WorldWideScience

Sample records for calculating radiation exposures

  1. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  2. Prenatal radiation exposure. Dose calculation; Praenatale Strahlenexposition. Dosisermittlung

    Energy Technology Data Exchange (ETDEWEB)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P. [University Hospital Witten/Herdecke, Wuppertal (Germany). Dept. of Diagnostic and Interventional Radiology; Roeser, A. [University Hospital Witten/Herdecke, Wuppertal (Germany). Dept. of Radiotherapy and Radio-Oncology

    2015-05-15

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  3. Detriment calculations resulting from occupational radiation exposures in Egypt

    International Nuclear Information System (INIS)

    The application of the nominal probability coefficient to evaluate the detriment after the annual occupational exposures of workers from radiation sources and radioactive material have been calculated for workers in medical practices, industrial applications, atomic energy activities and those involved in exploration and mining of radioactive ores and phosphates. The aim of detriment calculations is to provide a foresight for the future occurrence of stochastic effects among the exposed workers. The calculated detriment can be classified into three classes. The first includes workers in diagnostic radiology and atomic energy activities who received the higher doses and consequently represent the higher detriment. The second class comprises workers in radiotherapy and nuclear medicine whose detriment is for times lesser than that of the first class. The third one concerns workers in industrial applications and in exploration and mining of radioactive ores and phosphates, their detriments ten times lesser than that of the second class. The occupational radiation doses are endorsed by the united nation scientific committee on efects of atomic radiation (UNSCEAR) for the period january 1995 to december 1998

  4. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance.

  5. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    International Nuclear Information System (INIS)

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance

  6. Calculations of internal and external radiation exposure based on voxel models. Final report

    International Nuclear Information System (INIS)

    Dose estimations of internal and external radiation exposure were based so far on mathematical phantoms with rather simple geometrical descriptions of the human body and teh organs. Recently the mathematical phantoms are replaced by more realistic voxel models that allow a more realistic dose estimation for professional radiation exposed personnel, individuals and patients. The projects is aimed to calculate organ doses for exposure to environmental radiation, organ doses for patients during computed tomography and to develop a voxel model for pregnant (24th week of pregnancy) woman for the estimation of radiation doses for the unborn child.

  7. CARE. A model for radiation exposure calculations based on measured emission rates from nuclear facilities

    International Nuclear Information System (INIS)

    The programme CARE (calculation of the annual radiation exposure) calculates the annual environmental exposure of complex nuclear installations. In the diffusion calculation of pollutants, the real weather conditions of the year concerned are taken into account on an hourly basis together with the associated release rates measured for the various nuclides of individual emitters. According to their location in the plant, the contributions of the time-integrated pollutant concentrations of the individual emitters are superimposed at predefinable receiving points in the vicinity or on the boundary of an installation (plant fencing). In the conception of models for calculating the resultant 50-year dose commitments care was taken to ensure that the programme CARE is capable of treating both individual emissions limited in time and quasi-continuous emissions. The programme CARE can therefore be used also for a subsequent calculation of radiation exposure in the event of accidents. (orig.)

  8. Calculation guide mining. Calculation guide for the determination of radiation exposure due to environmental radioactivity resulting from mining

    International Nuclear Information System (INIS)

    The present ''Calculation Guide Mining'' serves to determine mining-caused radiation exposure of members of the public and of workers. It is applicable for the use, decommissioning, remediation, and reuse of mining plants and installations as well as for the use, remediation, and reuse of land contaminated as a result of mining plants and installations. The ''Calculation Guide Mining'' describes procedures and parameters to determine effective dose indoors, at underground workplaces, and outdoors, as well as for consumption of breast milk and locally produced foodstuff. The following exposure pathways are considered: external exposure due to gamma-radiation from the soil, exposure due to inhalation of dust, exposure due to inhalation of radon and its short-lived decay products, exposure from ingestion of breast milk and locally produced foodstuff (drinking water, fish, milk and milk products, meat and meat products, leafy vegetables, other vegetable products), and exposure due to direct soil ingestion. In order to account for the natural level of environmental radioactivity involved in measurements, the ''Calculation Guide Mining'' includes levels of natural background for all relevant environmental media. (orig.)

  9. Programs to calculate human radiation exposure caused by atmospheric diffusion of radioactive substances

    International Nuclear Information System (INIS)

    This report describes - with a discussion on the mathematical background of transport processes near the ground - a program system START which make possible the interactive calculation of human radiation exposure resulting from the accidental release of radioactivity from nuclear facilities into the atmosphere. The system supplies data relevant immediately after the release on the whole-body and thyroid exposure of adults caused by inhalation and γ-submersion. (orig./HP)

  10. Calculation of the radiation environment caused by galactic cosmic rays for determining air crew exposure

    CERN Document Server

    Ferrari, A; Rancati, T

    2001-01-01

    The spectra of secondary particles resulting from interactions of primary galactic cosmic rays with the nuclei in the atmosphere have been calculated using the Monte Carlo transport code FLUKA. The simulations have been carried out at solar minimum and solar maximum activity, for several values of the vertical geomagnetic cut-off. The effective dose rate and the ambient dose equivalent rate as a function of geomagnetic cut-off and altitude have been obtained using appropriate sets of conversion coefficients. The calculated results are discussed and compared with experimental data and other calculations. A simple method is proposed to calculate the radiation exposure at aircraft altitudes. (55 refs).

  11. Calculation of conversion coefficients for radiological protection against external radiation exposures

    International Nuclear Information System (INIS)

    Calculations are essential for radiation protection practice because organ doses and effective doses cannot be measured directly. Conversion coefficients describe the numerical relationships of protection quantities and operational quantities. The latter can be measured in practical situations using suitable dosimeters. The conversion coefficients are calculated using radiation transport codes - usually based on Monte Carlo methods - that simulate the interactions of radiation with matter in computational models of the human body. A new generation of human body models, the so-called voxel models, are constructed from image data of real persons using suitable image processing systems, consequently, they represent the human anatomy more realistically than the so-called mathematical models. The numerical effects of realistic body anatomy on the calculated conversion coefficients can amount to 70% and more for external exposures. (orig.)

  12. Readings of Polysulphone Film after Fractionated and Continuous Exposures to UV Radiation and Consequences for the Calculation of the Reading Resulting from Polychromatic UV Radiation

    International Nuclear Information System (INIS)

    The reading of polysulphone film (PSF), resulting from fractionated exposures to monochromatic UV radiation, was compared with the response to continuous irradiations of the same radiant exposure and wavelength. Also studied was the effect of a pre-exposure to monochromatic UV radiation on the reading resulting from a subsequent irradiation at a different wavelength. The results are used for a physical description of the detector reading resulting from given spectral radiant exposures. This allows readings of PSF after exposures to polychromatic UV radiation to be calculated. The description was tested for solar UV radiation at ground level and good agreement between experimental and calculated detector readings was achieved. (author)

  13. The simple exposure dose calculation method in interventional radiology and one case of radiation injury (alopecia)

    International Nuclear Information System (INIS)

    Interventional radiology (IVR) is less invasive than surgery, and has rapidly become widespread due to advances in instruments and X-ray apparatuses. However, radiation exposure of long-time fluoroscopy induces the risk of radiation injury. We estimated the exposure dose in the patient who underwent IVR therapy and developed radiation injury (alopecia). The patient outcome and the method of estimating the exposure dose are reported. The estimation method of exposure dose was roughly estimated by real-time expose dose during exam. It is a useful indicator for the operator to know the exposure dose during IVR. We, radiological technologist must to know call attention to the role of radiological technicians during IVR. (author)

  14. The calculation of collective radiation exposure arising from discharges of activity into an estuary or sea in the British Isles

    International Nuclear Information System (INIS)

    A model is described for the calculation of collective radiation exposure for releases of activity to an estuary or sea. The model is based on methods described by the Commission of the European Communities with the main exposure pathways being via the ingestion of seafood and external exposure on beaches. For tritium the most important pathway arises from the transfer of activity from the marine to the atmospheric environment. The model is best suited for calculations for fairly long-lived nuclides which do not become dispersed globally and for which the seafood ingestion pathway is dominant. Dose calculations for short-lived nuclides or nuclides where the external exposure pathway can be important will have greater uncertainty associated with them. A computer code CODAR is being developed which incorporates this model. (author)

  15. The calculation of collective radiation exposure arising from discharges of activity into an estuary or sea in the British Isles

    International Nuclear Information System (INIS)

    A model is described for the calculation of collective radiation exposure for releases of activity to an estuary or sea. The model is based on methods described by the CEC with the main exposure pathways being via the ingestion of seafood and external exposure on beaches. For tritium the most important pathway arises from the transfer of activity from the marine to the atmospheric environment. The model is best suited for calculations for fairly long-lived nuclides which do not become dispersed globally and for which the seafood ingestion pathway is dominant. Dose calculations for short-lived nuclides or nuclides where the external exposure pathway can be important will have greater uncertainty associated with them. A computer code CODAR is being developed which incorporates this model. (author)

  16. Results of calculations of external gamma-radiation exposure rates from fallout and the related radionuclide compositions. Operations Nougat through Bowline, 1962-1968

    International Nuclear Information System (INIS)

    Data are presented on calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from Events that deposited detectable radioactivity outside the Nevada Test Site complex

  17. Modeling of radionuclide transport through rock formations and the resulting radiation exposure of reference persons. Calculations using Asse II parameters

    International Nuclear Information System (INIS)

    The long-term release of radioactivity into the ground water path cannot be excluded for the radioactive waste repository Asse II. The possible radiological consequences were analyzed using a radio-ecological scenario developed by GRS. A second scenario was developed considering the solubility of radionuclides in salt saturated solutions and retarding/retention effects during the radionuclide transport through the cap rock layers. The modeling of possible radiation exposure was based on the lifestyle habits of reference persons. In Germany the calculation procedure for the prediction of radionuclide release from final repositories is not defined by national standards, the used procedures are based on analogue methods from other radiation protection calculations.

  18. WARA - a FORTRAN program for calculation of the radiation exposure based on emission and immission values for running waters

    International Nuclear Information System (INIS)

    The FORTRAN program WARA to calculate the external and internal radiation-exposition of the population across the waste water pathway in the surrounding of nuclear plants based on emission or immission values. The program is based on the ''Allgemeine Berechnungsgrundlagen fuer die Strahlenexposition bei radioaktiven Ableitungen mit der Abluft oder in Oberflaechengewaesser'' by the Federal Ministry of the Interior and the Recommendations of the International Commission on Radiological Protection - ICRP-Publication 26. The program allows for 231 nuclides, 8 exposition pathways, 12 organs and 7 groups of population. Among other things the program is used for the calculation of the radiation exposure in the environment of the GKSS Geesthacht Research reactor FRG. (orig.)

  19. Calculation of the radiation doses occurring in the human body for inadvertent ingestion of soil and other soil exposure pathways

    Science.gov (United States)

    Oner, F.; Okumuolu, N.

    2003-11-01

    We estimate the radiation doses in the human body, in the Gudalore region in India, following the inadvertent ingestion of soil and exposure to other soil pathways by measuring Th-232, U-238, and K-40. We estimate the equivalent dose in eleven different organs and the absorbed dose calculations for the whole body. The annual effective doses are calculated, the lowest is in Kariyasolai at 7.8 x 10(-3) mSv whereas the highest is in Ponnur at 8.9 x 10(-2) mSv. In all regions, the lowest equivalent doses through inadvertent soil ingestion are calculated in the kidney and thyroid whereas the highest doses are in the red marrow and on the bone surface.

  20. Results of calculations of external gamma radiation exposure rates from fallout and the related radionuclide compositions. Operation Buster-Jangle, 1951

    International Nuclear Information System (INIS)

    This report presents data on calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from Events that deposited detectable radioactivity outside the Nevada Test Site complex

  1. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  2. SESAM: a model for the calculation of radiation exposure by emission of pollutants with the exhaust air in the case of a multi-source situation

    International Nuclear Information System (INIS)

    The report deals with the calculation of the individual radiation exposure in the catchment area of several nuclear emitters. A model and computer program, SESAM - Calculation of the Radiation Exposure by Emission of Pollutants with the Exhaust air in the Case of a Multi-Source Situation -, was developed which makes possible all the evaluations of long-time exposure which are relevant for the licensing process - such as the determination of the maximum individual radiation exposure to the various organs at the worst receiving point - together with the exposure of the environment by several nuclear emission sources - such as, for example, several units of a power plant facility, the various emitters of a waste management center, or even consideration of the previous exposure of a site by nuclear emission sources

  3. Solar UV radiation exposure of seamen – Measurements, calibration and model calculations of erythemal irradiance along ship routes

    International Nuclear Information System (INIS)

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  4. Results of calculations of external gamma radiation exposure rates from local fallout and the related radionuclide compositions of two hypothetical 1-MT nuclear bursts. Final report

    International Nuclear Information System (INIS)

    This report presents data on calculated gamma radiation exposure rates and local surface deposition of related radionuclides resulting from two hypothetical 1-Mt nuclear bursts. Calculations are made of the debris from two types of bombs: one containing 235U as a fissionable material (designated oralloy), the other containing 238U (designated tuballoy). 4 references

  5. Results of calculations of external gamma radiation exposure rates from local fallout and the related radionuclide compositions of two hypothetical 1-MT nuclear bursts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, H.

    1984-12-01

    This report presents data on calculated gamma radiation exposure rates and local surface deposition of related radionuclides resulting from two hypothetical 1-Mt nuclear bursts. Calculations are made of the debris from two types of bombs: one containing /sup 235/U as a fissionable material (designated oralloy), the other containing /sup 238/U (designated tuballoy). 4 references.

  6. Monitoring of radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    The guide specifies the requirements for the monitoring of radiation exposure in instances where radiation is used. In addition to workers, the guide covers students, apprentices and visitors. The guide shall also apply to exposure from natural radiation. However, the monitoring of radiation exposure in nuclear power plants is dealt with in YVL Guide 7.10 and 7.11. The guide defines the concepts relevant to the monitoring of radiation exposure and provides guidelines for determining the necessity of monitoring and subsequently arranging such in different operations. In addition, the guide specifies the criteria for the approval and regulatory control of the dosimetric service.

  7. Monitoring of radiation exposure

    International Nuclear Information System (INIS)

    The guide specifies the requirements for the monitoring of radiation exposure in instances where radiation is used. In addition to workers, the guide covers students, apprentices and visitors. The guide shall also apply to exposure from natural radiation. However, the monitoring of radiation exposure in nuclear power plants is dealt with in YVL Guide 7.10 and 7.11. The guide defines the concepts relevant to the monitoring of radiation exposure and provides guidelines for determining the necessity of monitoring and subsequently arranging such in different operations. In addition, the guide specifies the criteria for the approval and regulatory control of the dosimetric service

  8. SESAM - a model for calculating the radiation exposure associated with the release of pollutants contained in the exhaust air in the case of a multi-source situation

    International Nuclear Information System (INIS)

    Within the scope of the research project St.Sch.645, sponsored by the German Federal Minister of Research and Technology (BMFT) a model and computer code called SESAM (calculation of radiation exposure by release of pollutants with the exhaust air in the case of a multi-source situation) was established, allowing to perform all the assessments of long-time exposure required for licensing - as e.g. evaluation of the maximum individual radiation exposure of the different organs at the most unfavorable point of reference - associated with the environmental impact of several nuclear sources of release - as e.g. several units of a nuclear power plant, different sources of a waste management center, or also consideration of the pre-existing exposures of a site caused by nuclear sources. The basis of this multi-source model SESAM are the models for calculating the exposure in the environment of nuclear facilities for the pathways external gamma radiation from the cloud, external beta radiation from the cloud, gamma radiation from material deposited on the ground, inhalation and ingestion, as well as the data material, as e.g. dose constants and radioecological conversion factors (kg 1 and kg 2) for critical groups of the popualation, specified in the German guideline Principles for Calculating the Exposure Caused by the Release of Radioactive Material with the Exhaust Air. (orig./HP)

  9. Automation of radiation exposure dose calculation in the area surrounding reactor of Musashi Institute of Technology

    International Nuclear Information System (INIS)

    The purpose of this study is to develop a system, by which the data on wind direction, wind velocity, temperature, humidity, sunshine, radiation balance, rain fall and others in the vicinity of the stack of the nuclear facility are collected every moment and analyzed, the information not measured so far is extracted, those are continuously digitally recorded, and if the release of radioactive materials out of the stack is assumed, its effects on the surrounding environment are immediately computed and indicated on a graphic display. The system to detect abnormality for the back up of reactor operators and to issue the appropriate instruction is also to be developed in parallel by collecting data on the operating status of the reactor and from the monitors watching the surrounding area. It is considered to unify the data format for carrying out easily mutual comparison of such data and their evaluation in future and to connect the reactor facilities of universities in Japan on-line if possible, by co-developing this system together with these universities making the reactor of Musashi Institute of Technology as a model. In this report, the system configuration and block diagrams and respective satellite functions and operations are described. These satellites include new MK system, reactor-related data collection, weather data collection, colored CRT display, operator console, and packet type data exchanger. Most noteworthy is the data collection with an ultrasonic anemometer, and its construction is illustrated. (Wakatsuki, Y.)

  10. Hazards of radiation exposure

    International Nuclear Information System (INIS)

    Radiation induced carcinogenesis and mutagenesis form the main risks to health from exposure to low levels of radiation. There is scant data on somatic and genetic risks at environmental and occupational levels of radiation exposure. The available data on radiation induced carcinogenesis and mutagenesis are for high doses and high dose rates of radiation. Risk assessments for low level radiation are obtained using these data, assuming a linear dose-response relationship. During uranium mining the chief source of radiation hazard is inhalation of radon daughters. The correlation between radon daughter exposure and the increased incidence of lung cancer has been well documented. For radiation exposures at and below occupational limits, the associated risk of radiation induced cancers and genetic abnormalities is small and should not lead to a detectable increase over naturally occurring rates

  11. Radiation exposure records management

    International Nuclear Information System (INIS)

    Management of individual radiation exposure records begins at employment with the accumulation of data pertinent to the individual and any previous occupational radiation exposure. Appropriate radiation monitorinng badges or devices are issued and accountability established. A computer master file is initiated to include the individual's name, payroll number, social security number, birth date, assigned department, and location. From this base, a radiation exposure history is accumulated to include external ionizing radiation exposure to skin and whole body, contributing neutron exposure, contributing tritium exposure, and extremity exposure. It is used also to schedule bioassay sampling and in-vivo counts and to provide other pertinent information. The file is used as a basis for providing periodic reports to management and monthly exposure summaries to departmental line supervision to assist in planning work so that individual annual exposures are kept as low as practical. Radiation exposure records management also includes documentation of radiation surveys performed by the health physicist to establish working rates and the individual estimating and recording his estimated exposure on a day-to-day basis. Exposure information is also available to contribute to Energy Research and Development Administration statistics and to the National Transuranium Registry

  12. Radiation exposure from building materials

    International Nuclear Information System (INIS)

    A survey procedure was developed to find buildings in which the radiation exposure from gamma rays is relatively high. For modern structures NaI(Tl) survey meters are used to identify building materials with higher radionuclide content. Samples of these materials are analyzed by gamma-ray spectroscopy for 226Ra daughters, 232Th daughters, and 40K. The exposure rate in a building is computed from these concentrations on the basis of the geometrical configuration of building materials, acting both as radiation sources and as a shield against terrestrial radiation, and also on the basis of the outside radiation exposure rate at the building site. The procedure may also be applied to surveys of building material constituents and to materials in place in older structures. A calculational model was developed to predict radiation exposure rates within the houses

  13. Pregnancy and Radiation Exposure

    Science.gov (United States)

    ... had that might impact the development of their sperm or their eggs (ova) and their risk of ... your concerns with them. Radiation Exposure to the Sperm from Diagnostic X-Ray Studies There are no ...

  14. Results of calculations of external gamma radiation exposure rates from local fallout and the related radionuclide compositions of selected US Pacific events

    International Nuclear Information System (INIS)

    This report presents data on calculated gamma radiation exposure rates and local surface deposition of related radionuclides resulting from selected US Pacific events. Results of the calculations of relative external gamma radiation exposure rate and related radionuclide ground deposition are given in six appendices. The output of the calculation has 30 decay times: 10 from 1 to 21 h, 10 from 1 to 300 d, and 10 from 1 to 50 y. For each of these times and for zero time, there are values of the external gamma radiation exposure rate normalized to 1 mR/h, 1 m above the surface, 12 h after the event; the associated values of μCi/m2 for each radionuclide; and the total μCi/m2. Surface roughness effects are simulated by using Beck's values of (mR/h)/μCi/m2) for a relaxation length of 0.16 g/cm2. Fractionation effects, simulated by the removal of a fraction of the refractory nuclides from the calculation, were found for unfractionated debris and for debris with 0.5 and 0.1 of the refractory elements present. Each Appendix contains three sets of 11 pages of calculated results relating to one event in Table 1. Each set of 11 pages is marked page 2 through page 12. Page 2 of each set gives the external gamma-ray exposure rates and associated values of total microcuries per square meter at 30 decay intervals and at zero time. The value for each activation product at zero time is the result of a measurement. The measurements were performed on debris samples taken by aircraft approximately 1 to 4 h after detonation. When no measurement exists, the value appears as zero. Fission products were calculated from the fissioning nuclides and neutron energy spectra. Calculated values for each radionuclide at various decay intervals are given

  15. Animal mortality resulting from uniform exposures to photon radiations: Calculated LD50s and a compilation of experimental data

    International Nuclear Information System (INIS)

    Studies conducted during the 1950s and 1960s of radiation-induced mortality to diverse animal species under various exposure protocols were compiled into a mortality data base. Some 24 variables were extracted and recomputed from each of the published studies, which were collected from a variety of available sources, primarily journal articles. Two features of this compilation effort are (1) an attempt to give an estimate of the uniform dose received by the bone marrow in each treatment so that interspecies differences due to body size were minimized and (2) a recomputation of the LD50 where sufficient experimental data are available. Exposure rates varied in magnitude from about 10-2 to 103 R/min. This report describes the data base, the sources of data, and the data-handling techniques; presents a bibliography of studies compiled; and tabulates data from each study. 103 refs., 44 tabs

  16. Occupational radiation exposure

    International Nuclear Information System (INIS)

    The X-ray and Radiation Protection Ordinances in the Federal Republic of Germany and Austria were discussed. The demands of protection ordinances can only be met if the monitoring of the radiation dose is ensured to a large extent. This was stated in the lectures on dosimetry, but also in those on the technical know-how and knowledge and the quality control in radiodiagnostics. The leukemia and cancer risk for persons exposed to radiation at work came also up for discussion, and the report on the re-evaluation of data about Hiroshima and Nagasaki showing a statistically recordable rise in cancer mortality has to be seen in connection with the radiation protection laws. A lecture was held on a radiation accident in Brazil in 1987 in order to give an example of an increased radiation exposure with a fatal result. It was an off-plant radiation accident. Since a physical dosimetry naturally cannot take place in such cases, it becomes necessary to inform oneself on the extent of the detriment by means of the detrimental characteristics of the irradiated organism. Also reported was the ''biological dosimetry'' of the radiation accident in Brazil. The 23 contributions have been separately recorded in the data base. (orig./DG) With 43 figs., 41 tabs

  17. Environmental radioactivity and radiation exposure

    International Nuclear Information System (INIS)

    In 1977 population exposure in the Federal Republic of Germany has not changed as compared to the previous years. The main share of the total exposure, nearly two thirds, is attributed to natural radioactive substances and cosmic radiation. The largest part (around 85%) of the artificial radiation exposure is caused by X-ray diagnostics. In comparison to this, radiation exposure from application of ionizing radiation in medical therapy, use of radioactive material in research and technology, or from nuclear facilities is small. As in the years before, population exposure caused by nuclear power plants and other nuclear facilities is distinctly less than 1% of the natural radiation exposure. This is also true for the average radiation exposure within a radius of 3 km around nuclear facilities. On the whole, the report makes clear that the total amount of artificial population exposure will substantially decrease only if one succeeds in reducing the high contribution to the radiation exposure caused by medical measures. (orig.)

  18. The calculation of individual radiation exposure rates arising from routine discharges of activity into an estuary or sea

    International Nuclear Information System (INIS)

    Simple methods are described which enable assessments to be made of exposure rates to individuals arising from the release of activity into an estuary or sea. These methods are based in the main on those employed by the Ministry of Agriculture Fisheries and Food together with models developed by the author. The exposure routes considered are the ingestion of seafood and external exposure from β and γ emitters arising from occupancy over contaminated sediments or beaches and the handling of fishing gear. These routes are generally the most important, but for any chosen site it will also be necessary to determine whether any other exposure routes are significant. (author)

  19. Epidemiology of accidental radiation exposures.

    OpenAIRE

    Cardis, E

    1996-01-01

    Much of the information on the health effects of radiation exposure available to date comes from long-term studies of the atomic bombings in Hiroshima and Nagasaki. Accidental exposures, such as those resulting from the Chernobyl and Kyshtym accidents, have as yet provided little information concerning health effects of ionizing radiation. This paper will present the current state of our knowledge concerning radiation effects, review major large-scale accidental radiation exposures, and discu...

  20. INDAR: a computer code for the calculation of critical group radiation exposure from routine discharges of radioactivity to seas and estuaries - description and users' guide

    International Nuclear Information System (INIS)

    The computer program INDAR enables detailed estimates to be made of critical group radiation exposure arising from routine discharges of radioactivity for coastal sites where the discharge is close to the shore and the shoreline is reasonably straight, and for estuarine sites where radioactivity is rapidly mixed across the width of the estuary. Important processes which can be taken into account include the turbulence generated by the discharge, the effects of a sloping sea bed and the variation with time of the lateral dispersion coefficient. The significance of the timing of discharges can also be assessed. INDAR uses physically meaningful hydrographic parameters directly. For most sites the most important exposure pathways are seafood consumption, external exposure over estuarine sediments and beaches, and the handling of fishing gear. As well as for these primary pathways, INDAR enables direct calculations to be made for some additional exposure pathways. The secondary pathways considered are seaweed consumption, swimming, the handling of materials other than fishing gear and the inhalation of activity. (author)

  1. Pregnancy and radiation exposure

    International Nuclear Information System (INIS)

    In confirmed or presumptive pregnancy it is especially critical to determine the indications for X-ray examination. This assumes that every young woman, before an examination in the pelvic region, be asked explicity when her last normal period was. Examinations of the pelvis which are not acutely necessary should be postponed until the first 10 days after menstruation. If radiologic examination of the true pelvis must be carried out despite pregnancy or is inadvertently done because pregnancy was not recognized, the radiation exposure of the embryo is so small in most cases because of modern dose-sparing equipment, that an interruption of pregnancy is not justified. A dose of less than 1 rad is, as a rule, justifiable, but it is less justifiable that alarmed, uninformed physicians instill a deep-seated fear of giving brith to a freak in a woman through false information. (orig.)

  2. DOE 2012 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site.

  3. DOE 2011 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  4. Environmental radiation and exposure to radiation

    International Nuclear Information System (INIS)

    Compared to 1977 the exposure to radiation of the population of the Federal Republic of Germany from both natural and artificial radiation sources has not greatly charged. The amin part of exposure to natural radiation is caused by environmental radiation and by the absorption of naturally radioactive substances into the body. Artificial exposure to radiation of the population is essentially caused by the use of ionizing rays and radioactive substances in medicine. When radioactive materials are released from nuclear facilities the exposure to radiation of the population is only very slightly increased. The real exposure to radiation of individual people can even in the worst affected places, have been at most fractions of a millirem. The exposure to radiation in the worst afected places in the area of a hard-coal power station is higher than that coming from a nuclear power station of the same capacity. The summation of all contributions to the exposure of radiation by nuclear facilities to the population led in 1978 in the Federal Republic of Germany to a genetically significant dose of clearly less than 1 millerem per year. The medium-ranged exposure to radiation by external radiation effects through professional work was in 1978 at 80 millirems. No difference to 1977. The contribution of radionuclide from the fallout coming from nuclear-weapon tests and which has been deposited in the soil, to the whole-body dose for 1978 applies the same as the genetically significant dose of the population with less than 1 millirem. (orig./HP)

  5. DOE 2010 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-11-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2010 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  6. DOE 2009 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-09-01

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2009 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  7. DOE 2008 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-01

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE. The DOE 2008 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. This report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  8. Occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    An overview of occupational exposure is presented. Concepts and quantities used for radiation protection are explained as well as the ICRP system of dose limitation. The risks correlated to the limits are discussed. However, the actual exposure are often much lower than the limits and the average risk in radiation work is comparable with the average risk in other safe occupations. Actual exposures in various occupations are presented and discussed. (author)

  9. Calculation of radiation exposure of the environment of interim storage facilities for the dry storage of spent fuel in dual-purpose casks

    International Nuclear Information System (INIS)

    Acceptance problems in the public concerning the transport of spent nuclear fuel elements and a new political objective of the Federal Government have forced the German utilities to embark on on-site interim storage projects for the temporary storage of spent nuclear fuel elements. STEAG encotec GmbH, Essen, Germany, was awarded contracts for the conceptual planning including necessary shielding calculations for the majority of the 13 nuclear sites which opted for the dry storage concept. The capacity of the storage facilities ranges from 80 to 100 casks, according to the storage needs of the plants. The average dose rate at the surface of each cask was limited to 0.5 mSv/h, independent of the type of radiation. These new buildings should not significantly increase the exposure of the public to radiation already originating from the existing nuclear power plant. The layout of the storage building therefore has to ensure that additional target values of 10-20 Sv/y are not exceeded. These very low target values as well as the requirement to avoid high mechanical impacts to the casks in case of external events led to a thickness of walls and ceilings of between 1.2 m and 1.3 m. To remove the decay heat from the casks by natural convection sufficient cross sections of the air inlet and outlet ducts are required

  10. Radiation exposures: risks and realities

    International Nuclear Information System (INIS)

    Discovery of radioactivity in 1869 by Henry Becquerel and artificial radioactivity by Irene Curie in 1934 led to the development of nuclear field and nuclear materials in 20th century. They are widely used for man-kind across the globe in electricity production, carbon dating, treatment and diagnosis of diseases etc. While deriving benefits and utilizing nuclear resources for the benefit of man-kind, it is inevitable that exposure to radiation can not be avoided. Radiation exists all around us either natural or man-made which can not be totally eliminated or avoided. Radiation exposures from natural background contribute 2.4 to 3.6 mSv in a year. Radiation exposures incurred by a member of public due to nuclear industries constitute less than one hundredth of annual dose due to natural background. Hence it is important to understand the risk posed by radiation and comparison of radiation risk with various risks arising due to other sources. Studies have indicated that risks due to environmental pollution, cigarette smoking, alcohol consumption, heart diseases are far higher in magnitude compared to radiation risks from man made sources. This paper brings about the details and awareness regarding radiation exposures, radiation risk, various risks associated with other industries and benefits of radiation exposures. (author)

  11. Radiation exposure modeling and project schedule visualization

    International Nuclear Information System (INIS)

    This paper discusses two applications using IGRIP (Interactive Graphical Robot Instruction Program) to assist environmental remediation efforts at the Department of Energy (DOE) Hanford Site. In the first application, IGRIP is used to calculate the estimated radiation exposure to workers conducting tasks in radiation environments. In the second, IGRIP is used as a configuration management tool to detect interferences between equipment and personnel work areas for multiple projects occurring simultaneously in one area. Both of these applications have the capability to reduce environmental remediation costs by reducing personnel radiation exposure and by providing a method to effectively manage multiple projects in a single facility

  12. Radiation exposure modeling and project schedule visualization

    Energy Technology Data Exchange (ETDEWEB)

    Jaquish, W.R.; Enderlin, V.R. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1995-10-01

    This paper discusses two applications using IGRIP (Interactive Graphical Robot Instruction Program) to assist environmental remediation efforts at the Department of Energy (DOE) Hanford Site. In the first application, IGRIP is used to calculate the estimated radiation exposure to workers conducting tasks in radiation environments. In the second, IGRIP is used as a configuration management tool to detect interferences between equipment and personnel work areas for multiple projects occurring simultaneously in one area. Both of these applications have the capability to reduce environmental remediation costs by reducing personnel radiation exposure and by providing a method to effectively manage multiple projects in a single facility.

  13. Radiation exposure and infant cancer

    International Nuclear Information System (INIS)

    Medical exposures accompanied by an increase in radiation use in the field of pediatrics were described. Basic ideas and countermeasures to radiation injuries were outlined. In order to decrease the medical exposure, it is necessary for the doctor, x-ray technician and manufacturer to work together. The mechanism and characteristics of radio carcinogenesis were also mentioned. Particularly, the following two points were described: 1) How many years does it take before carcinogenesis appears as a result of radiation exposure in infancy 2) How and when does the effect of fetus exposure appear. Radiosensitivity in infants and fetuses is greater than that of an adult. The occurrence of leukemia caused by prenatal exposure was reviewed. The relation between irradiation for therapy and morbidity of thyroid cancer was mentioned. Finally, precautions necessary for infants, pregnant women and nursing mothers when using radioisotopes were mentioned. (K. Serizawa)

  14. Carcinogenesis by internal radiation exposures

    International Nuclear Information System (INIS)

    Radiation carcinogenesis is based on the same molecular mechanisms, while spatial and temporal dose distribution in target cells is differed between internal and external radiation exposures. Animal models on dose-carcinogenic response relationships are required to complement an uncertainties in human epidemiological studies and finally to estimate human risk of internal exposures to radionuclides. Several dose response models for experimental carcinogenesis by internally administered radionuclides in laboratory animals were reviewed and discussed in this paper. (J.P.N.)

  15. CODAR: a computer code for the calculation of collective and individual radiation exposure arising from the release of activity to an estuary or sea in the British Isles

    International Nuclear Information System (INIS)

    A description is given of the computer program CODAR which enables estimates to be made of both collective and individual radiation exposure for releases of activity around the coasts of the Britsh Isles The program can be run for either a limited or a continuous release of activity, and for different assumptions about, for example, the loss of activity to bottom sediments, he external exposure arising from contaminated sediments and the local hydrology. For collective exposure the world, EEC or UK populations can be considered. Full details are given to enable users to run the computer program. (author)

  16. Radiation Exposure and Pregnancy

    Science.gov (United States)

    ... radiation and was devel- oped by the Health Physics Society. Stabin M, Breitz H. Breast milk excretion of radiopharmaceuticals: Mechanisms, findings, and radiation dosimetry. Continuing Medical Education Article, Journal of Nuclear Medicine 41(5):863-873; 2000. U.S. Nuclear ...

  17. Radiation Exposure and Cancer

    Science.gov (United States)

    ... Compensation Programs for People Exposed to Radiation as Part of Nuclear Weapons Testing Between 1945 and 1962, several countries tested nuclear weapons in the open air. The US government has passed several laws to ... radiation as part of nuclear testing programs who later develop certain ...

  18. Malignant mesothelioma following radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Antman, K.H.; Corson, J.M.; Li, F.P.; Greenberger, J.; Sytkowski, A.; Henson, D.E.; Weinstein, L.

    1983-11-01

    Mesothelioma developed in proximity to the field of therapeutic radiation administered 10-31 years previously in four patients. In three, mesothelioma arose within the site of prior therapeutic radiation for another cancer. Mesothelioma in the fourth patient developed adjacent to the site of cosmetic radiation to a thyroidectomy scar. None of these four patients recalled an asbestos exposure or had evidence of asbestosis on chest roentgenogram. Lung tissue in one patient was negative for ferruginous bodies, a finding considered to indicate no significant asbestos exposure. Five other patients with radiation-associated mesothelioma have been reported previously, suggesting that radiation is an uncommon cause of human mesothelioma. Problems in the diagnosis of radiation-associated mesotheliomas are considered.

  19. Malignant mesothelioma following radiation exposure

    International Nuclear Information System (INIS)

    Mesothelioma developed in proximity to the field of therapeutic radiation administered 10-31 years previously in four patients. In three, mesothelioma arose within the site of prior therapeutic radiation for another cancer. Mesothelioma in the fourth patient developed adjacent to the site of cosmetic radiation to a thyroidectomy scar. None of these four patients recalled an asbestos exposure or had evidence of asbestosis on chest roentgenogram. Lung tissue in one patient was negative for ferruginous bodies, a finding considered to indicate no significant asbestos exposure. Five other patients with radiation-associated mesothelioma have been reported previously, suggesting that radiation is an uncommon cause of human mesothelioma. Problems in the diagnosis of radiation-associated mesotheliomas are considered

  20. Designing to minimize radiation exposure

    International Nuclear Information System (INIS)

    The radiation exposure received by the station staff must be considered during the design stage if CANDU stations are to achieve high capacity factor, high reliability and low maintenance and operational costs. On early CANDU stations, this exposure was higher than originally anticipated. Reviews to reduce exposure were started in 1969 and these have evolved into a formal program which defines specific objectives, classifies radiation levels, reviews designs and implements improvements where necessary. This paper outlines the program developed at AECL-PP (Power Projects) for use during the design of CANDU stations. (author)

  1. Sarcoma risk after radiation exposure

    Directory of Open Access Journals (Sweden)

    Berrington de Gonzalez Amy

    2012-10-01

    Full Text Available Abstract Sarcomas were one of the first solid cancers to be linked to ionizing radiation exposure. We reviewed the current evidence on this relationship, focusing particularly on the studies that had individual estimates of radiation doses. There is clear evidence of an increased risk of both bone and soft tissue sarcomas after high-dose fractionated radiation exposure (10 + Gy in childhood, and the risk increases approximately linearly in dose, at least up to 40 Gy. There are few studies available of sarcoma after radiotherapy in adulthood for cancer, but data from cancer registries and studies of treatment for benign conditions confirm that the risk of sarcoma is also increased in this age-group after fractionated high-dose exposure. New findings from the long-term follow-up of the Japanese atomic bomb survivors suggest, for the first time, that sarcomas can be induced by acute lower-doses of radiation (

  2. DOE 2013 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The Office of Analysis within the U.S. Department of Energy (DOE) Office of Environment, Health, Safety and Security (EHSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2013 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past five-year period, the occupational radiation exposure information has been analyzed in terms of aggregate data, dose to individuals, and dose by site.

  3. Cardiovascular complications of radiation exposure.

    Science.gov (United States)

    Finch, William; Shamsa, Kamran; Lee, Michael S

    2014-01-01

    The cardiovascular sequelae of radiation exposure are an important cause of morbidity and mortality following radiation therapy for cancer, as well as after exposure to radiation after atomic bombs or nuclear accidents. In the United States, most of the data on radiation-induced heart disease (RIHD) come from patients treated with radiation therapy for Hodgkin disease and breast cancer. Additionally, people exposed to radiation from the atomic bombs in Hiroshima and Nagasaki, Japan, and the Chernobyl, Ukraine, nuclear accident have an increased risk of cardiovascular disease. The total dose of radiation, as well as the fractionation of the dose, plays an important role in the development of RIHD. All parts of the heart are affected, including the pericardium, vasculature, myocardium, valves, and conduction system. The mechanism of injury is complex, but one major mechanism is injury to endothelium in both the microvasculature and coronary arteries. This likely also contributes to damage and fibrosis within the myocardium. Additionally, various inflammatory and profibrotic cytokines contribute to injury. Diagnosis and treatment are not significantly different from those for conventional cardiovascular disease; however, screening for heart disease and lifelong cardiology follow-up is essential in patients with past radiation exposure. PMID:25290729

  4. Assessing exposure to radiation

    International Nuclear Information System (INIS)

    Since the founding of Lawrence Livermore National Laboratory, we have been world leaders in evaluating the risks associated with radiation. Ultrasensitive tools allow us not only to measure radionuclides present in the body but also to reconstruct the radiation dose from past nuclear events and to project the levels of radiation that will still be present in the body for 50 years after the initial intake. A variety of laboratory procedures, including some developed here, give us detailed information on the effects of radiation at the cellular level. Even today, we are re-evaluating the neutron dose resulting from the bombing at Hiroshima. Our dose reconstruction and projection capabilities have also been applied to studies of Nagasaki, Chernobyl, the Mayak industrial complex in the former Soviet Union, the Nevada Test Site, Bikini Atoll, and other sites. We are evaluating the information being collected on individuals currently working with radioactive material at Livermore and elsewhere as well as previously collected data on workers that extends back to the Manhattan Project

  5. Environmental radioactivity and radiation exposure

    International Nuclear Information System (INIS)

    The environmental radioactivity in the Federal Republic of Germany was almost as high in 1976 as in 1975. It only increased temporarily in autumn 1976 as a result of the above-ground nuclear weapons test of the People's Republic of China on September 29th 1976 and then returned to its previous level. The radioactivity in food had a slight decreasing trend in 1976, apart from a temporary increase in the radioactivity in milk also caused by the nuclear weapons test mentioned. The population exposure remains basically unchanged in 1976 compared with 1975. The artificial radiation exposure is about half as high as the natural radiation exposure to which man has always been exposed. The former is based to 83% on using X-rays in medicine, particularly for X-ray diagnostic purposes. The population exposure due to nuclear power plants and other nuclear plants is still well below 1% of the natural radiation exposure although in 1976 three new nuclear power plants were put into operation. This is also true for the average radiation exposure within an area of 3 km around the nuclear plant. (orig.)

  6. Radiation Exposure of Passengers to Cosmic Radiation

    International Nuclear Information System (INIS)

    The main aim of the present study is to review exposure of Egyptian passengers and occupational workers to cosmic radiation during their work. Computed effective dose of passengers by computer code CARI-6 using during either short route, medium route or long route as well as recommended allowed number of flights per year

  7. Modeling of radionuclide transport through rock formations and the resulting radiation exposure of reference persons. Calculations using Asse II parameters; Modellierung des Transports von Radionukliden durch Gesteinsschichten und der resultierenden Strahlenexposition von Referenzpersonen. Berechnungen mit Parametern der Asse II

    Energy Technology Data Exchange (ETDEWEB)

    Kueppers, Christian; Ustohalova, Veronika; Steinhoff, Mathias

    2012-05-21

    The long-term release of radioactivity into the ground water path cannot be excluded for the radioactive waste repository Asse II. The possible radiological consequences were analyzed using a radio-ecological scenario developed by GRS. A second scenario was developed considering the solubility of radionuclides in salt saturated solutions and retarding/retention effects during the radionuclide transport through the cap rock layers. The modeling of possible radiation exposure was based on the lifestyle habits of reference persons. In Germany the calculation procedure for the prediction of radionuclide release from final repositories is not defined by national standards, the used procedures are based on analogue methods from other radiation protection calculations.

  8. Human exposure to ultraviolet radiation.

    Science.gov (United States)

    Diffey, B L

    1990-03-01

    Although the sun remains the main source of ultraviolet radiation (UVR) exposure in humans, the advent of artificial UVR sources has increased the opportunity for both intentional and unintentional exposure. Intentional exposure is most often to tan the skin. People living in less sunny climates can now maintain a year-round tan by using sunbeds and solaria emitting principally UVA radiation. Another reason for intentional exposure to artificial UVR is treatment of skin diseases, notably psoriasis. Unintentional exposure is normally the result of occupation. Outdoor workers, such as farmers, receive three to four times the annual solar UV exposure of indoor workers. Workers in many industries, eg, photoprinting or hospital phototherapy departments, may be exposed to UVR from artificial sources. One group particularly at risk is electric arc welders, where inadvertent exposure is so common that the terms "arc eye" or "welders flash" are often used to describe photokeratitis. In addition to unavoidable exposure to natural UVR, the general public is exposed to low levels of UVR from sources such as fluorescent lamps used for indoor lighting and shops and restaurants where UVA lamps are often used in traps to attract flying insects. PMID:2203439

  9. Psychiatric disorders after radiation exposure

    International Nuclear Information System (INIS)

    This review focuses on the mental and psychological effects of medical radiation exposure, the nuclear accident at Three Mile Island, the Chernobyl disaster, atomic bomb explosions at Nagasaki and Hiroshima, and accidents at nuclear power plants and nuclear waste plants. Studies have shown that anxiety about the adverse effects of radiation in medicine (such as infertility, carcinogenicity, and genotoxicity) and fear for exposure has caused psychiatric disorders. Several studies on the mental health effects of the nuclear accident at Three Mile Island were conducted, and the results indicated that psychiatric distress persisted for a certain period of time, particularly in pregnant women and women who have children, even when no evidence of substantial of radiation exposure is seen clinically. The psychological consequences of the Chernobyl disaster have been investigated continuously, and various problems, e.g., acute stress reaction, neurosis, and psychosis, have been identified, although no physical damage due to the radiation or PTSD have been reported. By contrast, PTSD has been seen in survivors of the Nagasaki and Hiroshima nuclear explosions. A study in Ohio, (United States), which has a nuclear waste plant, investigated PTSD in people living near the plant and found that the symptom level was mild. In general, the most common symptoms among people with mental and psychological disorders due to radiation exposure are depression and anxiety, with many people having associated somatoform disorders, and some people complain of PTSD. Vague anxiety and fear of sequelae, regardless of the exposure dose, appears to cause such psychiatric disorders. Although it is rare for psychiatrists to see such cases of psychiatric disorders due to radiation exposure, their number may increase as psychiatric services become more widely available. (K.H.)

  10. Psychiatric disorders after radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kokai, Masahiro [Hyogo Coll. of Medicine, Nishinomiya (Japan); Soejima, Toshinori; Wang, Shangdong; Shinfuku, Naotaka

    2001-04-01

    This review focuses on the mental and psychological effects of medical radiation exposure, the nuclear accident at Three Mile Island, the Chernobyl disaster, atomic bomb explosions at Nagasaki and Hiroshima, and accidents at nuclear power plants and nuclear waste plants. Studies have shown that anxiety about the adverse effects of radiation in medicine (such as infertility, carcinogenicity, and genotoxicity) and fear for exposure has caused psychiatric disorders. Several studies on the mental health effects of the nuclear accident at Three Mile Island were conducted, and the results indicated that psychiatric distress persisted for a certain period of time, particularly in pregnant women and women who have children, even when no evidence of substantial of radiation exposure is seen clinically. The psychological consequences of the Chernobyl disaster have been investigated continuously, and various problems, e.g., acute stress reaction, neurosis, and psychosis, have been identified, although no physical damage due to the radiation or PTSD have been reported. By contrast, PTSD has been seen in survivors of the Nagasaki and Hiroshima nuclear explosions. A study in Ohio, (United States), which has a nuclear waste plant, investigated PTSD in people living near the plant and found that the symptom level was mild. In general, the most common symptoms among people with mental and psychological disorders due to radiation exposure are depression and anxiety, with many people having associated somatoform disorders, and some people complain of PTSD. Vague anxiety and fear of sequelae, regardless of the exposure dose, appears to cause such psychiatric disorders. Although it is rare for psychiatrists to see such cases of psychiatric disorders due to radiation exposure, their number may increase as psychiatric services become more widely available. (K.H.)

  11. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  12. Radiation exposure in manned spaceflight

    International Nuclear Information System (INIS)

    Space missions exposure humans to a radiation environment of a particulate composition and intensity not encountered within our biosphere. The natural radiation environment encountered in Earth orbit is a complex mixture of charged particles of galactic and solar origin and of those trapped by the geomagnetic field. In addition, secondaries are produced by interaction of cosmic ray primaries with the spacecraft shielding material. Among this large variety of radiation components in space, it is likely that the heavy ions are the significant species as far as radiobiological effects are concerned. In addition, a synergistic interaction of microgravity and radiation on living systems has been reported in some instances. Based on an admissible risk of 3% mortality due to cancers induced during a working career, radiation protection guidelines have been developed for this radiation environment. (orig.)

  13. Radiation exposure from nuclear energy

    International Nuclear Information System (INIS)

    The information booklet contains the following papers which were already reported: 1) Scientific advisory committee of the German Bundesaerztekammer (medical board): Statement on the subject hazard by nuclear power plants (Deutsches Aerzteblatt - Aerztliche Mitteilung 1975, p. 2821 et sequ.). 2) Recommendation of the German Commission on Radiological Protection dated from Feb. 19, 1976: On the toxicity of inhaled hot particles, especially plutonium. 3) Statement of the German Commission on Radiological Protection dated from Dec. 16, 1976: Comparability of natural radiation exposure with the exposure from nuclear facilities. 4) Report of the German Federal Goverment on Environmental radioactivity and radiation exposure in the year of 1975 (Bundestagsdrucksache 8/311 dated from Apr 22, 1977). (orig./HP)

  14. DOE occupational radiation exposure 1996 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The goal of the US Department of Energy (DOE) is to conduct its radiological operations to ensure the health and safety of all DOE employees including contractors and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures and releases to levels that are ``As Low As Reasonably Achievable`` (ALARA). The DOE Occupational Radiation Exposure Report, 1996 provides summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE and precursor agency sites, and energy research. Collective exposure at DOE has declined by 80% over the past decade due to a cessation in opportunities for exposure during the transition in DOE mission from weapons production to cleanup, deactivation and decommissioning, and changes in reporting requirements and dose calculation methodology. In 1996, the collective dose decreased by 10% from the 1995 value due to decreased doses at five of the seven highest-dose DOE sites. For 1996, these sites attributed the reduction in collective dose to the completion of several decontamination and decommissioning projects, reduced spent fuel storage activities, and effective ALARA practices. This report is intended to be a valuable tool for managers in their management of radiological safety programs and commitment of resources.

  15. DOE occupational radiation exposure 1996 report

    International Nuclear Information System (INIS)

    The goal of the US Department of Energy (DOE) is to conduct its radiological operations to ensure the health and safety of all DOE employees including contractors and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures and releases to levels that are ''As Low As Reasonably Achievable'' (ALARA). The DOE Occupational Radiation Exposure Report, 1996 provides summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE and precursor agency sites, and energy research. Collective exposure at DOE has declined by 80% over the past decade due to a cessation in opportunities for exposure during the transition in DOE mission from weapons production to cleanup, deactivation and decommissioning, and changes in reporting requirements and dose calculation methodology. In 1996, the collective dose decreased by 10% from the 1995 value due to decreased doses at five of the seven highest-dose DOE sites. For 1996, these sites attributed the reduction in collective dose to the completion of several decontamination and decommissioning projects, reduced spent fuel storage activities, and effective ALARA practices. This report is intended to be a valuable tool for managers in their management of radiological safety programs and commitment of resources

  16. Radiation exposure during equine radiography

    International Nuclear Information System (INIS)

    All personnel present in the X-ray examination room during equine radiography were monitored using low energy direct reading ionization chambers (pockets dosimeters) worn outside the lead apron at neck level. The individuals' task and dosimeter readings were recorded after each examination. Average doses ranged from 0 to 6 mrad per study. The greatest exposures were associated with radiography of the shoulder and averaged less than 4 mrad. The individual extending the horse's limb was at greatest risk although the individual holding the horse's halter and the one making the X-ray exposure received similar exposures. A survey of the overhead tube assembly used for some of the X-ray examinations also was performed. Meter readings obtained indicated an asymetric dose distribution around the tube assembly, with the highest dose occurring on the side to which the exposure cord was attached. Although the exposures observed were within acceptable limits for occupational workers, we have altered our protocol and no longer radiograph the equine shoulder unless the horse is anesthetized. Continued use of the pocket dosimeters and maintenance of a case record of radiation exposure appears to make the technologists more aware of radiation hazards

  17. Animal mortality resulting from uniform exposures to photon radiations: Calculated LD/sub 50/s and a compilation of experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T.D.; Morris, M.D.; Wells, S.M.; Young, R.W.

    1986-12-01

    Studies conducted during the 1950s and 1960s of radiation-induced mortality to diverse animal species under various exposure protocols were compiled into a mortality data base. Some 24 variables were extracted and recomputed from each of the published studies, which were collected from a variety of available sources, primarily journal articles. Two features of this compilation effort are (1) an attempt to give an estimate of the uniform dose received by the bone marrow in each treatment so that interspecies differences due to body size were minimized and (2) a recomputation of the LD/sub 50/ where sufficient experimental data are available. Exposure rates varied in magnitude from about 10/sup -2/ to 10/sup 3/ R/min. This report describes the data base, the sources of data, and the data-handling techniques; presents a bibliography of studies compiled; and tabulates data from each study. 103 refs., 44 tabs.

  18. Monitoring of occupational radiation exposures

    International Nuclear Information System (INIS)

    The most widely used tool for occupational radiation exposure monitoring is a badge worn on the trunk to measure Hp(10) and Hp(0.07) of photon radiation. Monitoring of exposure to beta and neutron radiations is performed for about 20% and 5%, respectively, of the workers occupationally exposed to radiation. Monitoring for internal deposition of radionuclides is, in general, less well regulated, and the results of internal dosimetry programmes are scarcely available. Dose to workers can also be determined from the results of workplace monitoring. In the case of aircrews, dose is normally computed on the basis of data on cosmic radiation fields and flight profiles. New techniques are emerging for the individual monitoring of external radiation. Active and passive electronic dosimeter systems are providing new dimensions for dosimetry and data handling, including direct dose readout capabilities and application of modern data networks. A number of problems remain to be solved. Neutron and beta dosimeters are not yet fully satisfactory. Internal dosimetry, still the subject of major research activities, has a need for more standardized routine programmes and systematic reporting. Monitoring for naturally occurring radioactive materials has to be improved and included in existing programmes. For global exchange, standards on dose record formats, and most particularly, unique quantities and units, are indispensable. (author)

  19. Engineering calculations in radiative heat transfer

    CERN Document Server

    Gray, W A; Hopkins, D W

    1974-01-01

    Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.

  20. Diagnostic and therapeutic radiation exposure

    International Nuclear Information System (INIS)

    Diagnostic and therapeutic radiology were studied as possible contaminants in the evaluations of A-bomb survivors in the ABCC-JNIH Adult Health Study for radiation effects. Hiroshima and Nagasaki subjects received X-ray examinations elsewhere within three months of their ABCC visits at rates of 23 and 12%, respectively. Medical X-ray examinations were more frequent among survivors than comparison subjects. Hiroshima and Nagasaki radiologic practice steadily increased since 1948, and differed markedly by city. From 1946-70 the Hiroshima and Nagasaki X-ray bone marrow doses were 2,300 and 1,000 g-rads, respectively. By 1970, cumulated medical X-ray doses approximated A-bomb doses at distances from the hypocenters of 2,000 m in Hiroshima and 2,800 m in Nagasaki. ABCC X-ray examination doses per subject are routinely updated for comparison with A-bomb doses. Each subject's reported fluoroscopy, photofluorography and radiation therapy exposure elsewhere are for future reference. Dental radiography, though increasing, was not currently an important contributor to survivors' overall exposure. Radiation therapy exposures of 137 subjects were confirmed, and doses estimated for most. Two-thirds the treatments were for malignancies; therapy differed markedly by city; and five cancers possibly arose from earlier radiation therapy. This underscores the importance of considering diagnostic and therapeutic radiology when attributing diseases to the atomic bombs. (auth.)

  1. Total imprecision of exposure biomarkers: implications for calculating exposure limits

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Budtz-Jørgensen, Esben

    2007-01-01

    of exposure limits. METHODS: In a birth cohort study, mercury concentrations in cord blood, cord tissue, and maternal hair were used as biomarkers of prenatal methylmercury exposure. We determined their mutual correlations and their associations with the child's neurobehavioral outcome variables at...... age 7 years. With at least three exposure parameters available, factor analysis and structural equation modeling could be applied to determine the total imprecision of each biomarker. The estimated imprecision was then applied to adjust benchmark dose calculations and the derived exposure limits....... RESULTS: The exposure biomarkers correlated well with one another, but the cord blood mercury concentration showed the best associations with neurobehavioral deficits. Factor analysis and structural equation models showed a total imprecision of the cord-blood parameter of 25-30%, and almost twice as much...

  2. Radiation exposure and occupational disease

    International Nuclear Information System (INIS)

    The knowledge about ionising radiation and the compensation of occupational diseases were both improved during the past 50 years. Now, the adverse effects of the radiation can be compensated by two ways: the disease of a claimant is automatically recognised as an occupational disease if all the criteria of the 'sixth table' are fulfilled. When all the previous criteria are not fulfilled, the 'Comites regionaux de reconnaissance en maladie professionnelle' have to estimate the relationship between the usual exposure and the disease. The decisions of the Comites are implicitly based on the probability of causation., However, the non specificity of the diseases, the influence of non occupational factors and the role of low doses lead to uncertainty of risk estimates and probability of causation. The compensation system has to be improved and has to remain consistent whatever the occupational exposure. (author)

  3. Radiation exposure in diagnostic medicine

    International Nuclear Information System (INIS)

    This volume includes the manuscripts of the papers read at the conference as well as a summary and assessment of its results. The scientific discussions were centred upon the following issues: - International surveys and comparisons of rdiation exposures in diagnostic radiology and nuclear medicine, frequency of the individual diagnostic procedures and age distribution of patients examined; - policies and regulations for the radiation protection of patients, charcteristic dosimetric values and practical usefulness of the effective dose concept during medical examinations; - assessments of the relative benefits and risks and measures to reduce the radiation exposure in the light of quality assurance aspects. The main objective of this conference not only was to evaluate the risks from diagnostic radiology and nuclear medicine but also to encourgage a critical analysis and adjustment of examination routines followed in everyday practice. Among the measures recommended were quality assurance, maintenace of international standards, development of guidelines, introduction of standard doses, improved training and professional education of personnel as well as surveys and analyses of certain examination procedures associated with substantial radiation exposure. (orig./MG)

  4. The WFIRST Galaxy Survey Exposure Time Calculator

    Science.gov (United States)

    Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien

    2013-01-01

    This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.

  5. The WFIRST Galaxy Survey Exposure Time Calculator

    CERN Document Server

    Hirata, Christopher M; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien

    2012-01-01

    This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and S/N determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.

  6. Radiation exposure in coronary intervention

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Motomu [Kokura Memorial Hospital, Kitakyushu, Fukuoka (Japan)

    1999-01-01

    Percutaneous transluminal coronary angioplasty (PTCA) based on plain old balloon angioplasty is the representative surgery in cardiac interventional radiography, which, with accompanying the increase of patients, causing the serious exposure problem to patients and staff. Recent progress in PTCA practice owes to the development of new devices like the stent with which reduction of exposure dose has been somewhat attained due to the short operation time. Further, standardization of the operation procedure helps to shorten the time. In author`s facility, the pulse fluoroscopy stands from four modes: low-dose, normal, high-quality and slow ones. In these modes, the exposure dose, not the irradiation dose, is taken into consideration according to the FDA concept. The respective modes resulted in the reduction to 33, 70, 70 and 50% of the ordinary fluoroscopy skin dose (12.96 mGy/min: 1.49 R/min). As for exposure to operating staff, the scattering radiation was measured with the DIGITEX 2400 CX apparatus, WAC water phantom and VICTOREEN 450 ionization chamber survey meters and with shielding curtains and lead-acryl board. Shielding was found important for reduction of exposure to the staff. (K.H.)

  7. Occupational radiation exposures in Cyprus

    International Nuclear Information System (INIS)

    For the first time ever the occupational radiation exposure data of all the radiation workers of Cyprus, as obtained by the personnel monitoring service of the Dosimetry Laboratory of the Medical Physics Department of the Ministry of Health, is published and compared with that of other countries. The presented data shows a systematic trend of improvement both with regards to the methodology of monitoring and data recording. The efforts of the past few years in educating and training the users of ionising radiation with regards to the importance of the personnel monitoring service and the hazards of ionising radiation, has paid off and this is evident from the doses recorded in the past three years which are compared favourably with those of other countries, as given by the UNSCEAR 1993 report. The introduction of extremity monitoring, promises even better improvement in the methodology of monitoring the doses received by personnel working in Interventional Radiology, as well as other groups whose hands, unavoidably, come close to radiation sources. (authors)

  8. Unintentional exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    To evaluate the risks from unintentional exposure to ultraviolet radiation (UVR), and to consider hazard control regulation, one must face first the problem of their state of scientific knowledge and the public's perception of UVR. Few people in the general public would question the health benefits of sunlight. Many flock to the beaches each summer to develop a healthy tan. Since the 1920's scientists have recognized that most of the benefits--and risks--of sunlight exposure result from the UVR present in sunlight. Dermatologists warn sunbathers to avoid exposure or protect themselves against the intense midday UVR or risk skin cancer. A growing number of scientists warn of hazards to the eye if UVR--perhaps even shorter visible wavelengths--are not filtered by lenses. In addition to any intentional exposure for health or cosmetic purposes, many people are also exposed to UVR without being aware of it or without their intent to be exposed. Outdoor workers are exposed to sunlight, many industrial workers (e.g., welders) are exposed to UVR from arc sources, some UVR penetrates clothing, and people indoors are exposed to UVR from artificial lighting

  9. Contribution to the construction of a reference biosphere, for the calculation of the radiation exposure emanating from a sealed final repository for radioactive wastes, including regional climate effects. Final report

    International Nuclear Information System (INIS)

    The assessment of the long-term safety of final repositories for radioactive wastes using doses or risks calculated in long-term safety analyses requires the utilisation of biosphere models. However, the evolution of the biosphere and, depending on it, the living and nutrition habits of man cannot be predicted in the timeframes under question since they strongly depend on climatic factors and changes of human society which are not amenable to prognoses even over short timeframes. Instead, in order to illustrate the hazard potentially caused by a repository, so-called reference biospheres can be utilised. A reference biosphere is a collection of assumptions and hypotheses necessary for a consistent base for the calculation of radiation exposure. It should be constructed in a way that exposure will not be underestimated but, at the same time, should be as simple as possible. In the report presented here the construction of such a biosphere is demonstrated. For this purpose biosphere models are developed starting with climatic conditions as they took place in northern Germany during the last million years and the influence of these models on radiation exposure is evaluated. (orig.)

  10. Cosmic radiation exposure at aircraft crew workplaces

    International Nuclear Information System (INIS)

    E.U.R.A.D.O.S. working group W.G.5. on air crew dosimetry coordinated research of some 24 international institutes to exchange experimental data and results of calculations of the radiation exposure in aircraft altitudes due to cosmic radiation. The purpose was to provide a data-set for all European Union Member States for the assessment of individual doses, the validity of different approaches, and to provide an input to technical recommendations by the Article 31 group of experts and the European Commission. The results of this work have been recently published and are available for the international community. The radiation protection quantity of interest is effective dose, E (ISO), but the comparison of measurement results and the results of calculations, is done in terms of the operational quantity ambient dose equivalent, H*(10). This paper gives an overview of the E.U.R.A.D.O.S. Aircraft Crew In-Flight Database which was implemented under the responsibility of A.R.C. Seibersdorf research. It discusses calculation models for air crew dose assessment comparing them with measurements contained in this database. Further it presents current developments using updated information of galactic cosmic radiation proton spectra and new results of the recently finalized European research project D.O.S.M.A.X. on dosimetry of aircraft crew at solar maximum. (authors)

  11. Cosmic radiation exposure at aircraft crew workplaces

    Energy Technology Data Exchange (ETDEWEB)

    Latocha, M.; Beck, P.; Rollet, S. [ARC Seibersdorf Research, Seibersdorf (Austria); Latocha, M. [Institute of Nuclear Physics Polish Academy of Sciences, Krakow (Poland)

    2006-07-01

    E.U.R.A.D.O.S. working group W.G.5. on air crew dosimetry coordinated research of some 24 international institutes to exchange experimental data and results of calculations of the radiation exposure in aircraft altitudes due to cosmic radiation. The purpose was to provide a data-set for all European Union Member States for the assessment of individual doses, the validity of different approaches, and to provide an input to technical recommendations by the Article 31 group of experts and the European Commission. The results of this work have been recently published and are available for the international community. The radiation protection quantity of interest is effective dose, E (ISO), but the comparison of measurement results and the results of calculations, is done in terms of the operational quantity ambient dose equivalent, H{sup *}(10). This paper gives an overview of the E.U.R.A.D.O.S. Aircraft Crew In-Flight Database which was implemented under the responsibility of A.R.C. Seibersdorf research. It discusses calculation models for air crew dose assessment comparing them with measurements contained in this database. Further it presents current developments using updated information of galactic cosmic radiation proton spectra and new results of the recently finalized European research project D.O.S.M.A.X. on dosimetry of aircraft crew at solar maximum. (authors)

  12. Exposure to non ionizing radiations

    International Nuclear Information System (INIS)

    In the last years the exposure levels to electric, magnetic and electromagnetic fields of workers and citizens have dramatically increased due to the technological development as in the exemplar case of cellular phones. The object of this research concerns the biological evaluation of the risk from exposure to non ionizing radiations (NIR) by an opportunely designed biosensor based on immobilized Saccharomyces cerevisiae cells and by an amperometric transducer (Clark oxygen electrode). The results have been obtained by comparing the respiratory activities of exposed and not exposed yeast cells to NIR (at 900 MHz, frequency of the first generation cellular phones). The measurements have been performed by irradiation of the cells in a G-TEM chamber. The obtained results clearly show a decrease of the respiration activity of the irradiation cells in comparison with blank. This variation results to be proportional to the exposure time. Concerning reversibility of the damage it seems that the recovery of the initial conditions begins after 4 hours since the end of exposition and is complete within the following 48 hrs

  13. Radiation protection of aviation personnel at exposure by cosmic radiation

    International Nuclear Information System (INIS)

    For determination of radiation dose of aviation personnel we used the software EPCARD (European Program Package for the Calculation of Aviation Route Doses) developed by National Research Center for Environmental Health - Institute of Radiation Protection (Neuherberg, Germany) and the software CARI 6, developed by the FAA's Civil Aerospace Medical Institute (USA). Both codes are accomplished by the Joint Aviation Authorities. Experimental measurement and estimation of radiation doses of aviation personnel at exposure by cosmic radiation were realised in the period of lowered solar activity. All-year effective dose of pilots, which worked off at least 11 months exceeds the value 1 mSv in 2007. The mean all-year effective dose of member of aviation personnel at exposure by cosmic radiation is 2.5 mSv and maximal all-year effective dose, which we measured in 2007 was 4 mSv. We assumed that in the period of increased solar activity the all-year effective doses may by higher

  14. Effective radiation exposure in digital volume tomography

    International Nuclear Information System (INIS)

    Measurements of the effective doses and the organ doses using head phantoms are supposed to study the effects of different resolutions, volumes and field of view positions on the patient's radiation exposure during digital volume tomography. The details of the measuring instruments and the different volume tomography devices from KaVo are described. All the resulting dose values are related to the specific phantom and were calculated using the average values from ICRP, i.e. these values can be used as reference but cannot be transferred to patients. Therefore significant differences can be seen in comparison with other studies.

  15. Radiation exposure measurement onboard civil aircraft

    International Nuclear Information System (INIS)

    The active dosemeter DOSTEL based on two silicon planar detectors was flown on civil aircraft flights to study the radiation exposure of air crew members. The altitude and latitude dependence of count and dose rates as well as long-term variations are measured. After calibration of the DOSTEL response against measurements of a TEPC instrument, total dose-equivalent values for various flights are compared with H*(10) calculations by EPCARD yielding a ratio of 1.02 ± 0.09 (standard variation). (authors)

  16. Radiation exposure of airplane crews. Exposure levels

    International Nuclear Information System (INIS)

    Even at normal height levels of modern jet airplanes, the flying crew is exposed to a radiation level which is higher by several factors than the terrestrial radiation. There are several ways in which this can be hazardous; the most important of these is the induction of malignant growths, i.e. tumours. (orig./MG)

  17. A new radiation exposure record system

    International Nuclear Information System (INIS)

    The Hanford Radiological Records Program (HRRP) serves all Hanford contractors as the single repository for radiological exposure for all Hanford employees, subcontractors, and visitors. The program administers and preserves all Hanford radiation exposure records. The program also maintains a Radiation Protection Historical File which is a historical file of Hanford radiation protection and dosimetry procedures and practices. Several years ago DOE declared the existing UNIVAC mainframe computer obsolete and the existing Occupational Radiation Exposure (ORE) system was slated to be redeveloped. The new system named the Radiological Exposure (REX) System is described in this document

  18. Ambient radiation exposure: measurements and effects

    International Nuclear Information System (INIS)

    A brief review of the available literature, data and reports of various radiation exposure and protection studies and various measurements techniques are presented. A linear quadratic model has been given illustrating the validity of radiation hormesis

  19. Radiation Worker Protection by Exposure Scheduling

    OpenAIRE

    Blankenbecler, Richard

    2011-01-01

    The discovery of the protective adaptive response of cells to a low dose of radiation suggests applications to radiation worker/first responder protection. Its use in cancer radiotherapy has been discussed in a separate publication. This paper describes simple changes in scheduling that can make use of these beneficial adaptive effects for protection. No increase in total exposure is necessary, only a simple change in the timing of radiation exposure. A low dose of radiation at a sufficient d...

  20. Calculation codes in radiation protection, radiation physics and dosimetry

    International Nuclear Information System (INIS)

    These scientific days had for objective to draw up the situation of calculation codes of radiation transport, of sources estimation, of radiation doses managements and to draw the future perspectives. (N.C.)

  1. Exposure of the Spanish population to radiation from natural sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L. [Consejo de Seguridad Nuclear. Justo Dorado, Madrid (Spain)

    2006-07-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  2. Maintenance hemodialysis patients have high cumulative radiation exposure.

    LENUS (Irish Health Repository)

    Kinsella, Sinead M

    2010-10-01

    Hemodialysis is associated with an increased risk of neoplasms which may result, at least in part, from exposure to ionizing radiation associated with frequent radiographic procedures. In order to estimate the average radiation exposure of those on hemodialysis, we conducted a retrospective study of 100 patients in a university-based dialysis unit followed for a median of 3.4 years. The number and type of radiological procedures were obtained from a central radiology database, and the cumulative effective radiation dose was calculated using standardized, procedure-specific radiation levels. The median annual radiation dose was 6.9 millisieverts (mSv) per patient-year. However, 14 patients had an annual cumulative effective radiation dose over 20 mSv, the upper averaged annual limit for occupational exposure. The median total cumulative effective radiation dose per patient over the study period was 21.7 mSv, in which 13 patients had a total cumulative effective radiation dose over 75 mSv, a value reported to be associated with a 7% increased risk of cancer-related mortality. Two-thirds of the total cumulative effective radiation dose was due to CT scanning. The average radiation exposure was significantly associated with the cause of end-stage renal disease, history of ischemic heart disease, transplant waitlist status, number of in-patient hospital days over follow-up, and death during the study period. These results highlight the substantial exposure to ionizing radiation in hemodialysis patients.

  3. Aircrew radiation exposure: sources-risks-measurement

    International Nuclear Information System (INIS)

    A short review is given on the actual aircrew exposure and its sources. The resulting risks for harmful effects to the health and discuss methods for in-flight measurements of exposure is evaluated. An idea for a fairly simple and economic approach to a practical, airborne active dosimeter for the assessment of individual crew exposure is presented. The exposure of civil aircrew to cosmic radiation, should not be considered a tremendous risk to the health, there is no reason for panic. However, being significantly higher than the average exposure to radiation workers, it can certainly not be neglected. As recommended by ICRP, aircrew exposure has to be considered occupational radiation exposure and aircrews are certainly entitled to the same degree of protection, as other ground-based radiation workers have obtained by law, since long time. (author)

  4. Prenatal radiation exposure. Conclusions in the light of radiology

    International Nuclear Information System (INIS)

    Within 6 years of the appearance of the guideline for action to be taken by doctors in the event of prenatal exposure to radiation, intended as a proposal for discussion, the following has turned out: in no case has termination of pregnancy become necessary following prenatal radiation exposure, prenatal radiation exposure was always low (about 20 mSv), there is no risk below respective threshold doses, teratogenesis is a non-stochastic process, which is why risk assessment was modified, the sensitivity of the human fetus to radiation is highest during the period of neuroblast development (9th to 16th week p.c.), and knowledge about an existing pregnancy can be taken for granted by that time, so radiation exposure is calculable and can be restricted to negligible quantities. (TRV)

  5. Variation of space radiation exposure inside spherical and hemispherical geometries

    International Nuclear Information System (INIS)

    We calculate the space radiation exposure to blood-forming organs everywhere inside a hemispherical dome that represents a lunar habitat. We derive the analytical pathlength distribution from any point inside a hemispherical or a spherical shell. Because the average pathlength increases with the distance from the center, the center of the hemispherical dome on the lunar surface has the largest radiation exposure while locations on the inner surface of the dome have the lowest exposure. This conclusion differs from an earlier study on a hemispherical dome but agrees with another earlier study on a spherical-shell shield. We also find that the reduction in the radiation exposure from the center to the inner edge of the dome can be as large as a factor of 3 or more for the radiation from solar particle events while being smaller for the radiation from galactic cosmic rays.

  6. Medical exposure and the effects of radiation

    International Nuclear Information System (INIS)

    Radiation gives cracks to genes. The influence is divided into deterministic effect with a threshold value, and the stochastic effect (tumor and genetic effect) which increases according to the exposure amount. Although we are put to various non-artificial radiations, which we cannot be avoided, on the earth, the contamination by artificial radiation can be defended. Artificial radioactive exposure includes medical exposure and non-medical exposure for example by nuclear power plant. As to medical examinations using radiation, the inquiry about the radiation exposure is increasing after the occurrence of the first nuclear power plant disaster of Fukushima. While concern about non-medical radioactive exposure increases, the uneasiness to medical irradiation is also increasing. The dose limit by artificial radioactive exposure other than medical exposure is set up in order to prevent the influence on the health. While the dose limit of the public exposure is set to the lower value than the total dose of non-artificial exposure concerning of a safety margin for all people, the dose limit of medical exposure is not defined, since it is thought that medical irradiation has a benefit for those who receive irradiation. Making an effort to decrease the radiation dose in performing the best medical treatment is the responsibility with which we are burdened. (author)

  7. Thyroid cancer following exposure to ionising radiation

    International Nuclear Information System (INIS)

    Exposure to ionising radiations during childhood increases the risk of thyroid cancer. Similar risk factors have been found after external radiation exposure or internal contamination with radioactive iodine isotopes. In case of contamination with radio-iodines, administration of potassium iodide can prevent thyroid irradiation. (authors)

  8. Influences on radiation exposure in diagnostic radiology

    International Nuclear Information System (INIS)

    In 1,553 single examinations of 25 roentgendiagnostic procedures and measurements of interventional radiology, the patients' doses were determined. Influence of patient features and training of the radiologist for average radiation exposure were examined. Special control measurements examinations with highest radiation exposures showed up to 20% diminishing of dose. (orig.)

  9. Radiation exposure in medicare-occupational and medical exposure

    International Nuclear Information System (INIS)

    Recent cases of the occupational and medical exposures are discussed in relation to the justification of practice, optimization of protection and effort to reduce the dose. Instances of the occupational exposure in doctors and nurses like 26.5 mSv/15 mo and 53.9 mSv/y, and of skin cancer were reported in newspapers of 1999-2004, which might have had been prevented by their self evaluation of daily and monthly exposed dose. For reasonably lowering the occupational dose and number of exposed stuff in the present law, the prior radiation protection measures are to be taken in consideration of social/economical factors to conduct beneficial radiation medicare without restriction of practice under safest conditions, protecting personal determinative hazard and preventing stochastic effect. Medical stuff must be equipped with personal dosimeter. Further, recent media also commented such cases as unwished abortions after careless X-CT of pregnant women, and risk of increased cancer prevalence (3.2% in Japan) due to medical exposure, etc (200-2010). The prevalence is calculated on the linear non-threshold (LNT) hypothesis and is probably overestimated, possibly causing patient's fear. There has been a history of proposal by IAEA (1996) of the guidance levels of the ordinary roentgenography and in vivo nuclear medical test, and introduction of the concept of dose constraint by ICRP (Pub. 60). The incident dose rate to the patient under fluoroscopy defined by Japan Medical Service Law (2001) is, as an air-kerma rate, 15,600 residents for their contamination as well as remains, and measured the ambient dose rate of cities nearby. (T.T.)

  10. DOE Occupational Radiation Exposure, 2001 report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2001-12-31

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are “As Low As Reasonably Achievable” (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  11. Sources of radiation exposure - an overview

    International Nuclear Information System (INIS)

    Sources of radiation exposure are reviewed from the perspective of mining and milling of radioactive ores in Australia. The major sources of occupational and public exposure are identified and described, and exposures from mining and milling operations are discussed in the context of natural radiation sources and other sources arising from human activities. Most radiation exposure of humans comes from natural sources. About 80% of the world average of the effective dose equivalents received by individual people arises from natural radiation, with a further 15-20% coming from medical exposures*. Exposures results from human activities, such as mining and milling of radioactive ores, nuclear power generation, fallout from nuclear weapons testing and non-medical use of radioisotopes and X-rays, add less than 1% to the total. 9 refs., 4 tabs., 10 figs

  12. DOE occupational radiation exposure 2006 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE. This report provides a summary and an analysis of occupational radiation exposure information for all monitored individuals associated with DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  13. DOE occupational radiation exposure 2005 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-12-31

    The U.S. Department of Energy (DOE) Offi ce of Corporate Safety Analysis (HS-30) within the Office of Health Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE. This report provides a summary and an analysis of occupational radiation exposure information for all monitored individuals associated with the DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  14. Radiation exposure in fetal and childhood period

    International Nuclear Information System (INIS)

    After East Japan earthquake of March 2011 and Fukushima Daiichi nuclear power plant accident, much more attention has been paid against radiation exposure. Children are much more radiosensitive than adults for radiation exposure. Biological radiation effect has been studied and estimated primarily by using Hiroshima and Nagasaki data of the atomic bomb victims. And the effects of the long term low dose radiation and high dose exposure in the short term are not as well. Effects of radiation exposure in fetal period appear as miscarriage, malformation, and mental retardation. The estimated threshold is 100 mSv. On the other hand, there could be no threshold for the carcinogenesis as late effects of ionizing radiation. The risk of leukemia and solid cancers could be increased along with radiation exposure. Especially thyroid cancer in children increased after the Chernobyl accident. The linear no-threshold (LNT) model is based on the assumption that the risk is directly proportional to the dose at all dose levels, and forms the basis of the radiation protection of the International Commission of Radiological Protection (ICRP). This leads to ALARA concept, which is an acronym for ''As Low As Reasonably Achievable''. Herewith I introduce the concept of radiation protection with review of previous reports, and discuss how to minimize diagnostic radiation exposure. (author)

  15. DOE occupational radiation exposure 2007 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Safety Analysis (HS-30) within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The annual DOEOccupational Radiation Exposure 2007 Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and ALARA process requirements. In addition the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. This report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  16. Chemical and physical knowledge about radiation exposure

    International Nuclear Information System (INIS)

    Easily explained is the title subject about the electromagnetic wave, photon, neutron, particle line, linear energy transfer and unit. The electromagnetic wave is a waving particle, photon, without mass and generally involves radio, infrared, visible, ultraviolet and gamma (and X) rays. The interaction between photon and material atom involves effects photoelectric, yielding electron pair, Compton scattering and nuclear in the order of photon energy: respectively important in low energy imaging like mammography vs high exposure dose; positron emit tomography (PET); cause of image fading or source of radiation therapy; and at >7 MeV photon (e.g., linac therapy), the nuclear reaction-generated neutron, hazardous to radiological staff. Neutron has no electric charge and should be shielded by light atoms like H and C as energy loss by collision is efficient. Alpha ray generated by the reaction 10B(n, alpha) 7Li can effectively kill cancer cells. Particle line involves alpha and beta rays. Alpha particle from Rn is sometimes problematic for human health because Ra contained in building materials produces Rn. Beta ray is one of causes of exposure and produces Bremsstrahlung X-ray at its stoppage, which is used for imaging of 89Sr and so on. Beta ray from 40K is important in the internal exposure as the atom in the body amounts to 55 Bq/kg body weight. Effects of radiation depend on its range and ionization in the body: the linear energy transfer (LET) describes the degree of the effects. Unit contains that of the exposure (dose of irradiation) and absorption, and of the radioactivity: the first is expressed by R (roentgen), measurable with the direct ionization effect; the second, Gy (gray), calculable from R; and the third, the decay rate of radionuclide, disintegration per sec (dps) =1 Bq (becquerel). The equivalent doses are expressed by Sv (sievert). (T.T.)

  17. Characterization of biologically effective UV radiation at mid-latitudes sites: innovative method for the calculation of the human vitamin D exposure

    OpenAIRE

    Modesti, Sarah

    2012-01-01

    The Italian territory has the potential for receiving high solar ultraviolet (UV) doses during most of the year. This may represent a serious hazard for human health as UV radiation is responsible for skin cancer: Italy is in the third place, after Australia and USA, for melanoma occurrences. It ought to be remember that UV radiation has well-established beneficial effects on the skin, most notably the synthesis of vitamin D3. However a climatological characterization of biologically effecti...

  18. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles

    Directory of Open Access Journals (Sweden)

    Dörr Harald

    2011-11-01

    Full Text Available Abstract Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  19. The analysis of radiation exposure of hospital radiation workers

    International Nuclear Information System (INIS)

    This investigation was performed in order to improve the health care of radiation workers, to predict a risk, to minimize the radiation exposure hazard to them and for them to realize radiation exposure danger when they work in radiation area in hospital. The documentations checked regularly for personal radiation exposure in four university hospitals in Pusan city in Korea between January 1, 1993 and December 31, 1997 were analyz ed. There were 458 persons in this documented but 111 persons who worked less then one year were excluded and only 347 persons were included in this study. The average of yearly radiation exposure of 347 persons was 1.52±1.35 mSv. Though it was less than 5OmSv, the limitaion of radiation in law but 125 (36%) people received higher radiation exposure than non-radiation workers. Radiation workers under 30 year old have received radiation exposure of mean 1.87±1.01 mSv/year, mean 1.22±0.69 mSv between 31 and 40 year old and mean 0.97±0.43 mSv/year over, 41year old (p<0.001). Men received mean 1.67±1.54 mSv/year were higher than women who received mean 1.13±0.61 mSv/year (p<0.01). Radiation exposure in the department of nuclear medicine department in spite of low energy sources is higher than other departments that use radiations in hospital (p<0.05). And the workers who received mean 3.69±1.81 mSv/year in parts of management of radiation sources and injection of sources to patient receive high radiation exposure in nuclear medicine department (0<0.01). In department of diagnostic radiology high radiation exposure is in barium enema rooms where workers received mean 3.74±1.74 mSv/year and other parts where they all use fluoroscopy such as angiography room of mean 1.17±0.35 mSv/year and upper gastrointestinal room of mean 1.74±1.34 mSv/year represented higher radiation exposure than average radiation exposure in diagnostic radiology (p<0.01). Doctors and radiation technologists received higher radiation exposure of each mean 1.75±1

  20. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles

    OpenAIRE

    Dörr Harald; Meineke Viktor

    2011-01-01

    Abstract Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the ab...

  1. Radiation protection aspects of the cosmic radiation exposure of aircraft crew

    International Nuclear Information System (INIS)

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, the aircraft structure and its contents. Following recommendations of the International Commission on Radiological Protection in Publication 60, the European Union introduced a revised Basic Safety Standards Directive, which included exposure to natural sources of ionising radiation, including cosmic radiation, as occupational exposure. The revised Directive has been incorporated into laws and regulations in the European Union Member States. Where the assessment of the occupational exposure of aircraft crew is necessary, the preferred approach to monitoring is by the recording of staff flying times and calculated route doses. Route doses are to be validated by measurements. This paper gives the general background, and considers the radiation protection aspects of the cosmic radiation exposure of aircraft crew, with the focus on the situation in Europe. (authors)

  2. Importance of reducing medical radiation exposure

    International Nuclear Information System (INIS)

    Medical exposure primarily refers to intentional irradiation of patients for diagnostic and therapeutic purposes. Among the man-made sources, diagnostic radiology is the major contributor of radiation dose to the public. This article (1) reviews the recommendations of International Commission of Radiological Protection pertaining to medical exposures, (2) stresses the importance of reducing exposure, (3) deals with the present status of medical exposure in India and (4) discusses the methodology for achieving reduction of medical exposure. Awareness, good equipment, safe work practices, discipline, trained personnel and continuing education will go a long way in achieving the goal of reduction of medical exposure. (author)

  3. Radiation exposures by the occupational distribution of thoriated gas mantles

    International Nuclear Information System (INIS)

    The radiation exposure for the different exposed groups due to the distribution of thoriated gas mantles and their associated emitted radiation, has been evaluated by measurements and calculations. Because there are so many possible exposition scenarios, only a few typical cases have been considered. The thereby determined expositions yielded effective doses which lay between 0,01 and 3,16 mSv per year. After carrying out investigations in all the possible exposition scenarios it proved possible to estimate a value of 10 mSv per years as the upper limit for radiation exposure due to distribution of thoriated gas mantles. (orig.)

  4. Health risks associated with environmental radiation exposures

    International Nuclear Information System (INIS)

    Much is known about health effects associated with exposure to ionising radiation. Numerous epidemiologic studies of populations exposed to radiation under a variety of circumstances have been conducted. These studies have clearly shown that radiation exposure can result in an increased risk of many types of cancer, and the findings are supported by a substantial body of literature from experimental studies. Despite the fact that radiation exposures from environmental sources comprise a relatively minor component of total population exposure, this type of exposure is often the most feared by the public. An accident like Chernobyl or a natural disaster like that at Fukushima provides a unique opportunity to learn more about the health risks from environmental radiation exposures. However, establishing the infrastructure and expertise required to design and conduct all aspects of a complex field study presents formidable challenges. This paper summarises the principal findings from the main studies of environmental radiation exposure that have been successfully undertaken. Although such studies are often exceedingly difficult to conduct, and may be limited by an ecologic design, they can be informative in assessing risk. Any new environmental study that is initiated should focus on special circumstances; additional ecological studies are not recommended. (note)

  5. Exposure to background radiation in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B. [Australian Radiation Lab., Melbourne, VIC (Australia)

    1997-12-31

    The average effective dose received by the Australian population is estimated to be {approx}1.8 mSv / year. One half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This paper reviews a number of research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background, particularly in the workplace and illustrate approaches to the quantification and management of exposure to natural radiation. The average radiation doses to the Australian population are relatively low; the average annual radon concentration ranged from 6 Bq m{sup -3} in Queensland to 16 Bq m{sup -3} in the Australian Capital Territory (ACT). Of more importance is the emerging issue of exposure to elevated background radiation in the workplace. Two situation are presented; the radiation exposure to air crues and show cave tour guides. Annual doses up to 3.8 mSv were estimated for international crew members while the highest estimate for show cave tour guides was 9 mSv per year. 9 refs., 2 tabs., 4 figs.

  6. Exposure to background radiation in Australia

    International Nuclear Information System (INIS)

    The average effective dose received by the Australian population is estimated to be ∼1.8 mSv / year. One half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This paper reviews a number of research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background, particularly in the workplace and illustrate approaches to the quantification and management of exposure to natural radiation. The average radiation doses to the Australian population are relatively low; the average annual radon concentration ranged from 6 Bq m-3 in Queensland to 16 Bq m-3 in the Australian Capital Territory (ACT). Of more importance is the emerging issue of exposure to elevated background radiation in the workplace. Two situation are presented; the radiation exposure to air crues and show cave tour guides. Annual doses up to 3.8 mSv were estimated for international crew members while the highest estimate for show cave tour guides was 9 mSv per year

  7. Monitoring occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives

  8. Control of radiation exposure (principles and methods)

    International Nuclear Information System (INIS)

    Biological risks are directly related to the tissue radiation dose, so it is very important to maintain personnel doses as low as realistically possible. This goal can be achieved by minimizing internal contamination and external exposure to radioactive sources

  9. Health consequences of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Full text: The increasing use of ionizing radiations all over the world induces an ever increasing interest of the professionals as well as of the whole society in health protection and the risk due to these practices. Shortly after its discovery, it was recognized that ionizing radiation can have adverse health effects and knowledge of its detrimental effects has accumulated. The fact that ionizing radiation produces biological damage has been known for many years. The biological effects of ionizing radiation for radiation protection considerations are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain 'threshold' an appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Syndromes, ARS) that occurs days to months after an acute radiation dose. ARS is a complex of acute injury manifestations that occur after a sufficiently large portion of a person's body is exposed to a high dose of ionizing radiation. Such irradiation initially injures all organs to some extent, but the timing and extent of the injury manifestations depend upon the type, rate, and dose of radiation received. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels (includes radioactive pollution). Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect

  10. Health consequences of ionizing radiation exposure

    International Nuclear Information System (INIS)

    The increasing use of ionizing radiations all over the world induces an ever increasing interest of the professionals as well as of the whole society in health protection and the risk due to these practices. Shortly after its discovery, it was recognized that ionizing radiation can have adverse health effects and knowledge of its detrimental effects has accumulated. The fact that ionizing radiation produces biological damage has been known for many years. The biological effects of ionizing radiation for radiation protection considerations are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain 'threshold' an appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Syndromes, ARS) that occurs days to months after an acute radiation dose. ARS is a complex of acute injury manifestations that occur after a sufficiently large portion of a person's body is exposed to a high dose of ionizing radiation. Such irradiation initially injures all organs to some extent, but the timing and extent of the injury manifestations depend upon the type, rate, and dose of radiation received. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels (includes radioactive pollution). Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. In this

  11. Radioactivity in water and radiation exposure

    International Nuclear Information System (INIS)

    The radiation exposure of man via waters is outlined. Natural as well as man-made radionuclides are taken into account, also considering the influence by man on the activity distribution in the environment. Relations between air and water pollution are treated. The measured values in hand do not indicate a significant increase of radiation exposure of man by man-made radionuclides in drinking water. The importance is discussed of international agreements in order to overcome environmental problems. (orig.)

  12. Occupational radiation exposures in Canada-1984

    International Nuclear Information System (INIS)

    This is the seventh in a series of annual reports on Occupational Radiation Exposures in Canada. The information is derived from the National Dose Registry of the Radiation Protection Bureau, Department of National Health and Welfare. As in the past this report presents by occupation: average yearly whole body doses by region, dose distributions, and variations of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are tabulated in summary form

  13. Occupational radiation exposures in Canada - 1987

    International Nuclear Information System (INIS)

    This is the tenth in a series of annual reports on Occupational Radiation Exposures in Canada. The information is derived from the National Dose Registry of the Bureau of Radiation and Medical Devices, Department of National Health and Welfare. This report presents by occupation average yearly whole body doses by region, dose distributions, and variations of the average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are tabulated in summary form

  14. Occupational radiation exposure in Austria in 1979

    International Nuclear Information System (INIS)

    The Institute for Radiation Protection at the Research Center Seibersdorf operates since over three years an automatic TLD-personnel monitoring service comprising some 13000 radiation workers all over Austria who are generally monitored during monthly periods according to radiation legislation. All dose readings obtained by the system are stored on computer in a central dose register. Electronic data handling techniques can easily be used to obtain statistical information on radiation exposure for different user branches. The following data include distribution of monthly dose values for different branches, average monthly dose readings and occupational exposure of different groups of age. Due to the very large number of individual dose readings a statistically significant view of the occupational radiation exposure in Austria during 1979 can be obtained. (author)

  15. Radiation exposure and radiation risk of the mammographic patient

    International Nuclear Information System (INIS)

    Depending on the technique applied the doses in the centre of the breast are significantly different. The dose reduction of a screen film grid combination is 50% compared with non-screen film. For the screen film combination alone it is significantly higher. The limited image quality of the gridless technique is not suited for primary examination. According to the present state of knowledge there are no reliable results about the radiation exposure of the breast in mammography and the induction of breast cancer. In a periodic mass screening the existing risk is significantly exceeded by the potential outcome. The care about the statistically calculated risk is irrelevant as to examinations within intervals of 1-2 years for women above 40. (author)

  16. Correlation between natural radiation exposure and cancer mortality, (4)

    International Nuclear Information System (INIS)

    In the previous studies, using Pearson's product moment correlation coefficient, we found that in most cases of cancers, statistically significant positive correlations were observed between natural background radiation exposure rate and crude cancer mortality rate over the period 1950 - 1978. Furthermore, we found that the statistical significance of correlation between natural background radiation exposure rate and the age-adjusted cancer mortality rate in the same period mostly disappeared. We studied the cause of this apparent correlation and found that the prefecture with a higher natural background radiation exposure rate had a greater component ratio of older people. In Japan, a number of prefectures with a higher natural background exposure rate are located in relatively thinly populated districts which have been experiencing an outflow of the younger generation to more highly industrialized and urbanized areas. Therefore, statistically significant positive correlations were observed for almost all cancers between natural background radiation exposure rate and crude cancer mortality rate. In the present investigation, we statistically tested the frequency distributions of natural background radiation exposure rate and age-adjusted cancer mortality rate, and calculated Spearman's rank correlation coefficient between natural background radiation exposure rate and the age-adjusted cancer mortality rate. The frequency distribution of the natural background radiation exposure rate and that of the age-adjusted mortality rate appeared normal in most cases of cancer, and the statistical significance of correlation between natural background exposure rate and the age-adjusted cancer mortality rate did not differ much on the whole, even though we used Spearman's rank correlation coefficient between them. (author)

  17. Exposure of the orthopaedic surgeon to radiation

    International Nuclear Information System (INIS)

    We monitored the amount of radiation received by surgeons and assistants during surgery carried out with fluoroscopic assistance. The radiation was monitored with the use of MYDOSE MINIX PDM107 made by Aloka Co. Over a one year period from Aug 20, 1992 to Aug 19, 1993, a study was undertaken to evaluate exposure of the groin level to radiation with or without use of the lead apron during 106 operation (Group-1). In another group, radiation was monitored at the breast and groin level outside of the lead apron during 39 operations (Group-2). In Group-1, the average exposure per person during one year was 46.0 μSV and the average exposure for each procedure was 1.68 μSV. The use of the lead apron affirmed its protective value; the average radiation dose at the groin level out-side of the apron was 9.11 μSV, the measured dose beneath the apron 0.61 μSV. The average dose of exposure to the head, breast at groin level outside of the lead apron, were 7.68 μSV, 16.24 μSV, 32.04 μSV respectively. This study and review of the literature indicate that the total amount of radiation exposure during surgery done with fluoroscopic control remains well within maximum exposure limits. (author)

  18. Radiation exposure to the patient during closed intramedullary nailing

    International Nuclear Information System (INIS)

    Material and Method. 39 patients with pertrochanteric femur fracture (n=32) or lower leg fracture (n=7) were treated with closed intramedullary nailing. The related radiation exposure of the patients was calculated. Results. Osteosynthesis of pertrochanteric fractures took less fluoroscopic time than osteosynthesis of lower leg fractures. The effective dose was 14 mSv for nailing osteosynthesis of proximal pertrochanteric fractures and less than 0.1 mSv for osteosynthesis of distal lower leg fractures. Conclusion. Radiation exposure of the patient due to intraoperative fluoroscopic imaging during osteosynthesis can be estimated based on the data given above. Intraoperative observations imply, consequent application of radiation protection by the orthopaedic surgeons may reduce intraoperative radiation exposure even more. (orig.)

  19. Prototype Development of an Operational Global Aircraft Radiation Exposure Nowcast

    Science.gov (United States)

    Mertens, C. J.; Tobiska, W.; Bouwer, D.; Kress, B. T.; Wiltberger, M. J.; Solomon, S. C.; Kunches, J.

    2009-12-01

    A prototype operational nowcast model of air-crew radiation exposure is currently under development and funded by NASA. The model predicts air-crew radiation exposure levels from both background galactic cosmic rays (GCR) and solar energetic particle events (SEP) that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time exposure predictions of biologically harmful radiation at aviation altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP Global Forecast System), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead mass shielding information and the ground- and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry calculations. Exposure rates are calculated using the NASA physics-based HZETRN (High Charge (Z) and Energy TRaNsport) code. An overview of the NAIRAS model is given: the concept, design, prototype implementation status, data access, and example results. We also discuss issues encounter thus far as well as anticipated hurdles in the research to operations transition process.

  20. Radiation effects after exposure during prenetal development

    International Nuclear Information System (INIS)

    The embryo and fetus are very radiosensitive during the total prenatal development period. The quality and extent of radiation effects depend strongly on the developmental stage at which the exposure occurs. During the preimplantation period radiation exposure can cause death of the embryo after radiation doses of 0.2 Gy and higher. Malformations are only observed in very rare cases when genetic predispositions exist. Macroscopic-anatomical malformations are induced only after irradiation during the major organogenesis. On the basis of experimental data with mammals it is assumed that a radiation dose of about 0.2 Gy doubles the malformation risk. Studies in humans give rise to the assumption that the human embryo is more radioresistant than the embryos of mice and rats. Radiation exposure during the major organogenesis and the early fetal period lead to disturbances in the growth and developmental processes. During early fetogenesis (week 8-15 post coruption) high radiosensitity exists for the development of the central nervous system. Radiation doses of 1 Gy cause severe mental retardation in about 50% of exposed fetuses. Analysis of the dose-effect curves shows that there is probably a dose-effect curve with a threshold for this effect. It must be taken into account that radiation exposure during the fetal period also induces cancer. The studies, however, do not allow quantitative estimate of this radiation risk at present. It is therefore generally assumed that the risk is about the same level as for children. (orig.)

  1. Valuing the radiation detriment of occupational exposure

    International Nuclear Information System (INIS)

    The implications of changes in the radiation risk estimates on the valuation of radiation detriment for use in cost-benefit analysis are being considered at the National Radiological Protection Board. This paper discusses the pertinent factors that are currently being considered for further investigation. An example of relevance to occupational exposure is detailed. (author)

  2. Operational Prototype Development of a Global Aircraft Radiation Exposure Nowcast

    Science.gov (United States)

    Mertens, Christopher; Kress, Brian; Wiltberger, Michael; Tobiska, W. Kent; Bouwer, Dave

    Galactic cosmic rays (GCR) and solar energetic particles (SEP) are the primary sources of human exposure to high linear energy transfer (LET) radiation in the atmosphere. High-LET radiation is effective at directly breaking DNA strands in biological tissue, or producing chemically active radicals in tissue that alter the cell function, both of which can lead to cancer or other adverse health effects. A prototype operational nowcast model of air-crew radiation exposure is currently under development and funded by NASA. The model predicts air-crew radiation exposure levels from both GCR and SEP that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time exposure predictions of biologically harmful radiation at aviation altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP Global Forecast System), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations characterize the overhead mass shielding and the ground-and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry calculations. Radiation exposure rates are calculated using the NASA physics-based HZETRN (High Charge (Z) and Energy TRaNsport) code. An overview of the NAIRAS model is given: the concept, design, prototype implementation status, data access, and example results. Issues encountered thus far and known and/or anticipated hurdles to research to operations transition are also discussed.

  3. Cosmic radiation exposure to airline flight passenger

    International Nuclear Information System (INIS)

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  4. Calculation of radiative transition probabilities and lifetimes

    Science.gov (United States)

    Zemke, W. T.; Verma, K. K.; Stwalley, W. C.

    1982-01-01

    Procedures for calculating bound-bound and bound-continuum (free) radiative transition probabilities and radiative lifetimes are summarized. Calculations include rotational dependence and R-dependent electronic transition moments (no Franck-Condon or R-centroid approximation). Detailed comparisons of theoretical results with experimental measurements are made for bound-bound transitions in the A-X systems of LiH and Na2. New bound-free results are presented for LiH. New bound-free results and comparisons with very recent fluorescence experiments are presented for Na2.

  5. Occupational radiation exposures in Canada - 1980

    International Nuclear Information System (INIS)

    This report is the third in a series of annual reports on Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which includes dose records for radiation workers. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The decrease in the overall average doses established over the last 20 years appears to be changing. In some occupational categories a consistent upward trend is observed

  6. Occupational radiation exposures in Canada - 1982

    International Nuclear Information System (INIS)

    This report is the fifth in a series of annual reports in Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which contains dose records for radiation workers. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are included, and individual cases are briefly summarized where the maximum permissible dose is exceeded

  7. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    International Nuclear Information System (INIS)

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach

  8. Bases for establishing radiation exposure limits

    International Nuclear Information System (INIS)

    It is an essential requirement of good radiation protection that all unnecessary exposure of people should be avoided and that any necessary exposure, whether of workers or of members of the general public, should be minimized. It is, however, an additional requirement that such necessary exposures should not exceed certain stated limits. These principles are based on the possibility that even the smallest exposures may involve some risk of harm, that any risk of harm should be justifiable by the circumstances necessitating it, and that risk should always be limited to an appropriately low level. The bases for establishing exposure limits must therefore involve an assessment of the risk involved in any form of radiation exposure, and an opinion as to the degree of safety that should be ensured in circumstances which necessitate any occupational or public exposure to radiation. There is increasing quantitative evidence on the frequency on which harm, and particularly the induction of malignancies, may be caused in people exposed to radiation at high doses; and somewhat clearer bases than previously for inferring the possible frequencies at low doses. It is therefore easier to assess the degree of safety ensured by restricting radiation exposure to particular levels. It is clear also that a comparable degree of safety should be ensured whether the radiation exposure involves the whole body more of less uniformly, or individual tissues or organs selectively. The ''weighting'' factors appropriate to irradiation of particular tissues from internal emitters can thus be defined in terms of their likely individual contributions to the harm of whole-body irradiation. In this way the limits for different modes of exposure by external or internal radiation can be related so as to ensure that protection should be equally effective for different distributions of absorbed dose in the body. In particular, the over-simplified concept of a single critical organ determining the

  9. Risks and management of radiation exposure.

    Science.gov (United States)

    Yamamoto, Loren G

    2013-09-01

    High-energy ionizing radiation is harmful. Low-level exposure sources include background, occupational, and medical diagnostics. Radiation disaster incidents include radioactive substance accidents and nuclear power plant accidents. Terrorism and international conflict could trigger intentional radiation disasters that include radiation dispersion devices (RDD) (a radioactive dirty bomb), deliberate exposure to industrial radioactive substances, nuclear power plant sabotage, and nuclear weapon detonation. Nuclear fissioning events such as nuclear power plant incidents and nuclear weapon detonation release radioactive fallout that include radioactive iodine 131, cesium 137, strontium 90, uranium, plutonium, and many other radioactive isotopes. An RDD dirty bomb is likely to spread only one radioactive substance, with the most likely substance being cesium 137. Cobalt 60 and strontium 90 are other RDD dirty bomb possibilities. In a radiation disaster, stable patients should be decontaminated to minimize further radiation exposure. Potassium iodide (KI) is useful for iodine 131 exposure. Prussian blue (ferric hexacyanoferrate) enhances the fecal excretion of cesium via ion exchange. Ca-DTPA (diethylenetriaminepentaacetic acid) and Zn-DTPA form stable ionic complexes with plutonium, americium, and curium, which are excreted in the urine. Amifostine enhances chemical and enzymatic repair of damaged DNA. Acute radiation sickness ranges in severity from mild to lethal, which can be assessed by the nausea/vomiting onset/duration, complete blood cell count findings, and neurologic symptoms. PMID:24201986

  10. Routine medicare and radiation exposure. Introductory remarks

    International Nuclear Information System (INIS)

    As an introduction of the title series, outlines of radiation in physics, chemistry, biochemistry, biological effect and protection are explained from the clinical doctors' aspect of routine medicare, and of radiation exposure in which people's interest is raised after the Fukushima Nuclear Power Plant Accident in 2011. For physics, ionizing effects of radiation are described in relation to its quantum energy transfer and its medical utilization like imaging and radiotherapy. Then mentioned in brief is the radiation from elements consisting of human body, cosmic ray and background radiation from the earth, with reference to natural and standardized limits of exposure doses. Radiations from 226Rn and 40K are explained as an instance of environmental natural sources together with the concepts of radioactive decay series/scheme, of internal exposure, of hazard like double strand break (DSB) and of medical use such as boron neutron capture therapy (BNCT). For an artifact radiation source, shown are fission products of 235U by neutron, first yielded in 1945. Evidence of evolution in biochemical repair mechanisms of DSB is explained with a comparison of irradiated drosophila mutation where linear non-threshold (LNT) hypothesis is proposed, and human non-homologous end joining and homologous recombination. Historical process of occupational, medical, public exposures and their protection is finally described from the discovery of X-ray in 1895 to the first ICRP publication in 1958 via the A-bomb explosion in 1945. (T.T.)

  11. Radiation exposure management - The Westinghouse ALARA program

    International Nuclear Information System (INIS)

    Westinghouse has incorporated radiation management into the design of its NSSS plants. This paper describes the Westinghouse program for incorporating As Low As Reasonably Achievable (ALARA) radiation exposure into the design process. A description is given of the method of collecting data from operating Westinghouse plants. The analysis of this data and its use in the total NSSS plant exposure estimate is presented. Application of a detailed exposure review to the development of an improved mechanical component is described. A particular exposure review for a refueling task is discussed. One high exposure task is detailed and specific design improvements are identified. The disadvantages of the existing design are expressed and design improvements are suggested. The matrix management of the team that develops the improved design is described and the resulting product is presented. The specific example is used to illustrate the operation of the Westinghouse ALARA program

  12. Radiation Exposure According to Radiation Technologist' Working Departments

    International Nuclear Information System (INIS)

    Radiation dose to radiologists working at three hospitals in Seoul was investigated from Jan 1, 2006 to Dec. 31, 2006. The results are as follows. First, radiation dose to radiologists at a cardiac angiography room was measured as 1.41 mSv, the highest while radiation dose to radiologists at a department of radiation oncology was measured as 0.64 mSv, the lowest. Second, radiation dose proves to be in direct proportion to the number of X-ray treatment. Third, as for the radiation dose in X-ray treatments, radiologists in cardiac angiography room are exposed to the largest amount of radiation while radiologists in diagnostic radiology department are exposed to the smallest amount of radiation. Last, radiation dose at a cardiac angiography room is the largest and is followed by nuclear medicine, diagnostic radiology, and radiation oncology departments in order. According to ICRP, exposure less than 20 mSv per year is highly recommended while radiation dose is allowed as long as it is ranged less than 50 mSv per year or 100 mSv within a 5-year period. Taking into account the results, radiation exposure does not do any harm to radiologists at any related departments in Korean hospitals because the dose per year is less than 1.60 mSv.

  13. A Methodology for Calculating Radiation Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Klasky, Marc Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilcox, Trevor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bathke, Charles G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); James, Michael R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-01

    A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.

  14. Prenatal radiation exposure policy: A labor arbitration

    International Nuclear Information System (INIS)

    A policy on prenatal radiation exposure at two nuclear power plants was revised to give better assurance of compliance with NCRP recommendations on fetal radiation exposure. This action was taken after publication of NCRP 91 in June 1987 to provide better assurance that a total dose equivalent limit to an embryo-fetus be no greater than 0.5 mSv (0.05 rem) in any month and no more than 5 mSv (500 mrem) for a gestation period. For any female worker to receive radiation exposure greater than 1.5 mSv (0.15 rem) in a month at these nuclear power plants, she was asked to initiate an administrative request for radiation exposure in excess of this limit. In this request, she was asked to acknowledge that she was aware of the guidance in U.S. NRC Regulatory Guide 8.13. A worker who had the potential for radiation exposure in excess of 1.5 mSv (0.15 rem) refused to process this request and was consequently denied overtime work. She filed a grievance for denial of overtime, and this grievance was submitted for labor arbitration in June 1988. The arbitration decision and its basis and related NRC actions are discussed

  15. Radiation risk due to occupational exposure

    International Nuclear Information System (INIS)

    Exposure to ionizing radiation occurs in many occupations. Workers can be exposed to both natural and artificial sources of radiation. Any exposure to ionizing radiation incurs some risk, either to the individual or to the individual's progeny. This dissertation investigated the radiation risk due to occupational exposure in industrial radiography. Analysis of the reported risk estimates to occupational exposure contained in the UNSCEAR report of 2008 in industrial radiography practice was done. The causes of accidents in industrial radiography include: Lack of or inadequate regulatory control, inadequate training, failure to follow operational procedures, human error, equipment malfunction or defect, inadequate maintenance and wilful violation have been identified as primary causes of accidents. To minimise radiation risks in industrial radiography exposure devices and facilities should be designed such that there is intrinsic safety and operational safety ensured by establishing a quality assurance programme, safety culture fostered and maintained among all workers, industrial radiography is performed in compliance with approved local rules, workers engaged have appropriate qualifications and training, available safe operational procedures are followed, a means is provided for detecting incidents and accidents and an analysis of the causes and lessons learned. (author)

  16. Biological effects and hazards of radiation exposure

    International Nuclear Information System (INIS)

    Radiation induced carcinogenesis and mutagenesis form the main risk to health from exposure to low levels of radiation. This risk effects can be at least qualitatively understood by considering the effects of radiation on cell DNA. Whilst exposure to high levels of radiation results in a number of identifiable effects, exposure to low levels of radiation may result in effects which only manifest themselves after many years. Risk estimates for low levels of radiation have been derived on the basis of a number of assumptions. In the case of uranium mine workers a major hazard arises from the inhalation of radon daughters. Whilst the correlation between radon daughter exposure and lung cancer incidence is well established, the numerical value of the risk factor is the subject of controversy. ICRP 50 gives a value of 10 cases per 106 person-years at risk per WLM (range 5-15 x 10-6 PYR-1 WLM-1). The effect of smoking on lung cancer incidence rates amongst miners is also controversial. Nevertheless, smoking by miners should be discouraged

  17. Calculation system analysis for radiation shielding

    International Nuclear Information System (INIS)

    This work consists of the computational system implementation for nuclear reactor shielding analysis. The system has as objectives to facilitate the installation of the calculation framework, problem set-up, and results analysis. Several computational programmes commonly used for cross-section preparation and radiation transport were chosen for the system. This work represents the capacity necessary for nuclear reactor and particle accelerator shielding design, to aid in nuclear experiments and in the utilization of nuclear techniques that require the radiation field calculation. The system was implemented in PC-DOS environment and consists of the necessary and sufficient programs and data for generation of the cross sections, groups constants, self-shielding factors, activation sources, for the calculation of neutron and gamma-ray fluence, dose rates, and other types of response functions. (author). 11 refs., 8 figs

  18. Radiation transport calculations for Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    The methods and data used to calculate the Hiroshima and Nagasaki prompt and delayed radiation fluences for the DS02 study represent a considerable improvement over the methods and data used for the DS86 study. During the intervening sixteen years, enhancements were made in the radiation transport codes and the nuclear data that are used to describe the migration of the neutrons and gamma rays from the bomb location through the intervening air and into, out of and off the surface of the ground. Increased computational capability permits better descriptions of the weapon source spectra and their extension to higher neutron and photon energies. The weapon leakage spectra were generated in the same neutron and gamma-ray energy structures that were used in the transport calculations. No interpolation or fitting of the leakage spectra was necessary, assuring consistent and accurate representations of the data were used in the transport calculations. (J.P.N.)

  19. Critical evaluation of German regulatory specifications for calculating radiological exposure

    International Nuclear Information System (INIS)

    The assessment of radiological exposure of the public is an issue at the interface between scientific findings, juridical standard setting and political decision. The present work revisits the German regulatory specifications for calculating radiological exposure, like the already existing calculation model General Administrative Provision (AVV) for planning and monitoring nuclear facilities. We address the calculation models for the recent risk assessment regarding the final disposal of radioactive waste in Germany. To do so, a two-pronged approach is pursued. One part deals with radiological examinations of the groundwater-soil-transfer path of radionuclides into the biosphere. Processes at the so-called geosphere-biosphere-interface are examined, especially migration of I-129 in the unsaturated zone. This is necessary, since the German General Administrative Provision does not consider radionuclide transport via groundwater from an underground disposal facility yet. Especially data with regard to processes in the vadose zone are scarce. Therefore, using I-125 as a tracer, immobilization and mobilization of iodine is investigated in two reference soils from the German Federal Environment Agency. The second part of this study examines how scientific findings but also measures and activities of stakeholders and concerned parties influence juridical standard setting, which is necessary for risk management. Risk assessment, which is a scientific task, includes identification and investigation of relevant sources of radiation, possible pathways to humans, and maximum extent and duration of exposure based on dose-response functions. Risk characterization identifies probability and severity of health effects. These findings have to be communicated to authorities, who have to deal with the risk management. Risk management includes, for instance, taking into account acceptability of the risk, actions to reduce, mitigate, substitute or monitor the hazard, the setting of

  20. Critical evaluation of German regulatory specifications for calculating radiological exposure

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Claudia; Walther, Clemens [Hannover Univ. (Germany). Inst. of Radioecology; Smeddinck, Ulrich [Technische Univ. Braunschweig (Germany). Inst. of Law

    2015-07-01

    The assessment of radiological exposure of the public is an issue at the interface between scientific findings, juridical standard setting and political decision. The present work revisits the German regulatory specifications for calculating radiological exposure, like the already existing calculation model General Administrative Provision (AVV) for planning and monitoring nuclear facilities. We address the calculation models for the recent risk assessment regarding the final disposal of radioactive waste in Germany. To do so, a two-pronged approach is pursued. One part deals with radiological examinations of the groundwater-soil-transfer path of radionuclides into the biosphere. Processes at the so-called geosphere-biosphere-interface are examined, especially migration of I-129 in the unsaturated zone. This is necessary, since the German General Administrative Provision does not consider radionuclide transport via groundwater from an underground disposal facility yet. Especially data with regard to processes in the vadose zone are scarce. Therefore, using I-125 as a tracer, immobilization and mobilization of iodine is investigated in two reference soils from the German Federal Environment Agency. The second part of this study examines how scientific findings but also measures and activities of stakeholders and concerned parties influence juridical standard setting, which is necessary for risk management. Risk assessment, which is a scientific task, includes identification and investigation of relevant sources of radiation, possible pathways to humans, and maximum extent and duration of exposure based on dose-response functions. Risk characterization identifies probability and severity of health effects. These findings have to be communicated to authorities, who have to deal with the risk management. Risk management includes, for instance, taking into account acceptability of the risk, actions to reduce, mitigate, substitute or monitor the hazard, the setting of

  1. Radiation exposure from civil aviation

    International Nuclear Information System (INIS)

    The question as to whether civil air crews and frequent air passengers ought to be classified among the group of occupationally exposed persons has in principle been decided by the recommendations adopted by the ICRP, the competent bodies of the EU, and national authorities. Measurements for more information on the radiation fields involved are planned. The German Radiation Protection Office (BfS) recently published a statement on dose commitments, assuming a maximum annual dose of approx. 8 mSv in addition to the mean value already determined. Legal provisions, which ought to be adopted also on EU level since civil aviation is a transboundary traffic system, have yet to come. (orig./HP)

  2. Occupational exposures in Syria during 1990 to 1999 and calculation of collective doses in each practice

    International Nuclear Information System (INIS)

    A large group of workers in many fields are exposed to ionizing radiation, this type of exposure is called occupational exposure to radiation. It is important to monitor this exposure periodically and take the necessary protection measures to minimize this exposure to as low as reasonably achievable. This work presents a detailed analysis of occupational exposure data during the period 1990 to 1999 for the monitored workers in Syria. The types of work for these worker have been classified into five main groups, and further classification for monitored workers have been done according to the practices, using the national dose record for monitored workers; the numbers of monitored workers were determined each year and the collective doses and average annual doses were calculated for each practice. Explanations for causes of exposure were given in addition to suggestions and recommendation for reduction of these exposures to as low as reasonably achievable. (author)

  3. Case of child abuse by radiation exposure

    International Nuclear Information System (INIS)

    On 2 May 1974, a father was convicted of castrating his 13-year-old son by exposing him to a 1-curie source of 137Cs to be used for oil gas well logging. The child was subjected to perhaps eight exposures or attempted exposures over a six-month period. A brief discussion of the medical descriptions of the radiation effects upon the skin and testes and the chromosomal system is included

  4. Influence of materials choice on occupational radiation exposure in ITER

    Science.gov (United States)

    Forty, C. B. A.; Firth, J. D.; Butterworth, G. J.

    1998-10-01

    In fission reactor plant,the radiation doses associated with inspection and maintenance of the primary cooling circuit account for a substantial fraction of the collective occupational radiation exposure (ORE). Similarly, it is anticipated that much of the ORE occurring during normal operation of ITER will arise from active deposits in the cooling loop. Using a number of calculation steps ranging from neutron activation analysis, mobilisation and transport modelling and Monte Carlo simulation, estimates for the gamma photon flux and radiation dose fields around a typical `hot-leg' cooling pipe have been made taking SS316,OPTSTAB, MANET-II and F-82H steels as alternative candidate loop materials.

  5. European study of occupational radiation exposure (ESOREX)

    International Nuclear Information System (INIS)

    The European Study of Occupational Radiation Exposure (ESOREX) project was initiated by the general directive EC DG XI and carried out by the Bundesamt fuer Strahlenschutz, Germany (BfS). It consists of surveys carried out in the 28 European states. The study provides comparable description of the national administrative structures used to monitor and register individual occupational radiation exposure and the national dose statistics. It will establish the basis for identifying differences between the states and assessing the possibilities for European harmonisation. (author)

  6. Occupational radiation exposures in canada-1983

    International Nuclear Information System (INIS)

    This is the sixth in a series of annual reports on Occupational Radiation Exposures in Canada. The information is derived from the National Dose Registry of the Radiation Protection Bureau, Department of National Health and Welfare. As in the past this report presents by occupation: average yearly whole body doses by region, dose distributions, and variations of the average doses with time. The format has been changed to provide more detailed information regarding the various occupations. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are tabulated in summary form

  7. Radiation exposure in nucleomedical examinations of children

    International Nuclear Information System (INIS)

    The problem of radiation exposure must be subjected to particularly careful scrutiny in nuclear diagnostic procedures in children. The contribution provides a survey of factors influencing the radiation exposure of children in the diagnostic use of radionuclides. These include the age of the child examined, the type of radiopharmaceutical used, the dose of the radiopharmaceutical and the procedure followed. Any state-of-the-art renal function study or skeletal examination using radionuclides requires previous measures to ensure that the child is sufficiently hydrated. The tables in the appendix provide estimations of the doses from the individual nucleomedical procedures used in paediatrics. (orig./MG)

  8. Radiation exposure from radium-226 ingestion

    International Nuclear Information System (INIS)

    The contribution of radium to total radiation exposure resulting from the consumption of natural levels of 226Ra in several public water supplies in an Oklahoma county was determined. A pilot-level study of total dietary intake indicated that the culinary use of water anomalously high in radium and the consumption of water-based beverages contributed significantly to radiation exposure. The mean dietary intake of 226Ra was 20.6 pCi/day in one community and resulted in an estimated bone dose of 310 mrem/year

  9. Cumulative radiation exposure in children with cystic fibrosis.

    LENUS (Irish Health Repository)

    O'Reilly, R

    2010-02-01

    This retrospective study calculated the cumulative radiation dose for children with cystic fibrosis (CF) attending a tertiary CF centre. Information on 77 children with a mean age of 9.5 years, a follow up time of 658 person years and 1757 studies including 1485 chest radiographs, 215 abdominal radiographs and 57 computed tomography (CT) scans, of which 51 were thoracic CT scans, were analysed. The average cumulative radiation dose was 6.2 (0.04-25) mSv per CF patient. Cumulative radiation dose increased with increasing age and number of CT scans and was greater in children who presented with meconium ileus. No correlation was identified between cumulative radiation dose and either lung function or patient microbiology cultures. Radiation carries a risk of malignancy and children are particularly susceptible. Every effort must be made to avoid unnecessary radiation exposure in these patients whose life expectancy is increasing.

  10. Occupational radiation exposures in Canada - 1994

    International Nuclear Information System (INIS)

    This is the seventeenth in a series of annual reports on Occupational Radiation Exposures in Canada. The information is derived from the National Dose Registry of the Radiation Protection Bureau, Health Canada. As in the past, this report presents the following data by occupation: average yearly whole body doses by region, dose distributions, and variations of the average doses with time. (author). 17 refs., 4 tabs., 3 figs

  11. Aircrew radiation exposure assessment for Yugoslav airlines

    International Nuclear Information System (INIS)

    The presented study shows that the crews of the intercontinental flights can receive significant annual effective doses (1.5-2.0 mSv). The exposure of the crews is comparable with natural radiation level on the ground level (it can be up to 5 times higher for some air crew members in the intercontinental flights), but smaller than maximum permissible dose for general population. The annual exposures of the passengers are generally smaller than the exposures of tile air crews. because the passengers have a limited number of flights per year compared with the members of the air-crews. (author)

  12. Natural radiation exposure modified by human activities

    International Nuclear Information System (INIS)

    We are now living in the radiation environment modified by our technology. It is usually called 'Technologically Enhanced Natural Radiation' and have been discussed in the UNSCEAR Reports as an important source of exposure. The terrestrial radionuclide concentrations as well as the intensity of cosmic rays are considered to have been constant after our ancestors came down from trees and started walking on their two feet. However, we have been changing our environment to be more comfortable for our life and consequently ambient radiation levels are nomore what used to be. In this paper exposures due to natural radiation modified by our following activities are discussed: housing, balneology, cave excursion, mountain climbing, skiing, swimming, smoking and usage of mineral water, well water, coal, natural gas, phosphate rocks and minerals. In the ICRP Publication No. 39, it is clearly mentioned that even natural radiation should be controlled as far as it is controllable. We have to pay more attention to our activities not to enhance the exposure due to unnecessary, avoidable radiation. (author)

  13. Radiation exposure: Cytogenetic tests. Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Forty test subjects who, either during or after the reactor accident of Chernobyl (26th April 1986), stayed at a building site at Shlobin 150 km away, were examined for spontaneously occurring as well as mitomycin C-induced Sister Chromatid Exchanges (SCE). The building site staff, who underwent a whole-body radionuclide count upon their return to Austria (June through September 1986), were used for the cytogenetic tests. The demonstration of the SCE was made from whole-blood cultures by the fluorescence/Giemse technique. At last 20 Metaphases of the 2nd mitotic cycle were evaluated per person. The radiation doses of the test subjects were calculated by adding the external exposure determined on the building site, the estimated thyroid dose through I-131, and the measured incorporation of Cs-134 and Cs-137. The subjects were divided into two groups for statistical analysis: One was a more exposed group (proven stay at Shlobin between 26th April and 31st May 1986, mostly working in the open air) and the other a less exposed group for comparison (staying at Shlobin from 1st Juni 1986 and working mainly indoors). (orig.)

  14. Exposure to UV radiation and human health

    Science.gov (United States)

    Kimlin, Michael G.

    2005-08-01

    This paper will overview the significant issues facing researchers in relating the impact of exposure to sunlight and human health. Exposure to solar ultraviolet radiation is the major causative factor in most sun-related skin and eye disorders, however, very little is known quantitatively about human UV exposures. Interestingly, human exposure to sunlight also has a nutritional impact, namely the development of pre-Vitamin D, which is an important nutrient in bone health. New research suggest that low vitamin D status may be a causative factor in the development of selective types of cancer and autoimminue diseases, as well as a contributing factor in bone health. The 'health duality' aspect of sunlight exposure is an interesting and controversial topic that is a research focus of Kimlin's research group.

  15. A program for synchrotron radiation dose calculations

    International Nuclear Information System (INIS)

    The computer program PHOTON was obtained from Brookhaven National Laboratory (courtesy D. Chapman, NSLS), and has now been installed at APS VAX. In the following a brief description of the program and how to access to it is described with an example. A detailed manual for the program is also available. The program is developed to calculate the transmitted and scattered spectra of the synchrotron radiation, as it passes through series of filters. The source can be a bending magnet or a wiggler. This can be generated for any bending magnet or a wiggler source by varying ring energy, the critical energy and opening angles of the radiation beam. Monochromatic beams to white radiation can be treated. Filter materials can be pure elements or composites. The absorption cross-sections of all elements for covering 10-2 to 106 keV are now included in a table, which can be accessed by giving the atomic symbol

  16. Realtime radiation exposure monitor and control apparatus

    International Nuclear Information System (INIS)

    This patent application relates to an apparatus and methods used to obtain image information from modulation of a uniform flux. An exposure measuring apparatus is disclosed which comprises a multilayered detector structure having an external circuit connected to a transparent insulating layer and to a conductive plate a radiation source adapted to irradiate the detector structure with radiation capable of producing electron-hole pairs in a photoconductive layer of the detector wherein the flow of current within the external circuit is measured when the detector is irradiated by the radiation source. (author)

  17. Radiation exposure through radiopharmaceuticals in routine diagnostics

    International Nuclear Information System (INIS)

    So far proof is lacking that nuclear medical examinations have somatic or genetic radiation effects. The radioiodine test is a category apart, on account of its involving a high radiation exposure of the relatively exposed thyroid and because it has already been carried through on many patients. Recommendations for radiation hygiene can therefore only relate to the careful ascertainment of indications (e.g. skeletal scintigraphy in pre-school children), the dosage of the activity to be applied, the choice of the collimator, minimization of the bladder dose and quality controls carried out a.o. on equipment and radiopharmaceuticals. (DG)

  18. Pituitary tumors following fallout radiation exposure

    International Nuclear Information System (INIS)

    Two pituitary tumors were diagnosed in a small population of Marshallese accidentally exposed to radioactive fallout in 1954. Endocrinologic findings in the exposed population, are reported and the possible relation of the tumors to radiation exposure and thyroid disease is discussed

  19. Radiation exposure in interventional radiology

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, N.G.V. [Nuclear Instrumentation Laboratory, COPPE-UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil)], E-mail: nivia@lin.ufrj.br; Braz, D. [Nuclear Instrumentation Laboratory, COPPE-UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil); Vallim, M.A. [Department of Radioprotection, IEN-UFRJ, Cidade Universitaria, Ilha do Fundao, Rio de Janeiro (Brazil); Filho, L.G.P.; Azevedo, F.S. [Clementino Fraga Filho Universitary Hospital, UFRJ, Rio de Janeiro 21941-590 (Brazil); Barroso, R.C. [Physics Institute, University of Rio de Janeiro State, Rio de Janeiro 20559-900 (Brazil); Lopes, R.T. [Nuclear Instrumentation Laboratory, COPPE-UFRJ, P.O. Box 68509, Rio de Janeiro 21945-970 (Brazil)

    2007-09-21

    The aim of this study is to evaluate dose values in patients and staff involved in some interventional radiology procedures. Doses have been measured using thermoluminescent dosemeters for single procedures (such as renal and cerebral arteriography, transjungular intrahepatic portasystemic shunt (TIPS) and chemoembolization). The magnitude of doses through the hands of interventional radiologists has been studied. Dose levels were evaluated in three points for patients (eye, thyroid and gonads). The dose-area product (DAP) was also investigated using a Diamentor (PTW-M2). The dose in extremities was estimated for a professional who generally performed one TIPS, two chemoembolizations, two cerebral arteriographies and two renal arteriographies in a week. The estimated annual radiation dose was converted to effective dose as suggested by the 453-MS/Brazil norm The annual dose values were 137.25 mSv for doctors, 40.27 mSv for nurses and 51.95 mSv for auxiliary doctors, and all these annual dose values are below the limit established. The maximum values of the dose obtained for patients were 6.91, 10.92 and 15.34 mGy close to eye, thyroid and gonads, respectively. The DAP values were evaluated for patients in the same interventional radiology procedures. The dose and DAP values obtained are in agreement with values encountered in the literature.

  20. Radiation exposure mitigation through food

    International Nuclear Information System (INIS)

    137CsCl2 was incorporated into plants (tomyao and broccoli) and these homogenized solutions were administered to rats. The whole-body retention was determined with an Armac counter. The whole body retention patterns of 137Cs incorporated into the plants were not significantly different from that of the 137CsCl2 solution. Chitosan is derived from chitin, which is a cellulose-like biopolymer distributed widely in nature, especially in crustaceans, insects, fungi and yeast. The present study was to investigate whether chitosan can be applied to animal and human bodies in order to reduce the bioavailability of radio-iron and -zinc in food. Chitosan inhibits dietary iron absorption only when rats eat on iron-deficient diet. The effectiveness of phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and chitosan in reducing the bioavailability of radio-zinc depend on the concentration of phytate and chitosan. Recently, the share of imported foods increased ca. 40% of Japanese total food consumption. Radioactivities in imported foods must be checked from the viewpoints of internal radiation for Japanese subjects. Concentrations of 232Th and 238U in some imported mineral waters were higher than domestic waters. However, internal doses of portable waters are negligible. Individual foodstuffs in major food groups (fish and shellfish, meats, mushrooms, root vegetables and so on), which contributed to some radionuclide intakes in Japanese, were also analyzed to clarify the critical pathway in Japanese subjects. (author)

  1. Radiation exposure in interventional radiology

    Science.gov (United States)

    Pinto, N. G. V.; Braz, D.; Vallim, M. A.; Filho, L. G. P.; Azevedo, F. S.; Barroso, R. C.; Lopes, R. T.

    2007-09-01

    The aim of this study is to evaluate dose values in patients and staff involved in some interventional radiology procedures. Doses have been measured using thermoluminescent dosemeters for single procedures (such as renal and cerebral arteriography, transjungular intrahepatic portasystemic shunt (TIPS) and chemoembolization). The magnitude of doses through the hands of interventional radiologists has been studied. Dose levels were evaluated in three points for patients (eye, thyroid and gonads). The dose-area product (DAP) was also investigated using a Diamentor (PTW-M2). The dose in extremities was estimated for a professional who generally performed one TIPS, two chemoembolizations, two cerebral arteriographies and two renal arteriographies in a week. The estimated annual radiation dose was converted to effective dose as suggested by the 453-MS/Brazil norm The annual dose values were 137.25 mSv for doctors, 40.27 mSv for nurses and 51.95 mSv for auxiliary doctors, and all these annual dose values are below the limit established. The maximum values of the dose obtained for patients were 6.91, 10.92 and 15.34 mGy close to eye, thyroid and gonads, respectively. The DAP values were evaluated for patients in the same interventional radiology procedures. The dose and DAP values obtained are in agreement with values encountered in the literature.

  2. DOE occupational radiation exposure 1997 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1997-12-31

    The U.S. Department of Energy (DOE) Office of Environment, Safety and Health publishes the DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE/DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  3. DOE occupational radiation exposure 1998 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1998-12-31

    The U.S. Department of Energy (DOE) Office of Environment, Safety and Health with support from Environment Safety and Health Technical Information Services publishes the DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE/DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  4. DOE occupational radiation exposure 1996 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1996-12-31

    The U.S. Department of Energy (DOE) Office of Environment, Safety and Health publishes the DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE/DOE contractor managers in their management of radiological safety programs and to assist them in the prioritization of resources. We appreciate the efforts and contributions from the various stakeholders within and outside the DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of collective data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  5. DOE occupational radiation exposure 2000 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-12-31

    The U.S. Department of Energy (DOE) Office of Safety and Health publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE in making this report most useful to them. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  6. DOE occupational radiation exposure 2003 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Performance Assessment (EH-3) publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers and workers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE to make the report most useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and members of the public. DOE is defined to include the National Nuclear Security Administration sites. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  7. DOE occupational radiation exposure 2002 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Performance Assessment (EH-3) publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers and workers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE to make the report most useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and members of the public. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  8. Occupational radiation exposure in the Slovak Republic

    International Nuclear Information System (INIS)

    Recently are 2 nuclear power plants in operation in the Slovak republic. Apart from nuclear facilities there are 450 licensed undertakings with monitored workers. The majority of the licensed undertakings are active in health care. In Slovak republic are five dosimetry services performing assessments on personal doses due to external exposure and two dosimetry services are approved to carry out monitoring of internal exposure. Dosemeters used for the monitoring of external individual exposure include: personal whole-body film dosemeters, thermoluminescence dosemeters (TLD) or optically stimulated luminescence dosimeters (OSL) for measurements of beta and gamma radiation; TLD for measurements of neutron radiation and TLD for extremities. The measured operational dose quantities are Hp(10), Hp(3) and Hp(0.07). Approved dosimetry service reports the measured dose data to the employers and to the Central register of occupational doses (CROD). Annually are monitored about 12500 - 16200 active workers. Average effective doses per one monitored worker are presented. (authors)

  9. DOE occupational radiation exposure 1999 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1999-12-31

    The U.S. Department of Energy (DOE) Office of Safety and Health publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE and hope we have succeeded in making the report more useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  10. DOE occupational radiation exposure 2004 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Performance Assessment (EH-3) publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers and workers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE to make the report most useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, and subcontractors, as well as members of the public. DOE is defined to include the National Nuclear Security Administration sites. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  11. Radiation exposure in CT-guided interventions

    Energy Technology Data Exchange (ETDEWEB)

    Kloeckner, Roman, E-mail: Roman.Kloeckner@unimedizin-mainz.de [Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz (Germany); Santos, Daniel Pinto dos; Schneider, Jens [Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz (Germany); Kara, Levent [Department of Radiology, Inselspital Bern, Freiburgstraße 18, 3010 Bern (Switzerland); Dueber, Christoph; Pitton, Michael B. [Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz (Germany)

    2013-12-01

    Purpose: To investigate radiation exposure in computed tomography (CT)-guided interventions, to establish reference levels for exposure, and to discuss strategies for dose reduction. Materials and methods: We analyzed 1576 consecutive CT-guided procedures in 1284 patients performed over 4.5 years, including drainage placements; biopsies of different organs; radiofrequency and microwave ablations (RFA/MWA) of liver, bone, and lung tumors; pain blockages, and vertebroplasties. Data were analyzed with respect to scanner settings, overall radiation doses, and individual doses of planning CT series, CT intervention, and control CT series. Results: Eighy-five percent of the total radiation dose was applied during the pre- and post-interventional CT series, leaving only 15% applied by the CT-guided intervention itself. Single slice acquisition was associated with lower doses than continuous CT-fluoroscopy (37 mGy cm vs. 153 mGy cm, p < 0.001). The third quartile of radiation doses varied considerably for different interventions. The highest doses were observed in complex interventions like RFA/MWA of the liver, followed by vertebroplasty and RFA/MWA of the lung. Conclusions: This paper suggests preliminary reference levels for various intervention types and discusses strategies for dose reduction. A multicenter registry of radiation exposure including a broader spectrum of scanners and intervention types is needed to develop definitive reference levels.

  12. Radiation exposure in CT-guided interventions

    International Nuclear Information System (INIS)

    Purpose: To investigate radiation exposure in computed tomography (CT)-guided interventions, to establish reference levels for exposure, and to discuss strategies for dose reduction. Materials and methods: We analyzed 1576 consecutive CT-guided procedures in 1284 patients performed over 4.5 years, including drainage placements; biopsies of different organs; radiofrequency and microwave ablations (RFA/MWA) of liver, bone, and lung tumors; pain blockages, and vertebroplasties. Data were analyzed with respect to scanner settings, overall radiation doses, and individual doses of planning CT series, CT intervention, and control CT series. Results: Eighy-five percent of the total radiation dose was applied during the pre- and post-interventional CT series, leaving only 15% applied by the CT-guided intervention itself. Single slice acquisition was associated with lower doses than continuous CT-fluoroscopy (37 mGy cm vs. 153 mGy cm, p < 0.001). The third quartile of radiation doses varied considerably for different interventions. The highest doses were observed in complex interventions like RFA/MWA of the liver, followed by vertebroplasty and RFA/MWA of the lung. Conclusions: This paper suggests preliminary reference levels for various intervention types and discusses strategies for dose reduction. A multicenter registry of radiation exposure including a broader spectrum of scanners and intervention types is needed to develop definitive reference levels

  13. Radiation exposure mitigation through food

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yoshikazu; Yukawa, Masae; Watanabe, Yoshito; Shiraishi, Kunio; Muramatsu, Yasuyuki; Uchida, Shigeo [National Inst. of Radiological Sciences, Chiba (Japan); Watabe, Teruhisa; Miyazaki, Taeko [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan). Lab. for Radioecology

    2001-12-01

    {sup 137}CsCl{sub 2} was incorporated into plants (tomyao and broccoli) and these homogenized solutions were administered to rats. The whole-body retention was determined with an Armac counter. The whole body retention patterns of {sup 137}Cs incorporated into the plants were not significantly different from that of the {sup 137}CsCl{sub 2} solution. Chitosan is derived from chitin, which is a cellulose-like biopolymer distributed widely in nature, especially in crustaceans, insects, fungi and yeast. The present study was to investigate whether chitosan can be applied to animal and human bodies in order to reduce the bioavailability of radio-iron and -zinc in food. Chitosan inhibits dietary iron absorption only when rats eat on iron-deficient diet. The effectiveness of phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and chitosan in reducing the bioavailability of radio-zinc depend on the concentration of phytate and chitosan. Recently, the share of imported foods increased ca. 40% of Japanese total food consumption. Radioactivities in imported foods must be checked from the viewpoints of internal radiation for Japanese subjects. Concentrations of {sup 232}Th and {sup 238}U in some imported mineral waters were higher than domestic waters. However, internal doses of portable waters are negligible. Individual foodstuffs in major food groups (fish and shellfish, meats, mushrooms, root vegetables and so on), which contributed to some radionuclide intakes in Japanese, were also analyzed to clarify the critical pathway in Japanese subjects. (author)

  14. A translatable predictor of human radiation exposure.

    Directory of Open Access Journals (Sweden)

    Joseph Lucas

    Full Text Available Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB and humans treated with total body irradiation (TBI. Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.

  15. Occupational radiation exposures in Canada - 1979

    International Nuclear Information System (INIS)

    This report is the second in a series of annual reports on Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which includes dose records for radiation workers in Canada. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The 1979 data indicate that the gradually decreasing trend of the last two decades may be changing. In a number of areas the overall average doses and the averages for some job categories have increased over the corresponding values for 1977 and 1978

  16. Occupational radiation exposures in Canada, 1981

    International Nuclear Information System (INIS)

    This report is the fourth in a series of annual reports on Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which includes those records for radiation workers. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The decrease in the overall average doses established over the last 20 years appears to have resumed after an interruption during 1979 to 1980. A brief summary of extremity dose data is also included

  17. Risk of cardiovascular disease following radiation exposure

    International Nuclear Information System (INIS)

    Excess radiation-induced cardiac mortalities have been reported among radiotherapy patients. Many case reports describe the occurrence of atherosclerosis following radiotherapy for Hodgkin's disease and breast cancer. Some case reports describe the cerebral infarction following radiotherapy to neck region, and of peripheral vascular disease of the lower extremities following radiotherapy to the pelvic region. The association of atomic bomb radiation and cardiovascular disease has been examined recently by incidence studies and prevalence studies of various endpoints of atherosclerosis; all endpoints indicated an increase of cardiovascular disease in the exposed group. It is almost certain that the cardiovascular disease is higher among atomic bomb survivors. However, since a heavy exposure of 10-40 Gy is delivered in radiotherapy and the bomb survivors were exposed to radiation at high dose and dose-rate, the question is whether the results can be extrapolated to individuals exposed to lower levels of radiation. Some recent epidemiological studies on occupationally exposed workers and population living near Chernobyl have provided the evidence for cardiovascular disease being a significant late effect at relatively low doses of radiation. However, the issue of non-cancer mortality from radiation is complicated by lack of adequate information on doses, and many other confounding factors (e.g., smoking habits or socio-economic status). This presentation will evaluate possible radiobiological mechanisms for radiation-induced cardiovascular disease, and will address its relevance to radiation protection management at low doses and what the impact might be on future radiation risk assessments. (authors)

  18. Radiative forcing calculations for CH3Cl

    International Nuclear Information System (INIS)

    Methyl chloride, CH3Cl, is the major natural source of chlorine to the stratosphere. The production of CH3Cl is dominated by biological sources from the oceans and biomass burning. Production has a seasonal cycle which couples with the short lifetime of tropospheric CH3Cl to produce nonuniform global mixing. As an absorber of infrared radiation, CH3Cl is of interest for its potential affect on the tropospheric energy balance as well as for its chemical interactions. In this study, we estimate the radiative forcing and global warming potential (GWP) of CH3Cl. Our calculations use an infrared radiative transfer model based on the correlated k-distribution algorithm for band absorption. Global and annual average vertical profiles of temperature and trace gas concentration were assumed. The effects of clouds are modeled using three layers of global and annual average cloud optical properties. A radiative forcing value of 0.0053 W/m2ppbv was obtained for CH3Cl and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 300 times the forcing of CO2, on a per molecule basis. The radiative forcing calculation for CH3Cl is used to estimate the global warming potential (GWP) of CH3Cl. The results give GWPs for CH3Cl of the order of 25 at a time of 20 years(CO2 = 1). This result indicates that CH3Cl has the potential to be a major greenhouse gas if significant human related emissions were introduced into the atmosphere

  19. Thyroid cancer post exposure to radiation

    International Nuclear Information System (INIS)

    Reviewed and discussed is the radiation-induced thyroid cancer (TC) from aspects of epidemiology along with the medical and accidental exposure, and of gene level. Medical external exposure to the thyroid occurs by radiation therapy of head and neck diseases and the internal exposure, by radioiodine administration for treatment of Basedow disease and postoperative ablation of TC. Excessive relative risk of TC in A-bomb survivors is 1.15, statistically significant, is 10 times higher in 40 y. TC is generally rare (the incidence, 1 per 100thousands/y), but after the Chernobyl Accident, the incidence is increased to 10-100 times. The incidence of pediatric TC is found to reach the peak at 10 years after the Accident and has decreased to the normal level at present. Instead, TC is now at a peak incidence in adolescents and young adults (15-24 years old) who were exposed at their childhood: risk is found the highest in infants of the age 0-4 y. The exposure was mainly internal by radioiodine through breast milk and food. Histopathological tissue type of TC is rather different from that in Japan, suggesting the low iodine content in the area around Chernobyl. Risk of TC is obscure for the fetal exposure to radioiodine. Chernobyl Tissue Bank has a stock of 3,800 TC specimens. At present, gene mutation specific in radiation-induced TC alone is not found. Although the health risk of exposure to <100 mSv is said to be hardly proven and the internal exposure dose level by the Fukushima Nuclear Power Plant Accident is said to be much lower than that by Chernobyl Accident, the health management of Fukushima residents should be followed up for long term. (T.T.)

  20. Accurate radiative transfer calculations for layered media.

    Science.gov (United States)

    Selden, Adrian C

    2016-07-01

    Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics. PMID:27409700

  1. Radiation exposures to technologists from nuclear medicine imaging procedures

    International Nuclear Information System (INIS)

    Radiation exposures incurred by nuclear medicine technologists during diagnostic imaging and gamma camera quality control (QC) were measured on a procedural basis over a three-month period using a portable, low-range, self-reading ion chamber. A total of more than 400 measurements were made for 15 selected procedures. From these, mean procedural exposures and standard deviations were calculated. The results show that daily flood phantom QC, at 0.58 mR, and gated cardiac studies, at 0.45 mR, were the two greatest sources of exposure. Other procedures resulted in exposures varying roughly from 0.10 to 0.20 mR. Difficult patients were responsible for a doubling of technologist exposure for many procedures. Standard deviations were large for all procedures, averaging 65% of the mean values. Comparison of technologist exposure inferred from the procedural measurements with the time coincident collective dose equivalent recorded by the TLD service of the Radiation Protection Bureau indicates that approximately half of the collective technologist exposure arose from patient handling and flood QC

  2. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  3. Agriculture-related radiation dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  4. ESR radiation dose evaluation on radiation exposure accident in England

    International Nuclear Information System (INIS)

    A technician of nondestructive inspection in England died because of radiation injury even though his exposure record with film badge indicated only 104 mSv of the lifelong exposure dose. After the request of the National Radiation Protection Board of Great Britain, the author conducted measurement of the exposure dose with ESR dosimetry. ESR spectra were measured on tooth enamel and bones of the finger and the upper arm taken from the dead technician. The exposure dose is obtained from the enhancement of the ESR signal intensity of CO2- after international irradiation. 14 and 12 Gy for tooth enamel, 7.2 and 4.2 Gy for the bones of the finger and the upper arm respectively. The bone samples may show smaller dose due to metabolism in the body. The technician is assumed to be exposed about 10 mSv at the fingers and the arms for each time on the inspection of pipings for more than 10 years. He used to wear the film badge on his waist. The author stresses the importance of preservation of extracted tooth as a exposure record for radiation workers. (T.H.)

  5. Radiation exposure of the UK population

    International Nuclear Information System (INIS)

    Man is continuously exposed to radiation from many sources, both natural and man-made. The man-made sources include medical irradiation, exposure from radioactive waste disposal, fallout from nuclear weapons tests and various 'miscellaneous sources' which include consumer products. The National Radiological Protection Board (NRPB) keeps these contributions to the radiation exposure of the population under continuous review and publishes reports on the subject periodically. This is the second such report and contains considerably more information than the first published in 1974. The balance of the report reflects the availability of data and the advice given in the sixth report of the Royal Commission on Environmental Pollution. The conclusions are: (a) that the major contribution to the dose to the population is from natural background radiation; (b) that the largest man-made contribution is from medical uses of radiation; (c) that the largest contribution from environmental contamination is still from the residual effects of fallout from nuclear weapons testing; (d) that occupational exposure and irradiation from miscellaneous sources, considered as contributions to the per caput dose to the population, are the next largest components; (e) that radioactive waste disposal is the smallest contributor to the per caput dose to the population. It was also felt useful to review the past trends in the doses resulting from the various sources and the authors have attempted to make some tentative predictions of doses up to the year 2000. (author)

  6. Occupational radiation exposure to norms in a gold mine

    International Nuclear Information System (INIS)

    Preliminary studies have been conducted into the occupational radiation exposure to NORMS from surface and underground mining operations in a gold mine in the Ashanti Region of Ghana. A brief description of the methods and instrumentation is presented. The annual effective dose has been estimated to be 0.26 ± 0.11 mSv for surface mining and 1.83 ± 0.56 mSv for the underground mines using the ICRP dose calculation method. The results obtained are found to be within the allowable limit of 20 mSv per annum for occupational exposure control recommended by the ICRP. (authors)

  7. Radiation exposure during air and ground transportation

    International Nuclear Information System (INIS)

    The results of a one year study program of radiation exposure experienced on both domestic and international flights of the China Airline and the Far East Airline in the Pacific, Southeast Asia and Taiwan areas and on trains and buses on Taiwan island are reported. CaSO4:Dy thermoluminescent dosimeters were used. It has been shown that transit exposures may amount to 10 times that on the ground with an altitude varying from 3,050 to 12,200 m. (U.K.)

  8. Personnel radiation exposure in HTGR plants

    International Nuclear Information System (INIS)

    Occupational radiation exposures in high-temperature gas-cooled reactor (HTGR) plants were assessed. The expected rate of dose accumulations for a large HTGR steam cycle unit is 0.07 man-rem/MW(e)y, while the design basis is 0.17 man-rem/MW(e)y. The comparable figure for actual light water reactor experience is 1.3 man-rem/MW(e)y. The favorable HTGR occupational exposure is supported by results from the Peach Bottom Unit No. 1 HTGR and Fort St. Vrain HTGR plants and by operating experience at British gas-cooled reactor stations

  9. Justification of novel practices involving radiation exposure

    International Nuclear Information System (INIS)

    The concept of 'justification' of practices has been one of the three basic principles of radiation protection for many decades. The principle is simple in essence - that any practice involving radiation exposure should do more good than harm. There is no doubt that the many uses of radiation in the medical field and in industry generally satisfy this principle, yielding benefits that could not be achieved using other techniques; examples include CT scanning and industrial radiography. However, even in the early period after the introduction of the justification principle, there were practices for which the decision on justification was not clear and for which different decisions were made by the authorities in different countries. Many of these involved consumer products such as luminous clocks and watches, telephone dials, smoke detectors, lightning preventers and gas mantles. In most cases, these practices were relatively small scale and did not involve large exposures of either individual workers or members of the public. Decisions on justification were therefore often made by the regulator without extensive national debate. Over recent years, several practices have been proposed and undertaken that involve exposure to radiation for purposes that were generally not envisaged when the current system of radiation protection was created. Some of these practices were reviewed during a recent symposium held in Dublin, Ireland and involve, for example, the x-raying of people for theft detection purposes, for detection of weapons or contraband, for the prediction of physical development of young athletes or dancers, for age determination, for insurance purposes and in cases of suspected child abuse. It is particularly in the context of such novel practices that the need has emerged for clearer international guidance on the application of the justification principle. This paper reviews recent activities of the IAEA with respect to these issues, including the

  10. Radiation exposure from medical field in France

    International Nuclear Information System (INIS)

    Full text of publication follows: The only nationwide survey on medical X-ray practices in France was carried out more than fifteen years ago and recent updated information about the nature and frequency of X-ray diagnostic procedures and associated doses is lacking. However, with the implementation of the European Directive 97/43, the knowledge of medical practices is necessary and the question of the population dose resulting from medical X-ray examinations is raised again. In order to provide French data concerning the medical exposure to ionizing radiation, the Institute for Radiation Protection and Nuclear Safety (I.R.S.N.) and the National Institute for Public Health Surveillance (I.n.V.S.) have created an observatory of medical exposure to ionizing radiation. A first study was carried out in order to evaluate the nature and frequency of X-ray diagnostic procedures in conventional radiology and computed tomography. Information about annual frequencies was collected from two main sources: the main health insurance company (C.N.A.M.-T.S. - private radiologists) and the national statistics of the health establishments (S.A.E. examinations realized in public and private hospitals) from the ministry of health. Relevant data concerning examinations in conventional radiology (C.R.) with dental radiology and computed tomography (CT) were collected for the year 2002. As these two main sources of data may overlap, two hypotheses were retained, named low hypothesis (l.h.) and high hypothesis (h.h.). Dose contribution of these exams per inhabitant was calculated from French values of dose from the diagnostic reference level (D.R.L.) campaign completed with data from the European Commission publication 118 and from the health protection agency (H.P.A.). In this study, 82 different examination types were identified for C.R., according to the new French nomenclature for medical examinations (C.C.A.M.). The first five examinations (in number) are respectively chest

  11. Radiation exposure during fluoroscopy: Should we be protecting our thyroids?

    International Nuclear Information System (INIS)

    Recent reports on thyroid cancer among Australian orthopaedic surgeons prompted the present study which sought to evaluate the effectiveness of lead shielding in reducing radiation exposure (RE) to the thyroid region during endo-urological procedures. Radiation exposure to the thyroid region of the surgeon and scrubbed nurse was monitored for 20 consecutive operations over a 6-week period by thermoluminescent dosimeters (TLD). A TLD was placed over and underneath a thyroid shield of 0.5 mm lend equivalent thickness to monitor the effect of shielding. Eight percutaneous nephrolithotomies, seven retrograde pyelograms and ureteric stentings and five ureteroscopies for calculous disease were monitored. Total exposure time was 63.1 min. For the surgeon, the total cumulative RE over and under the lead shield was 0.46 and 0.02 mSv, respectively, equating to a 23-times reduction in RE if shielding was used. This effectively reduced RE to almost background levels, which was represented by the control TLD exposure (0.01 mSv). Although RE without thyroid shields did not exceed current standards set by radiation safety authorities, no threshold level has been set below which thyroid carcinogenesis is unlikely to occur. Because lead shields are easy to wear and can effectively reduce RE to the thyroid region to near-background levels, they should be made easily available and used by all surgeons to avoid the harmful effects of radiation on the thyroid

  12. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    International Nuclear Information System (INIS)

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCT dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight

  13. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, Anna M., E-mail: anni.sailer@mumc.nl [Maastricht University Medical Centre (MUMC), Department of Radiology (Netherlands); Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl [Maastricht University Medical Centre, Department of Surgery (Netherlands); Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl; Graaf, Rick de, E-mail: r.de.graaf@mumc.nl; Zwam, Willem H. van, E-mail: w.van.zwam@mumc.nl; Haan, Michiel W. de, E-mail: m.de.haan@mumc.nl; Kemerink, Gerrit J., E-mail: gerrit.kemerink@mumc.nl; Jeukens, Cécile R. L. P. N., E-mail: cecile.jeukens@mumc.nl [Maastricht University Medical Centre (MUMC), Department of Radiology (Netherlands)

    2015-02-15

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCT dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.

  14. Modelling of radiation exposure at high altitudes during solar storms

    International Nuclear Information System (INIS)

    A transport code analysis using Monte Carlo N-Particle extended code, MCNPX, has been used to propagate an extrapolated particle spectrum based on satellite measurements through the atmosphere to estimate radiation exposure during solar storms at high altitudes. Neutron monitor count rate data from stations around the world were used to benchmark the model calculations during a ground-level event (GLE). A comparison was made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during GLE 60. A computer code has been developed to implement the model for routine analysis. (authors)

  15. Radiation exposure and radiation risk of the population

    International Nuclear Information System (INIS)

    The major scientifically founded results concerning the assessment of the radiation exposure and the analysis and evaluation of the radiationhazards for the population, particularly in the range of low doses, are presented. As to the risk analysis special attention is paid to the rays with low ionization density (X-, γ-, β- and electronrays). Contents: 1) Detailed survey of the results and conclusions; 2) Data on the radiation load of the population; 3) Results to epidemiological questioning on the risk of cancer; 4) Genetical radiation hazards of the population. For quantification purposes of the risk of cancer by γ-radiation the observations with the a-bomb survivors in Japan are taken as a basis, as the available dosimetrical data have to be revised. Appendices: 1) German translation of the UNSCEAR-Report (1977); 2) BEIR-Report (1980); 3) Comments from the SSK on the comparability of the risks of natural-artificial radiation exposure; 4) Comments from the SSK on the importance of synergistical influences for the radiation protection (23.9.1977). (HP)

  16. Radiation exposure from nuclear medicine studies in children

    International Nuclear Information System (INIS)

    Nuclear medical examinations of children have to be performed with special regard to the problems of radiation protection because of the high radiation sensitivity esp. of infants and young children. The present contribution describes how any unnecessary radiation exposure can be avoided by the correct choice and planning of a nuclear medical study, by using the appropriate radiopharmaceutical as well as by the exact calculation of the amount of activity applied, depending on body surface resp. body weight of the child. A technically optimized method which employs the best technical equipment and personnel, being specially trained for working with children, are important conditions to achieve optimal results of nuclear medical tests. Due to the difficulties of direct dose measurements, large variations in the biokinetic behaviour of radiopharmaceuticals and the restriction to standard phantoms, individual dose calculations or dose estimations in pediatrics cause great problems. This is reflected by often large variations of dosimetrical data given in the literature. (orig.)

  17. Some technologically enhanced exposures to natural radiation environment in India

    International Nuclear Information System (INIS)

    A summary of results of gamma spectrometric measurements of natural radioactivity in a number of coal and flyash samples from thermal power plants and phosphatic fertilizer samples collected from various fertilizer plants in India are presented. These constitute the sources of technologically enhanced exposures to natural radiation. A brief description of sampling and measurement procedures is given. The radiation doses to the population from coal burning for electricity generation have been calculated using the method outlined in UNSCEAR report of 1979 with corrections for local population density. The external radiation dose to the farmers has been calculated on the basis of usage of phosphatic fertilizers for rice, wheat, millets and sugarcane crops for the normal agricultural practices

  18. Population exposure to ionising radiation in India

    International Nuclear Information System (INIS)

    Estimates of exposure from various radiation sources to Indian population are given. The per caput dose from all the identifiable sources, both natural and man-made is estimated to be 2490 μSv per year to the present population of India. 97.9% of this dose is contributed by natural sources which include cosmic and terrestrial radiations, 1.93% by medical sources used for diagnostic and treatment purpose, 0.3% by exposures due to activities related nuclear fuel cycle, nuclear tests and nuclear accidents, and 0.07% by miscellaneous sources such as industrial applications, consumer products, research activities, air travel etc. The monograph is written for the use of the common man. (M.G.B.). 25 refs., 7 tabs., 7 figs

  19. Wireless Phones Electromagnetic Field Radiation Exposure Assessment

    Directory of Open Access Journals (Sweden)

    A. D. Usman

    2009-01-01

    Full Text Available Problem statement: Inadequate knowledge of electromagnetic field emitted by mobile phones and increased usage at close proximity, created a lot of skepticism and speculations among end users on its safety or otherwise. Approach: In this study, near field electromagnetic field radiation measurements were conducted on different brand of mobile phones in active mode using a tri-axis isotropic probe and electric field meter. Results: The highest electromagnetic field exposure was recorded when the mobile phones are at outgoing call mode and backing the probe, which is higher in comparison to ICNIRP guidelines for exposure to general public. Conclusion: According to this finding, some mobile phones electromagnetic field radiation were found to be lower than the ICNIRP guidelines while some were far above the guidelines. Electromagnetic field intensity however, depends on the mode of operation and proximity of the mobile phones to the end user; hence it is safer to use mobile phones at SMS mode.

  20. Radiation exposure in X-ray mammography - a review

    International Nuclear Information System (INIS)

    When discussing the radiation risk of X-ray mammography, the magnitude of the dose applied has decisive importance. The radiation exposure of the breast is the predominant factor in risk considerations, since it contributes more than 98% to the effective dose of this examination. At present, it is generally assumed that, with regard to cancer induction by ionizing radiation, the glandular tissue is the most vulnerable part in the breast. Therefore, the average glandular dose, i.e., the mean value of the absorbed dose in the glandular tissue, is used for a description of the radiation risk. The average glandular dose cannot be measured directly, but is calculated under certain assumptions from the experimentally determined entrance surface air kerma or entrance surface dose by the use of a so-called conversion factors. During the seventies, i.e., in the era of the industrial type X-ray film, the mean value of the average glandular dose per exposure for a larger sample of patients (n> 100) was about 20 mGy. Due to the progress in radiographic technique such as, for example, the use of sensitive filmscreen systems, optimized radiation qualities and modern automatic exposure control units this value has now decreased to about 1 mGy. Further dose reductions seem possible by the introduction of digital image receptors. (orig.)

  1. Cancer risk estimation caused by radiation exposure during endovascular procedure

    Science.gov (United States)

    Kang, Y. H.; Cho, J. H.; Yun, W. S.; Park, K. H.; Kim, H. G.; Kwon, S. M.

    2014-05-01

    The objective of this study was to identify the radiation exposure dose of patients, as well as staff caused by fluoroscopy for C-arm-assisted vascular surgical operation and to estimate carcinogenic risk due to such exposure dose. The study was conducted in 71 patients (53 men and 18 women) who had undergone vascular surgical intervention at the division of vascular surgery in the University Hospital from November of 2011 to April of 2012. It had used a mobile C-arm device and calculated the radiation exposure dose of patient (dose-area product, DAP). Effective dose was measured by attaching optically stimulated luminescence on the radiation protectors of staff who participates in the surgery to measure the radiation exposure dose of staff during the vascular surgical operation. From the study results, DAP value of patients was 308.7 Gy cm2 in average, and the maximum value was 3085 Gy cm2. When converted to the effective dose, the resulted mean was 6.2 m Gy and the maximum effective dose was 61.7 milliSievert (mSv). The effective dose of staff was 3.85 mSv; while the radiation technician was 1.04 mSv, the nurse was 1.31 mSv. All cancer incidences of operator are corresponding to 2355 persons per 100,000 persons, which deemed 1 of 42 persons is likely to have all cancer incidences. In conclusion, the vascular surgeons should keep the radiation protection for patient, staff, and all participants in the intervention in mind as supervisor of fluoroscopy while trying to understand the effects by radiation by themselves to prevent invisible danger during the intervention and to minimize the harm.

  2. Modeling Impaired Hippocampal Neurogenesis after Radiation Exposure.

    Science.gov (United States)

    Cacao, Eliedonna; Cucinotta, Francis A

    2016-03-01

    Radiation impairment of neurogenesis in the hippocampal dentate gyrus is one of several factors associated with cognitive detriments after treatment of brain cancers in children and adults with radiation therapy. Mouse models have been used to study radiation-induced changes in neurogenesis, however the models are limited in the number of doses, dose fractions, age and time after exposure conditions that have been studied. The purpose of this study is to develop a novel predictive mathematical model of radiation-induced changes to neurogenesis using a system of nonlinear ordinary differential equations (ODEs) to represent the time, age and dose-dependent changes to several cell populations participating in neurogenesis as reported in mouse experiments exposed to low-LET radiation. We considered four compartments to model hippocampal neurogenesis and, consequently, the effects of radiation treatment in altering neurogenesis: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN) and (4) glioblasts (GB). Because neurogenesis is decreasing with increasing mouse age, a description of the age-related dynamics of hippocampal neurogenesis is considered in the model, which is shown to be an important factor in comparisons to experimental data. A key feature of the model is the description of negative feedback regulation on early and late neuronal proliferation after radiation exposure. The model is augmented with parametric descriptions of the dose and time after irradiation dependences of activation of microglial cells and a possible shift of NSC proliferation from neurogenesis to gliogenesis reported at higher doses (∼10 Gy). Predictions for dose-fractionation regimes and for different mouse ages, and prospects for future work are then discussed. PMID:26943452

  3. Cosmic radiation exposure survey of an Air Force Transport Squadron

    International Nuclear Information System (INIS)

    A combination of in-flight measurements and calculations from the predictive code for aircrew radiation exposure (PCAire) was used to assess the cosmic radiation conditions for a Transport Squadron in the Canadian Air Force. The equipment suite from the Royal Military College of Canada, including a TEPC and bubble detectors, were flown over a sampling of air routes while the survey of the Squadron members covered a 2½ year period over the recent solar minimum and, thus, maximum radiation conditions. Various comparisons were made between the measurements and calculations to confirm the results of this work. For this period, more than half received more than the general public limit of 1 mSv per year and most received 0.5 or 2.5 mSv, with some receiving almost 4 mSv. This wide variation reflected the varied nature of their deployments. - Highlights: ► Aircrew of a Transport Squadron were surveyed for cosmic radiation exposure. ► A semi-empirical code, PCAire, was used for the first time to conduct this survey. ► Simultaneous in-flight measurements were undertaken on many flights. ► The measurements and survey results were consistent throughout the study. ► The study was conducted during a cosmic radiation peak in the solar cycle

  4. Hematologic consequences of exposure to ionizing radiation.

    Science.gov (United States)

    Dainiak, Nicholas

    2002-06-01

    From the early 1900s, it has been known that ionizing radiation (IR) impairs hematopoiesis through a variety of mechanisms. IR exposure directly damages hematopoietic stem cells and alters the capacity of bone marrow stromal elements to support and/or maintain hematopoiesis in vivo and in vitro. Exposure to IR induces dose-dependent declines in circulating hematopoietic cells not only through reduced bone marrow production, but also by redistribution and apoptosis of mature formed elements of the blood. Recently, the importance of using lymphocyte depletion kinetics to provide a "crude" dose estimate has been emphasized, particularly in rapid assessment of large numbers of individuals who may be exposed to IR through acts of terrorism or by accident. A practical strategy to estimate radiation dose and triage victims based upon clinical symptomatology is presented. An explosion of knowledge has occurred regarding molecular and cellular pathways that trigger and mediate hematologic responses to IR. In addition to damaging DNA, IR alters gene expression and transcription, and interferes with intracellular and intercellular signaling pathways. The clinical expression of these disturbances may be the development of leukemia, the most significant hematologic complication of IR exposure among survivors of the atomic bomb detonations over Japan. Those at greatest risk for leukemia are individuals exposed during childhood. The association of leukemia with chronic, low-dose-rate exposure from nuclear power plant accidents and/or nuclear device testing has been more difficult to establish, due in part to lack of precision and sensitivity of methods to assess doses that approach background radiation dose. Nevertheless, multiple myeloma may be associated with chronic exposure, particularly in those exposed at older ages. PMID:12063018

  5. Microwave radiation - Biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1980-06-01

    The thermal and nonthermal effects of exposure to microwave radiation are discussed and current standards for microwave exposure are examined in light of the proposed use of microwave power transmission from solar power satellites. Effects considered include cataractogenesis at levels above 100 mW/sq cm, and possible reversible disturbances such as headaches, sleeplessness, irritability, fatigue, memory loss, cardiovascular changes and circadian rhythm disturbances at levels less than 10 mW/sq cm. It is pointed out that while the United States and western Europe have adopted exposure standards of 10 mW/sq cm, those adopted in other countries are up to three orders of magnitude more restrictive, as they are based on different principles applied in determining safe limits. Various aspects of the biological effects of microwave transmissions from space are considered in the areas of the protection of personnel working in the vicinity of the rectenna, interactions of the transmitted radiation with cardiac pacemakers, and effects on birds. It is concluded that thresholds for biological effects from short-term microwave radiation are well above the maximal power density of 1 mW/sq cm projected at or beyond the area of exclusion of a rectenna.

  6. Radiation exposure monitoring in civil aircraft

    Science.gov (United States)

    Schrewe, Ulrich J.

    1999-02-01

    Based on the 1990 Recommendation of the ICRP (ICRP Publication 60, Pergamon Press, Oxford, 1991) a European Directive [Official J. Eur. Communities 19 (1996) L159, 1-114] commits the European Union (EU) member states to revise their national radiation protection laws by the year 2000 such that the exposure of aircrews to the increased cosmic radiation prevailing at aviation flight altitudes will be treated as occupational risks. A consequence will be that employers must assess the aircrew exposure. The ACREM (Air Crew Radiation Exposure Monitoring) research project intends to investigate practically methods for aircraft dose equivalent determination. The in-flight measurements were carried out on cargo aircraft. Field calibrations were performed using Tissue-Equivalent Proportional Counters (TEPC) as the reference instrument. Various monitors were used to investigate the spatial doserate distribution. The measured data were collated according to the different altitudes and geomagnetic latitudes. The results obtained from various in-flight measurements are reported and a concept for a future routine dose assessment for aircrew is proposed.

  7. Radiation exposure monitoring in civil aircraft

    International Nuclear Information System (INIS)

    Based on the 1990 Recommendation of the ICRP (ICRP Publication 60, Pergamon Press, Oxford, 1991) a European Directive [Official J. Eur. Communities 19 (1996) L159, 1-114] commits the European Union (EU) member states to revise their national radiation protection laws by the year 2000 such that the exposure of aircrews to the increased cosmic radiation prevailing at aviation flight altitudes will be treated as occupational risks. A consequence will be that employers must assess the aircrew exposure. The ACREM (Air Crew Radiation Exposure Monitoring) research project intends to investigate practically methods for aircraft dose equivalent determination. The in-flight measurements were carried out on cargo aircraft. Field calibrations were performed using Tissue-Equivalent Proportional Counters (TEPC) as the reference instrument. Various monitors were used to investigate the spatial doserate distribution. The measured data were collated according to the different altitudes and geomagnetic latitudes. The results obtained from various in-flight measurements are reported and a concept for a future routine dose assessment for aircrew is proposed

  8. The natural sources of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Natural sources of ionizing radiation include external sources (cosmic rays, natural radionuclides present in the crust of the earth and in building materials) and internal sources (naturally occuring radionuclides in the human body, especially the potassium 40 and radon short lived decay products). The principal ways of human exposure to theses different components in ''normal'' areas are reviewed; some examples of the variability of exposure with respect to different regions of the world or the habits of life are given. Actual estimations of the doses delivered to the organs are presented; for the main contributors to population exposure, the conversion into effective dose equivalent has been made for allowing a better evaluation of their respective importance

  9. Occupational radiation exposure. Twelfth annual report, 1979

    International Nuclear Information System (INIS)

    This report summarizes the occupational exposure data that is maintained in the US Nuclear Regulatory Commission's Radiation Exposure Information and Reports System (REIRS). This report is usually published on an annual basis and is available at all NRC public document rooms. The bulk of the information contained in the report was extracted from annual statistical reports submitted by all NRC licensees subject to the reporting requirements of 10 CFR 20.407. Four categories of licensees - operating nuclear power reactors, fuel fabricators and reprocessors, industrial radiographers, and manufacturers and distributors of specified quantities of byproduct materials - also submit personal identification and exposure information for terminating employees pursuant to 10 CFR 20.408, and some analysis of this data is also presented in this report

  10. Unjustified prenatal radiation exposure in medical applications

    International Nuclear Information System (INIS)

    The exposure to the radiation ionising of pregnant women, frequently constitutes motive of preoccupation for the expectant mother and the medical professionals taken the responsibility with its attention. The protection of the embryo-fetus against the ionising radiation is of singular importance due to its special vulnerability to this agent. On the other hand the diagnosis or treatment with radiations ionising beneficial for the expectant mother, are only indirectly for the embryo-fetus that is exposed to a hazard without perceiving anything. The present paper presents the experience obtained in the clinical and dosimetric evaluation from twenty-one pregnant patients subjected to diverse radiodiagnostic procedures or nuclear medicine during the years 1999-2000. The obtained results evidence that 24% of the patients was subjected to procedures of nuclear medicine with diagnostic purposes. While the period of pregnancy of the patients ranged between 4 and 12 weeks, it could be concluded that in all the cases the doses received by the patients in the whole body did not exceed 2 mSv. When conjugating the period of pregnancy of the patients with the doses received, there is no evidence of significant risk for the embryo-fetus. Paradoxically the physicians of assistance suggested to their patients in all the cases to carry out the interruption of the pregnancy, demonstrating with this decision ignorance on the biological effects of the ionizing radiations during the prenatal exposures. (author)

  11. Lung cancer following exposure to ionizing radiation

    International Nuclear Information System (INIS)

    A case-control study of lung cancer was conducted in Hiroshima and Nagasaki, Japan, to evaluate risk factors for this common neoplasm, with special attention given to assessing the potentially interactive roles of cigarette smoking and atomic radiation. The investigation involved interviews with 428 patients with primary lung cancer and 957 matched controls, or with their next of kin in the event of death or disability. The interview information was supplemented by data on atomic bomb radiation exposure for each individual and on smoking and other factors from prior surveys of subsets of the population studied. Separate effects of smoking and high dose (greater than 100 rad) radiation were found, with the two exposures combining to affect lung cancer risk in an approximate additive fashion. The additive rather than multiplicative model was favored whether the smoking variable was dichotomized (ever vs. never smoked), categorized into one of several groups based on amount smoked, or treated as a discrete variable. The findings are contrasted with those for Colorado uranium miners and other cohorts occupationally exposed to radon and its daughter products, where smoking and radiation have been reported to combine multiplicatively to enhance lung cancer risk

  12. The global assessment of medical radiation exposures

    International Nuclear Information System (INIS)

    World Health Organization (WHO) is the United Nations specialized agency which acts as a coordinating authority on international public health. It was established in 1948. It has 147 Country Offices, 6 Regional Offices and 193 Member States Ministries of Health Its headquarters is in Geneva. The World Health Assembly (WHA) requested WHO to study the optimum use of ionizing radiation in medicine and the risks to health of excessive or improper use. (WHA, 1971) International Basic Safety Standards BSS) The (BSS) mark the culmination of efforts towards global harmonization of radiation safety requirements. However, the involvement of the health sector in the BSS implementation is still weak and scant. There is a need to mobilize the health sector towards safer and effective use of radiation in medicine. Radiation in Health Care The use of radiation in health care is by far the largest contributor to the exposure of the general population from artificial sources. Annually worldwide there are 3,600 million X-ray exams (> 300 million in children), 37 million nuclear medicine procedures and 7.5 million radiation oncology treatments [UNSCEAR Report 2008]. WHO Global Initiative on Radiation Safety in Health Care Settings Was launched in December 2008 It involved the following:- There was involvement of international organizations and professionals bodies, national health and radiation protection authorities, etc. Its aim is to improve the protection of patients and health care workers through better implementation of the BSS. It complements the International Action Plan for Radiological Protection of Patients established by the IAEA 7 UNSCEAR's medical exposure survey Objectives of UNSCEAR's survey were to facilitate evaluation of: - Global estimates of frequency and levels of exposures, with break-downs by medical procedure, age, sex, health care level, and country; - Trends in practice (including those relatively fast-changing); with supporting contextual

  13. Weighting of secondary radiations in organ dose calculations

    International Nuclear Information System (INIS)

    The current system of dose quantities in radiological protection is based, in addition to the absorbed dose, on the concepts of equivalent dose and effective dose. This system has been developed mainly with uniform whole-body exposures in mind. Conceptual and practical problems arise when the system is applied to more general exposure situations where the radiation quality is altered within the human body. In this article these problems are discussed, using proton beam radiotherapy as a specific example, and a proposition is made that dose equivalent quantities should be used instead of equivalent doses when organ doses are of interest. The calculations of out-of-field organ doses in proton therapy show that the International Commission on Radiological Protection-prescribed use of the proton weighting factor generally leads to an underestimation of the stochastic risks, while the use of neutron weighting factors in the way as practised in the literature leads to a significant overestimation of these risks. (authors)

  14. Occupational radiation exposures in Canada - 1978

    International Nuclear Information System (INIS)

    This 1978 report is the first in a series of annual reports on occupational radiation exposures in Canada. The data are derived from the Radiation Protection Bureau's National Dose Registry which includes dose records for radiation workers in Canada. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of overexposures are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The 1978 data indicate that the gradually decreasing trend of the last two decades may have changed. In a number of areas the overall average doses and the averages for some job categories have increasd over the corresponding values for 1977

  15. Monitoring and control of occupational radiation exposure in Switzerland

    International Nuclear Information System (INIS)

    Occupational exposure is the most prominent example for the prolonged exposure to low level ionizing radiation characterized by low doses and dose rates. In this paper the occupational exposure in Switzerland is presented and the regulatory control of this exposure in the framework of the new radiation protection regulations is discussed. (author)

  16. Occupational radiation exposure in Germany in 2012. Report of the radiation protection register

    International Nuclear Information System (INIS)

    In Germany, persons who are occupationally exposed to ionising radiation are monitored by several official dosimetry services that transmit the dose records about individual radiation monitoring to the Radiation Protection Register of the Federal Office for Radiation Protection (BfS). The purpose of the Radiation Protection Register is to supervise the keeping of the dose limits and to monitor the compliance with the radiation protection principle ''Optimisation'' by performing detailed annual statistical analyses of the monitored persons and their radiation exposure. The annual report of the Radiation Protection Register provides information about status and development of occupational radiation exposure in Germany. In 2012, about 350,000 workers were monitored with dosemeters for occupational radiation exposure. The number increased continuously by totally 10 % into the past five years. 19 % of the monitored persons received measurable personal doses. The average annual dose of these exposed workers was 0.52 mSv corresponding to 2.6 % of the annual dose limit of 20 mSv for radiation workers. In total, 2 persons exceeded the annual dose limit of 20 mSv, i.e. less than one case per 100,000 monitored persons. The collective dose of the monitored persons decreased to 27.9 Person-Sv, the lowest value since the last fifty years of occupational dose monitoring. 45 airlines calculated the route doses of 40,000 aircraft crew members by using certified computer programmes for dose calculation and sent the accumulated monthly doses via the Federal Office for Civil Aviation (''Luftfahrt-Bundesamt, LBA'') to the BfS. The collective dose of the aircraft crew personnel is 78.5 person- Sv, and thus significantly higher than the total collective dose of the workers monitored with personal dosemeters. The annual average dose of aircraft crew personnel was 1.96 mSv and decreased compared to 2011 (2.12 mSv) due to solar cycle. In 2012, about

  17. Occupational radiation exposure in Germany in 2013-2014. Report of the radiation protection register

    International Nuclear Information System (INIS)

    In Germany, persons who are occupationally exposed to ionising radiation are monitored by several official dosimetry services that transmit the dose records about individual radiation monitoring to the Radiation Protection Register of the Federal Office for Radiation Protection (BfS). The purpose of the Radiation Protection Register is to supervise the keeping of the dose limits and to monitor the compliance with the radiation protection principle ''Optimisation'' by performing detailed annual statistical analyses of the monitored persons and their radiation exposure. The annual report of the Radiation Protection Register provides information about status and development of occupational radiation exposure in Germany. In 2014, about 358,000 workers were monitored with dosemeters for occupational radiation exposure. The number increased continuously by totally 5 % into the past five years. 15 % of the monitored persons received measurable personal doses. The average annual dose of these exposed workers was 0.50 mSv corresponding to less than 3 % of the annual dose limit of 20 mSv for radiation workers. In total, two persons exceeded the annual dose limit of 20 mSv, i.e. less than one case per 100,000 monitored persons. The collective dose of the monitored persons decreased to 26.0 Person-Sv, the lowest value since the last fifty years of occupational dose monitoring. 45 airlines calculated the route doses of 39,500 aircraft crew members by using certified computer pro-grammes for dose calculation and sent the accumulated monthly doses via the Federal Office for Civil Aviation (''Luftfahrt-Bundesamt, LBA'') to the BfS. The collective dose of the aircraft crew personnel is 74.8 person-Sv, and thus significantly higher than the total collective dose of the workers monitored with personal dosemeters. The annual average dose of aircraft crew personnel was 1.89 mSv in 2014. In 2014, about 58,500 outside-workers were in possession of

  18. Ionizing Radiation Environments and Exposure Risks

    Science.gov (United States)

    Kim, M. H. Y.

    2015-12-01

    Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) are simulated to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, near-Earth asteroid, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmospheres of Earth or Mars, space vehicle, and astronaut's body tissues using NASA's HZETRN/QMSFRG computer code. Space radiation protection methods, which are derived largely from ground-based methods recommended by the National Council on Radiation Protection and Measurements (NCRP) or International Commission on Radiological Protections (ICRP), are built on the principles of risk justification, limitation, and ALARA (as low as reasonably achievable). However, because of the large uncertainties in high charge and energy (HZE) particle radiobiology and the small population of space crews, NASA develops distinct methods to implement a space radiation protection program. For the fatal cancer risks, which have been considered the dominant risk for GCR, the NASA Space Cancer Risk (NSCR) model has been developed from recommendations by NCRP; and undergone external review by the National Research Council (NRC), NCRP, and through peer-review publications. The NSCR model uses GCR environmental models, particle transport codes describing the GCR modification by atomic and nuclear interactions in atmospheric shielding coupled with spacecraft and tissue shielding, and NASA-defined quality factors for solid cancer and leukemia risk estimates for HZE particles. By implementing the NSCR model, the exposure risks from various heliospheric conditions are assessed for the radiation environments for various-class mission types to understand architectures and strategies of human exploration missions and ultimately to contribute to the optimization of radiation safety and well-being of space crewmembers participating in long-term space missions.

  19. A novel method to calculate solar UV exposure relevant to vitamin D production in humans.

    Science.gov (United States)

    Seckmeyer, Gunther; Schrempf, Michael; Wieczorek, Anna; Riechelmann, Stefan; Graw, Kathrin; Seckmeyer, Stefan; Zankl, Maria

    2013-01-01

    We present a novel method to calculate vitamin D3 -weighted exposure by integrating the incident solar spectral radiance over all relevant parts of the human body. Earlier investigations are based on the irradiance on surfaces, whereas our calculated exposure of a voxel model of a human takes into account the complex geometry of the radiation field. Assuming that sufficient vitamin D3 (1000 international units) can be produced within the human body in one minute for a completely uncovered body in vertical posture in summer at midlatitudes (e.g. Rome, June 21, noon, UV index of 10), we calculate the exposure times needed in other situations or seasons to gain enough vitamin D3 . Our calculations show that the UV index is not a good indicator for the exposure which depends on the orientation of the body (e.g. vertical (standing) or horizontal (lying down) posture). Without clothing the exposure is dominated by diffuse sky radiation and it is nearly irrelevant how the body in vertical posture is oriented toward the sun. At the winter solstice (December 21, noon, cloudy) at least in central Europe sufficient vitamin D3 cannot be obtained with realistic clothing, even if the exposure were extended to all daylight hours. PMID:23517086

  20. Radiation exposure on flights; Strahlenexposition beim Fliegen. Ein Fall fuer den Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Blettner, Maria [Mainz Univ. (Germany). Inst. fuer Medizinische Biometrie, Epidemiologie und Informatik (IMBEI); Boehm, Theresia; Eberbach, Frieder [Vereinigung Cockpit e.V. Main Airport Center (MAC), Frankfurt (Germany). AG Strahlenschutz; Bottollier-Depois, Jean-Francois [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France); Clairand, Isabelle; Huet, Christelle [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France). Ionizing Radiation Dosimetry Lab.; Frasch, Gerhard [Bundesamt fuer Strahlenschutz, Oberschleissheim/Neuherberg (Germany). Beruflicher Strahlenschutz und Strahlenschutzregister; Hammer, Ga el P. [Laboratoire National de Sante E.P., Dudelange (Luxembourg). Registre Morphologique des Tumeurs; Mares, Vladimir; Ruehm, Werner [Helmholtz Zentrum Muenchen Deutsches Forschungszentrum fuer Gesundheit und Umwelt GmbH, Neuherberg (Germany); Voelkle, Hansruedi [Fribourg Univ. (Switzerland). Physikdept.

    2014-09-01

    Extend and effects of radiation doses occuring during flights are treated under various aspects. Part of them are, in the first line, radiation exposure of the flying staff and the results of epidemiologic studies regarding the health consequences, as well as aspects of practical radiation protection for the flying staff. Computer programs for dose calculation on flights round off the theme. (orig.)

  1. Eating habits and internal radiation exposures in Japanese

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Kunio [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan). Nakaminato Lab. Branch

    1995-10-01

    Recently, annual dose equivalent for Japanese was estimated to be 3.75 mSv. Medical radiation exposures (2.25 mSv/y) and exposures from natural sources of radiation (1.48 mSv/y) were the major contributors to this dose. Dietary intakes of both natural and man-made radionuclides directly related to internal exposures. In this paper, internal doses received only through ingestion of radionuclides in food are described; internal doses through inhalation have been excluded. First, the representative intakes of radionuclides for Japanese were estimated from the literature. Second, the annual dose equivalents were calculated according to intakes of individual radionuclides and weighted committed dose equivalents (Sv/Bq) of the International Commission on Radiological Protection Pub. 30. Total annual doses through radiation of natural sources and man-made sources, were estimated as 0.35 mSv and 0.001 mSv, respectively. Furthermore, the effects of imported foods on internal dose in Japanese were calculated preliminarily, because the contribution of imported foods to Japanese eating habits is increasing annually and will not be negligible when assessing internal dose in the near future. (author)

  2. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  3. Enzyme diagnostics following radiation exposure. Usefulness and limits

    International Nuclear Information System (INIS)

    Based on the results of animal studies and a literature survey, recommendations are given for the application of enzyme diagnostics in the following fields of radiation protection medicine: (1) pre-employment medical examinations and health supervision of radiation workers, (2) medical examinations following chronic radiation exposure, and (3) medical examinations following acute radiation exposure. (author)

  4. Solar radiation and the ultraviolet radiation exposure standard

    International Nuclear Information System (INIS)

    Partly as a result of increased concern over the possible depletion of stratospheric ozone and concomitant biological effects such as an increased incidence of skin cancer, ARL is extending the scope of its solar ultraviolet radiation (UVR) measurement programme. The results obtained thus far will be presented and their implication for the outdoor worker will be discussed in terms of the Australian occupational UVR exposure standard and the need to change existing work practises and personal protection

  5. Calculating Soft Radiation at One Loop

    CERN Document Server

    Kasemets, Tomas; Zeune, Lisa

    2015-01-01

    We present an efficient way to calculate the effect of soft QCD radiation at one loop, which is needed for predictions at next-to-next-to-leading logarithmic accuracy. We use rapidity coordinates and isolate the divergences in the integrand. By performing manipulations with cumulative variables, we avoid complications from plus distributions. We address rapidity divergences, divergences with an azimuthal dependence, complicated jet boundaries and multi-differential measurements. The process and measurements can be easily adjusted, as we demonstrate by reproducing many existing soft functions. The results for a general LHC process with multiple Wilson lines are obtained by treating Wilson lines that are not back-to-back using a boost. We also obtain, for the first time, the N-jettiness soft function for generic jet angularities, and the collinear-soft function for the measurement of two angularities.

  6. Calculating soft radiation at one loop

    Science.gov (United States)

    Kasemets, Tomas; Waalewijn, Wouter J.; Zeune, Lisa

    2016-03-01

    We present an efficient way to calculate the effect of soft QCD radiation at one loop, which is needed for predictions at next-to-next-to-leading logarithmic accuracy. We use rapidity coordinates and isolate the divergences in the integrand. By performing manipulations with cumulative variables, we avoid complications from plus distributions. We address rapidity divergences, divergences with an azimuthal dependence, complicated jet boundaries and multi-differential measurements. The process and measurements can be easily adjusted, as we demonstrate by reproducing many existing soft functions. The results for a general LHC process with multiple Wilson lines are obtained by treating Wilson lines that are not back-to-back using a boost. We also obtain, for the first time, the N-jettiness soft function for generic jet angularities, and the collinear-soft function for the measurement of two angularities.

  7. DOE 2012 Occupational Radiation Exposure October 2013

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-02

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The

  8. Radiative forcing calculations for CH3Br

    International Nuclear Information System (INIS)

    Methyl Bromide, CH3Br, is the major organobromine species in the lower atmosphere and is a primary source of bromine in the stratosphere. It has a lifetime of 1.3 years. The IR methyl bromide spectra in the atmospheric window region, 7--13μ, was determined using a well tested Coriolis resonance and ell-doubling (and ell-resonance) computational system. A radiative forcing value of 0.00493 W/m2/ppbv was obtained for CH3Br and is approximately linear in the background abundance. This value is about 2 percent of the forcing of CFC-11 and about 278 times the forcing of C02, on a per molecule basis. The radiative forcing calculation is used to estimate the global warming potential (GWP) of CH3Br. The results give GWPs for CH3Br of the order of 13 for an integration period of 20 years and 4 for an integration period of 100 years (assuming C02 = 1, following IPCC [1994]). While CH3Br has a GWP which is approximately 25 percent of the GWP of CH4, the current emission rates are too low to cause serious atmospheric greenhouse heating effects at this time

  9. Geothermal energy probes. Increasing the radiation exposures of the population?

    International Nuclear Information System (INIS)

    In Baden-Wuerttemberg 10 private geothermal drilling projects in geologically interesting areas have been accompanied by measurements. During the drillings samples of the excavated earth were taken to determine the concentration of natural nuclides in the bored strata. Before and after finishing the geothermal construction works the airborne radon concentration of surrounding dwellings was measured. On the basis of the obtained measuring data the maximum expected additional effective annual doses received by individuals as a result of geothermal drilling were calculated. The exposure pathways were observed, i.e. air, water, sold - plant - human and terrestrial gamma radiation. In spite of conservative accounts in each case that should be considered as worst case scenario no relevant increase of radiation exposure could be detected. (orig.)

  10. Assessment of genetic risk for human exposure to radiation

    International Nuclear Information System (INIS)

    Full text: The methodology of assessing the genetic risk of radiation exposure is based on the concept of 'hitting the target' in development of which N.V. Timofeeff-Ressovsky has played and important role. To predict genetic risk posed by irradiation, the U N Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has worked out direct and indirect methods of assessment, extrapolation, integral and palpitation criteria of risk analysis that together permit calculating the risk from human exposure on the basis of data obtained for mice. Based on the reports of UNSCEAR for the period from 1958 to 2001 the paper presents a retrospective analysis of the use of direct methods and the doubling dose method for quantitative determination of the genetic risk of human exposure expressed as different hereditary diseases. As early as 1962 UNSCEAR estimated the doubling dose (a dose causing as many mutations as those occurring spontaneously during one generation) at 1 Gy for cases of exposure to ionizing radiations with low LET at a low dose rate and this value was confirmed in the next UNSCEAR reports up to now. For cases of acute irradiation the doubling dose was estimated at 0,3-0,4 Gy for the period under review. The paper considers the evolution of the concepts of human natural hereditary variability which is a basis for assessing the risk of exposure by the doubling dose method. The level of human natural genetic variability per 1 000 000 newborns is estimated at 738 000 hereditary diseases including mendelian, chromosomal and multifactorial ones. The greatest difficulties in assessing the doubling dose value were found to occur in the case of multifactorial diseases the pheno typical expression of which depends on mutational events in polygenic systems and on numerous environmental factors. The introduction in calculations of the potential recoverability correction factor (RPCF) made it possible to assess the genetic risk taking into account this class of

  11. Natural radioactivity in construction materials and the resulting radiation exposure

    International Nuclear Information System (INIS)

    The BfS report on the natural radioactivity in construction materials and the resulting radiation exposure covers the following topics: Procedures of sampling. Measuring methods: measurement of the specific activity (gamma spectrometry, determination of the radon exhalation). Radiation exposure estimation: radon exposure, external radiation exposure. Measuring results: specific activity, radon exhalation, total exposure. Evaluation of the natural radioactivity of construction materials: overview on the existing requirements of the radiation protection law, EU recommendations ''Radiation Protection 112'', Austrian norm S 5200 ''radioactivity on construction materials (OeNORM). EU basic norm draft, requirements according building laws. BfS evaluation proposal.

  12. External exposure from gamma radiation in uranium mines

    International Nuclear Information System (INIS)

    Radiation doses received by workers in a high ore grade uranium mine are compared to those of other radiation workers and the need to be able to calculate the exposure rate from an ore body is indicated. The uranium-238 decay chain is presented and particular reference is made to the main gamma emitters and secular equilibrium of the members of the chain. Difficulties in dealing with a self attenuating volume source, in which scattering is important, are pointed out and traditional methods of solution are mentioned. It is shown that in the special case of an infinite ore body a simple solution may be obtained using the energy conservation principle. A straightforward method for calculating the exposure rate from an arbitrarily shaped ore body is given and corrections due to air attenuation, different soil types and possible lack of secular equilibrium are dealt with. The gamma ray spectrum from the ore is discussed with specific reference to the selection of suitable exposure monitors and the calculation of transmission through shields

  13. Some radiation exposure problems in hysterosalpingography procedures

    International Nuclear Information System (INIS)

    While stressing the diagnostic usefulness of hysterosalpingography in gynecological practice, the authors point out that generally much unjustified radiation exposure occurs during the procedure, affecting both the subjects investigated - usually women of reproductive age - and the attending personnel. Common faults in this respect are: disregard to preliminaries (team-work coordination, information on patient's condition), inadequate adaptation, roentgenoscopic examinations small in number but of long duration, a tendency to follow on the screen some aspects of the filling of genital tract sections that are of no particular relevance to diagnostic, quite unsatisfactory limitation of diaphragm aperture resulting in a 4 to 5 and even more times larger field than necessitated by the object of the investigation, either in roentgenoscopy or roentgenography, etc. The authors have measured the times of individual hysterosalpingography phases and present an analysis of a number of end-points: mean duration of the procedure, relative roentgenoscopic time, number of roentgenoscopic examinations, scopy-to-film ratio, failure to use maximum diaphragm-aperture constriction, etc. To achieve higher reliability, data were collected from 100 patient examinations involving one radiologist and three gynecologists. Finally, recommendations are given for a reasonable hysterosalpingography procedure aimed at reducing radiation exposure to female patients of reproductive age as well as medical personnel and providing permanent records by means of a larger number of films obtained under routine conditions instead of resorting to roentgenoscopic examinations of long duration associated with appreciable amounts of excessive exposure. (author)

  14. Radiation Exposure to Concrete in Israel

    International Nuclear Information System (INIS)

    Most building materials of terrestrial origin contain small amounts of radionuclides of natural origin, mainly from the Uranium (238U) and Thorium (232Th) decay chains and the radioactive isotope of potassium, 40K. The external radiation exposure is caused by gamma emitting radionuclides, which in the uranium series mainly belong to the decay chain segment starting with Radium (226Ra). The internal (by inhalation) radiation exposure is due to Radon (222Rn), and its short lived decay products, exhaled from building materials into the room air. Due to economical and environmental reasons there is an increased tendency to use industrial by-products containing relatively high concentrations of radionuclides of natural origin in the building material industry. Fly ash (FA), produced as by-product in the combustion of coal, is extensively used in Israel since mid eighties of the last century in concrete and as an additive to cement . The increase of 226Ra activity concentration, the mineralogical characteristics of the FA and of the concrete may influence on the radon exhalation rate and consequently on the radon exposure of the public. The recently published Israeli Standard 5098 (IS 5098) 'Content of natural radioactive elements in building products' limits the content of natural radionuclides as well as the radon emanation from concrete. This paper presents a compilation of three studies conducted at Soreq Nuclear Research Centre (SNRC), Technion, NRG and Environmental Lab BGU (ELBGU) to investigate and quantify the influence of FA addition in concrete

  15. Radiation Exposure Monitoring and Information Transmittal (REMIT) system

    International Nuclear Information System (INIS)

    The Radiation Exposure Monitoring and Information Transmittal (REMIT) system is designed to assist US Nuclear Regulatory Commission (NRC)licensees in meeting the reporting requirements of the revised 10 CFR 20 and in agreement with the guidance contained in R.G. 8.7, Rev. 1, ''Instructions for Recording and Reporting Occupational Exposure Data.'' REMIT is a personal computer (PC) based menu driven system that facilitates the manipulation of data base files to record and report radiation exposure information. REMIT is designed to be user-friendly and contains the full text of R. G. 8.7, Rev. 1, on-line as well as context-sensitive help throughout the program. The user can enter data directly from NRC Forms 4 or 5, REMIT allows the user to view the individual's exposure in relation to regulatory or administrative limits and alerts the user to exposures in excess of these limits. The system also provides for the calculation and summation of dose from intakes and the determination of the dose to the maximally exposed extremity for the monitoring year. REMIT can produce NRC Forms 4 and 5 in paper and electronic format and can import/export data from ASCII and data base files

  16. Report on emergency exposure to external radiation

    International Nuclear Information System (INIS)

    The Medical Research Council has continued a study of the effects on the health of persons in the neighbourhood of atomic energy installations should there be a release of radioactive material as a result of fires or other incidents. The Council's Committee on Protection against Ionizing Radiations has already reported (Medical Research Council, 1959) on the maximum permissible dietary contamination for iodine 131, strontium 89, strontium 90 and caesium. 137, since it was considered that for the members of the public normally resident in the area affected ingestion of contaminated food would generally be the limiting source of hazard after any such accident and that intake by inhalation, or radiation from the exterior, would become of importance only in rather special circumstances The present report deals with the problem of exposure from the exterior, namely, from external sources of beta and gamma radiation. This exposure might be derived from two sources, one of relatively short duration from the passage of a cloud of radioactive material, the other of longer duration from deposited material

  17. Microwave radiation: biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1981-01-01

    The thermal effects of microwave radiation are well recognized and are discussed with particular reference to cataractogenesis; the possibility of an association cannot be questioned. Postulated nonthermal effects comprise an asthenic syndrome, and for the most part the disturbances lie within clinical norms and tolerances, and are reversible. World opinion on safe exposure levels for microwave radiation is varied, and this had led to national standards disparate by three to four orders of magnitude. The US and UK exposure standard of 10 mW/cm/sup 2/ was determined over two decades ago; the possibility of a change to a more restrictive level, in line with other countries, in the near future is examined. It is concluded that such a change, without scientific rationale, is not justified. Some biological implications of the microwave radiation from the solar power satellite are considered in terms of precautions to be taken by personnel working in the vicinity of the rectenna, effects on cardiac pacemakers, and any potential effects on birds. 14 references.

  18. Occupational radiation exposure in Germany in 2011. Report of the radiation protection register

    International Nuclear Information System (INIS)

    In Germany, persons who are occupationally exposed to ionising radiation are monitored by several official dosimetry services that transmit the dose records about individual radiation monitoring to the Radiation Protection Register of the Federal Office for Radiation Protection (BfS). The purpose of the Radiation Protection Register is to supervise the keeping of the dose limits and to monitor the compliance with the radiation protection principle ''Optimisation'' by performing detailed annual statistical analyses of the monitored persons and their radiation exposure. The annual report of the Radiation Protection Register provides information about status and development of occupational radiation exposure in Germany. In 2011, about 350,000 workers were monitored with dosemeters for occupational radiation exposure. The number increased during the past five years continuously by 10 %. Only 19 % of the monitored persons received measurable personal doses. The average annual dose of these exposed workers was 0.58 mSv corresponding to 3 % of the annual dose limit of 20 mSv for radiation workers. In total, 7 persons exceeded the annual dose limit of 20 mSv, i.e. two cases per 100,000 monitored persons. The collective dose of the monitored persons decreased to 38.5 Person-Sv, the lowest value since the last fifty years of occupational dose monitoring. In 2010, 45 airlines calculated the route doses of 39,000 members of the aircraft crew personnel by using certified computer programmes for dose calculation and sent the accumulated monthly doses via the Federal Office for Civil Aviation (''Luftfahrt-Bundesamt, LBA'') to the BfS. The collective dose of the aircraft crew personnel is 83 person-Sv, and thus significantly higher than the total collective dose of the workers monitored with personal dosemeters (38.5 person-Sv). The annual average dose of aircraft crew personnel was 2.12 mSv and decreased compared to 2010 (2,30 mSv). In 2011, about 70,000 outside-workers were in

  19. Occupational radiation exposure in Germany in 2010. Report of the radiation protection register

    International Nuclear Information System (INIS)

    In Germany, persons who are occupationally exposed to ionising radiation are monitored by several official dosimetric services that transmit the records about individual radiation doses to the Radiation Protection Register of the Federal Office for Radiation Protection (BfS). The purpose of the Radiation Protection Register is to supervise the keeping of the dose limits and to monitor the compliance with the radiation protection principle ''Optimisation'' by performing detailed annual statistical analyses of the monitored persons and their radiation exposure. The annual report of the Radiation Protection Register provides information about status and development of occupational radiation exposure in Germany. In 2010, about 341,000 workers were monitored with dosemeters for occupational radiation exposure. The number increased during the past five years. Only 18 % of the monitored persons received measurable personal doses. The average annual dose of these exposed workers was 0.66 mSv corresponding to 3 % of the annual dose limit of 20 mSv for radiation workers. In totally, 3 persons exceeded the annual dose limit of 20 mSv, thus there were less then one cases per 100,000 monitored persons. The collective dose of the monitored persons decreases to 40 Person-Sv, the lowest value since the last fifty years of occupational dose monitoring. In 2010, 45 airlines calculated the route doses of 37,000 members of the aircraft crew personnel by using certified computer programmes for dose calculation and sent the accumulated monthly doses via the Federal Office for Civil Aviation (''Luftfahrt-Bundesamt, LBA'') to the BfS. The collective dose of the aircraft crew personnel is 86 person-Sv and thus significantly higher than the total collective dose of the workers monitored with personal dosemeters (40 person-Sv). The annual average dose of aircraft crew personnel is 2.30 mSv and nearly constant compared to 2010 (2,35 mSv). In 2010, about 70,000 outside-workers were in

  20. Exposures on-board airplanes by cosmic radiations

    International Nuclear Information System (INIS)

    Brief explanation of cosmic radiation around the earth, their components and energy, their origins, are given: Galactic cosmic rays (GCR) and solar energetic particles (SEP) including solar flare events. On receiving ICRP recommendation in 1990, the Japanese governmental working group is now examining the regularization on occupational exposure for aircraft crews. Model calculations on exposure rate (μSv/h) are given as function of altitude (km) with some observation data. Cut-off rigidity at 11,887 m are given. Exposure for passengers on-board aircraft flying from Narita airport to main cities in the world are given in μSv unit with flight hours. The effect of solar flares (Ground level event: GLE) is given with integrated fluence (cm-2) for each observed particles as function of particle energy (MeV). (S. Ohno)

  1. Assessment of risks from occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    The assessment of health effects from occupational exposure to radiation presents a variety of problems resulting from the time dependent nature of the exposure data, the more favorable health frequently experienced by working populations, and limits imposed by the size of the populations and the magnitudes of the exposures received. A proportional hazards model is used to derive tests for determining if statistically significant effects are present and is also considered for point estimation. Because effects of the size expected from current estimates are unlikely to be detected in occupationally exposed groups, methods of calculating upper confidence limits are considered. Data from the Hanford plant are used to illustrate many of the problems and procedures

  2. Radiation exposure of airline crew members to the atmospheric ionizing radiation environment

    International Nuclear Information System (INIS)

    All risk assessment techniques for possible health effects from low dose rate radiation exposure should combine knowledge both of the radiation environment and of the biological response, whose effects (e.g. carcinogenesis) are usually evaluated through mathematical models and/or animal and cell experiments. Data on human exposure to low dose rate radiation exposure and its effects are not readily available, especially with regards to stochastic effects, related to carcinogenesis and therefore to cancer risks, for which the event probability increases with increasing radiation exposure. The largest source of such data might be airline flight personnel, if enrolled for studies on health effects induced by the cosmic-ray generated atmospheric ionizing radiation, whose total dose, increasing over the years, might cause delayed radiation-induced health effects, with the high-LET and highly ionizing neutron component typical of atmospheric radiation. In 1990 flight personnel has been given the status of 'occupationally exposed to radiation' by the International Commission for Radiation Protection (ICRP), with a received radiation dose that is at least twice larger than that of the general population. The studies performed until now were limited in scope and cohort size, and moreover no information whatsoever on radiation occupational exposure (e.g. dose, flight hours, route haul, etc.) was used in the analysis, so no correlation has been until now possible between atmospheric ionizing radiation and (possibly radiation-induced) observed health effects. Our study addresses the issues, by considering all Italian civilian airline flight personnel, both cockpit and cabin crew members, with about 10,000 people selected, whose records on work history and actual flights (route, aircraft type, date, etc. for each individual flight for each person where possible) are considered. Data on actual flight routes and profiles have been obtained for the whole time frame. The actual dose

  3. Exposure to natural radiation and its regulation

    International Nuclear Information System (INIS)

    The natural radiation exists everywhere from the birth of the earth and the main component is cosmic ray and terrestrial γray. The natural radioactive nuclides are of the uranium series, thorium series, potassium 40 and others. The average uranium content is 1 g/t (id est (i.e.) 0.01 Bq/g) order in the crust and the content of thorium is one order higher than uranium content. In Japan the average annual external exposure is 0.76 mSv (0.3 mSv from cosmic ray, 0.44 mSv from terrestrial γray) and the exposure to radon and thoron progeny is 0.56 mSv, and the exposure by intake of food is 0.8 mSv. Japanese takes much sea food and therefore the exposure to Po-210 is pretty high. Japanese government does not yet regulate the NORM and radon, and the risks of other materials and events, the clearance level and the dose after the period for active control of radioactive waste should be considered on the legislation. (author)

  4. Radiation exposure during cardiac catheterization procedures

    International Nuclear Information System (INIS)

    For some time there has been an increased interest in more information about radiation exposure during cardiac catheterization because of: relatively high doses to workers and patient; rapid increase of numbers of examinations; introduction of new procedure-types (e.g. Percutaneous Transluminal Coronary Angiography, PTCA) and introduction of new techniques (e.g. Digital Subtraction Angiography, DSA). This paper reports about a study on the exposure to medical personnel and patient in two major hospitals in the Netherlands. The Total number of cardiac catheterization procedures in both hospitals amounts to circa 3000 per year (approximately 10% of all cardiac procedures c.q. 20% of all PTCA procedures in the Netherlands). This study is related to 1300 cardiac examinations

  5. Radiation-induced breast cancer: Influence of age at exposure, latency period, age, and genetic predisposition

    International Nuclear Information System (INIS)

    Radiation induced breast cancer: Influence of age at exposure, time since exposure, attained age and genetic predisposition. The amount of undesirable effects of screening with mammography was estimated from mortality studies after radiation exposure. Newer incidence studies demonstrate, however, an underestimation of the health detriment by mortality studies, in particular with increasing age at exposure, which amounts about five- to sixfold after an exposure in an age of 45-50y. The multidimensional analysis of the discrete values of incidence after radiation exposure respecting age at exposure, time since exposure and attained age instead of calculating a steady function simply depending from age at exposure results in an increasing relative and absolute risk of cancer incidence (and mortality) with growing age after an exposure at an age above 40y. Some genes seems to be correlated with an predisposition of breast cancer. In women carrying BRCA-1 the radiosensitivity for induction of breast cancer may exceed the risk in the normal population by about two orders of magnitude. The resulting doubling dose amounts in the order of the natural and medical radiation exposure. At least in part the genetic predisposition is associated with an early onset of the cancer after an additional radiation exposure. This kind of health detriment was not considered in the former discussion of radiation hazards. (orig.)

  6. Calculation of the collimated bremsstrahlung flux from thin radiators

    International Nuclear Information System (INIS)

    A method is outlined for calculating the absolute flux of a bremsstrahlung beam created by passing an electron beam through thin radiators. Multiple scattering of the electron beam in the radiator and collimation of the bremsstrahlung flux are considered in this calculation. Separate measurements determine that this calculations has an absolute accuracy of 2.8% for an endpoint energy range from 120 to 360 MeV for a total radiator thickness of less than 0.012 radiation lengths. (orig.)

  7. Intrauterine radiation exposures and mental retardation

    International Nuclear Information System (INIS)

    Small head size and mental retardation have been known as effects of intrauterine exposure to ionizing radiation since the 1920s. In the 1950s, studies of Japanese atomic-bomb survivors revealed that at 4-17 wk of gestation, the greater the dose, the smaller the brain (and head size), and that beginning at 0.5 Gy (50 rad) in Hiroshima, mental retardation increased in frequency with increasing dose. No other excess of birth defects was observed. Otake and Schull (1984) pointed out that the period of susceptibility to mental retardation coincided with that for proliferation and migration of neuronal elements from near the cerebral ventricles to the cortex. Mental retardation could be the result of interference with this process. Their analysis indicated that exposures at 8-15 wk to 0.01-0.02 Gy (1-2 rad) doubled the frequency of severe mental retardation. This estimate was based on small numbers of mentally retarded atomic-bomb survivors. Although nuclear accidents have occurred recently, new cases will hopefully be too rare to provide further information about the risk of mental retardation. It may be possible, however, to learn about lesser impairment. New psychometric tests may be helpful in detecting subtle deficits in intelligence or neurodevelopmental function. One such test is PEERAMID, which is being used in schools to identify learning disabilities due, for example, to deficits in attention, short- or long-term memory, or in sequencing information. This and other tests could be applied in evaluating survivors of intrauterine exposure to various doses of ionizing radiation. The results could change our understanding of the safety of low-dose exposures

  8. DOE 2008 Occupational Radiation Exposure October 2009

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security

    2009-10-01

    A major priority of the U.S. Department of Energy (DOE) is to ensure the health, safety, and security of DOE employees, contractors, and subcontractors. The Office of Health, Safety and Security (HSS) provides the corporate-level leadership and strategic vision necessary to better coordinate and integrate health, safety, environment, security, enforcement, and independent oversight programs. One function that supports this mission is the DOE Corporate Operating Experience Program that provides collection, analysis, and dissemination of performance indicators, such as occupational radiation exposure information. This analysis supports corporate decision-making and synthesizes operational information to support continuous environment, safety, and health improvement across the DOE complex.

  9. Ultraviolet Radiation Exposure Criteria (invited paper)

    International Nuclear Information System (INIS)

    During the past 25 years occupational health and safety guidelines, regulations and standards have evolved to protect workers and the general public from potentially hazardous exposure to ultraviolet radiation. A further goal has been to promote the safe design and use of suntanning devices, optical instruments, lamps, and laser products. From the gradually expanding knowledge of the biological effects of UVR exposure of the eye and skin, exposure limits have been slightly revised over the past two decades - by both national and international organisations. The general trend has been a convergence of differing limits. The greatest divergence in guidelines and standards has occurred where the biological effects are least understood or are simply controversial. Philosophical differences in the level of protection have played a role, since there are those who argue that UVR exposure offers more benefit than is accepted by all. The earliest guidelines were limited to UVR from low-pressure mercury lamps used in germicidal applications in the 1940s. By 1972 a North-American guideline based upon an envelope action spectrum had appeared. The International Non-Ionizing Radiation Committee (INIRC) of the International Radiation Protection Association (IRPA) proposed similar guidelines in 1985 and these were revised based upon newer data a few years later. After an extensive review of the IRPA/INIRC guidelines, the International Commission on Non-Ionizing Radiation Protection revalidated and endorsed those limits. Although these guidelines were based firstly on preventing any acute effects, they have also been analysed to show that the risk is extremely small, or undetectable, for delayed effects for persons exposed below these recommended limits. The limits are approximately one-third of an MED (for fair skin) in any eight-hour period. At this level, detectable molecular damage appears to be fully repaired. Further refinement is still called for. For example, the maximal

  10. Exposure Time Calculator for Immersion Grating Infrared Spectrograph: IGRINS

    OpenAIRE

    Le, Huynh Anh N.; Pak, Soojong; Jaffe, Daniel T.; Kaplan, Kyle; Lee, Jae-Joon; Im, Myungshin; Seifahrt, Andreas

    2015-01-01

    We present an exposure-time calculator (ETC) for the Immersion Grating Infrared Spectrograph (IGRINS). The signal and noise values are calculated by taking into account the telluric background emission and absorption, the emission and transmission of the telescope and instrument optics, and the dark current and read noise of the infrared detector arrays. For the atmospheric transmission, we apply models based on the amount of precipitable water vapor along the line of sight to the target. The...

  11. European studies on occupational radiation exposure

    International Nuclear Information System (INIS)

    The E.S.O.R.E.X. project was initiated by the European Commission in 1997. The objectives of this European study are: 1) to provide the European Commission and the national competent radiation protection authorities with reliable information on how personal radiation monitoring, reporting and recording of dosimetric results is organised in European countries. 2)To collect reliable and directly comparable data on individual and collective radiation exposure in all occupational sectors where radiation workers are employed. Recently the project continues with the name 'E.S.O.R.E.X. 2005' and managed under the responsibility of the State Office for Nuclear Safety of the Czech Republic (S.U.J.B.). The study is performed in close co-operation with the German B.f.S., which was leading the three previous E.S.O.R.E.X. studies: E.S.O.R.E.X. West, E.S.O.R.E.X. East and E.S.O.R.E.X. 2000. E.S.O.R.E.X. 2005 is scheduled for the next three years and the main goals will be to finalize the updating of the country reports by describing the current situation on the field of occupational exposure control, evaluation and registration of personal doses of radiation workers and as a second part of the study, to collect dosimetric data for the period of the years 2001- 2005. In the beginning of the E.S.O.R.E.X. 2005 study the 3. E.S.O.R.E.X. workshop has been organised in the year 2004. The meeting was aimed to present and discus the actual problems identified during the performance of E.S.O.R.E.X. studies and also to establish the ground for an European network that sets up personal contacts and encourages to mutual information exchange in the field of occupational exposure evaluation, regulation and registration and of another related problems. For this purpose a special web site www.esorex.cz has been created where also the discussing forum for certain problems is open. The poster will present the main feedback, highlights and results from the recent and also previous studies and from

  12. Monitoring of radiation exposure. Annual report 2000

    International Nuclear Information System (INIS)

    At the end of 2000, there were 1,779 valid safety licenses in Finland for the use of radiation. In addition, there were 2,038 responsible parties for dental x-ray diagnostics. The registry Radiation and Nuclear Safety Authority (STUK) listed 13,754 radiation sources and 270 radionuclide laboratories. In the year 2000 360 inspections were made concerning the safety licences and 53 concerning dental x-ray diagnostics. The import of radioactive substances amounted to 175,836 GBq and export to 74,420 GBq. Short-lived radionuclides produced in Finland amounted to 55,527 GBq. In the year 2000 there were 10,846 workers monitored for radiation exposure at 1,171 work sites. Of these employees, 27% received an annual dose exceeding the recording level. The annual effective dose limit was not exceeded. The total dose recorded in the dose registry(sum of the individual dosemeter readings) was 6.5 Sv in 2000

  13. Creation of a crystalline lens radiation exposure defense cover and the effect of radiation exposure decrease on neuro-interventions

    International Nuclear Information System (INIS)

    A variety of radiation hazards resulting from interventional radiology (IVR) have been reported in recent years. Particularly affected are the skin and the crystalline lens, with their high radiation sensitivity. During neurological interventions, the radiological technologist should consider decreasing radiation exposure. We found exposure projections where the exposure dose became a radiation hazard for the crystalline lens, and examined an efficient method of cover for the exposure projections used for neurological interventions. The exposure projection for maximum crystalline lens radiation exposure was a lateral projection. In the crystalline lens the maximum exposure to radiation was on the X-ray tube side. The method of defense adopted was that of installing a lead plate of the appropriate shape on the surface of the X-ray tube collimator. In other exposure projections, this cover did not become a redundant shadow. With the cover that was created, the X-ray side crystalline lens lateral projection could be defended effectively. (author)

  14. Exposure of Finnish population to ultraviolet radiation and radiation measurements

    International Nuclear Information System (INIS)

    This report is based on a survey of the literature on radiation risks involved in sunbathing and the use of solaria. The purpose of the report is to provide background information for the development of regulations on solaria and for informing the public about the risks posed by solaria and the sun. The report gives an overview of the properties and biological effects of ultraviolet radiation. The most important regulations and recommendations issued in various countries are presented. The connection between ultraviolet radiation and the risks of skin cancer is examined both on a general level and in reference to information obtained from the Finnish Cancer Registry. In Finland, the incidence of melanomas nearly tripled between 1960 and 1980. The most important cause is considered to be the population's increased exposure to the su's ultraviolet radiation. There are no reliable data on the connection between the use of solaria and the risks of skin cancer. It is estimated, however, that solaria account for less than 10 per cent of the skin cancer risk of the whole population. There are some difficult physical problems associated with the measurement of ultraviolet radiation emitted by both natural sources and solaria. A preliminary study of these problems has been undertaken by means of a survey of the available literature, supplemented by a review of measurements performed by the Finnish Centre For Radiation and Nuclear Safety. The estimated inaccuracy of the Optronic 742 spectroradiometer used by the Centre in the measurement of ultraviolet radiation emitted by the sun and solaria is about +-14%

  15. Breast cancer induced by protracted radiation exposures

    International Nuclear Information System (INIS)

    The experience at Hiroshima/Nagasaki demonstrated that breast cancer can be induced by single doses of ionizing radiation following latencies of 10-40 years. Several epidemiological studies, usually involving ancillary low-LET radiation to the breast, have demonstrated that breast cancer can be induced by protracted exposures, with similar latencies, and with similar dependencies on dose. Radiobiologically these results suggest that the target cells involved were deficient in repair of low-LET damage even when the protraction was over months to years. Since three-quarters of breast tumors originate in the ducts where their proliferation is controlled by menstrual-cycle timed estrogen/progesterone secretions, these cells periodically were in cycle. Thus, the two main elements of a conceptual model for radon-induced lung cancer -- kinetics and deficient repair -- are satisfied. The model indicates that breast cancer could be the cumulative effect of protracted small exposures, the risk from any one of which ordinarily would be quite small. (author)

  16. Radiation exposures for DOE and DOE contractor employees, 1987

    International Nuclear Information System (INIS)

    This report is one of series of annual reports provided by the US Department of Energy (DOE) summarizing occupational radiation exposures received by DOE and DOE contractor employees. These reports provide an overview of radiation exposures received each year, as well as identification of trends in exposures being experienced over the years. 5 figs., 30 tabs

  17. Overview of ICRP Committee 2: doses from radiation exposure.

    Science.gov (United States)

    Harrison, J D; Paquet, F

    2016-06-01

    The focus of the work of Committee 2 of the International Commission on Radiological Protection (ICRP) is the computation of dose coefficients compliant with Publication 103 A set of reference computational phantoms is being developed, based on medical imaging data, and used for radiation transport calculations. Biokinetic models used to describe the behaviour of radionuclides in body tissues are being updated, also leading to changes in organ doses and effective dose coefficients. Dose coefficients for external radiation exposure of adults calculated using the new reference phantoms were issued as Publication 116, jointly with the International Commission on Radiation Units and Measurements. Forthcoming reports will provide internal dose coefficients for radionuclide inhalation and ingestion by workers, and associated bioassay data. Work is in progress to revise internal dose coefficients for members of the public, and, for the first time, to provide reference values for external exposures of the public. Committee 2 is also working with Committee 3 on dose coefficients for radiopharmaceuticals, and leading a cross-Committee initiative to give advice on the use of effective dose. PMID:26984902

  18. Loss of lifetime due to radiation exposure-averaging problems.

    Science.gov (United States)

    Raicević, J J; Merkle, M; Ehrhardt, J; Ninković, M M

    1997-04-01

    A new method is presented for assessing a years of life lost (YLL) due to stochastic effects caused by the exposure to ionizing radiation. The widely accepted method from the literature uses a ratio of means of two quantities, defining in fact the loss of life as a derived quantity. We start from the real stochastic nature of the quantity (YLL), which enables us to obtain its mean values in a consistent way, using the standard averaging procedures, based on the corresponding joint probability density functions needed in this problem. Our method is mathematically different and produces lower values of average YLL. In this paper we also found certain similarities with the concept of loss of life expectancy among exposure induced deaths (LLE-EID), which is accepted in the recently published UNSCEAR report, where the same quantity is defined as years of life lost per radiation induced case (YLC). Using the same data base, the YLL and the LLE-EID are calculated and compared for the simplest exposure case-the discrete exposure at age a. It is found that LLE-EID overestimates the YLL, and that the magnitude of this overestimation reaches more than 15%, which depends on the effect under consideration. PMID:9119679

  19. Occupational exposure to natural radiation in Brazil

    International Nuclear Information System (INIS)

    The mining, milling and processing of uranium and thorium bearing minerals may result in radiation doses to workers. A preliminary survey pilot program, that included six mines in Brazil (two coal mines, one niobium mine, one nickel mine, one gold mine and one phosphate mine), was launched in order to determine the need to control the radioactive exposure of the mine-workers. Our survey consisted of the collection and analysis of urine samples, complemented by feces and air samples. The concentrations of uranium, thorium and polonium were measured in these samples and compared to background data from family members of the workers living in the same dwelling and from residents from the general population of Rio de Janeiro. The results from the coal mines indicated that the inhalation of radon progeny may be a source of occupational exposure. The workers from the nickel, gold and phosphate mines that were visited do not require a program to control internal radiological doses. The niobium mine results showed that in some areas of the industry exposure to thorium and uranium might occur. (author)

  20. Effects of occupational exposure to ionizing radiation on reproductive and child health

    International Nuclear Information System (INIS)

    The evidence regarding the effects of occupational exposure to low levels of ionizing radiation on reproductive health is limited. However, exposure to high doses of ionizing radiation is associated with increased risk of adverse reproductive outcomes. The resulting uncertainty about the effects of occupational exposures has caused concern among some workers, therefore, we have designed a study to examine this question among Canadian medical radiation technologists. A short mailed questionnaire will be sent to all CAMRT members to obtain information about reproductive history, and a sample of respondents will receive a second questionnaire requesting information about other important exposures. Occupational dose records will be retrieved from the National Dose Registry. Using this information, relative risks for each outcome will be calculated for different radiation dose levels. This article provides a brief review of the literature on ionizing radiation exposure and reproductive outcomes, and an outline of the proposed study

  1. Exposure calculation code module for reactor core analysis: BURNER

    International Nuclear Information System (INIS)

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules

  2. GPU Nuclear Corporation's radiation exposure management system

    International Nuclear Information System (INIS)

    GPU Nuclear Corporation has developed a central main frame (IBM 3081) based radiation exposure management system which provides real time and batch transactions for three separate reactor facilities. The structure and function of the data base are discussed. The system's main features include real time on-line radiation work permit generation and personnel exposure tracking; dose accountability as a function of system and component, job type, worker classification, and work location; and personnel dosemeter (TLD and self-reading pocket dosemeters) data processing. The system also carries the qualifications of all radiation workers including RWP training, respiratory protection training, results of respirator fit tests and medical exams. A warning system is used to prevent non-qualified persons from entering controlled areas. The main frame system is interfaced with a variety of mini and micro computer systems for dosemetry, statistical and graphics applications. These are discussed. Some unique dosemetry features which are discussed include assessment of dose for up to 140 parts of the body with dose evaluations at 7,300 and 1000 mg/cm2 for each part, tracking of MPC hours on a 7 day rolling schedule; automatic pairing of TLD and self-reading pocket dosemeter values, creation and updating of NRC Forms 4 and 5, generation of NRC required 20.407 and Reg Guide 1.16 reports. As of July 1983, over 20 remote on-line stations were in use with plans to add 20-30 more by May 1984. The system provides response times for on-line activities of 2-7 seconds and 23 1/2 hours per day ''up time''. Examples of the various on-line and batch transactions are described

  3. Information by the German Federal Government. Environmental radioactivity and radiation exposure in 2009

    International Nuclear Information System (INIS)

    The annual report on environmental radioactivity and radiation exposure of the German Federal Government for 2009 includes the following chapters: (1) natural radiation exposure; (2) civilization based radiation exposure (nuclear power plants, nuclear installations, radioactive waste repositories, other radiation sources, Chernobyl accident caused fall-out); (3) occupational radiation exposure; (4) medical radiation exposure; (5) non-ionizing radiation.

  4. Radiation exposure of patients and operators during interventional radiology

    International Nuclear Information System (INIS)

    Surface doses received by patients and operators were measured during 30 interventional radiological procedures (ten percutaneous transhepatic biliary drainages, ten percutaneous nephrostomies, ten percutaneous transluminal angioplasties). In addition, organ doses to the patient were determined using an Alderson-Rando phantom. These served as a basis for calculating the so-called somatic dose indices. It was found that the somatic radiation risk to the patient is relatively small despite prolonged periods of fluoroscopy. However, exposure of the hands and lenses of the operator could easily reach the limits thought acceptable while carrying out these procedures with additional angiography. (orig)

  5. Calculation of dose-rate conversion factors for external exposure to photons and electrons

    International Nuclear Information System (INIS)

    Methods are presented for the calculation of dose-rate conversion factors for external exposure to photon and electron radiation from radioactive decay. A dose-rate conversion factor is defined as the dose-equivalent rate per unit radionuclide concentration. Exposure modes considered are immersion in contaminated air, immersion in contaminated water, and irradiation from a contaminated ground surface. For each radiation type and exposure mode, dose-rate conversion factors are derived for tissue-equivalent material at the body surface of an exposed individual. In addition, photon dose-rate conversion factors are estimated for 22 body organs. The calculations are based on the assumption that the exposure medium is infinite in extent and that the radionuclide concentration is uniform. The dose-rate conversion factors for immersion in contaminated air and water then follow from the requirement that all of the energy emitted in the radioactive decay is absorbed in the infinite medium. Dose-rate conversion factors for ground-surface exposure are calculated at a reference location above a smooth, infinite plane using the point-kernel integration method and known specific absorbed fractions for photons and electrons in air

  6. Criteria for radiological protection against exposure to natural radiation

    International Nuclear Information System (INIS)

    Exposure of humans to natural sources of radiation has been a continuous and inevitable feature of life on earth. This exposure exceeds all due to artificial sources combined for most people. Many exposures to natural radiation sources are modified by human action. In particular, natural radionuclides are released into the environment in mineral processing and in activities such as the production of phosphate fertilizers and the use of fossil fuels. An increase of exposures to this natural radiation is caused. The relevance of exposure to natural radiation is confirmed by the fact that, for most people, the exposures to natural background radiation have been much more significant than exposures to artificial sources, with exceptions. Among these exceptions have been noted: medical exposures, accidents with release of radionuclides and some specific workplaces. In all cases, however, the natural background radiation has formed the basis on which all the others exposures are added and is a common level serving as compared to other exposures. Regulations and instructions have begun to establish in some countries to regulate natural radiation, countries like Spain, have already incorporated into its regulations on health protection against ionizing radiation the subject of natural radiation. (author)

  7. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    Science.gov (United States)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  8. Radiation exposure and radiation protection dosimetry. Trial of a critical balance

    International Nuclear Information System (INIS)

    An overview of the state of radiation protection dosimetry of external irradiation is given. From the point of view of practical radiation protection a clear and unambiguous regulation system with unequivocal measurement and evaluation rules is more important than an apparently accurate determination of a risk equivalent radiation exposure. After a survey of the calculations of conversion coefficients between effective dose, operational quantities and primary quantities for photons and neutrons it is demanded that the results of a relevant ICRP/ICRU Task Group are published as soon as possible to create a binding and durable basis of radiation protection area and individual dosimetry. The special problem of evaluation of measured individual doses, if protective clothing in diagnostic radiology is worn, is discussed. Furthermore the following basic problems are dealt with: Required measuring ranges, state of the available measuring instruments, requirements for measurement accuracy and prototype testing. An analysis of surveillance results shows that on the one hand trivial exposures are monitored with great effort by means of personal dosemeters, on the other hand much higher exposures, on e.g. due to radon progeny, are controlled only by area monitoring. Despite the unsolved problems still to be worked on, all in all the state of radiation protection dosimetry is satisfactory. (orig.)

  9. Intervention in emergency situations involving radiation exposure (1990)

    International Nuclear Information System (INIS)

    This document covers radiation protection aspects arising in emergency situations. It does not cover the measures necessary to reduce the health consequences of radiation exposure, i.e. the medical care of exposed individuals, nor does it cover psychological problems arising from the exposure of individuals or of a population. These problems may arise from anxiety about possible late effects of radiation exposure and from any actions implemented to reduce exposure. Even though radiation exposure levels may be low and insignificant, these problems must be taken into account in determining any action to be implemented to reduce radiation exposure. The primary concern of this document is with exposure in areas which are close to the source and in the period immediately after a source is out of control. It outlines the principles which can be used for planning and implementing countermeasures for protection of the public. 24 refs., 13 tabs

  10. Anthropogenic substances and products containing natural radionuclides. Radiation exposure analysis

    International Nuclear Information System (INIS)

    The anthropogenic component of radiation exposure stems from man's activities. It can be induced both by artificial and natural radionuclides. Radiation exposure due to natural radionuclides can be attributed to anthropogenic materials and products: raw materials, wastes, consumer goods, aricles of daily use. The potential radiation exposure induced by artificial radionuclides is subject to monitoring and rigid regulatory provisions at international level. Recently, exposure from natural radionuclides has become an aspect attracting increasing attention, one major reason being the disturbance detected in the ''normal'' natural background radiation, which is a result of man's activities (modified natural radiation exposure). The lecture briefly reviews the existing laws and regulations and a list of the raw materials, wastes, consumer goods and articles of daily use which contain natural radionuclides. The concluding part discusses results of radiation exposure assessments for a variety of relevant situations and cases. (orig./DG)

  11. Progress and prospects of calculation methods for radiation shielding

    International Nuclear Information System (INIS)

    Progress in calculation methods for radiation shielding are reviewed based on the activities of research committees related to radiation shielding fields established in the Atomic Energy Society of Japan. A technological roadmap for the field of radiation shielding; progress and prospects for specific shielding calculation methods such as the Monte Carlo, discrete ordinate Sn transport, and simplified methods; and shielding experiments used to validate calculation methods are presented in this paper. (author)

  12. Occupational radiation exposure in Germany in 2009. Report of the radiation protection register

    International Nuclear Information System (INIS)

    In Germany, persons who are occupationally exposed to ionising radiation are monitored by several official dosimetric services that transmit the records about individual radiation doses to the Radiation Protection Register of the Federal Office for Radiation Protection (BfS). The purpose of the Radiation Protection Register is to supervise the keeping of the dose limits and to monitor the compliance with the radiation protection principle ''Optimisation'' by performing detailed annual statistical analyses of the monitored persons and their radiation exposure. The annual report of the Radiation Protection Register provides information about status and development of occupational radiation exposure in Germany. In 2008, about 324,000 workers were monitored with dosemeters for occupational radiation exposure. The number increased again after a slight decline during the past five years. Only 15 % of the monitored persons received measurable personal doses. The average annual dose of these exposed workers was 0.84 mSv which is 4 % of the annual dose limit of 20 mSv for radiation workers. Since 2004, the average annual dose range from 0.75 mSv und 0.84 mSv. In totally, 13 persons exceeded the annual dose limit of 20 mSv, thus there were 4 cases per 100,000 monitored persons. During the last five years the collective dose of the monitored workers ranges from 41 to 46 person-Sv and corresponds to the variation of exposures in the nuclear sector which comes from cyclic revision works in nuclear power plants. The number of persons monitored for exposure of the extremities increased continuously during the last five years and the extremity doses increased correspondingly. This domain of exposure gains increasingly in importance. In 2009, 45 airlines calculated the route doses of 37,000 members of the aircraft crew personnel by using certified computer programmes for dose calculation and sent the accumulated monthly doses via the Federal Office for Civil Aviation

  13. Design And Measurement Of Radiation Exposure Rates At An X-Ray Diagnostic Radiological Unit

    International Nuclear Information System (INIS)

    Every radiation employees suffers radiation exposure risk while doing his job. It is important therefore to investigate the occupational health and safety of radiation employees on its relationship with the design and measurement of radiation exposure rates at an X-ray diagnostic radiological unit in this work, a case study was held on the radiological unit at BP-4 Yogyakarta for patient diagnostics, This research armed to investigate the relationship between the design of radiological unit for X-ray diagnostics and the location of the X-ray machine, based on the distance variable and radiation exposure rate during patient diagnostics. This was performed using radiological unit design data for X-ray diagnostics and the measurement of radiation exposure rates throughout patient diagnostics. The design data can then be used for determining the requirement of primary and secondary shielding materials for radiological unit as well as a calculation basis of radiation exposure rates during patient diagnostics. From the result of the research, it can be concluded that from the occupational health and safety point of view, radiation exposure around the X-ray machines are fairly good, both for the shielding materials in each X-ray room and the radiation exposures received by the workers, because they are far beyond the maximum permittable average limit (16.67 m R/days). (author)

  14. Investigations of the radiation exposure of the head during computerized axial tomography

    International Nuclear Information System (INIS)

    Various head phantoms and patients were used to measure, by means of thermoluminescence and film dosimetry, the radiation exposure of the head, especially of the eye lenses, in computerized axial tomography with the EMI scanner. The form of the isodoses and the dependence on position of the exposure dose in the region of the eyes were confirmed by calculations with a computer program. (orig.)

  15. Occupational radiation exposures in research laboratories

    International Nuclear Information System (INIS)

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form (57Co in Moessbauer application) and unsealed form (3H, 14C, 32P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  16. Studies on the calculation method of regional solar radiation

    International Nuclear Information System (INIS)

    Studies on the Calculation Method of Regional Solar Radiation 1. The significance and question of regional solar radiation The significance of regional solar radiation in agriculture is clear. To estimate regional agricultural producing potential, we need to know the regional solar radiation. In the field of hydrology, regional solar radiation is also important to estimate evapotranspiration of the region. There are so many slopes with different slope angles and slope directions in a region. So, we have to know how we can calculate slope radiation. The conversion

  17. Organ doses from environmental exposures calculated using voxel phantoms of adults and children

    International Nuclear Information System (INIS)

    This paper presents effective and organ dose conversion coefficients for members of the public due to environmental external exposures, calculated using the ICRP adult male and female reference computational phantoms as well as voxel phantoms of a baby, two children and four adult individual phantoms-–one male and three female, one of them pregnant. Dose conversion coefficients are given for source geometries representing environmental radiation exposures, i.e. whole body irradiations from a volume source in air, representing a radioactive cloud, a plane source in the ground at a depth of 0.5 g cm–2, representing ground contamination by radioactive fall-out, and uniformly distributed natural sources in the ground. The organ dose conversion coefficients were calculated employing the Monte Carlo code EGSnrc simulating the photon transport in the voxel phantoms, and are given as effective and equivalent doses normalized to air kerma free-in-air at height 1 m above the ground in Sv Gy–1. The findings showed that, in general, the smaller the body mass of the phantom, the higher the dose. The difference in effective dose between an adult and an infant is 80–90% at 50 keV and less than 40% above 100 keV. Furthermore, dose equivalent rates for photon exposures of several radionuclides for the above environmental exposures were calculated with the most recent nuclear decay data. Data are shown for effective dose, thyroid, colon and red bone marrow. The results are expected to facilitate regulation of exposure to radiation, relating activities of radionuclides distributed in air and ground to dose of the public due to external radiation as well as the investigation of the radiological effects of major radiation accidents such as the recent one in Fukushima and the decision making of several committees. (paper)

  18. Organ doses from environmental exposures calculated using voxel phantoms of adults and children

    Science.gov (United States)

    Petoussi-Henss, Nina; Schlattl, H.; Zankl, M.; Endo, A.; Saito, K.

    2012-09-01

    This paper presents effective and organ dose conversion coefficients for members of the public due to environmental external exposures, calculated using the ICRP adult male and female reference computational phantoms as well as voxel phantoms of a baby, two children and four adult individual phantoms--one male and three female, one of them pregnant. Dose conversion coefficients are given for source geometries representing environmental radiation exposures, i.e. whole body irradiations from a volume source in air, representing a radioactive cloud, a plane source in the ground at a depth of 0.5 g cm-2, representing ground contamination by radioactive fall-out, and uniformly distributed natural sources in the ground. The organ dose conversion coefficients were calculated employing the Monte Carlo code EGSnrc simulating the photon transport in the voxel phantoms, and are given as effective and equivalent doses normalized to air kerma free-in-air at height 1 m above the ground in Sv Gy-1. The findings showed that, in general, the smaller the body mass of the phantom, the higher the dose. The difference in effective dose between an adult and an infant is 80-90% at 50 keV and less than 40% above 100 keV. Furthermore, dose equivalent rates for photon exposures of several radionuclides for the above environmental exposures were calculated with the most recent nuclear decay data. Data are shown for effective dose, thyroid, colon and red bone marrow. The results are expected to facilitate regulation of exposure to radiation, relating activities of radionuclides distributed in air and ground to dose of the public due to external radiation as well as the investigation of the radiological effects of major radiation accidents such as the recent one in Fukushima and the decision making of several committees.

  19. Risk assessment and management of natural radiation exposures

    International Nuclear Information System (INIS)

    An account is given of the range of natural radiation exposures received both by the general population and by occupationally exposed groups. Particular emphasis is placed in this paper on the cosmic radiation exposures of air crew and on exposures to radon in the workplace. In both these cases exposure and risk assessment procedures are described. Present approaches to the management of these exposures from natural radiation are outlined in particular in the context of the revised European Union Basic Safety Standards Directive which must be implemented in European Union Member States by May 2000. (author)

  20. Radiation exposures in the nuclear maintenance and service industry

    International Nuclear Information System (INIS)

    The recent experience of the Energy Systems Service Division of Westinghouse Electric Corporation indicates that the general trend of radiation exposures in the nuclear maintenance and service industry is favorable and on the edge of a long-sought downward trend. Exposure data obtained over the past six-year period (1980-1986) has been analyzed. Annual exposure for a variety of service job categories shows the positive effect of increased training of service workers and enhancement of service equipment in the reduction of radiation exposure. Service Resource Planning is required to ensure the continuation of radiation exposure reduction in the industry

  1. Cell/Tissue Culture Radiation Exposure Facility Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a Cell/Tissue Culture Radiation Exposure Facility (CTC-REF) to enable radiobiologists to investigate the real-time radiation effects on...

  2. Calculation codes in radiation protection, radiation physics and dosimetry; Codes de calcul en radioprotection, radiophysique et dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    These scientific days had for objective to draw up the situation of calculation codes of radiation transport, of sources estimation, of radiation doses managements and to draw the future perspectives. (N.C.)

  3. The philosophy and assumptions underlying exposure limits for ionising radiation, inorganic lead, asbestos and noise

    International Nuclear Information System (INIS)

    Full text: A review of the literature relating to exposure to, and exposure limits for, ionising radiation, inorganic lead, asbestos and noise was undertaken. The four hazards were chosen because they were insidious and ubiquitous, were potential hazards in both occupational and environmental settings and had early and late effects depending on dose and dose rate. For all four hazards, the effect of the hazard was enhanced by other exposures such as smoking or organic solvents. In the cases of inorganic lead and noise, there were documented health effects which affected a significant percentage of the exposed populations at or below the [effective] exposure limits. This was not the case for ionising radiation and asbestos. None of the exposure limits considered exposure to multiple mutagens/carcinogens in the calculation of risk. Ionising radiation was the only one of the hazards to have a model of all likely exposures, occupational, environmental and medical, as the basis for the exposure limits. The other three considered occupational exposure in isolation from environmental exposure. Inorganic lead and noise had economic considerations underlying the exposure limits and the exposure limits for asbestos were based on the current limit of detection. All four hazards had many variables associated with exposure, including idiosyncratic factors, that made modelling the risk very complex. The scientific idea of a time weighted average based on an eight hour day, and forty hour week on which the exposure limits for lead, asbestos and noise were based was underpinned by neither empirical evidence or scientific hypothesis. The methodology of the ACGIH in the setting of limits later brought into law, may have been unduly influenced by the industries most closely affected by those limits. Measuring exposure over part of an eight hour day and extrapolating to model exposure over the longer term is not the most effective way to model exposure. The statistical techniques used

  4. Medical radiation exposure and genetic risks

    International Nuclear Information System (INIS)

    Everyone is exposed to background radiation throughout life (100 mrem/year to the gonads or 4 to 5 rem during the reproductive years). A lumbosacral series might deliver 2500 mrem to the male or 400 mrem to the female gonads. A radiologic procedure is a cost/benefit decision, and genetic risk is a part of the cost. Although cost is usually very low compared to benefit, if the procedure is unnecessary then the cost may be unacceptable. On the basis of current estimates, the doubling dose is assumed to be 40 rem (range 20 to 200) for an acute dose, and 100 rem for protracted exposure. Although there is no satisfactory way to predict the size of the risk for an individual exposed, any risk should be incentive to avoid unnecessary radiation to the gonads. Conception should be delayed for at least ten months for women and three or four months for men after irradiation of the gonads. The current incidence of genetically related diseases in the United States population is 60,000 per million live births. Based on the most conservative set of assumptions, an average gonadal dose of 1000 mrem to the whole population would increase the incidence of genetically related diseases by 0.2%

  5. Effects of high vs low-level radiation exposure

    International Nuclear Information System (INIS)

    In order to appreciate adequately the various possible effects of radiation, particularly from high-level vs low-level radiation exposure (HLRE, vs LLRE), it is necessary to understand the substantial differences between (a) exposure as used in exposure-incidence curves, which are always initially linear and without threshold, and (b) dose as used in dose-response curves, which always have a threshold, above which the function is curvilinear with increasing slope. The differences are discussed first in terms of generally familiar nonradiation situations involving dose vs exposure, and then specifically in terms of exposure to radiation, vs a dose of radiation. Examples are given of relevant biomedical findings illustrating that, while dose can be used with HLRE, it is inappropriate and misleading the LLRE where exposure is the conceptually correct measure of the amount of radiation involved

  6. Occupational Radiation Exposure During Endovascular Aortic Repair

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, Anna M., E-mail: anni.sailer@mumc.nl [Maastricht University Medical Centre (MUMC), Department of Radiology (Netherlands); Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl [Maastricht University Medical Centre (MUMC), Department of Surgery (Netherlands); Bol, Martine E., E-mail: m.bol@maastrichtuniversity.nl; Haan, Michiel W. de, E-mail: m.de.haan@mumc.nl; Zwam, Willem H. van, E-mail: w.van.zwam@mumc.nl; Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl; Jeukens, Cécile R. L. P. N., E-mail: cecile.jeukens@mumc.nl [Maastricht University Medical Centre (MUMC), Department of Radiology (Netherlands)

    2015-08-15

    PurposeThe aim of the study was to evaluate the radiation exposure to operating room personnel and to assess determinants for high personal doses during endovascular aortic repair.Materials and MethodsOccupational radiation exposure was prospectively evaluated during 22 infra-renal aortic repair procedures (EVAR), 11 thoracic aortic repair procedures (TEVAR), and 11 fenestrated or branched aortic repair procedures (FEVAR). Real-time over-lead dosimeters attached to the left breast pocket measured personal doses for the first operators (FO) and second operators (SO), radiology technicians (RT), scrub nurses (SN), anesthesiologists (AN), and non-sterile nurses (NSN). Besides protective apron and thyroid collar, no additional radiation shielding was used. Procedural dose area product (DAP), iodinated contrast volume, fluoroscopy time, patient’s body weight, and C-arm angulation were documented.ResultsAverage procedural FO dose was significantly higher during FEVAR (0.34 ± 0.28 mSv) compared to EVAR (0.11 ± 0.21 mSv) and TEVAR (0.06 ± 0.05 mSv; p = 0.003). Average personnel doses were 0.17 ± 0.21 mSv (FO), 0.042 ± 0.045 mSv (SO), 0.019 ± 0.042 mSv (RT), 0.017 ± 0.031 mSv (SN), 0.006 ± 0.007 mSv (AN), and 0.004 ± 0.009 mSv (NSN). SO and AN doses were strongly correlated with FO dose (p = 0.003 and p < 0.001). There was a significant correlation between FO dose and procedural DAP (R = 0.69, p < 0.001), iodinated contrast volume (R = 0.67, p < 0.001) and left-anterior C-arm projections >60° (p = 0.02), and a weak correlation with fluoroscopy time (R = 0.40, p = 0.049).ConclusionAverage FO dose was a factor four higher than SO dose. Predictors for high personal doses are procedural DAP, iodinated contrast volume, and left-anterior C-arm projections greater than 60°.

  7. Information by the German Federal Government. Environmental radioactivity and radiation exposure in 2012

    International Nuclear Information System (INIS)

    The information by the German Federal Government on environmental radioactivity and radiation exposure in 2012 covers the following issues: Natural radiation exposure; radiation exposure due to civilization (nuclear power plants and nuclear facilities, radioactive waste storage, radioactive matter in research, engineering and medicine, nuclear accidents, nuclear weapon tests); occupational radiation exposure; medical radiation exposure; non-ionizing radiation.

  8. Approximate design calculation methods for radiation streaming in shield irregularities

    International Nuclear Information System (INIS)

    Investigation and assessment are made for approximate design calculation methods of radiation streaming in shield irregularities. Investigation is made for (1) source, (2) definition of streaming radiation components, (3) calculation methods of streaming radiation, (4) streaming formulas for each irregularity, (5) difficulties in application of streaming formulas, etc. Furthermore, investigation is made for simple calculation codes and albedo data. As a result, it is clarified that streaming calculation formulas are not enough to cover various irregularities and their accuracy or application limit is not sufficiently clear. Accurate treatment is not made in the formulas with respect to the radiation behavior for slant incidence, bend part, offset etc., that results in too much safety factors in the design calculation and distrust of the streaming calculation. To overcome the state and improve the accuracy of the design calculation for shield irregularities, it is emphasized to assess existing formulas and develop better formulas based on systematic experimental studies. (author)

  9. Use of hyperfunctions for classical radiation-reaction calculations

    International Nuclear Information System (INIS)

    It is shown that the use of hyperfunctions for the evaluation of radiation reaction in classical field theories leads to calculational simplifications compared to other methods. As illustrations, we calculate the radiation-reaction terms for systems of point particles in electrodynamics and in the lowest nontrivial order of the ''fast motion'' approximation of general relativity. Applications to other field theories are discussed briefly

  10. The influence of potential exposure to radiation protection system of accelerator installation TESLA

    International Nuclear Information System (INIS)

    Potential exposure of individuals at big nuclear machines like Accelerator Installation Tesla (AIT) generates direct requirements to reliability of radiation protection system. Starting from technical characteristics of AlT and international recommendation concerning potential exposure and the probability of death has been calculated. The reference risk has been specified. Comparing then we calculated the probability of the failure of the protective system. The reliability of the system has to be better (author)

  11. PRDC - A software package for personnel radiation dose calculation

    International Nuclear Information System (INIS)

    To determine effective dose, we usually need to use a very complicated human body model and a sophisticated computer code to transport radiations in the body model and surrounding medium, which is not very easy to practicing health physicists in the field. This study develops and tests a software package, called PRDC (Personnel Radiation Dose Calculation), which calculates effective dose and radiation doses to various organs/tissues and personal dosemeters based on a series of interpolations. (authors)

  12. Assessment of leukemia caused deaths due to internal radiation exposure

    International Nuclear Information System (INIS)

    A problem of finding the number of cancers, which are developed due to internal exposure to radioactive material, is not a trivial task. This problem is generally rather complex, because in case of protracted exposures, latency period may exceed the time of an individual's natural death, i.e. the age at death due to 'natural causes'. In this paper the model for calculating risk caused by an internal exposure (inhalation or ingestion of radioactive material) is modeled as a continuous irradiation till the end of an individual's life, taking into account natural deaths in the observed population. The basic tool in constructing the model were risk coefficients per unit dose, developed earlier [1]. Since an important role in radiation exposure of the people in South Serbia may play internal exposure to depleted uranium (DU), which was extensively used during the NATO bombing of Yugoslavia, the leukemia was chosen as a stochastic effect which is to be considered. For this purpose, some different (artificial) amounts of DU intake were assumed. In order to present the continuous exposure of the whole population living on the contaminated area, the model separately considers those born after the environmental contamination. Therefore, the overall population is divided into two parts: the one which was alive at the time of the release, (LG-Living Generation), and the second one, born after that (FG- Following Generations). The paper primarily intends to present the model for risk calculation for the LG part of population. However, just for the purpose of demonstration of the overall risk model, the contribution of the FG is added to get an overall risk assessment for the case of leukaemia's deaths. Besides cumulative number of cases, which are usually calculated by other models, this model is able to assess differential values, what means it is able to predict the number of cases within a certain specified age and/or time intervals. According to results obtained by the

  13. Epistemological limitation for attributing health effects to natural radiation exposure

    International Nuclear Information System (INIS)

    The attribution of health effects to prolonged radiation exposure situations, such as those experienced in nature, is a challenging problem. The paper describes the epistemological limitations for such attribution it demonstrate that in most natural exposure situations, the theory of radiation-related sciences is not capable to provide the scientific evidence that health effects actually occur (or do not occur) and, therefore, that radiation effects are attributable to natural exposure situations and imputable to nature. Radiation exposure at high levels is known to provoke health effects as tissue reactions. If individuals experience these effects they can be attributed to the specific exposure with a high degree of confidence under the following conditions: the dose incurred have been higher that the relevant dose-threshold for the specific effect; and an unequivocal pathological diagnosis is attainable ensuring that possible competing causes have been eliminated. Only under these conditions, the occurrence of the effect may be properly attested and attributed to the exposure. However, even high levels of natural radiation exposure are lower than relevant dose-thresholds for tissue reactions and, therefore, natural radiation exposure is generally unable to cause these type of effects. One exception to this general rule could be situations of high levels of natural radiation exposure that might be sufficient to induce opacities in the lens of the eyes (which could be considered a tissue-reaction type of effect)

  14. Exposure Time Calculator for Immersion Grating Infrared Spectrograph: IGRINS

    CERN Document Server

    Le, Huynh Anh N; Jaffe, Daniel T; Lee, Jae-Joon; Im, Myungshin; Kaplan, Kyle; Seifahrt, Andreas

    2015-01-01

    We present an exposure-time calculator (ETC) for the Immersion Grating Infrared Spectrograph (IGRINS). The signal and noise values are calculated by taking into account the telluric background emission and absorption, the emission and transmission of the telescope and instrument optics, and the dark current and read noise of the infrared detector arrays. For the atmospheric transmission, we apply models based on the amount of precipitable water vapor along the line of sight to the target. The ETC produces the expected signal-to-noise ratio (S/N) for each resolution element, given the exposure-time and number of exposures. In this paper, we compare the simulated continuum S/N for the early-type star HD 124683 and the late-type star GSS 32, and the simulated emission line S/N for the H2 rovibrational transitions from the Iris Nebula NGC 7023 with the observed IGRINS spectra. The simulated S/N from the ETC is overestimate by 10 - 15 % for the sample continuum targets.

  15. New houses with high radiation exposure levels

    International Nuclear Information System (INIS)

    Twenty five years ago family houses were built of slag concrete prefabricated blocks with radium concentrations from 1000 to 4000 Bq.kg-1. Dose rates of gamma radiation are 0.92x%1.36 μGy.h-1. Radon daughters concentrations 185x%1.81 Bq.m-3 are high due to low air exchange and energy saving, because the blocks have high heat penetration up to 1.9 m2K.W-1. Three quarters of these houses need remedial action. But counter measures (shielding by lead or bricks, exchange of blocks, coating walls by watersoluble polyamide resin, thermal isolation from outside and controlled ventilation, air condition) are very expensive and on top of it unacceptable to the owners. Provision of new houses are required by them. Calculation of saved health detriment supports their requirement. (author). 3 refs, 2 figs

  16. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  17. Dosimetry Methods for Human Exposure to Non-Ionising Radiation

    International Nuclear Information System (INIS)

    The paper deals with human exposure to electromagnetic fields from extremely low frequencies (ELF) to GSM frequencies. The problem requires (1) the assessment of external field generated by electromagnetic interference (EMI) source at a given frequency (incident field dosimetry) and then (2) the assessment of corresponding fields induced inside the human body (internal field dosimetry). Several methods used in theoretical and experimental dosimetry are discussed within this work. Theoretical dosimetry models at low frequencies are based on quasistatic approaches, while analyses at higher frequencies use the full-wave models. Experimental techniques involve near and far field measurement. Human exposure to power lines, transformer substations, power line communication (PLC) systems, Radio Frequency Identification (RFID) antennas and GSM base station antenna systems is analyzed. The results o are compared to the exposure limits proposed by relevant safety guidelines. Theoretical incident dosimetry used in this paper is based on the set of Pocklington integro-differential equations for the calculation of the current distribution and subsequently radiated field from power lines. Experimental incident dosimetry techniques involve measurement techniques of fields radiated by RFID antennas and GSM base station antennas. First example set of numerical results is related to the internal dosimetry of realistic well-grounded body model exposed to vertical component of the electric field E = 10 kV/m generated by high voltage power line. The results obtained via the HNA model exceed the ICNIRP basic restrictions for public exposure (2 mA/m2) in knee (8.6 mA/m2) and neck (9.8 mA/m2) and for occupational exposure (10 mA/m2) in ankle (32 mA/m2). In the case of a conceptual model of a realistic human body inside a transformer substation room touching a control panel at the potential φ0 = 400 V and with two scenarios for dry-air between worker's hand and panel, the values of

  18. Radiation exposure of nurses in a coronary care unit

    International Nuclear Information System (INIS)

    In response to increasing awareness of radiation as a possible occupational hazard, nursing personnel staffing a hospital CCU were monitored over a 3-year period to determine occupational exposure. Portable x-ray machines, fluoroscopic units, and patients injected with radiopharmaceuticals were all potential radiation sources on such a unit. Whole-body TLD badges, exchanged monthly, indicated no cumulative exposures over 80 mR during the entire study period. The minimal exposures reported do not justify regular use of dosimeters. Adherence to standard protective measures precludes most exposure to machine-produced radiation. Close, prolonged contact with a patient after an RVG study that utilizes /sup 99m/Tc may account for some exposure. The data indicate that radiation is not a significant occupational hazard for CCU nurses at this hospital; similar minimal exposures would be expected of other nonoccupationally exposed nursing personnel in like environments

  19. Effective radiation exposure evaluation during a one year follow-up of urolithiasis patients after extracorporeal shock wave lithotripsy

    OpenAIRE

    Kaynar, Mehmet; Tekinarslan, Erdem; Keskin, Suat; Buldu, İbrahim; Sönmez, Mehmet Giray; Karatag, Tuna; Istanbulluoglu, Mustafa Okan

    2015-01-01

    Introduction To determine and evaluate the effective radiation exposure during a one year follow-up of urolithiasis patients following the SWL (extracorporeal shock wave lithotripsy) treatment. Material and methods Total Effective Radiation Exposure (ERE) doses for each of the 129 patients: 44 kidney stone patients, 41 ureter stone patients, and 44 multiple stone location patients were calculated by adding up the radiation doses of each ionizing radiation session including images (IVU, KUB, C...

  20. Assessing exposure to cosmic radiation aboard aircraft: the Sievert system

    International Nuclear Information System (INIS)

    The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milli-sieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - Paul-Emile Victor (IPEV). This professional service is available on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft Various results obtained are presented. (authors)

  1. Patient radiation exposure dose evaluation of whole spine scanography due to exposure direction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Su; Seo, Deok Nam [Dept. of Bio-convergence Engineering, Graduate School of Korea University, Seoul (Korea, Republic of); Kwon, Soon Mu [Dept. of Radiologic Technology, Daegu Health College, Daegu (Korea, Republic of); Kim, Jung Min [Dept. of Radiological Science, Korea University, Seoul (Korea, Republic of)

    2015-04-15

    Whole spine scanography (WSS) is a radiological examination that exposes the whole body of the individual being examined to x-ray radiation. WSS is often repeated during the treatment period, which results in a much greater radiation exposure than that in routine x-ray examinations. The aims of the current study were to evaluate the patient dose of WSS using computer simulation, image magnification and angulation of phantom image using different patient position. We evaluated the effective dose(ED) of 23 consecutive patients (M : F = 13:10) who underwent WSS, based on the automatic image pasting method for multiple exposure digital radiography. The Anterior-Posterior position(AP) and Posterior-Anterior position( PA) projection EDs were evaluated based on the PC based Monte Carlo simulation. We measured spine transverse process distance and angulation using DICOM measurement. For all patient, the average ED was 0.069 mSv for AP position and 0.0361 mSv for PA position. AP position calculated double exposure then PA position. For male patient, the average ED was 0.089 mSv(AP) and 0.050 mSv(PA). For female patient, the average ED was 0.0431 mSv(AP) and 0.026 mSv(PA). The transverse process of PA spine image measured 5% higher than AP but angulation of transverse process was no significant differences. In clinical practice, just by change the patient position was conformed to reduce the ED of patient. Therefore we need to redefine of protocol for digital radiography such as WSS, whole spine scanography, effective dose, patient exposure dose, exposure direction, protocol optimization.

  2. DOE occupational radiation exposure. Report 1992--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE`s performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excess of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace.

  3. DOE occupational radiation exposure. Report 1992--1994

    International Nuclear Information System (INIS)

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE's performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excess of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace

  4. Radiation exposure in I-131 iodine therapy

    International Nuclear Information System (INIS)

    In the past five years, the applied I-131 radioactivity quantity has doubled with a constant number of beds. In 1984, it was 925 GBq (25 Ci). Despite this development, no changes in the professional radiation exposure were made out. The evaluation shows a dose smaller than 0.04 man Sv/TBq (0.16 man rem/Ci) of I-131 applied. This value is below the traceability limit of the film badges. The incorporation load of the personnel (27 members) was determined by monthly body counter measurements. Only in one measurement thyroid gland activity of 5 kBq (140 nCi) was detected. Most measurements did not show any incorporation; and the few positive results were below 0.74 kBq (20 nCi). The environmental load due to unfiltered release from patients' rooms was determined at the fence of the nuclear research plant. The maximum was 0.24 mSv/a thyroid gland dose of a small child in 1982 taking into account the measured 90% partion of organic compound iodine. The waste water is decayed following chemical treatment in storage tanks. (orig./HP)

  5. Sectoring method for cosmic radiation shielding calculation for LEO satellite

    International Nuclear Information System (INIS)

    One of an approximate calculation model (sectoring method) is developed for a cosmic radiation shielding in satellite. Shielding calculation is performed for KITSAT-1 at the assumed SAA (South Atlatic Anomaly) location with AP-8 model radiation spectrum. When sectoring method is applied, calculation error is expected compared with 3-D detailed geometry calculation because of straight knock-on assumption neglecting the deflection of incident proton. However, sectoring method shows good agreements with 3-dimensional detailed Monte Carlo calculation in two TID detector locations

  6. DOE Basic Overview of Occupational Radiation Exposure_2011 pamphlet

    Energy Technology Data Exchange (ETDEWEB)

    ORAU

    2012-08-08

    This pamphlet focusses on two HSS activities that help ensure radiation exposures are accurately assessed and recorded, namely: 1) the quality and accuracy of occupational radiation exposure monitoring, and 2) the recording, reporting, analysis, and dissemination of the monitoring results. It is intended to provide a short summary of two specific HSS programs that aid in the oversight of radiation protection activities at DOE. The Department of Energy Laboratory Accreditation Program (DOELAP) is in place to ensure that radiation exposure monitoring at all DOE sites is precise and accurate, and conforms to national and international performance and quality assurance standards. The DOE Radiation Exposure Monitoring Systems (REMS) program provides for the collection, analysis, and dissemination of occupational radiation exposure information. The annual REMS report is a valuable tool for managing radiological safety programs and for developing policies to protect individuals from occupational exposure to radiation. In tandem, these programs provide DOE management and workers an assurance that occupational radiation exposures are accurately measured, analyzed, and reported.

  7. Monte Carlo program to calculate the exposure rate from airborne radioactive gases inside a nuclear reactor containment building

    International Nuclear Information System (INIS)

    A program was developed to calculate the exposure rate resulting from airborne gases inside a reactor containment building. The calculations were performed at the location of a wall-mounted area radiation monitor. The program uses Monte Carlo techniques and accounts for both the direct and scattered components of the radiation field at the detector. The scattered component was found to contribute about 30% of the total exposure rate at 50 keV and dropped to about 7% at 2000 keV. The results of the calculations were normalized to unit activity per unit volume of air in the containment. This allows the exposure rate readings of the area monitor to be used to estimate the airborne activity in containment in the early phases of an accident. Such estimates, coupled with containment leak rates, provide a method to obtain a release rate for use in offsite dose projection calculations

  8. The ICRP opinion of the calculation of doses and risks associated with exposures to tritium

    International Nuclear Information System (INIS)

    As the management of exposures to tritium, just like for other radionuclides, relies on the effective dose calculation, it also requires the application of coefficients to take the variety of radiations and the sensitivity of the different irradiated tissues into account. The authors discuss the determination and the use of the weighting factor (Wr) which reflects the relative biological effectiveness (RBE) of different types of radiation. They outline that some researchers asked for a review of this factor, and that the RBE is related to several parameters. All this and other issues entail uncertainties. The authors then give the opinion of the ICRP on this issue and notably for the assessment of the individual risk of cancer after exposure to tritium

  9. Radiation exposure in gastroenterology: improving patient and staff protection.

    LENUS (Irish Health Repository)

    Ho, Immanuel K H

    2014-08-01

    Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.

  10. The treatment progress of radiation dermatitis from external exposure

    International Nuclear Information System (INIS)

    Radiation dermatitis is often seen and is often a complication of radiation therapy of tumors. It is characterized by poor healing, stubborn relapse, and carcinogenesis.. The treatment include drug, physical therapy and surgery. This article describes the treatment progress of radiation dermatitis from external exposure. (authors)

  11. Observations of nesting avifauna under gamma-radiation exposure

    International Nuclear Information System (INIS)

    An opportunity arose to observe the nesting success of birds (up to the time of fledging) when the Enterprise Forest Radiation Facility was established for a study of the effects of gamma radiation on the flora and fauna of northern forest communities. The results of these observations on the fate of the nest occupants in relation to radiation exposure are presented

  12. Internal exposure by natural radiation and decontamination of swimming pool

    International Nuclear Information System (INIS)

    This explanation concerns the scientific knowledge and finding of the title subjects for general public to understand their present radiation environment, id est (i.e.), at about 1 year after the Fukushima Daiichi Power Plant Accident (FDPPA). The first described is the world history of radiation exposure, where A-bomb explosion in Hiroshima and Nagasaki, Three Mile Island Power Plant Accident and Chernobyl Accident are told about their teachings and about internal nuclides at FDPPA: the author points out the natural high abundance of K-40 in contrast to the release of I-131, and Cs-137/-134 in the accident. The second is described about the effect of radiations on human cells, where characteristics, measurements, unit and their derived radionuclides of alpha, beta and gamma rays are explained together with their biological influences. Also explained are hydroxy-radical formation by alpha and beta rays in the internal exposure, and comparison of external photons, gamma and more risky ultraviolet rays. Third, the author mentions about man's natural functions to protect radiation hazard. Presented are an easy calculation and a comparison of K-40 and Cs-137 contents (weight and Bq) in the body and in the swimming pool with reference to Chernobyl standards. Internal exposure by natural radionuclides like K-40 and others, is also calculated, which is found equivalent to 0.29 mSv/y based on about 5,630 Bq/60 kg body weight. Finally, explained are the knowledge and practice of decontamination, where various adsorbents like zeolite (molecular sieve), ion exchanger, charcoal and natural zeolites (alumino-silicate) are compared and the last agent, clay easily and economically available, is recommended for decontamination. Clay material is said to adsorb 87% of Cs-137 at as low level as 750 mg/L and the author has an experience to use it successfully for decontamination of the pool. Importantly, the radioactivity of the resultant sludge should not exceed 8,000 Bq/kg. (T.T.)

  13. Patient radiation exposure during transforaminal lumbar endoscopic spine surgery: a prospective study.

    Science.gov (United States)

    Iprenburg, Menno; Wagner, Ralf; Godschalx, Alexander; Telfeian, Albert E

    2016-02-01

    OBJECTIVE The aim of this study was to describe patient radiation exposure during single-level transforaminal endoscopic lumbar discectomy procedures at levels L2-5 and L5-S1. METHODS Radiation exposure was monitored in 151 consecutive patients undergoing single-level transforaminal endoscopic lumbar discectomy procedures. Two groups were studied: patients undergoing procedures at the L4-5 level or above and those undergoing an L5-S1 procedure. RESULTS For the discectomy procedures at L4-5 and above, the average duration of fluoroscopy was 38.4 seconds and the mean calculated patient radiation exposure dose was 1.5 mSv. For the L5-S1 procedures, average fluoroscopy time was 54.6 seconds and the mean calculated radiation exposure dose was 2.1 mSv. The average patient radiation exposure dose among these cases represents a 3.5-fold decrease compared with the senior surgeon's first 100 cases. CONCLUSIONS Transforaminal lumbar endoscopic discectomy can be used as a minimally invasive technique for the treatment of lumbar radiculopathy in the setting of a herniated lumbar disc without the significant concern of exposing the patient to harmful doses of radiation. One caveat is that both the surgeon and the patient are likely to be exposed to higher doses of radiation during a surgeon's early experience in minimally invasive endoscopic spine surgery. PMID:26828888

  14. Criteria for radiological protection against exposure to natural radiation

    International Nuclear Information System (INIS)

    Ionizing radiation includes natural radiation which has been part cosmic radiation. Radon in homes, irradiation, gamma, among others, they have also been part of ionizing radiation. The activities that have lead to natural radiation materials are: mining and processing of uranium, radio application and thorium, phosphate industry, mining and smelting of metals, oil and gas extraction, coal mining and power generation, rare earth industry and titanium, zirconium and ceramics, building materials, waste water purification. Therefore, different criteria for radiation protection have had to create against exposure to natural radiation. Distinct rules and regulations to control were created in that sense

  15. Total Pesticide Exposure Calculation among Vegetable Farmers in Benguet, Philippines

    Directory of Open Access Journals (Sweden)

    Jinky Leilanie Lu

    2009-01-01

    Full Text Available This was a cross-sectional study that investigated pesticide exposure and its risk factors targeting vegetable farmers selected through cluster sampling. The sampling size calculated with =.05 was 211 vegetable farmers and 37 farms. The mean usage of pesticide was 21.35 liters. Risk factors included damaged backpack sprayer (34.7%, spills on hands (31.8%, and spraying against the wind (58%. The top 3 pesticides used were pyrethroid (46.4%, organophosphates (24.2%, and carbamates (21.3%. Those who were exposed to fungicides and insecticides also had higher total pesticide exposure. Furthermore, a farmer who was a pesticide applicator, mixer, loader, and who had not been given instructions through training was at risk of having higher pesticide exposure. The most prevalent symptoms were headache (64.1%, muscle pain (61.1%, cough (45.5%, weakness (42.4%, eye pain (39.9%, chest pain (37.4%, and eye redness (33.8%. The data can be used for the formulation of an integrated program on safety and health in the vegetable industry.

  16. Total Pesticide Exposure Calculation among Vegetable Farmers in Benguet, Philippines

    International Nuclear Information System (INIS)

    This was a cross-sectional study that investigated pesticide exposure and its risk factors targeting vegetable farmers selected through cluster sampling. The sampling size calculated with P=.05 was 211 vegetable farmers and 37 farms. The mean usage of pesticide was 21.35 liters. Risk factors included damaged backpack sprayer (34.7%), spills on hands (31.8%), and spraying against the wind (58%). The top 3 pesticides used were pyrethroid (46.4%), organophosphates (24.2%), and carbamates (21.3%). Those who were exposed to fungicides and insecticides also had higher total pesticide exposure. Furthermore, a farmer who was a pesticide applicator, mixer, loader, and who had not been given instructions through training was at risk of having higher pesticide exposure. The most prevalent symptoms were headache (64.1%), muscle pain (61.1%), cough (45.5%), weakness (42.4%), eye pain (39.9%), chest pain (37.4%), and eye redness (33.8%). The data can be used for the formulation of an integrated program on safety and health in the vegetable industry.

  17. Occupational radiation exposure in upper Austrian water supplies and Spas

    International Nuclear Information System (INIS)

    The Council Directive 96/29/EURATOM lays down the basic safety standards for the protection of the workers and the general public against the dangers arising from ionising radiation, including natural radiation. Based on the directive and on the corresponding Austrian legislation a comprehensive study was conducted to determine the occupational radiation exposure in Upper Austrian water supplies and spas. The study comprises 45 water supplies and 3 spas, one of them being a radon spa. Most measurements taken were to determine the radon concentration in air at different workplaces (n = 184), but also measurements of the dose rate at dehumidifiers (n = 7) and gamma spectrometric measurements of back washing water (n = 4) were conducted. To determine the maximum occupational radon exposure in a water supply measurements were carried out in all water purification buildings and in at least half o f the drinking water reservoirs of the water supply. The results were combined with the respective working times in these locations (these data having been collected by means of a questionnaire). Where the calculated exposure was greater than 1 MBq h/m then all drinking water reservoirs of the concerned water suppl y were measured for their radon concentration to ensure a reliable assessment of the exposure. The results show that the radon concentrations in the water supplies were lower as expected, being in 55% of all measurement sites below 1000 Bq/m in 91% below 5000 Bq/m and with a maximum value of 38700 Bq/m.This leads to exposures that are below 2 MBq h/m (corresponding to approx. 6 mSv/a) in 42 water supplies. However, for the remaining three water supplies maximal occupational exposures due to radon of 2.8 MBq h/m (∼ 10 mSv/a), 15 MBq h/m (∼ 50 mSv/a), and 17 MBq h/m ( ∼ 56 mSv/a), respectively, were determined. In these water supplies remediation measures were proposed, based mainly on improved ventilation of and/or reduction of working time in the building

  18. Regulation of nuclear radiation exposures in India

    International Nuclear Information System (INIS)

    India has a long-term program of wide spread applications of nuclear radiations and radioactive sources for peaceful applications in medicine, industry, agriculture and research and is already having several thousand places in the country where such sources are being routinely used. These places are mostly outside the Department of Atomic Energy (DAE) installations. DAE supplies such sources. The most important application of nuclear energy in DAE is in electricity generation through nuclear power plants. Fourteen such plants are operating and many new plants are at various stages of construction. In view of the above mentioned wide spread applications, Indian parliament through an Act, called Atomic Energy Act, 1964 created an autonomous body called Atomic Energy Regulatory Board (AERB) with comprehensive authority and powers. This Board issues codes, guides, manuals, etc., to regulate such installations so as to ensure safe use of such sources and personnel engaged in such installations and environment receives radiation exposures within the upper bounds prescribed by them. Periodic reports are submitted to AERB to demonstrate compliance of its directives. Health, Safety and Environment Group of Bhabha Atomic Research Centres, Mumbai carries out necessary surveillance and monitoring of all installations of the DAE on a routine basis and also periodic inspections of other installations using radiation sources. Some of the nuclear fuel cycle plants like nuclear power plants and fuel reprocessing involve large radioactive source inventories and have potential of accidental release of radio activity into the environment, an Environmental Surveillance Laboratory (ESL) is set up at each such site much before the facility goes into operation. These ESL's collect baseline data and monitor the environment throughout the life of the facilities including the de- commissioning stage. The data is provided to AERB and is available to members of the public. In addition, a multi

  19. Radiation exposure due to nuclear power

    International Nuclear Information System (INIS)

    This information brochure contains 12 earlier papers of leading experts on the radiation hazard the population incurs during normal operation of nuclear facilities and the radiation-biological fundamentals of the effects of ionizing radio humans. (HP)

  20. DOE 2010 Occupational Radiation Exposure November 2011

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Analysis

    2011-11-11

    This report discusses radiation protection and dose reporting requirements, presents the 2010 occupational radiation dose data trended over the past 5 years, and includes instructions to submit successful ALARA projects.

  1. Gene expression as a biomarker for human radiation exposure.

    Science.gov (United States)

    Omaruddin, Romaica A; Roland, Thomas A; Wallace, H James; Chaudhry, M Ahmad

    2013-03-01

    Accidental exposure to ionizing radiation can be unforeseen, rapid, and devastating. The detonation of a radiological device leading to such an exposure can be detrimental to the exposed population. The radiation-induced damage may manifest as acute effects that can be detected clinically or may be more subtle effects that can lead to long-term radiation-induced abnormalities. Accurate identification of the individuals exposed to radiation is challenging. The availability of a rapid and effective screening test that could be used as a biomarker of radiation exposure detection is mandatory. We tested the suitability of alterations in gene expression to serve as a biomarker of human radiation exposure. To develop a useful gene expression biomonitor, however, gene expression changes occurring in response to irradiation in vivo must be measured directly. Patients undergoing radiation therapy provide a suitable test population for this purpose. We examined the expression of CC3, MADH7, and SEC PRO in blood samples of these patients before and after radiotherapy to measure the in vivo response. The gene expression after ionizing radiation treatment varied among different patients, suggesting the complexity of the response. The expression of the SEC PRO gene was repressed in most of the patients. The MADH7 gene was found to be upregulated in most of the subjects and could serve as a molecular marker of radiation exposure. PMID:23446844

  2. Exposure to ultraviolet radiation: recommendations for cosmetic use

    International Nuclear Information System (INIS)

    The beginning of the so-called tanning industry made possible the acquisition of a tanned skin independently of the available solar radiation. The tan is produced by ultraviolet radiation and, as well as in solar exposure, there are additional risks on the use of the so-called sun-beds. The damaging effects of ultraviolet exposure are well documented and reasonably quantified. The objective of this paper is to inform the potential effects of ultraviolet radiation exposure in sun-beds and to provide recommendations in order to reduce the associated risks. These recommendations are adapted for cosmetics use only (author)

  3. The Relationship between Ultraviolet Radiation Exposure and Vitamin D Status

    Directory of Open Access Journals (Sweden)

    Ola Engelsen

    2010-05-01

    Full Text Available This paper reviews the main factors influencing the synthesis of vitamin D, with particular focus on ultraviolet radiation exposure. On the global level, the main source of vitamin D is the sun. The effect of solar radiation on vitamin D synthesis depends to some extent on the initial vitamin D levels. At moderate to high latitudes, diet becomes an increasingly important source of vitamin D due to decreased solar intensity and cold temperatures, which discourage skin exposure. During the mid-winter season, these factors result in decreased solar radiation exposure, hindering extensively the synthesis of vitamin D in these populations.

  4. Radiation exposure caused by medical measures: X-rays

    International Nuclear Information System (INIS)

    To estimate the genetic and somatic risks connected with the diagnostic application of X-rays the corresponding population doses must be known. When determining the population doses considerable inaccuracies must be tolerated. Unavoidable is the error resulting from the different doses in the risk organ observed during the same type of examination. The organ dose during an X-ray examination depends on various factors. These dependences are well known, due to systematic examinations in connection with the development of calculation methods. It is, however, only rarely possible to exactly determine all parameters, especially the geometrical ones, during an X-ray examination and to obtain a reliable calculation. Systematic examinations have shown ways to reduce organ doses thus contributing to a general reduction in the radiation exposure and the radiation risks of the population. The risk values given which result from the application of X-rays in diagnosing can only be used as rough ideas which are most probably at the upper limit. (orig./HP)

  5. Hazards of radiation exposure for pregnant women

    International Nuclear Information System (INIS)

    Levels of radiation pregnant women may receive are discussed and a table is presented to show radiation doses for a number of common procedures. Radioinduced congenital anomalies and carcinogenesis are discussed with regard to dose-effect realationships. Although there is no level of radiation that does not have some probability of causing a mutation, the genetic risk to any one person is small. Practical guidelines for exposing pregnant women to radiation are presented

  6. Methods for calculating radiation attenuation in shields

    International Nuclear Information System (INIS)

    In recent years the development of high-speed digital computers of large capacity has revolutionized the field of reactor shield design. For compact special-purpose reactor shields, Monte-Carlo codes in two- and three dimensional geometries are now available for the proper treatment of both the neutron and gamma- ray problems. Furthermore, techniques are being developed for the theoretical optimization of minimum-weight shield configurations for this type of reactor system. In the design of land-based power reactors, on the other hand, there is a strong incentive to reduce the capital cost of the plant, and economic considerations are also relevant to reactors designed for merchant ship propulsion. In this context simple methods are needed which are economic in their data input and computing time requirements and which, at the same time, are sufficiently accurate for design work. In general the computing time required for Monte-Carlo calculations in complex geometry is excessive for routine design calculations and the capacity of the present codes is inadequate for the proper treatment of large reactor shield systems in three dimensions. In these circumstances a wide range of simpler techniques are currently being employed for design calculations. The methods of calculation for neutrons in reactor shields fall naturally into four categories: Multigroup diffusion theory; Multigroup diffusion with removal sources; Transport codes; and Monte Carlo methods. In spite of the numerous Monte- Carlo techniques which are available for penetration and back scattering, serious problems are still encountered in practice with the scattering of gamma rays from walls of buildings which contain critical facilities and also concrete-lined discharge shafts containing irradiated fuel elements. The considerable volume of data in the unclassified literature on the solution of problems of this type in civil defence work appears not to have been evaluated for reactor shield design. In

  7. UDAD, Radiation Exposure to Man at Uranium Processing Plant

    International Nuclear Information System (INIS)

    1 - Description of problem or function: The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground- deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant. 2 - Method of solution: The removal of radioactive particles from a contaminated area such as uranium tailings by wind action is estimated from theoretical and empirical wind-erosion equations according to the wind speed, particle size distribution, surface roughness, and other parameters. Atmospheric concentrations of radioactivity from specific sources are calculated by means of a dispersion-deposition-resuspension model. Source depletion as a result of deposition, fallout of the heavier particulates, and radioactive decay and ingrowth of radon daughters are included in a sector-averaged, Gaussian plume dispersion model. The average air concentration at any given receptor location is assumed to be constant during each annual release period, but to increase from year to year because of resuspension. Surface contamination is estimated by including buildup from deposition, ingrowth of radio- active daughters, and removal by radioactive decay, weathering, and other environmental processes. Deposition velocity is estimated on the basis of particle size, density, and physical and chemical environmental conditions which influence the behavior of the smaller particles. Calculation of the inhalation dose to an individual is based on the ICRP Task Group Lung Model (TGLM). Estimates of the dose to

  8. Occupational Radiation Exposure Analysis of US ITER DCLL TBM

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J; Cadwallader, Lee C; Dagher, Mohamad

    2007-08-01

    This report documents an Occupational Radiation Exposure (ORE) analysis that was performed for the US International Thermonuclear Experimental Reactor (ITER) Dual Coolant Lead Lithium (DCLL) Test Blanket Module (TBM). This analysis was performed with the QADMOD dose code for anticipated maintenance activities for this TBM concept and its ancillary systems. The QADMOD code was used to model the PbLi cooling loop of this TBM concept by specifying gamma ray source terms that simulated radioactive material within the piping, valves, heat exchanger, permeator, pump, drain tank, and cold trap of this cooling system. Estimates of the maintenance tasks that will have to be performed and the time required to perform these tasks where developed based on either expert opinion or on industrial maintenance experience for similar technologies. This report details the modeling activity and the calculated doses for the maintenance activities envisioned for the US DCLL TBM.

  9. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    OpenAIRE

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; CHEN, YI-CHENG; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from...

  10. Calculation method of solar radiation incident upon slopes considering topography

    International Nuclear Information System (INIS)

    When radiation in a basin is calculated, slope inclination, slope orientation and topography of surroundings have to be taken into account. The method of approximation to topography by triangles proposed by Miura et al. is employed to take slope characteristics and topography of surroundings into account. Authors prepared 360 directions' shades altitudes, i.e. every degree of angle, for each triangle in advance, and used these shades' altitudes to calculate both direct radiation on a slope diffuse radiation taking topography of surroundings into account. And authors show how to estimate hourly direct and diffuse solar radiation from hourly horizontal global radiation and synthesize hourly slope global radiation on slopes

  11. Taste aversions conditioned with partial body radiation exposures

    International Nuclear Information System (INIS)

    Radiation-induced taste aversion was compared in rats which received partial body exposure to the head or abdomen with rats receiving whole body irradiation. Exposure levels ranged from 25 to 300 roentgens (R). In additional groups, saccharin aversion to partial body gamma ray exposures of the abdomen were conditioned in animals which had prior experience with the saccharin solution. Aversion was measured with a single-bottle short-term test, a 23-hour preference test and by the number of days taken to recover from the aversion. Whole-body exposure was most effective in conditioning the aversion, and exposure of the abdominal area was more effective than exposure to the head. Also, the higher the exposure, the stronger the aversion. Rats receiving prior experience with the saccharin did not condition as well as control rats with no prior saccharin experience. The possible role of radiation-induced taste aversion in human radiotherapy patients was discussed. (author)

  12. Comparison of codes assessing radiation exposure of aircraft crew due to galactic cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bottollier-Depois, Jean-Francois [IRSN Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); Beck, Peter; Latocha, Marcin [AIT Austrian Institute of Technology, Vienna (Austria). Health and Environment Dept.; Mares, Vladimir; Ruehm, Werner [HMGU Helmholtz Zentrum Muenchen, Neuherberg (Germany). Inst. of Radiation Protection; Matthiae, Daniel [DLR Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany). Inst. of Aerospace Medicine; Wissmann, Frank [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2012-05-15

    The aim of this report is to compare the doses and dose rates calculated by various codes assessing radiation exposure of aircraft crew due to cosmic radiation. Some of the codes are used routinely for radiation protection purposes while others are purely for scientific use. The calculations were done using a set of representative, real flight routes around the globe. The results are presented in an anonymous way. This comparison is of major importance since a real determination of effective dose is not possible and, therefore, the different methods used to evaluate effective doses can be compared. Eleven codes have been used in this comparison exercise organised by EURADOS on harmonization of aircrew dosimetry practices in European countries. Some of these codes are based on simulations of the secondary field of cosmic radiation by Monte Carlo techniques; others use analytical solutions of the problem, while still others are mainly based on a fit to experimental data. The overall agreement between the codes, however, is better than 20 % from the median.

  13. Comparison of codes assessing radiation exposure of aircraft crew due to galactic cosmic radiation

    International Nuclear Information System (INIS)

    The aim of this report is to compare the doses and dose rates calculated by various codes assessing radiation exposure of aircraft crew due to cosmic radiation. Some of the codes are used routinely for radiation protection purposes while others are purely for scientific use. The calculations were done using a set of representative, real flight routes around the globe. The results are presented in an anonymous way. This comparison is of major importance since a real determination of effective dose is not possible and, therefore, the different methods used to evaluate effective doses can be compared. Eleven codes have been used in this comparison exercise organised by EURADOS on harmonization of aircrew dosimetry practices in European countries. Some of these codes are based on simulations of the secondary field of cosmic radiation by Monte Carlo techniques; others use analytical solutions of the problem, while still others are mainly based on a fit to experimental data. The overall agreement between the codes, however, is better than 20 % from the median.

  14. Reducing medical exposure to ionizing radiation

    International Nuclear Information System (INIS)

    The author discusses the dangers of indiscriminate and uninformed use of medical x-ray facilities. He points out a lack of effective standards, controls, and practices to minimize exposures to x ray and to prevent the excessive use of diagnostic x-ray examinations. A list of practices whereby an individual can minimize his possible exposures to x rays is presented. Several approaches to the question of acceptable exposure levels are considered. (U.S.)

  15. radiation exposure at work places caused by natural radionuclides

    International Nuclear Information System (INIS)

    The new Euratom basic standards for radiological protection (guideline 96/29/Euratom of the Council of 13 May 1996 on the Determination of Basic Safety Standards for the protection of Health of Staff and Population against the Dangers by Ionizing radiation) contain in section 2 of the Title VII, which deals with exposure by natural radiation sources, a request to by the EC member states to determine by investigations or other appropriate means the work places which are of importance with regard to natural radiation exposure. Against the background of the implementation of these new Euratom basic standards, a work group named, radiation Exposure at Work Places by Natural Radionuclides was founded in November 1994 by the German Commission on Radiological protection. This working group was supposed to determine the possible exposure pathways by natural radiation, the extent of radiation exposure at work places for these exposure pathways, and the number of employed persons affected by the different exposure pathways and to compile the gained information in a survey. The following report gives a comprehensive survey on the results of these investigations and their relevance to radiological protection. (author)

  16. ACREM: A new air crew radiation exposure measuring system

    International Nuclear Information System (INIS)

    Cosmic radiation has already been discovered in 1912 by the Austrian Nobel Laureate Victor F. Hess. After Hess up to now numerous measurements of the radiation exposure by cosmic rays in different altitudes have been performed, however, this has not been taken serious in view of radiation protection.Today, with the fast development of modern airplanes, an ever increasing number of civil aircraft is flying in increasing altitudes for considerable time. Members of civil aircrew spending up to 1000 hours per year in cruising altitudes and therefore are subject to significant levels of radiation exposure. In 1990 ICRP published its report ICRP 60 with updated excess cancer risk estimates, which led to significantly higher risk coefficients for some radiation qualities. An increase of the radiation weighting factors for mean energy neutron radiation increases the contribution for the neutron component to the equivalent dose by about 60%, as compared to the earlier values of ICRP26. This higher risk coefficients lead to the recommendation of the ICRP, that cosmic radiation exposure in civil aviation should be taken into account as occupational exposure. Numerous recent exposure measurements at civil airliners in Germany, Sweden, USA, and Russia show exposure levels in the range of 3-10 mSv/year. This is significantly more than the average annual dose of radiation workers (in Austria about 1.5 mSv/year). Up to now no practicable and economic radiation monitoring system for routine application on board exits. A fairly simple and economic approach to a practical, active in-flight dosimeter for the assessment of individual crew exposure is discussed in this paper

  17. Comparison of the performance of net radiation calculation models

    DEFF Research Database (Denmark)

    Kjærsgaard, Jeppe Hvelplund; Cuenca, R.H.; Martinez-Cob, A.;

    2009-01-01

    Daily values of net radiation are used in many applications of crop-growth modeling and agricultural water management. Measurements of net radiation are not part of the routine measurement program at many weather stations and are commonly estimated based on other meteorological parameters. Daily...... values of net radiation were calculated using three net outgoing long-wave radiation models and compared to measured values. Four meteorological datasets representing two climate regimes, a sub-humid, high-latitude environment and a semi-arid mid-latitude environment, were used to test the models. The...... long-wave radiation models included a physically based model, an empirical model from the literature, and a new empirical model. Both empirical models used only solar radiation as required for meteorological input. The long-wave radiation models were used with model calibration coefficients from the...

  18. Nomograms for calculation of defence from braking radiation

    CERN Document Server

    Bespalov, V I; Shtejn, M M

    2002-01-01

    More precise nomograms for calculation of thickness of shielding against direct Bremsstrahlung are obtained with taking account of recently introduced radiation safety standards and disadvantages of earlier used simplified nomograms. The nomograms are built for three shielding materials (lead, iron, concrete) for 16 angular of radiation exit in the range of 0-180 deg and 22 values of electron energy within the interval of 0.5-15 MeV. A special computer program, is developed to calculate the radiation protection parameters using a great set of nomograms proposed

  19. Photon shielding calculations for a radiation waste facility benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Estes, G.P.; Urban, W.T.; Heath, A.R.

    1985-11-01

    Photon transport calculations have been performed for the ANS 6.2.1 radiation waste facility shielding benchmark using the continuous energy Monte Carlo code MCNP, and ONEDANT and TWODANT discrete ordinates codes. Comparisons are made of integral dose rates and flux spectra calculated with the three codes for various geometries, cross-section sets, and source and output energy group structures.

  20. Protection from potential exposures: application to selected radiation sources

    International Nuclear Information System (INIS)

    This ICRP Report begins with the general principles of radiation protection in the case of potential exposures, followed by special issues in application and compliance with regulatory aims. The rest of the report uses event trees or fault trees to derive the logical structure of six scenarios of potential exposure, i.e. two irradiators, a large research accelerator, an accelerator for industrial isotope production, an industrial radiography device using a mobile source of radiation, and finally a medical gamma radiotherapy device. (UK)

  1. ''Notifiable events'': Only small impact on the radiation exposure

    International Nuclear Information System (INIS)

    In 1994, a total of 50 ''notifable events'' in the handling or transport of radioactive materials were reported to the BMU. The article presents a survey of the causes of these events in Germany and an analysis of their effects with regard to exceptional radiation exposure. The data given show that at least in the reporting year the notifiable events contributed an only very small share to the overall occupational radiation exposure. (orig.)

  2. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    The guide defines the concepts relevant to the monitoring of radiation exposure and working conditions and provides guidelines for determining the necessity of monitoring and subsequently organizing it. In addition, instructions are given for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK). Also the procedures are described for situations leading to exceptional exposures. (10 refs., 1 tab.)

  3. The Relationship between Ultraviolet Radiation Exposure and Vitamin D Status

    OpenAIRE

    Ola Engelsen

    2010-01-01

    This paper reviews the main factors influencing the synthesis of vitamin D, with particular focus on ultraviolet radiation exposure. On the global level, the main source of vitamin D is the sun. The effect of solar radiation on vitamin D synthesis depends to some extent on the initial vitamin D levels. At moderate to high latitudes, diet becomes an increasingly important source of vitamin D due to decreased solar intensity and cold temperatures, which discourage skin exposure. During the mid-...

  4. Childhood cancer and occupational radiation exposure in parents

    International Nuclear Information System (INIS)

    To test the hypothesis that a parent's job exposure to radiation affeOR). its his or her child's risk of cancer, the authors compared this exposure during the year before the child's birth for parents of children with and without cancer. Parents of children with cancer were no more likely to have worked in occupations, industries, or combined occupations and industries with potential ionizing radiation exposure. Bone cancer and Wilms' tumor occurred more frequently among children of fathers in all industries with moderate potential ionizing radiation exposure. Children with cancer more often had fathers who were aircraft mechanics (odds ratio (OR)) . infinity, one-sided 95% lower limit . 1.5; P . 0.04). Although four of these six were military aircraft mechanics, only children whose fathers had military jobs with potential ionizing radiation exposure had an increased cancer risk (OR . 2.73; P . 0.01). Four cancer types occurred more often among children of fathers in specific radiation-related occupations: rhabdomyosarcoma among children whose fathers were petroleum industry foremen; retinoblastoma among children whose fathers were radio and television repairmen; central nervous system cancers and other lymphatic cancers among children of Air Force fathers. Because numbers of case fathers are small and confidence limits are broad, the associations identified by this study need to be confirmed in other studies. Better identification and gradation of occupational exposure to radiation would increase the sensitivity to detect associations

  5. Radiation shielding design calculation of gamma knife for therapy

    International Nuclear Information System (INIS)

    The author reports the method and results of radiation shielding calculation of the gamma knife for therapy which is composed of thirty 60Co sources each with 7.4 EBq, semi-spherical shield, lateral shielding cupboard and the shielding door. The shielding thicknesses of the back shield, the lateral shielding cupboard and the shielding door were calculated. The leakage radiation by test indicates that the shielding is sufficient safety for this Gamma knife and the Kerma rate of control calculated agrees with that by test

  6. REMIT, Radiation Exposure Monitoring and Information Transmittal System

    International Nuclear Information System (INIS)

    1 - Description of program or function: The Radiation Exposure Monitoring and Information Transmittal (REMIT) system is designed to assist U.S. Nuclear Regulatory Commission (NRC) licensees in meeting the reporting requirements of the Revised 10 CFR Part 20 and in agreement with the guidance contained in Regulatory Guide 8.7, Rev.1, Instructions for Recording and Reporting Occupational Exposure Data. REMIT is a personal computer (PC) -based menu driven system that facilitates the manipulation of data base files to record and report radiation exposure information. REMIT is designed to be user-friendly and contains the full text of Regulatory Guide 8.7, Rev.1, on-line as well as context-sensitive help throughout the program. The user can enter data directly from NRC Form 5s or Form 4s. REMIT allows the user to view the individual's exposure in relation to regulatory or administrative limits and will alert the user to exposures in excess of these limits. The system also provides for the calculation and summation of dose from intakes and the determination of the dose to the maximally exposed extremity for the monitoring year. REMIT can produce NRC Form 5s and 4s in paper and electronic format and can import/export data from ASCII and data base files. 2 - Method of solution: REMIT makes use of the dose conversion factors from EPA Report 11 Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submission, and Ingestion, to calculate the Committed Dose Equivalent to the maximally exposed organ and the committed Effective Dose Equivalent from intakes measured in micro-curies. REMIT also estimates the amount (in micrograms) of uranium intake from the activity entered in micro-curies. This calculation is based on the specific activities of the uranium isotopes. 3 - Restrictions on the complexity of the problem: REMIT is a single- user system that only runs on IBM compatible PC systems under DOS and supports only Hewlett

  7. Management of radio frequency radiation exposures in telecom Australia

    International Nuclear Information System (INIS)

    Telecom Australia is the largest non-military user of radio frequency radiation (RFR) in Australia and the management of risks to health from RFR exposure are discussed. The Australian RFR Exposure Standard forms that basis of risk assessment. Risk assessment and control procedures including the health surveillance of workers, other special occupational groups and members of the general public are outlined. (author)

  8. Radiation exposure of the crew in commercial air traffic

    International Nuclear Information System (INIS)

    The routine radiation exposure of the crews in Yugoslav Airlines (JAT) has been studied and some previous results are presented. The flights of four selected groups of pilots (four aircraft types) have been studied during one year. Annual exposures and dose equivalents are presented. Some additional results and discussions are given. (1 fig., 4 tabs.)

  9. Perception of natural, medical, and 'artificial' radiation exposures

    International Nuclear Information System (INIS)

    The paper discusses the imbalances in public perception and weighting factors attached by the media and consequently by politicians and by the general public, to the risks associated with the three main sources of population exposure, namely: natural radiation, diagnostic or therapeutic medical exposure and other artificial components including nuclear weapons tests, nuclear fuel cycles and reactor accidents. 15 refs

  10. Sharing good practices of radiation exposure reduction in Japan

    International Nuclear Information System (INIS)

    The yearly average exposure dose per reactor in Japan is relatively higher than other major countries. JNES held ALARA symposiums in Asia calling persons from abroad participated to collect the information on good practices of radiation exposure reduction measures and to share such information for promoting ALARA activities of utilities. (author)

  11. Open-source radiation exposure extraction engine (RE3) for dose monitoring

    Science.gov (United States)

    Weisenthal, Samuel; Folio, Les; Derderian, Vana; Summers, Ronald M.; Yao, Jianhua

    2015-03-01

    Our goal was to investigate the feasibility of an open-source, PACS-integrated, DICOM header-based tool that automatically provides granular data for monitoring of CT radiation exposure. To do so, we constructed a radiation exposure extraction engine (RE3) that is seamlessly connected to the PACS using the digital imaging and communications in medicine (DICOM) toolkit (DCMTK) and runs on the fly within the workflow. We evaluated RE3's ability to determine the number of acquisitions and calculate the exposure metric dose length product (DLP) by comparing its output to the vendor dose pages. RE3 output closely correlated to the dose pages for both contiguously acquired exams (R2 =0.9987) and non-contiguously acquired exams (R2 =0.9994). RE3 is an open-source, automated radiation monitoring program to provide study-, series-, and slice-level radiation data.

  12. Tissue responses to radiation exposure in the lung

    International Nuclear Information System (INIS)

    This article provides an outline on the influences of radiation on the lung carcinogenesis. External and internal radiation exposures cause acute and late effects, such as pneumonia, pulmonary fibrosis and lung cancers in humans and experimental animals. The acute radiation pneumonia is lethal at a high dose, and the inflammatory response may progress for chronic fibrosis. High LET radiation exposures, such as internal exposure of alpha radionuclides and external exposure of neutron, are more effective for lung cancer induction than external exposure of low LET radiation. The lung cancers are classified into adenocarcinoma, squamous cell carcinoma and small cell carcinoma (human only), and radiation induces any of the cancers. The target cells of the lung cancers are considered as type 2 alveolar epithelial cells and Clara (secretory) cells for the adenocarcinoma, as basal cells for the squamous cell carcinoma and as pulmonary neuroendocrine cells for the small cell carcinoma. The recent studies are revealing molecular mechanisms of the radiation-induced lung cancer. (author)

  13. Radiation exposure during travelling in Malaysia

    International Nuclear Information System (INIS)

    Absorbed dose rates in vehicles during travelling by different modes of transport in Malaysia were measured. Radiation levels measured on roads in Peninsular Malaysia were within a broad range, i.e. between 36 and 1560 nGy h-1. The highest reading, recorded while travelling near monazite and zircon mineral dumps, was 13 times the mean environmental radiation level of Malaysia. It is evident that radioactive material dumps on the roadsides can influence the radiation level on the road. The absorbed dose rates measured while travelling on an ordinary train were between 60 and 350 nGy h-1. The highest reading was measured when the train passed a tunnel built through a granite rock hill. The measurement during sea travelling by ferries gave the lowest radiation level owing to merely cosmic radiation at the sea level. (authors)

  14. Radiation exposure of the population around Chernobyl

    International Nuclear Information System (INIS)

    Although the population in large parts of northern Ukraine, the region around Chernobyl, was resettled, these people are now returning to their accustomed agricultural environment - illegally, but tolerated. In order for evacuated villages to be cleared for resettlement, the dose commitment due to continuous external and internal exposures of the persons returning must be determined. Examination concentrates on the fallout of reactor nuclides, the path of radionuclides through the food chain to people, and on present and post exposures. Special attention in this respect is paid to the deposition density of cesium. On the basis of the data collected so far, the village inhabitants considered in 1998/99 suffer an average external exposure of 0.7±0.2 mSv/a in addition to the natural external exposure of 0.8 mSv/a and, with a conversion factor of 0.038 mSv/a per kBq of 137 Cs whole body activity [8], 0.5±0.2 mSv/a (excluding inhabitants 17 and 18) of additional internal exposure, mainly as a function of mushroom intake. The ban on consumption of mushrooms and fruit growing in the forests, and education of the public about the reasons for it, could help to reduce the additional internal exposure further to approx. 0.1 mSv/a. (orig.)

  15. Distributions of radiation exposure in areas contaminated through the Chernobyl disaster

    International Nuclear Information System (INIS)

    There are computer programs available for accident-related radionuclide discharges into the terrestrial environment which generate recommendations for countermeasures and which are designed to make an as realistic a determination of radiation exposure as possible. When such programs were used after the Chernobyl disaster it was found that they were unable to reliably predict internal doses because they lacked a means of modelling food transport. A case in point were parts of Bavaria with high contamination levels were doses determined by whole-body measurements were lower than those found by estimation based on the contamination of local food products. Calculation models that are used for examining planning-basis situations mostly overestimate realistically possible dose levels. This poses the question whether it might not be possible to develop calculation programs for planning-basis situations that give a realistic picture of potential radiation exposure. The present study summarises the results of published data for the purpose of making statements on radiation exposure in areas of Russia, White Russia and Ukraine several years after their contamination by the Chernobyl disaster. It presents results on dose distributions which can contribute to the discussion on the realistic modelling of radiation exposure and the definition of critical groups. The study is divided into sections on internal and external radiation exposure

  16. Radiation exposure from diagnostic imaging among patients with gastrointestinal disorders.

    LENUS (Irish Health Repository)

    Desmond, Alan N

    2012-03-01

    There are concerns about levels of radiation exposure among patients who undergo diagnostic imaging for inflammatory bowel disease (IBD), compared with other gastrointestinal (GI) disorders. We quantified imaging studies and estimated the cumulative effective dose (CED) of radiation received by patients with organic and functional GI disorders. We also identified factors and diagnoses associated with high CEDs.

  17. Cosmic Radiation Exposure on Canadian-Based Commercial Airline Routes

    International Nuclear Information System (INIS)

    As a result of the recent recommendations of ICRP 60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-part investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. As part of the study, a dedicated scientific measurement flight (using both a conventional suite of powered detectors and passive dosimetry) was used to characterise the complex mixed radiation field and to intercompare the various instrumentation. In the other part of the study, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flight and computer code (CARI-LF) calculations. This investigation has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have also been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP 60 public limit of 1 mSv.y-1, but will be below the occupational limit of 20 mSv.y-1. (author)

  18. Cosmic radiation exposure on Canadian-based commercial airline routes

    International Nuclear Information System (INIS)

    As a result of the recent recommendations of the ICRP-60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-phase investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. In the first phase of the study, dedicated scientific flights on a Northern round-trip route between Ottawa and Resolute Bay provided the opportunity to characterize the complex mixed-radiation field, and to intercompare various instrumentation using both a conventional suite of powered detectors and passive dosimetry. In the second phase, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flights and computer code (CART-LF) calculations. This study has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP-60 public limit of 1 mSv y-1 but will be well below the occupational limit of 20 mSv y-1. (author)

  19. A specific case: Cosmic radiation exposures of flight crew

    International Nuclear Information System (INIS)

    Full text: The average annual effective dose due to occupational cosmic radiation exposure is 3.0 mSv (about 60% neutrons), which is higher than that due to other enhanced natural sources such as coal mining, non-coal mining or mineral processing according to the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report. Individual variability in annual exposures can be up to 25 fold (0.25 mSv/a), depending on the routes flown, which are often related to seniority in the profession. The collective dose for aircrew is 320 man Sv/a (UNSCEAR 1993 Report). In the specific case of cosmic radiation exposure of aircrew, the radiation control options include rotation of staff for reduction in individual hours worked, reduction in aircraft altitudes, reduction in flight route latitudes and postponement or rerouting of flights during known solar particle events. In the classic occupational hygiene exposure control paradigm, these measures would be categorized as administrative controls: reducing the time exposed or increasing the distance to source. Clearly, there are no feasible engineering controls or personal protective controls such as aircraft or personal shielding. International Commission on Radiological Protection Publication 60 (1991) provided international recommendations that practices involving radiation exposures be justified by benefit to individuals or society, that protection be optimized by constraining individual doses or risks, and that limits be set for individual doses and risks. Additionally, proposed interventions should do more harm than good and the cost benefit should be maximized. However, from a regulatory standpoint, differences exist between countries in the approach taken. In the United States of America, aircrew are not yet considered radiation workers and occupational exposures to cosmic radiation are still treated as unregulated natural background radiation. The US Federal Aviation Administration (FAA

  20. Systematic for assessment of occupational exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    The approval of Royal Decree 486/2010 of 23 April on the protection of health and safety of workers from risks related to exposure to artificial optical radiation, moves to state law a framework of protection against the radiation. This should involve a significant intensification of control at work is conducted in this radiation. Despite the complexity of the issue and limit values ??difficult to apply (for incoherent ultraviolet radiation enters the bounding box up to 5 different values ??may apply), requires a systematic analysis of the problem well done. In this paper we consider the ultraviolet radiation generated by artificial sources.

  1. Fitness of equipment used for medical exposures to ionising radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The advice in this guidance note is aimed at employers in control of equipment used for medical exposures to ionising radiation and ancillary equipment. This includes NHS trusts, health authorities or boards, private hospitals, clinics, surgeries, medical X-ray facilities in industry, dentists and chiropractors. The guidance should also be useful to radiation protection advisers appointed by such employers. The guidance provides advice on the requirements of regulation 33 of the Ionising Radiations Regulations 1985 (IRR85). In particular, it covers: (a) the selection, installation, maintenance, calibration and replacement of equipment to ensure that it is capable of restricting, so far as reasonably practicable, the medical exposure of any person to the extent that this is compatible with the intended diagnostic or therapeutic purpose; (b) recommended procedures for the definitive calibration of radiotherapy treatment; and (c) the need to investigate incidents involving a malfunction or defect in any 'radiation equipment' which result in medical exposures much greater than intended and to notify the Health and Safety Executive (HSE). 'Medical exposure' is defined in IRR85 as exposure of a person to ionising radiation for the purpose of his or her medical or dental examination or treatment which is conducted under the direction of a suitably qualified person and includes any such examination or treatment conducted for the purposes of research. For convenience, people undergoing medical exposure will be referred to as 'patients' in this guidance. Nothing in this publication is intended to indicate whether or not patients should be informed of any incident resulting from malfunction or defect in equipment used for medical exposure and the possible consequences of that exposure. As stated above, this guidance concerns medical exposures much greater than intended and although exposures much lower than intended can also have serious

  2. Fitness of equipment used for medical exposures to ionising radiation

    International Nuclear Information System (INIS)

    The advice in this guidance note is aimed at employers in control of equipment used for medical exposures to ionising radiation and ancillary equipment. This includes NHS trusts, health authorities or boards, private hospitals, clinics, surgeries, medical X-ray facilities in industry, dentists and chiropractors. The guidance should also be useful to radiation protection advisers appointed by such employers. The guidance provides advice on the requirements of regulation 33 of the Ionising Radiations Regulations 1985 (IRR85). In particular, it covers: (a) the selection, installation, maintenance, calibration and replacement of equipment to ensure that it is capable of restricting, so far as reasonably practicable, the medical exposure of any person to the extent that this is compatible with the intended diagnostic or therapeutic purpose; (b) recommended procedures for the definitive calibration of radiotherapy treatment; and (c) the need to investigate incidents involving a malfunction or defect in any 'radiation equipment' which result in medical exposures much greater than intended and to notify the Health and Safety Executive (HSE). 'Medical exposure' is defined in IRR85 as exposure of a person to ionising radiation for the purpose of his or her medical or dental examination or treatment which is conducted under the direction of a suitably qualified person and includes any such examination or treatment conducted for the purposes of research. For convenience, people undergoing medical exposure will be referred to as 'patients' in this guidance. Nothing in this publication is intended to indicate whether or not patients should be informed of any incident resulting from malfunction or defect in equipment used for medical exposure and the possible consequences of that exposure. As stated above, this guidance concerns medical exposures much greater than intended and although exposures much lower than intended can also have serious consequences, the incident would not

  3. Solid cancer risks from radiation exposure for the Australian population

    International Nuclear Information System (INIS)

    Estimates are made of the risks to the Australian population as a function of age and gender for mortality or morbidity for all solid cancers after exposure to radiation. Excess relative risk (ERR) and excess absolute risk (EAR) models are used. The model coefficients are re-evaluated for radiation doses expressed as effective dose using data from the Japanese Life Span Study. Life-table methods are used throughout and the risk measures studied are: the risk of exposure related death, RERD and the risk of exposure related cancer, RERC. Australian life-table data and the age-specific cancer incidence and mortality rates of Australian males and females are taken from recent published tables. No dose and dose-rate effectiveness factor is applied. Sources of uncertainty used to calculate the confidence regions for the estimated risks include the statistical uncertainties of the model parameters and of the extrapolation of the risks beyond the period supported by the epidemiological data. Summary values of the risks are reported as averages of those calculated from the ERR and the EAR models. For males, the mortality risks per sievert range from 14% for 0-9 year age group, 7% at 30-39 years and 4% at 50-59 years. Corresponding values for females are 20%, 10% and 6%. Incidence risks are higher: for males the estimates are 32% for the 0-9 year group, 12% at 30-39 and 5% at 50-59. Corresponding values for females are 56%, 20% and 8%. The 90% confidence regions are about ± 50% of these values. Estimates are given for the risks from CT whole-body scanning or virtual colonoscopy which could be used for cancer screening. If used at 3 year intervals and the effective dose per procedure is 10 mSv, then the RERD for males beginning screening at 40, 50 and 60 years is 0.4%, 0.3% and 0.1%, respectively and for females, 0.6%, 0.4% and 0.2%, respectively. RERD estimates for a 5 year interval between screens are about one-third smaller. Copyright (2003) Australasian College of

  4. Radiation exposure from aerosol-borne radionuclides with half-life periods shorter than 8 days

    International Nuclear Information System (INIS)

    The radiological monitoring of radioactive effluents from nuclear power plants with DWRs or PWRs during normal operation does not include in general analyses of the contribution of aerosol-borne radionuclides with a half-life period smaller than 8 days. In order to evaluate this contribution to radiation doses, the study investigates all airborne radionuclides emitted from nuclear power plants equipped with an LWR during normal operation. A conservative assessment of emission rates is based on diffusion-model calculations of radionuclide release from fuel elements, assuming non-delayed transport into the surroundings; the study covers rare gases, halogens, alkaline metals, and oxidizing fission products. It is shown that the short-lived aerosol-borne radionuclides mainly are decay products of rare gas isotopes with half-life periods shorter than 3 hrs. Only Rb-88, Rb-89, Rb-90, Cs-138 and Cs-139 account for radiation doses that are worth considering. Rb-88 is the prevailing radionuclide of this type in PWRs, and in BWRs it is Cs-138. The radiation doses of interest are determined by calculating transport factors for γ-submersion as a function of radionuclide half-life periods using a simple, new model, and by calculating the missing dose factors for the various exposure pathways. The radiation dose to the population induced by these aerosol-borne radionuclides is due only to γ- or β-submersion. Since the radioactivity thus released is lower than that of the rare gases, while the dose factors for calculating external radiation exposure are almost identical, the radiation dose contribution from these short-lived radionuclides is only a fraction of that of the rare gases, so that it is justifiable to include this type of exposure in the calculations for assessing radiation exposure emanating from rare gases. This all the more as a direct measurement of these aerosol-borne radionuclides that are completely decayed after 6 hours is very difficult. (orig./HP)

  5. Dose estimation of radiation exposure from hormesis cosmetics

    International Nuclear Information System (INIS)

    Cosmetics claiming hormesis effects are available through Internet. Although the hormesis effect is explained in each product of cosmetics, there is no explanation about the radiation source. The existence of the progeny nuclides of Th and U series (RI) was confirmed by the γ-ray spectroscopy using a HPGe detector. The highest radioactivity densities were 68 Bq/g of the Th-series included in the hormesis powder. Because the particle containing RI were of the size of 1-10 micrometer by observing and analyzing SEM-EDX, there is a risk of inhaling the powder to the deep into the lungs. Furthermore, as about 1% RI was dissolved in water, the uptake of the RI to the body would be possible. The highest value of the evaluation of uniform radiation exposure to some organs by the continuous usage for 10 years was 5.5 mSv/y of the hormesis powder inhalation to the lung. Furthermore, the calculated quantity of the radioactivity of progeny of 222Rn deposited in the body after continuous use of the hormesis cream every day for one year becomes 24 Bq. The possibility of accumulation of the radioactivity in the body from the hormesis cosmetics cannot be denied. The addition of the radioisotope to cosmetics is prohibited in some EU countries by the regulation. It's proposed in this paper that the legitimacy of the addition of the radioisotope should be seriously re-examined. (author)

  6. The recovery of the human organism after radiation exposure

    International Nuclear Information System (INIS)

    The repair of radiation damage in the human organism is reviewed. A distinction is made between the single repair steps, first the molecular repair of sublethal damage during the periods of 30 min to 2 h and several days to months, second the substitution of the whole cells during a period of reproduction which is specific for the kind and persistence of the cells. One example is the radiosensitive stem cell with a reproduction rate of 40% and a redoublication time of 10 d at 100 rads and the very low reproduction rate of 1% with redoublication time of 7 d after a dose of 400 rads. 5 rads seems to be acceptable for systems with recovery and repeated exposure, single doses normally should not exceed 25 rads, not 100 rads/d for to save human life, and not a total dose of 500 rads. About 20% of irradiation damage is not repaired and leads to late effects, for example the induction of tumors, the shortening of life span and an increase in embryonic mortality. The author recommends the acceptance of a radiation dose leading to 20 additional cases of leucemia in the whole population of Germany and an increase of tumor frequency of 1%. The shortening of life span should not exceed 0,5%. The equivalent residual dose (ERD) can be calculated by the following equation: ERD = last effective dose minus 5 rads x number of days. (AJ)

  7. Evaluation of exposure to ionizing radiation among gamma camera operators

    OpenAIRE

    Agnieszka Anna Domańska; Małgorzata Bieńkiewicz; Jerzy Olszewski

    2013-01-01

    Background: Protection of nuclear medicine unit employees from hazards of the ionizing radiation is a crucial issue of radiation protection services. We aimed to assess the severity of the occupational radiation exposure of technicians performing scintigraphic examinations at the Nuclear Medicine Department, Central Teaching Hospital of Medical University in Łódź, where thousands of different diagnostic procedures are performed yearly. Materials and Methods: In 2013 the studied diagnostic uni...

  8. Cosmic radiation and air crew exposure

    International Nuclear Information System (INIS)

    When the primary particles from space, mainly protons, enter the atmosphere, they interact with the air nuclei and induce cosmic-ray shower. When an aircraft is in the air, the radiation field within includes many types of radiation of large energy range; the field comprises mainly photons, electrons, positrons and neutrons. Cosmic radiation dose for crews of air crafts A 320 and ATR 42 was measured using TLD-100 (LiF: Mg, Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured using the Alpha Guard radon detector. The total annual dose estimated for the A 320 aircraft crew, at altitudes up to 12000 meters, was 5.3 mSv (including natural radon radiation dose of 1.1 mSv).(author)

  9. Occupational radiation exposure and mortality study

    International Nuclear Information System (INIS)

    An epidemiological cohort study of some 300,000 Canadians enrolled in the National Dose Registry (NDR) is being undertaken to determine if there is excess cancer or other causes of mortality among those workers who are occupationally exposed to low levels of ionizing radiation. The results of this study may provide better understanding of the dose-response relationship for low doses of ionizing radiation and aid in the verification of risk estimates for radiation-induced cancer mortality. The Department of National Health and Welfare (DNHW) is responsible for the Registry; this study is being carried out by the Bureau of Radiation and Medical Devices (BRMD) with financial assistance and co-operation of various agencies including Statistics Canada and the Atomic Energy Control Board

  10. Monitoring of radiation exposure and registration of doses

    International Nuclear Information System (INIS)

    The Section 32 of the Finnish Radiation Act (592/91) defines the requirements to be applied to the monitoring of the radiation exposure and working conditions in Finland. The concepts relevant to the monitoring and guidelines for determining the necessity of the monitoring as well as its organizing are given in the guide. Instructions for reporting doses to the Dose Register of the Finnish Centre for Radiation and Nuclear Safety (STUK) are given, also procedures for situations leading to exceptional exposures are described. (9 refs.)

  11. A review of the population radiation exposure at TMI-2

    International Nuclear Information System (INIS)

    The exposure of the public to radiation during and following the accident at Three Mile Island, Unit 2 was small. On the average it was only a few percent of natural background radiation and no one was exposed to amounts comparable to background radiation. Much of the detection equipment saw radiation levels too low to permit accurate measurements. This project identified and compared the work of various investigations in terms of methodology and the determination of radiation exposure to the population. The work included such refinements as (1) the utilization of better estimates of population density and distribution, (2) quantification of the effects of detector calibration, (3) an evaluation of the effects of buildings in shielding individuals from airborne radioactivity, (4) the reduction in population exposure due to the partial evacuation of the public, and (5) a determination of the effect on population exposure of not considering radiation exposures to individuals that are below about 0.5% of the combined yearly natural background and medical levels. (author)

  12. Radiation exposure to personnel in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    Investigations under routine conditions concerning the following points; were undertaken. External radiation exposure by Tc-99m to the whole body and to the hands or finger tips of nuclear technicians, physicians and radiochemists; external exposure by Tc-99m to whole body and gonads of nurses in a neurologic intensive care unit with a high frequency of patients who undergo nuclear medicine investigations; the risk to incorporate I-125 in a radioimmunoassay laboratory and in a labelling laboratory. The data show that external radiation exposure from Tc-99m to personnel working in diagnostic nuclear medicine where a total dose of 50 Ci of Tc-99m is applied per year remains far below the maximum permissible doses if the following measures are strictly fullfilled: - Elution, labelling and filling of Tc-99m radiopharmaceuticals only in shielded vials and using long distance working tools. - Application of Tc-99m radiopharmaceuticals using exclusively shielded syringes. - Time of staying next to Tc-99m containing patients as short as possible. Under these conditions, it is unnecessary that personnel who nurses patients with diagnostic nuclear medicine procedure in an intensive care unit are put under radiation control by personnel radiation dosimetry. The internal radiation exposure by inhalation of I-125 which evaporates from radioimmunoassay test tubes is negligible. But there is a risk of external and internal radiation exposure from labelling procedures with radionuclides of iodine, if special protective measures are not carefully considered

  13. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  14. Radiation exposure in body computed tomography examinations of trauma patients

    Science.gov (United States)

    Kortesniemi, M.; Kiljunen, T.; Kangasmäki, A.

    2006-06-01

    Multi-slice CT provides an efficient imaging modality for trauma imaging. The purpose of this study was to provide absorbed and effective dose data from CT taking into account the patient size and compare such doses with the standard CT dose quantities based on standard geometry. The CT examination data from abdominal and thoracic scan series were collected from 36 trauma patients. The CTDIvol, DLPw and effective dose were determined, and the influence of patient size was applied as a correction factor to calculated doses. The patient size was estimated from the patient weight as the effective radius based on the analysis from the axial images of abdominal and thoracic regions. The calculated mean CTDIvol, DLPw and effective dose were 15.2 mGy, 431 mGy cm and 6.5 mSv for the thorax scan, and 18.5 mGy, 893 mGy cm and 14.8 mSv for the abdomen scan, respectively. The doses in the thorax and abdomen scans taking the patient size into account were 34% and 9% larger than the standard dose quantities, respectively. The use of patient size in dose estimation is recommended in order to provide realistic data for evaluation of the radiation exposure in CT, especially for paediatric patients and smaller adults.

  15. Tissue response after radiation exposure. Intestine

    International Nuclear Information System (INIS)

    Gastrointestinal syndrome followed by 'gut death' is due to intestinal disorders. This syndrome is induced by high-dose (>10 Gy) of ionizing radiation. Recovery from the gastrointestinal syndrome would depend on the number of survived clonogens and regeneration capability of crypts. These tissue alterations can be observed by high-dose radiation, however, cellular dynamics in crypts can be affected by low-dose radiation. For example, Potten et al. found that low-dose radiation induce apoptosis of intestinal stem cells, which produce all differentiated function cells. Recently, intestinal stem cells are characterized by molecular markers such as Lgr5. Since intestinal adenomas can be induced by deletion of Apc gene in Lgr5+ stem cells, it is widely recognized that Lgr5+ stem cells are the cell-of-origin of cancer. Duodenal Lgr5+ stem cells are known as radioresistant cells, however, we found that ionizing radiation significantly induces the turnover of colonic Lgr5+ stem cells. Combined with the knowledge of other radioresistant markers, stem-cell dynamics in tissue after irradiation are becoming clear. The present review introduces the history of gastrointestinal syndrome and intestinal stem cells, and discusses those future perspectives. (author)

  16. Occupational radiation exposure monitoring among radiation workers in Nepal

    International Nuclear Information System (INIS)

    Nepal was accepted as a member of the IAEA in 2007. Nepal is one of the world's least developed countries and is defined in Health Level IV. The population counted 26.4 millions in 2007. The health care sector increases with new hospitals and clinics, however, Nepal has no radiation protection authority or radiation protection regulation in the country until now. The radiation producing equipment in the health sector includes conventional X-ray and dental X-ray equipment, fluoroscopes, mammography, CT, catheterization laboratory equipment, nuclear medicine facilities, a few linear accelerators, Co60 teletherapy and High Dose Rate brachytherapy sources. The situation regarding dosimetry service for radiation workers is unclear. A survey has been carried out to give an overview of the situation. The data collection of the survey was performed by phone call interviews with responsible staff at the different hospitals and clinics. Data about different occupationally exposed staff, use of personal radiation monitoring and type of dosimetry system were collected. In addition, it was asked if dosimetry reports were compiled in files or databases for further follow-up of staff, if needed. The survey shows that less of 25% of the procedures performed on the surveyed hospitals and clinics are performed by staff with personnel radiation monitoring. Radiation monitoring service for exposed staff is not compulsory or standardized, since there is no radiation protection authority. Nepal has taken a step forward regarding radiation protection, with the IAEA membership, although there are still major problems that have to be solved. An evaluation of the existing practice of staff dosimetry can be the first helpful step for further work in building a national radiation protection authority. (author)

  17. Risk assessment and management of radiofrequency radiation exposure

    Science.gov (United States)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia

    2013-11-01

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  18. Risk assessment and management of radiofrequency radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Dabala, Dana [Railways Medical Clinic Cluj-Napoca, Occupational Medicine Department, 16-20 Bilascu Gheorghe St., 400015 Cluj-Napoca (Romania); Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath St., 400293 Cluj-Napoca (Romania)

    2013-11-13

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  19. Risk assessment and management of radiofrequency radiation exposure

    International Nuclear Information System (INIS)

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management

  20. Understanding of radiation protection in medicine. Pt. 2. Occupational exposure and system of radiation protection

    International Nuclear Information System (INIS)

    Using a questionnaire we investigated whether radiation protection is correctly understood by medical doctors (n=140) and nurses (n=496). Although medical exposure is usually understood by medical doctors and dentists, their knowledge was found to be insufficient. Sixty-eight percent of medical doctors and 50% of dentists did not know about the system of radiation protection. Dose monitoring was not correctly carried out by approximately 20% of medical staff members, and medical personnel generally complained of anxiety about occupational exposure rather than medical exposure. They did not receive sufficient education on radiation exposure and protection in school. In conclusion, the results of this questionnaire suggested that they do not have adequate knowledge about radiation exposure and protection. The lack of knowledge about protection results in anxiety about exposure. To protect oneself from occupational exposure, individual radiation doses must be monitored, and medical practice should be reconsidered based on the results of monitoring. To eliminate unnecessary medical and occupational exposure and to justify practices such as radiological examinations, radiation protection should be well understood and appropriately carried out by medical doctors and dentists. Therefore, the education of medical students on the subject of radiation protection is required as is postgraduate education for medical doctors, dentists and nurses. (author)

  1. Radiation exposure of airline crew members to the atmospheric ionizing radiation environment

    International Nuclear Information System (INIS)

    A study of radiation exposures in the ionizing radiation environment of the atmosphere is currently in progress for the Italian civil aviation flight personnel. After a description of the considered data sources/ the philosophy of the study is presented/ and an overview is given of the data processing with regard to flight routes/ the computational techniques for radiation dose evaluation along the flight paths and for the exposure matrix building/ along with an indication of the results that the study should provide.

  2. Radiation Environment Variations at Mars - Model Calculations and Measurements

    Science.gov (United States)

    Saganti, Premkumar; Cucinotta, Francis

    Variations in the space radiation environment due to changes in the GCR (Galactic Cosmic Ray) from the past (#23) solar cycle to the current one (#24) has been intriguing in many ways, with an unprecedented long duration of the recent solar minimum condition and a very low peak activity of the current solar maximum. Model calculated radiation data and assessment of variations in the particle flux - protons, alpha particles, and heavy ions of the GCR environment is essential for understanding radiation risk and for any future intended long-duration human exploration missions. During the past solar cycle, we have had most active and higher solar maximum (2001-2003) condition. In the beginning of the current solar cycle (#24), we experienced a very long duration of solar minimum (2009-2011) condition with a lower peak activity (2013-2014). At Mars, radiation measurements in orbit were obtained (onboard the 2001 Mars Odyssey spacecraft) during the past (#23) solar maximum condition. Radiation measurements on the surface of Mars are being currently measured (onboard the Mars Science Laboratory, 2012 - Curiosity) during the current (#24) solar peak activity (August 2012 - present). We present our model calculated radiation environment at Mars during solar maxima for solar cycles #23 and #24. We compare our earlier model calculations (Cucinotta et al., J. Radiat. Res., 43, S35-S39, 2002; Saganti et al., J. Radiat. Res., 43, S119-S124, 2002; and Saganti et al., Space Science Reviews, 110, 143-156, 2004) with the most recent radiation measurements on the surface of Mars (2012 - present).

  3. Incidence of multiple primary cancers in Nagasaki atomic bomb survivors: association with radiation exposure.

    OpenAIRE

    Nakashima, Masahiro; Kondo, Hisayoshi; Miura, Shiro; Soda, Midori; Hayashi, Tomayoshi; Matsuo, Takeshi; Yamashita, Shunichi; Sekine, Ichiro

    2008-01-01

    To assess the effects of atomic bomb radiation on the incidence of multiple primary cancers (MPC), we analyzed the association between the incidence of second primary cancers in survivors of the atomic bombing of Nagasaki, and exposure distance. The incidence rate (IR) of a second primary cancer was calculated and stratified by the distance from the hypocenter and age at the time of bombing for the years 1968 through 1999. The IR of the first primary cancer was also calculated and compared wi...

  4. Full Mission Astronaut Radiation Exposure Assessments for Long Duration Lunar Surface Missions

    Science.gov (United States)

    Adamczyk, Anne; Clowdsley, Martha; Qualls, Garry; Blattnig, Steve; Lee, Kerry; Fry, Dan; Stoffle, Nicholas; Simonsen, Lisa; Slaba, Tony; Walker, Steven; Zapp, Edward

    2011-01-01

    Risk to astronauts due to ionizing radiation exposure is a primary concern for missions beyond Low Earth Orbit (LEO) and will drive mission architecture requirements, mission timelines, and operational practices. For short missions, radiation risk is dominated by the possibility of a large Solar Particle Event (SPE). Longer duration missions have both SPE and Galactic Cosmic Ray (GCR) risks. SPE exposure can contribute significantly toward cancer induction in combination with GCR. As mission duration increases, mitigation strategies must address the combined risks from SPE and GCR exposure. In this paper, full mission exposure assessments were performed for the proposed long duration lunar surface mission scenarios. In order to accomplish these assessments, previously developed radiation shielding models for a proposed lunar habitat and rover were utilized. End-to-End mission exposure assessments were performed by first calculating exposure rates for locations in the habitat, rover, and during Extra-Vehicular Activities (EVA). Subsequently, total mission exposures were evaluated for the proposed timelines. Mission exposure results, assessed in terms of effective dose, are presented for the proposed timelines and recommendations are made for improved astronaut shielding and safer operational practices.

  5. Occupational exposure to natural sources of radiation

    International Nuclear Information System (INIS)

    The most important natural sources of radiation are analyzed. The situation in France, Italy, and Spain concerning protection against natural radiation is described, including the identification of sources, and defined practices, organizations charged of national surveys and the responsibility of regulatory bodies and the role of operating management. The activities of the international organizations (ICRP, CEC and IAEA) are presented and discussed, and existing actions toward harmonization in the CEC, IAEA and other international programs is also discussed. (R.P.) 23 refs., 2 tabs

  6. Comparison of Calculated Radiation Delivery Versus Actual Radiation Delivery in Military Macaws (Ara militaris).

    Science.gov (United States)

    Cutler, Daniel C; Shiomitsu, Keijiro; Liu, Chin-Chi; Nevarez, Javier G

    2016-03-01

    The skin and oral cavity are common sites of neoplasia in avian species. Radiation therapy has been described for the treatment of these tumors in birds; however, its observed effectiveness has been variable. One possible explanation for this variability when radiation is used to treat the head is the unique anatomy of the avian skull, which contains an elaborate set of sinuses not found in mammalian species. To compare a calculated dose of radiation intended to be administered and the actual amount of radiation delivered to the target area of the choana in 3 adult military macaws (Ara militaris), computed tomography scans were obtained and the monitor unit was calculated to deliver 100 cGy (1Gy) by using radiation planning software. The birds received 3-4 radiation treatments each from a megavoltage radiation therapy unit. A thermoluminescent dosimetry chip (TLD) placed in the choana of the birds was used to measure the amount of ionizing radiation delivered at each treatment. The TLDs were kept in place using Play-Doh as a tissue analog. The actual dose of radiation delivered was lower than the 100-cGy calculated dose, with the 95% confidence limits of predicted bias values between 2.35 and 5.39 (radiation dose from 94.61 to 97.65 cGy). A significant difference was identified between the actual amount of radiation delivered and the calculated radiation goal (P < .001). None of the TLDs received the intended dose of 100 cGy of radiation. The results revealed that the amount of radiation delivered did not reach intended levels. Because the combination of the significance of this discrepancy and the standard dose inhomogeneity could lead to greater than 10% dose inhomogeneity, future investigation is warranted for accurate dose calculation and efficacy of radiation therapy for neoplasia at the lumen of the choana in birds. PMID:27088738

  7. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Contributed papers

    International Nuclear Information System (INIS)

    Occupational exposure to ionizing radiation can occur in a range of industries, mining and milling; medical institutions, educational and research establishments and nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker, which is attributable to the worker's occupation and committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers are monitored for exposure to ionizing radiation. They incur radiation doses attributable to their occupation, which range from a small fraction of the global average background exposure to natural radiation up to several times that value. It should be noted that the UNSCEAR 2000 Report describes a downward trend in the exposure of several groups of workers, but it also indicates that occupational exposure is affecting an increasingly large group of people worldwide. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, inter alia, the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (NEA) and the World Health Organization (WHO), establish a system of radiation protection which includes radiation dose limits for occupational exposure. Guidance supporting the requirements of the BSS for occupational protection is provided in three interrelated Safety Guides, jointly sponsored by the IAEA and the ILO. These Guides describe, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). The IAEA i organized its first International Conference on Occupational Radiation Protection. The

  8. Some problem of emergency exposure medical system and radiation protection

    International Nuclear Information System (INIS)

    Fukushima nuclear accident was a complex disaster and then clarified some problem of emergency exposure medical system. This article described such problem and introduced nuclear emergency preparedness guidelines focusing on exposure medical matter. At the initial stage of the accident, 5 initial exposure medical organizations like the off-site center could not work at all. Secondary exposure medical organization was regional core hospital and had excessive medical loads. Third organizations dispatched exposure medical support teams to the site to rebuild the emergency exposure medical system. Emergency evacuation of patients and preventive use of stabilized iodine tablets should be well prepared. At radiation accidents, radiation protection measures should be chosen for exposure path and accident stage such as emergency exposure situation or existing exposure situation. Comprehensive standards for deterministic and probabilistic effects with relevant measure to prevent or minimize effects or reduce probabilistic risks were tabulated from IAEA documents for the reference. Emergency Action Level (EAL) and Operation Intervention Level (OIL) should be predetermined to start protective measures. Emergency was classified into three categories: Alert, site emergency and general emergency. Assuming general emergency, protective measures were considered for respective zones of PAZ (Precautionary Active Zone), UPZ (Urgent Protective action Planning Zone) and PPA (Plume Protection Planning Area, under consideration). (T. Tanaka)

  9. Dose evaluation for external exposure in radiation accidents

    International Nuclear Information System (INIS)

    Abnormal exposures including emergency and accidental are categorized into external exposure and internal contamination, although both of these may be associated with external contamination. From a point of view of lifesaving in the abnormal exposures, it is primarily important to evaluate radiation dose of exposed persons as soon as possible. This report reviews the status of early dosimetry in the accidental exposures and discusses the optimum methodology of the early dose determination for external exposures in abnormal exposures. Personal monitors generally give an indication of dose to an exposed person only at a single part of the body. The data obtained from the personal monitors should be interpreted with care and in the light of information about the circumstances of exposure. In most cases, the records of environmental monitors or the survey with area monitors provide valuable information on the radiation fields. In the some cases, the reconstruction of the abnormal exposure is required for the dose evaluation by means of phantom experiments. In the case of neutron exposures, activation products in the body or its components or personnel possession can be useful for the early dosimetry. If the dose received by the whole body is evaluated as being very high, clinical observations and biological investigations may be more important guide to initial medical treatment than the early dosimetry. For the dose evaluation of general public, depending on the size of abnormal exposure, information that could be valuable in the assessment of abnormal exposures will come from the early dose estimates with environmental monitors and radiation survey meters. (author)

  10. Retrospective internal radiation exposure assessment in occupational epidemiology

    International Nuclear Information System (INIS)

    Epidemiologic studies of workers at U.S. Department of Energy facilities are being conducted by the U.S. National Institute for Occupational Safety and Health to evaluate the health risk associated with exposure to sources of external and internal ionizing radiation. While exposure to external sources of radiation can be estimated from personal dosimeter data, reconstruction of exposure due to internally deposited radioactivity is more challenging because bioassay monitoring data is frequently less complete. Although comprehensive monitoring was provided for workers with the highest internal exposures, the majority of workers were monitored relatively infrequently. This monitoring was conducted to demonstrate compliance with regulations rather than to evaluate exposure for use in epidemiologic studies. Attributes of past internal monitoring programs that challenge accurate exposure assessment include: incomplete characterization of the workplace source term; a lack of timely measurements; insensitive and/or nonspecific bioassay measurements; and the presence of censored data. In spite of these limitations, many facilities have collected a large amount of worker and workplace monitoring information that can be used to evaluate internal exposure while minimizing worker misclassification. This paper describes a systematic approach for using the available worker and workplace monitoring data that can lead to either a qualitative or quantitative retrospective assessment of internal exposures. Various aspects of data analysis will be presented, including the evaluation of minimum detectable dose, the treatment of censored data, and the use of combinations of bioassay and workplace data to characterize exposures. Examples of these techniques applied to a cohort study involving chronic exposure scenarios to uranium are provided. A strategy for expressing exposure or dose in fundamental, unweighted units related to the quantity of radiation delivered to an organ will also

  11. Patient cumulative radiation exposure in interventional cardiology

    International Nuclear Information System (INIS)

    Interventional cardiology procedures can involve potentially high doses of radiation to the patients. Stochastic effects of ionising radiation - radiation-induced cancers in the long term - may occur. We analysed clinical characteristics and dosimetric data in a population of patients undergoing interventional cardiology. In all, 1 591 patients who had undergone coronarography and/or angioplasty in the course of a year at the Saint-Gatien Clinic in Tours (France) were included. Information on patients' individual clinical characteristics and Dose-Area Product values were collected. Organ doses to the lung, oesophagus, bone marrow and breast were mathematically evaluated. The median age of patients was 70 years. Their median cumulative dose-area product value was 48.4 Gy.cm2 for the whole year and the median effective dose was 9.7 mSv. The median organ doses were 41 mGy for the lung, 31 mGy for the oesophagus, 10 mGy for the bone marrow and 4 mGy for the breast. Levels of doses close to the heart appear to be rather high in the case of repeated interventional cardiology procedures. Clinical characteristics should be taken into account when planning epidemiological studies on potential radiation-induced cancers. (authors)

  12. Assigning a value to transboundary radiation exposure

    International Nuclear Information System (INIS)

    The document offers guidance on the application of the Basic Safety Standards with regard to the particular problem of using differential cost-benefit analysis in the optimization of radiation protection in the case of transboundary radioactive pollution. Examples of optimization of 14C retention at a nuclear power plant and of 85Kr retention at a reprocessing plant are presented

  13. Radiation in the living environment: sources, exposure and effects

    International Nuclear Information System (INIS)

    We are living in a milieu of radiations and continuously exposed to radiations from natural sources from conception to death. We are exposed to radiation from Sun and outer space, radioactive materials present in the earth, house we live in, buildings and workplace, food we eat and air we breath. Each flake of snow, grain of soil, drop of rain, a flower, and even each man in the street is a source of this radiation. Even our own bodies contain naturally occurring radioactive elements. The general belief is that the radiations are harmful and everybody is scared of the same. The cancer is the most important concern on account of exposure to Ionizing Radiation which is initiated by the damage to DNA. The level of exposure depends on the environmental and working conditions and may vary from low to moderate to high and depending on the same the exposed humans can be classified as general public, non nuclear workers (NNW) and nuclear workers (NW). Though, the LNT theory which is considered to be the radiation paradigm considers all radiation at all levels to be harmful and the -severity of the deleterious effect increases with the increase in dose, however, the available literature, data and reports (epidemiological and experimental) speaks otherwise particularly at low levels. The purpose of this paper is to address the question, whether the radiation is harmful at all levels or it is simply media hype and the truth is different, and to promote harmony with nature and to improve our quality of life with the knowledge that cancer mortality rates decrease following exposure to LLIR. Various sources of radiation exposure and the subsequent consequences will be discussed. (author)

  14. Health Impacts from Acute Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2003-09-30

    Absorbed doses above1-2 Gy (100-200 rads) received over a period of a day or less lead to one or another of the acute radiation syndromes. These are the hematopoietic syndrome, the gastrointestinal (GI) syndrome, the cerebrovascular (CV) syndrome, the pulmonary syndrome, or the cutaneous syndrome. The dose that will kill about 50% of the exposed people within 60 days with minimal medical care, LD50-60, is around 4.5 Gy (450 rads) of low-LET radiation measured free in air. The GI syndrome may not be fatal with supportive medical care and growth factors below about 10 Gy (1000 rads), but above this is likely to be fatal. Pulmonary and cutaneous syndromes may or may not be fatal, depending on many factors. The CV syndrome is invariably fatal. Lower acute doses, or protracted doses delivered over days or weeks, may lead to many other health outcomes than death. These include loss of pregnancy, cataract, impaired fertility or temporary or permanent sterility, hair loss, skin ulceration, local tissue necrosis, developmental abnormalities including mental and growth retardation in persons irradiated as children or fetuses, radiation dermatitis, and other symptoms listed in Table 2 on page 12. Children of parents irradiated prior to conception may experience heritable ill-health, that is, genetic changes from their parents. These effects are less strongly expressed than previously thought. Populations irradiated to high doses at high dose rates have increased risk of cancer incidence and mortality, taken as about 10-20% incidence and perhaps 5-10% mortality per sievert of effective dose of any radiation or per gray of whole-body absorbed dose low-LET radiation. Cancer risks for non-uniform irradiation will be less.

  15. Radiation load from radon exposure in Slovakia

    International Nuclear Information System (INIS)

    In this paper the results of monitoring of radon exposure in Slovakia by passive solid state nuclear track detectors (SSNTD ) (placed in about 6,000 selected dwellings, 1000 selected buildings of the kindergartens and basic schools, 12 selected spa buildings) and personal doses measured by SSNTD (130 miners from three ore mines and 13 tourist guides from seven show karst caves) are presented. The national survey results suggest that Slovak Republic may be among the countries with higher radon risk in Central Europe. The annual effective dose from indoor radon exposure is 2.1 mSv per inhabitants. The district with highest indoor radon concentrations and districts with high radon levels in spa buildings correlate with known presence of uranium in the soil. The soil is probably the main source of radon in Slovak dwellings, spa and school buildings too

  16. The accidental exposure to ionizing radiations

    International Nuclear Information System (INIS)

    This article is divided in three parts, the first one gives the radioactivity sources, the doses and the effects, the second part is devoted to the medical exposures, the third part concerns the accidents and the biological effects of an irradiation the different syndromes ( the acute whole-body irradiation syndrome, the localized irradiation syndrome, the inflammatory syndrome, hematopoietic syndrome,neuro-vascular syndrome) are detailed. (N.C.)

  17. Occupational cosmic radiation exposure and cancer in airline cabin crew

    International Nuclear Information System (INIS)

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  18. Occupational cosmic radiation exposure and cancer in airline cabin crew.

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, K.

    2013-03-15

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  19. Martian Radiation Environment: Model Calculations and Recent Measurements with "MARIE"

    Science.gov (United States)

    Saganti, P. B.; Cucinotta, F. A.; zeitlin, C. J.; Cleghorn, T. F.

    2004-01-01

    The Galactic Cosmic Ray spectra in Mars orbit were generated with the recently expanded HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations. These model calculations are compared with the first eighteen months of measured data from the MARIE (Martian Radiation Environment Experiment) instrument onboard the 2001 Mars Odyssey spacecraft that is currently in Martian orbit. The dose rates observed by the MARIE instrument are within 10% of the model calculated predictions. Model calculations are compared with the MARIE measurements of dose, dose-equivalent values, along with the available particle flux distribution. Model calculated particle flux includes GCR elemental composition of atomic number, Z = 1-28 and mass number, A = 1-58. Particle flux calculations specific for the current MARIE mapping period are reviewed and presented.

  20. Information by the German Federal Government. Environmental radioactivity and radiation exposure in 2011

    International Nuclear Information System (INIS)

    The information by the German Federal Government on environmental radioactivity and radiation exposure in 2011 includes the following issues: (I) natural radiation exposure: radiation sources; contributions to the radiation exposure (cosmic and terrestric radiation, radioactive building materials, food and drinking water, radon); assessment of the components of natural radioactivity. (II) civil radiation exposure: nuclear power plants and nuclear fuel processing plants, other nuclear facilities (interim storage plants and final repositories); summarizing assessment of nuclear facilities; environmental radioactivity from mining and remedial action in the Wismut AG; radioactive materials and ionizing radiation in research, engineering and households; residuals from industry and mining; fallout from reactor accidents and nuclear weapon testing. (III) Occupational radiation exposure: civil radiation sources, natural radiation sources (aircraft personnel, water plants, therapeutic baths). (IV) medical radiation exposure: X-ray diagnostics, nuclear medicine, radiotherapy, radiopharmaceuticals, assessment of medical radiation exposure. (V) non-ionizing radiation: electromagnetic fields, optical radiation.

  1. Modelling the effects of ionizing radiation on survival of animal population: acute versus chronic exposure.

    Science.gov (United States)

    Kryshev, A I; Sazykina, T G

    2015-03-01

    The objective of the present paper was application of a model, which was originally developed to simulate chronic ionizing radiation effects in a generic isolated population, to the case of acute exposure, and comparison of the dynamic features of radiation effects on the population survival in cases of acute and chronic exposure. Two modes of exposure were considered: acute exposure (2-35 Gy) and chronic lifetime exposure with the same integrated dose. Calculations were made for a generic mice population; however, the model can be applied for other animals with proper selection of parameter values. In case of acute exposure, in the range 2-11 Gy, the population response was in two phases. During a first phase, there was a depletion in population survival; the second phase was a recovery period due to reparation of damage and biosynthesis of new biomass. Model predictions indicate that a generic mice population, living in ideal conditions, has the potential for recovery (within a mouse lifetime period) from acute exposure with dose up to 10-11 Gy, i.e., the population may recover from doses above an LD50 (6.2 Gy). Following acute doses above 14 Gy, however, the mice population went to extinction without recovery. In contrast, under chronic lifetime exposures (500 days), radiation had little effect on population survival up to integrated doses of 14-15 Gy, so the survival of a population subjected to chronic exposure was much better compared with that after an acute exposure with the same dose. Due to the effect of "wasted radiation", the integrated dose of chronic exposure could be about two times higher than acute dose, producing the same effect on survival. It is concluded that the developed generic population model including the repair of radiation damage can be applied both to acute and chronic modes of exposure; results of calculations for generic mice population are in qualitative agreement with published data on radiation effects in mice. PMID

  2. Assessment of occupational radiation exposure in China

    International Nuclear Information System (INIS)

    Since the eighties, the doses received by the workers of the nuclear industry system in China have been below 5 mSv, excluding uranium miners. Workers involved in the radioisotope and radiation applications received doses in the range of 1∼2 mSv. Stringent and effective measures are required to be taken for the radioisotope and radiation applications due to high accident possibility. Average annual effective doses to underground workers in variety of occupations such as uranium, coal and non-ferrous metal mines are 19.3, 8.3 and 33.2 mSv respectively on the rough estimate basis. The nuclear industry contributes only 0.17% to collective dose. Contributions by coal and non-ferrous metal mining to collective dose account for 85.15 % and 14.3% of the total respectively. The data available from coal and non-ferrous mines are less, associated with high uncertainty. (author)

  3. Radiation exposure at workplaces from radon

    International Nuclear Information System (INIS)

    The measuring campaign for the survey was performed in compliance with the EURATOM Basic Safety Standards for the protection of the general public and workers against the dangers of ionizing radiation. The campaign started with measurements at underground workplaces, i.e. in mines, developed mines open for visitors, and developed commercial caves, and continued with scanning the spas in Germany and the relevant balneotherapeutical places. Scanning activities in the drinking water conditioning plants of the Land of Baden-Wuerttemberg are heading towards completion. Approximately 400 places have been scanned so far for their radiological conditions emanating from the presence of radon, radon daughter products, and direct radiation. The statistical survey derived from the measured data presents a reliable source of reference indicating any need for initiating protective measures in the event of maximum permissible levels or levels for intervention being adopted. (orig.)

  4. Basis for limiting exposure to ionizing radiation

    International Nuclear Information System (INIS)

    In view of the uncertainty about the size of the risk from radiation, it is assumed that all doses are potentially harmful with the probability of harm proportional to the dose, without threshold. Canada participates in the work of UNSCEAR, and the Canadian Atomic Energy Control Board follows the recommendations of the International Commission on Radiological Protection in setting its dose limits, encouraging the application of the ALARA (as low as reasonably achievable) concept through its licensing and compliance activities

  5. Review of retrospective dosimetry techniques for external ionising radiation exposures

    International Nuclear Information System (INIS)

    The current focus on networking and mutual assistance in the management of radiation accidents or incidents has demonstrated the importance of a joined-up approach in physical and biological dosimetry. To this end, the European Radiation Dosimetry Working Group 10 on 'Retrospective Dosimetry' has been set up by individuals from a wide range of disciplines across Europe. Here, established and emerging dosimetry methods are reviewed, which can be used immediately and retrospectively following external ionising radiation exposure. Endpoints and assays include dicentrics, translocations, premature chromosome condensation, micronuclei, somatic mutations, gene expression, electron paramagnetic resonance, thermoluminescence, optically stimulated luminescence, neutron activation, haematology, protein biomarkers and analytical dose reconstruction. Individual characteristics of these techniques, their limitations and potential for further development are reviewed, and their usefulness in specific exposure scenarios is discussed. Whilst no single technique fulfils the criteria of an ideal dosemeter, an integrated approach using multiple techniques tailored to the exposure scenario can cover most requirements. (authors)

  6. Radiation exposure in Japan and evaluation of the health hazards

    International Nuclear Information System (INIS)

    One year after the fission product release from the NPP Fukushima Daiichi as a consequence of the earthquake and tsunami in March 2011 the World Health Organization (WHO) has published an extensive estimation of the radiation exposure of the public. Models for the resulting health hazards were developed. The United Nations scientific committee on the effects of atomic radiation (UNSCEAR) has actualized the radiation exposure based on new data. The contribution summarizes the aspects of these reports. According to these reports the early evacuation of the habitants and the dose limits for food contamination has kept the public exposure on a low level. The uncertainties of the simulations concerning the resulting health hazards are high.

  7. Solar radiation calculation methodology for building exterior surfaces

    Energy Technology Data Exchange (ETDEWEB)

    De la Flor, Francisco Jose Sanchez; Ortiz Cebolla, Rafael; Luis Molina Felix, Jose; Alvarez Dominguez, Servando [E S. Ingenieros. Grupo de Termotecnia, Avda. de los descubrimientos, s/n 41092 Sevilla (Spain)

    2005-11-01

    The present article shows a new methodology of calculation of the direct, diffuse and reflected incident solar radiation, in all type of surfaces, either in open urban environments or inside buildings. This methodology is applicable in problems related to solar access (space heating in buildings, shadowing of open spaces), solar gains (space cooling in buildings), and daylighting. Solar radiation is the most important contribution to the surface and volumetric energy balance during the daytime. Particularly, solar radiation is the main contributor to heat gains in buildings, especially in residential buildings, where internal gains are very low. Utilization of daylight in buildings may result in significant savings in electricity consumption for lighting while creating a higher quality indoor environment. Additional energy savings may also be realized during cooling season, when reduction of internal heat gains due to electric lighting results in a corresponding reduction of cooling energy consumption. The analysis of the existing calculation methods and proposed in the scientific bibliography for the calculation of the solar radiation in problems of solar access in winter, solar gains in summer, and daylighting, takes us to the necessity of outlining a new and complete methodology. This new methodology is applicable to all these problems with a great accuracy and calculation speed. (author)

  8. Neutron dosimetry and radiation damage calculations for HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., TN (United States)

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  9. Factors impacting public acceptance of medical radiation exposure

    International Nuclear Information System (INIS)

    We undertook a survey to determine the public acceptance of medical radiation exposure throughout Japan, and 1,357 responses (67.9% response rate) were obtained using a two-stage systematic stratified random sampling method. The acceptance of exposure of children was generally similar to that of adults. For each of the attributes, 45-60% of the participants were accepting of exposure for cancer treatment and diagnosis, but only 30% were accepting of exposure for X-ray diagnoses of bone fractures and dental caries. In general, the presence of a child did not markedly affect women's acceptance of exposure. Factor analyses identified 3 factors influencing the acceptance of child exposure: symptomatic diseases to determine treatment, the possibility of high-risk diseases (or major organ diseases), and the association with cancer. Cluster analysis showed 4 clusters: a positive group regarding children's exposure for the diagnosis of bone fractures and dental caries (12.9% of all participants), a positive group for major organ disease and cancer (15.5%), a negative group excluding cancer (55.2%), and a positive group for all cases (16.4%). The cluster distributions revealed that mothers with 10- to 18-year-old firstborn children showed a tendency to accept the medical radiation exposure of their children in all cases. (author)

  10. Problems in radiation shielding calculations with Monte Carlo methods

    International Nuclear Information System (INIS)

    The Monte Carlo method is a very useful tool for solving a large class of radiation transport problem. In contrast with deterministic method, geometric complexity is a much less significant problem for Monte Carlo calculations. However, the accuracy of Monte Carlo calculations is of course, limited by statistical error of the quantities to be estimated. In this report, we point out some typical problems to solve a large shielding system including radiation streaming. The Monte Carlo coupling technique was developed to settle such a shielding problem accurately. However, the variance of the Monte Carlo results using the coupling technique of which detectors were located outside the radiation streaming, was still not enough. So as to bring on more accurate results for the detectors located outside the streaming and also for a multi-legged-duct streaming problem, a practicable way of ''Prism Scattering technique'' is proposed in the study. (author)

  11. Evaluation of control room radiation exposure

    International Nuclear Information System (INIS)

    The development and practical test applications of a computer program ''AID'' (Accident Inhalation Dose) are discussed. The ''AID'' computer code calculates the external cloud doses (gamma, whole body and beta skin) and the resultant inhalation doses after a radiological release based upon site meteorological data and a wide range of possible ventilation and filtration designs

  12. The ionising radiation (medical exposure) regulations - IR (ME) R, Malta

    International Nuclear Information System (INIS)

    Full text: The regulations in Malta at present are in draft stage. These regulations partially implement European Council Directive 97/43/Euratom. This Directive lays down the basic measurements for the health and protection of individuals against dangers of ionising radiation in relation to medical exposure. The regulations impose duties on persons administering radiations, to protect people from unnecessary exposure whether as part of their own medical diagnosis, treatment or as part of occupational health worker for health screening, medico-legal procedures, voluntary participation in research etc. These regulations also apply to individuals who help other individuals undergoing medical exposure. Main provisions 1. Regulation 2 contains the definitions of 28 terms used in these regulations. 2. Regulation 3.1 and 3.2 sets out the medical exposures to which the regulations apply. 3. Regulation 4 requires approval of medical exposures due to medical research, from radiation protection board of Malta. 4. Regulation 5 prohibits new procedures involving medical exposure unless it has been justified in advance. 5. Regulation 6 provides conditions justifying medical exposures. It prohibits any medical exposure from being carried out which has not been justified and authorized and sets out matters to be taken into account for justification. 6. Regulation 7 requires that practitioner justifies the exposure, shall pay special attention towards (a) exposure from medical research procedures where there is no direct health benefit to the individual undergoing exposure, (b) exposures for medico-legal purposes; (c) exposures to pregnant or possible pregnant women and (d) exposures to breast-feeding women. 7. Regulation 8.1 to 8.3 prohibit any medical exposure from being carried out which has not been justified and sets out matters to be taken for justification 8. Regulation 8.4 prohibits an exposure if it cannot be justified. 9. Regulation 9 requires the employer to provide a

  13. Gamma-ray exposure from neutron-induced radionuclides in soil in Hiroshima and Nagasaki based on DS02 calculations.

    Science.gov (United States)

    Imanaka, Tetsuji; Endo, Satoru; Tanaka, Kenichi; Shizuma, Kiyoshi

    2008-07-01

    As a result of joint efforts by Japanese, US and German scientists, the Dosimetry System 2002 (DS02) was developed as a new dosimetry system, to evaluate individual radiation dose to atomic bomb survivors in Hiroshima and Nagasaki. Although the atomic bomb radiation consisted of initial radiation and residual radiation, only initial radiation was reevaluated in DS02 because, for most survivors in the life span study group, the residual dose was negligible compared to the initial dose. It was reported, however, that there were individuals who entered the city at the early stage after the explosion and experienced hemorrhage, diarrhea, etc., which were symptoms of acute radiation syndrome. In this study, external exposure due to radionuclides induced in soil by atomic bomb neutrons was reevaluated based on DS02 calculations, as a function of both the distance from the hypocenters and the elapsed time after the explosions. As a result, exposure rates of 6 and 4 Gy h(-1) were estimated at the hypocenter at 1 min after the explosion in Hiroshima and Nagasaki, respectively. These exposure rates decreased rapidly by a factor of 1,000 1 day later, and by a factor of 1 million 1 week later. Maximum cumulative exposure from the time of explosion was 1.2 and 0.6 Gy at the hypocenters in Hiroshima and Nagasaki, respectively. Induced radiation decreased also with distance from the hypocenters, by a factor of about 10 at 500 m and a factor of three to four hundreds at 1,000 m. Consequently, a significant exposure due to induced radiation is considered feasible to those who entered the area closer to a distance of 1,000 m from the hypocenters, within one week after the bombing. PMID:18368418

  14. Radiation exposure in nuclear medicine: real-time measurement

    OpenAIRE

    Sylvain Iara; Bok Bernard

    2002-01-01

    French regulations have introduced the use of electronic dosimeters for personal monitoring of workers. In order to evaluate the exposure from diagnostic procedures to nuclear medicine staff, individual whole-body doses were measured daily with electronic (digital) personal dosimeters during 20 consecutive weeks and correlated with the work load of each day. Personal doses remained always below 20 µSv/d under normal working conditions. Radiation exposure levels were highest to tech staff, nur...

  15. Low Magnitude Occupational Radiation Exposures Are They Safe or Unsafe

    International Nuclear Information System (INIS)

    Man has always been exposed to ionizing radiation from natural sources and background exposure varies with the locations. No deleterious effects have been uniquely correlated, either they are not produced at low levels of exposure or their frequency is too low to be statistically observable. Direct source of information on radiation hazards in man is obviously based on follow up of population groups exposed to certain levels of radiation. Harmful effects of ionizing radiations are traced to documented exposures; for radiologists during 1920 s and 30 s, miners exposed to airborne radioactivity, workers in the radium industry, follow-up data of Japanese nuclear bomb survivors of Hiroshima and Nagasaki, the Marshallese accident in 1954, and the victims of the limited number of accidents at nuclear installations including Chernobyl. Mostly these information are from situations involving higher doses and dose rates. Ionizing radiations have been used extensively on the peaceful applications of atomic energy in general and medical applications in particular have shown to outweigh benefits over the risks. Personnel, low magnitude of exposures are encountered during routine work in handling radiation sources. In the light of present knowledge there is need to reassess the quantum of actual risk instead of projected risk based on long time models. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) described models for dose-response relationships and micro-dosimetric arguments for defining low doses. The definition of low doses could also be based on direct observations in experimental or epidemiological studies. Through measurement of cell damage or death using human lymphocytes, linear and quadratic terms have been fitted the response and low doses have been judged to be 20-40 mSv. Data derived from epidemiological studies, mainly the atomic bomb survivors, suggests that for solid tumours and leukaemia, 200 mSv could be considered the

  16. Exposure to the atmospheric ionizing radiation environment: a study on Italian civilian aviation flight personnel

    International Nuclear Information System (INIS)

    A study of the effects of high-LET, low-dose and low-dose-rate ionizing radiation and associated risk analysis is underway. This study involves analyzing the atmospheric ionizing radiation exposure (including high-energy neutrons) and associated effects for members of civilian aviation flight personnel, in an attempt to better understand low-dose long-term radiation effects on human subjects. The study population includes all Italian civilian airline flight personnel, both cockpit and cabin crew members, whose work history records and actual flights (route, aircraft type, and date for each individual flight for each person where possible) are available. The dose calculations are performed along specific flight legs, taking into account the actual flight profiles for all different routes and the variations with time of solar and geomagnetic parameters. Dose values for each flight are applied to the flight history of study participants in order to estimate the individual annual and lifetime occupational radiation dose. An update of the study of the physical atmospheric ionizing radiation exposure is given here, in terms of environmental modeling, flight routes, radiation dose evaluation along different flight paths, and exposure matrix construction. The exposure analysis is still in progress, and the first results are expected soon

  17. Radiation exposures for DOE and DOE contractor employees, 1990

    International Nuclear Information System (INIS)

    This is the 23rd in a series of annual radiation exposure reports published by the Department of Energy (DOE) or its predecessors. This report summarizes the radiation exposures received by both employees and visitors at DOE and DOE contractor facilities during 1990. Trends in radiation exposures are evaluated by comparing the doses received in 1990 to those received in previous years. The significance of the doses is addressed by comparing them to the DOE limits and by correlating the doses to health risks based on risk estimated from expert groups. This report is the third that is based on detailed exposure data for each individual monitored at a DOE facility. Prior to 1988, only summarized data from each facility were available. This report contains information on different types of radiation doses, including total effective, internal, penetrating, shallow, neutron, and extremity doses. It also contains analysis of exposures by age, sex, and occupation of the exposed individuals. This report also continues the precedent established in the Twenty-First (1988) Annual Report by conducting a detailed, one-time review and analysis of a particular topic of interest. The special topic for this report is a comparison of total effective, internal, and extremity dose equivalent values against penetrating dose equivalent values

  18. Radiation exposure and image quality in x-Ray diagnostic radiology physical principles and clinical applications

    CERN Document Server

    Aichinger, Horst; Joite-Barfuß, Sigrid; Säbel, Manfred

    2012-01-01

    The largest contribution to radiation exposure to the population as a whole arises from diagnostic X-rays. Protecting the patient from radiation is a major aim of modern health policy, and an understanding of the relationship between radiation dose and image quality is of pivotal importance in optimising medical diagnostic radiology. In this volume the data provided for exploring these concerns are partly based on X-ray spectra, measured on diagnostic X-ray tube assemblies, and are supplemented by the results of measurements on phantoms and simulation calculations.

  19. Reduction in radiation exposure and volume using asphalt solidification

    International Nuclear Information System (INIS)

    The solidification of liquid and solid radioactive wastes from nuclear power plants with an extruder-evaporator using an asphalt binder minimizes both volume and radiation exposure. The automatic evaporation of water in liquid radwastes prior to incorporation into asphalt reduces the volume to be transported and disposed. In turn, the numbers of drums requiring handling is reduced 5 to 10 times thereby lessening the chances for radiation exposure. Also, the extruder-evaporator is self-shielded and contains only about one gallon of the radwaste. Dose rates at the surface of the equipment and filled containers from commercially operating systems for the past 10 years in Europe are given

  20. Radiation exposure of sand blasting operators

    International Nuclear Information System (INIS)

    The Queensland Department of Health's, Division of Health and Medical Physics initiated, in July, 1985, an investigation into the radiological health impact which involved detailed analyses of an ilmenite product from a mineral sand processor in South East Queensland. Measurements of respirable dust in air concentrations in the breathing zone of sand blasting operators, dust particle sizing and other environmental radiation measurements at a major sand blasting yard using this ilmenite product were carried out. From the data collected, the radiological health impact was assessed and compared with international and national radiological recommendations

  1. Limitation of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    The Atomic Energy Control Board (AECB) proposes to amend the Atomic Energy Control Regulations in the light of the latest recommendations of the International Commission on Radiological Protection (ICRP). Guidance on how the AECB would apply its proposed amended regulations is provided in this document, which also explains the more important changes from the present regulations. The most basic change is the introduction of the concept of effective dose equivalent. Another is a requirement to keep doses of radiation as low as reasonably achievable. (L.L.)

  2. Pregnancy and exposure to ionizing radiations

    International Nuclear Information System (INIS)

    The sensitivity of the embryo and foetus varies during pregnancy. Recent studies confirm that the principal damage is mental retardation. It is generally admitted that the risk is negligible for a dose 200 mSv.The objective of this work is to provide precise information on the various risks related to the irradiation for the foetus, according to the age of gestation and delivered dose, and the action to be taken in case of accidental irradiation. The medical use of ionizing radiation in pregnant women can only be considered within the framework of precise information. (author)

  3. Radiation exposure and human species survival

    International Nuclear Information System (INIS)

    Information available from scientific sources without vested interests in the use of radiation is examined in the hope of elucidating the probable long-term effects on the human species of widespread radionuclide contamination. Distinguishing between problems of nuclear war, catastrophic accident in a nuclear industry, waste disposal, terrorist action, periodic accident situations and routine so-called normal pollution seems fruitless as these differ only in degree of pollution per time period. If there is indeed a species death process involved, the rate of deterioration will depend on the rate of pollution, but the result will be the same

  4. Angiographer's exposure to radiation under different fluoroscopic imaging conditions

    International Nuclear Information System (INIS)

    Scattered radiation levels near an imaging system commonly used in angiography were measured with a 200 mm thick water phantom. The scattered radiation exposure rate was measured in lines parallel in space to the central ray of the x-ray beam, at lateral distances of 30-100 cm. The effects of an x-ray beam limiting device, geometric and electric magnification, and rotation angle of the C-arm were also determined. The results indicated that the highest scattered radiation levels occurred near the surface of the phantom where the x-ray beam enters. In P-A geometry, the highest radiation levels occurred below the angiographer's waist. These areas of the body corresponded to the gonads of the angiographer. It has been suggested that angiographers' exposure rates are higher near the gonads than near the chest. However, lead aprons efficiently protect these areas. When smaller field sizes were limited by a variable x-ray beam limiting device, the volume of irradiated tissue was reduced, and the scattered radiation exposure rate was decreased. Further, when larger magnification factors were chosen for the analogue magnification method, the volume of irradiated tissue was reduced by the automatic x-ray beam limiting device, and the scattered radiation exposure rate was decreased. However, smaller field sizes markedly increased patient exposure by auto brightness control. To mitigate the angiographer's exposure, smaller field sizes with x-ray limiting devices are required. However, a larger field size should be used whenever possible to minimize patient exposure. The angiographer's exposure rate was influenced by the incidence direction of the x-ray beam when the C-arm had been rotated around the phantom. Consequently, the angiographer's exposure rate was maximum when the x-ray tube most closely approached the angiographer and was minimum when the image intensifier most closely approached the angiographer. Therefore, to mitigate the angiographer's exposure, attention needs

  5. Radiation shielding calculations for Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Radiation shielding calculations have been performed for PARR-1 LEU (low enriched uranium) core at 10 MW operation. The radiation include fast neutrons, fission gammas, fission products decay gammas and activation products decay gammas. Dose rates have been calculated at various locations, including pool water surface and around experimental facilities at beam port floor. The results indicate that sodium 24 activity is the main concentration to the pool water surface dose. Its saturation activity came out to be 29 mR/hr, which is almost 85% of the total activity. Dose rate at pool wall outer surface was found to be around 0.5 mR/hr except at beam tube plug surface, where the dose rate was calculated to be 80 mR/hr. (author)

  6. Impact of dose calculation algorithm on radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhou; Chen; Ying; Xiao; Jun; Li

    2014-01-01

    The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimizing the normal tissue complication probability.Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems.The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work.The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic.Further,the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups.All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy.

  7. The effects of acute radiation exposure on the serum components

    International Nuclear Information System (INIS)

    The blood samples were collected from the experimental animals 24 hrs after irradiation of gamma doses upto 80 Gy. Native PAGE showed a decreasing trend in gamma globulin fraction of serum from the irradiated group compared to control, while SDS PAGE indicated an enhanced tendency in protein of molecular weight 30,000 to 40,000. Serum albumin slightly decreased with radiation doses as a result of decrease in total protein amount. Radiation exposure had little or no effects on such lipid related components as phospholipid, triglyceride, and cholesterol, respectively. Among others, glutamic pyryvic transaminase (GPT) showed a drastic decrease in its amount 24 hrs after radiation exposure, which can be applied to the health care program for radiation workers. (Author)

  8. Risk Assessment of Radiation Exposure using Molecular Biodosimetry

    Science.gov (United States)

    Elliott, Todd F.; George, K.; Hammond, D. K.; Cucinotta, F. A.

    2007-01-01

    Current cytogenetic biodosimetry methods would be difficult to adapt to spaceflight operations, because they require toxic chemicals and a substantial amount of time to perform. In addition, current biodosimetry techniques are limited to whole body doses over about 10cGy. Development of new techniques that assess radiation exposure response at the molecular level could overcome these limitations and have important implications in the advancement of biodosimetry. Recent technical advances include expression profiling at the transcript and protein level to assess multiple biomarkers of exposure, which may lead to the development of a radiation biomarker panel revealing possible fingerprints of individual radiation sensitivity. So far, many biomarkers of interest have been examined in their response to ionizing radiation, such as cytokines and members of the DNA repair pathway. New technology, such as the Luminex system can analyze many biomarkers simultaneously in one sample.

  9. A relational database for personnel radiation exposure management

    International Nuclear Information System (INIS)

    In-house utility personnel developed a relational data base for personnel radiation exposure management computer system during a 2 1/2 year period. The (PREM) Personnel Radiation Exposure Management System was designed to meet current Nuclear Regulatory Commission (NRC) requirements related to radiological access control, Radiation Work Permits (RWP) management, automated personnel dosimetry reporting, ALARA planning and repetitive job history dose archiving. The system has been operational for the past 18 months which includes a full refueling outage at Clinton Power Station. The Radiation Protection Department designed PREM to establish a software platform for implementing future revisions to 10CFR20 in 1993. Workers acceptance of the system has been excellent. Regulatory officials have given the system high marks as a radiological tool because of the system's ability to track the entire job from start to finish

  10. What happens at very low levels of radiation exposure ? Are the low dose exposures beneficial ?

    International Nuclear Information System (INIS)

    Full text: Radiation is naturally present in our environment and has been since the birth of this planet. The human population is constantly exposed to low levels of natural background radiation, primarily from environmental sources, and to higher levels from occupational sources, medical therapy, and other human-mediated events. Radiation is one of the best-investigated hazardous agents. The biological effects of ionizing radiation for radiation protection consideration are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain thresholdan appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Sendromes, ARS) occurs days to months after an acute radiation dose. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels. Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. For this reason, a stochastic effect is called a Linear or Zero-Threshold (LNT) Dose-Response Effect. There is a stochastic correlation between the number of cases of cancers or genetic defects developed inside a population and the dose received by the population at relatively large levels of radiation. These changes in gene activation seem to be able to modify the response of cells to subsequent radiation exposure, termed the adaptive response. This

  11. Radiation exposure dose on persons engaged in radiation-related industries in Korea

    International Nuclear Information System (INIS)

    This study investigated the status of radiation exposure doses since the establishment of the 'Regulations on Safety Management of Diagnostic Radiation Generation Device' in January 6, 1995. The level of radiation exposure in people engaged or having been engaged in radiation-related industries of inspection organizations, educational organization, military units, hospitals, public health centers, businesses, research organizations or clinics over a 5 year period from Jan. 1, 2000 to Dec. 31, 2004 was measured. The 149,205 measurement data of 57,136 workers registered in a measurement organization were analysed in this study. Frequency analysis, a Chi-square test, Chi-square trend test, and ANOVA was used for data analysis. Among 57,136 men were 40,870 (71.5%). 50.3% of them were radiologic technologists, otherwise medical doctors (22.7%), nurse (2.9%) and others (24.1%). The average of depth radiation and surface radiation during the 5-year period were found to decrease each year. Both the depth radiation and surface radiation exposure were significantly higher in males, in older age groups, in radiological technologists of occupation. The departments of nuclear medicine had the highest exposure of both depth and surface radiation of the divisions of labor. There were 1.98 and 2.57 per 1,000 person-year were exposed more than 20 mSv (limit recommended by International Commission on Radiological Protection) in depth and surface radiation consequently. The total exposure per worker was significantly decreased by year. But Careful awareness is needed for the workers who exposed over 20 mSv per year. In order to minimize exposure to radiation, each person engaged in a radiation-related industry must adhere to the individual safety management guidelines more thoroughly. In addition, systematic education and continuous guidance aimed at increasing the awareness of safety must be provided

  12. Evaluation of medical radiation exposure in pediatric interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Valeria Coelho Costa; Navarro, Marcus Vinicius Teixeira; Oliveira, Aline da Silva Pacheco, E-mail: vccnavarro@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Salvador, BA (Brazil); Maia, Ana Figueiredo [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Oliveira, Adriano Dias Dourado [Sociedade Brasileira de Hemodinamica e Cardiologia Intervencionista, Salvador, BA (Brazil)

    2012-07-15

    Objective: To evaluate pediatric radiation exposure in procedures of interventional radiology in two hospitals in the Bahia state, aiming at contributing to delineate the scenario at the state and national levels. The knowledge of exposure levels will allow an evaluation of the necessity of doses optimization, considering that peculiarities of radiology and pediatrics become even more significant in interventional radiology procedures which involve exposure to higher radiation doses. Materials and Methods: A total of 32 procedures were evaluated in four rooms of the two main hospitals performing pediatric interventional radiology procedures in the Bahia state. Air kerma rate and kerma-area product were evaluated in 27 interventional cardiac and 5 interventional brain procedures. Results: Maximum values for air kerma rate and kerma-area product and air kerma obtained in cardiac procedures were, respectively, 129.9 Gy.cm{sup 2} and 947.0 mGy; and, for brain procedures were 83.3 Gy.cm{sup 2} and 961.0 mGy. Conclusion: The present study results showed exposure values up to 14 times higher than those found in other foreign studies, and approximating those found for procedures in adults. Such results demonstrate excessive exposure to radiation, indicating the need for constant procedures optimization and evaluation of exposure rates. (author)

  13. Exposure of pregnant women to ionizing radiation in hospitals

    International Nuclear Information System (INIS)

    Occupational health physicians often face the problem of whether to keep pregnant women at work in hospitals where they risk exposure to ionizing radiation. Current legislation requires that doctors ensure a certain level of safety for the embryo and the fetus. The current rules are unsatisfactory, however, because women are not obliged to declare that they are pregnant until the third month, which is one month past the period when he fetus is most sensitive to ionizing radiation. (author). 15 refs

  14. Evaluation of diseases associated to occupational exposure to ionizing radiations

    International Nuclear Information System (INIS)

    A retrospective investigation of all cases of radiation workers with diseases and injuries, considered as occupational diseases caused by ionizing radiation is presented. The investigation includes all cases registered in the Institute of Occupational Health over five years period (1990-1995). The incidence of that diseases are studied, as well as the correlation between each type of source, time of exposure and annual average equivalent individual dose

  15. Environmental radiation exposure: Regulation, monitoring, and assessment

    International Nuclear Information System (INIS)

    Radioactive releases to the environment from nuclear facilities constitute a public health concern. Protecting the public from such releases can be achieved through the establishment and enforcement of regulatory standards. In the United States, numerous standards have been promulgated to regulate release control at nuclear facilities. Most recent standards are more restrictive than those in the past and require that radioactivity levels be as low as reasonably achievable (ALARA). Environmental monitoring programs and radiological dose assessment are means of ensuring compliance with regulations. Environmental monitoring programs provide empirical information on releases, such as the concentrations of released radioactivity in environmental media, while radiological dose assessment provides the analytical means of quantifying dose exposures for demonstrating compliance

  16. Radiation exposure levels in phosphate mining activities

    International Nuclear Information System (INIS)

    Radon, radon daughter concentration and gamma ray exposure rate were measured at different places in the phosphate mining areas of Syria. The grab sampling method was used. For radon measurements, discrete air samples without progeny were collected over short periods of time, whereas daughters were collected on filter paper. A three-count procedure was used for the measurement of radon daughter concentrations to improve accuracy. The measurements were carried out at 37 locations selected in the mines, factories, offices and homes in the mining area. The sampling was repeated monthly for a full calendar year. Workers and their families were classified in different categories according to the nature of their jobs. The doses were estimated using proper occupancy factors. The dose equivalent from radon daughters varies from 1 mSv.y-1 to a maximum of 10 mSv.y-1. Radon concentrations vary from 100 Bq.m-3 to several hundreds. (author)

  17. Safety of natural radiation exposure. A meta-analysis of epidemiological studies on natural radiation

    International Nuclear Information System (INIS)

    People have been exposed every time and everywhere to natural radiation and ''intuitively'' know the safety of this radiation exposure. On the other hand the theory of no threshold value on radiological carcinogenesis is known widely, and many people feel danger with even a smallest dose of radiation exposure. The safety of natural radiation exposure can be used for the risk communication with the public. For this communication, the safety of natural radiation exposure should be proved ''scientifically''. Safety is often discussed scientifically as the risks of the mortality from many practices, and the absolute risks of safe practices on the public are 1E-5 to 1E-6. The risks based on the difference of natural radiation exposure on carcinogenesis have been analyzed by epidemiological studies. Much of the epidemiological studies have been focused on the relationship between radiation doses and cancer mortalities, and their results have been described as relative risks or correlation factors. In respect to the safety, however, absolute risks are necessary for the discussion. Cancer mortalities depend not only on radiation exposure, but also on ethnic groups, sexes, ages, social classes, foods, smoking, environmental chemicals, medical radiation, etc. In order to control these confounding factors, the data are collected from restricted groups or/and localities, but any these ecological studies can not perfectly compensate the confounding factors. So positive or negative values of relative risks or the meaningful correlation factors can not be confirmed that their values are derived originally from the difference of their exposure doses. The absolute risks on these epidemiological studies are also affected by many factors containing radiation exposure. The absolute risk or the upper value of the confidence limit obtained from the epidemiological study which is well regulated confounding factors is possible to be a maximum risk on the difference of the exposure doses

  18. Monitoring Of Radiation Exposure Source In PPTA Serpong

    International Nuclear Information System (INIS)

    The radiation exposure in the of P PTA Serpone was measured by means of MCA micro nomad. The computer codes NAGABAT was used for analyzing the contribution of natural gamma rays to the exposure rate in the measuring locations. Measurement was taken for 14 locations, under conditions that the nuclear facilities are not in operation. The result showed that the exposure varieties, dependently on potassium, uranium and thorium contents in the environment matrix. The maximum of thorium, uranium and potassium are in amount of 5,269 ppm; 1,650 ppm; and respectively 0,72 %

  19. Radiation exposure to the child during cardiac catheterization

    International Nuclear Information System (INIS)

    Few data are available regarding radiation exposure to children during cardiac catheterization. Using lithium fluoride thermoluminescent dosimeters, radiation exposure was measured during precatheterization chest roentgenography, fluoroscopy (hemodynamic assessment phase of catheterization) and cineangiography in 30 infants and children, ages 3 days to 21 years. Dosimeters were placed over the eyes, thyroid, anterior chest, posterior chest, anterior abdomen, posterior abdomen and gonads. Average absorbed chest doses were 24.5 mR during chest roentgenography, 5810 mR during catheterization fluoroscopy and 1592 mR during cineangiography. During the complete catheterization, average doses were 26 mR to the eyes, 431 mR to the thyroid area, 150 mR to the abdomen and 11 mR to the gonads. Radiation exposure during pediatric cardiac catheterization is low to the eyes and gonads but high to the chest and thyroid area. To decrease radiation dosage we suggest (1) low pulse-rate fluoroscopy; (2) substitution of contrast echocardiography for cineangiography; (3) large-plate abdominal/gonadal shielding; (4) a selective shield for thyroid area; (5) a very small field during catheter manipulation. Minimum radiation consistent with accurate diagnosis is optimal; however, erroneous or incomplete diagnosis is more dangerous than radiation-related hazards

  20. Numerical calculation of radiation pattern and impedance of column plasma

    International Nuclear Information System (INIS)

    When the frequency of the incident electromagnetic wave is lower than that of the plasma, the high-density and low-temperature plasma column is equivalent to a good conductor. However, because of the dispersive relation and the uneven distribution of density, the wave vector propagating along the plasmas is not a real constant, but a complex quantity varying with the change in the space. So, it is hard to calculate the radiation pattern, radiation impedance and gain of the column plasma with the normal methods used with the metallic antenna. In this paper, the space distribution of the wave vectors of the signal along the column plasma is calculated from the dispersive relation of the non-magnetized columnar plasma. And then, according to the antenna equation, the radiation pattern, radiation impedance and gain of the columnar plasma with even or uneven axial density distribution can be derived. The experimental results show that the numerical values calculated by this new method are much more accurate. This method will be of great importance in the application of the plasmas in the antenna transportation. (authors)

  1. The effects of internal radiation exposure on cancer mortality in nuclear workers at Rocketdyne/Atomics International.

    OpenAIRE

    Ritz, B.; Morgenstern, H; Crawford-Brown, D; Young, B.

    2000-01-01

    We examined the effects of chronic exposure to radionuclides, primarily uranium and mixed-fission products, on cancer mortality in a retrospective cohort study of workers enrolled in the radiation-monitoring program of a nuclear research and development facility. Between 1950 and 1994, 2,297 workers were monitored for internal radiation exposures, and 441 workers died, 134 (30.4%) of them from cancer as the underlying cause. We calculated internal lung-dose estimates based on urinalysis and w...

  2. Occupational radiation exposure experience: Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    The potential for significant uranium exposure in gaseous diffusion plants is very low. The potential for significant radiation exposure in uranium hexafluoride manufacturing is very real. Exposures can be controlled to low levels only through the cooperation and commitment of facility management and operating personnel. Exposure control can be adequately monitored by a combination of air analyses, urinalyses, and measurements of internal deposition as obtained by the IVRML. A program based on control of air-borne uranium exposure has maintained the internal dose of the Paducah Gaseous Diffusion Plant workman to less than one-half the RPG dose to the lung (15 rem/year) and probably to less than one-fourth that dose

  3. Radiation exposure distribution in patients undergoing CT brain scans

    International Nuclear Information System (INIS)

    The distribution of surface exposures in patients undergoing single and multiple computerized tomographic brain scans with Hitachi CT-W500 was measured by LiF(Mg, Ti) thermoluminescent dosimetry. It was found that there was no significant difference in the sufrace exposures from different scanning slices. However, the exposure doses at different scanning angles around the head were different significantly. The reference point of the maximum surface exposure was at the temporal part of the head. the maximum surface exposure was at 1.65 x 10-3 C·kg-1 while the average exposure was 1.55 x 10-3 C·kg-1. The ratio of the average dose resulting from nine scans to that from a single scan was 1.3, and the surface exposure contribution of scattered radiation was computed. At the same time the radiation doses to eyes, thyroid, chest and gonads of patiens at corresponding position were also measured and were compared with those from CT cranial scans in children and skull radiographic procedures respectively

  4. Radiation exposure through recently developed diagnostic procedures

    International Nuclear Information System (INIS)

    Six years after the Chernobyl reactor accident up-to-date information has been made available on the contamination of affected regions in the Ukraine, White Russia and Russia that was obtained in connection with various measuring programmes. Initial reports on the increased incidence of thyroid carcinomas in children from White Russia and the Ukraine were subjected to careful scrutiny. At the Radiation Protection Meeting held at Vienna participants were made familiar with cytogenetic assays, the micronucleus test, determinations of thymidine kinase and blood cell changes as well as immunological parameters. At the same meeting, experts provided surveys of the effective doses received by patients subjected to more recently developed diagnostic procedures, among them computerized tomography, digital luminescence radiography, mammography, bone density measurements, single photon emission computerized tomography and positron emission tomography. (orig./DG)

  5. Protection of DNA damage by radiation exposure

    International Nuclear Information System (INIS)

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents

  6. Protection of DNA damage by radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Lee, Kang Suk; Kim, Kug Chan; Oh, Tae Jung

    1998-12-01

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents.

  7. Review of the radiation protection calculations for the encapsulation plant

    International Nuclear Information System (INIS)

    The radiation protection calculations of the encapsulation plant have been carried out with the MCNP5 Monte Carlo code. The focus of the study has been in the parts of the encapsulation plant where the spent fuel is handled after discharge from the transportation casks i.e. the fuel handling cell, the fuel drying station, the canister transfer corridor, the welding chamber, the weld inspection room, the canister buffer storage and the canister lift. The protection against radiation hazard has been mainly designed with thick concrete walls. Additionally, the entrances to the rooms with shielding requirements have been equipped with mazes. The present design excludes doors with shielding properties. The aim of this work was to verify and evaluate the necessary wall thicknesses and the functioning of the mazes in the current design. The calculations verified that for the most parts of the facility, the currently designed walls thicknesses provide adequate protection against radiation from the different spent fuel assembly configurations. Some corrective actions however seem necessary in order to stay clearly below desired radiation limits. For the most parts the functioning of the mazes was inadequate. In some of the cases a different design of the maze will be sufficient action but in some cases the radiation protection can only be secured by heavy doors for practical reasons. (orig.)

  8. Radiological protection for medical exposure to ionizing radiation. Safety guide

    International Nuclear Information System (INIS)

    When ionizing radiation was discovered more than 100 years ago its beneficial uses were quickly discovered by the medical profession. Over the years new diagnostic and therapeutic techniques have been developed and the general level of health care has improved. This has resulted in medical radiation exposures becoming a significant component of the total radiation exposure of populations. Current estimates put the worldwide annual number of diagnostic exposures at 2500 million and therapeutic exposures at 5.5 million. Some 78% of diagnostic exposures are due to medical X rays, 21% due to dental X rays and the remaining 1% due to nuclear medicine techniques. The annual collective dose from all diagnostic exposures is about 2500 million man Sv, corresponding to a worldwide average of 0.4 mSv per person per year. There are, however, wide differences in radiological practices throughout the world, the average annual per caput values for States of the upper and lower health care levels being 1.3 mSv and 0.02 mSv, respectively. It should, however, be noted that doses from therapeutic uses of radiation are not included in these averages, as they involve very high doses (in the region of 20-60 Gy) precisely delivered to target volumes in order to eradicate disease or to alleviate symptoms. Over 90% of total radiation treatments are conducted by teletherapy or brachytherapy, with radiopharmaceuticals being used in only 7% of treatments. Increases in the uses of medical radiation and the resultant doses can be expected following changes in patterns of health care resulting from advances in technology and economic development. For example, increases are likely in the utilization of computed tomography (CT), digital imaging and, with the attendant potential for deterministic effects, interventional procedures; practice in nuclear medicine will be driven by the use of new and more specific radiopharmaceuticals for diagnosis and therapy, and there will be an increased demand for

  9. Radiation exposure of U.S. military individuals.

    Science.gov (United States)

    Blake, Paul K; Komp, Gregory R

    2014-02-01

    The U.S. military consists of five armed services: the Army, Navy, Marine Corps, Air Force, and Coast Guard. It directly employs 1.4 million active duty military, 1.3 million National Guard and reserve military, and 700,000 civilian individuals. This paper describes the military guidance used to preserve and maintain the health of military personnel while they accomplish necessary and purposeful work in areas where they are exposed to radiation. It also discusses military exposure cohorts and associated radiogenic disease compensation programs administered by the U.S. Department of Veterans Affairs, the U.S. Department of Justice, and the U.S. Department of Labor. With a few exceptions, the U.S. military has effectively employed ionizing radiation since it was first introduced during the Spanish-American War in 1898. The U.S military annually monitors 70,000 individuals for occupational radiation exposure: ~2% of its workforce. In recent years, the Departments of the Navy (including the Marine Corps), the Army, and the Air Force all have a low collective dose that remains close to 1 person-Sv annually. Only a few Coast Guard individuals are now routinely monitored for radiation exposure. As with the nuclear industry as a whole, the Naval Reactors program has a higher collective dose than the remainder of the U.S. military. The U.S. military maintains occupational radiation exposure records on over two million individuals from 1945 through the present. These records are controlled in accordance with the Privacy Act of 1974 but are available to affected individuals or their designees and other groups performing sanctioned epidemiology studies.Introduction of Radiation Exposure of U.S. Military Individuals (Video 2:19, http://links.lww.com/HP/A30). PMID:24378502

  10. Radiation exposure of children and young adults during X-ray investigations - experience and conclusions

    International Nuclear Information System (INIS)

    After discussing the existing regulations for radiation protection of patients in the field of pediatric X-ray diagnostics in the GDR the use of the effective dose equivalent HE and the medium dose equivalent HM for the determination of radiation exposure to children is shortly discussed. Using computer tomography images to determine the position and size of organs of children, and the data from measured depth dose distributions, the exposure related to the entrance dose caused by frequent X-ray examinations was calculated. Measurements of entrance doses at 3 pediatric hospitals for all examination types and the determination of the frequency of X-ray radiographies at 10 hospitals and 10 smaller diagnostic departments were used to calculate the per caput and the collective dose equivalents in the different age groups. Altogether the per caput dose equivalent of the children amounts to approximately 30% of the corresponding value for adults. As a conclusion, the following measures for the further reduction of radiation exposure are proposed: (1) technical measures like fixation of patients, shielding of organs, quality assurance, (2) elaboration of legal regulations, e.g. of a decree on the performance of pediatric X-ray examinations, and (3) training and continued education. Only by these means an appropriate indication (justification) and an efficient reduction of radiation exposure (optimization) can be achieved. (author)

  11. Calculations of the Human Vitamin D Exposure from UV Spectral Measurements at Three European Stations

    Science.gov (United States)

    Zempila, M. M.; Kazantzidis, A.; Bais, A. F.; Kazadzis, S.; den Outer, P. N.; Koskela, T.; Slaper, Harry

    2010-01-01

    Since the realization that the ozone protective layer was at risk from the build-up of anthropogenic trace gases in the atmosphere, there has been an increased interest in understanding the trends and variability of the solar UV radiation received at the surface of the earth. But during the last few decades an unfolding controversy has risen. It was found out that the exposure to the solar UVB radiation is responsible for the cutaneous production of Vitamin D, a vitamin which is essential for the bone metabolism and for the calcium and phosphorus homeostasis. For this research study, we have processed quality-checked spectral UV irradiance measurements from three European stations (Jokioinen, Finland, Bilthoven, The Netherlands, and Thessaloniki, Greece) and the vitamin D effective doses (VDED) are calculated. As expected, the maximum VDED are observed during the second half of June, revealing the dominant effect of low solar zenith angles and cloudiness. Also the average VDED at local noon reveal that the cutaneous production of the Vitamin D can be feasible throughout the year in Bilthoven and Thessaloniki. Even for an exposure of one hour around local noon the proposed vitamin D standard dose (SDD) cannot be attained for all skin types under physiological atmospheric conditions at Jokioinen and Bilthoven.

  12. The assessment of radiation exposures in native American communities from nuclear weapons testing in Nevada

    International Nuclear Information System (INIS)

    Native Americans residing in a broad region downwind from the Nevada Test Site during the 1950s and 1960s received significant radiation exposures from nuclear weapons testing. Because of differences in diet, activities, and housing, their radiation exposures are only very imperfectly represented in the Department of Energy dose reconstructions. There are important missing pathways, including exposures to radioactive iodine from eating small game. The dose reconstruction model assumptions about cattle feeding practices across a year are unlikely to apply to the native communities as are other model assumptions about diet. Thus exposures from drinking milk and eating vegetables have not yet been properly estimated for these communities. Through consultations with members of the affected communities, these deficiencies could be corrected and the dose reconstruction extended to Native Americans. An illustration of the feasibility of extending the dose reconstruction is provided by a sample calculation to estimate radiation exposures to the thyroid from eating radio-iodine-contaminated rabbit thyroids after the Dedan test. The illustration is continued with a discussion of how the calculation results may be used to make estimates for other tests and other locations

  13. Long-term effects of radiation exposure on health.

    Science.gov (United States)

    Kamiya, Kenji; Ozasa, Kotaro; Akiba, Suminori; Niwa, Ohstura; Kodama, Kazunori; Takamura, Noboru; Zaharieva, Elena K; Kimura, Yuko; Wakeford, Richard

    2015-08-01

    Late-onset effects of exposure to ionising radiation on the human body have been identified by long-term, large-scale epidemiological studies. The cohort study of Japanese survivors of the atomic bombings of Hiroshima and Nagasaki (the Life Span Study) is thought to be the most reliable source of information about these health effects because of the size of the cohort, the exposure of a general population of both sexes and all ages, and the wide range of individually assessed doses. For this reason, the Life Span Study has become fundamental to risk assessment in the radiation protection system of the International Commission on Radiological Protection and other authorities. Radiation exposure increases the risk of cancer throughout life, so continued follow-up of survivors is essential. Overall, survivors have a clear radiation-related excess risk of cancer, and people exposed as children have a higher risk of radiation-induced cancer than those exposed at older ages. At high doses, and possibly at low doses, radiation might increase the risk of cardiovascular disease and some other non-cancer diseases. Hereditary effects in the children of atomic bomb survivors have not been detected. The dose-response relation for cancer at low doses is assumed, for purposes of radiological protection, to be linear without a threshold, but has not been shown definitively. This outstanding issue is not only a problem when dealing appropriately with potential health effects of nuclear accidents, such as at Fukushima and Chernobyl, but is of growing concern in occupational and medical exposure. Therefore, the appropriate dose-response relation for effects of low doses of radiation needs to be established. PMID:26251392

  14. Modelling of aircrew radiation exposure during solar particle events

    Science.gov (United States)

    Al Anid, Hani Khaled

    In 1990, the International Commission on Radiological Protection recognized the occupational exposure of aircrew to cosmic radiation. In Canada, a Commercial and Business Aviation Advisory Circular was issued by Transport Canada suggesting that action should be taken to manage such exposure. In anticipation of possible regulations on exposure of Canadian-based aircrew in the near future, an extensive study was carried out at the Royal Military College of Canada to measure the radiation exposure during commercial flights. The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha particles, and 1% heavy nuclei. While they have a fairly constant fluence rate, their interaction with the magnetic field of the Earth varies throughout the solar cycles, which has a period of approximately 11 years. SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. This type of exposure may be of concern to certain aircrew members, such as pregnant flight crew, for which the annual effective dose is limited to 1 mSv over the remainder of the pregnancy. The composition of SEPs is very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few heavy nuclei, but with a softer energy spectrum. An additional factor when analysing SEPs is the effect of flare anisotropy. This refers to the way charged particles are transported through the Earth's magnetosphere in an anisotropic fashion. Solar flares that are fairly isotropic produce a uniform radiation exposure for areas that have similar geomagnetic shielding, while highly anisotropic events produce variable exposures at different locations on the Earth. Studies of neutron monitor count rates from detectors sharing similar geomagnetic shielding properties

  15. Analysis Radiation Exposure at Serpong Nuclear Research Center

    International Nuclear Information System (INIS)

    Nevertheless, along with its positive advantages, nuclear energy also potentially dangerous to the workers, public and environment, whose using the nuclear energy, whenever the requirements of safety radiation are not well establish. This study has purpose to know factors that related to the radiation dose received by the workers or their work environment since there were interaction among workers with his job and his work environment, in Serpong Nuclear Research Center. The design of the study was a cross sectional approach. The result of the study shown that 10% out of 100 radiation workers received radiation dose more than 15 mSv, and the result of the monitoring of work area environment, in general its obtained under 2.5 m R/hour. Therefore, it can still be classified as of controlled area. The result of the study using the statistical test shows that attitude, work procedures, supervision and radiation exposure of work area environment have a significant relationship with radiation dose. The most related of that factors were radiation exposure of work area, followed by the procedures having the Odds ratio value 90 and 14.95% Confidence Intervals respectively. (author)

  16. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    Science.gov (United States)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  17. DOE Radiation Exposure Monitoring System (REMS) Data Update

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Nimi; Hagemeyer, Derek

    2012-05-05

    This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

  18. Medical management of three workers following a radiation exposure incident

    Energy Technology Data Exchange (ETDEWEB)

    House, R.A.; Sax, S.E.; Rumack, E.R.; Holness, D.L. (Department of Occupational and Environmental Health, St. Michael' s Hospital, Toronto, Ontario (Canada))

    1992-01-01

    The medical management of three individuals involved in an exposure incident to whole-body radiation at a nuclear generating plant of a Canadian electrical utility is described. The exposure incident resulted in the two highest whole-body radiation doses ever received in a single event by workers in a Canadian nuclear power plant. The individual whole-body doses (127.4 mSv, 92.0 mSv, 22.4 mSv) were below the threshold for acute radiation sickness but the exposures still presented medical management problems related to assessment and counseling. Serial blood counting and lymphocyte cytogenetic analysis to corroborate the physical dosimetry were performed. All three employees experienced somatic symptoms due to stress and one employee developed post-traumatic stress disorder. This incident indicates that there is a need in such radiation exposure accidents for early and continued counseling of exposed employees to minimize the risk of development of stress-related symptoms.

  19. Medical management of three workers following a radiation exposure incident

    International Nuclear Information System (INIS)

    The medical management of three individuals involved in an exposure incident to whole-body radiation at a nuclear generating plant of a Canadian electrical utility is described. The exposure incident resulted in the two highest whole-body radiation doses ever received in a single event by workers in a Canadian nuclear power plant. The individual whole-body doses (127.4 mSv, 92.0 mSv, 22.4 mSv) were below the threshold for acute radiation sickness but the exposures still presented medical management problems related to assessment and counseling. Serial blood counting and lymphocyte cytogenetic analysis to corroborate the physical dosimetry were performed. All three employees experienced somatic symptoms due to stress and one employee developed post-traumatic stress disorder. This incident indicates that there is a need in such radiation exposure accidents for early and continued counseling of exposed employees to minimize the risk of development of stress-related symptoms

  20. Rights versus labour privileges for ionizing radiation exposure activities

    International Nuclear Information System (INIS)

    The present panorama of brazilian legislation concerning activities in which (may) occurs exposure to ionizing radiations, involves several incoherencies and privileges, as a consequence of legal rights generated from labor principles which have no social or scientific embasement. In this study, several legal labor topics are analysed and a new doutrinary context is proposed. (author)

  1. Radiation exposure of fertile women in medical research studies

    International Nuclear Information System (INIS)

    Fertile women may be exposed to ionizing radiation as human subjects in medical research studies. If the woman is pregnant, such exposures may result in risk to an embryo/fetus. Fertile women may be screened for pregnancy before exposure to ionizing radiation by interview, general examination, or pregnancy test. Use of the sensitive serum pregnancy test has become common because it offers concrete evidence that the woman is not pregnant (more specifically, that an embryo is not implanted). Evidence suggests that risk to the embryo from radiation exposure before organogenesis is extremely low or nonexistent. Further, demonstrated effects on organogenesis are rare or inconclusive at fetal doses below 50 mSv (5 rem). Therefore, there may be some level of radiation exposure below which risk to the fetus may be considered essentially zero, and a serum pregnancy test is unnecessary. This paper reviews the fetal risks and suggests that consideration be given to establishing a limit to the fetus of 0.5 mSv (50 mrem), below which pregnancy screening need not include the use of a serum pregnancy test

  2. Evaluation of illnesses associated with occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    A retrospective study by the Institute of Occupational Medicine is presented of all cases of pathological indications of ionizing radiation exposure during the period 1990-1995. It describes the incidence of theses diseases and their relationship with other factors. It has shown the predominance of pathologies of the haemolymphopoietic system in individuals who work in radiological diagnostics

  3. UV Radiation Exposure of Composite Specimens, using the SPHERE

    OpenAIRE

    CORDELLE, Aurélie; LABORATOIRE CENTRAL DES PONTS ET CHAUSSEES - LCPC; NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY - NIST; ECOLE NATIONALE SUPERIEURE DE MECANIQUE ET D'AEROTECHNIQUE DE POITIERS - ENSMA

    2010-01-01

    The objectives of the research are to provide insight into the mechnical behavior of a unidirectional pultruded E-glass/vinylester composite, submitted to UV radiation exposure over several periods of time. The degradation of exposed samples will be carried out using the change of both local modulus and hardness.

  4. Metallic implants and exposure to radiofrequency radiation

    International Nuclear Information System (INIS)

    There is increasing use of radiofrequency radiation (RFR) in industry for communications, welding, security, radio, medicine, navigation etc. It has been recognised for some years that RFR may interact with cardiac pacemakers and steps have been taken to prevent this interference. It is less well recognised that other metallic implants may also act as antennas in an RFR field and possibly cause adverse health effects by heating local tissues. There are a large and increasing number of implants having metal components which may be found in RFR workers. These implants include artificial joints, rods and plates used in orthopaedics, rings in heart valves, wires in sutures, bionic ears, subcutaneous infusion systems and (external) transdermal drug delivery patches1. The physician concerned with job placement of such persons requires information on the likelihood of an implant interacting with RFR so as to impair health. The following outlines the approach developed in Telecom Australia, beginning with the general principles and then presenting a specific example discussion of a specific example

  5. Measurement of man's exposure to external radiation

    International Nuclear Information System (INIS)

    After outlining briefly the rationale for personnel radiation monitoring with integrating detectors, a review is presented of some developments which have taken place in personnel and environmental dosimetry during the past 3.5 years. The results of a pilot field experiment concerning the stability of film and thermoluminescent dosimeters (TLDs) in four Latin-American countries are summarized. It shows that film dosimeters should be used only with caution, and in locations with a moderate climate. A survey is being conducted on the current status and trends in personnel monitoring, involving detailed questioning of over 150 laboratories in about forty countries to obtain information on the type of service and detectors, evaluation and recordkeeping, additional applications, problem and development areas, intercomparisons, practical experiences with different systems, administrative and legal aspects, etc. According to the preliminary results, the trend is away from photographic film and towards mostly automatic TLD systems, not only in the industrialized countries but also in several of the larger and more advanced developing countries. The need for higher quality standards and frequent performance tests under realistic conditions is emphasized. Differences in the requirements for personnel and

  6. Radiation internal exposure measurements archiving system (REMAS)

    International Nuclear Information System (INIS)

    This paper describes a personal-computer-based software, REMAS, which helps users to estimate intake activity and resulting internal doses for all radionuclides existing in (International Commission on Radiological Protection) ICRP 78 and other important elements. In addition to its use in internal dose calculations, it facilitates management of data of monitored persons who are occupationally exposed to unsealed radioactive substances. Furthermore, REMAS offers the possibility to generate different reports of results. The program is suitable for laboratories working in the field of assessment of occupational intake and also for users of radioactive material who are routinely monitored. REMAS, which is bilingual program (English and Arabic), was built with GUI environment and was developed using Microsoft FoxPro. It runs on Microsoft Windows XP operating systems. (authors)

  7. Information by the German Federal Government. Environmental radioactivity and radiation exposure in 2010

    International Nuclear Information System (INIS)

    The information by the German Federal Government on the environmental radioactivity and radiation exposure in 2010 includes five chapters. (I) Natural radiation exposure: radiation sources, contributions from cosmic radiation, contaminated construction materials, food and drinking water, and radon, evaluation of the different components of natural radiation exposure. (II) Civilization caused radiation exposure: nuclear power plants, research centers, nuclear fuel processing plants, other nuclear facilities (interim storage facilities, repositories); summarizing evaluation for nuclear facilities; environmental radioactivity due to mining; radioactive materials in research, technology and households; industrial and mining residues; fall-out as a consequence of the Chernobyl reactor accident and nuclear weapon testing. (III) Occupational radiation exposure: civil radiation sources, natural radiation sources, special events. (IV) Medical radiation exposure; X-ray diagnostics; nuclear medicine; radiotherapy using ionizing radiation; radiotherapy using open radioactive materials; evaluation of radiotherapy. (V) Non-ionizing radiation: electromagnetic fields; optical radiation; certification of solaria.

  8. Explanation of nurse standard of external exposure acute radiation sickness

    International Nuclear Information System (INIS)

    National occupational health standard-Nurse Standard of External Exposure Acute Radiation Sickness has been approved and issued by the Ministry of Health. Based on the extensive research of literature, collection of the previous nuclear and radiation accidents excessive exposed personnel data and specific situations in China, this standard was enacted according to the current national laws, regulations, and the opinions of peer experts. It is mainly used for care of patients with acute radiation sickness, and also has directive significance for care of patients with iatrogenic acute radiation sickness which due to the hematopoietic stem cell transplantation pretreatment. To correctly carry out this standard and to reasonably implement nursing measures for patients with acute radiation sickness, the contents of this standard were interpreted in this article. (authors)

  9. Explanation of diagnosis criteria for radiation sickness from internal exposure

    International Nuclear Information System (INIS)

    A revised edition of the Diagnostic Criteria for Radiation Sickness from Internal Exposure has been approved and issued by the Ministry of Health. It is necessary to research the internal radiation sickness to adapt to the current serious anti-terrorism situation. This standard was enacted based on the extensive research of related literature, from which 12 cases with internal radiation sickness and screened out were involving 7 types of radionuclide. The Development of Emergency Response Standard Extension Framework: Midterm Evaluation Report is the main reference which approved by the International Atomic Energy Agency and World Health Organization. This amendment contains many new provisions such as internal radiation sickness effects models and threshold dose, and the appendix added threshold dose of serious deterministic effects induced by radionuclide intake and radiotoxicology parameters of some radionuclides. In order to understand and implement this standard, and to diagnose and treat the internal radiation sickness correctly, the contents of this standard were interpreted in this article. (authors)

  10. Study of sensing technique of radiation exposure for sea foods

    International Nuclear Information System (INIS)

    Vitamin E in fish oil was increased by radiation exposure about 3kGy. But TMAO of fish was stable by about 10 kGy. Accordingly TMAO could not be used for a sensing technique. By radiation exposure, ortho-tyrosine and meta-tyrosine in muscle of prawn increased. From the experimental results of DSC and changes of various ATPase activities, it was clear that myosin and actin in fibril were not changed by direct exposure of muscle, although only interaction between myosin and actin increased. To use this phenomena for the sensing technique, MG-ATPase and EDTA-ATPase activity in muscle fibril need to be investigated. (S.Y.)

  11. Radiation shielding calculation for the MOX fuel fabrication plant Melox

    International Nuclear Information System (INIS)

    Radiation shielding calculation is an important engineering work in the design of the MOX fuel fabrication plant MELOX. Due to the recycle of plutonium and uranium from UO2 spent fuel reprocessing and the large capacity of production (120t HM/yr.), the shielding design requires more attention in this LWR fuel plant. In MELOX, besides several temporary storage facilities of massive fissile material, about one thousand radioactive sources with different geometries, forms, densities, quantities and Pu concentrations, are distributed through different workshops from the PuO2 powder reception unit to the fuel assembly packing room. These sources, with or without close shield, stay temporarily in different locations, containers and glove boxes. In order to optimize the dimensions, the material and the cost of shield as well as to limit the calculation work in a reasonable engineer-hours, a calculation scheme for shielding design of MELOX is developed. This calculation scheme has been proved to be useful in consideration of the feedback from the evolutionary design and construction. The validated shielding calculations give a predictive but reliable radiation doses information. (authors). 2 figs., 10 refs

  12. Radiation effects in concrete for nuclear power plants – Part I: Quantification of radiation exposure and radiation effects

    International Nuclear Information System (INIS)

    Highlights: • Neutron and gamma rays fields in concrete biological shield are calculated. • An extensive database on irradiated concrete properties has been collected. • Concrete mechanical properties decrease beyond 1.0 × 1019 n/cm2 fluence. • Loss of properties appears correlated with radiation induced-aggregate swelling. • Commercial reactor bio-shield may experience long-term irradiation damage. - Abstract: A large fraction of light water reactor (LWR) construction utilizes concrete, including safety-related structures such as the biological shielding and containment building. Concrete is an inherently complex material, with the properties of concrete structures changing over their lifetime due to the intrinsic nature of concrete and influences from local environment. As concrete structures within LWRs age, the total neutron fluence exposure of the components, in particular the biological shield, can increase to levels where deleterious effects are introduced as a result of neutron irradiation. This work summarizes the current state of the art on irradiated concrete, including a review of the current literature and estimates the total neutron fluence expected in biological shields in typical LWR configurations. It was found a first-order mechanism for loss of mechanical properties of irradiated concrete is due to radiation-induced swelling of aggregates, which leads to volumetric expansion of the concrete. This phenomena is estimated to occur near the end of life of biological shield components in LWRs based on calculations of estimated peak neutron fluence in the shield after 80 years of operation

  13. Radiation exposure to the surgeon during closed interlocking intramedullary nailing

    Energy Technology Data Exchange (ETDEWEB)

    Levin, P.E.; Schoen, R.W. Jr.; Browner, B.D.

    1987-06-01

    During interlocking intramedullary nailing of twenty-five femoral and five tibial fractures, the primary surgeon wore both a universal film badge on the collar of the lead apron and a thermoluminescent dosimeter ring on the dominant hand to quantify the radiation that he or she received. When distal interlocking was performed, the first ring was removed and a second ring was used so that a separate recording could be made for this portion of the procedure. At the conclusion of the study, all of the recorded doses of radiation were averaged. The average amount of radiation to the head and neck during the entire procedure was 7.0 millirems of deep exposure and 8.0 millirems of shallow exposure. The average dose of radiation to the dominant hand during insertion of the intramedullary nail and the proximal interlocking screw was 13.0 millirems, while the average amount during insertion of the distal interlocking nail was 12.0 millirems. Both of these averages are well within the government guidelines for allowable exposure to radiation during one-quarter (three months) of a year. Precautions that are to be observed during this procedure are recommended.

  14. The ESOREX-Project - European studies of occupational radiation exposure

    International Nuclear Information System (INIS)

    National monitoring of occupational radiation exposure in Europe faces several new challenges. Occupational radiation protection was considerably intensified as well as extended by the adoption of the new basic safety standards in the Council Directive 96/29 EURATOM. This resulted in a substantial reduction of the annual dose limit. Furthermore, natural radiation exposure at the work place is now considered as occupational radiation exposure and thus has to be regulated. The Council Directive is not only an obligation for the current EU-Member States but also for the assessed and future Member States. Therefore, all concerned European states have to take actions in order to implement the Council Directive into adequate national regulations. The expanding Common European Market with its open borders leads to an increasing exchange of labour-force between Member States. The new dose limits must also be kept for migrating labour-force and outside workers. Therefore the updating of the individual dose history must likewise be guaranteed for transnational migrating outside-workers. These challenges meet with different national practices of occupational radiation monitoring. The European Commission has both to support the process of adaptation and to evaluate the effectiveness of the new Council Directive. It is the purpose of the ESOREX projects to provide information and international transparency for these tasks. (orig.)

  15. Rabacus: A Python Package for Analytic Cosmological Radiative Transfer Calculations

    CERN Document Server

    Altay, Gabriel

    2015-01-01

    We describe Rabacus, a Python package for calculating the transfer of hydrogen ionizing radiation in simplified geometries relevant to astronomy and cosmology. We present example solutions for three specific cases: 1) a semi-infinite slab gas distribution in a homogeneous isotropic background, 2) a spherically symmetric gas distribution with a point source at the center, and 3) a spherically symmetric gas distribution in a homogeneous isotropic background. All problems can accommodate arbitrary spectra and density profiles as input. The solutions include a treatment of both hydrogen and helium, a self-consistent calculation of equilibrium temperatures, and the transfer of recombination radiation. The core routines are written in Fortran 90 and then wrapped in Python leading to execution speeds thousands of times faster than equivalent routines written in pure Python. In addition, all variables have associated units for ease of analysis. The software is part of the Python Package Index and the source code is a...

  16. Effects upon health of occupational exposure to microwave radiation (radar)

    International Nuclear Information System (INIS)

    The effects of occupational experience with microwave radiation (radar) on the health of US enlisted Naval personnel were studied in cohorts of approximately 20,000 men with maximum opportunity for exposure (electronic equipment repair) and 20,000 with minimum potential for exposure (equipment operation) who served during the Korean War period. Potential exposure was assessed in terms of occupational duties, length of time in occupation and power of equipment at the time of exposure. Actual exposure to members of each cohort could not be established. Mortality by cause of death, hospitalization during military service, later hospitalization in Veterans Administration (VA) facilities, and VA disability compensation were the health indexes studied, largely through the use of automated record systems. No adverse effects were detected in these indexes that could be attributed to potential microwave radiation exposures during the period 1950-1954. Functional and behavioral changes and ill-defined conditions, such as have been reported as microwave effects, could not be investigated in this study but subgroups of the living study population can be identified for expanded follow-up

  17. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite

    International Nuclear Information System (INIS)

    The use of ionizing radiation is essential for diagnostic and therapeutic imaging in the interventional radiology (IR) suite. As the complexity of procedures increases, radiation exposure risk increases. We believed that reinforcing staff education and awareness would help optimize radiation safety. To evaluate the effect of a radiation safety education initiative on IR staff radiation safety practices and patient radiation exposure. After each fluoroscopic procedure performed in the IR suite during a 4-month period, dose-area product (DAP), fluoroscopy time, and use of shielding equipment (leaded eyeglasses and hanging lead shield) by IR physicians were recorded. A lecture and article were then given to IR physicians and technologists that reviewed ALARA principles for optimizing radiation dose. During the following 4 months, those same parameters were recorded after each procedure. Before education 432 procedures were performed and after education 616 procedures were performed. Physician use of leaded eyeglasses and hanging shield increased significantly after education. DAP and fluoroscopy time decreased significantly for uncomplicated peripherally inserted central catheters (PICC) procedures and non-PICC procedures after education, but did not change for complicated PICC procedures. Staff radiation safety education can improve IR radiation safety practices and thus decrease exposure to radiation of both staff and patients. (orig.)

  18. FLUX – Software to Calculate the Synchrotron Radiation Characteristics

    Directory of Open Access Journals (Sweden)

    P.I. Gladkikh

    2015-03-01

    Full Text Available In this paper, the main characteristics of quantum flow of synchrotron radiation (SR of relativistic electron beam in the storage ring NSC KIPT with maximal energy of 225 MeV are represented. Analytical expressions for quantum flow intensity of SR with given wavelength and the geometry of registration are obtained. The algorithms for calculation of the last ones are proposed. The dependences which characterize the intensity and spectrally-angular properties of photon flux of SR are shown.

  19. Evaluation on Reproducibility of Space Radiation Generator and on Biodosimetry of Exposure to Space Radiation

    International Nuclear Information System (INIS)

    This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with references. And second part is establishment of biodosimetry for space radiation exposure using cellular transformation activity and micronuclei production. These data may give the direction to future research fields in space radiation biology

  20. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    International Nuclear Information System (INIS)

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures