts on water quality under normal conditions and will be required to meet conditions of the station's NPDES permit. The hydrothermal analyses indicate that under certain meteorological conditions (1-in-50-year drought), the plant would have to be operated at reduced power levels in order to meet the thermal standards established by the Illinois Pollution Control Board Order PCB 81-82. The effects of routine operations, energy transmission, and periodic maintenance of rights-of-way and transmission line facilties should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. Contentions associated with environmental issues accepted during the operating-license hearing are related to assessment of effects of low-level radiation. The net socioeconomic effects of the project will be beneficial. The action called for is the issuance of an operating license for Unit 1 of Clinton

  6. Iron turbidity removal from the active process water system of the Kaiga Generating Station Unit 1 using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.

    2007-01-01

    Iron turbidity is observed in the intermediate cooling circuit of the active process water system (APWS) of Kaiga Generating Station (KGS). Deposition of hydrous/hydrated oxides of iron on the plate type heat exchanger, which is employed to transfer heat from the APWS to the active process cooling water system (APCWS), can in turn result in higher moderator D 2 O temperatures due to reduced heat transfer. Characterization of turbidity showed that the major component is γ-FeOOH. An in-house designed and fabricated electrochemical filter (ECF) containing an alternate array of 33 pairs of cathode and anode graphite felts was successfully tested for the removal of iron turbidity from the APWS of Kaiga Generating Station Unit No. 1 (KGS No. 1). A total volume of 52.5 m 3 water was processed using the filter. At an average inlet turbidity of 5.6 nephelometric turbidity units (NTU), the outlet turbidity observed from the ECF was 1.6 NTU. A maximum flow rate (10 L . min -1 ) and applied potential of 18.0-20.0 V was found to yield an average turbidity-removal efficiency of ∝ 75 %. When the experiment was terminated, a throughput of > 2.08 . 10 5 NTU-liters was realized without any reduction in the removal efficiency. Removal of the internals of the filter showed that only the bottom 11 pairs of felts had brownish deposits, while the remaining felts looked clean and unused. (orig.)

  7. Final environmental statement related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423)

    International Nuclear Information System (INIS)

    1984-12-01

    This Final Environmental Statement contains the second assessment of the environmental impact associated with the operation of Millstone Nuclear Power Station, Unit 3, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial and aquatic ecological impacts will be small. Operational impacts to historic and archeologic sites will be small. The effects of routine operations, energy transmission, and periodic maintenance of rights-of-way and transmission facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk of radiation exposure associated with accidental release of radioactivity is very low. The net socioeconomic effects of the project will be beneficial. On the basis of the analysis and evaluation set forth in this environmental statement, it is concluded that the action called for under NEPA and 10 CFR 51 is the issuance of an operating license for Millstone Nuclear Power Station, Unit 3. 101 references, 33 figures, 30 tables

  8. Browns Ferry Nuclear Power Station, Units 1, 2, and 3. Semiannual report, January--June 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Browns Ferry units 1 and 2 operated at maximum power from January 1 to March 22 except as limited by thermal margins, fuel preconditioning, optimum power shape, maintenance, and Unit 2 start-up tests. On March 22 a cable tray fire started causing spurious starting of equipment due to faulted control cables. The reactors were manually scrammed and placed in cold shutdown for fire investigation, clean up, and fuel removal. Information is also presented concerning maintenance, radiochemistry, occupational radiation exposure, release of radioactive materials, and non-radiological environmental monitoring

  9. Indian Point Station, Unit 1 and 2. Semiannual operating report No. 24, July--December 1974

    International Nuclear Information System (INIS)

    1975-01-01

    Net electrical power generated by Unit 1 was 519,130 MWH with the reactor critical for 2,400.39 hours and the generator on line for 2,316.14 hours. Unit 2 generated 2,427,828 MWH electrical power, was critical for 3,590.31 hours and the generator was on line for 3,485.41 hours. Operations and maintenance are summarized. Information is presented concerning radioactive effluent releases, occupational personnel radiation protection, primary coolant chemistry, changes, tests, and experiments. Environmental radioactivity is discussed. (U.S.)

  10. Technical specifications, Limerick Generating Station, Unit No. 2 (Docket No. 50-353)

    International Nuclear Information System (INIS)

    1989-07-01

    The Limerick, Unit 2, Technical Specifications were prepared by the US Nuclear Regulatory Commission to set the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  11. Technical Specifications, Limerick Generating Station, Unit No. 2 (Docket No. 50-353)

    International Nuclear Information System (INIS)

    1989-08-01

    The Limerick, Unit 2, Technical Specifications were prepared by the US Nuclear Regulatory Commission to set the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  12. 76 FR 30204 - Exelon Nuclear, Dresden Nuclear Power Station, Unit 1; Exemption From Certain Security Requirements

    Science.gov (United States)

    2011-05-24

    ... contained in the Responsibility Matrix of the safeguards contingency plan.'' Part 73 of Title 10 of the Code... organization, which will have as its objective to provide high assurance that activities involving special... structures) for DNPS Unit 1 is in a form that does not pose a risk of removal (i.e., an intact reactor...

  13. Analysis of internal events for the Unit 1 of the Laguna Verde Nuclear Power Station. Appendixes

    International Nuclear Information System (INIS)

    Huerta B, A.; Lopez M, R.

    1995-01-01

    This volume contains the appendices for the accident sequences analysis for those internally initiated events for Laguna Verde Unit 1, Nuclear Power Plant. The appendix A presents the comments raised by the Sandia National Laboratories technical staff as a result of the review of the Internal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant. This review was performed during a joint Sandia/CNSNS multi-day meeting by the end 1992. Also included is a brief evaluation on the applicability of these comments to the present study. The appendix B presents the fault tree models printed for each of the systems included and.analyzed in the Internal Event Analysis for LVNPP. The appendice C presents the outputs of the TEMAC code, used for the cuantification of the dominant accident sequences as well as for the final core damage evaluation. (Author)

  14. Analysis of internal events for the Unit 1 of the Laguna Verde Nuclear Power Station. Appendixes

    International Nuclear Information System (INIS)

    Huerta B, A.; Lopez M, R.

    1995-01-01

    This volume contains the appendices for the accident sequences analysis for those internally initiated events for Laguna Verde Unit 1, Nuclear Power Plant. The appendix A presents the comments raised by the Sandia National Laboratories technical staff as a result of the review of the Internal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant. This review was performed during a joint Sandia/CNSNS multi-day meeting by the end 1992. Also included is a brief evaluation on the applicability of these comments to the present study. The appendix B presents the fault tree models printed for each of the systems included and analyzed in the Internal Event Analysis for LVNPP. The appendice C presents the outputs of the TEMAC code, used for the cuantification of the dominant accident sequences as well as for the final core damage evaluation. (Author)

  15. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Testing of Returned Units

    Science.gov (United States)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.

    2017-01-01

    The air revitalization system aboard the International Space Station (ISS) provides the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation due to the microgravity environment in Low Earth Orbit (LEO). The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) media filters deployed at multiple locations in each U.S. Segment module; these filters are referred to as Bacterial Filter Elements, or BFEs. These filters see a replacement interval, as part of maintenance, of 2-5 years dependent on location in the ISS. In this work, we present particulate removal efficiency, pressure drop, and leak test results for a sample set of 8 BFEs returned from the ISS after filter replacement. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS beyond 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  16. Factors relating to transmission of viral hepatitis in a United States military population stationed in Thailand.

    Science.gov (United States)

    Scott, R M; Schneider, R J; Snitbhan, R; Karwacki, J J

    1981-05-01

    To determine the incidence of clinical and inapparent hepatitis in a US military population stationed in Thailand, the authors prospectively studied a cohort of 326 men during one year. Clinical hepatitis A occurred in one man (clinical attack rate = 3.1/1000 men/year), and clinical hepatitis B was found in four men (clinical attack rate = 12.3/1000 men/year). No non-A, non-B hepatitis was identified. There was no serologically identified inapparent hepatitis A but inapparent hepatitis B occurred in 17 men. The apparent/inapparent ratio for hepatitis B was 1:4.25. Serotype analysis suggested that hepatitis B virus largely originated from Thai contacts, although 23% of cases were derived from western sources. To determine the relative contribution of 16 statistically significant (out of 67 studied) behavioral variables to the transmission of HBV, a factor analysis and a multivariate correlation analysis were employed. Factor analysis indicated that social and sexual contact with the indigenous population, including prostitutes, residence within the Thai community and marijuana use were behavioral areas that were associated with the acquisition of hepatitis B. Residence in the Thai community during the first four-month period in Thailand, sexual contact with a prostitute during the third four-month period, and ever having maintained a Thai mistress were found to be significant and independent risk factors by multiple regression analysis.

  17. Occurrence of hemorrhagic fever with renal syndrome in military unit stationed in the combat zone

    Directory of Open Access Journals (Sweden)

    Ćirić Slaviša

    2003-01-01

    Full Text Available Since it has been recognized as a separate disease during the Korean war hemorrhagic fever with renal syndrome (HFRS has often been discovered among the members of different armies in various countries, military personnel being the highest risk group for the disease. In the period from March to May 1999 we treated 6 soldiers coming from the military formation stationed at Kosovo and Metohia. The reaction of indirect hemagglutination test proved the presence of antibodies against Hantavira in each of them. They were infected during the stay in a dugout in the area with great population of field rodents. Only one patient was slightly ill, on the admission to the hospitalall. The others had severe clinical and laboratory findings: several days lasting fever, strong abdominal pain, as well as the pain in the loins dyspeptical discomfort, manifold increased blood urea nitrogen and serum creatinine values, thrombocytopenia, etc. Oliguria occurred in 4 patients. Hemorrhagic manifestations were slight (epistaxis, petechial rash conjunctival injection, or absent. Because of the aggravation of the acute renal failure, hemodialysis was performed in 3 patients, while other 3 underwent conservative treatment. Two of the patients had severe anemia because of which transfusions of erythrocytes and plasma were performed. Complications occurred in 2 patients (convulsive crises and lung infections. All patients recovered completely.

  18. [Manifestations of hemorrhagic fever with renal syndrome in a military unit stationed in a combat zone].

    Science.gov (United States)

    Cirić, Slavisa; Denić, Vesna; Mitrović, Vekoslav; Mitrović-Perisić, Natasa; Denić, Nebojsa; Cirić, Slobodan

    2003-01-01

    Since it has been recognized as a separate disease during the Korean war, hemorrhagic fever with renal syndrome (HFRS) has often been discovered among the members of different armies in various countries, military personnel being the highest risk group for the disease. In the period from March to May 1999 we treated 6 soldiers coming from the military formation stationed at Kosovo and Metohia. The reaction of indirect hemagglutination test proved the presence of antibodies against Hantavira in each of them. They were infected during the stay in a dugout in the area with great population of field rodents. Only one patient was slightly ill, on the admission to the hospital. The others had severe clinical and laboratory findings: several days lasting fever, strong abdominal pain, as well as the pain in the loins, dyspeptical discomfort, manifold increased blood urea nitrogen and serum creatinine values, thrombocytopenia, etc. Oliguria occurred in 4 patients. Hemorrhagic manifestations were slight (epistaxis, petechial rash, conjunctival injection), or absent. Because of the aggravation of the acute renal failure, hemodialysis was performed in 3 patients, while other 3 underwent conservative treatment. Two of the patients had severe anemia because of which transfusions of erythrocytes and plasma were performed. Complications occurred in 2 patients (convulsive crises and lung infections). All patients recovered completely.

  19. Construction and start-up testing experience of Kashiwazakikariwa Nuclear Power Station Unit No.1

    International Nuclear Information System (INIS)

    Natsume, Nobuo; Murakami, Hideaki

    1986-01-01

    In order to overcome the new location condition in Japan Sea coast, new techniques were developed and adopted to ensure the safety in construction and to shorten the construction period as far as possible. The commercial operation was started on September 18, 1985. This plant is a BWR plant of 1100 MWe output. The results of the improvement and standardization of BWRs and the measures for reliability improvement and radiation dose reduction were fully adopted in this plant. The site of the power station and the layout of the main facilities are explained. As the features of the location condition, the severe weather condition in winter such as snow, wind and lightning and high waves in the sea were considered. The rockbed for installing the foundation of the reactor building was deep, and the aseismatic design condition was made stricter, accordingly, the quantity of materials increased. A tent dome was developed to cover above the reactor containment vessel being assembled, a lightning forecast system was installed, and synchro-lift method was adopted for caisson breakwaters. The countermeasures to the deep rockbed and the measures to shorten the construction period were taken. The results of the trial operation are reported. (Kako, I.)

  20. Palo Verde Generating Station, Units 4 and 5. License application, general information

    International Nuclear Information System (INIS)

    1978-01-01

    A license application for two more Palo Verde reactors, Units 4 and 5, is presented. The two PWR reactors have a nominal net generating power each of 1,270 MW(e). Containments are steel-lined prestressed cylindrical structures with hemispherical domes. The reactors are replicas of Palo Verde 1, 2 and 3 (see DOCKETS 50528, 50529 and 50530) using the standard Combustion Engineering System 80 (see DOCKET-STN-50470)

  1. Marble Hill Nuclear Generating Station, Units 1 and 2. License application, PSAR, general information

    International Nuclear Information System (INIS)

    1975-01-01

    An application is presented for two PWR reactors to be constructed in Salud Township, Jefferson County, Indiana, about six miles northeast of New Washington on the Ohio River. Each unit will have a rated core power level of 3411 MW(t) with a corresponding electrical output of 1130 MW(e). Mechanical draft cooling towers will be provided. The facility, which will replicate the Byron facility will be employed for the generation of electricity for transmission, sale for resale, and distribution

  2. Burst protection device for largely cylindrical steam raising units, preferably of pressurized water nuclear power stations

    International Nuclear Information System (INIS)

    Mutzl, J.

    1978-01-01

    This burst protection device controls forces to be expected in an accident by resolving them into axial (vertical) and radial (horizontal) components, which are taken by a large number of elements stressed in tension. The steam raising unit is surrounded by a containment, but remains easily accessible. The containment consists of a steel jacket, lid and floor. Several cylindrical sections above one another form the steel jacket, which surrounds the steam raising unit with an intermediate insulating layer of concrete. The insulating concrete cylinder is of several times the thickness of the steel jacket, and also consists of cylindrical sections. An outer supporting ring for the lid and floor of the containment have outside diameters which project beyond the jacket. Prestressed circumferential vertical tension ropes between the supporting ring and floor take any additional tensional forces. The lid is domed with downward curvature towards the upper boiler dome. Internal bursting forces produce compressive stresses in the lid, which thus pass along its outside diameter into the surrounding ring. The lid, which is devided along one diameter, makes dismantling and access to the boiler easy even with a central steam pipe going upwards. The floor of the burst protection is also the floor of the steam raising unit. It is of several times the thickness of the tube floor, which, with its spacing above the floor forms the usual inlet and outlet space for the reactor cooling water. The main coolant pump installed there is driven by an external motor through a floor penetration. (HP) [de

  3. Fulton Generating Station Units 1 and 2 (Docket Nos. 50-463 and 50-464): Final environmental statement

    International Nuclear Information System (INIS)

    1975-04-01

    The proposed action is the issuance of construction permits to the Philadelphia Electric Company for the construction of the Fulton Generating Station, Units 1 and 2, located in Fulton and Drumore Townships, Lancaster County, Pennsylvania. Makeup water for cooling will be withdrawn form Conowingo Pond at a maximum rate of 43,000 gpm. The dissolved solids content of the blowdown water will be increased by a factor of about two. The remainder of the water will be evaporated to the atmosphere by cooling towers. About 10 acres offsite, some 7 acres of which is woodland, will be used for railroad-spur construction. About 0.25 mile of new transmission-line rights-of-way (9 acres) will be needed, although 49 miles of new transmission line, which will require about 3 miles of selective clearing, will be constructed on existing rights-of-way. An unestablished amount of land will be used for access-road construction, but the applicant will use existing roadway corridors where feasible. A small loss of consumer species will result from loss of habitat. Some loss of benthic and pelagic organisms in Conowingo Pond will be caused by intake and discharge construction. The Station's thermal and chemical discharges will meet the State water-quality standards. The duration of additional ground-level fog caused by Station operation is expected to be less than 3 hr/year. (Sect. 5.3.3). No observable effects are expected from salt deposition from cooling-tower drift. (Sect. 5.3.3). Decomposers, primary producers, and zooplankton will be entrained and killed in the cooling-tower system; they, as well as benthic organisms, will be affected by the heated-water discharge. This loss will have little effect on the pond food web. 30 figs., 76 tabs

  4. Ensuring radiation safety during construction of the facility ''Ukrytie'' and restoration of unit 3 of the Chernobyl nuclear power station

    International Nuclear Information System (INIS)

    Belovodsky, L.F.; Panfilov, A.P.

    1997-01-01

    On April 26, 1986, an accident at the fourth power unit of the Chernobyl NPS (ChNPS) destroyed the reactor core and part of the power unit building, whereby sizeable amounts of radioactive materials, stored in reactor at operation, were released into the environment, and there were also highly active fragments of fuel elements and pieces of graphite from reactor spread on ChNPS site near to safety block. Information on the accident at ChNPS, including its cause and consequences, was considered at special meeting, conducted by IAEA on August 25-29, 1986, in Vienna. In final report of International Advisory Group for Nuclear Safety (IAGNS), prepared by results of meeting activities, the main stages of the accident effects elimination (AEE) immediately on the station site according to the data, received before August 1, 1986, were discussed. In 1987-1990 the published materials on the later period of AEE, completed by building ''Ukrytie'' installation at the fourth power unit of ChNPS

  5. Integrated plant safety assessment, Systematic Evaluation Program: Dresden Nuclear Power Station, Unit 2 (Docket No. 50-237)

    International Nuclear Information System (INIS)

    1989-10-01

    The US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to the final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0823), under the scope of the Systematic Evaluation Program (SEP), for the Commonwealth Edison Company (CECo) Dresden Nuclear Power Station, Unit 2 located in Grundy County, Illinois. The NRC initiated the SEP to provide the framework for reviewing the design of older operating nuclear reactor plants to reconfirm and document their safety. This report documents the review completed by means of the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations subsequent to issuing the final IPSAR for Dresden Unit 2. The review was provided for (1) an assessment of the significance of differences between current technical positions on selected issues and those that existed when Dresden Unit 2 was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. The final IPSAR and this supplement forms part of the bases for considering the conversion of the existing provisional operating license to a full-term operating license. 83 refs., 9 tabs

  6. FOREST FIRES AROUND UNITS OF CONSERVATION – A CASE STUDY IN ÁGUAS EMENDADAS ECOLOGICAL STATION, DISTRITO FEDERAL

    Directory of Open Access Journals (Sweden)

    Eugênio P. Costa

    2009-09-01

    Full Text Available This study aimed to analyze aspects of fire use on urban areas around Águas Emendadas Ecological Station (ESECAE, in Distrito Federal, and to evaluate the foremost fire occurrences, equipment availability and tools for combatants and beyond decreasing forest fire incidences. The local population in town region around it (considering three kilometers as ray from the station, fire crew members units of conservation and the garrison body of firemen were interviewed in a representative form. Results had shown that most inclined areas to forest fire occurrence (33.4% highways edges and secondary roads had their localization related to urban environment, in which 34% of residents used fire as land cleanness. Machines availability, tools and equipment for execution of the activities on prevention and combat exist; however, there is not any equipment for individual protection for all fire crew members. As a solution, educative campaigns to emphasize the negative consequences of using fire (as a tool land and also to alert people for the risks caused by it should be done.

  7. Critical evaluation of the nonradiological environmental technical specifications. Volume 4. San Onofre Nuclear Generating Station, Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Cunningham, P.A.; Gray, D.D.; Kumar, K.D.

    1976-08-10

    A comprehensive study of the data collected as part of the environmental Technical Specifications program for Unit 1 of the San Onofre Nuclear Generating Station (SONGS 1) was conducted for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The program included an analysis of the hydrothermal and ecological monitoring data collected during 1975. The hydrothermal analysis includes a discussion of models used in plume predictions prior to plant operation and an evaluation of the present hydrothermal monitoring program. The ecological evaluation was directed toward reviewing the strengths and weaknesses of the various sampling programs designed to monitor the planktonic, benthic, and nektonic communities inhabiting the inshore coastal area in the vicinity of San Onofre.

  8. Metallurgical investigation of cracking of the isolation valve downstream piping of regenerative heat exchanger at beaver valley unit 1 station

    International Nuclear Information System (INIS)

    Rao, G.V.

    1998-01-01

    A metallurgical investigation was conducted to establish the mechanism and cause of cracking in the regenerative heat exchanger piping at Beaver Valley Unit 1 PWR station in the USA. The investigation, which was centered on an eight inch long pipe section containing the cracking included surface examinations, metallographic and fractographic examinations, and chemistry evaluations. The results of the examinations showed that there were two types of pipe degradation mechanisms that affected the type 304 stainless schedule 40 piping. These consisted of localized corrosive attack on the OD surface due to the presence of chlorides, sulphates and phosphates, and transgranular stress corrosion cracking in the pipe wall due to the presence of chloride contaminants. The overall results of the investigation showed that the introduction of contaminants from external sources other than pipe insulation was the cause of heat exchanger pipe cracking. (author)

  9. Critical evaluation of the nonradiological environmental technical specifications. Volume 4. San Onofre Nuclear Generating Station, Unit 1

    International Nuclear Information System (INIS)

    Adams, S.M.; Cunningham, P.A.; Gray, D.D.; Kumar, K.D.

    1976-01-01

    A comprehensive study of the data collected as part of the environmental Technical Specifications program for Unit 1 of the San Onofre Nuclear Generating Station (SONGS 1) was conducted for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The program included an analysis of the hydrothermal and ecological monitoring data collected during 1975. The hydrothermal analysis includes a discussion of models used in plume predictions prior to plant operation and an evaluation of the present hydrothermal monitoring program. The ecological evaluation was directed toward reviewing the strengths and weaknesses of the various sampling programs designed to monitor the planktonic, benthic, and nektonic communities inhabiting the inshore coastal area in the vicinity of San Onofre

  10. Seismic structural fragility investigation for the San Onofre Nuclear Generating Station, Unit 1 (Project I); SONGS-1 AFWS Project

    International Nuclear Information System (INIS)

    Wesley, D.A.; Hashimoto, P.S.

    1982-04-01

    An evaluation of the seismic capacities of several of the San Onofre Nuclear Generating Station, Unit 1 (SONGS-1) structures was conducted to determine input to the overall probabilistic methodology developed by Lawrence Livermore National Laboratory. Seismic structural fragilities to be used as input consist of median seismic capacities and their variabilities due to randomness and uncertainty. Potential failure modes were identified for each of the SONGS-1 structures included in this study by establishing the seismic load-paths and comparing expected load distributions to available capacities for the elements of each load-path. Particular attention was given to possible weak links and details. The more likely failure modes were screened for more detailed investigation

  11. 20 kHz main inverter unit. [for space station power supplies

    Science.gov (United States)

    Hussey, S.

    1989-01-01

    A proof-of-concept main inverter unit has demonstrated the operation of a pulse-width-modulated parallel resonant power stage topology as a 20-kHz ac power source driver, showing simple output regulation, parallel operation, power sharing and short-circuit operation. The use of a two-stage dc input filter controls the electromagnetic compatibility (EMC) characteristics of the dc power bus, and the use of an ac harmonic trap controls the EMC characteristics of the 20-kHz ac power bus.

  12. The United Kingdom Law on the authorisation of nuclear power stations

    International Nuclear Information System (INIS)

    Savinson, R.

    1977-01-01

    This paper explains the requirements of the law of the United Kingdom as to the authorisations needed to construct and operate nuclear power plants in Great Britain. For simplicity, the texts referred to apply to England and Wales, Scottish law differing in detail but not in principle. Implementation of this legal system is studied in particular from the viewpoint of the Central Electricity Generating Board (CEGB) which is at present the body exclusively responsible for generating and supplying electricity in England and Wales. (NEA) [fr

  13. Safety Evaluation Report related to the operation of LaSalle County Station, Units 1 and 2. Docket Nos. 50-373 and 50-374

    International Nuclear Information System (INIS)

    1984-03-01

    This supplement to the Safety Evaluation Report of Commonwealth Edison Company's application for a license to operate its La Salle County Station, Unit 2, located in Brookfield Township, La Salle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement is to update evaluations on Unit 2 issues identified in the previous Safety Evaluation Report and Supplements that need resolution prior to issuance of the full power operating license for Unit 2

  14. Development of filtered containment venting system and application for Kashiwazaki-Kariwa Nuclear Power Station Unit 6, 7

    International Nuclear Information System (INIS)

    Murai, Soutarou; Hiranuma, Naoki; Kimura, Takeo; Omori, Shuichi; Watanabe, Fumitoshi; Sasa, Daisuke

    2014-01-01

    The Fukushima Dai-ichi Nuclear Power Station (1F) of Tokyo Electric Power Company (TEPCO) had experienced severe radio-active release to the environment in the Tohoku Region Pacific Coast Earthquake (alias: the Great East Japan Earthquake) in 2011. Under the Station Black-Out (SBO) conditions caused by tsunami with the earthquake, the 1F operators had tried to vent the gasses in the Primary Containment Vessels (PCVs) of the unit 1, 2 and 3 to the environment through the water pools in the suppression chambers of the PCVs. Its venting, however, was imperfect and, as a result, major direct radio-active release to the environment was caused. After this disaster, TEPCO launched a project to develop the Filtered Containment Venting System (FCVS), in which our very bitter experiences in the 1F accident as described above are reflected. One of the main purposes of the development of the FCVS is to enhance operability of venting under the severe plant conditions such as the SBO during progressing of severe core damage, and another is to enhance removal performance of radio-nuclides with the newly added filtering equipment, which is installed in the venting line from the PCV to the outer. The Kashiwazaki-Kariwa NPS unit 6 and 7 will be the first reactors applied the FCVSs. In this paper, we show the design concept of the TEPCO's FCVS, the brief overview of the system design and the summary of experiment which has been performed for getting the performance data of the FCVS such as decontamination factor in various conditions. (author)

  15. Structural design of the turbine building of Angra Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Varella, L.N.; Reis, F.J.C.; Jurkiewicz, W.J.

    1978-01-01

    The Turbine Building of the Angra Nuclear Power Plant, Unit 1, and particularly its structure and structural design are described. The Turbine Building, as far as its structure is concerned, deviates from the standard structure of any turbine building due to the fact that huge ducts are provided in the foundation mat as to accomodate the circulating water system. This aspect and the fact that the building is founded upon a very deep strata of compacted and controlled fill, makes out of the building structure 'a concrete ship floating in the sea of sand', and by the same reason presents by itself an interesting structure, worth to be known to all engineers involved in design of power plants. This pape, suplemented by a few slides shown during presentation of the paper at the conference, covers the subject mainly from the designers' point of view. (Author)

  16. Operation of Beaver Valley Power Station, Unit 2, Docket No. 50-412, Beaver County, Pennsylvania

    International Nuclear Information System (INIS)

    1985-09-01

    The final environmental impact statement (EPA No. 850438F) assesses the effects of operating a pressurized water reactor in Pennsylvania on the south bank of the Ohio River, which would serve as the final heat sink for the cooling system. Operation of Unit 2 would add 836 MW of capacity and increase system reliability. The plant would employ 465 at an $18 million payroll. Facilities for the plant would take up 56 acres of agricultural land. The operation result in both water and noise pollution. There is only a small probability of impacts due to potential radiation exposure. The Federal Water Pollution Control Act of 1972 and Nuclear Regulatory Commission Regulations require the impact statement

  17. Design and study of water supply system for supercritical unit boiler in thermal power station

    Science.gov (United States)

    Du, Zenghui

    2018-04-01

    In order to design and optimize the boiler feed water system of supercritical unit, the establishment of a highly accurate controlled object model and its dynamic characteristics are prerequisites for developing a perfect thermal control system. In this paper, the method of mechanism modeling often leads to large systematic errors. Aiming at the information contained in the historical operation data of the boiler typical thermal system, the modern intelligent identification method to establish a high-precision quantitative model is used. This method avoids the difficulties caused by the disturbance experiment modeling for the actual system in the field, and provides a strong reference for the design and optimization of the thermal automation control system in the thermal power plant.

  18. Safety-evaluation report related to operation of McGuire Nuclear Station, Units 1 and 2. Docket Nos. 50-369 and 50-370

    International Nuclear Information System (INIS)

    1983-05-01

    This report supplements the Safety Evaluation Report Related to the Operation of McGuire Nuclear Station, Units 1 and 2 (SER (NUREG-0422)) issued in March 1978 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, as applicant and owner, for licenses to operate the McGuire Nuclear Station, Units 1 and 2 (Docket Nos. 50-369 and 50-370). The facility is located in Mecklenburg County, North Carolina, about 17 mi north-northwest of Charlotte, North Carolina. This supplement provides information related to issuance of a full-power authorization for Unit 2. The staff concludes that the McGuire Nuclear Station can be operated by the licensee without endangering the health and safety of the public

  19. Technical evaluation report on the adequacy of station electric-distribution-system voltages for the Millstone Nuclear Power Station, Units 1 and 2. Docket Nos. 50-245, 50-336

    International Nuclear Information System (INIS)

    Selan, J.C.

    1983-01-01

    This report documents the technical evaluation of the adequacy of the station electric-distribution-system voltages for the Millstone Nuclear Power Station, Units 1 and 2. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The analyses submitted demonstrate that adequate voltages will be supplied to the Class 1E equipment under the worst-case conditions analyzed

  20. Control structures design for fossil power station units; Diseno de estructuras de control para unidades termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Palomares Gonzalez, Daniel; Ricano Castillo, Juan Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    In this paper are designed an analyzed the control ties of a 300MW fossil unit at different operation levels. The design and analysis were developed on an operation range of 50% to 100% load. The main control ties were studied among which are the feedwater flow, the superheating zone temperatures and the generated output. The technique used for the design is the decomposition in singular values (DSV) of the plant transference matrix. This is a recent technique that permits finding the most important interactions among output-input variables, over a significative frequencies range for the transference matrix of the plant. For this purpose utilizes the control properties of the transference matrix, such as: control effort, output-input interaction and ruggedness with respect to uncertainties. The control structures obtained were tested in a digital model of a fossil plant unit. A comparison study of both structures (original and modified) showed enhancement in the performance of the power plant with modified structure. [Espanol] En este trabajo se disenan y analizan los lazos de control de una unidad termoelectrica de 300 MW, a diferentes niveles de operacion. El diseno y analisis se desarrollo sobre un rango de operacion de 50 a 100 por ciento de carga. Se estudiaron los principales lazos de control entre los que se encuentran el flujo de agua de alimentacion, las temperaturas de la zona de sobrecalentamiento y la potencia generada. La tecnica utilizada para el diseno es la descomposicion en valores singulares (DVS) de la matriz de transferencia de la planta. Esta es una tecnica reciente que permite encontrar las interacciones mas importantes entre variables entrada-salida, sobre un rango de frecuencias significativas para la matriz de transferencia de la planta. Utiliza para ello las propiedades de control de la matriz de transferencia, como son: esfuerzo de control, interaccion entrada-salida y robustez con respecto a incertidumbres. Las estructuras de control

  1. Control structures design for fossil power station units; Diseno de estructuras de control para unidades termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Palomares Gonzalez, Daniel; Ricano Castillo, Juan Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    In this paper are designed an analyzed the control ties of a 300MW fossil unit at different operation levels. The design and analysis were developed on an operation range of 50% to 100% load. The main control ties were studied among which are the feedwater flow, the superheating zone temperatures and the generated output. The technique used for the design is the decomposition in singular values (DSV) of the plant transference matrix. This is a recent technique that permits finding the most important interactions among output-input variables, over a significative frequencies range for the transference matrix of the plant. For this purpose utilizes the control properties of the transference matrix, such as: control effort, output-input interaction and ruggedness with respect to uncertainties. The control structures obtained were tested in a digital model of a fossil plant unit. A comparison study of both structures (original and modified) showed enhancement in the performance of the power plant with modified structure. [Espanol] En este trabajo se disenan y analizan los lazos de control de una unidad termoelectrica de 300 MW, a diferentes niveles de operacion. El diseno y analisis se desarrollo sobre un rango de operacion de 50 a 100 por ciento de carga. Se estudiaron los principales lazos de control entre los que se encuentran el flujo de agua de alimentacion, las temperaturas de la zona de sobrecalentamiento y la potencia generada. La tecnica utilizada para el diseno es la descomposicion en valores singulares (DVS) de la matriz de transferencia de la planta. Esta es una tecnica reciente que permite encontrar las interacciones mas importantes entre variables entrada-salida, sobre un rango de frecuencias significativas para la matriz de transferencia de la planta. Utiliza para ello las propiedades de control de la matriz de transferencia, como son: esfuerzo de control, interaccion entrada-salida y robustez con respecto a incertidumbres. Las estructuras de control

  2. MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA

    International Nuclear Information System (INIS)

    GREENE, G.A.; GUPPY, J.G.

    1998-01-01

    This is the final report on the INSP project entitled, ''Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors and hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology

  3. Application of a simplified seismic risk methodology to the La Salle County Station Unit 2 BWR

    International Nuclear Information System (INIS)

    Lappa, D.A.; Wells, J.E.

    1986-01-01

    It is important to bear in mind that no risk assessment of any U.S. nuclear power plant can be interpreted to be generally representative of more than a handful of other U.S. plants. Variations in factors ranging from plant age and operating experience to NRC licensing requirements and design guidelines have led to a wide diversity of power plants in the United States. Except for a few combinations of plants of comparable design and vintage, the extension of plant-specific results to other nuclear power plants should only be done with considerable trepidation. This situation is worsened for a seismic PRA because of the variability in the seismic hazard from site to site. In the case of this study, it would be a mistake to infer that all BWRs are sufficiently resistant to earthquakes because of the generally low seismic failure probabilities at La Salle. Unless those BWRs had similar site characteristics and were of a similar design and vintage as La Salle, no immediate extension of this study's results would be appropriate. With these thoughts in mind, we turn our attention to one of the questions which the La Salle seismic PRA is supposed to address, namely, the comparable seismic vulnerability of BWRs and PWRs. The La Salle study has provided us with some insight to the seismic risk at a particular BWR. This information may or may not be useful to understanding the seismic vulnerability of other BWRs

  4. MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA

    Energy Technology Data Exchange (ETDEWEB)

    GREENE,G.A.; GUPPY,J.G.

    1998-08-01

    This is the final report on the INSP project entitled, ``Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors and hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology.

  5. Retrofit flue gas desulfurization system at Indianapolis Power and Light Co. Petersburg Station Units 1 and 2

    International Nuclear Information System (INIS)

    Watson, W.K.; Wolsiffer, S.R.; Youmans, J.; Martin, J.E.; Wedig, C.P.

    1992-01-01

    This paper briefly describes the status of the retrofit wet limestone flue gas desulfurization system (FGDS) project at Indianapolis Power and Light Company (IPL), Petersburg Units 1 and 2. This project was initiated by IPL in response to the Clean Air Act of 1990 and is intended to treat the flue gas from two base load units with a combined capacity of approximately 700 MW gross electrical output. IPL is the owner and operator of the Petersburg Station located in southwestern Indiana. Stone and Webster Engineering Corporation (Stone and Webster) is the Engineer and Constructor for the project. Radian Corporation is a subcontractor to Stone and Webster in the area of flue gas desulfurization (FGD) process. General Electric Environmental Systems, Inc. (GEESI) is the supplier of the FGDS. The project is organized as a team with each company providing services. The supplier of the new stack is scheduled to be selected and join the team in early 1992. Other material suppliers and field contractors will be selected in 1992

  6. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410)

    International Nuclear Information System (INIS)

    1987-07-01

    This report supplements the Safety Evaluation Report (NUREG-1047, February 1985) for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for the license to operate Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. This report supports the issuance of the full-power license for Nine Mile Point Nuclear Station, Unit No. 2

  7. Safety evaluation report related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1987-03-01

    Supplement No. 8 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by th Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement provides recent information regarding resolution of the license conditions identified in the SER. Because of the favorable resolution of the items discussed in this report, the staff concludes that the Byron Station, Unit 2 can be operated by the licensee at power levels greater than 5% without endangering the health and safety of the public

  8. Streamflow Gaging Stations

    Data.gov (United States)

    Department of Homeland Security — This map layer shows selected streamflow gaging stations of the United States, Puerto Rico, and the U.S. Virgin Islands, in 2013. Gaging stations, or gages, measure...

  9. Safety Evaluation Report related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455). Supplement No. 7

    International Nuclear Information System (INIS)

    1986-11-01

    Supplement No. 7 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement provides additional information supporting the license for initial criticality and power ascension to full-power operation for Unit 2

  10. Technical specifications: Susquehanna Steam Electric Station, Unit No. 2 (Docket No. 50-388). Appendix A to License No. NPF-22

    International Nuclear Information System (INIS)

    1984-03-01

    Susquehanna Steam Electric Station, Unit 2 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  11. Technical specifications, Braidwood Station, Unit Nos. 1 and 2 (Docket Nos. STN 50-456 and STN 50-457): Appendix ''A'' to License No. NPF-70

    International Nuclear Information System (INIS)

    1987-05-01

    The Braidwood Station, Unit Nos. 1 and 2, Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public. 18 figs., 55 tabs

  12. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement 2

    International Nuclear Information System (INIS)

    1984-10-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the applicant) for licenses to operate the Limerick Generating Station, Units 1 and 2, located on a site in Montgomery and Chester Counties, Pennsylvania. This supplement addresses further issues that require resolution and closes them out

  13. Technical specifications for Grand Gulf Nuclear Station, Unit 1 (Docket No. 50-416). Appendix A to License No. NPF-13

    International Nuclear Information System (INIS)

    1984-08-01

    The Grand Gulf Nuclear Station, Unit 1 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions and other requirements applicable to a nuclear facility as set forth in Section 50.36 of 10 CFR part 50 for the protection of the health and safety of the public

  14. Conformance to Regulatory Guide 1.97 Slurry Power Station, Unit Nos. 1 and 2 (Docket Nos. 50-280 and 50-281)

    International Nuclear Information System (INIS)

    Stoffel, J.W.

    1985-09-01

    This EG and G Idaho, Inc., report reviews the submittals for Regulatory Guide 1.97, Revision 3, for Unit Nos. 1 and 2 of the Surry Power Station and identifies areas of nonconformance to the regulatory guide. Exceptions to Regulatory Guide 1.97 are evaluated and those areas where sufficient basis for acceptability is not provided are identified

  15. Montague Nuclear Power Station, Units 1 and 2: Final environmental statement (Docket Nos. 50-496 and 50-497)

    International Nuclear Information System (INIS)

    1977-02-01

    The proposed action is the issuance of construction permits to the Northeast Nuclear Energy Company for the construction of the Montague Nuclear Power Station, Units 1 and 2, located on the Connecticut River in the Town of Montague, Massachusetts. The plant will employ two identical boiling-water reactors to produce up to 3579 megawatts thermal (MWt) each. Two steam turbine-generators will use this heat to provide 1150 MWe (net) of electrical power capacity from each turbine-generator. A design power level of 3759 MWt (1220 Mwe net) for each unit is anticipated at a future date and is considered in the assessments contained in this statement. The waste heat will be rejected through natural-draft cooling towers using makeup water obtained from and discharged to the Connecticut River. The 1900-acre site is about 90% forest, with the remaining acreage in transmission-line corridor and old-field vegetation. The total loss of mixed-age forest will be 1273 acres. Nodesignated scenic areas will be crossed. Sixty acres of public lands, State forests, and parks will be lost to transmission facilities as well as losses associated with crossings of 2.0 miles of water bodies and 11.9 miles of wetlands. The maximum estimated potential loss of salable wood products will be $849,600. A maximum of 85.8 cfs of cooling water will be withdrawn from the Connecticut River. A maximum of 17.2 cfs will be returned to the river with the dissolved solids concentration increased by a factor of about 5. A maximum of 68.6 cfs will be evaporated to the atmosphere by the cooling towers. 143 refs., 58 figs., 69 tabs

  16. Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles[mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a)

  17. THE STRUCTURE OF SUBTIDAL MACROALGAL ASSEMBLAGES AT THE TAMOIOS ECOLOGICAL STATION, A THREATENED CONSERVATION UNIT IN RIO DE JANEIRO, BRAZIL

    Directory of Open Access Journals (Sweden)

    Victor de Souza Koutsoukos

    2015-03-01

    Full Text Available The structure of subtidal rocky bottom communities at Tamoios Ecological Station (TES, situated in Ilha Grande Bay, Rio de Janeiro State, as well as in other Brazilian marine protected areas, is insufficiently characterized. The present study describes the macroalgal assemblages of shallow subtidal rocky bottoms on two islands of the TES-Imboassica (IM and Búzios Pequena (BPadopting species and genera as observational units. Two sites were surveyed on each island in summer 2011. Random 30x30 cm quadrats (n=3 were scraped to collect all macroalgae except crustose species. The subtidal assemblages, in which 58 macroalgal species occurred, were characterized by the high frequency and percent cover of Sargassum vulgare C. Agardh (56.8±8.4%. The sites differed significantly in total number of species and Shannon-Weiner diversity index (PERMANOVA, p5% were Sargassum, Laurencia, Wrangelia, Canistrocarpus, Asparagopsis, Hypnea, Ceratodictyon, Gayliella, Spyridia and Chondria.Dissimilarities within and between the islands, as shown by nMDS of the cover data, suggest that different spatial scales should be considered in monitoring the rocky bottom communities of Ilha Grande Bay.

  18. MRP-227 Reactor vessel internals inspection planning and initial results at the Oconee nuclear station unit 2

    International Nuclear Information System (INIS)

    Davidsaver, S.B.; Fyfitch, S.; Whitaker, D.E.; Doss, R.L.

    2015-01-01

    The U.S. PWR industry has pro-actively developed generic inspection requirements and standards for reactor vessel (RV) internals. The Electric Power Research Institute (EPRI) Pressurized Water Reactor (PWR) Materials Reliability Program (MRP) has issued MRP-227-A and MRP-228 with mandatory and needed requirements based on the Nuclear Energy Institute (NEI) document NEI 03-08. The inspection and evaluation guidelines contained in MRP-227-A consider eight age-related degradation mechanisms: stress corrosion cracking (SCC), irradiation-assisted stress corrosion cracking (IASCC), wear, fatigue, thermal aging embrittlement, irradiation embrittlement, void swelling and irradiation growth, and thermal and irradiation-enhanced stress relaxation or irradiation-enhanced creep. This paper will discuss the decision planning efforts required for implementing the MRP-227-A and MRP-228 requirements and the results of these initial inspections at the Oconee Nuclear power station (ONS) units. Duke Energy and AREVA overcame a significant technology and NDE challenge by successfully completing the first-of-a-kind MRP-227-A scope requirements at ONS-1 in one outage below the estimated dose and with zero safety issues or events. This performance was repeated at ONS-2 a year later. The remote NDE tooling and processes developed to examine the MRP-227-A scope for ONS-1 and ONS-2 are transferable to other PWRs

  19. Process improvement studies for the Submerged Demineralizer System (SDS) at the Three Mile Island Nuclear Power Station, Unit 2

    International Nuclear Information System (INIS)

    Campbell, D.O.; Collins, E.D.; King, L.J.; Knauer, J.B.

    1982-05-01

    Tests were made to investigate flowsheet modifications which might improve the expected performance of the reference Submerged Demineralizer System (SDS) flowsheet for decontaminating the high-activity-level water at the Three Mile Island Nuclear Power Station, Unit 2. The tests included one series designed to show the effects of aging time, temperature, and pH on reduction of the concentrations of residual 137 Cs and 90 Sr, and a second series designed to evaluate the physical sorption of 125 Sb on silica gel or other inorganic sorbents. Results of the tests indicated that the most promising method for reducing 137 Cs and 90 Sr concentrations below 10 -4 μCi/mL is to age the effluent water from the zeolite columns for at least 2 h at 75 0 C prior to its passage through another zeolite column. Sorption of the 125 Sb on silica gel or other inorganic sorbents did not show sufficient promise to be considered for practical use. A previously identified method for removal of 125 Sb requires deionization of the water by removal of the sodium on a cation exchange resin prior to sorption of 125 Sb on anion exchange resin; however, this method would generate a relatively large amount of low-activity-level solid waste

  20. Investigation of Contaminated Groundwater at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2008

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.

    2009-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound (VOC) groundwater contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. The primary contaminants of interest in the study are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. Engineered remediation aspects at the site consist of a zero-valent-iron permeable reactive barrier (PRB) installed in December 2002 intercepting the contamination plume and a phytoremediation test stand of loblolly pine trees planted in the source area in May 2003. The U.S. Geological Survey planted an additional phytoremediation test stand of loblolly pine trees on the upgradient side of the southern end of the PRB in February 2008. At least once during the summer, however, the trees were inadvertently mowed during lawn cutting activity. The PRB along the main axis of the contaminant plume appears to be actively removing contamination. In contrast to the central area of the PRB, the data from the southern end of the PRB indicate that contaminants are moving around the PRB. Concentrations in wells upgradient from the PRB showed a general decrease in VOC concentrations. VOC concentrations in some wells in the forest downgradient from the PRB showed a sharp increase in 2005, followed by a decrease in 2006. Farther downgradient in the forest, the VOC concentrations began to increase in 2007 and continued to increase into 2008. The VOC-concentration changes in groundwater beneath the forest appear to indicate movement of a groundwater-contaminant pulse through the forest. It also is possible that the data may represent lateral shifting of the plume in response to changes in groundwater-flow direction.

  1. Efforts to Reduce International Space Station Crew Maintenance for the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    Science.gov (United States)

    Steele, John W.; Etter, David; Rector, Tony; Boyle, Robert; Vandezande, Christopher

    2013-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with on-orbit ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  2. Nuclear power station siting experience in the United Kingdom: past and present and proposals for the future

    International Nuclear Information System (INIS)

    Haire, T.P.; Usher, E.F.F.W.

    1975-01-01

    Foremost of the many factors in site selection considerations are population distribution, cooling-water availability and amenity. Others are safety of potable water sources, geological stability and the risk of external hazards. Where cooling-water supplies are a limiting factor, the choica of reactor system is of major importance. To determine as early as possible the effect a station might have on its environment, desk studies, visual surveys and wind-tunnel tests are carried out. The Central Electricity Generating Board places great importance on obtaining the fullest degree of acceptance by the public for its nuclear stations and ensures that full consultation is provided with the relevant authorities at all stages of power-station development. It also provides public exhibitions, public meetings and liaison with the local inhabitants. Recruitment of station staff where possible from the immediate area of the station and formation of sports and social clubs are two of the practical steps which help to integrate the station into the local community. Whilst the current energy crisis has reinforced the need for a substantial nuclear programme, possible ways of further reducing the impact of nuclear stations on the environment are being considered. The paper concludes that sufficient nuclear sites can be provided for future needs but that continuing effort will be required to ensure public acceptance. (author)

  3. Palo Verde Nuclear Generating Station, Units 1, 2 and 3 (Docket Nos. STN 50-528, STN 50-529 and STN 50-530): Final environmental statement

    International Nuclear Information System (INIS)

    1975-09-01

    The proposed action is the issuance of construction permits to the Arizona public Service Company for the construction of the Palo Verde Nuclear Generating Station, Units 1, 2, and 3. Preparation of the 3800-acre site will involve the clearing of up to 2500 acres of land, 1500 of which will be prominently devoted to station facilities. An additional 1200- to 1300-acre evaporation pond will ultimately be developed during the lifetime of the station. About 2200 site acres, previously devoted to agriculture, will be excluded from this land use. Soil disturbance during construction of the station, transmission lines, and water conveyance pipeline will tend to promote erosion and increase siltation in local ephemeral water courses. Stringent measures will be taken to minimize these effects. The total radiation dose to construction workers is estimated to be 15 man-rem. This dose is a small fraction of the approximately 470 man-rem which will be received by the construction force over the same period from natural background radiation. Station, transmission line, and water pipeline construction will kill, remove, displace, or otherwise disturb involved flora and fauna, and will eliminate varying amounts of wildlife breeding, nesting, and forage habitat. These will not be important permanent impacts to the population stability and structure of the involved local ecosystems of the Sonoran desert; however, measures will be taken to minimize such effects as do result form the proposed action

  4. Final environmental statement related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1981-09-01

    The proposed action is the issuance of operating licenses to the Texas Utilities Generating Company for the startup and operation of Units 1 and 2 of the Comanche Peak Steam Electric Station located on Squaw Creek Reservoir in Somervell County, Texas, about 7 km north-northeast of Glen Rose, Texas, and about 65 km southwest of Fort Worth in north-central Texas. The information in this environmental statement represents the second assessment of the environmental impact associated with the Comanche Peak Steam Electric Station pursuant to the guidelines of the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51 of the Commission's Regulations. After receiving an application to construct this station, the staff carried out a review of impact that would occur during its construction and operation. This evaluation was issued as a Final Environmental Statement -- Construction Phase. After this environmental review, a safety review, an evaluation by the Advisory Committee on Reactor Safeguards, and public hearings in Glen Rose, Texas, the US Atomic Energy Commission (now US Nuclear Regulatory Commission) issued construction permits for the construction of Units 1 and 2 of the Comanche Peak Steam Electric Station. 16 figs., 34 tabs

  5. Final Environmental Statement related to the operation of Wolf Creek Generating Station, Unit No. 1. Docket No. STN 50-482, Kansas Gas and Electric Company, et al

    International Nuclear Information System (INIS)

    1982-06-01

    This final environmental statement contains the second assessment of the environmental impact associated with operation of Wolf Creek Generating Station Unit 1 pursuant to the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51, as amended, of the NRC's regulations. This statement examines: the affected environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial- and aquatic-ecological impacts will be small. Air-quality impacts will also be small. However, steam fog from the station's cooling lake has the potential for reducing visibility over nearby roads and bridges. A fog-monitoring program for roads and bridges near the lake has been recommended. Impacts to historic and prehistoric sites will be negligible. Chemical discharges to the Neosho River are expected to have no appreciable impacts on water quality under normal conditions and will be required to meet conditions of the station's NPDES permit. The effects of routine operations, energy transmission, and periodic maintenance of rights-of-way and transmission line facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk associated with accidental radiation exposure is very low. The net socioeconomic effects of the project will be beneficial. The action called for is the issuance of an operating license for the Wolf Creek Generating Station Unit 1

  6. Sea Levels Online: Sea Level Variations of the United States Derived from National Water Level Observation Network Stations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water level records are a combination of the fluctuations of the ocean and the vertical land motion at the location of the station. Monthly mean sea level (MSL)...

  7. Safety evaluation report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-01-01

    This report supplements the Safety Evaluation Report (NUREG-1031) issued in July 1984, Supplement 1 issued in March 1985, Supplement 2 issued in September 1985, Supplement 3 issued in November 1985, and Supplement 4 issued in November 1985 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Northeast Nuclear Energy Company (licensee and agent for the owners) for a license to operate Millstone Nuclear Power Station, Unit No. 3 (Docket 50-423). The supplement provides more recent information regarding resolution of license conditions identified in the SER. Because of the favorable resolution of the items discussed in this report, the staff concludes that Millstone Nuclear Power Station, Unit No. 3, can be operated by the licensee at power levels greater than 5% without endangering the health and safety of the public. 13 refs

  8. Final environmental statement related to the operation of Limerick Generating Station, Units 1 and 2, Docket Nos. 50-352 and 50-353, Philadelphia Electric Company

    International Nuclear Information System (INIS)

    1989-08-01

    In April 1984 the staff of the Nuclear Regulatory Commission issued its Final Environmental Statement (NUREG-0974) related to the operation of Limerick Generating Station, Units 1 and 2, (Docket Nos. 50-352 and 50-353), located on the Schuylkill River, near Pottstown, in Limerick Township, Montgomery and Chester Counties, Pennsylvania. The NRC has prepared this supplement to NUREG-0974 to present its evaluation of the alternative of facility operation with the installation of further severe accident mitigation design features. The NRC staff has discovered no substantial changes in the proposed action as previously evaluated in the Final Environmental Statement that are relevant to environmental concerns nor significant new circumstances or information relevant to environmental concerns and bearing on the licensing of Limerick Generating Station, Units 1 and 2. 15 refs., 10 tabs

  9. Final Environmental Statement related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1989-10-01

    In September 1981, the staff of the Nuclear Regulatory Commission (NRC) issued its Final Environmental Statement (NUREG-0775) related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446), located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. The NRC has prepared this supplement to NUREG-0775 to present its evaluation of the alternative of operating Comanche Peak with the installation of further severe-accident-mitigation design features. The NRC has discovered no substantial changes in the proposed action as previously evaluated in the Final Environmental Statement that are relevant to environmental concerns and bearing on the licensing of Comanche Peak Steam Electric Station, Units 1 and 2. 6 refs., 3 tabs

  10. Integrated Plant Safety Assessment: Systematic Evaluation Program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245. Final report

    International Nuclear Information System (INIS)

    1983-02-01

    This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license. This report also addresses the comments and recommendations made by the Advisory Committee on Reactor Safeguards in connection with its review of the Draft Report, issued in November 1982

  11. Technical evaluation report on the proposed design modifications and technical-specification changes on grid voltage degradation for the San Onofre Nuclear Genetating Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the proposed design modifications and Technical Specification changes for protection of Class 1E equipment from grid voltage degradation for the San Onofre Nuclear Generating Station, Unit 1. The review criteria are based on several IEEE standards and the Code of Federal Regulations. The evaluation finds that the proposed design modifications and Technical Specification changes will ensure that the Class 1E equipment will be protected from sustained voltage degradation

  12. Safety evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement No. 7

    International Nuclear Information System (INIS)

    1984-09-01

    Supplement 7 to the Safety Evaluation Report for Louisiana Power and Light's application for a license to operate Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Region IV Office of the US Nuclear Regulatory Commission. This supplement provides the results to date of the staff's evaluation of approximately 350 allegations and concerns of poor construction practices at the Waterford 3 facility

  13. Safety-evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322)

    International Nuclear Information System (INIS)

    1983-09-01

    Supplement 4 (SSER 4) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  14. Safety evaluation report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410). Supplement No. 1

    International Nuclear Information System (INIS)

    1985-06-01

    This report supplements the Safety Evaluation Report for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate the Nine Mile Point Nuclear Station Unit 2. The facility is located near Oswego, New York. Subject to favorable resolution of the issues discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public. 1 fig., 3 tabs

  15. Safety evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 7

    International Nuclear Information System (INIS)

    1984-09-01

    Supplement 7 (SSER 7) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  16. Safety Evaluation Report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 8

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 8 (SSER 8) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  17. Safety evaluation report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 6

    International Nuclear Information System (INIS)

    1984-07-01

    Supplement 6 (SSER 6) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  18. Safety Evaluation Report related to the full-term operating license for Dresden Nuclear Power Station, Unit 2 ( Docket No. 50-237)

    International Nuclear Information System (INIS)

    1990-10-01

    The Safety Evaluation Report for the full-term operating license application filed by Commonwealth Edison Company for the Dresden Nuclear Power Station, Unit 2, has been prepared by the Office of Nuclear Regulation of the US Nuclear Regulatory Commission. The facility is located in Grundy County, Illinois. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can continue to be operated without endangering the health and safety of the public. 72 refs

  19. Safety Evaluation Report, related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1983-11-01

    Supplement No. 3 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  20. Final Environmental Statement related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410)

    International Nuclear Information System (INIS)

    1985-05-01

    This Final Environmental Statement contains the assessment of the environmental impact associated with the operation of the Nine Mile Point Nuclear Station, Unit 2, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs

  1. Safety evaluation report related to the operation of Byron Station, Units 1 and 2. Docket Nos. STN 50-454 and STN 50-455

    International Nuclear Information System (INIS)

    1983-01-01

    Supplement No. 2 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  2. Safety Evaluation Report related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1984-05-01

    Supplement No. 4 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  3. Safety Evaluation Report related to the operation of Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322). Supplement No. 9

    International Nuclear Information System (INIS)

    1985-12-01

    Supplement 9 (SSER 9) to the Safety Evaluation Report on Long Island Lighting Company's application for a license to operate the Shoreham Nuclear Power Station, Unit 1, located in Suffolk County, New York, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement addresses several items that have been reviewed by the staff since the previous supplement was issued

  4. Safety Evaluation Report related to the operation of Beaver Valley Power Station, Unit 2 (Docket No. 50-412). Supplement No. 2

    International Nuclear Information System (INIS)

    1986-08-01

    This report, Supplement No. 2 to the the Safety Evaluation Report for the application filed by the Duquesne Light Company, et al. (the applicant) for a license to operate the Beaver Valley Power Station Unit 2 (Docket No. 50-412), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time the Safety Evaluation Report was published

  5. Safety Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417). Supplement 6

    International Nuclear Information System (INIS)

    1984-08-01

    Supplement 6 to the Safety Evaluation Report for Mississippi Power and Light Company et al. joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the NRC staff's evaluation of open items from previous supplements and Technical Specification changes required before authorizing operation of Unit 1 above 5% of rated power

  6. Technical Specifications, Byron Station, Unit Nos. 1 and 2 (Docket Nos. STN 50-454 and STN 50-455). Appendix A to license No. NPF-37

    International Nuclear Information System (INIS)

    1985-02-01

    The Byron Station, Unit No. 1 and Unit No. 2 Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public. Specifications are presented for limiting conditions for operation for the reactor control system, power distribution limits, instrumentation, primary coolant circuit, ECCS, containment systems, plant systems, electrical power systems, refueling operations, radioactive effluents, and radiological environmental monitoring

  7. Safety Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417). Supplement No. 5

    International Nuclear Information System (INIS)

    1984-08-01

    Supplement 5 to the Safety Evaluation Report for Mississippi Power and Light Company, et al., joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status on the resolution of those issues that require further evaluation before authorizing operation of Unit 1 above 5% of rated power

  8. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2 (Docket Nos. 50-387 and 50-388). Suppl.6

    International Nuclear Information System (INIS)

    1984-03-01

    In April 1981, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0776) regarding the application of the Pennsylvania Power and Light Company (the applicant and/or licensee) and the Allegheny Electric Cooperative, Inc. (co-applicant) for licenses to operate the Susquehanna Steam Electric Station, Units 1 and 2, located on a site in Luzerne County, Pennsylvania. This supplement to NUREG-0776 addresses the remaining issues that required resolution before licensing operation of Unit 2 and closes them out

  9. Safety-Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2. Docket Nos. 50-416 and 50-417

    International Nuclear Information System (INIS)

    1983-05-01

    Supplement 4 to the Safety Evaluation Report for Mississippi Power and Light Company, et. al., joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status on the resolution of those issues that required further evaluation before authorizing operation of Unit 1 above 5% rated power and other issues that were to be evaluated during the first cycle of power operation

  10. Safety evaluation report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353)

    International Nuclear Information System (INIS)

    1989-06-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the licensee) for licenses to operate the Limerick Generating Station, Units 1 and 2, located on site in Montgomery and Chester Counties, Pennsylvania. Supplement 1 to NUREG-0991 was issued in December 1983. Supplements 2 and 3 were issued in October 1984. License NPF-27 for the low-power operation of Limerick Unit 1 was issued on October 26, 1984. Supplement 4 was issued in May, 1985, Supplement 5 was issued in July 1985, and Supplement 6 was issued in August 1985. These supplements addressed further issues that required resolution before Unit 1 proceeded beyond the 5-percent power level. The full-power operating license for Limerick Unit 1 (NPF-39) was issued August 8, 1985, and the unit has completed two cycles of operation. Supplement 7 was issued April 1989 to address some of the few significant design differences between Units 1 and 2, the resolution of issues that remained open when the Unit 1 full-power license was issued and an assessment of some of the issues that required resolution before issuance of an operating license for Unit 2. This supplement addresses the remaining issues that required resolution before issuance of and operating license for Unit 2

  11. Safety Evaluation Report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457)

    International Nuclear Information System (INIS)

    1988-06-01

    In November 1983, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1002) regarding the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457). The first supplement to NUREG-1002 was issued in September 1986; the second supplement was issued in October 1986; the third supplement was issued in May 1987; the fourth supplement was issued in July 1987 in support of the full power license for Unit 1; the fifth supplement was issued in December 1987 in support of the low power license for Unit 2. This sixth supplement to NUREG-1002 is in support of the full-power license for Unit 2 and provides the status of items that remained unresolved at the time Supplement 5 was published. The facility is located in Reed Township, Will County, Illinois

  12. Landuse legacies of old-field succession and soil structure at the Calhoun Criticl Zone Observatory in SC, USA.

    Science.gov (United States)

    Brecheisen, Z. S.; Richter, D. D., Jr.; Callaham, M.; Carrera-Martinez, R.; Heine, P.

    2017-12-01

    The pre-colonial Southern Piedmont was an incredibly stable CZ with erosion rates between 0.35-3m/Myr on a 4th order interfluve. With soils and saprolite weathered up to 30m in total depth bedrock with multi-million year residence times under continual forest cover prior to widespread agricultural disturbance. With this biogeomorphic stability came time for soil macroporosity and soil structure to be established and maintained by the activities of soil fauna, plant root growth and death, and tree-fall tip-up events serving to continually mix and aerate the soil. Greatly accelerated surficial agricultural erosion (ca. 1750-1930) has fundamentally altered the Calhoun Critical Zone Observatory forest community dynamics aboveground and the soil structure, hydrology, and biogeochemistry belowground. The arrival of the plow to the Southern Piedmont marked the destruction of soil structure, macropore networks, and many of the macroinvertebrate soil engineers. This transformation came via forest clearing, soil tilling, compaction, and wholesale soil erosion, with the region having lost an estimated average of 18cm of soil across the landscape. In the temporal LULC progression from hardwood forests, to cultivated farms, to reforestation, secondary forest soil structure is expected to remain altered compared to the reference hardwood ecosystems. The research presented herein seeks to quantify CZ soil structure regeneration in old-field pine soil profiles' Ksat, aggregation, texture, macro-invertebrates, and direct measurements of topsoil porosity using X-ray computed tomography analysis on 15cm soil cores.

  13. Agricultural irrigated land-use inventory for Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama, 2014

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.

    2015-09-18

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate water use or to project future water demands in many Florida counties. This report provides a detailed digital map and summary of irrigated areas for 2014 within Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama. The irrigated areas were delineated using land-use data and orthoimagery that were then field verified between June and November 2014. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results of the 2014 study indicate that an estimated 31,608 acres were irrigated in Jackson County during 2014. This estimate includes 25,733 acres of field crops, 1,534 acres of ornamentals and grasses (including pasture), and 420 acres of orchards. Specific irrigated crops include cotton (11,759 acres), peanuts (9,909 acres), field corn (2,444 acres), and 3,235 acres of various vegetable (row) crops. The vegetable acreage includes 1,714 acres of which 857 acres were planted with both a spring and fall crop on the same field (double cropped). Overall, groundwater was used to irrigate 98.6 percent of the total irrigated acreage in Jackson County during 2014, whereas surface water and wastewater were used to irrigate the remaining 1.4 percent.

  14. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  15. 78 FR 41425 - In the Matter of Duke Energy Carolinas, LLC; (Oconee Nuclear Station, Units 1, 2, and 3...

    Science.gov (United States)

    2013-07-10

    ... approved plant procedures and the completion of operator training necessary to accomplish this lineup, and a combination of testing and engineering evaluation in accordance with station procedures which... credited. This modification along with approved plant procedures and the completion of operator training...

  16. Dresden Nuclear Power Station, Units 1, 2, and 3. Semiannual report on operating and maintenance, July--December 1974

    International Nuclear Information System (INIS)

    1975-01-01

    Unit 1 generated 388,882 MWH(e) and was on line 3111.2 hours, Unit 2 generated 1,204,106 MWH(e) and was on line 2013.4 hours, and Unit 3 generated 2,250,810 MWH(e) and was on line 3836 hours. Information is presented concerning operations, shutdowns, maintenance, changes, tests, and experiments for the three units. (U.S.)

  17. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement No. 6

    International Nuclear Information System (INIS)

    1985-08-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the licensee) for licenses to operate the Limerick Generating Station, Units 1 and 2, located on a site in Montgomery and Chester Counties, Pennsylvania. A license for the operation of Limerick Unit 1 was issued on October 26, 1984. The license, which was restricted to a five percent power level, contained conditions which required resolution prior to proceeding beyond the five percent power level. Supplement 4, issued in May 1985, addressed some of these issues. Supplement 4 also contained the comments made by the Advisory Committee on Reactor Safeguards in its report dated November 6, 1984, regarding full power operation of Limerick Unit 1. Supplement 5, issued in July 1985, and this Supplement 6 address further issues, principally the status of offsite emergency planning, that require resolution prior to proceeding beyond the five percent power level

  18. Palo Verde Nuclear Generating Station Units 1, 2, and 3: Draft environmental statement (Docket Nos. STN 50-528, 529, and 530)

    International Nuclear Information System (INIS)

    1975-04-01

    The proposed action is the issuance of construction permits to the Arizona Public Service Corporation for the construction of the Palo Verde Nuclear Generating Station, Units 1, 2 and 3. Preparation of the 3880-acre site will involve the clearing of up to 2500 acres of land, 1500 of which will be permanently devoted to station facilities. An additional 1200- to 1300-acre evaporation pond will ultimately be developed during the lifetime of the station. About 2200 site acres, previously devoted to agriculture, will be excluded from this land use (Sec. 4. 1). Soil disturbance during construction of the station, transmission lines, and water conveyance pipeline will tend to promote erosion and increase siltation in local ephemeral water courses. Stringent measures will be taken to minimize these effects (Sec. 4.5). Station, transmission line, and water pipeline construction will kill, remove displace, or otherwise disturb involved flora and fauna, and will eliminate varying amounts of wildlife breeding, nesting, and forage habitat. These will not be important impacts to the population stability and structure of the involved local ecosystems of the Sonoran desert; however, measures will be taken to minimize such effects (Sec. 4.3 and 4.5). Approximately 60 acres of agricultural land will be temporarily affected by construction in transmission corridors. The great majority can be returned to that use upon completion of construction, thus the impact is considered minor. Similarly, most grazing lands affected along these corridors, as well as along the water pipeline corridor, can eventually be returned to that use. New archaeological resources could be discovered along the path of final transmission corridor alignments. The applicant will take measures to locate and protect such resources if they exist. 75 refs., 24 figs., 65 tabs

  19. How Patients and Nurses Experience an Open Versus an Enclosed Nursing Station on an Inpatient Psychiatric Unit.

    Science.gov (United States)

    Shattell, Mona; Bartlett, Robin; Beres, Kyle; Southard, Kelly; Bell, Claire; Judge, Christine A; Duke, Patricia

    2015-01-01

    The inpatient environment is a critical space for nurses and patients in psychiatric settings. In this article, we describe nurses' and patients' perceptions of the inpatient environment both before the removal of a Plexiglas enclosure around a nurses' station and after its removal. Nurses had mixed feelings about the enclosure, reporting that it provided for confidentiality and a concentrated work space but also acknowledged the challenge of the barrier for communication with their patients. Patients unanimously preferred the nurses' station without the barrier, reporting increased feelings of freedom, safety, and connection with the nurses after its removal. It is important to consider the implications of environmental decisions in inpatient settings in order to promote a healthy workplace and healing environment for all community members. © The Author(s) 2015.

  20. Age and source of water in springs associated with the Jacksonville Thrust Fault Complex, Calhoun County, Alabama

    Science.gov (United States)

    Robinson, James L.

    2004-01-01

    Water from wells and springs accounts for more than 90 percent of the public water supply in Calhoun County, Alabama. Springs associated with the Jacksonville Thrust Fault Complex are used for public water supply for the cities of Anniston and Jacksonville. The largest ground-water supply is Coldwater Spring, the primary source of water for Anniston, Alabama. The average discharge of Coldwater Spring is about 32 million gallons per day, and the variability of discharge is about 75 percent. Water-quality samples were collected from 6 springs and 15 wells in Calhoun County from November 2001 to January 2003. The pH of the ground water typically was greater than 6.0, and specific conductance was less than 300 microsiemens per centimeter. The water chemistry was dominated by calcium, carbonate, and bicarbonate ions. The hydrogen and oxygen isotopic composition of the water samples indicates the occurrence of a low-temperature, water-rock weathering reaction known as silicate hydrolysis. The residence time of the ground water, or ground-water age, was estimated by using analysis of chlorofluorocarbon, sulfur hexafluoride, and regression modeling. Estimated ground-water ages ranged from less than 10 to approximately 40 years, with a median age of about 18 years. The Spearman rho test was used to identify statistically significant covariance among selected physical properties and constituents in the ground water. The alkalinity, specific conductance, and dissolved solids increased as age increased; these correlations reflect common changes in ground-water quality that occur with increasing residence time and support the accuracy of the age estimates. The concentration of sodium and chloride increased as age increased; the correlation of these constituents is interpreted to indicate natural sources for chloride and sodium. The concentration of silica increased as the concentration of potassium increased; this correlation, in addition to the isotopic data, is evidence that

  1. Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530): Final environmental statement

    International Nuclear Information System (INIS)

    1982-02-01

    The proposed action is the issuance of operating licenses to the Arizona Public Service Company (APS, applicant) for the startup and operation of PVNGS, Units 1, 2, and 3, located in Maricopa County, about 24 km (15 mi) west of Buckeye, Arizona. The information in this statement represents the second assessment of the environmental impact associated with PVNGS Units 1, 2, and 3 pursuant to the guidelines of the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations (10 CFR) Part 51 of the Commissions's Regulations. After receiving an application in July 1974 to construct this station, the staff carried out a review of impacts that would occur during its construction and operation. That evaluation was issued as a Final Environmental Statement/emdash/Construction Phase (FES-CP). After this environmental review, a safety review, an evaluation by the Advisory Committee on Reactor Safeguards, and public hearings in Phoenix, Arizona, the US Nuclear Regulatory Commission issued Construction Permits Nos. CPPR-141, CPPR-142, and CPPR-143 for the construction of PVNGS Units 1, 2, and 3. As of September 1981, the construction of Unit 1 was about 92 percent complete, Unit 2 was 68 percent complete, and Unit 3 was 26 percent complete. 11 figs., 21 tabs

  2. Final environmental statement related to the operation of North Anna Power Station, Units 1 and 2: (Docket Nos. 50-338 and 50-339)

    International Nuclear Information System (INIS)

    1980-08-01

    The proposed action is the issuance of Operating Licenses to the Virginia Electric and Power Company for the startup and operation of the North Anna Power Station, Units No. 1 and 2, located on Lake Anna in Louisa County, 40 miles east of Charlottesville, Virginia. The information in this second addendum responds to the Commission's directive that the staff address in narrative form the environmental dose commitments and health effects from fuel cycle releases, fuel cycle socioeconomic impacts, and possible cumulative impacts pending further treatment by rulemaking

  3. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement No. 8

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 8 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its seven previous supplements were issued

  4. Safety Evaluation Report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457)

    International Nuclear Information System (INIS)

    1987-05-01

    In November 1983, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1002) regarding the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457). The first supplement to NUREG-1002 was issued in September 1986; the second supplement to NUREG-1002 was issued in October 1986. This third supplement to NUREG-1002 reports the status of certain items that remained unresolved at the time Supplement 2 was published. The facility is located in Reed Township, Will County, Illinois

  5. Safety evaluation report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352-50-353). Supplement 1

    International Nuclear Information System (INIS)

    1983-12-01

    This report supplements the Safety Evaluation Report (NUREG-0991, August 1983) for the application filed by the Philadelphia Electric Company, as applicant and owner, for licenses to operate the Limerick Generating Station Units 1 and 2 (Docket Nos. 50-352 and 50-353). The facility is located near Pottstown, Pennsylvania. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  6. Safety-evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3. Docket No. 50-382

    International Nuclear Information System (INIS)

    1983-06-01

    Supplement 5 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its four previous Supplements were issued

  7. Safety evaluation report related to the operation of Clinton Power Station, Unit No. 1 (Docket No. 50-461). Suppl. 3

    International Nuclear Information System (INIS)

    1984-05-01

    Supplement No. 3 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc., as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report and Supplements No. 1 and 2

  8. Safety evaluation report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Suppl.6

    International Nuclear Information System (INIS)

    1984-06-01

    Supplement 6 to the Safety Evaluation Report for the application filed by Louisiana Power and Light Company for a license to operate the Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing the staff's evaluation of information submitted by the applicant since the Safety Evaluation Report and its five previous supplements were issued

  9. Safety Evaluation Report related to the operation of Byron Station, Units 1 and 2 (Dockets Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1984-10-01

    Supplement No. 5 to the Safety Evaluation Report related to Commonwealth Edison Company's application for licenses to operate the Byron Station, Units 1 and 2, located in Rockvale Township, Ogle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report. Because of the favorable resolution of the items discussed in this report, the staff concludes that there is reasonable assurance that the facility can be operated by the applicant without endangering the health and safety of the public

  10. Technical evaluation report on the monitoring of electric power to the reactor protection system for the Nine Mile Point Nuclear Station, Unit 1 (Docket No. 50-220)

    International Nuclear Information System (INIS)

    Selan, J.C.

    1984-01-01

    This report documents the technical evaluation of the monitoring of electric power to the reactor protection system (RPS) at the Nine Mile Point Nuclear Station, Unit 1. The evaluation is to determine if the proposed design modification will protect the RPS from abnormal voltage and frequency conditions which could be supplied from the power supplies and will meet certain requirements set forth by the Nuclear Regulatory Commission. The proposed design modifications will protect the RPS from sustained abnormal voltage and frequency conditions from the supplying sources

  11. Safety Evaluation Report related to the operation of Clinton Power Station, Unit No. 1 (Docket No. 50-461). Supplement No. 6

    International Nuclear Information System (INIS)

    1986-07-01

    Supplement No. 6 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc., as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of items that have been resolved by the staff since Supplement No. 5 was issued

  12. Technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1981-07-01

    This report documents the technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1. The tests were to verify that faults on the non-Class 1E circuits would not propagate to the Class 1E circuits and degrade them below acceptable levels. The tests conducted demonstrated that the safety features actuation system did not degrade below acceptable levels nor was the system's ability to perform its protective functions affected

  13. Safety evaluation report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457)

    International Nuclear Information System (INIS)

    1983-11-01

    The Safety Evaluation Report for the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Reed Township, Will County, Illinois. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  14. Safety evaluation report related to the operation of Clinton Power Station, Unit No. 1 (Docket No. 50-461). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-01-01

    Supplement No. 5 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc. as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of items that have been resolved by the staff since supplement No. 4 was issued

  15. Safety Evaluation Report related to the operation of Clinton Power Station, Unit No. 1 (Docket No. 50-461). Supplement No. 7

    International Nuclear Information System (INIS)

    1986-09-01

    Supplement No. 7 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc., as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of items that have been resolved by the staff since Supplement No. 6 was issued

  16. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410)

    International Nuclear Information System (INIS)

    1985-02-01

    The Safety Evaluation Report for the application filed by the Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate the Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  17. Safety Evaluation Report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457). Supplement No. 2

    International Nuclear Information System (INIS)

    1986-10-01

    In November 1983, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1002) regarding the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457). The first supplement to NUREG-1002 was issued in September 1986. This second supplement to NUREG-1002 reports the status of certain items that remained unresolved at the time Supplement 1 was published. The facility is located in Reed Township, Will County, Illinois

  18. Safety Evaluation Report related to the operation of Waterford Steam Electric Station, Unit No. 3 (Docket No. 50-382). Supplement 9

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement 9 to the Safety Evaluation Report for Louisiana Power and Light's application for a license to operate Waterford Steam Electric Station, Unit 3 (Docket No. 50-382), located in St. Charles Parish, Louisiana, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Region IV Office of the US Nuclear Regulatory Commission. This supplement provides the results of the staff's completion of its evaluation of approximately 350 allegations and concerns of poor construction practices at the Waterford 3 facility

  19. Safety Evaluation Report related to the operation of Clinton Power Station, Unit No. 1 (Docket No. 50-461). Supplement No. 4

    International Nuclear Information System (INIS)

    1985-02-01

    Supplement No. 4 to the Safety Evaluation Report on the application filed by Illinois Power Company, Soyland Power Cooperative, Inc., and Western Illinois Power Cooperative, Inc., as applicants and owners, for a license to operate the Clinton Power Station, Unit No. 1, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Harp Township, DeWitt County, Illinois. This supplement reports the status of items that have been resolved by the staff since Supplement No. 3 was issued

  20. Safety-evaluation report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353)

    International Nuclear Information System (INIS)

    1983-08-01

    The Safety Evaluation Report for the application filed by the Philadelphia Electric Company, as applicant and owner, for licenses to operate the Limerick Generating Station Units 1 and 2 (Docket Nos. 50-352 and 50-353), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Pottstown, Pennsylvania. Subject to favorable resolution of the items discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  1. Safety Evaluation Report related to the operation of Wolf Creek Generating Station, Unit No. 1 (Docket No. STN 50-482). Supplement No. 6

    International Nuclear Information System (INIS)

    1985-06-01

    This report supplements the Safety Evaluation Report (SER) for the application filed by the Kansas Gas and Electric Company, as applicant and agent for the owners, for a license to operate the Wolf Creek Generating Station, Unit 1 (Docket No. STN 50-482). The facility is located in Coffey County, Kansas. This supplement provides recent information regarding resolution of the license conditions identified in the SER. Because of the favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the licensee at power levels greater than 5% without endangering the health and safety of the public

  2. Safety Evaluation Report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457). Supplement No. 1

    International Nuclear Information System (INIS)

    1986-09-01

    In November 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1002) regarding the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457). The facility is located in Reed Township, Will County, Illinois. This first supplement to NUREG-1002 reports the status of certain items that remained unresolved at the time the Safety Evaluation Report was published

  3. Technical evaluation report on the proposed design modifications and technical specification changes on grid voltage degradation for the Millstone Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the proposed design modifications and Technical Specification change for protection of Class 1E equipment from grid voltage degradation for the Millstone Nuclear Power Station, Unit 1. The review criteria are based on several IEEE standards and the Code of Federal Regulations. The evaluation finds that the licensee has not provided sufficient information on the undervoltage protection system to allow a complete evaluation into the adequacy of protecting the Class 1E equipment from sustained voltage degradation

  4. Safety Evaluation Report related to the operation of Millstone Nuclear Power Station Unit No. 3 (Docket No. 50-4423). Supplement No. 1

    International Nuclear Information System (INIS)

    1985-03-01

    In July 1984 staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report regarding the application of Northeast Nuclear Energy Company (applicant and agent for the owners) for a license to operate Millstone Nuclear Power Station, Unit No. 3 (Docket 50-423). The facility is located in the town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. This first supplement to NUREG-1031 reports the status of certain items that remained unresolved at the time the Safety Evaluation Report was published

  5. NRC Fact-Finding Task Force report on the ATWS event at Salem Nuclear Generating Station, Unit 1, on February 25, 1983

    International Nuclear Information System (INIS)

    1983-03-01

    An NRC Region I Task Force was established on March 1, 1983 to conduct fact finding and data collection with regard to the circumstances which led to an anticipated transient without scram (ATWS) event at the Public Service Electric and Gas Company's Salem Generating Station, Unit 1 on February 25, 1983. The charter of the Task Force was to determine the factual information pertinent to management and administrative controls which should have ensured proper operation of the reactor trip breakers in the solid state protection system. This report documents the findings of the Task Force along with its conclusions

  6. Indian Point Station, Units 1, 2, and 3. Annual operations report No. 27: January--December 1977

    International Nuclear Information System (INIS)

    1978-01-01

    Unit 1 remained shutdown with the fuel removed to the Fuel Handling Building pending a decision by the Company on the installation of an ECCS. Information for Unit 2 and 3 is presented concerning procedure changes, tests, experiments, maintenance, equipment examinations, radioactivity releases, shutdowns and forced power reductions, and the number of personnel and Man/Rem exposure by work and job function

  7. Design and performance of the helically coiled boilers of two AGR power stations in the United Kingdom

    International Nuclear Information System (INIS)

    El-Nagdy, M.; Papa, A.D.

    1988-01-01

    The Hartlepool and Heysham-I AGR stations have been commissioned and operating since 1983. The main features, of the design of the helical once-through boilers raising the steam for power generation, are outlined. The modifications to the feed inlet flow ferrules, necessary to improve the boiler performance and optimize the power output, have been described. Comparisons between the thermal and hydrodynamic performance of the boilers before and following these alterations are given. The improvements in the computer code predictions of the plant performance have also been presented. (author)

  8. Technical evaluation of RETS-required reports for Zion Nuclear Power Station, Units 1 and 2 for 1983

    International Nuclear Information System (INIS)

    Young, T.E.; Magleby, E.H.

    1985-01-01

    A review was performed on the reports required by Federal regulations and the plant-specific Radiological Effluent Technical Specifications (RETS) for operations conducted at Commonwealth Edison's Zion Nuclear Power Station during 1983. The two periodic reports reviewed: (1) were the Effluent and Waste Disposal Semiannual Report, July-December 1983, and (2) the Radioactive Waste and Environmental Monitoring Annual Report - 1983. The principal review guidelines were the plant's specific RETS and NRC guidance given in NUREG-0133, ''Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants.'' The Licensee's submitted reports were found to be reasonably complete and consistent with the review guidelines

  9. Safety evaluation report related to the operation of Limerick Generating Station, Units 1 and 2, Docket nos. 50-352 and 50-353

    International Nuclear Information System (INIS)

    1989-08-01

    In August 1983 the staff of the Nuclear Regulatory commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the licensee) for the licenses to operate the Limerick Generating Station, Units 1 and 2, located on a site in Montgomery and Chester Counties, Pennsylvania. Supplement 1 was issued in December 1983. Supplement 2 was issued in October 1984. Supplement 3 was issued in October 1984. Supplement 4 was issued in May 1985. Supplement 5 was issued in July 1985. Supplement 6 was issued in August 1985 and Supplement 7 was issued in April 1989. Supplement 7 addresses the major design differences between Units 1 and 2, the resolution of all issues that remained open when the Unit 1 full-power license was issued, the staff's assessment regarding the application by the licensee to operate Unit 2 and issues that require resolution before issuance of an operating license for Unit 2. Supplements 8 and 9 address further issues that require resolution prior to issuance of an operating license. 1 tab

  10. Safety Evaluation Report related to the operation of Cartawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-02-01

    This report supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, Saluda River Electric Cooperative, Inc., and Piedmont Municipal Power Agency, as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides additional information supporting the license for initial criticality and power ascension to full-power operation for Unit 2

  11. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414)

    International Nuclear Information System (INIS)

    1984-07-01

    The report supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, and Saluda River Electric Cooperative, Inc. as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides additional information supporting the license for fuel loading and precriticality testing for Unit 1

  12. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement 3

    International Nuclear Information System (INIS)

    1984-10-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the applicant) for licenses to operate the Limerick Generating Station, Units 1 and 2. Supplement 1 was issued in December 1983 and addressed several outstanding issues. Supplement 1 also contains the comments made by the Advisory Committee on Reactor Safeguards in its report dated October 18, 1983. Supplement 2 was issued in October 1984 and addressed fourteen outstanding and fifty-three confirmatory issues and closed them put. This Supplement 3 addresses the remaining issues that require resolution before issuance of the operating license for Unit 1 and closes them out

  13. Final environmental statement related to the operation of Byron Station, Units 1 and 2 (Docket Nos. STN 50-454 and STN 50-455)

    International Nuclear Information System (INIS)

    1982-04-01

    The proposed action is the issuance of an operating license to Commonwealth Edison Company (CECo) of Chicago, Illinois, for startup and operation of the Byron Station, Units 1 and 2 on a 710-ha (1754-acre) site in Ogle County 6 km (4 miles) south-southwest of Byron, Illinois, and 3 km (2 miles) east of the Rock River. Each of the two generating units consists of a pressurized-water reactor, four steam generators, one steam turbine generator, a heat-dissipation system, and associated auxiliary and engineered safeguards. Information is presented under the following topics: purpose and need for the action; alternatives to the proposed action; project description and affected environment; environmental consequences and mitigating actions; evaluation of the proposed action; list of contributors; list of agencies and organizations requested to comment on the draft environmental statement; and responses to comments on the Draft Environmental Statement

  14. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414)

    International Nuclear Information System (INIS)

    1984-12-01

    This report supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, and Saluda River Electric Cooperative, Inc., as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides additional information supporting the license for initial criticality and power ascension to full-power opertion for Unit 1

  15. Safety Evaluation Report related to the operation of Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414). Supplement No. 6

    International Nuclear Information System (INIS)

    1986-05-01

    This report supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, Saluda River Electric Cooperative, Inc., and Piedmont Municipal Power Agency, as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 miles) north of Rock Hill and adjacent to Lake Wylie. This supplement provides additional information supporting the license for operation above 5% power and power ascension to full-power operation for Unit 2

  16. Verifying the prevalence, properties, and congruent hydraulics of at-many-stations hydraulic geometry (AMHG) for rivers in the continental United States

    Science.gov (United States)

    Barber, Caitline A.; Gleason, Colin J.

    2018-01-01

    Hydraulic geometry (HG) has long enabled daily discharge estimates, flood risk monitoring, and water resource and habitat assessments, among other applications. At-many-stations HG (AMHG) is a newly discovered form of HG with an evolving understanding. AMHG holds that there are temporally and spatially invariant ('congruent') depth, width, velocity, and discharge values that are shared by all stations of a river. Furthermore, these river-wide congruent hydraulics have been shown to link at-a-station HG (AHG) in space, contrary to previous expectation of AHG as spatially unpredictable. To date, AMHG has only been thoroughly examined on six rivers, and its congruent hydraulics are not well understood. To address the limited understanding of AMHG, we calculated AMHG for 191 rivers in the United States using USGS field-measured data from over 1900 gauging stations. These rivers represent nearly all geologic and climatic settings found in the continental U.S. and allow for a robust assessment of AMHG across scales. Over 60% of rivers were found to have AMHG with strong explanatory power to predict AHG across space (defined as r2 > 0.6, 118/191 rivers). We also found that derived congruent hydraulics bear little relation to their observed time-varying counterparts, and the strength of AMHG did not correlate with any available observed or congruent hydraulic parameters. We also found that AMHG is expressed at all fluvial scales in this study. Some statistically significant spatial clusters of rivers with strong and weak AMHG were identified, but further research is needed to identify why these clusters exist. Thus, this first widespread empirical investigation of AMHG leads us to conclude that AMHG is indeed a widely prevalent natural fluvial phenomenon, and we have identified linkages between known fluvial parameters and AMHG. Our work should give confidence to future researchers seeking to perform the necessary detailed hydraulic analysis of AMHG.

  17. Final environmental statement: Related to the operation of Davis-Besse Nuclear Power Station, Unit 1 (Docket No. 50-346)

    International Nuclear Information System (INIS)

    1975-10-01

    The proposed action is the issuance of an operating license to the Toledo Edison Company and the Cleveland Electric Illuminating Company for the startup and operation of the Davis-Besse Nuclear Power Station Unit 1 (the station) located near Port Clinton in Ottawa County, Ohio. The total site area is 954 acres of which 160 acres have been removed from production of grain crops and converted to industrial use. Approximately 600 acres of the area is marshland which will be maintained as a wildlife refuge. The disturbance of the lake shore and lake bottom during construction of the station water intake and discharge pipes resulted in temporary turbidity, silting, and destruction of bottom organisms. Since completion of these activities, evidence of improvement in turbidity and transparency measurements, and the reestablishment of the bottom organism has been obtained. The cooling tower blowdown and service water which the station discharges to Lake Erie, via a submerged jet, will be heated no more than 20/degrees/F above the ambient lake water temperature. Although some small fish and plankton in the discharge water plume will be disabled as a result of thermal shock, exposure to chlorine and buffeting, few adult fish will be affected. The thermal plume resulting from the maximum thermal discharge is calculated to have an area of less than one acre within the 3/degrees/F isotherm (above lake ambient). Approximately 101 miles of transmission lines have been constructed, primarily over existing farmland, requiring about 1800 acres of land for the rights-of-way. Land use will essentially be unchanged since only the land required for the base of the towers is removed from production. Herbicides will not be used to maintain the rights-of-way. 14 figs., 34 refs

  18. Technical Specifications, Clinton Power Station, Unit No. 1 (Docket No. 50-461). Appendix ''A'' to License No. NPF-55

    International Nuclear Information System (INIS)

    1986-09-01

    This report presents information on the technical specifications of the Clinton Unit No. 1 Reactor in the areas of: safety limits and limiting safety system settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  19. NOAA Water Level Predictions Stations for the Coastal United States and Other Non-U.S. Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Ocean Service (NOS) maintains a long-term database containing water level measurements and derived tidal data for coastal waters of the United States...

  20. Browns Ferry Nuclear Power Station, Units 1, 2, and 3. Annual operating report: January--December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Units 1 and 2 were down for the first half of the year caused by the fire of March 1975. Net electrical power generated by Unit 1 this year was 1,301,183 MWH with the generator on line 2,175.25 hrs. Unit 2 generated 1,567,170 MWH with the generator on line 2,548.73 hrs. Unit 3 began full power operation on November 20th and generated 1,416,891 MWH with the generator on line 2,058.20 hrs. Information is presented concerning operations, fuel performance, surveillance testing, containment leak testing, changes, power generation, shutdown and forced reductions, coolant chemistry, occupational radiation exposures, and maintenance

  1. Improvement on control of waste disposal system at Genkai Nuclear Power Station No.1 and No.2 unit

    International Nuclear Information System (INIS)

    Morooka, Masatoshi; Tsutsumi, Akria

    1989-01-01

    At Genkai Nuclear Power Station, the operational and control systems of the boric acid evaporator, waste liquid evaporator and gaseous waste disposal system were converted from general purpose analong systems to computer instrumentation and control systems in order to improve their operability and controllability. The equipments were operated by batch processing system, so plant operators were required to operate them manually. By introducing the computer instrumentation and control systems, the automatic operation of the equipments has become possible. Furthermore, it has become possible to monitor the relevant parameters intensively with a CRT in the operating room, and it contributes to the improvement of reliability and labor saving. The operation of No.1 plant was begun in October, 1975, and No.2 plant in March, 1981. Both are the PWR plants of 625 MVA capacity. The outline of the power station facilities, the background of the reconstruction, the problems and the plan of reconstruction for the boric acid recovery facility, waste liquid evaporator and gas compressor, the peculiarity of the reconstruction works, and the effect of introducing the new systems are reported. (Kako, I.)

  2. Assessment of infrasound signals recorded on seismic stations and infrasound arrays in the western United States using ground truth sources

    Science.gov (United States)

    Park, Junghyun; Hayward, Chris; Stump, Brian W.

    2018-06-01

    Ground truth sources in Utah during 2003-2013 are used to assess the contribution of temporal atmospheric conditions to infrasound detection and the predictive capabilities of atmospheric models. Ground truth sources consist of 28 long duration static rocket motor burn tests and 28 impulsive rocket body demolitions. Automated infrasound detections from a hybrid of regional seismometers and infrasound arrays use a combination of short-term time average/long-term time average ratios and spectral analyses. These detections are grouped into station triads using a Delaunay triangulation network and then associated to estimate phase velocity and azimuth to filter signals associated with a particular source location. The resulting range and azimuth distribution from sources to detecting stations varies seasonally and is consistent with predictions based on seasonal atmospheric models. Impulsive signals from rocket body detonations are observed at greater distances (>700 km) than the extended duration signals generated by the rocket burn test (up to 600 km). Infrasound energy attenuation associated with the two source types is quantified as a function of range and azimuth from infrasound amplitude measurements. Ray-tracing results using Ground-to-Space atmospheric specifications are compared to these observations and illustrate the degree to which the time variations in characteristics of the observations can be predicted over a multiple year time period.

  3. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-10-01

    This report supplements the Safety Evaluation Report (NUREG-1047, February 1985) for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Supplement 1 to the Safety Evaluation Report was published in June 1985 and contained the report from the Advisory Committee on Reactor Safeguards as well as the resolution of a number of outstanding issues from the Safety Evaluation Report. Supplement 2 was published in November 1985 and contained the resolution of a number of outstanding and confirmatory issues. Supplement 3 was published in July 1986 and contained the resolution of a number of outstanding and confirmatory items, one new confirmatory item, the evaluation of the Engineering Assurance Program, and the evaluation of a number of exemption requests. Supplement 4 was published in September 1986 and contained the resolution of a number of outstanding and confirmatory issues and the evaluation of a number of exemption requests. This report contains the resolution of a number of issues that have been resolved since Supplement 4 was issued. It also contains the evaluation of a number of requests for exemption from the applicant. This report also supports the issuance of the low-power license for Nine Mile Point Nuclear Station, Unit 2

  4. Integrated safety assessment report: Integrated Safety Assessment Program: Millstone Nuclear Power Station, Unit 1 (Docket No. 50-245): Draft report

    International Nuclear Information System (INIS)

    1987-04-01

    The Integrated Safety Assessment Program (ISAP) was initiated in November 1984, by the US Nuclear Regulatory Commission to conduct integrated assessments for operating nuclear power reactors. The integrated assessment is conducted in a plant-specific basis to evaluate all licensing actions, licensee initiated plant improvements and selected unresolved generic/safety issues to establish implementation schedules for each item. In addition, procedures will be established to allow for a periodic updating of the schedules to account for licensing issues that arise in the future. This report documents the review of Millstone Nuclear Power Station, Unit No. 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit No. 1, is one of two plants being reviewed under the pilot program for ISAP. This report indicates how 85 topics selected for review were addressed. This report presents the staff's recommendations regarding the corrective actions to resolve the 85 topics and other actions to enhance plant safety. The report is being issued in draft form to obtain comments from the licensee, nuclear safety experts, and the Advisory Committee for Reactor Safeguards (ACRS). Once those comments have been resolved, the staff will present its positions, along with a long-term implementation schedule from the licensee, in the final version of this report

  5. Draft environmental statement related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457)

    International Nuclear Information System (INIS)

    1983-12-01

    The Draft Environment Statement contains the second assessment of the environmental impact associated with the operation of Braidwood Station, Units 1 and 2, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial and aquatic ecological impacts will be small. Operational impacts to historic and archeologic sites will be negligible. The effects of routine operations, energy transmission, and periodic maintenance of rights of way and transmission facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk of radiation exposure associated with accidental release of radioactivity is very low. The net socioeconomi effects of the project will be beneficial. On the basis of the analysis and evaluation set forth in this environmental statement, it is concluded that the action called for under NEPA and 10 CFR 51 is the issuance of operating licenses for Braidwood Station, Units 1 and 2

  6. Final environmental statement related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457)

    International Nuclear Information System (INIS)

    1984-06-01

    This Final Environmental Statement contains the second assessment of the environmental impact associated with the operation of Braidwood Station, Units 1 and 2, pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial and aquatic ecological impacts will be small. Operational impacts to historic and archeologic sites will be moderate. The effects of routine operations, energy transmission, and periodic maintenance of rights of way and transmission facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk of radiation exposure associated with accidental release of radioactivity is very low. The net socioeconomic effects of the project will be beneficial. On the basis of the analysis and evaluation set forth in this environmental statement, it is concluded that the action called for under NEPA and 10 CFR 51 is the issuance of operating licenses for Braidwood Station, Units 1 and 2. 27 figures, 23 tables

  7. Integrated-plant-safety assessment Systematic Evaluation program. Millstone Nuclear Power Station, Unit 1, Northeast Nuclear Energy Company, Docket No. 50-245

    International Nuclear Information System (INIS)

    1982-11-01

    The Systematic Evaluation Program was initiated in February 1977 to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of the Millstone Nuclear Power Station, Unit 1, operated by Northeast Nuclear Energy Company (located in Waterford, Connecticut). Millstone Nuclear Power Station, Unit 1, is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  8. Nuclear power stations licensing

    International Nuclear Information System (INIS)

    Solito, J.

    1978-04-01

    The judicial aspects of nuclear stations licensing are presented. The licensing systems of the United States, Spain, France and Federal Republic of Germany are focused. The decree n 0 60.824 from July 7 sup(th), 1967 and the following legislation which define the systematic and area of competence in nuclear stations licensing are analysed [pt

  9. Public Transit Stations

    Data.gov (United States)

    Department of Homeland Security — fixed rail transit stations within the Continental United States, Alaska, Hawaii, the District of Columbia, and Puerto Rico. The modes of transit that are serviced...

  10. Routes and Stations

    Data.gov (United States)

    Department of Homeland Security — he Routes_Stations table is composed of fixed rail transit systems within the Continental United States, Alaska, Hawaii, the District of Columbia, and Puerto Rico....

  11. USRCRN Station Information

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Documentation of United States Regional Climate Reference Network (USRCRN) installations in 2009. Installations documented are for USRCRN pilot project stations in...

  12. Revised draft environmental statement related to construction of Atlantic Generating Station Units 1 and 2 (Docket Nos. STN 50-477 and STN 50-478)

    International Nuclear Information System (INIS)

    1976-10-01

    The proposed action is the issuance of a construction permit to Public Service Electric and Gas Company (PDE and G) for the construction of the Atlantic Generating Station (AGS), Units 1 and 2. The AGS is the first nuclear power station in the United States proposed for construction in the offshore waters on the continental shelf. The AHS will be located in the Atlantic Ocean 2.8 miles offshore of Atlantic and Ocean countries. New Jersey, 11 miles northeast of Atlantic City, and will consist of two floating nuclear power plants enclosed in a protective rubble-mound breakwater. Both plants will be identical, of standardized design, and will employ pressurized water reactors to produce up to approximately 3425 megawatts thermal (MWt) each. Steam turbine generators will use this heat to produce up to approximately 1150 megawatts of electrical power (MWe) per unit. The main condensers will be cooled by the flow of seawater drawn from within the breakwater and discharged shoreward and external to the breakwater. This statement identifies various environmental aspects and potential adverse effects associated with the construction and operation of the AGS. Based upon an approximate two-year review period which included a multidisciplined assessment of extensive survey and modeling data, these effects are considered by the staff to be of a generally acceptable nature. Breakwater construction will result in the destruction of 100 acres of benthic infauna (burrowing animals) and the development of a reef-type community on the breakwater. The production of new biomass (standing crop) by the reef community is expected to compensate for the infaunal biomass destroyed by dredging and will contribute mainly to the local sport fishery. 93 figs., 110 tabs

  13. 47 CFR 90.421 - Operation of mobile station units not under the control of the licensee.

    Science.gov (United States)

    2010-10-01

    ... medical services activities. (3) On the Interoperability Channels in the 700 MHz Public Safety Band (See... in the 700 MHz Public Safety Band or by any licensee holding a license for any other public safety... hand-held and vehicular transmitters in the 700 MHz Band. (b) Industrial/Business Pool. Mobile units...

  14. 77 FR 21815 - South Carolina Electric And Gas Company (Virgil C. Summer Nuclear Station Units 2 and 3); Order...

    Science.gov (United States)

    2012-04-11

    ... (or its counsel or representative) to digitally sign documents and access the E-Submittal server for... fuel pool contained the highest heat load of the six units with the full core present in the spent fuel... adequate evidence but on mere suspicion, unfounded allegations, or error. All documents filed in NRC...

  15. Operation of Grand Gulf Nuclear Station, Units 1 and 2, Dockets Nos. 50-416 and 50-417: Mississippi Power and Light Company, Middle South Energy, Inc., South Mississippi Electric Power Association. Final environmental statement

    International Nuclear Information System (INIS)

    1981-09-01

    The information in this Final Environmental Statement is the second assessment of the environmental impacts associated with the construction and operation of the Grand Gulf Nuclear Station, Units 1 and 2, located on the Mississippi River in Claiborne County, Mississippi. The Draft Environmental Statement was issued in May 1981. The first assessment was the Final Environmental Statement related to construction, which was issued in August 1973 prior to issuance of the Grand Gulf Nuclear Station construction permits. In September 1981 Grand Gulf Unit 1 was 92% complete and Unit 2 was 22% complete. Fuel loading for Unit 1 is scheduled for December 1981. The present assessment is the result of the NRC staff review of the activities associated with the proposed operation of the Station, and includes the staff responses to comments on the Draft Environmental Statement

  16. Analysis of fuel handling system for fuel bundle safety during station blackout in 500 MWe PHWR unit of India

    Energy Technology Data Exchange (ETDEWEB)

    Madhuresh, R; Nagarajan, R; Jit, I; Sanatkumar, A [Nuclear Power Corporation of India Ltd., Mumbai (India)

    1997-12-31

    Situations of Station Blackout (SBO) i.e. postulated concurrent unavailability of Class Ill and Class IV power, could arise for a long period, while on-power refuelling or other fuel handling operations are in progress with the hot irradiated fuel bundles being anywhere in the system from the Reactor Building to the Spent Fuel Storage Bay. The cooling provisions for these fuel bundles are diverse and specific to the various stages of fuel handling operations and are either on Class Ill or on Class II power with particular requirements of instrument air. Therefore, during SBO, due to the limited availability of Class II power and instrument air, it becomes difficult to maintain cooling to these fuel bundles. However, some minimal cooling is essential, to ensure the safety of the bundles. As discussed in the paper, safety of these fuel bundles in the system and/or for those lying in the liner tube region of the reactor end fitting is ensured, during SBO, by resorting to passive means like `stay-put`, `gravity- fill`, `D{sub 2}0- steaming` etc. for cooling the bundles. The paper also describes various consequences emanating from these cooling schemes. (author). 6 refs., 2 tabs., 8 figs.

  17. Surry Power Station secondary water chemistry improvement since steam generator replacement and the unit two feedwater pipe rupture

    International Nuclear Information System (INIS)

    Swindell, E.T.

    1988-01-01

    Surry Power Station has two Westinghouse-designed three-loop PWRs of 811 MWe design rating. The start of commercial operation was in July, 1972 in No.1 plant, and May, 1973 in No.2 plant. Both plants began the operation using controlled phosphate chemistry for the steam generators. In 1975, both plants were converted to all volatile treatment on the secondary side due to the tube wall thinning corrosion in the steam generators, which was associated with the phosphate sludge that was building up on the tube sheets and created acidic condition. Thereafter, condenser and air leakage and steam generator denting occurred, and after the operation of 8 years 2 month of No.1 plant and 5 years 9 months of No.2 plant, the steam generators were replaced. A major plant improvement program was designed and implemented from 1979 to 1980. The improvement in new steam generators, the modification for preventing corrosion, the addition of a steam generator blowdown recovery system, the reconstruction of condensers, the installation of full flow, deep bed condensate polishers, the addition of Dionex 8,000 on-line ion chromatograph, a long term maintenance agreement with Westinghouse and so on are reported. (Kako, I.)

  18. Analysis of fuel handling system for fuel bundle safety during station blackout in 500 MWe PHWR unit of India

    International Nuclear Information System (INIS)

    Madhuresh, R.; Nagarajan, R.; Jit, I.; Sanatkumar, A.

    1996-01-01

    Situations of Station Blackout (SBO) i.e. postulated concurrent unavailability of Class Ill and Class IV power, could arise for a long period, while on-power refuelling or other fuel handling operations are in progress with the hot irradiated fuel bundles being anywhere in the system from the Reactor Building to the Spent Fuel Storage Bay. The cooling provisions for these fuel bundles are diverse and specific to the various stages of fuel handling operations and are either on Class Ill or on Class II power with particular requirements of instrument air. Therefore, during SBO, due to the limited availability of Class II power and instrument air, it becomes difficult to maintain cooling to these fuel bundles. However, some minimal cooling is essential, to ensure the safety of the bundles. As discussed in the paper, safety of these fuel bundles in the system and/or for those lying in the liner tube region of the reactor end fitting is ensured, during SBO, by resorting to passive means like 'stay-put', 'gravity- fill', 'D 2 0- steaming' etc. for cooling the bundles. The paper also describes various consequences emanating from these cooling schemes. (author). 6 refs., 2 tabs., 8 figs

  19. Device for inspection and/or repair of a pipe of a steam raising unit of a nuclear power station

    International Nuclear Information System (INIS)

    Vermaat, H.P.

    1986-01-01

    Eddy current sensors are introduced into the pipe from the steam raising unit chamber. The two-part device on the supporting pillar is used to support the sensors and to position them, and so is an arm connected to it via a clutch. It is accommodated inside the steam raising chamber, but can be operated remotely from outside the steam raising chamber. This reduces the radiation loading of the operating staff. (DG) [de

  20. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement No. 5

    International Nuclear Information System (INIS)

    1985-07-01

    In August 1983 the NRC issues its Safety Evaluation Report regarding the application for licenses to operate the Limerick Generating Station, Units 1 and 2 located on a site in Montgomery and Chester Counties, Pennsylvania. Supplement 1 was issued in December 1983 and addressed several outstanding issues. SSER 1 also contains the comments made by the Advisory Committee on Reactor Safeguards in its interim report dated October 18, 1983. Supplement 2 was issued in October 1984. Supplement 3 was issued in October 1984 and addressed the remaining issues that required resolution before issuance of the operating licence for Unit 1. On October 26, 1984 a license (NPF-27) for Unit 1 was issued which was restricted to a five percent power level and contained conditions which required resolution prior to proceeding beyond the five percent power level. Supplement 4 issued in May 1985 addressed some of the technical issues and their associated license conditions, which required resolution prior to proceeding beyond the five percent power level. SSER 4 also contained the comments made by the Advisory Committee on Reactor Safeguards in its report dated November 6, 1984. This Supplement 5 to the SER addresses further issues that require resolution prior to proceeding beyond the five percent power level

  1. Safety Evaluation Report related to the operation of Limerick Generating Station, Units 1 and 2 (Docket Nos. 50-352 and 50-353). Supplement No. 4

    International Nuclear Information System (INIS)

    1985-05-01

    In August 1983 the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0991) regarding the application of the Philadelphia Electric Company (the applicant) for licenses to operate the Limerick Generating Station, Units 1 and 2 located on a site in Montgomery and Chester Counties, Pennsylvania. A license (NPF-27) for the operation of Limerick Unit 1 was issued on October 26, 1984. The license, which was restricted to a five percent power level, contained conditions which required resolution prior to proceeding beyond the five percent power level. This Supplement 4 to the SER addresses some of those technical issues and their associated license conditions which require resolution prior to proceeding beyond the five percent power level. The remaining issues to be addressed prior to proceeding beyond the five percent power level will be addressed in a later supplement to this report. This Supplement 4 to the SER also contains the comments made by the Advisory Committee on Reactor Safeguards in its report dated November 6, 1984, regarding full power operation of Limerick Unit 1

  2. Socioeconomic impacts of nuclear generating stations: Crystal River Unit 3 case study. Technical report 1 Oct 78-4 Jan 82

    International Nuclear Information System (INIS)

    Bergmann, P.A.

    1982-07-01

    The report documents a case study of the socioeconomic impacts of the construction and operation of the Crystal River Unit 3 nuclear power station. It is part of a major post-licensing study of the socioeconomic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period, 1980-81. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socioeconomic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined

  3. Perkins Nuclear Station, Units 1, 2, and 3: Final environmental statement (Docket Nos. STN 50-488, STN 50-489, and STN 50-490

    International Nuclear Information System (INIS)

    1975-10-01

    The proposed action is the issuance of a construction permit to the Duke Power Company for the construction of the Perkins Nuclear Station (PNS) Units 1, 2, and 3 located in Davie County, North Carolina. A total of 2402 acres will be used for the PNS site; another 1401 acres will be used for the Carter Creek Impoundment. Construction-related activities on the primary site will disturb about 617 acres. Approximately 631 acres of land will be required for transmission line right-of-way, and a railroad spur will affect 77 acres. This constitutes a minor local impact. The heat dissipation system will require a maximum water makeup of 55,816 gpm, of which 50,514 gpm will be consumed due to drift and evaporative losses. This amount represents 4% of the mean monthly flow of the Yadkin River. The cooling tower blowdown and chemical effluents from the station will increase the dissolved solids concentration in the Yadkin River by a maximum of 18 ppm. The thermal alterations and increases in total dissolved solids concentration will not significantly affect the aquatic productivity of the Yadkin River. 26 figs., 51 tabs

  4. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2. Docket Nos. 50-413 and 50-414. Suppl. 1

    International Nuclear Information System (INIS)

    1983-04-01

    This reort supplements the Safety Evaluation Report (NUREG-0954) issued in February 1983 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, and Saluda River Electric Cooperative, Inc. as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides more recent information regarding resolution or updating of some of the open and confirmatory items and license conditions identified in the Safety Evaluation Report, and discusses the recommendations of the Advisory Committee on Reactor Safeguards in its report dated March 15, 1983

  5. Draft environmental statement related to the operation of Limerick Generating Station, Units 1 and 2. Docket Nos. 50-352 and 50-353

    International Nuclear Information System (INIS)

    1983-06-01

    This Draft Environmental Statement contains the second assessment of the environmental impact associated with the operation of the Limerick Generating Station, Units 1 and 2, pursuant to the National Environment Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. This statement examines the environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial and aquatic ecological impacts will be small. Operational impacts to historic and archeological sites will be negligible. The effects of routine operations, energy transmission, and periodic maintenance of rights of way and transmission facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity

  6. Alteration in reactor installations (Unit 1 and 2 reactor facilities) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Inc. (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report by the Nuclear Safety Commission to the Ministry of International Trade and Industry concerning the alteration in Unit 1 and 2 reactor facilities in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., was presented. The technical capabilities for the alteration of reactor facilities in Chubu Electric Power Co., Inc., were confirmed to be adequate. The safety of the reactor facilities after the alteration was confirmed to be adequate. The items of examination made for the confirmation of the safety are as follows: reactor core design (nuclear design, mechanical design, mixed reactor core), the analysis of abnormal transients in operation, the analysis of various accidents, the analysis of credible accidents for site evaluation. (Mori, K.)

  7. Safety evaluation report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410)

    International Nuclear Information System (INIS)

    1986-07-01

    This report supplements the Safety Evaluation Report (NUREG-1047, February 1985) for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate the Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Supplement 1 to the Safety Evaluation Report was published in June 1985 and contained the report from the Advisory Committee on Reactor Safeguards as well as the resolution to a number of outstanding issues from the Safety Evaluation Report. Supplement 2 was published in November 1985 and contained the resolution to a number of outstanding and confirmatory issues. Subject to favorable resolution of the issues discussed in this report, the NRC staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  8. Safety evaluation report related to the operation of Seabrook Station, Units 1 and 2. Docket Nos. 50-443 and 50-444. Suppl. 1

    International Nuclear Information System (INIS)

    1983-04-01

    This report supplements the Safety Evaluation Report (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et. al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  9. Safety Evaluation Report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444)

    International Nuclear Information System (INIS)

    1989-05-01

    This report is Supplement No. 8 to the Safety Evaluation Report (SER) (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public. 2 figs., 1 tab

  10. Safety Evaluation Report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444). Supplement No. 5

    International Nuclear Information System (INIS)

    1986-07-01

    This report is Supplement No. 5 to the Safety Evaluation Report (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  11. Evaluation of zeolite mixtures for decontaminating high-activity-level water at the Three Mile Island Unit 2 Nuclear Power Station

    International Nuclear Information System (INIS)

    Collins, E.D.; Campbell, D.O.; King, L.J.; Knauer, J.B.; Wallace, R.M.

    1984-05-01

    Mixtures of Linde Ionsiv IE-96 and Ionsiv A-51 were evaluated for use in the Submerged Demineralizer System (SDS) that was installed at the Three Mile Island Unit 2 Nuclear Power Station to decontaminate approx. 2780 m 3 of high-activity-level water. The original SDS flowsheet was conservatively designed for removal of cesium and strontium and would have required the use of approx. 60 SDS columns. Mixed zeolite tests were made on a 10 -5 scale and indicated that the appropriate ratio of IE-96/A-51 was 3/2. A mathematical model was used to predict the performance of the mixed zeolite columns in the SDS configuration and with the intended method of operation. Actual loading results were similar to those predicted for strontium and better than those predicted for cesium. The number of SDS columns needed to process the HALW was reduced to approx. 10. 6 references, 4 figures, 2 tables

  12. Safety Evaluation Report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444)

    International Nuclear Information System (INIS)

    1990-03-01

    This report is Supplement No. 9 to the Safety Evaluation Report (SER) (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2. It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public. 70 refs., 1 fig., 1 tab

  13. Safety Evaluation Report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423). Supplement No. 3

    International Nuclear Information System (INIS)

    1985-11-01

    This report supplements the Safety Evaluation Report (NUREG-1031) issued in July 1984, Supplement 1 issued in March 1985, and Supplement 2 issued in September 1985 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Northeast Nuclear Energy Company (applicant and agent for the owners) for a license to operate Millstone Nuclear Power Station, Unit No. 3 (Docket 50-423). The facility is located in the Town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. This supplement provides more recent information regarding resolution or updating of some of the open and confirmatory items and license conditions identified in the Safety Evaluation Report

  14. Safety Evaluation Report related to the operation of Wolf Creek Generating Station, Unit No. 1 (Docket No. STN 50-482). Supplement No. 5

    International Nuclear Information System (INIS)

    1985-03-01

    This report supplements the Safety Evaluation Report (SER) for the application filed by the Kansas Gas and Electric Company, as applicant and agent for the owners, for a license to operate the Wolf Creek Generating Station, Unit 1 (Docket No. STN 50-482). The facility is located in Coffey County, Kansas. This supplement has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information regarding resolution of the open items identified in the SER. Because of the favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  15. Safety Evaluation Report related to the operation of Millstone Nuclear Power Station, Unit No. 3 (Docket No. 50-423). Supplement No. 4

    International Nuclear Information System (INIS)

    1985-11-01

    This report supplements the Safety Evaluation Report (NUREG-1031) issued in July 1984, Supplement 1 issued in March 1985, Supplement 2 issued in September 1985, and Supplement 3 issued in November 1985, by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Northeast Nuclear Energy Company (applicant and agent for the owners) for a license to operate Millstone Nuclear Power Station, Unit No. 3 (Docket 50-423). The facility is located in the Town of Waterford, New London County, Connecticut, on the north shore of Long Island Sound. This supplement provides more recent information supporting the license for initial criticality and power ascension to 5% power operation for Millstone 3. 37 refs., 10 tabs

  16. Safety Evaluation Report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417)

    International Nuclear Information System (INIS)

    1984-10-01

    This report supplements the Safety Evaluation Report (NUREG-0831) issued in September 1981 by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by Mississippi Power and Light (MP and L) Company, Middle South Energy, Inc., and South Mississippi Electric Power Association as applicants and owners, for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2 (Docket Nos. 50-416 and 50-417, respectively). The facility is located on the east bank of the Mississippi River near Port Gibson in Claiborne County, Mississippi. This supplement provides information on the NRC staff's evaluation of requests for exemptions to NRC regulations pursuant to the Commission's direction in CLI-84-19, dated October 25, 1984

  17. Operation of Nine Mile Point Nuclear Station, Unit No. 2, Docket No. 50-410, Town of Scriba, County of Oswego, New York

    International Nuclear Information System (INIS)

    1984-07-01

    The draft version of an environmental impact statement (EPA No. 840360D) on the proposed licensing of Unit 2 of the Nine Mile Point Nuclear Station in New York describe the plant site, the reactor and support facilities, the cooling system, and procedures for disposing of cooling tower sludge. Construction includes a substation and a new 345kV transmission line that would use an existing right-of-way. Positive impacts include the annual generation of 5.2 billion kWh of baseload capacity and improvements in the state power pool's bulk supply system. The $18 million payroll of 635 workers would benefit the local economy. Negative impacts would be the loss of forest brush land, slight degradation of ambient water quality, and a minor depression of ground water. There would likely be some loss of fish population. The Federal Water Pollution Control Act of 1972 and Nuclear Regulatory Commission Licensing require the impact statement

  18. Operation of the Millstone Nuclear Power Station, Unit No. 3 (NRC Docket No. 50-423) Northeast Nuclear Energy Company et. al., Waterford, New London County, Connecticut

    International Nuclear Information System (INIS)

    1984-07-01

    A draft version of the environmental impact statement (EPA No. 840331D) concerns the proposal to issue an operating license for Unit 3 of the Millstone Nuclear Power Station on Connecticut. The plant would use a four-loop pressurized water reactor to produce up to 3579 MW of thermal energy and a calculated maximum electric output of 1209 MW of electric power. A new line would require clearing about 350 acres. Positive impacts include the addition of new capacity, which would benefit the area economically and employment opportunities. Negative impacts include the loss of some winter flounder, which would be minimized by a fish return system, and some increases in the concentration of chemical constituents that would enter Long Island Sound. Policies relating to coastal areas, water pollution, and reactor regulation provide a legal mandate for the impact statement

  19. Contamination movement around a permeable reactive barrier at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2009

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.; Conlon, Kevin J.

    2010-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound groundwater contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. In early 2004, groundwater contaminants began moving around the southern end of a permeable reactive barrier (PRB) installed by a consultant in December 2002. The PRB is a 130-foot-long and 3-foot-wide barrier consisting of varying amounts of zero-valent iron with or without sand mixture. Contamination moving around the PRB probably has been transported at least 75 feet downgradient from the PRB at a rate of about 15 to 29 feet per year.

  20. Safety evaluation report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444)

    International Nuclear Information System (INIS)

    1986-05-01

    This report is Supplement 4 to the Safety Evaluation Report (SER, NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hamphsire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  1. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414). Supplement 2

    International Nuclear Information System (INIS)

    1984-06-01

    This report supplements the Safety Evaluation Report (NUREG-0954) and Supplement 1 with respect to the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Membership Corporation, and Saluda River Electric Cooperative, Inc., as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos., 50-413 and 50-414, respectively). The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. This supplement provides more recent information regarding resolution or updating of some of the open and confirmatory issues and license conditions identified in the Safety Evaluation Report

  2. Safety evaluation report related to the operation of Seabrook Station, Units 1 and 2 (Docket Nos. 50-443 and 50-444)

    International Nuclear Information System (INIS)

    1987-10-01

    This report is Supplement No. 7 to the Safety Evaluation Report (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al. for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  3. Safety Evaluation Report related to the full-term operating license for Millstone Nuclear Power Station, Unit No. 1 (Docket No. 50-245)

    International Nuclear Information System (INIS)

    1985-10-01

    The Safety Evaluation Report for the full-term operating license application filed by the Connecticut Light and Power Company, the Hartford Electric Light Company, Western Massachusetts Electric Company and the Millstone Point Company [(now known as Connecticut Light and Power Company (CL and P) and Western Massachusetts Electric Company (WMECO) having authority to possess Millstone-1, 2, and 3, and the Northeast Nuclear Energy Company (NNECO) as the responsible entity for operation of the facilities)] for Millstone Nuclear Power Station Unit 1 has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in the town of Waterford, Connecticut. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can continue to be operated without endangering the health and safety of the public

  4. Technical evaluation report TMI action - NUREG-0737 (II.D.1) relief and safety valve testing for Clinton Power Station Unit 1. (Docket No. 50-461)

    International Nuclear Information System (INIS)

    Burr, T.K.; Magleby, H.L.

    1985-05-01

    Light water reactors operators have experienced a number of occurrences of improper performance by safety and relief valves installed in their primary coolant systems. Because of this, the authors of NUREG-0578 (TMI-2 Lessons Learned Task Force Status Report and Short-Term Recommendations) recommended that programs be developed and completed which would reevaluate the performance capabilities of BWR safety and relief valves. This report has examined the response of the Licensee for the Clinton Power Station, Unit 1 to the requirements of NUREG-0578 and subsequently NUREG-0737 and finds that the Licensee has provided an acceptable response, reconfirming that the General Design Criteria 14, 15 and 30 of Appendix A to 10 CFR-50 have been met

  5. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2. Docket Nos. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1983-03-01

    Supplement No. 3 to the Safety Evaluation Report (SER) related to the operation of the Comanche Peak Steam electric Station, Units 1 and 2, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. the facility is located in Somervell County, Texas. Subject to favorable resolution of the items identified in this supplement, the staff concludes that the facility can be operated by the applicatn without endangering the health and safety of the public. This document provides the NRC staff's evaluation of the outstanding and confirmatory issues that have been resolved since Supplement No. 2 was issued in January 1982, and addresses changes to the SER and its earlier supplements which have resulted from the receipt of additonal information from the applicant during the period of January throught October 1982

  6. Safety Evaluation report related to the operation of Braidwood Station, Units 1 and 2 (Docket Nos. STN 50-456 and STN 50-457)

    International Nuclear Information System (INIS)

    1987-07-01

    In November 1983, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1002) regarding the application filed by the Commonwealth Edison Company, as applicant and owner, for a license to operate Braidwood Station, Units 1 and 2 (Docket Nos. 50-456 and 50-457). The first supplement to NUREG-1002 was issued in September 1986; the second supplement to NUREG-1002 was issued in October 1986; the third supplement to NUREG-1002 was issued in May 1987. This fourth supplement to NUREG-1002 reports the status of certain items that remained unresolved at the time Supplement 3 was published. The facility is located in Reed Township, Will County, Illinois

  7. Safety-evaluation report related to the operation of Seabrook Station, Units 1 and 2. Docket Nos. 50-443 and 50-444

    International Nuclear Information System (INIS)

    1983-06-01

    This report is Supplement 2 to the Safety Evaluation Report (NUREG-0896, March 1983) for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission and provides recent information on open items identified in the SER. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  8. Safety evaluation report related to the operation of LaSalle County Station, Units 1 and 2, (Docket Nos. 50-373 and 50-374). Supplement No. 7

    International Nuclear Information System (INIS)

    1983-12-01

    Supplement No. 7 to the Safety Evaluation Report of Commonwealth Edison Company's application for a license to operate its La Salle County Station, Unit 2, located on Brookfield Township, La Salle County, Illinois, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement is to update our evaluations on Unit 2 issues identified in the previous Safety Evaluation Report and Supplements that need resolution prior to issuance of the operating license for Unit 2

  9. Final supplement to the final environmental statement related to operation of Three Mile Island Nuclear Station, Unit 2: (Docket No. 50-320)

    International Nuclear Information System (INIS)

    1976-12-01

    The proposed action is the continuation of construction permit CPPR-66 and the issuance of operating license to Metropolitan Edison Company, Jersey Central Power and Light Company, and the Pennsylvania Electric Company (the Applicants) for the operation of the Three Mile Island Nuclear Station, Unit 2, Docket No. 50-320, near Harrisburg in Dauphin County, Pennsylvania. The Three Mile Island Nuclear Station Unit Number 2 has a designed thermal rating of 2772 megawatts with a maximum electrical output of 959 megawatts. Two natural draft cooling towers are utilized for dissipating the waste heat from the closed cycle cooling system. Extension of TMINS-Bechtelsville 500 kV transmission line an additional 7.36 miles from Bechtelsville to Hosensack required acquisition of additional 175 foot wide right-of-way along an existing 150 foot wide 230 kV corridor. Construction of this line segment resulted in clearing of 21 acres of woodland, spanning over 134.5 acres of agricultural land and diverting of 0.4 acres from agriculture to use under tower bases. About 550 curies of radionuclides in liquid effluents (0.24 Ci/yr excluding tritium and 550 Ci/yr of tritium) will be released to the environment annually. Gaseous releases will be approximately 6700 Ci/yr of noble gases, 0.01 Ci/yr of iodine-131, 560 Ci/yr of tritium, 25 Ci/yr of argon-41, and 0.06 Ci/yr of particulates. No significant environmental impacts are anticipated from normal operational releases of radioactive materials. The calculated dose to the estimated year 1990 US population is less than 540 manrem/yr. This value is less than the natural fluctuation in the approximately 28,000,000 manrem/yr dose this population would receive from background radiation

  10. Critical evaluation of the nonradiological environmental technical specifications. Volume 3. Peach Bottom Atomic Power Station Units 2 and 3

    International Nuclear Information System (INIS)

    Adams, S.M.; Cunningham, P.A.; Gray, D.D.; Kumar, K.D.; Witten, A.J.

    1976-01-01

    A comprehensive study of the data collected as part of the environmental Technical Specifications program for Units 2 and 3 of the Peach Bottom Nuclear Power Plant was conducted for the Office of Regulatory Research of the U.S. Nuclear Regulatory Commission. The program included an analysis of both the hydrothermal and ecological monitoring data collected from 1967 through 1976. Specific recommendations are made for improving both the present hydrothermal and ecological monitoring programs. Hydrothermal monitoring would be improved by more complete reporting of in-plant operating parameters. In addition, the present boat surveys could be discontinued, and monitoring efforts could be directed toward expanding the present thermograph network. Ecological monitoring programs were judged to be of high quality because standardized collection techniques, consistent reporting formats, and statistical analyses were performed on all of the data and were presented in an annual report. Sampling for all trophic groups was adequate for the purposes of assessing power plant induced perturbations. Considering the extensive period of preoperational data (six years) and operational data (three years) available for analysis, consideration could be given to reducing monitoring effort after data have been collected for a period when both units are operating at full capacity. In this way, an assessment of the potential ecological impact of the Peach Bottom facility can be made under conditions of maximum plant induced perturbations

  11. Evaluation of severe accident risks and the potential for risk reduction: Surry Power Station, Unit 1: Draft report for comment

    International Nuclear Information System (INIS)

    Benjamin, A.S.; Boyd, G.J.; Kunsman, D.M.; Murfin, W.B.; Williams, D.C.

    1987-02-01

    The Severe Accident Risk Reduction Program (SARRP) has completed a rebaselining of the risks to the public from a particular pressurized water reactor with a subatmospheric containment (Surry, Unit 1). Emphasis was placed on determining the magnitude and character of the uncertainties, rather than focusing on a point estimate. The risk-reduction potential of a set of proposed safety option backfits was also studied, and their costs and benefits were also evaluated. It was found that the risks from internal events are generally lower than previously evaluated in the Reactor Safety Study (RSS). However, certain unresolved issues (such as direct containment heating) caused the top of the uncertainty band to appear at a level that is comparable with the RSS point estimate. None of the postulated safety options appears to be cost effective for the Surry power plant. This work supports the Nuclear Regulatory Commission's assessment of severe accidents in NUREG-1150

  12. Evaluation of severe accident risks and the potential for risk reduction: Surry Power Station, Unit 1: Draft report for comment

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, A.S.; Boyd, G.J.; Kunsman, D.M.; Murfin, W.B.; Williams, D.C.

    1987-02-01

    The Severe Accident Risk Reduction Program (SARRP) has completed a rebaselining of the risks to the public from a particular pressurized water reactor with a subatmospheric containment (Surry, Unit 1). Emphasis was placed on determining the magnitude and character of the uncertainties, rather than focusing on a point estimate. The risk-reduction potential of a set of proposed safety option backfits was also studied, and their costs and benefits were also evaluated. It was found that the risks from internal events are generally lower than previously evaluated in the Reactor Safety Study (RSS). However, certain unresolved issues (such as direct containment heating) caused the top of the uncertainty band to appear at a level that is comparable with the RSS point estimate. None of the postulated safety options appears to be cost effective for the Surry power plant. This work supports the Nuclear Regulatory Commission's assessment of severe accidents in NUREG-1150.

  13. Final environmental statement for William B. McGuire Nuclear Station, Units 1 and 2: (Docket Nos. 50-369 and 50-370)

    International Nuclear Information System (INIS)

    1976-04-01

    The proposed action is the issuance of operating licenses to the Duke Power Company for the startup and operation of the William B. McGuire Nuclear Station, Units 1 and 2 (the plant) located on the Lake Norman in Mecklenburg County, 17 miles north-northwest of Charlotte, North Carolina. The units will be cooled by once-through flow of water from Lake Norman. Two units, each with a net electrical capacity of 1180 MWe will be added to the resources of the Duke Power Company. This will have a favorable effect on reserve margins and provide a cost savings of $77 to $122 million in production costs in 1979 if the units come on line as scheduled, and cost savings in subsequent years. Approximately 200 acres of rural, partially wooded land owned by the applicant will be unavailable for other uses during the 40-year life of the plant. Approximately 61.6 acres of additional land will be utilized for transmission line corridors and/or switchyard and maintained under controlled conditions. Land-use patterns will necessarily conform to the needs of the application but will not be changed significantly from present usage. At full power, condenser cooling water could be heated to as high as 96/degree/F (35.6/degree/C) as a monthly average and will be discharged at a rate of up to 4492 cfs. The temperature rise of the water will be 16/degree/F (8.8/degree/C) to 32/degree/F (17.8/degree/C) above ambient. The heated water will mix with the cooler water of Lake Norman, where the heat will be dissipated to the atmosphere. The increase in temperature will cause a loss of approximately 31 cfs of water as a result of increased evaporation. 26 figs., 46 tabs

  14. Hydrologic Drivers of Soil Organic Carbon Erosion and Burial: Insights from a Spatially-explicit Model of a Degraded Landscape at the Calhoun Critical Zone Observatory

    Science.gov (United States)

    Dialynas, Y. G.; Bras, R. L.; Richter, D. D., Jr.

    2017-12-01

    Soil erosion and burial of organic material may constitute a substantial sink of atmospheric CO2. Attempts to quantify impacts of soil erosion on the soil-atmosphere C exchange are limited by difficulties in accounting for the fate of eroded soil organic carbon (SOC), a key factor in estimating of the net effect of erosion on the C cycle. Processes that transport SOC are still inadequately represented in terrestrial carbon (C) cycle models. This study investigates hydrologic controls on SOC redistribution across the landscape focusing on dynamic feedbacks between watershed hydrology, soil erosional processes, and SOC burial. We use tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially-explicit model of SOC dynamics coupled with a physically-based hydro-geomorphic model. tRIBS-ECO systematically accounts for the fate of eroded SOC across the watershed: Rainsplash erosion and sheet erosion redistribute SOC from upland sites to depositional environments, altering depth-dependent soil biogeochemical properties in diverse soil profiles. Eroded organic material is transferred with sediment and can be partially oxidized upon transport, or preserved from decomposition by burial. The model was applied in the Calhoun Critical Zone Observatory (CZO), a site that is recovering from some of the most serious agricultural erosion in North America. Soil biogeochemical characteristics at multiple soil horizons were used to initialize the model and test performance. Remotely sensed soil moisture data (NASA SMAP) were used for model calibration. Results show significant rates of hydrologically-induced burial of SOC at the Calhoun CZO. We find that organic material at upland eroding soil profiles is largely mobilized by rainsplash erosion. Sheet erosion mainly drives C transport in lower elevation clayey soils. While SOC erosion and deposition rates declined with recent reforestation at the study site, the

  15. HYDROLOGY, CALHOUN COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  16. : Entretien avec Graig CALHOUN

    OpenAIRE

    CALHOUN, Craig; De Pablo, Elisabeth; STOCKINGER, Peter; Legrand, Valérie; Sylvestre, Isabelle; BASTIN, Louis

    2011-01-01

    Confronting upheavals in the global economy, the prominence of global political conflicts, the global risks created by environmental damage, and the new connections forged through global media and migrations, many recognize the need for renewal of social solidarity. How do we imagine cohabitation and ideally cooperation on large-scales, at long distances, and with deep differences? This question is pressed on us by our embeddedness in impersonal systems like the global economy, the prominence...

  17. HYDROLOGY, CALHOUN COUNTY, MICHIGAN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. Preparative engineering on the Tomari Nuclear Power Station Unit 3. In-site measurement on wave pressure working to new type bank protection

    International Nuclear Information System (INIS)

    Matsumoto, Yoriaki; Hoshi, Hideki; Amano, Hideki

    2003-01-01

    The Tomari Nuclear Power Station Unit 3 is planned to construct it at sea-side area adjacent to southern-east portion of Unit 1 and 2, and has been carried out its preparative engineerings such as bank protection with about 670 m in length, its development, and so on, corresponding to it. Among them, as type of landfill for protection of important construction at its background the Amahata covered-block type bank protection developed by a series of hydrologic tests was adopted. This engineering was begun on March, 2001, and most of establishment on the landfill bank protection was finished on June, 2003. Then, an in-situ measurement aiming to obtain actual testing data and so on of wave pressure at this type of bank protection, was planned, to carry out its measurement at winter (October, 2002 to February, 2003) showing the highest wave at this sea area. Here were reported on relationship between incident wave and wave pressure feature working at new type bank protection together with describing on outlines of the in-situ measurement. (G.K.)

  19. Integrated-plant-safety assessment Systematic Evaluation Program. Dresden Nuclear Power Station, Unit 2, Commonwealth Edison Company, Docket No. 50-237

    International Nuclear Information System (INIS)

    1982-10-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues; (2) a basis for deciding on how these differences should be resolved in an integrated plant review; and (3) a documented evaluation of plant safety. This report documents the review of Dresden Nuclear Generating Station, Unit 2 owned and operated by the Commonwealth Edison Company and located in Grundy County, Illinois. Dresden Unit 2 is one of ten plants reviewed under Phase II of this program, which indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. It is expected that this report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license

  20. Containment event analysis for postulated severe accidents: Peach Bottom Atomic Power Station, Unit 2. Draft report for comment

    Energy Technology Data Exchange (ETDEWEB)

    Amos, C N [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States); Griesmeyer, J M [Sandia National Laboratories, Albuquerque, NM (United States); Kolaczkowski, A M [Science Applications International Corporation, Albuquerque, NM (United States)

    1987-05-01

    A study has been performed as part of the Severe Accident Risk Reduction Program (SARRP) to investigate the response of a particular boiling water reactor with a Mark I containment (Peach Bottom Unit 2) to postulated severe accidents. A detailed containment event tree for the Peach Bottom plant has been developed to describe the various possible accident pathways that can lead to radioactive releases from containment. Data and analyses from a large number of NRC and industry-sponsored programs have been reviewed and used as a basis for quantifying the event tree, i.e., determining the likelihood of the pathways at each branch point for a variety of accident sequence initiators. A generalized containment event tree code, called EVNTRE, has been developed to facilitate the quantification. The uncertainty in the results has been examined by performing the quantification three times, using a different set of input each time to represent the variation of opinion in the reactor safety community. In the so-called 'central' estimate, the likelihood of early containment failure (occurring before or within a short time after reactor vessel breach) was found to be significant because of the possible occurrence of the following phenomena that can threaten containment integrity: (1) meltthrough of the drywell shell caused by thermal attack from core debris, and (2) drywell overpressurization caused by rapid depressurization of the reactor vessel in combination with other events such as direct heating. However, uncertainties surrounding these issues could cause the early failure likelihood to be significantly lower than in the central estimate. This work supports NRC's assessment of severe accident risks to be published in NUREG-1150. (author)

  1. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 19 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the Texas Utilities Electric Company's (lead applicant's) corrective action program (CAP) related to equipment qualification. The scope and methodology for the CAP workscope, as summarized in Revision 0 to the Equipment Qualification Project Status Report and as detailed in related documents, were developed to resolve various issues raised by the Comanche Peak Response Team (CPRT) and the NRC staff to ensure that plant equipment is appropriately environmentally and/or seismically and dynamically qualified and documented in accordance with the validated plant design resulting from other CAP scopes of work for Unit 1 and areas common to Units 1 and 2. The staff concludes that the CAP workscope for equipment qualification provides a comprehensive program for resolving the concerns identified by the CPRT and the NRC staff, including issues raised in the Comanche Peak Safety Evaluation Report and its supplements, and its implementation will ensure that the environmental and/or seismic and dynamic qualification of equipment at CPSES satisfies the validated plant design and the applicable requirements of 10 CFR Part 50. As is routine staff practice, the NRC staff will verify the adequacy of implementation of the environmental and seismic and dynamic equipment qualification program at CPSES during inspections that will take place before fuel loading. 97 refs

  2. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    International Nuclear Information System (INIS)

    2000-01-01

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the

  3. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    2000-06-09

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve

  4. Technical specifications, Braidwood Station Unit Nos. 1 and 2 (Docket Nos. STN 50-456 and STN 50-457): Appendix ''A'' to License No. NPF-72, [October 1986-July 1987

    International Nuclear Information System (INIS)

    1987-07-01

    The Braidwood Station, Units 1 and 2, technical specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear reactor facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public

  5. Systematic evaluation program review of NRC safety topic VII-2 associated with the electrical, instrumentation and control portions of the ESF system control logic and design for the Dresden Station, Unit II nuclear power plant

    International Nuclear Information System (INIS)

    St Leger-Barter, G.

    1980-11-01

    This report documents the technical evaluation and review of NRC Safety Topic VII-2, associated with the electrical, instrumentation, and control portions of the ESF system control logic and design for the Dresden Station Unit II nuclear power plant, using current licensing criteria

  6. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: Docket Nos. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1988-07-01

    Supplement 15 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicant's Corrective Action Program (CAP) related to the design of cable trays and cable tray hangers. The scope and methodologies for the CAP workscope as summarized in Revision O to the cable tray and cable tray hanger project status report and as detailed in related documents referenced in this evaluation were developed to resolve various design issues raised by the Atomic Safety and Licensing Board (ASLB) the intervenor, Citizens Association for Sound Energy (CASE); the Comanche Peak Response Team (CPRT); CYGNA Energy Services (CYGNA); and the NRC staff. The NRC staff concludes that the CAP workscope for cable trays and cable tray hangers provides a comprehensive program for resolving the associated technical concerns identified by the ASLB, CASE, CPRT, CYGNA, and the NRC staff and its implementation ensures that the design of cable trays and cable tray hangers at CPSES satisfies the applicable requirements of 10 CFR Part 50

  7. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 18 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicant's Corrective Action Program (CAP) related to the structural design of the heating, ventilation, and air conditioning (HVAC) systems. The scope and methodologies for the CAP workscope as summarized in Revision 0 to the HVAC project status report and as detailed in related documents referenced in this evaluation were developed to resolve the technical concerns identified in the HVAC area. The NRC staff concludes that the CAP workscope for the HVAC structural design provides a comprehensive program for resolving the associated technical concerns and its implementation ensures that the structural design of the HVAC systems at CPSES satisfies the applicable requirements of 10 CFR Part 50. 32 refs

  8. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1990-01-01

    Supplement 22 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station, Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved at the time of publication of the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, and 21 to that report. This supplement also includes the evaluations for licensing items resolved since Supplement 21 was issued. Supplement 5 has been cancelled. Supplements 7 through 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 presented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to the applicant. Supplements 14 through 20 presented the staff's evaluation of the applicant's Corrective Action Program and CPRT activities. Items identified in Supplements 7, 8, 9, 10, 11, 13, 14, and 15 through 20 are not included in this supplement, except to the extent that they affect the applicant's Final Safety Analysis Report. 154 refs., 24 figs., 8 tabs

  9. Technical evaluation report on the seven main transformer failures at the North Anna Power Station, Units 1 and 2 (Docket Nos. 50-338, 50-339)

    International Nuclear Information System (INIS)

    Dalton, K.J.; Kresser, J.V.; Savage, J.W.; Selan, J.C.

    1984-01-01

    This report documents technical evaluations on various aspects pertaining to the seven main transformer failures at the North Anna Power Station, Units 1 and 2. These reports cover the subjects of Probability Risk Assessment (PRA), Failure Modes and Effects Analysis (FMEA), Root Causes, Protection Systems, Modifications, Failure Statistics, and Generic Aspects. The PRA determined that the contribution from a main transformer failure affecting plant safety systems so as to increase the risk to the public health and safety is negligible. The FMEA determined that a main transformer failure can have primary and secondary effects on plant safety system operation. The evaluation of the Root Causes found that no single common cause contributed to the seven failures. Each failure was found to have specific circumstances for initiating the failure. Both the generator and transformer primary protection systems were found to perform correctly and were designed within industry standards and practices. The proposed modifications resulting from the analyses of the failures will improve system reliability and integrity, and will reduce potentially damaging effects. The failure statistic survey found very limited data bases from which a meaningful correlation could be ascertained. The statistical comparison found no appreciable anomalies with the NAPS failures. The evaluation of all the available information and the results of the separate reports on the main transformer failures found that several generic concerns exist

  10. Integrated plant safety assessment: Systematic Evaluation Program, San Onofre Nuclear Generating Station, Unit 1 (Docket No. 50-206): Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues; (2) a basis for deciding on how these differences should be resolved in an integrated plant review; and (3) a documented evaluation of plant safety. This report documents the review of San Onofre Nuclear Generating Station, Unit 1, operated by Southern California Edison Company. The San Onofre plant is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review. This report will be one of the bases in considering the issuance of a full-term operating license in place of the existing provisional operating license. This report also addresses the comments and recommendations made by the Advisory Committee on Reactor Safeguards in connection with its review of the draft report issued in April 1985

  11. Marble Hill Nuclear Generating Station, Units 1 and 2: Final environmental statement (Docket Nos. STN 50-546 and STN 50-547)

    International Nuclear Information System (INIS)

    1976-09-01

    The proposed action is the issuance of construction permits to the Public Service Company of Indiana, Inc., Northern Indiana Public Service Company, Inc., East Kentucky Power Cooperative, Inc., and Wabash Valley Power Association for the construction of the Marble Hill Nuclear Generating Station, Units 1 and 2 (MH 1and2). The 987-acre site is predominately forest and cropland. Construction-related activities on the site would disturb about 250 acres. The portion of this land not be used for the plant facilities, parking lots, roads, etc., will be restored by seeding and landscaping. The temporary removal of vegetation will tend to promote erosion. Increased siltation and turbidity can be expected in local streams during construction, but measures will be taken to minimize these effects. A maximum of 69 cfs of cooling water will be withdrawn from the Ohio River of which cfs will be returned to the river via pipeline with the dissolved solids concentration increased by a factor of about 6. About cfs will be evaporated to the atmosphere by the cooling towers. The volume of discharge (9 cfs) is very small compared with the river flow (annual mean is about 110,000 cfs) and the thermal effect on the river ecosystem is not expected to be significant. Chemical discharges from the plant will be diluted to concentrations below those which might adversely affect aquatic biota. The risk associated with accidental radiation exposure will be very low. 43 figs., 115 tabs

  12. A pilot application of risk-informed methods to establish inservice inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station. Revision 1

    International Nuclear Information System (INIS)

    Vo, T.V.; Phan, H.K.; Gore, B.F.; Simonen, F.A.; Doctor, S.R.

    1997-02-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest National Laboratory has developed risk-informed approaches for inservice inspection plans of nuclear power plants. This method uses probabilistic risk assessment (PRA) results to identify and prioritize the most risk-important components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot application of this methodology. This report, which incorporates more recent plant-specific information and improved risk-informed methodology and tools, is Revision 1 of the earlier report (NUREG/CR-6181). The methodology discussed in the original report is no longer current and a preferred methodology is presented in this Revision. This report, NUREG/CR-6181, Rev. 1, therefore supersedes the earlier NUREG/CR-6181 published in August 1994. The specific systems addressed in this report are the auxiliary feedwater, the low-pressure injection, and the reactor coolant systems. The results provide a risk-informed ranking of components within these systems

  13. Draft environmental statement related to the proposed Jamesport Nuclear Power Station, Units 1 and 2: (Docket Nos. STN-50-516 and STN-50-517)

    International Nuclear Information System (INIS)

    1975-02-01

    The proposed action is the issuance of construction permits to the Long Island Lighting Company for the construction of the Jamesport Nuclear Power Station, Units 1 and 2, located on Long Island Sound in the Town of Riverhead, New York. Operation of the proposed once-through cooling system will result in the heating of 4180 cfs of water by 18/degree/F. Phytoplankton, zooplankton, and ichthyoplankton will be entrained by the cooling system. The organisms in approximately 40 /times/ 10 9 ft 3 of water per year will suffer direct mortality due to chlorination and heat shock. The risk associated with accidental radiation exposure will be very low. A bottom area of some 105.5 acres will be affected by dredging and jetty construction. Of this total, 4.35 acres will be permanently replaced by jetties, and 101.15 acres will be temporarily (a total of four years) disrupted by dredging. This impact will be temporary, since the dredged areas will be recolonized by the benthic community upon completion of work. There is a potential for substantial impingement loss of fishes on the intake screens which will require additional data to quantify. Approximately 39 miles of transmission lines will be constructed. Ninety-two percent of the total routings utilize existing rights-of-way, railroad rights-of-way, or new rights-of-way immediately adjacent to railroad rights-of-way. The rights-of-way will require approximately 621 acres. 65 refs., 64 tabs

  14. Investigation of Contaminated Ground Water at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2006-2007

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2008-01-01

    The U.S. Geological Survey investigated natural and engineered remediation of chlorinated volatile organic compound (VOC) ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. The primary contaminants of interest in the study are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. The permeable reactive barrier (PRB) along the main axis of the contaminant plume appears to be actively removing contamination. In contrast to the central area of the PRB, the data from the southern end of the PRB indicate that contaminants are moving around the PRB. Concentrations in wells 12MW-10S and 12MW-03S, upgradient from the PRB, showed a general decrease in VOC concentrations. VOC concentrations in some wells in the forest showed a sharp increase, followed by a decrease. In 2007, the VOC concentrations began to increase in well 12MW-12S, downgradient from the PRB and thought to be unaffected by the PRB. The VOC-concentration changes in the forest, such as at well 12MW-12S, may represent lateral shifting of the plume in response to changes in ground-water-flow direction or may represent movement of a contamination pulse through the forest.

  15. A pilot application of risk-based methods to establish in-service inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station

    International Nuclear Information System (INIS)

    Vo, T.; Gore, B.; Simonen, F.; Doctor, S.

    1994-08-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest Laboratory is developing a method that uses risk-based approaches to establish in-service inspection plans for nuclear power plant components. This method uses probabilistic risk assessment (PRA) results and Failure Modes and Effects Analysis (FEMA) techniques to identify and prioritize the most risk-important systems and components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot applications of this method. The specific systems addressed in this report are the reactor pressure vessel, the reactor coolant, the low-pressure injection, and the auxiliary feedwater. The results provide a risk-based ranking of components within these systems and relate the target risk to target failure probability values for individual components. These results will be used to guide the development of improved inspection plans for nuclear power plants. To develop inspection plans, the acceptable level of risk from structural failure for important systems and components will be apportioned as a small fraction (i.e., 5%) of the total PRA-estimated risk for core damage. This process will determine target (acceptable) risk and target failure probability values for individual components. Inspection requirements will be set at levels to assure that acceptable failure probabilistics are maintained

  16. Safety Evaluation Report related to the operation of Nine Mile Point Nuclear Station, Unit No. 2 (Docket No. 50-410). Supplement No. 4

    International Nuclear Information System (INIS)

    1986-09-01

    This report supplements the Safety Evaluation Report (NUREG-1047, February 1985) for the application filed by Niagara Mohawk Power Corporation, as applicant and co-owner, for a license to operate Nine Mile Point Nuclear Station, Unit 2 (Docket No. 50-410). It has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located near Oswego, New York. Supplement 1 to the Safety Evaluation Report was published in June 1985, and contained the report from the Advisory Committee on Reactor Safeguards as well as the resolution of a number of outstanding issues from the Safety Evaluation Report. Supplement 2 was published in November 1985, and contained the resolution of a number of outstanding and confirmatory issues. Supplement 3 was published in July 1986, and contained the resolution of a number of outstanding and confirmatory items, one new confirmatory item, the evaluation of the Engineering Assurance Program, and evaluation of a number of exemption requests

  17. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1988-03-01

    Supplement 14 to the Safety Evaluation Report related to the operation of the Comanche Peak Stam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somerville County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of the applicants' Corrective Action Program (CAP0 related to large ans small bore piping and pipe supports. The scope and methodologies for CAP workshop as summarized in revision O to the large and small bore piping project status reports and as detailed in related documents referenced in this evaluation were developed to resolve various design issues raised by the Atomic Safety and Licensing Board (ASLB);the intervenor, Citizens Association for Sound Energy (CASE);the Camanche Peak Response Team (CPRT);SYGNA Energy Services (CYGNA);and the NRC staff. The NRC staff concludes that the CAP workscopes for large and small bore piping provide a comprehensive program for resolving the associated technical concerns identified by the ASLB, CASE, CPRT, CYGNA, and the NRC staff and their implementation ensures that the design of large and small bore piping and pipe supports at CPSES satisfies the applicable requirements of 10 CFR 50

  18. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2: Docket No. 50-445 and 50-446

    International Nuclear Information System (INIS)

    1988-11-01

    Supplement 20 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Special Projects of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement presents the staff's evaluation of CPRT implementation of the Comanche Peak Response Team (CPRT) Program Plan and the issue-specific action plans (ISAPs), as well as the CPRT's investigations to determine the adequacy of various types of programs and hardware at CPSES. The results and conclusions of the CPRT activities are documented in a results report for each ISAP, a Collective Evaluation Report (CER), and a Collective Significance Report (CSR). This supplement also presents the staff's safety evaluation of TU Electric's root cause assessment of past CPSES design deficiencies and weaknesses. The NRC staff concludes that the CPRT has adequately implemented its investigative activities related to the design, construction, construction quality assurance/quality control, and testing at CPSES. The NRC staff further concludes that the CPRT evaluation of the results of its investigation is thorough and complete and its recommendations for corrective actions are sufficient to resolve identified deficiencies

  19. Amtrak Stations

    Data.gov (United States)

    Department of Homeland Security — Updated database of the Federal Railroad Administration's (FRA) Amtrak Station database. This database is a geographic data set containing Amtrak intercity railroad...

  20. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic

  1. Technical evaluation report on the adequacy of station electric distribution system voltages for the Point Beach Nuclear Plant, Units 1 and 2. (Docket Nos. 50-266, 50-301)

    International Nuclear Information System (INIS)

    White, R.L.

    1983-01-01

    This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Point Beach Nuclear Plant, Units 1 and 2. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. For the worst case conditions study submitted by the licensee, it was shown that the station electric distribution system voltages would be adequate to start and operate 4160-volt and 480-volt Class 1E loads and their associated low voltage controls

  2. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1990-02-01

    Supplement 23 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and supplements 1, 2, 3, 4, 6, 12, 21, and 22 to that report were published. This supplement also includes the evaluations for licensing items resolved since Supplement 22 was issued. Supplement 5 has not been issued. Supplements 7, 8, 9, 10, and 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 presented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to TU Electric. Supplements 14 through 19 presented the staff's evaluation of the CPSES Corrective Action Program: large- and small-bore piping and pipe supports (Supplement 14); cable trays and cable tray hangers (Supplement 15); conduit supports (Supplement 16); mechanical, civil/structural, electrical, instrumentation and controls, and systems portions of the heating, ventilation, and air conditioning (HVAC) system workscopes (Supplement 17); HVAC structural design (Supplement 18); and equipment qualification (Supplement 19). Supplement 20 presented the staff's evaluation of the Comanche Peak Response Team implementation of the CPRT Program

  3. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446)

    International Nuclear Information System (INIS)

    1990-04-01

    Supplement 24 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, 12, 21, 22, and 23 to that report were published. This supplement also includes the evaluations for licensing items resolved since Supplement 23 was issued. Supplement 5 has not been issued. Supplements 7, 8, 9, 10, and 11 were limited to the staff evaluation of allegations investigated by the NRC Technical Review Team. Supplement 13 represented the staff's evaluation of the Comanche Peak Response Team (CPRT) Program Plan, which was formulated by the applicant to resolve various construction and design issues raised by sources external to TU Electric. Supplements 14 through 19 presented the staff's evaluation of the CPSES Corrective Action Program: large- and small-bore piping and pipe supports (Supplement 14); cable trays and cable tray hangers (Supplement 15); conduit supports (Supplement 16); mechanical, civil/structural, electrical, instrumentation and controls, and systems portions of the heating, ventilation, and air conditioning (HVAC) system workscopes (Supplement 17); HVAC structural design (Supplement 18); and equipment qualification (Supplement 19). Supplement 20 presented the staff's evaluation of the CPRT implementation of its Program Plan and the issue-specific action plans, as well as the CPRT's investigations to determine the adequacy of various types of programs and hardware at CPSES

  4. Effect of the californian red worm (Eisenia foetida during the composteo and vermicomposteo in properties of the Experimental Station of the Academic Rural Unit Carmen Pampa

    Directory of Open Access Journals (Sweden)

    Paco Gabriel

    2011-08-01

    Full Text Available The objective of the present work was to evaluate the biotransformación of the organic residuals, of kitchen (Rc remains, pulp of coffee (Pc and cardboard (C by means of compostaje methods and vermicompostaje. The investigation was taken I end up in the Experimental Station, module of lombricultura of the Career of Agronomic Engineering of Carmen Pampa Unit Academic Campesina, located in the community of Carmen Pampa of the Municipality of Coroico Department of La Paz, Bolivia. The used design was totally at random with 3 treatments and 3 repetitions, to compare among obtaining methods in quality it used the test of fixed effects and it stops quantity the test "t" of Student. The quantity of initial sustrato studied in compostaje was of 1m3 and 0,02m3 vermicompostaje ending up culminating the investigation in 120 days. The results in decomposition are obtained in smaller time by means of the method vermicompostaje in Pc in advance of three months of 98.33% continued by C and Rc; while in compostaje it was the treatment with Rc of 3 months with 3 weeks with 90.40% of decomposition, continued by Pc and C. In quantity, starting from 1m3 of initial sustrato bigger bioabono was obtained with Pc 271.62 kg, 465.83 kg, Rc 249.71 kg, 446.00 kg and C 212.48 kg, 404.00 kg, in compost and vermicompost respectively. The chemical composition of the bioabonos of Rc, Pc, C in N and P is tipificados like first floor, high K, Ca in low compost and half vermicompost, half Mg, MO under and lightly alkaline pH to neuter in the two obtaining methods.

  5. Efforts to Reduce International Space Station Crew Maintenance Time in the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    Science.gov (United States)

    Etter,David; Rector, Tony; Boyle, robert; Zande, Chris Vande

    2012-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR - Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post- Shuttle 6-year service life.

  6. The analysis of the cases of circulatory and respiratory arrest in the work of the Regional Unit of Ambulance Service - Sródmieście Station.

    Science.gov (United States)

    Chemperek, Ewa; Mikuła, Agnieszka; Goniewicz, Mariusz; Krawczyk, Wojciech

    2004-01-01

    The major causes of deaths all over the world are circulatory system diseases, neoplasms and injuries. Each man can become a participant of the event which results in life-threatening emergencies and the most immediate possible actions are essential. The period of time for starting efficient life-restoration actions is very short, estimated at 4-5 minutes. Ambulance Service is a medical organization created to apply aid in life-threatening emergencies. The standards of the developed western countries determine the arrival time at 7-10 minutes from the call time. Both first-aid applied by the accident witnesses and efficient actions of ambulance service have significance for effective pre-hospital aid and increasing the chances of survival of people in need. The study analysed emergency records of the ambulance cars of the Regional Unit of Ambulance Service - Sródmieście Station in Lublin in the year 2000. 3,723 calls were recorded. In 142 cases complete resuscitation actions were carried out due to circulatory and respiratory arrest. The records selected this way went through a detailed analysis. In 3.8% of the interventions of emergency teams the necessity of applying advanced life support was observed. The time of arrival at the scene, transport of the patient to the admission room as well as efficiency of resuscitation comply with the European standards. The efficiency of resuscitation actions estimated at 51.4% depended on the age of the patient, the cause of circulatory and respiratory arrest and ambulance arrival time. Taking up basic life support by witnesses of the event was observed in 2.8% of cases, in 8.5% aid was applied by the medical staff members who happened to be at the scene.

  7. Final environmental statement related to the proposed construction of Douglas Point Nuclear Generating Station, Units 1 and 2: (Docket Nos. 50-448 and 50-449)

    International Nuclear Information System (INIS)

    1976-03-01

    The proposed action is the issuance of construction permits to the Potomac Electric Power Company for the construction of the Douglas Point Nuclear Generating Station, Units 1 and 2, located in Charles County, Maryland. The exhaust steam will be cooled via a closed-cycle mode incorporating natural-draft wet cooling towers. The water used in the cooling system will be obtained from the Potomac River. Construction-related activities on the site will convert about 290 acres of the 1390 acres of forested land at the Douglas Point site to industrial use. In addition to acreage at the site, approximately 4.5 miles of transmission corridor will require about 211 acres of land for rights-of-way. This corridor will connect with 27 miles of existing rights-of-way over which a line connecting Possum Point to Burches Hill has already been approved. The installation of new transmission line, uniquely identified with Douglas Point, along the existing right-of-way will involve approximately 464 additional acres. As described in the application, the maximum river water intake will be about 97,200 gpm. Of this, a maximum of about 28,000 gpm will be lost in drift or evaporation from the cooling towers. About 700 gpm maximum of fresh well water will be consumed. It is conservatively assumed that all aquatic organisms entrained in the service water system will be killed due to thermal and mechanical shock. It is further estimated that at 97,200 gpm maximum total river water intake, the maximum impact on the striped bass fishery will be a reduction of <5%. The risk associated with accidental radiation exposure is very low. 32 figs., 59 tabs

  8. Palo Verde Nuclear Generating Station, Units 1, 2 and 3 (Docket Nos. STN 50-528, STN 50-529 and STN 50-530): Draft supplement to the Final environmental satement

    International Nuclear Information System (INIS)

    1975-11-01

    The proposed action is the issuance of construction permits to the Arizona Public Service Company for the construction of the Palo Verde Nuclear Generating Station, Units 1, 2, and 3. Preparation of the 3800-acre site will involve the clearing of up to 2500 acres of land, 1500 of which will be permanently devoted to station facilities. An additional 1200- to 1300-acre evaporation pond will ultimately be developed during the lifetime of the station. About 2200 site acres, previously devoted to agriculture, will be excluded from this land use. Soil disturbance during construction of the station, transmission lines, and water conveyance pipeline will tend to promote erosion and increase siltation in local ephemeral water courses. Stringent measures will be taken to minimize these effects. Station, transmission line, and water pipeline construction will kill, remove, displace, or otherwise disturb involved flora and fauna, and will eliminate varying amounts of wildlife breeding, nesting, and forage habitat. These will not be important permanent impacts to the population stability and structure of the involved local ecosystems of the Sonoran desert; however, measures will be taken to minimize such effects as do result from the proposed action. The pumping of groundwater will cause a local drawdown of about 1 ft/yr, less than that currently occurring; hence, the impact is considered acceptable. 1 fig., 20 tabs

  9. Balloon launching station, Mildura, Victoria

    International Nuclear Information System (INIS)

    The Mildura Balloon Launching Station was established in 1960 by the Department of Supply (now the Department of Manufacturing Industry) on behalf of the United States Atomic Energy Commission (USAEC) to determine the content of radioactive material in the upper atmosphere over Australia. The Station location and layout, staffing, balloon launching equipment, launching, tracking and recovery are described. (R.L.)

  10. Draft Environmental Statement related to the operation of Seabrook Station, Units 1 and 2. Docket Nos. 50-443 and 50-444, Public Service Company of New Hampshire, et al

    International Nuclear Information System (INIS)

    1982-05-01

    This Draft Environmental Statement contains the second assessment of the environmental impact associated with the operation of the Seabrook Station, Units 1 and 2 pursuant to the National Environmental Policy Act of 1969 (NEPA) and 10 CFR 51, as amended, of the NRC regulations. This statement examines: the effected environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial and aquatic-ecological impacts will be small. Operational impacts to historic and archeological sites will be negligible. The effects of routine operations, energy transmission, and periodic maintenance of rights-of-way and transmission facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk associated with accidental radiation exposure is very low. The net socioeconomic effects of the project will be beneficial. The action called for is the issuance of an operating license for Seabrook Station, Units 1 and 2

  11. Station Capacity

    DEFF Research Database (Denmark)

    Landex, Alex

    2011-01-01

    the probability of conflicts and the minimum headway times into account. The last method analyzes how optimal platform tracks are used by examining the arrival and departure pattern of the trains. The developed methods can either be used separately to analyze specific characteristics of the capacity of a station......Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore...... for platform tracks and the probability that arriving trains will not get a platform track immediately at arrival. The third method is a scalable method that analyzes the conflicts in the switch zone(s). In its simplest stage, the method just analyzes the track layout while the more advanced stages also take...

  12. Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress May 15, 1987

    Science.gov (United States)

    1987-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fourth in a series of progress updates and covers the period October 1, 1986 to May 15, 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.

  13. Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1986

    Science.gov (United States)

    1986-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committer (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the third in a series of progress updates and covers the period between April 1, 1986 and September 30, 1986. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulater affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station.

  14. Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1987

    Science.gov (United States)

    1987-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy.

  15. Final supplement to the final environmental statement related to construction of Palo Verde Nuclear Generating Station Units 1, 2 and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530)

    International Nuclear Information System (INIS)

    1976-02-01

    The proposed action is the issuance of construction permits to the Arizona Public Service Company for the construction of the Palo Verde Nuclear Generating Station, Units 1, 2, and 3. Preparation of the 3800-acre site will involve the clearing of up to 2500 acres of land, 1500 of which will ultimately be developed during the lifetime of the station. About 2200 site acres, previously devoted to agriculture, will be excluded from this land use. Soil disturbance during construction of the station, transmission lines, and water conveyance pipeline will tend to promote erosion and increase siltation local ephemeral water courses. Stringent measures will be taken to minimize these effects (Sec. 4.5). Station, transmission line, and water pipeline construction will kill, remove, displace, or otherwise disturb involved flora and fauna, and will eliminate varying amounts of wildlife breeding, nesting, and forage habitat. These will not be important permanent impacts to the population stability and structure of the involved local ecosystems of the Sonoran desert; however, measures will be taken to minimize such effects as do results from the proposed action. 26 refs., 1 fig., 20 tabs

  16. Technical evaluation of the electrical, instrumentation, and control design aspects of the override of containment purge valve isolation and other engineered safety feature signals for the Fort Calhoun Nuclear Power Plant

    International Nuclear Information System (INIS)

    Hackett, D.B.

    1980-01-01

    This report documents the technical evaluation of the electrical, instrumentation, and control design aspects of the override of containment purge valve isolation and other engineered safety feature signals for the Fort Calhoun nuclear power plant. The review criteria are based on IEEE Std-279-1971 requirements for the safety signals to all purge and ventilation isolation valves. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Program being conducted for the US Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  17. The role of vegetation on gully erosion stabilization at a severely degraded landscape: A case study from Calhoun Experimental Critical Zone Observatory

    Science.gov (United States)

    Bastola, S.; Dialynas, Y. G.; Bras, R. L.; Noto, L. V.; Istanbulluoglu, E.

    2018-05-01

    Gully erosion was evidence of land degradation in the southern Piedmont, site of the Calhoun Critical Zone Observatory (CCZO), during the cotton farming era. Understanding of the underlying gully erosion processes is essential to develop gully erosion models that could be useful in assessing the effectiveness of remedial and soil erosion control measures such as gully backfilling, revegetation, and terracing. Development and validation of process-based gully erosion models is difficult because observations of the formation and progression of gullies are limited. In this study, analytic formulations of the two dominant gullying processes, namely, plunge pool erosion and slab failure, are utilized to simulate the gullying processes in the 4-km2 Holcombe's Branch watershed. In order to calibrate parameters of the gully erosion model, gully features (e.g., depth and area) extracted from a high-resolution LiDAR map are used. After the calibration, the gully model is able to delineate the spatial extent of gullies whose statistics are in close agreement with the gullies extracted from the LiDAR DEM. Several simulations with the calibrated model are explored to evaluate the effectiveness of various gully remedial measures, such as backfilling and revegetation. The results show that in the short-term, the reshaping of the topographical surface by backfilling and compacting gullies is effective in slowing down the growth of gullies (e.g., backfilling decreased the spatial extent of gullies by 21-46% and decreased the average depth of gullies by up to 9%). Revegetation, however, is a more effective approach to stabilizing gullies that would otherwise expand if no gully remedial measures are implemented. Analyses of our simulations show that the gully stabilization effect of revegetation varies over a wide range, i.e., leading to 23-69% reduction of the spatial extent of gullies and up to 45% reduction in the depth of gullies, depending on the selection of plant species and

  18. Advancing automation and robotics technology for the Space Station Freedom and for the US economy: Submitted to the United States Congress

    Science.gov (United States)

    1990-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the ninth in a series of progress updates and covers the period between February 24, 1989, and July 12, 1989. NASA has accepted the basic recommendation of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The work of NASA and the Freedom contractors, e.g., Work Packages, as well as the Flight Telerobotic Servicer is identified. Research in progress is also described and assessments of the advancement of automation and robotics technology on the Space Station Freedom are given.

  19. Power stations

    International Nuclear Information System (INIS)

    Cawte, H.; Philpott, E.F.

    1980-01-01

    The object is to provide a method of operating a dual purpose power station so that the steam supply system is operated at a high load factor. The available steam not required for electricity generation is used to provide process heat and the new feature is that the process plant capacity is determined to make the most economic use of the steam supply system, and not to match the passout capacity of the turbine of the turbogenerator. The product of the process plant should, therefore, be capable of being stored. A dual-purpose power station with a nuclear-powered steam source, turbogenerating means connected to the steam source and steam-powered process plant susceptible to wide variation in its rate of operation is described. (U.K.)

  20. The Paks Nuclear Power Station

    International Nuclear Information System (INIS)

    Erdosi, N.; Szabo, L.

    1978-01-01

    As the first stage in the construction of the Paks Nuclear Power Station, two units of 440 MW(e) each will be built. They are operated with two coolant loops each. The reactor units are VVER 440 type water-moderated PWR type heterogeneous power reactors designed in the Soviet Union and manufactured in Czechoslovakia. Each unit operates two Soviet-made K-220-44 steam turbines and Hungarian-made generators of an effective output of 220 MW. The output of the transformer units - also of Hungarian made - is 270 MVA. The radiation protection system of the nuclear power station is described. Protection against system failures is accomplished by specially designed equipment and security measures especially within the primary circuit. Some data on the power station under construction are given. (R.P.)

  1. Technical evaluation of the proposed design modifications and technical specification changes on grid voltage degradation (Part A) for the Pilgrim Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    White, R.L.

    1980-01-01

    This report documents the technical evaluation of the proposed design modifications and Technical Specification changes for protection of Class 1E equipment from grid voltage degradation for the Pilgrim Nuclear Power Station. The review criteria are based on several IEEE standards and the Code of Federal Regulations. The evaluation compares the submittals made by the licensee with the NRC staff positions and the review criteria and presents the reviewer's conclusion on the acceptability of the proposed system

  2. Selection of persons expressing opinions etc. and attendants in the public hearing concerning the alteration in reactor installations (addition of Unit 3 and 4) in the Genkai Nuclear Power Station of Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1984-01-01

    The Nuclear Safety Commission has selected 18 persons expressing opinions etc. and 255 (other) attendants for the public hearing on the alteration of reactor installations (addition of Unit 3 and 4) in Kyushu Electric's Genkai Nuclear Power Station to be held on June 18th, 1984. The order of expressing opinions etc., number of reception, names, addresses, ages and occupations are given of the persons expressing opinions etc. For both the groups, against the selected numbers there are given applicants etc. in number by towns and city. (Mori, K.)

  3. Holding of the public hearing concerning the alteration in reactor installations (addition of Unit 3 and 4) in the Genkai Nuclear Power Station of Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1984-01-01

    The Nuclear Safety Commission held a public hearing concerning the addition of Unit 3 and 4 in Kyushu Electric's Genkai Nuclear Power Station in Karatsu City, Saga prefecture, on June 18th, 1984. The selected persons (and other attendants) expressed opinions etc. and personnel in the Ministry of International Trade and Industry answered them. Results of the public hearing are to be taken into conservation in NSC's safety examination. The following are described concerning the public hearing held: date and place, participants, hearing program, documents distributed, names of the persons expressing opinions etc. and the respective summary items of opinions etc. (Mori, K.)

  4. Technical-evaluation report on the proposed technical-specification changes for the inservice surveillance of safety-related hydraulic and mechanical snubbers at the Millstone Nuclear Power Station, Unit 2 (Docket No. 50-336)

    International Nuclear Information System (INIS)

    Selan, J.C.

    1983-01-01

    This report documents the technical evaluation of the proposed Technical Specification changes to Limiting Conditions for Operation, Surveillance Requirements and Bases for safety-related hydraulic and mechanical snubbers at the Millstone Nuclear Power Station, Unit 2. The evaluation is to determine whether the proposed Technical Specifications are in conformance with the model Standard Technical Specification set forth by the NRC. A check list, Appendix A of this report, compares the licensee's submittal with the NRC requirements and includes Proposed Resolution of the Deviations

  5. Safety evaluation report related to the operation of Grand Gulf Nuclear Station, Units 1 and 2. Dockets Nos. 50-416 and 50-417, Mississippi Power and Light Company; Middle South Energy, Inc., South Mississippi Electric Power Association

    International Nuclear Information System (INIS)

    1982-06-01

    Supplement 2 to the Safety Evaluation Report for Mississippi Power and Light Company, et. al, joint application for licenses to operate the Grand Gulf Nuclear Station, Units 1 and 2, located on the east bank of the Mississippi River near Port Gibson, in Claiborne County, Mississippi, has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. This supplement reports the status of certain items that had not been resolved at the time of publication of the Safety Evaluation Report

  6. Programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320): Draft

    International Nuclear Information System (INIS)

    1986-12-01

    In accordance with the National Environmental Policy Act and the Commission's implementing regulations and its April 27, 1981 Statement of Policy, the Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident Three Mile Island Nuclear Station, Unit 2 NUREG-0683 (PEIS) is being supplemented. This draft supplement updates the environmental evaluation of accident-generated water disposal alternatives published in the PEIS, utilizing more complete and current information. Also, the draft supplement includes a specific environmental evaluation of the licensee's recently submitted proposal for water disposition

  7. Safety Evaluation Report related to the operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530)

    International Nuclear Information System (INIS)

    1984-10-01

    Supplement No. 6 to the Safety Evaluation Report for the application filed by Arizona Public Service Company, et al., for licenses to operate the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528/529/530), located in Maricopa County, Arizona, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing an evaluation of (1) additional information submitted by the applicant since Supplement No. 5 was issued and (2) matters that the staff had under review when Supplement No. 5 was issued

  8. Safety Evaluation Report related to the operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530). Supplement No. 7

    International Nuclear Information System (INIS)

    1984-12-01

    Supplement No. 7 to the Safety Evaluation Report for the application filed by Arizona Public Service Company et al. for licenses to operate the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528/529/530), located in Maricopa County, Arizona, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing an evaluation of: (1) additional information submitted by the applicant since Supplement No. 6 was issued; and (2) matters that the staff had under review when Supplement No. 6 was issued

  9. Safety evaluation report: related to the operation of Seabrook Station, Units 1 and 2, Docket Nos. 50-443 and 50-444, Public Service Company of New Hampshire, et al

    International Nuclear Information System (INIS)

    1983-03-01

    The Safety Evaluation Report for the application filed by the Public Service Company of New Hampshire, et al., for licenses to operate Seabrook Station, Units 1 and 2 (Docket Nos. STN 50-443 and STN 50-444), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in Seabrook, New Hampshire. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  10. Station Transfers

    Data.gov (United States)

    Department of Homeland Security — ixed rail transit external system transfers for systems within the Continental United States, Alaska, Hawaii, the District of Columbia, and Puerto Rico. The modes of...

  11. Demonstration of containment purge and vent valve operability for the Hope Creek Generating Station, Unit 1 (Docket No. 50-354)

    International Nuclear Information System (INIS)

    Kido, C.

    1985-05-01

    The containment purge and vent valve qualification program for the Hope Creek Generating Station has been reviewed by the NRC Licensing Support Section. The review indicates that the licensee has demonstrated the dependability of containment isolation against the buildup of containment pressure due to a LOCA/DBA with the restrictions that during operating conditions 1, 2, and 3 all purge and vent valves will be sealed closed and under administrative control, and during power ascension and descension conditions the 26 in. inboard valve (1-GS-HV-4952) will be used in series with the 2 in. bypass valve (1-GS-HV-4951) to control the release of containment pressure

  12. Safety Evaluation Report related to the operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Dockets Nos. STN 50-528, STN 50-529, and STN 50-530)

    International Nuclear Information System (INIS)

    1987-03-01

    Supplement No. 11 to the Safety Evaluation Report for the application filed by Arizona Public Service Company et al. for licenses to operate the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528/529/530), located in Maricopa County, Arizone, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing an evaluation of (1) additional information submitted by the applicant since Supplement No. 10 was issued and (2) other matters requiring staff review since Supplenent No. 10 was issued, specifically those issues that required resolution before Unit 3 low-power licensing

  13. Safety Evaluation Report related to the operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (Docket Nos. STN 50-528, STN 50-529, and STN 50-530). Supplement No. 9

    International Nuclear Information System (INIS)

    1985-12-01

    Supplement No. 9 to the Safety Evaluation Report for the application filed by Arizona Public Service Company et al. for licenses to operate the Palo Verde Nuclear Generating Station, Units 1, 2 and 3 (Docket Nos. STN 50-528/529/530), located in Maricopa County, Arizona, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation Report by providing an evaluation of: (1) additional information submitted by the applicant since Supplement No. 8 was issued; and (2) matters that the staff had under review when Supplement No. 8 was issued, specifically those issues which required resolution prior to Unit 2 fuel loading and testing up to 5% of full power

  14. Safety evaluation report related to the operation of Susquehanna Steam Electric Station, Units 1 and 2. Docket Nos. 50-387 and 50-388, Pennsylvania Power and Light Company and Allegheny Electric Cooperative, Inc

    International Nuclear Information System (INIS)

    1982-11-01

    In April 1981, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-0776) regarding the application of the Pennsylvania Power and Light Company (the licensee) and the Allegheny Electric Cooperative, Inc. (co-licensee) for licenses to operate the Susquehanna Steam Electric Station, Units 1 and 2, located on a site in Luzerne County, Pennsylvania. Supplement 1, issued in June 1981, addressed outstanding issues. Supplement 2, issued in September 1981, contains the ACRS Report and responses. Supplement 3, issued in July 1982, contains the resolution to five items previously identified as open and closes them out. On July 17, 1982, License NPF-14 was issued to allow Unit 1 operation at power levels not to exceed 5% of rated power. This supplement discusses the resolution of several license conditions that have been met

  15. Handling of views and opinions by staters and others in a public hearing on alteration in reactor installation (addition of Unit 2) in the Sendai Nuclear Power Station of Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1981-01-01

    A public hearing on the addition of Unit 2 in the Sendai Nuclear Power Station, Kyushu Electric Power Co., Inc., was held on July 17, 1980, in Sendai City, Kagoshima Prefecture. The views and opinions by the local staters and those by the notification of statement were expressed concerning its nuclear safety. The handling of these views and opinions by the Nuclear Safety Commission is explained. The most important in this action is the instruction by the NSC to the Committee on Examination of Reactor Safety to reflect the results of the public hearing to the reactor safety examination of the Unit 2 installation by the CERS. The views and opinions expressed in this connection are summarized as follows: the sitting conditions, the safety design of the reactor plant, and the release of radioactive materials, involving such aspects as earthquakes, accidents and radioactive waste management. (J.P.N.)

  16. Formative feedback from the first-person perspective using Google Glass in a family medicine objective structured clinical examination station in the United States.

    Science.gov (United States)

    Youm, Julie; Wiechmann, Warren

    2018-01-01

    This case study explored the use of Google Glass in a clinical examination scenario to capture the first-person perspective of a standardized patient as a way to provide formative feedback on students' communication and empathy skills 'through the patient's eyes.' During a 3-year period between 2014 and 2017, third-year students enrolled in a family medicine clerkship participated in a Google Glass station during a summative clinical examination. At this station, standardized patients wore Google Glass to record an encounter focused on communication and empathy skills 'through the patient's eyes.' Students completed an online survey using a 4-point Likert scale about their perspectives on Google Glass as a feedback tool (N= 255). We found that the students' experiences with Google Glass 'through the patient's eyes' were largely positive and that students felt the feedback provided by the Google Glass recording to be helpful. Although a third of the students felt that Google Glass was a distraction, the majority believed that the first-person perspective recordings provided an opportunity for feedback that did not exist before. Continuing exploration of first-person perspective recordings using Google Glass to improve education on communication and empathy skills is warranted.

  17. A briefing paper for the status of the flue gas desulfurization system at Indianapolis Power ampersand Light Company Petersburg Station Units 1 and 2

    International Nuclear Information System (INIS)

    Rutledge, C.K.; Wolsiffer, S.R.; Gray, S.M.; Martin, J.E.; Wedig, C.P.

    1992-01-01

    This paper presents a brief description of the status of the retrofit wet limestone flue gas desulfurization system project at Indianapolis Power ampersand Light Company (IPL) Petersburg Units 1 and 2. This project was initiated by IPL in response to the Clean Air Act of 1990 and is intended to treat the flue gas from two base load units with a combined capacity of approximately 700 MW gross electrical output

  18. Results of Steam-Water-Oxygen Treatment of the Inside of Heating Surfaces in Heat-Recovery Steam Generators of the PGU-800 Power Unit at the Perm' District Thermal Power Station

    Science.gov (United States)

    Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.

    2018-05-01

    Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.

  19. Broadcasting Stations of the World; Part III. Frequency Modulation Broadcasting Stations.

    Science.gov (United States)

    Foreign Broadcast Information Service, Washington, DC.

    This third part of "Broadcasting Stations of the World", which lists all reported radio broadcasting and television stations, with the exception of those in the United States which broadcast on domestic channels, covers frequency modulation broadcasting stations. It contains two sections: one indexed alphabetically by country and city, and the…

  20. Advantages of active love wave techniques in geophysical characterizations of seismographic station - Case studies in California and the central and eastern United States

    Science.gov (United States)

    Martin, Antony; Yong, Alan K.; Salomone, Larry A.

    2014-01-01

    Active-source Love waves, recorded by the multi-channel analysis of surface wave (MASLW) technique, were recently analyzed in two site characterization projects. Between 2010 and 2012, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 191 seismographic stations in California and the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in this investigation it became clear that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not suited for characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites. At shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments, Love wave techniques generally were found to be easier to interpret, i.e., Love wave data typically yielded unambiguous fundamental mode dispersion curves and thus, reduce uncertainty in the resultant VS model. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in the Love wave data. It is possible to model Rayleigh wave data using multi- or effective-mode techniques; however, extraction of Rayleigh wave dispersion data was found to be difficult in many cases. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to also collect Love wave data when warranted.

  1. Overview--Development of a geodatabase and conceptual model of the hydrogeologic units beneath Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Science.gov (United States)

    Shah, Sachin D.

    2004-01-01

    Air Force Plant 4 (AFP4) and adjacent Naval Air Station-Joint Reserve Base Carswell Field (NAS–JRB) at Fort Worth, Tex., constitute a contractor-owned, government-operated facility that has been in operation since 1942. Contaminants from the 3,600-acre facility, primarily volatile organic compounds (VOCs) and metals, have entered the ground-water-flow system through leakage from waste-disposal sites and from manufacturing processes. Environmental data collected at AFP4 and NAS–JRB during 1993–2002 created the need for consolidation of the data into a comprehensive temporal and spatial geodatabase. The U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force Aeronautical Systems Center Environmental Management Directorate, developed a comprehensive geodatabase of temporal and spatial environmental data associated with the hydrogeologic units beneath the facility. A three-dimensional conceptual model of the hydrogeologic units integrally linked to the geodatabase was designed concurrently. Three hydrogeologic units—from land surface downward, the alluvial aquifer, the GoodlandWalnut confining unit, and the Paluxy aquifer—compose the subsurface of interest at AFP4 and NAS–JRB. The alluvial aquifer consists primarily of clay and silt with sand and gravel channel deposits that might be interconnected or interfingered. The Goodland-Walnut confining unit directly underlies the alluvial aquifer and consists of limestone, marl, shale, and clay. The Paluxy aquifer is composed of dense mudstone and fine- to coarse-grained sandstone

  2. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  3. Technical specifications, Shoreham Nuclear Power Station, Unit No. 1 (Docket No. 50-322): Appendix ''A'' to License No. NPF-82

    International Nuclear Information System (INIS)

    1989-04-01

    The Shoreham, Unit 1, Technical Specifications were prepared by the US Nuclear Regulatory Commission to set forth the limits, operating conditions, and other requirements applicable to a nuclear facility as set forth in Section 50.36 of 10 CFR Part 50 for the protection of the health and safety of the public. 20 figs., 75 tabs

  4. H2USA: Siting Refueling Stations in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zuboy, Jarett [Consultant; Ellis, Steve [Honda

    2017-11-01

    To achieve cost-effective deployment of both fuel cell electric vehicles (FCEVs) and hydrogen stations, the number of vehicles and public stations must grow together in areas of highest demand. This fact sheet introduces two advanced modeling tools and presents preliminary analysis of the hydrogen refueling station locations needed to support early consumer demand for FCEVs in the Northeast United States. United States.

  5. Result of 'clean plant operation tactics' in Onagawa Nuclear Power Station No.1 unit during the first fuel cycle and the first maintenance outage

    International Nuclear Information System (INIS)

    Nukazuka, Hideo; Terada, Hideo; Morikawa, Yoshitake; Tomura, Susumu.

    1986-01-01

    On June 1, 1984, No.1 plant in Onagawa Nuclear Power Station started the commercial operation, and recorded the nonstop operation for 344 days. The parallel off was made on April 3, 1985, and the first regular inspection was carried out. On July 12, 1985, the regular inspection was completed, and thereafter, the second cycle operation has been smoothly continued. Special attention was paid to the measures for reducing radiation exposure, and the attainment of the clean plant was aimed at. As the measures for reducing radiation level, the strengtheining of purifying facilities, the suppression of crud generation, the adoption of low cobalt material and the strengthening of shielding were carried out. For shortening exposure time, the machinery and equipment were improved, paying attention to automation, remote operation and labor saving, and the improvement of reliability, maintainability and inspection. In addition to these design measures, in the construction, operation and regular inspection, the clean plant measures were taken. Very good results were obtained. (Kako, I.)

  6. Safety Evaluation Report related to the restart of Rancho Seco Nuclear Generating Station, Unit 1, following the event of December 26, 1985 (Docket No. 50-312)

    International Nuclear Information System (INIS)

    1987-10-01

    On December 26, 1985, the Rancho Seco Nuclear Generating Station, owned and operated by the Sacramento Municipal Utility District (SMUD), experienced a loss of dc power within the integrated control system (ICS) while the plant was at 76% power. The ensuing reactor trip was followed by a rapid overcooling transient and automatic initiation of the safety features actuation system (SFAS). The overcooling transient continued until ICS dc power was restored 26 minutes after its loss. Two letters from the NRC Region V Administrator (dated December 26, 1985) confirmed that the Rancho Seco plant would not be returned to power operation until SMUD (the licensee) had provided the NRC with an assessment of the root cause of the transient and a justification as to why the Rancho Seco facility is ready to resume power operation. In response, the licensee submitted the ''Rancho Seco Action Plan for Performance Improvement'' on July 3, 1986; revisions to that action plan were submitted on December 15, 1986 and February 28, 1987. The NRC staff has reviewed the action plan and numerous other supporting documents submitted by the licensee. The staff's evaluation of the information supporting restart of Rancho Seco is presented in this safety evaluation report

  7. Safety Evaluation Report related to the restart of Davis-Besse Nuclear Power Station, Unit 1, following the event of June 9, 1985 (Docket No. 50-346)

    International Nuclear Information System (INIS)

    1986-06-01

    On June 9, 1985, the Davis-Besse Nuclear Power Station, operated by the Toledo Edison Company, experienced a partial loss of main feedwater while the plant was at 90% power. The ensuing reactor trip was followed by spurious isolation of the steam geneators which initiated a chain of events involving a number of equipment malfunctions and several operator errors ultimately interrupting all feedwater for a short period of time. By the time operators were able to restore feedwater, both steam generators had dried out. A letter from the Director of the Office of Nuclear Reactor Regulation, pursuant to 10 CFR 50.54(f) of the Commission's regulations, confirmed that the Davis-Besse facility would not be restarted without NRC approval. The letter also requested that Toledo Edison submit its program for resolving numerous concerns identified by the staff. In response, the license submitted the Davis-Besse Course of Action report. The staff has reviewed that document and other supporting material submitted by the licensee; the staff's evaluation of that information is presented in this report

  8. INSTALLATION OF A POST-ACCIDENT CONFINEMENT HIGH-LEVEL RADIATION MONITORING SYSTEM IN THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA

    Energy Technology Data Exchange (ETDEWEB)

    GREENE,G.A.; GUPPY,J.G.

    1998-09-01

    This is the final report on the INSP project entitled, ``Post-Accident Confinement High-Level Radiation Monitoring System'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.6 (Attachment 1). This project was initiated in February 1993 to assist the Russians in reducing risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Unit 2, through improved accident detection capability, specifically by the installation of a dual train high-level radiation detection system in the confinement of Unit 2 of the Kola NPP. The major technical objective of this project was to provide, install and make operational the necessary hardware inside the confinement of the Kola NPP Unit 2 to provide early and reliable warning of the release of radionuclides from the reactor into the confinement air space as an indication of the occurrence of a severe accident at the plant. In addition, it was intended to provide hands-on experience and training to the Russian plant workers in the installation, operation, calibration and maintenance of the equipment in order that they may use the equipment without continued US assistance as an effective measure to improve reactor safety at the plant.

  9. INSTALLATION OF A POST-ACCIDENT CONFINEMENT HIGH-LEVEL RADIATION MONITORING SYSTEM IN THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA

    International Nuclear Information System (INIS)

    GREENE, G.A.; GUPPY, J.G.

    1998-01-01

    This is the final report on the INSP project entitled, ''Post-Accident Confinement High-Level Radiation Monitoring System'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.6 (Attachment 1). This project was initiated in February 1993 to assist the Russians in reducing risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Unit 2, through improved accident detection capability, specifically by the installation of a dual train high-level radiation detection system in the confinement of Unit 2 of the Kola NPP. The major technical objective of this project was to provide, install and make operational the necessary hardware inside the confinement of the Kola NPP Unit 2 to provide early and reliable warning of the release of radionuclides from the reactor into the confinement air space as an indication of the occurrence of a severe accident at the plant. In addition, it was intended to provide hands-on experience and training to the Russian plant workers in the installation, operation, calibration and maintenance of the equipment in order that they may use the equipment without continued US assistance as an effective measure to improve reactor safety at the plant

  10. Analysis of internal events for the Unit 1 of the Laguna Verde nuclear power station; Analisis de eventos internos para la Unidad 1 de la Central Nucleolelectrica de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Huerta B, A.; Aguilar T, O.; Nunez C, A.; Lopez M, R. [Comision Nacional de Seguridad Nuclear y Salvaguardias, 03000 Mexico D.F. (Mexico)

    1993-07-01

    This volume presents the results of the starter event analysis and the event tree analysis for the Unit 1 of the Laguna Verde nuclear power station. The starter event analysis includes the identification of all those internal events which cause a disturbance to the normal operation of the power station and require mitigation. Those called external events stay beyond the reach of this study. For the analysis of the Laguna Verde power station eight transient categories were identified, three categories of loss of coolant accidents (LOCA) inside the container, a LOCA out of the primary container, as well as the vessel break. The event trees analysis involves the development of the possible accident sequences for each category of starter events. Events trees by systems for the different types of LOCA and for all the transients were constructed. It was constructed the event tree for the total loss of alternating current, which represents an extension of the event tree for the loss of external power transient. Also the event tree by systems for the anticipated transients without scram was developed (ATWS). The events trees for the accident sequences includes the sequences evaluation with vulnerable nucleus, that is to say those sequences in which it is had an adequate cooling of nucleus but the remoting systems of residual heat had failed. In order to model adequately the previous, headings were added to the event tree for developing the sequences until the point where be solved the nucleus state. This process includes: the determination of the failure pressure of the primary container, the evaluation of the environment generated in the reactor building as result of the container failure or cracked of itself, the determination of the localization of the components in the reactor building and the construction of boolean expressions to estimate the failure of the subordinated components to an severe environment. (Author)

  11. The Trencin water power station

    International Nuclear Information System (INIS)

    2005-01-01

    This leaflet describes the Trencin water power station. The Trencin water power station was built seven years after the Dubnica nad Vahom water power station started its operation and was the last stage of the first and the oldest derived cascade of water power stations on the Vah River. After completing water power stations at Ladce (1936), Ilava (1946) and Dubnica nad Vahom (1949) and before constructing the Trencin water power station, the whole second derived cascade of water power stations including water power stations at Kostolna, Nove Mesto nad Vahom and Horna Streda was built as soon as possible mainly because the need to get compensation for discontinued electricity supplies as well as energetic coal from the Czech Republic. Hereby, experiences from the construction of previous grades were used, mainly as far as the dimensioning was concerned, as the fi rst installed power stations had, in comparison with the growing requirements on the electricity supplies, very low absorption capacity - only 150 m 3 .s -1 . Thus the Trencin power station (original name was the Skalka power station) was already dimensioned for the same absorption capacity as the cascade located downstream the river, that is 180 m 3 .s -1 . That was related also to growing demands on electricity supplies during the peaks in the daily electric system load diagram, and thus to the transfer from continuous operation of the water power station to semi-peak or even peak performance. According to the standards of power station classification, the Trencin water power station is a medium size, low pressure, channel power station with two units equipped by Kaplan turbines and synchronous hydro-alternators. The water power station installed capacity is 16.1 MW in total and its designed annual production of electrical energy for medium water year is 85,000 MWh, while the average annual production during the last 30 years is 86,252 MWh. Installed unit has a four-blade Kaplan turbine with the diameter

  12. ORTHOIMAGERY, CALHOUN COUNTY, GA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital orthographic imagery datasets contain georeferenced images of the Earth?s surface, collected by a sensor in which object displacement has been removed for...

  13. BASEMAP, CALHOUN COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — FEMA Framework Basemap datasets comprise six of the seven FGDC themes of geospatial data that are used by most GIS applications (Note: the seventh framework theme,...

  14. Evaluation of zeolite mixtures for decontamination of high-activity-level water in the Submerged Demineralizer System (SDS) flowsheet at the Three Mile Island Nuclear Power Station, Unit 2

    International Nuclear Information System (INIS)

    King, L.J.; Campbell, D.O.; Collins, E.D.; Knauer, J.B.; Wallace, R.M.

    1983-01-01

    Mixtures of Linde Ionsiv IE-96 and Ionsiv A-51 zeolites were evaluated for use in the Submerged Demineralizer System (SDS) that was installed at the Three Mile Island Nuclear Power Station, Unit 2 (TMI-2) for decontaminating approx. 3000 m 3 (approx. 700,000 gal) of high-activity-level water in the containment building sump. Small-scale, tracer-level column tests were made using various mixtures of the zeolites to evaluate the capability for simultaneous removal of cesium and strontium. A column loading test was made in a hot cell using a mixture of equal parts of the zeolites to evaluate the performance of the mixture in removing cesium and strontium from a sample of TMI-2 sump water. A computerized mathematical model of the mixed-bed SDS system was used to evaluate the test data in order to select a zeolite mixture and predict system performance

  15. Programmatic Environmental Impact Statement: related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320). Final supplement dealing with occupational radiation dose. Supplement No. 1

    International Nuclear Information System (INIS)

    1984-10-01

    In accordance with the National Environmental Policy Act, the Programmatic Environmental Impact Statement Related to Decontamination and Disposal of Radioactive Wastes Resulting from March 28, 1979 Accident Three Mile Island Nuclear Station, Unit 2 has been supplemented. The supplement was required because current information indicates that cleanup may entail substantially more occupational radiation dose to the cleanup work force than originally anticipated. Cleanup was originally estimated to result in from 2000 to 8000 person-rem of occupational radiation dose. Although nearly 2000 person-rem have resulted from cleanup operations performed up to now, current estimates now indicate that between 13,000 and 46,000 person-rem are expected to be required. Alternative cleanup methods considered in the supplement either did not result in appreciable dose savings or were not known to be technically feasible

  16. Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident at Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320): Final report

    International Nuclear Information System (INIS)

    1987-06-01

    In accordance with the National Environmental Policy Act, the Commission's implementing regulations, and the Commission's April 27, 1981 Statement of Policy, the Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident Three Mile Island Nuclear Station, Unit 2 NUREG-0683 (PEIS) is being supplemented. This supplement updates the environmental evaluation of accident-generated water disposal alternatives published in the PEIS, utilizing more complete and current information. Also, the supplement includes a specific environmental evaluation of the licensee's proposal for water disposition. Although no clearly preferable water disposal alternative was identified, the supplement concluded that a number of alternatives could be implemented without significant environmental impact. The NRC staff has concluded that the licensee's proposed disposal of the accident-generated water by evaporation will not significantly affect the quality of the human environment. Further, any impacts from the disposal program are outweighed by its benefits

  17. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 7

    International Nuclear Information System (INIS)

    1985-01-01

    Supplement 7 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review of the US Nuclera Regulatory Commission. This supplement provides the results of the staff's evaluation and resolution of approximately 80 technical concerns and allegations in the areas of Electric/Instrumentation and Test Programs regarding construction and plant readiness testing practices at the Comanche Peak facility. Issues raised during Atomic Safety and Licensing Board hearings will be dealt with in future supplements to the Safety Evaluation Report

  18. Safety Evaluation Report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446). Supplement No. 8

    International Nuclear Information System (INIS)

    1985-02-01

    Supplement 8 to the Safety Evaluation Report for the Texas Utilities Electric Company application for a license to operate Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445, 50-446), located in Somervell County, Texas, has been jointly prepared by the Office of Nuclear Reactor Regulation and the Comanche Peak Technical Review Team of the US Nuclear Regulatory Commission. This Supplement provides the results of the staff's evaluation and resolution of approximately 80 technical concerns and allegations relating to civil and structural and miscellaneous issues regarding construction and plant readiness testing practices at the Comanche Peak facility. Issues raised during recent Atomic Safety and Licensing Board hearings will be dealt with in future supplements to the Safety Evaluation Report

  19. Treatment of opinions, etc. in the public hearing on the alteration of reactor installation (addition of Unit 2) in the Shimane Nuclear Power Station of The Chugoku Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1983-01-01

    The Nuclear Safety Commission has acknowledged the governmental policy, and further decided on the treatment of the opinions expressed by the local people in the public hearing held in May, 1983, in Shimane Prefecture on the addition of Unit 2 to the Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc. The NSC has directed the Committee on Examination of Reactor Safety to take into consideration the opinions in its later examination. The opinions expressed by the local people in the form of question are given as follows: siting conditions (earthquake, ground, weather, etc.), the safety design for reactor installation (general aspect, aseismatic design, core design, ECCS, the teaching of TMI accident, etc.), radioactive wastes, radiation exposure, site evaluation. (Mori, K.)

  20. Final programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2, Docket No. 50-320

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    A Final Programmatic Environmental Impact Statement (PEIS) related to the decontamination and disposal of radioactive wastes resulting from the March 28, 1979, accident at Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320) has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission in response to a directive issued by the Commission on November 21, 1979. This statement is an overall study of the activities necessary for decontamination of the facility, defueling, and disposition of the radioactive wastes. The available alternatives considered ranged from implementation of full cleanup to no action other than continuing to maintain the reactor in a safe shutdown condition. Also included are comments of governmental agencies, other organizations, and the general public on the Draft PEIS on this project, and staff responses to these comments. (author)

  1. Considerations of the opinions and others in the public hearing on the alteration in reactor installation (addition of Unit 3) in the Hamaoka Nuclear Power Station of the Chubu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1982-01-01

    A public hearing was held in Hamaoka Town, Shizuoka Prefecture, on the alteration in reactor installation, i.e., the addition of Unit 3 in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc., on March 19, 1981, by the Nuclear Safety Commission. The opinions and others stated by the local people were taken into consideration in the governmental examinations on the installation, etc. The considerations of such opinions principally in the examinations by NSC are explained in the form of questions (i.e. opinion, etc.) and answers (i.e. considerations) as follows: site conditions (earthquakes, ground, hydraulic features, etc.), the safety design of the reactor facilities (overall plant, aseismic design, the control of inflammable gas concentration, radioactive waste treatment, the reflection of accident experiences, etc.), radioactive waste management, radiation exposure relation, the technical capabilities of personnel (operation, etc.). (J.P.N.)

  2. Consideration of the opinions and others in the public hearing on the alteration in reactor installation (addition of Unit 2) in the Tsuruga Power Station of the Japan Atomic Power Company

    International Nuclear Information System (INIS)

    1982-01-01

    A public hearing was held in Tsuruga City, Fukui Prefecture, on the alteration in reactor installation, i.e., the addition of Unit 2 in the Tsuruga Power Station, JAPC, on November 20, 1980, by the Nuclear Safety Commission. The opinions and others stated by the local people were taken into consideration in the governmental examinations on the installation, etc. The considerations of such opinions principally in the examinations by NSC are explained in the form of questions (i.e. opinion, etc.) and answers (i.e. consideration) as follows: site conditions (site, earthquakes, ground, meteorology, siting situation, etc.), the safety design of the reactor facilities (overall plant, aseismic design, the teaching by the TMI accident in U.S., ECCS, pre-stressed concrete containment vessel, radioactive waste release, etc.), radioactive waste management, radiation exposure relation, the technical capabilities of personnel (operation, etc.). (J.P.N.)

  3. Safety evaluation report related to the operation of Catawba Nuclear Station, Units 1 and 2. Docket Nos. 50-413 and 50-414, Duke Power Company, et al

    International Nuclear Information System (INIS)

    1983-02-01

    The Safety Evaluation Report for the application filed by Duke Power Company, North Carolina Municipal Power Agency Number 1, North Carolina Electric Membership Corporation, and Saluda River Electric Cooperative, Inc. as applicants and owners, for licenses to operate the Catawba Nuclear Station, Units 1 and 2 (Docket Nos. 50-413 and 50-414), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in York County, South Carolina, approximately 9.6 km (6 mi) north of Rock Hill and adjacent to Lake Wylie. Subject to favorable resolution of the items discussed in this report, the staff concludes that the facility can be operated by the applicant without endangering the health and safety of the public

  4. Safety evaluation report related to the operation of Palo Verde nuclear generating station, Units 1, 2, and 3. Docket Nos. STN 50-528, STN 50-529, and STN 50-530, Arizona Public Service Company

    International Nuclear Information System (INIS)

    1982-05-01

    On November 13, 1981, the Nuclear Regulatory Commission (NRC) staff issued its Safety Evaluation Report (SER) relating to the application for licenses to operate the Palo Verde Nuclear Generating Station, Unit Nos. 1, 2 and 3 (PVNGS 1-3); Supplement No. 1 to the SER was issued on February 4, 1982. In the SER and Supplement No. 1, the staff identified certain issues where either further information was required of the applicant or additional staff effort was necessary to complete the review of the application. The purpose of this supplement is to update the SER by providing (1) the evaluation of additional information submitted by the applicant since Supplement No. 1 to the SER was issued, and (2) the evaluation of the matters that the staff had under review and Supplement No. 1 was issued

  5. Population dose estimation from a hypothetical release of 2.4 x 106 curies of noble gases and 1 x 104 curies of 131I at the Three Mile Island Nuclear Station, Unit 2

    International Nuclear Information System (INIS)

    Berger, C.D.; Lane, B.H.; Cotter, S.J.; Miller, C.W.; Glandon, S.R.

    1981-09-01

    Beginning on March 28, 1979, a sequence of events occurred at the Three Mile Island Nuclear Station Unit 2 (TMINS-2) nuclear power reactor which resulted in the accidental release of approximately 2.4 x 10 6 Ci of noble gases and 13 to 15 Ci 131 I. A comprehensive study of this incident has been reported by the President's Commission on the Accident at Three Mile Island. As part of this study, the Technical Assessment Task Group for the Commission addressed a series of alternative event scenarios, including the potential for a higher release of 131 I. As a continuation of this task, this report presents the estimated collective dose to the population within 50 miles of TMINS-2 from a hypothetical release of 2.4 x 10 6 Ci of noble gases and 1 x 10 4 Ci 131 I by the methodology of atmospheric dispersion modeling and population dose estimation through the inhalation, ingestion and immersion exposure pathways

  6. Programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979 accident, Three Mile Island Nuclear Station, Unit 2 (Docket No. 50-320). Draft supplement dealing with occupational radiation dose. Supplement No. 1

    International Nuclear Information System (INIS)

    1983-12-01

    In accordance with the National Environmental Policy Act, the Programmatic Environmental Impact Statement Related to Decontamination and Disposal of Radioactive Waste for the 1979 Accident at Three Mile Island Nuclear Station Unit 2 has been supplemented. The supplement was required because current information indicates that cleanup will entail substantially more occupational radiation dose to the cleanup work force than originally anticipated. Cleanup was originally estimated to result in from 2000 to 8000 person-rem of occupational radiation dose. Although only 1700 person-rem have resulted from cleanup operations performed up to now, current estimates now indicate that between 13,000 and 46,000 person-rem are expected to be required. Alternate cleanup methods considered in the supplement either did not result in appreciable dose savings or were not known to be technically feasible

  7. Treatment and management of opinions stated in and notified to the public hearing on the alteration in reactor installation (addition of Unit 3) in the Hamaoka Nuclear Power Station of The Chubu Electric Power Co., Ltd

    International Nuclear Information System (INIS)

    1981-01-01

    A public hearing was made in Hamaoka Town, Shizuoka Prefecture, on March 19, 1981, on the addition of Unit 3 in the Hamaoka Nuclear Power Station, Chubu Electric Power Co., Inc. Treatment and management of the opinions and others stated and notified by the local people, which are understood and to be carried out by the Nuclear Safety Commission, are: to publish them as the report of the public hearing, to include them in the safety examination report of NSC and to refer to them in the examination by the Committee on Examination of Reactor Safety, etc. The opinions and others stated and notified in the public hearing, to which CERS should refer in its examination, are summarized in the form of the questions on siting conditions, safety design of reactor installation, release of radioactivities, etc. (J.P.N.)

  8. Final environmental statement related to the operation of Catawba Nuclear Station, Units 1 and 2. Docket Nos. 50-413 and 50-414, Duke Power Company, et al

    International Nuclear Information System (INIS)

    1983-01-01

    This Final Environmental Statement contains the second assessment of the environmental impact associated with the operation of the Catawba Nuclear Station, Units 1 and 2, pursuant to the National Environmental Policy Act of 1969 (NEPA) and 10 CFR 51, as amended, of the NRC regulations. This statement examines: the affected environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. Land use and terrestrial and aquatic-ecological impacts will be small. Operational impacts to historic and archeological sites will be negligible. The effects of routine operations, energy transmission, and periodic maintenance of rights-of-way and transmission facilities should not jeopardize any populations of endangered or threatened species. No significant impacts are anticipated from normal operational releases of radioactivity. The risk associated with accidental radiation exposure is very low. The net socioeconomic effects of the project will be beneficial

  9. Safety evaluation report related to the operation of Comanche Peak Steam Electric Station, Units 1 and 2 (Docket Nos. 50-445 and 50-446): Supplement No. 21

    International Nuclear Information System (INIS)

    1989-04-01

    Supplement 21 to the Safety Evaluation Report related to the operation of the Comanche Peak Steam Electric Station (CPSES), Units 1 and 2 (NUREG-0797), has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission (NRC). The facility is located in Somervell County, Texas, approximately 40 miles southwest of Fort Worth, Texas. This supplement reports the status of certain issues that had not been resolved when the Safety Evaluation Report and Supplements 1, 2, 3, 4, 6, and 12 to that report were published. This supplement also lists the new issues that have been identified since Supplement 12 was issued and includes the evaluations for licensing items resolved in this interim period. 21 refs

  10. Technical evaluation report - TMI action: NUREG-0737 (II.D.1) relief and safety valve testing for Grand Gulf Nuclear Station Unit No. 1 (Docket No. 50-416)

    International Nuclear Information System (INIS)

    Burr, T.K.; Nalezny, C.L.

    1985-09-01

    Light water reactors operators have experienced a number of occurrences of improper performance by safety and relief valves installed in their primary coolant systems. Because of this, the authors of NUREG-0578 (TMI-2 Lessons Learned Task Force Status Report and Short-Term Recommendations) recommended that programs be developed and completed which would reevaluate the performance capabilities of BWR safety and relief valves. This report provides the results of the review of these programs and their results by the NRC and their consultant, EG and G Idaho, Inc. Specifically, this report has examined the response of the Licensee for the Grand Gulf Nuclear Station, Unit 1 to the requirements of NUREG-0578 and subsequently NUREG-0737 and finds that the Licensee has provided an acceptable response, reconfirming that the General Design Criteria 14, 15 and 30 of Appendix A to 10 CFR-50 have been met

  11. Development of a geodatabase and conceptual model of the hydrogeologic units beneath air force plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Science.gov (United States)

    Shah, Sachin D.

    2004-01-01

    Air Force Plant 4 and adjacent Naval Air Station-Joint Reserve Base Carswell Field at Fort Worth, Texas, constitute a government-owned, contractor-operated facility that has been in operation since 1942. Contaminants from AFP4, primarily volatile organic compounds and metals, have entered the ground-water-flow system through leakage from waste-disposal sites and from manufacturing processes. The U.S. Geological Survey developed a comprehensive geodatabase of temporal and spatial environmental information associated with the hydrogeologic units (alluvial aquifer, Goodland-Walnut confining unit, and Paluxy aquifer) beneath the facility and a three-dimensional conceptual model of the hydrogeologic units integrally linked to the geodatabase. The geodatabase design uses a thematic layer approach to create layers of feature data using a geographic information system. The various features are separated into relational tables in the geodatabase on the basis of how they interact and correspond to one another. Using the geodatabase, geographic data at the site are manipulated to produce maps, allow interactive queries, and perform spatial analyses. The conceptual model for the study area comprises computer-generated, three-dimensional block diagrams of the hydrogeologic units. The conceptual model provides a platform for visualization of hydrogeologic-unit sections and surfaces and for subsurface environmental analyses. The conceptual model is based on three structural surfaces and two thickness configurations of the study area. The three structural surfaces depict the altitudes of the tops of the three hydrogeologic units. The two thickness configurations are those of the alluvial aquifer and the Goodland-Walnut confining unit. The surface of the alluvial aquifer was created using a U.S. Geological Survey 10-meter digital elevation model. The 2,130 point altitudes of the top of the Goodland-Walnut unit were compiled from lithologic logs from existing wells, available soil

  12. [The balance of harmful trace contaminants between the air humidity condensate and air in a simulator of the Mir orbit station moisture condensation unit].

    Science.gov (United States)

    Zlotopol'skiĭ, V M; Smolenskaia, T S

    2000-01-01

    Subject of the investigation was the balance of harmful trace contaminants (HTC) between the air moisture condensate and air in a simulator of the MIR moisture condensation unit. Experiments involved various classes of water-solvent compounds including alcohols (C1-C4), ketons (C1-C2), aldehydes (C1-C2), fatty acids (C2-C4), esters (acetates C4-C6), and ammonium. For most of the compounds, removal efficiency correlates with air humidity and virtually does not depend on the HTC concentration within the range of 0.25 to 59.1 mg/m3.

  13. 47 CFR 32.2311 - Station apparatus.

    Science.gov (United States)

    2010-10-01

    ... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2311 Station apparatus... company shall prepare a list of station apparatus which shall be used as its list of disposition units for... technicians, and others, shall be included in Account 2114, Tools and other work equipment, Account 2220...

  14. Environmental assessment, proposed generating station for Darlington

    International Nuclear Information System (INIS)

    1975-04-01

    This document indicates the intention of Ontario Hydro to seek approval from the Provincial Government for its plan to construct and operate a 3400 MWe nuclear generating station at the Darlington site, west of Bowmanville. This preliminary proposal also contains the environmental assessment. The environmental section of this proposal describes and assesses the existing environment and the environmental influences which would occur due to the construction and operation of a nuclear generating station, consisting of four 850 MW units, at the Darlington site. This proposed station is similar to the Bruce GS A station presently under construction. (author)

  15. Guidelines for Learning Stations.

    Science.gov (United States)

    Fehrle, Carl C.; Schulz, Jolene

    Guidelines for designing and planning learning stations for pupils at the elementary grade level include suggestions on how to develop a station that will be successful in meeting the learners' needs. Instructions for the use of tapes at a station and matching pupils with stations are given, as are guidelines on classroom arrangement and record…

  16. Final environmental statement related to construction of Cherokee Nuclear Station, Units 1, 2, and 3: (Docket Nos. STN 50-491, STN 50-492, and STN 50-493)

    International Nuclear Information System (INIS)

    1975-10-01

    The proposed action is the issuance of a construction permit to the Duke Power Company for the construction of the Cherokee Nuclear Station (CNS) Units 1, 2, and 3 located in Cherokee County, South Carolina. A total of 2263 acres will be removed from public use for the CNS site. Construction-related activities on the site will disturb about 751 acres. Approximately 654 acres of land will be required for transmission line right-of-way, and a railroad spur will affect 83 acres. This constitutes a minor regional impact. No significant environmental impacts are anticipated from normal operational releases of radioactive materials. The total annual dose to the US population (total body plus thyroid) from operation of the plant is 210 man-rems which is less than the normal fluctuations in the background dose this population would receive. The occupational dose is approximately 1400 man-rems/year. The heat dissipation system will require a maximum water makeup of 55,814 gpm, of which 50,514 gpm will be consumed due to drift and evaporative losses. This amount represents 4.5% of the mean monthly flow and 23.8% of the low flow of the Broad River. The cooling tower blowdown and chemical effluents from the station will increase the dissolved solids concentration in the river by a maximum of 44 ppM. The thermal alterations and increases in total dissolved solids concentration will not significantly affect the aquatic productivity of the river. 114 refs., 25 figs., 46 tabs

  17. Periodical inspection in nuclear power stations

    International Nuclear Information System (INIS)

    1986-01-01

    Periodical inspection is presently being made of eight nuclear power plants in nuclear power stations. Up to the present time, in three of them, failures as follows have been observed. (1) Unit 3 (PWR) of the Mihama Power Station in The Kansai Electric Power Co., Inc. Nineteen heat-transfer tubes of the steam generators were plugged up due to failure. A fuel assembly with a failed spring fixture and in another the control-rod cluster with a failed control rod fixture were replaced. (2) Unit 2 (PWR) of the Oi Power Station in The Kansai Electric Power Co., Inc. Eight heat-transfer tubes of the heat exchangers were plugged up due to failure. (3) Unit 6 (BWR) of the Fukushima Nuclear Power Station I in The Tokyo Electric Power Co., Inc. A fuel assembly with leakage was replaced. (Mori, K.)

  18. Shippingport Station decommissioning project overview

    International Nuclear Information System (INIS)

    Schreiber, J.J.

    1985-01-01

    The U.S. Department of Energy is in the process of decommissioning the Shippingport Atomic Power Station located on the Ohio River, 30 miles northwest of Pittsburgh, Pennsylvania. The Shippingport Station is the first commercial size nuclear power plant to undergo decommissioning in the United Staes. The plant is located on approximately 7 acres of land owned by the Duquesne Light Company (DLC) and leased to the U.S. Government. DLC operates two nuclear power plants, Beaver Valley 1 and 2, located immediately adjacent to the site and the Bruce Mansfield coal-fired power plant is also within the immediate area. The Station was shutdown in October, 1982. Defueling operations began in 1983 and were completed by September, 1984. The Shippingport Station consists of a 275' x 60' fuel handling building containing the reactor containment chamber, the service building, the turbine building, the radioactive waste processing building, the administration building and other smaller support buildings. The Station has four coolant loops and most of the containment structures are located below grade. Structures owned by the U.S. Government including the fuel handling building, service building, contaminated equipment room, the boiler chambers, the radioactive waste processing building and the decontamination and laydown buildings will be dismantled and removed to 3 feet below grade. The area will then be filled with clean soil and graded. The turbine building, testing and training building and the administration building are owned by DLC and will remain

  19. 78 FR 13895 - Certain Wireless Communications Base Stations and Components Thereof; Institution of...

    Science.gov (United States)

    2013-03-01

    ... the sale within the United States after importation of certain wireless communications base stations... United States after importation of certain wireless communications base stations and components thereof... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-871] Certain Wireless Communications Base...

  20. Decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Gregory, A.R.

    1988-01-01

    In the United Kingdom the Electricity Boards, the United Kingdom Atomic Energy Authority (UKAEA) and BNFL cooperate on all matters relating to the decommissioning of nuclear plant. The Central Electricity Generating Board's (CEGB) policy endorses the continuing need for nuclear power, the principle of reusing existing sites where possible and the building up of sufficient funds during the operating life of a nuclear power station to meet the cost of its complete clearance in the future. The safety of the plant is the responsibility of the licensee even in the decommissioning phase. The CEGB has carried out decommissioning studies on Magnox stations in general and Bradwell and Berkeley in particular. It has also been involved in the UKAEA Windscale AGR decommissioning programme. The options as to which stage to decommission to are considered. Methods, costs and waste management are also considered. (U.K.)