WorldWideScience

Sample records for calculating complete evolutionary

  1. Calculating evolutionary dynamics in structured populations.

    Directory of Open Access Journals (Sweden)

    Charles G Nathanson

    2009-12-01

    Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.

  2. Evolutionary calculations for planetary nebula nuclei with continuing mass loss and realistic starting conditions

    International Nuclear Information System (INIS)

    Faulkner, D.J.; Wood, P.R.

    1984-01-01

    Evolutionary calculations for nuclei of planetary nebulae are described. They were made using assumptions regarding mass of the NPN, phase in the He shell flash cycle at which the NPN leaves the AGB, and time variation of the mass loss rate. Comparison of the evolutionary tracks with the observational Harman-Seaton sequence indicates that some recently published NPN luminosities may be too low by a factor of three. Comparison of the calculated timescales with the observed properties of NPN and of white dwarfs provides marginal evidence for the PN ejection being initiated by the helium shell flash itself

  3. Automated calculation of complete Pxy and Txy diagrams for binary systems

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht

    2007-01-01

    phase equilibrium calculations in binary systems, in: Proceedings of the CD-ROM EQUIFASE 2006, Morelia, Michoacan, Mexico, October 21-25, 2006; www.gpec.plapiqui.edu.ar]. In this work we present the methods and computational strategy for the automated calculation of complete Pxy and Txy diagrams...

  4. Complete mitochondrial genomes reveal phylogeny relationship and evolutionary history of the family Felidae.

    Science.gov (United States)

    Zhang, W Q; Zhang, M H

    2013-09-03

    Many mitochondrial DNA sequences are used to estimate phylogenetic relationships among animal taxa and perform molecular phylogenetic evolution analysis. With the continuous development of sequencing technology, numerous mitochondrial sequences have been released in public databases, especially complete mitochondrial DNA sequences. Using multiple sequences is better than using single sequences for phylogenetic analysis of animals because multiple sequences have sufficient information for evolutionary process reconstruction. Therefore, we performed phylogenetic analyses of 14 species of Felidae based on complete mitochondrial genome sequences, with Canis familiaris as an outgroup, using neighbor joining, maximum likelihood, maximum parsimony, and Bayesian inference methods. The consensus phylogenetic trees supported the monophyly of Felidae, and the family could be divided into 2 subfamilies, Felinae and Pantherinae. The genus Panthera and species tigris were also studied in detail. Meanwhile, the divergence of this family was estimated by phylogenetic analysis using the Bayesian method with a relaxed molecular clock, and the results shown were consistent with previous studies. In summary, the evolution of Felidae was reconstructed by phylogenetic analysis based on mitochondrial genome sequences. The described method may be broadly applicable for phylogenetic analyses of anima taxa.

  5. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.

    Science.gov (United States)

    Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D

    2012-01-01

    Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.

  6. Completely integrable operator evolutionary equations

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1979-01-01

    The authors present natural generalizations of classical completely integrable equations where the functions are replaced by arbitrary operators. Among these equations are the non-linear Schroedinger, the Korteweg-de Vries, and the modified KdV equations. The Lax representation and the Baecklund transformations are presented. (Auth.)

  7. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus: an evolutionary history of camelidae

    Directory of Open Access Journals (Sweden)

    Meng He

    2007-07-01

    Full Text Available Abstract Background The family Camelidae that evolved in North America during the Eocene survived with two distinct tribes, Camelini and Lamini. To investigate the evolutionary relationship between them and to further understand the evolutionary history of this family, we determined the complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus, the only wild survivor of the Old World camel. Results The mitochondrial genome sequence (16,680 bp from C. bactrianus ferus contains 13 protein-coding, two rRNA, and 22 tRNA genes as well as a typical control region; this basic structure is shared by all metazoan mitochondrial genomes. Its protein-coding region exhibits codon usage common to all mammals and possesses the three cryptic stop codons shared by all vertebrates. C. bactrianus ferus together with the rest of mammalian species do not share a triplet nucleotide insertion (GCC that encodes a proline residue found only in the nd1 gene of the New World camelid Lama pacos. This lineage-specific insertion in the L. pacos mtDNA occurred after the split between the Old and New World camelids suggests that it may have functional implication since a proline insertion in a protein backbone usually alters protein conformation significantly, and nd1 gene has not been seen as polymorphic as the rest of ND family genes among camelids. Our phylogenetic study based on complete mitochondrial genomes excluding the control region suggested that the divergence of the two tribes may occur in the early Miocene; it is much earlier than what was deduced from the fossil record (11 million years. An evolutionary history reconstructed for the family Camelidae based on cytb sequences suggested that the split of bactrian camel and dromedary may have occurred in North America before the tribe Camelini migrated from North America to Asia. Conclusion Molecular clock analysis of complete mitochondrial genomes from C. bactrianus ferus and L

  8. Industrial Applications of Evolutionary Algorithms

    CERN Document Server

    Sanchez, Ernesto; Tonda, Alberto

    2012-01-01

    This book is intended as a reference both for experienced users of evolutionary algorithms and for researchers that are beginning to approach these fascinating optimization techniques. Experienced users will find interesting details of real-world problems, and advice on solving issues related to fitness computation, modeling and setting appropriate parameters to reach optimal solutions. Beginners will find a thorough introduction to evolutionary computation, and a complete presentation of all evolutionary algorithms exploited to solve different problems. The book could fill the gap between the

  9. Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae).

    Science.gov (United States)

    Botero-Castro, Fidel; Tilak, Marie-ka; Justy, Fabienne; Catzeflis, François; Delsuc, Frédéric; Douzery, Emmanuel J P

    2013-12-01

    Leaf-nosed bats (Phyllostomidae) are one of the most studied groups within the order Chiroptera mainly because of their outstanding species richness and diversity in morphological and ecological traits. Rapid diversification and multiple homoplasies have made the phylogeny of the family difficult to solve using morphological characters. Molecular data have contributed to shed light on the evolutionary history of phyllostomid bats, yet several relationships remain unresolved at the intra-familial level. Complete mitochondrial genomes have proven useful to deal with this kind of situation in other groups of mammals by providing access to a large number of molecular characters. At present, there are only two mitogenomes available for phyllostomid bats hinting at the need for further exploration of the mitogenomic approach in this group. We used both standard Sanger sequencing of PCR products and next-generation sequencing (NGS) of shotgun genomic DNA to obtain new complete mitochondrial genomes from 10 species of phyllostomid bats, including representatives of major subfamilies, plus one outgroup belonging to the closely-related mormoopids. We then evaluated the contribution of mitogenomics to the resolution of the phylogeny of leaf-nosed bats and compared the results to those based on mitochondrial genes and the RAG2 and VWF nuclear makers. Our results demonstrate the advantages of the Illumina NGS approach to efficiently obtain mitogenomes of phyllostomid bats. The phylogenetic signal provided by entire mitogenomes is highly comparable to the one of a concatenation of individual mitochondrial and nuclear markers, and allows increasing both resolution and statistical support for several clades. This enhanced phylogenetic signal is the result of combining markers with heterogeneous evolutionary rates representing a large number of nucleotide sites. Our results illustrate the potential of the NGS mitogenomic approach for resolving the evolutionary history of

  10. Mueller Navelet jets at LHC - complete NLL BFKL calculation

    Energy Technology Data Exchange (ETDEWEB)

    Colferai, Dimitri [Firenze Univ. (Italy). Dipt. di Fisica; INFN, Florence (Italy); Schwennsen, Florian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Szymanowski, Lech [Soltan Inst. for Nuclear Studies, Warsaw (Poland); Ecole Polytechnique, CNRS, Palaiseau (France). CPHT; Wallon, Samuel [Paris-Sud Univ., CNRS, Orsay (France). LPT; UPMC Univ. Paris 06 (France). Faculte de Physique

    2010-03-15

    We calculate cross section and azimuthal decorrelation of Mueller Navelet jets at the LHC in the complete next-lo-leading order BFKL framework, i.e. including next-to-leading corrections to the Green's function as well as next-to-leading corrections to the Mueller Navelet vertices. The obtained results for standard observables proposed for studies of Mueller Navelet jets show that both sources of corrections are of equal, big importance for final magnitude and final behavior of observables. The astonishing conclusion of our analysis is that the observables obtained within the complete next-lo-leading order BFKL framework of the present paper are quite similar to the same observables obtained within next-to-leading logarithm DGLAP type treatment. This fact sheds doubts on general belief that the studies of Mueller Navelet jets at the LHC will lead to clear discrimination between the BFKL and the DGLAP dynamics. (orig.)

  11. Mueller Navelet jets at LHC - complete NLL BFKL calculation

    International Nuclear Information System (INIS)

    Colferai, Dimitri; Schwennsen, Florian; Szymanowski, Lech; Ecole Polytechnique, CNRS, Palaiseau; Wallon, Samuel; UPMC Univ. Paris 06

    2010-03-01

    We calculate cross section and azimuthal decorrelation of Mueller Navelet jets at the LHC in the complete next-lo-leading order BFKL framework, i.e. including next-to-leading corrections to the Green's function as well as next-to-leading corrections to the Mueller Navelet vertices. The obtained results for standard observables proposed for studies of Mueller Navelet jets show that both sources of corrections are of equal, big importance for final magnitude and final behavior of observables. The astonishing conclusion of our analysis is that the observables obtained within the complete next-lo-leading order BFKL framework of the present paper are quite similar to the same observables obtained within next-to-leading logarithm DGLAP type treatment. This fact sheds doubts on general belief that the studies of Mueller Navelet jets at the LHC will lead to clear discrimination between the BFKL and the DGLAP dynamics. (orig.)

  12. NEW EVOLUTIONARY SEQUENCES FOR HOT H-DEFICIENT WHITE DWARFS ON THE BASIS OF A FULL ACCOUNT OF PROGENITOR EVOLUTION

    International Nuclear Information System (INIS)

    Althaus, L. G.; Panei, J. A.; Miller Bertolami, M. M.; Corsico, A. H.; Romero, A. D.; Garcia-Berro, E.; Kepler, S. O.; Rohrmann, R. D.

    2009-01-01

    We present full evolutionary calculations appropriate for the study of hot hydrogen-deficient DO white dwarfs, PG 1159 stars, and DB white dwarfs. White dwarf sequences are computed for a wide range of stellar masses and helium envelopes on the basis of a complete treatment of the evolutionary history of progenitors stars, including the core hydrogen and helium burning phases, the thermally pulsing asymptotic giant branch phase, and the born-again episode that is responsible for the hydrogen deficiency. We also provide colors and magnitudes for the new sequences for T eff < 40,000 K, where the NLTE effects are not dominant. These new calculations provide a homogeneous set of evolutionary tracks appropriate for mass and age determinations for both PG 1159 stars and DO white dwarfs. The calculations are extended down to an effective temperature of 7000 K. We applied these new tracks to redetermine stellar masses and ages of all known DO white dwarfs with spectroscopically determined effective temperatures and gravities, and compare them with previous results. We also compare for the first time consistent mass determinations for both DO and PG 1159 stars, and find a considerably higher mean mass for the DO white dwarfs. We discuss as well the chemical profile expected in the envelope of variable DB white dwarfs from the consideration of the evolutionary history of progenitor stars. Finally, we present tentative evidence for a different evolutionary channel, other than that involving the PG 1159 stars, for the formation of hot, hydrogen-deficient white dwarfs.

  13. Evolutionary relevance facilitates visual information processing.

    Science.gov (United States)

    Jackson, Russell E; Calvillo, Dusti P

    2013-11-03

    Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  14. Calculation of evolutionary correlation between individual genes and full-length genome: a method useful for choosing phylogenetic markers for molecular epidemiology.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    Full Text Available Individual genes or regions are still commonly used to estimate the phylogenetic relationships among viral isolates. The genomic regions that can faithfully provide assessments consistent with those predicted with full-length genome sequences would be preferable to serve as good candidates of the phylogenetic markers for molecular epidemiological studies of many viruses. Here we employed a statistical method to evaluate the evolutionary relationships between individual viral genes and full-length genomes without tree construction as a way to determine which gene can match the genome well in phylogenetic analyses. This method was performed by calculation of linear correlations between the genetic distance matrices of aligned individual gene sequences and aligned genome sequences. We applied this method to the phylogenetic analyses of porcine circovirus 2 (PCV2, measles virus (MV, hepatitis E virus (HEV and Japanese encephalitis virus (JEV. Phylogenetic trees were constructed for comparisons and the possible factors affecting the method accuracy were also discussed in the calculations. The results revealed that this method could produce results consistent with those of previous studies about the proper consensus sequences that could be successfully used as phylogenetic markers. And our results also suggested that these evolutionary correlations could provide useful information for identifying genes that could be used effectively to infer the genetic relationships.

  15. Evolutionary Relevance Facilitates Visual Information Processing

    Directory of Open Access Journals (Sweden)

    Russell E. Jackson

    2013-07-01

    Full Text Available Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  16. Calculation of complete or incomplete elliptic integrals of the first and second kind

    International Nuclear Information System (INIS)

    Guillermin, J.M.; Guerin, M.

    1968-01-01

    The structure of the article is as following: inversion of the Jacobi function Sn (U, K), definition of the functions F (PHI, K) and E (PHI, K), Landen transformation, calculation of elliptic integrals F (PHI, K) and E (PHI, K), particular case of complete elliptic integrals, realised programs [fr

  17. Recovery and evolutionary analysis of complete integron gene cassette arrays from Vibrio

    Directory of Open Access Journals (Sweden)

    Gillings Michael R

    2006-01-01

    Full Text Available Abstract Background Integrons are genetic elements capable of the acquisition, rearrangement and expression of genes contained in gene cassettes. Gene cassettes generally consist of a promoterless gene associated with a recombination site known as a 59-base element (59-be. Multiple insertion events can lead to the assembly of large integron-associated cassette arrays. The most striking examples are found in Vibrio, where such cassette arrays are widespread and can range from 30 kb to 150 kb. Besides those found in completely sequenced genomes, no such array has yet been recovered in its entirety. We describe an approach to systematically isolate, sequence and annotate large integron gene cassette arrays from bacterial strains. Results The complete Vibrio sp. DAT722 integron cassette array was determined through the streamlined approach described here. To place it in an evolutionary context, we compare the DAT722 array to known vibrio arrays and performed phylogenetic analyses for all of its components (integrase, 59-be sites, gene cassette encoded genes. It differs extensively in terms of genomic context as well as gene cassette content and organization. The phylogenetic tree of the 59-be sites collectively found in the Vibrio gene cassette pool suggests frequent transfer of cassettes within and between Vibrio species, with slower transfer rates between more phylogenetically distant relatives. We also identify multiple cases where non-integron chromosomal genes seem to have been assembled into gene cassettes and others where cassettes have been inserted into chromosomal locations outside integrons. Conclusion Our systematic approach greatly facilitates the isolation and annotation of large integrons gene cassette arrays. Comparative analysis of the Vibrio sp. DAT722 integron obtained through this approach to those found in other vibrios confirms the role of this genetic element in promoting lateral gene transfer and suggests a high rate of gene

  18. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    Science.gov (United States)

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  19. First complete NLL BFKL calculation of Mueller Navelet jets at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); UPMC Univ. Paris 06 (France); Colferai, Dimitri [Dipartimento di Fisica, Universita di Firenze, Via G. Sansone 1, IT-50019 Firenze (Italy); Istituto Nazionale di Fisica Nucleare - INFN, Sezione di Firenze, Via G.Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Schwennsen, Florian [Deutsches Elektronen-Synchrotron - DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland)

    2010-07-01

    We calculate cross section and azimuthal de-correlation of Mueller Navelet jets at the LHC in the complete next-lo-leading order BFKL framework, i.e. including next-to-leading corrections to the Green's function as well as next-to-leading corrections to the Mueller Navelet vertices. The obtained results for standard observables proposed for studies of Mueller Navelet jets show that both sources of corrections are of equal, big importance for final magnitude and final behavior of observables. The astonishing conclusion of our analysis is that the observables obtained within the complete next-lo-leading order BFKL framework of the present work are quite similar to the same observables obtained within next-to-leading logarithm DGLAP type treatment. This fact sheds doubts on general belief that the studies of Mueller Navelet jets at the LHC will lead to clear discrimination between the BFKL and the DGLAP dynamics. (author)

  20. Using Evolutionary Theory to Guide Mental Health Research.

    Science.gov (United States)

    Durisko, Zachary; Mulsant, Benoit H; McKenzie, Kwame; Andrews, Paul W

    2016-03-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating "normally" (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. © The Author(s) 2016.

  1. Genomes, Phylogeny, and Evolutionary Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica

    2005-03-25

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics and computer science are now known as systems biology. Here I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting comparative approaches that go beyond comparisons among model organisms to shape the nascent field of evolutionary systems biology.

  2. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Science.gov (United States)

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  3. Fixation Probabilities of Evolutionary Graphs Based on the Positions of New Appearing Mutants

    Directory of Open Access Journals (Sweden)

    Pei-ai Zhang

    2014-01-01

    Full Text Available Evolutionary graph theory is a nice measure to implement evolutionary dynamics on spatial structures of populations. To calculate the fixation probability is usually regarded as a Markov chain process, which is affected by the number of the individuals, the fitness of the mutant, the game strategy, and the structure of the population. However the position of the new mutant is important to its fixation probability. Here the position of the new mutant is laid emphasis on. The method is put forward to calculate the fixation probability of an evolutionary graph (EG of single level. Then for a class of bilevel EGs, their fixation probabilities are calculated and some propositions are discussed. The conclusion is obtained showing that the bilevel EG is more stable than the corresponding one-rooted EG.

  4. Extracting the evolutionary signal from genomes.

    NARCIS (Netherlands)

    Dutilh, B.E.

    2007-01-01

    Several methods to analyze aspects of evolution are developed, that depend on the availability of complete genomes. While I consistently find a phylogenetic signal using many approaches, a question that is winning concern is how these evolutionary relationships should be interpreted. Since Darwin’s

  5. Contrasting population-level responses to Pleistocene climatic oscillations in an alpine bat revealed by complete mitochondrial genomes and evolutionary history inference

    DEFF Research Database (Denmark)

    Alberdi, Antton; Gilbert, M. Thomas P; Razgour, Orly

    2015-01-01

    Aim: We used an integrative approach to reconstruct the evolutionary history of the alpine long-eared bat, Plecotus macrobullaris, to test whether the variable effects of Pleistocene climatic oscillations across geographical regions led to contrasting population-level demographic histories within...... a single species. Location: The Western Palaearctic. Methods: We sequenced the complete mitochondrial genomes of 57 individuals from across the distribution of the species. The analysis integrated ecological niche modelling (ENM), approximate Bayesian computation (ABC), measures of genetic diversity...... and Bayesian phylogenetic methods. Results: We identified two deep lineages: a western lineage, restricted to the Pyrenees and the Alps, and an eastern lineage, which expanded across the mountain ranges east of the Dinarides (Croatia). ENM projections of past conditions predicted that climatic suitability...

  6. A representation-theoretic approach to the calculation of evolutionary distance in bacteria

    Science.gov (United States)

    Sumner, Jeremy G.; Jarvis, Peter D.; Francis, Andrew R.

    2017-08-01

    In the context of bacteria and models of their evolution under genome rearrangement, we explore a novel application of group representation theory to the inference of evolutionary history. Our contribution is to show, in a very general maximum likelihood setting, how to use elementary matrix algebra to sidestep intractable combinatorial computations and convert the problem into one of eigenvalue estimation amenable to standard numerical approximation techniques.

  7. Evolutionary Nephrology.

    Science.gov (United States)

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  8. Evolutionary Nephrology

    Directory of Open Access Journals (Sweden)

    Robert L. Chevalier

    2017-05-01

    Full Text Available Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as “maladaptive.” In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or from evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ∼40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons, evolutionary selection for APOL1 mutations (which provide resistance to trypanosome infection, a tradeoff, and modern life experience (Western diet mismatch leading to diabetes and hypertension. Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout the life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo, developmental programming, and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  9. New developments in multireference and complete configuration interaction calculations

    International Nuclear Information System (INIS)

    Knowles, P.J.; Werner, H.J.

    1987-01-01

    Some recently developed techniques for the calculation of Hamiltonian matrix elements in molecular electronic structure calculations are described. These techniques allow the very rapid calculation, in any desired order, of one particle coupling coefficients between spin symmetry adapted basis functions of arbitrary structure. The matrix elements that are required, for either internally contracted multireference CI calculations, or full CI calculations, are then obtainable from suitable summations over resolutions of the identity, which has been shown previously to be rather efficient; this is especially true on vector computers, since all arithmetic can be formulated as matrix multiplications. These ideas have culminated in the preparation of a new multireference CI program which is capable of handling very large numbers of reference configurations. Application of the new techniques to full CI calculations are also presented

  10. Normalization of Complete Genome Characteristics: Application to Evolution from Primitive Organisms to Homo sapiens.

    Science.gov (United States)

    Sorimachi, Kenji; Okayasu, Teiji; Ohhira, Shuji

    2015-04-01

    Normalized nucleotide and amino acid contents of complete genome sequences can be visualized as radar charts. The shapes of these charts depict the characteristics of an organism's genome. The normalized values calculated from the genome sequence theoretically exclude experimental errors. Further, because normalization is independent of both target size and kind, this procedure is applicable not only to single genes but also to whole genomes, which consist of a huge number of different genes. In this review, we discuss the applications of the normalization of the nucleotide and predicted amino acid contents of complete genomes to the investigation of genome structure and to evolutionary research from primitive organisms to Homo sapiens. Some of the results could never have been obtained from the analysis of individual nucleotide or amino acid sequences but were revealed only after the normalization of nucleotide and amino acid contents was applied to genome research. The discovery that genome structure was homogeneous was obtained only after normalization methods were applied to the nucleotide or predicted amino acid contents of genome sequences. Normalization procedures are also applicable to evolutionary research. Thus, normalization of the contents of whole genomes is a useful procedure that can help to characterize organisms.

  11. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  12. IDEA: Interactive Display for Evolutionary Analyses.

    Science.gov (United States)

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-12-08

    The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data.

  13. Theoretical calculation and evaluation of complete neutron data for natural niobium

    International Nuclear Information System (INIS)

    Ma Gonggui; Zou Yiming; Wang Shiming

    1990-07-01

    An evaluation of a complete neutron nuclear data for natural niobium has been finished on the data measured by experiments up to 1989 and theoretical calculations with program MUP2 and AUJP. The purpose of present work is to build CENDL-2 databank (Chinese Evaluation Nuclear Data Library, second version) which replaces the CENDL-1 (first version of CENDL). The neutron energy for niobium is in the range of 10 -5 eV to 20 MeV. Data of cross section include total, elastic, nonelastic, total elastic, inelastic cross section to 13 discrete levels, inelastic continuum, (n,2n), (n,3n), (n,n ' α) + (n,αn ' ), (n,n ' p) + (n,pn ' ), (n,n ' d) + (n,dn ' ), (n,p), (n,d), (n,t), (n,α) and capture cross sections. Data for MT 251,252 and 253 as well as angular distributions and energy spectra of secondary neutrons are also given

  14. An Angiotensin II type 1 receptor activation switch patch revealed through Evolutionary Trace analysis

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Yao, Rong; Ma, Jian-Nong

    2010-01-01

    to be completely resolved. Evolutionary Trace (ET) analysis is a computational method, which identifies clusters of functionally important residues by integrating information on evolutionary important residue variations with receptor structure. Combined with known mutational data, ET predicted a patch of residues......) displayed phenotypes associated with changed activation state, such as increased agonist affinity or basal activity, promiscuous activation, or constitutive internalization highlighting the importance of testing different signaling pathways. We conclude that this evolutionary important patch mediates...

  15. The Nothoaspis amazoniensis Complete Mitogenome: A Comparative and Phylogenetic Analysis

    Directory of Open Access Journals (Sweden)

    Paulo H. C. Lima

    2018-03-01

    Full Text Available The molecular biology era, together with morphology, molecular phylogenetics, bioinformatics, and high-throughput sequencing technologies, improved the taxonomic identification of Argasidae family members, especially when considering specimens at different development stages, which remains a great difficulty for acarologists. These tools could provide important data and insights on the history and evolutionary relationships of argasids. To better understand these relationships, we sequenced and assembled the first complete mitochondrial genome of Nothoaspis amazoniensis. We used phylogenomics to identify the evolutionary history of this species of tick, comparing the data obtained with 26 complete mitochondrial sequences available in biological databases. The results demonstrated the absence of genetic rearrangements, high similarity and identity, and a close organizational link between the mitogenomes of N. amazoniensis and other argasids analyzed. In addition, the mitogenome had a monophyletic cladistic taxonomic arrangement, encompassed by representatives of the Afrotropical and Neotropical regions, with specific parasitism in bats, which may be indicative of an evolutionary process of cospeciation between vectors and the host.

  16. 41 CFR 102-34.70 - What do we do with completed calculations of our fleet vehicle acquisitions?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What do we do with completed calculations of our fleet vehicle acquisitions? 102-34.70 Section 102-34.70 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT...

  17. Nash evolutionary algorithms : Testing problem size in reconstruction problems in frame structures

    OpenAIRE

    Greiner, D.; Periaux, Jacques; Emperador, J.M.; Galván, B.; Winter, G.

    2016-01-01

    The use of evolutionary algorithms has been enhanced in recent years for solving real engineering problems, where the requirements of intense computational calculations are needed, especially when computational engineering simulations are involved (use of finite element method, boundary element method, etc). The coupling of game-theory concepts in evolutionary algorithms has been a recent line of research which could enhance the efficiency of the optimum design procedure and th...

  18. IDEA: Interactive Display for Evolutionary Analyses

    Directory of Open Access Journals (Sweden)

    Carlton Jane M

    2008-12-01

    Full Text Available Abstract Background The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. Results We have developed IDEA (Interactive Display for Evolutionary Analyses, an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. Conclusion IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data.

  19. Evolutionary thinking

    Science.gov (United States)

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  20. Preventive evolutionary medicine of cancers.

    Science.gov (United States)

    Hochberg, Michael E; Thomas, Frédéric; Assenat, Eric; Hibner, Urszula

    2013-01-01

    Evolutionary theory predicts that once an individual reaches an age of sufficiently low Darwinian fitness, (s)he will have reduced chances of keeping cancerous lesions in check. While we clearly need to better understand the emergence of precursor states and early malignancies as well as their mitigation by the microenvironment and tissue architecture, we argue that lifestyle changes and preventive therapies based in an evolutionary framework, applied to identified high-risk populations before incipient neoplasms become clinically detectable and chemoresistant lineages emerge, are currently the most reliable way to control or eliminate early tumours. Specifically, the relatively low levels of (epi)genetic heterogeneity characteristic of many if not most incipient lesions will mean a relatively limited set of possible adaptive traits and associated costs compared to more advanced cancers, and thus a more complete and predictable understanding of treatment options and outcomes. We propose a conceptual model for preventive treatments and discuss the many associated challenges.

  1. Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna

    OpenAIRE

    Nakamura, Yoji; Mori, Kazuki; Saitoh, Kenji; Oshima, Kenshiro; Mekuchi, Miyuki; Sugaya, Takuma; Shigenobu, Yuya; Ojima, Nobuhiko; Muta, Shigeru; Fujiwara, Atushi; Yasuike, Motoshige; Oohara, Ichiro; Hirakawa, Hideki; Chowdhury, Vishwajit Sur; Kobayashi, Takanori

    2013-01-01

    Tunas are migratory fishes in offshore habitats and top predators with unique features. Despite their ecological importance and high market values, the open-ocean lifestyle of tuna, in which effective sensing systems such as color vision are required for capture of prey, has been poorly understood. To elucidate the genetic and evolutionary basis of optic adaptation of tuna, we determined the genome sequence of the Pacific bluefin tuna (Thunnus orientalis), using next-generation sequencing tec...

  2. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.

  3. On the calculation of complete dissociation curves of closed-shell pseudo-onedimensional systems via the complete active space method of increments

    Energy Technology Data Exchange (ETDEWEB)

    Fertitta, E.; Paulus, B. [Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany); Barcza, G.; Legeza, Ö. [Strongly Correlated Systems “Lendület” Research Group, Wigner Research Centre for Physics, P.O. Box 49, Budapest (Hungary)

    2015-09-21

    The method of increments (MoI) has been employed using the complete active space formalism in order to calculate the dissociation curve of beryllium ring-shaped clusters Be{sub n} of different sizes. Benchmarks obtained through different quantum chemical methods including the ab initio density matrix renormalization group were used to verify the validity of the MoI truncation which showed a reliable behavior for the whole dissociation curve. Moreover we investigated the size dependence of the correlation energy at different interatomic distances in order to extrapolate the values for the periodic chain and to discuss the transition from a metal-like to an insulator-like behavior of the wave function through quantum chemical considerations.

  4. An evolutionary ecology of individual differences

    Science.gov (United States)

    Dall, Sasha R. X.; Bell, Alison M.; Bolnick, Daniel I.; Ratnieks, Francis L. W.

    2014-01-01

    Individuals often differ in what they do. This has been recognised since antiquity. Nevertheless, the ecological and evolutionary significance of such variation is attracting widespread interest, which is burgeoning to an extent that is fragmenting the literature. As a first attempt at synthesis, we focus on individual differences in behaviour within populations that exceed the day-to-day variation in individual behaviour (i.e. behavioural specialisation). Indeed, the factors promoting ecologically relevant behavioural specialisation within natural populations are likely to have far-reaching ecological and evolutionary consequences. We discuss such individual differences from three distinct perspectives: individual niche specialisations, the division of labour within insect societies and animal personality variation. In the process, while recognising that each area has its own unique motivations, we identify a number of opportunities for productive ‘crossfertilisation’ among the (largely independent) bodies of work. We conclude that a complete understanding of evolutionarily and ecologically relevant individual differences must specify how ecological interactions impact the basic biological process (e.g. Darwinian selection, development and information processing) that underpin the organismal features determining behavioural specialisations. Moreover, there is likely to be covariation amongst behavioural specialisations. Thus, we sketch the key elements of a general framework for studying the evolutionary ecology of individual differences. PMID:22897772

  5. Adaptive evolutionary walks require neutral intermediates in RNA fitness landscapes.

    Science.gov (United States)

    Rendel, Mark D

    2011-01-01

    In RNA fitness landscapes with interconnected networks of neutral mutations, neutral precursor mutations can play an important role in facilitating the accessibility of epistatic adaptive mutant combinations. I use an exhaustively surveyed fitness landscape model based on short sequence RNA genotypes (and their secondary structure phenotypes) to calculate the minimum rate at which mutants initially appearing as neutral are incorporated into an adaptive evolutionary walk. I show first, that incorporating neutral mutations significantly increases the number of point mutations in a given evolutionary walk when compared to estimates from previous adaptive walk models. Second, that incorporating neutral mutants into such a walk significantly increases the final fitness encountered on that walk - indeed evolutionary walks including neutral steps often reach the global optimum in this model. Third, and perhaps most importantly, evolutionary paths of this kind are often extremely winding in their nature and have the potential to undergo multiple mutations at a given sequence position within a single walk; the potential of these winding paths to mislead phylogenetic reconstruction is briefly considered. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. A conceptual evolutionary aseismic decision support framework for hospitals

    Science.gov (United States)

    Hu, Yufeng; Dargush, Gary F.; Shao, Xiaoyun

    2012-12-01

    In this paper, aconceptual evolutionary framework for aseismic decision support for hospitalsthat attempts to integrate a range of engineering and sociotechnical models is presented. Genetic algorithms are applied to find the optimal decision sets. A case study is completed to demonstrate how the frameworkmay applytoa specific hospital.The simulations show that the proposed evolutionary decision support framework is able to discover robust policy sets in either uncertain or fixed environments. The framework also qualitatively identifies some of the characteristicbehavior of the critical care organization. Thus, by utilizing the proposedframework, the decision makers are able to make more informed decisions, especially toenhance the seismic safety of the hospitals.

  7. The Evolutionary Puzzle of Suicide

    Directory of Open Access Journals (Sweden)

    Henri-Jean Aubin

    2013-12-01

    Full Text Available Mechanisms of self-destruction are difficult to reconcile with evolution’s first rule of thumb: survive and reproduce. However, evolutionary success ultimately depends on inclusive fitness. The altruistic suicide hypothesis posits that the presence of low reproductive potential and burdensomeness toward kin can increase the inclusive fitness payoff of self-removal. The bargaining hypothesis assumes that suicide attempts could function as an honest signal of need. The payoff may be positive if the suicidal person has a low reproductive potential. The parasite manipulation hypothesis is founded on the rodent—Toxoplasma gondii host-parasite model, in which the parasite induces a “suicidal” feline attraction that allows the parasite to complete its life cycle. Interestingly, latent infection by T. gondii has been shown to cause behavioral alterations in humans, including increased suicide attempts. Finally, we discuss how suicide risk factors can be understood as nonadaptive byproducts of evolved mechanisms that malfunction. Although most of the mechanisms proposed in this article are largely speculative, the hypotheses that we raise accept self-destructive behavior within the framework of evolutionary theory.

  8. phyloXML: XML for evolutionary biology and comparative genomics.

    Science.gov (United States)

    Han, Mira V; Zmasek, Christian M

    2009-10-27

    Evolutionary trees are central to a wide range of biological studies. In many of these studies, tree nodes and branches need to be associated (or annotated) with various attributes. For example, in studies concerned with organismal relationships, tree nodes are associated with taxonomic names, whereas tree branches have lengths and oftentimes support values. Gene trees used in comparative genomics or phylogenomics are usually annotated with taxonomic information, genome-related data, such as gene names and functional annotations, as well as events such as gene duplications, speciations, or exon shufflings, combined with information related to the evolutionary tree itself. The data standards currently used for evolutionary trees have limited capacities to incorporate such annotations of different data types. We developed a XML language, named phyloXML, for describing evolutionary trees, as well as various associated data items. PhyloXML provides elements for commonly used items, such as branch lengths, support values, taxonomic names, and gene names and identifiers. By using "property" elements, phyloXML can be adapted to novel and unforeseen use cases. We also developed various software tools for reading, writing, conversion, and visualization of phyloXML formatted data. PhyloXML is an XML language defined by a complete schema in XSD that allows storing and exchanging the structures of evolutionary trees as well as associated data. More information about phyloXML itself, the XSD schema, as well as tools implementing and supporting phyloXML, is available at http://www.phyloxml.org.

  9. Polymorphic Evolutionary Games.

    Science.gov (United States)

    Fishman, Michael A

    2016-06-07

    In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Remembering the evolutionary Freud.

    Science.gov (United States)

    Young, Allan

    2006-03-01

    Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.

  11. Understanding the mind from an evolutionary perspective: an overview of evolutionary psychology.

    Science.gov (United States)

    Shackelford, Todd K; Liddle, James R

    2014-05-01

    The theory of evolution by natural selection provides the only scientific explanation for the existence of complex adaptations. The design features of the brain, like any organ, are the result of selection pressures operating over deep time. Evolutionary psychology posits that the human brain comprises a multitude of evolved psychological mechanisms, adaptations to specific and recurrent problems of survival and reproduction faced over human evolutionary history. Although some mistakenly view evolutionary psychology as promoting genetic determinism, evolutionary psychologists appreciate and emphasize the interactions between genes and environments. This approach to psychology has led to a richer understanding of a variety of psychological phenomena, and has provided a powerful foundation for generating novel hypotheses. Critics argue that evolutionary psychologists resort to storytelling, but as with any branch of science, empirical testing is a vital component of the field, with hypotheses standing or falling with the weight of the evidence. Evolutionary psychology is uniquely suited to provide a unifying theoretical framework for the disparate subdisciplines of psychology. An evolutionary perspective has provided insights into several subdisciplines of psychology, while simultaneously demonstrating the arbitrary nature of dividing psychological science into such subdisciplines. Evolutionary psychologists have amassed a substantial empirical and theoretical literature, but as a relatively new approach to psychology, many questions remain, with several promising directions for future research. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  12. Towards resolving the complete fern tree of life.

    Science.gov (United States)

    Lehtonen, Samuli

    2011-01-01

    In the past two decades, molecular systematic studies have revolutionized our understanding of the evolutionary history of ferns. The availability of large molecular data sets together with efficient computer algorithms, now enables us to reconstruct evolutionary histories with previously unseen completeness. Here, the most comprehensive fern phylogeny to date, representing over one-fifth of the extant global fern diversity, is inferred based on four plastid genes. Parsimony and maximum-likelihood analyses provided a mostly congruent results and in general supported the prevailing view on the higher-level fern systematics. At a deep phylogenetic level, the position of horsetails depended on the optimality criteria chosen, with horsetails positioned as the sister group either of Marattiopsida-Polypodiopsida clade or of the Polypodiopsida. The analyses demonstrate the power of using a 'supermatrix' approach to resolve large-scale phylogenies and reveal questionable taxonomies. These results provide a valuable background for future research on fern systematics, ecology, biogeography and other evolutionary studies.

  13. Towards resolving the complete fern tree of life.

    Directory of Open Access Journals (Sweden)

    Samuli Lehtonen

    Full Text Available In the past two decades, molecular systematic studies have revolutionized our understanding of the evolutionary history of ferns. The availability of large molecular data sets together with efficient computer algorithms, now enables us to reconstruct evolutionary histories with previously unseen completeness. Here, the most comprehensive fern phylogeny to date, representing over one-fifth of the extant global fern diversity, is inferred based on four plastid genes. Parsimony and maximum-likelihood analyses provided a mostly congruent results and in general supported the prevailing view on the higher-level fern systematics. At a deep phylogenetic level, the position of horsetails depended on the optimality criteria chosen, with horsetails positioned as the sister group either of Marattiopsida-Polypodiopsida clade or of the Polypodiopsida. The analyses demonstrate the power of using a 'supermatrix' approach to resolve large-scale phylogenies and reveal questionable taxonomies. These results provide a valuable background for future research on fern systematics, ecology, biogeography and other evolutionary studies.

  14. Transfer Area Mechanical Handling Calculation

    International Nuclear Information System (INIS)

    Dianda, B.

    2004-01-01

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC--28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC--28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their

  15. [Evolutionary medicine].

    Science.gov (United States)

    Wjst, M

    2013-12-01

    Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Core principles of evolutionary medicine

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  17. Applying evolutionary anthropology.

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.

  18. Applying Evolutionary Anthropology

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  19. Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna.

    Science.gov (United States)

    Nakamura, Yoji; Mori, Kazuki; Saitoh, Kenji; Oshima, Kenshiro; Mekuchi, Miyuki; Sugaya, Takuma; Shigenobu, Yuya; Ojima, Nobuhiko; Muta, Shigeru; Fujiwara, Atushi; Yasuike, Motoshige; Oohara, Ichiro; Hirakawa, Hideki; Chowdhury, Vishwajit Sur; Kobayashi, Takanori; Nakajima, Kazuhiro; Sano, Motohiko; Wada, Tokio; Tashiro, Kosuke; Ikeo, Kazuho; Hattori, Masahira; Kuhara, Satoru; Gojobori, Takashi; Inouye, Kiyoshi

    2013-07-02

    Tunas are migratory fishes in offshore habitats and top predators with unique features. Despite their ecological importance and high market values, the open-ocean lifestyle of tuna, in which effective sensing systems such as color vision are required for capture of prey, has been poorly understood. To elucidate the genetic and evolutionary basis of optic adaptation of tuna, we determined the genome sequence of the Pacific bluefin tuna (Thunnus orientalis), using next-generation sequencing technology. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified five common fish visual pigment genes: red-sensitive (middle/long-wavelength sensitive; M/LWS), UV-sensitive (short-wavelength sensitive 1; SWS1), blue-sensitive (SWS2), rhodopsin (RH1), and green-sensitive (RH2) opsin genes. Sequence comparison revealed that tuna's RH1 gene has an amino acid substitution that causes a short-wave shift in the absorption spectrum (i.e., blue shift). Pacific bluefin tuna has at least five RH2 paralogs, the most among studied fishes; four of the proteins encoded may be tuned to blue light at the amino acid level. Moreover, phylogenetic analysis suggested that gene conversions have occurred in each of the SWS2 and RH2 loci in a short period. Thus, Pacific bluefin tuna has undergone evolutionary changes in three genes (RH1, RH2, and SWS2), which may have contributed to detecting blue-green contrast and measuring the distance to prey in the blue-pelagic ocean. These findings provide basic information on behavioral traits of predatory fish and, thereby, could help to improve the technology to culture such fish in captivity for resource management.

  20. Evolutionary Expectations

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    , they are correlated among people who share environments because these individuals satisfice within their cognitive bounds by using cues in order of validity, as opposed to using cues arbitrarily. Any difference in expectations thereby arise from differences in cognitive ability, because two individuals with identical...... cognitive bounds will perceive business opportunities identically. In addition, because cues provide information about latent causal structures of the environment, changes in causality must be accompanied by changes in cognitive representations if adaptation is to be maintained. The concept of evolutionary......The concept of evolutionary expectations descends from cue learning psychology, synthesizing ideas on rational expectations with ideas on bounded rationality, to provide support for these ideas simultaneously. Evolutionary expectations are rational, but within cognitive bounds. Moreover...

  1. Evolutionary Awareness

    Directory of Open Access Journals (Sweden)

    Gregory Gorelik

    2014-10-01

    Full Text Available In this article, we advance the concept of “evolutionary awareness,” a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities—which we refer to as “intergenerational extended phenotypes”—by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.

  2. Complete chloroplast DNA sequence from a Korean endemic genus, Megaleranthis saniculifolia, and its evolutionary implications.

    Science.gov (United States)

    Kim, Young-Kyu; Park, Chong-wook; Kim, Ki-Joong

    2009-03-31

    The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast matK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our

  3. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    Science.gov (United States)

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  4. Attractive evolutionary equilibria

    NARCIS (Netherlands)

    Joosten, Reinoud A.M.G.; Roorda, Berend

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary

  5. An Analytical Framework for Runtime of a Class of Continuous Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Yushan Zhang

    2015-01-01

    Full Text Available Although there have been many studies on the runtime of evolutionary algorithms in discrete optimization, relatively few theoretical results have been proposed on continuous optimization, such as evolutionary programming (EP. This paper proposes an analysis of the runtime of two EP algorithms based on Gaussian and Cauchy mutations, using an absorbing Markov chain. Given a constant variation, we calculate the runtime upper bound of special Gaussian mutation EP and Cauchy mutation EP. Our analysis reveals that the upper bounds are impacted by individual number, problem dimension number n, searching range, and the Lebesgue measure of the optimal neighborhood. Furthermore, we provide conditions whereby the average runtime of the considered EP can be no more than a polynomial of n. The condition is that the Lebesgue measure of the optimal neighborhood is larger than a combinatorial calculation of an exponential and the given polynomial of n.

  6. Calculation of expected rates of fisheries‐induced evolution in data‐poor situations

    DEFF Research Database (Denmark)

    Andersen, Ken Haste

    2010-01-01

    A central part of an impact assessment of the evolutionary effects of fishing is a calculation of the expected rates of fishing induced by current fishing practice and an evaluation of how alternative fishing patterns may reduce evolutionary impacts of fishing. Here a general size-based framework...... for modeling the demography of fish based on size-based prescriptions of natural mortality, growth, and fishing is presented. Life history theory is used to reduce the necessary parameter set by utilizing relations between parameters making the framework particularly well suited for data-poor situations where...... only the size at maturation or the asymptotic size is known. The framework is applied to perform the modeling part of an evolutionary impact assessment using basic quantitative genetics to calculated expected rates of evolution on size at maturation, growth rate, and investment in gonads. A sensitivity...

  7. Open Issues in Evolutionary Robotics.

    Science.gov (United States)

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  8. Many-body calculations of molecular electric polarizabilities in asymptotically complete basis sets

    Science.gov (United States)

    Monten, Ruben; Hajgató, Balázs; Deleuze, Michael S.

    2011-10-01

    The static dipole polarizabilities of Ne, CO, N2, F2, HF, H2O, HCN, and C2H2 (acetylene) have been determined close to the Full-CI limit along with an asymptotically complete basis set (CBS), according to the principles of a Focal Point Analysis. For this purpose the results of Finite Field calculations up to the level of Coupled Cluster theory including Single, Double, Triple, Quadruple and perturbative Pentuple excitations [CCSDTQ(P)] were used, in conjunction with suited extrapolations of energies obtained using augmented and doubly-augmented Dunning's correlation consistent polarized valence basis sets of improving quality. The polarizability characteristics of C2H4 (ethylene) and C2H6 (ethane) have been determined on the same grounds at the CCSDTQ level in the CBS limit. Comparison is made with results obtained using lower levels in electronic correlation, or taking into account the relaxation of the molecular structure due to an adiabatic polarization process. Vibrational corrections to electronic polarizabilities have been empirically estimated according to Born-Oppenheimer Molecular Dynamical simulations employing Density Functional Theory. Confrontation with experiment ultimately indicates relative accuracies of the order of 1 to 2%.

  9. Asteroseismology of pulsating DA white dwarfs with fully evolutionary models

    Directory of Open Access Journals (Sweden)

    Althaus L.G.

    2013-03-01

    Full Text Available We present a new approach for asteroseismology of DA white dwarfs that consists in the employment of a large set of non-static, physically sound, fully evolutionary models representative of these stars. We already have applied this approach with success to pulsating PG1159 stars (GW Vir variables. Our white dwarf models, which cover a wide range of stellar masses, effective temperatures, and envelope thicknesses, are the result of fully evolutionary computations that take into account the complete history of the progenitor stars from the ZAMS. In particular, the models are characterized by self-consistent chemical structures from the centre to the surface, a crucial aspect of white dwarf asteroseismology. We apply this approach to an ensemble of 44 bright DAV (ZZ Ceti stars.

  10. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory; Detter, Chris [Los Alamos National Laboratory; Bruce, David [Los Alamos National Laboratory; Challacome, Jean F [Los Alamos National Laboratory; Brettin, Thomas S [Los Alamos National Laboratory; Barabote, Ravi D [UC DAVIS; Leu, David [UC DAVIS; Normand, Philippe [CNRS, UNIV LYON; Necsula, Anamaria [CNRS, UNIV LYON; Daubin, Vincent [CNRS, UNIV LYON; Medigue, Claudine [CNRS/GENOSCOPE; Adney, William S [NREL; Xu, Xin C [UC DAVIS; Lapidus, Alla [DOE JOINT GENOME INST.; Pujic, Pierre [CNRS, UNIV LYON; Richardson, Paul [DOE JOINT GENOME INST; Berry, Alison M [UC DAVIS

    2008-01-01

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus lIB, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNA than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudogenes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.

  11. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory; Detter, John C [Los Alamos National Laboratory; Bruce, David C [Los Alamos National Laboratory; Challacombe, Jean F [Los Alamos National Laboratory; Brettin, Thomas S [Los Alamos National Laboratory; Necsulea, Anamaria [UNIV LYON; Daubin, Vincent [UNIV LYON; Medigue, Claudine [GENOSCOPE; Adney, William S [NREL; Xu, Xin C [UC DAVIS; Lapidus, Alla [JGI; Pujic, Pierre [UNIV LYON; Berry, Alison M [UC DAVIS; Barabote, Ravi D [UC DAVIS; Leu, David [UC DAVIS; Normand, Phillipe [UNIV LYON

    2009-01-01

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus 11B, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNA than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudo genes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.

  12. [Evolutionary process unveiled by the maximum genetic diversity hypothesis].

    Science.gov (United States)

    Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi

    2013-05-01

    As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature.

  13. Dynamic and photometric evolutionary models of tidal tails and ripples

    International Nuclear Information System (INIS)

    Wallin, J.F.

    1989-01-01

    An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broad-band photometric evolutionary code. In these models, regions of compression form inside the disk and along the tidal tail and tidal bridge. The effects these density changes have on the colors of the tidal features are examined with a broad-band photometric evolutionary code. A spiral galaxy population is synthesized and the effects of modest changes in the star formation rate are explored. Limits on the density changes needed to make detectable changes in the colors are calculated using a Schmidt (1959) law. These models suggest that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. The Lynds and Toomre (1976) interpretation of ring galaxies as the natural result of a nearly head-on collision between a disk galaxy and a companion galaxy has become widely accepted. Similarly, Quinn's (1984) interpretation of the shells in elliptical galaxies as the aftermath of the cannibalization of a low-mass companion has been quite successful in accounting for the observations. Restricted three-body calculations of high inclination, low impact parameter encounters demonstrate that the shell-like ripples observed in a number of disk galaxies can also be produced as collisional artifacts from internal oscillations much as in ring galaxies

  14. A Self-adaptive Dynamic Evaluation Model for Diabetes Mellitus, Based on Evolutionary Strategies

    Directory of Open Access Journals (Sweden)

    An-Jiang Lu

    2016-03-01

    Full Text Available In order to evaluate diabetes mellitus objectively and accurately, this paper builds a self-adaptive dynamic evaluation model for diabetes mellitus, based on evolutionary strategies. First of all, on the basis of a formalized description of the evolutionary process of diabetes syndromes, using a state transition function, it judges whether a disease is evolutionary, through an excitation parameter. It then, provides evidence for the rebuilding of the evaluation index system. After that, by abstracting and rebuilding the composition of evaluation indexes, it makes use of a heuristic algorithm to determine the composition of the evolved evaluation index set of diabetes mellitus, It then, calculates the weight of each index in the evolved evaluation index set of diabetes mellitus by building a dependency matrix and realizes the self-adaptive dynamic evaluation of diabetes mellitus under an evolutionary environment. Using this evaluation model, it is possible to, quantify all kinds of diagnoses and treatment experiences of diabetes and finally to adopt ideal diagnoses and treatment measures for different patients with diabetics.

  15. Joy and happiness: a simultaneous and evolutionary concept analysis.

    Science.gov (United States)

    Cottrell, Laura

    2016-07-01

    To report a simultaneous and evolutionary analysis of the concepts of joy and long-term happiness. Joy and happiness are underrepresented in the nursing literature, though negative concepts are well represented. When mentioned in the literature, neither joy nor happiness is adequately defined, explained, or clearly understood. To promote further investigation of these concepts in nursing and to explore their relationship with health and healing, conceptual clarity is an essential first step. Concept analysis. The following databases were searched, without time restrictions, for articles in English: Academic Search Complete, Anthropology Plus; ATLA Religious Database with ATLASerials; Cumulative Index of Nursing and Allied Health Literature (CINAHL); Education Research Complete; Humanities International Complete; Psych EXTRA; and SocINDEX with Full Text. The final sample size consists of 61 articles and one book, published between 1978-2014. An adapted combination of Rodgers' Evolutionary Model and Haase et al.'s Simultaneous Concept Analysis (SCA) method. Though both are positive concepts, joy and happiness have significant differences. Attributes of joy describe a spontaneous, sudden and transient concept associated with connection, awareness, and freedom. Attributes of happiness describe a pursued, long-lasting, stable mental state associated with virtue and self-control. Further exploration of joy and happiness is necessary to ascertain their relationship with health and their value to nursing practice and theory development. Nurses are encouraged to consider the value of positive concepts to all areas of nursing. © 2016 John Wiley & Sons Ltd.

  16. Evolutionary Demography

    DEFF Research Database (Denmark)

    Levitis, Daniel

    2015-01-01

    of biological and cultural evolution. Demographic variation within and among human populations is influenced by our biology, and therefore by natural selection and our evolutionary background. Demographic methods are necessary for studying populations of other species, and for quantifying evolutionary fitness......Demography is the quantitative study of population processes, while evolution is a population process that influences all aspects of biological organisms, including their demography. Demographic traits common to all human populations are the products of biological evolution or the interaction...

  17. Proteomics in evolutionary ecology.

    Science.gov (United States)

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  18. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes.

    Science.gov (United States)

    Novák, Lukáš; Zubáčová, Zuzana; Karnkowska, Anna; Kolisko, Martin; Hroudová, Miluše; Stairs, Courtney W; Simpson, Alastair G B; Keeling, Patrick J; Roger, Andrew J; Čepička, Ivan; Hampl, Vladimír

    2016-10-06

    Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.

  19. Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.

    Science.gov (United States)

    Huang, Bing-Hong; Liao, Pei-Chun

    2015-07-01

    Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Attractive evolutionary equilibria

    OpenAIRE

    Roorda, Berend; Joosten, Reinoud

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary dynamics. For instance, each attractive evolutionarily stable strategy is an attractive evolutionarily stable equilibrium for certain barycentric ray-projection dynamics, and vice versa.

  1. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    Science.gov (United States)

    Barabote, Ravi D.; Xie, Gary; Leu, David H.; Normand, Philippe; Necsulea, Anamaria; Daubin, Vincent; Médigue, Claudine; Adney, William S.; Xu, Xin Clare; Lapidus, Alla; Parales, Rebecca E.; Detter, Chris; Pujic, Petar; Bruce, David; Lavire, Celine; Challacombe, Jean F.; Brettin, Thomas S.; Berry, Alison M.

    2009-01-01

    We present here the complete 2.4-Mb genome of the cellulolytic actinobacterial thermophile Acidothermus cellulolyticus 11B. New secreted glycoside hydrolases and carbohydrate esterases were identified in the genome, revealing a diverse biomass-degrading enzyme repertoire far greater than previously characterized and elevating the industrial value of this organism. A sizable fraction of these hydrolytic enzymes break down plant cell walls, and the remaining either degrade components in fungal cell walls or metabolize storage carbohydrates such as glycogen and trehalose, implicating the relative importance of these different carbon sources. Several of the A. cellulolyticus secreted cellulolytic and xylanolytic enzymes are fused to multiple tandemly arranged carbohydrate binding modules (CBM), from families 2 and 3. For the most part, thermophilic patterns in the genome and proteome of A. cellulolyticus were weak, which may be reflective of the recent evolutionary history of A. cellulolyticus since its divergence from its closest phylogenetic neighbor Frankia, a mesophilic plant endosymbiont and soil dweller. However, ribosomal proteins and noncoding RNAs (rRNA and tRNAs) in A. cellulolyticus showed thermophilic traits suggesting the importance of adaptation of cellular translational machinery to environmental temperature. Elevated occurrence of IVYWREL amino acids in A. cellulolyticus orthologs compared to mesophiles and inverse preferences for G and A at the first and third codon positions also point to its ongoing thermoadaptation. Additional interesting features in the genome of this cellulolytic, hot-springs-dwelling prokaryote include a low occurrence of pseudogenes or mobile genetic elements, an unexpected complement of flagellar genes, and the presence of three laterally acquired genomic islands of likely ecophysiological value. PMID:19270083

  2. Evolutionary principles and their practical application.

    Science.gov (United States)

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  3. Evolution of microbes and viruses: A paradigm shift in evolutionary biology?

    Directory of Open Access Journals (Sweden)

    Eugene V. Koonin

    2012-09-01

    Full Text Available When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain ‘ribosomal Tree of Life’ that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: i pervasive horizontal gene transfer (HGT, in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment of the Tree of Life concept, ii Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and iii evolution of evolvability, i.e. dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary

  4. CALCULATION OF REACTION COMPLETENESS AND SUBSTANCE TRANSFORMATION AT WATER-COAL GASIFICATION

    Directory of Open Access Journals (Sweden)

    N. S. Nazarov

    2007-01-01

    Full Text Available Process of water-coal gasification is satisfactorily described by three thermal and chemical equations; using these equations composition of gasification product (water carbon monoxide gas has been calculated in accordance with a temperature. Results of the calculations are presented in the form of charts. 

  5. THE HCN/HNC ABUNDANCE RATIO TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mihwa; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Kim, Kee-Tae, E-mail: mihwajin.sf@gmail.com, E-mail: jeongeun.lee@khu.ac.kr, E-mail: ktkim@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-20

    Using the H{sup 13}CN and HN{sup 13}C J = 1–0 line observations, the abundance ratio of HCN/HNC has been estimated for different evolutionary stages of massive star formation: infrared dark clouds (IRDCs), high-mass protostellar objects (HMPOs), and ultracompact H ii regions (UCH iis). IRDCs were divided into “quiescent IRDC cores (qIRDCc)” and “active IRDC cores (aIRDCc),” depending on star formation activity. The HCN/HNC ratio is known to be higher at active and high temperature regions related to ongoing star formation, compared to cold and quiescent regions. Our observations toward 8 qIRDCc, 16 aIRDCc, 23 HMPOs, and 31 UCH iis show consistent results; the ratio is 0.97 (±0.10), 2.65 (±0.88), 4.17 (±1.03), and 8.96 (±3.32) in these respective evolutionary stages, increasing from qIRDCc to UCH iis. The change of the HCN/HNC abundance ratio, therefore, seems directly associated with the evolutionary stages of star formation, which have different temperatures. One suggested explanation for this trend is the conversion of HNC to HCN, which occurs effectively at higher temperatures. To test the explanation, we performed a simple chemical model calculation. In order to fit the observed results, the energy barrier of the conversion must be much lower than the value provided by theoretical calculations.

  6. EvolQG - An R package for evolutionary quantitative genetics [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Diogo Melo

    2016-06-01

    Full Text Available We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the EvolQG package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification.

  7. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.

    Science.gov (United States)

    Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel

    2013-06-01

    Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.

  8. Algorithmic Mechanism Design of Evolutionary Computation.

    Science.gov (United States)

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  9. Estimation of isotropic nuclear magnetic shieldings in the CCSD(T) and MP2 complete basis set limit using affordable correlation calculations

    DEFF Research Database (Denmark)

    Kupka, Teobald; Stachów, Michal; Kaminsky, Jakub

    2013-01-01

    , estimated from calculations with the family of polarizationconsistent pcS-n basis sets is reported. This dependence was also supported by inspection of profiles of deviation between CBS estimated nuclear shieldings and obtained with significantly smaller basis sets pcS-2 and aug-cc-pVTZ-J for the selected......A linear correlation between isotropic nuclear magnetic shielding constants for seven model molecules (CH2O, H2O, HF, F2, HCN, SiH4 and H2S) calculated with 37 methods (34 density functionals, RHF, MP2 and CCSD(T) ), with affordable pcS-2 basis set and corresponding complete basis set results...... set of 37 calculation methods. It was possible to formulate a practical approach of estimating the values of isotropic nuclear magnetic shielding constants at the CCSD(T)/CBS and MP2/CBS levels from affordable CCSD(T)/pcS-2, MP2/pcS-2 and DFT/CBS calculations with pcS-n basis sets. The proposed method...

  10. A Comprehensive Classification and Evolutionary Analysis of Plant Homeobox Genes

    OpenAIRE

    Mukherjee, Krishanu; Brocchieri, Luciano; B?rglin, Thomas R.

    2009-01-01

    The full complement of homeobox transcription factor sequences, including genes and pseudogenes, was determined from the analysis of 10 complete genomes from flowering plants, moss, Selaginella, unicellular green algae, and red algae. Our exhaustive genome-wide searches resulted in the discovery in each class of a greater number of homeobox genes than previously reported. All homeobox genes can be unambiguously classified by sequence evolutionary analysis into 14 distinct classes also charact...

  11. Evolutionary Explanations of Eating Disorders

    Directory of Open Access Journals (Sweden)

    Igor Kardum

    2008-12-01

    Full Text Available This article reviews several most important evolutionary mechanisms that underlie eating disorders. The first part clarifies evolutionary foundations of mental disorders and various mechanisms leading to their development. In the second part selective pressures and evolved adaptations causing contemporary epidemic of obesity as well as differences in dietary regimes and life-style between modern humans and their ancestors are described. Concerning eating disorders, a number of current evolutionary explanations of anorexia nervosa are presented together with their main weaknesses. Evolutionary explanations of eating disorders based on the reproductive suppression hypothesis and its variants derived from kin selection theory and the model of parental manipulation were elaborated. The sexual competition hypothesis of eating disorder, adapted to flee famine hypothesis as well as explanation based on the concept of social attention holding power and the need to belonging were also explained. The importance of evolutionary theory in modern conceptualization and research of eating disorders is emphasized.

  12. The citation field of evolutionary economics

    NARCIS (Netherlands)

    Dolfsma, Wilfred; Leydesdorff, Loet

    2010-01-01

    Evolutionary economics has developed into an academic field of its own, institutionalized around, amongst others, the Journal of Evolutionary Economics (JEE). This paper analyzes the way and extent to which evolutionary economics has become an interdisciplinary journal, as its aim was: a journal

  13. Towards a mechanistic foundation of evolutionary theory.

    Science.gov (United States)

    Doebeli, Michael; Ispolatov, Yaroslav; Simon, Burt

    2017-02-15

    Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.

  14. Evolutionary paths of streptococcal and staphylococcal superantigens

    Directory of Open Access Journals (Sweden)

    Okumura Kayo

    2012-08-01

    Full Text Available Abstract Background Streptococcus pyogenes (GAS harbors several superantigens (SAgs in the prophage region of its genome, although speG and smez are not located in this region. The diversity of SAgs is thought to arise during horizontal transfer, but their evolutionary pathways have not yet been determined. We recently completed sequencing the entire genome of S. dysgalactiae subsp. equisimilis (SDSE, the closest relative of GAS. Although speG is the only SAg gene of SDSE, speG was present in only 50% of clinical SDSE strains and smez in none. In this study, we analyzed the evolutionary paths of streptococcal and staphylococcal SAgs. Results We compared the sequences of the 12–60 kb speG regions of nine SDSE strains, five speG+ and four speG–. We found that the synteny of this region was highly conserved, whether or not the speG gene was present. Synteny analyses based on genome-wide comparisons of GAS and SDSE indicated that speG is the direct descendant of a common ancestor of streptococcal SAgs, whereas smez was deleted from SDSE after SDSE and GAS split from a common ancestor. Cumulative nucleotide skew analysis of SDSE genomes suggested that speG was located outside segments of steeper slopes than the stable region in the genome, whereas the region flanking smez was unstable, as expected from the results of GAS. We also detected a previously undescribed staphylococcal SAg gene, selW, and a staphylococcal SAg -like gene, ssl, in the core genomes of all Staphylococcus aureus strains sequenced. Amino acid substitution analyses, based on dN/dS window analysis of the products encoded by speG, selW and ssl suggested that all three genes have been subjected to strong positive selection. Evolutionary analysis based on the Bayesian Markov chain Monte Carlo method showed that each clade included at least one direct descendant. Conclusions Our findings reveal a plausible model for the comprehensive evolutionary pathway of streptococcal and

  15. Evolutionary thinking: "A conversation with Carter Phipps about the role of evolutionary thinking in modern culture".

    Science.gov (United States)

    Hunt, Tam

    2014-12-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution-both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place-has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps' book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging "integral" or "evolutionary" cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps.

  16. Where Evolutionary Psychology Meets Cognitive Neuroscience: A Précis to Evolutionary Cognitive Neuroscience1

    Directory of Open Access Journals (Sweden)

    Austen L. Krill

    2007-01-01

    Full Text Available Cognitive neuroscience, the study of brain-behavior relationships, has long attempted to map the brain. The discipline is flourishing, with an increasing number of functional neuroimaging studies appearing in the scientific literature daily. Unlike biology and even psychology, the cognitive neurosciences have only recently begun to apply evolutionary meta-theory and methodological guidance. Approaching cognitive neuroscience from an evolutionary perspective allows scientists to apply biologically based theoretical guidance to their investigations and can be conducted in both humans and nonhuman animals. In fact, several investigations of this sort are underway in laboratories around the world. This paper and two new volumes (Platek, Keenan, and Shackelford [Eds.], 2007; Platek and Shackelford [Eds.], under contract represent the first formal attempts to document the burgeoning field of evolutionary cognitive neuroscience. Here, we briefly review the current state of the science of evolutionary cognitive neuroscience, the methods available to the evolutionary cognitive neuroscientist, and what we foresee as the future directions of the discipline.

  17. Evolutionary dynamics of fluctuating populations with strong mutualism

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David

    2013-03-01

    Evolutionary game theory with finite interacting populations is receiving increased attention, including subtle phenomena associated with number fluctuations, i.e., ``genetic drift.'' Models of cooperation and competition often utilize a simplified Moran model, with a strictly fixed total population size. We explore a more general evolutionary model with independent fluctuations in the numbers of two distinct species, in a regime characterized by ``strong mutualism.'' The model has two absorbing states, each corresponding to fixation of one of the two species, and allows exploration of the interplay between growth, competition, and mutualism. When mutualism is favored, number fluctuations eventually drive the system away from a stable fixed point, characterized by cooperation, to one of the absorbing states. Well-mixed populations will thus be taken over by a single species in a finite time, despite the bias towards cooperation. We calculate both the fixation probability and the mean fixation time as a function of the initial conditions and carrying capacities in the strong mutualism regime, using the method of matched asymptotic expansions. Our results are compared to computer simulations.

  18. Essays on nonlinear evolutionary game dynamics

    NARCIS (Netherlands)

    Ochea, M.I.

    2010-01-01

    Evolutionary game theory has been viewed as an evolutionary repair of rational actor game theory in the hope that a population of boundedly rational players may attain convergence to classic rational solutions, such as the Nash Equilibrium, via some learning or evolutionary process. In this thesis

  19. Optimizing a reconfigurable material via evolutionary computation

    Science.gov (United States)

    Wilken, Sam; Miskin, Marc Z.; Jaeger, Heinrich M.

    2015-08-01

    Rapid prototyping by combining evolutionary computation with simulations is becoming a powerful tool for solving complex design problems in materials science. This method of optimization operates in a virtual design space that simulates potential material behaviors and after completion needs to be validated by experiment. However, in principle an evolutionary optimizer can also operate on an actual physical structure or laboratory experiment directly, provided the relevant material parameters can be accessed by the optimizer and information about the material's performance can be updated by direct measurements. Here we provide a proof of concept of such direct, physical optimization by showing how a reconfigurable, highly nonlinear material can be tuned to respond to impact. We report on an entirely computer controlled laboratory experiment in which a 6 ×6 grid of electromagnets creates a magnetic field pattern that tunes the local rigidity of a concentrated suspension of ferrofluid and iron filings. A genetic algorithm is implemented and tasked to find field patterns that minimize the force transmitted through the suspension. Searching within a space of roughly 1010 possible configurations, after testing only 1500 independent trials the algorithm identifies an optimized configuration of layered rigid and compliant regions.

  20. An Evolutionary Formulation of the Crossing Number Problem

    Directory of Open Access Journals (Sweden)

    Che Sheng Gan

    2009-01-01

    Full Text Available A graph drawing algorithm is presented which results in complete graphs having minimum crossings equal to that of Guy's conjecture. It is then generalized and formulated in an evolutionary algorithm (EA to perform constrained search for the crossing numbers. The main objective of this work is to present a suitable two-dimensional scheme which can greatly reduce the complexity of finding crossing numbers by using computer. Program performance criteria are presented and discussed. It is shown that the EA implementation provides good confirmation of the predicted crossing numbers.

  1. Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Richard Lamb

    2015-09-01

    Full Text Available Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine how the application of a Multiobjective Evolutionary Algorithm (MOEA can work in concert with an existing computational-model to effectively model critical-thinking in the science classroom. An evolutionary algorithm is an algorithm that iteratively optimizes machine learning based computational models. The research question is, does the application of an evolutionary algorithm provide a means to optimize the Student Task and Cognition Model (STAC-M and does the optimized model sufficiently represent and predict teaching and learning outcomes in the science classroom? Within this computational study, the authors outline and simulate the effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the Student Task and Cognition Model (STAC-M a computational model of student cognitive processing in science class developed in 2013, the authors complete a computational experiment which examines the role of cognitive retraining on student learning. Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the potential uses of cognitive and neuropsychological computational modeling in educational research. The authors also outline the limitations and assumptions of computational modeling.

  2. Integrating genomics into evolutionary medicine.

    Science.gov (United States)

    Rodríguez, Juan Antonio; Marigorta, Urko M; Navarro, Arcadi

    2014-12-01

    The application of the principles of evolutionary biology into medicine was suggested long ago and is already providing insight into the ultimate causes of disease. However, a full systematic integration of medical genomics and evolutionary medicine is still missing. Here, we briefly review some cases where the combination of the two fields has proven profitable and highlight two of the main issues hindering the development of evolutionary genomic medicine as a mature field, namely the dissociation between fitness and health and the still considerable difficulties in predicting phenotypes from genotypes. We use publicly available data to illustrate both problems and conclude that new approaches are needed for evolutionary genomic medicine to overcome these obstacles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Practical advantages of evolutionary computation

    Science.gov (United States)

    Fogel, David B.

    1997-10-01

    Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.

  4. IR Observations of a Complete Unbiased Sample of Bright Seyfert Galaxies

    Science.gov (United States)

    Malkan, Matthew; Bendo, George; Charmandaris, Vassilis; Smith, Howard; Spinoglio, Luigi; Tommasin, Silvia

    2008-03-01

    IR spectra will measure the 2 main energy-generating processes by which galactic nuclei shine: black hole accretion and star formation. Both of these play roles in galaxy evolution, and they appear connected. To obtain a complete sample of AGN, covering the range of luminosities and column-densities, we will combine 2 complete all-sky samples with complementary selections, minimally biased by dust obscuration: the 116 IRAS 12um AGN and the 41 Swift/BAT hard Xray AGN. These galaxies have been extensively studied across the entire EM spectrum. Herschel observations have been requested and will be synergistic with the Spitzer database. IRAC and MIPS imaging will allow us to separate the nuclear and galactic continua. We are completing full IR observations of the local AGN population, most of which have already been done. The only remaining observations we request are 10 IRS/HIRES, 57 MIPS-24 and 30 IRAC pointings. These high-quality observations of bright AGN in the bolometric-flux-limited samples should be completed, for the high legacy value of complete uniform datasets. We will measure quantitatively the emission at each wavelength arising from stars and from accretion in each galactic center. Since our complete samples come from flux-limited all-sky surveys in the IR and HX, we will calculate the bi-variate AGN and star formation Luminosity Functions for the local population of active galaxies, for comparison with higher redshifts.Our second aim is to understand the physical differences between AGN classes. This requires statistical comparisons of full multiwavelength observations of complete representative samples. If the difference between Sy1s and Sy2s is caused by orientation, their isotropic properties, including those of the surrounding galactic centers, should be similar. In contrast, if they are different evolutionary stages following a galaxy encounter, then we may find observational evidence that the circumnuclear ISM of Sy2s is relatively younger.

  5. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention.

    Science.gov (United States)

    Johnston, Iain G; Williams, Ben P

    2016-02-24

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. General upper bounds on the runtime of parallel evolutionary algorithms.

    Science.gov (United States)

    Lässig, Jörg; Sudholt, Dirk

    2014-01-01

    We present a general method for analyzing the runtime of parallel evolutionary algorithms with spatially structured populations. Based on the fitness-level method, it yields upper bounds on the expected parallel runtime. This allows for a rigorous estimate of the speedup gained by parallelization. Tailored results are given for common migration topologies: ring graphs, torus graphs, hypercubes, and the complete graph. Example applications for pseudo-Boolean optimization show that our method is easy to apply and that it gives powerful results. In our examples the performance guarantees improve with the density of the topology. Surprisingly, even sparse topologies such as ring graphs lead to a significant speedup for many functions while not increasing the total number of function evaluations by more than a constant factor. We also identify which number of processors lead to the best guaranteed speedups, thus giving hints on how to parameterize parallel evolutionary algorithms.

  7. Evolutionary Multiplayer Games

    OpenAIRE

    Gokhale, Chaitanya S.; Traulsen, Arne

    2014-01-01

    Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example is of social dilemmas, where group benefits could e.g.\\ increase less than linear wi...

  8. The Algorithm for Algorithms: An Evolutionary Algorithm Based on Automatic Designing of Genetic Operators

    Directory of Open Access Journals (Sweden)

    Dazhi Jiang

    2015-01-01

    Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.

  9. Codon usage is associated with the evolutionary age of genes in metazoan genomes

    Directory of Open Access Journals (Sweden)

    Linial Nathan

    2009-12-01

    Full Text Available Abstract Background Codon usage may vary significantly between different organisms and between genes within the same organism. Several evolutionary processes have been postulated to be the predominant determinants of codon usage: selection, mutation, and genetic drift. However, the relative contribution of each of these factors in different species remains debatable. The availability of complete genomes for tens of multicellular organisms provides an opportunity to inspect the relationship between codon usage and the evolutionary age of genes. Results We assign an evolutionary age to a gene based on the relative positions of its identified homologues in a standard phylogenetic tree. This yields a classification of all genes in a genome to several evolutionary age classes. The present study starts from the observation that each age class of genes has a unique codon usage and proceeds to provide a quantitative analysis of the codon usage in these classes. This observation is made for the genomes of Homo sapiens, Mus musculus, and Drosophila melanogaster. It is even more remarkable that the differences between codon usages in different age groups exhibit similar and consistent behavior in various organisms. While we find that GC content and gene length are also associated with the evolutionary age of genes, they can provide only a partial explanation for the observed codon usage. Conclusion While factors such as GC content, mutational bias, and selection shape the codon usage in a genome, the evolutionary history of an organism over hundreds of millions of years is an overlooked property that is strongly linked to GC content, protein length, and, even more significantly, to the codon usage of metazoan genomes.

  10. Asymmetric Evolutionary Games

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  11. Core principles of evolutionary medicine: A Delphi study.

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.

  12. Conceptual Barriers to Progress Within Evolutionary Biology.

    Science.gov (United States)

    Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy

    2009-08-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.

  13. Evolutionary Statistical Procedures

    CERN Document Server

    Baragona, Roberto; Poli, Irene

    2011-01-01

    This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a

  14. Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention

    OpenAIRE

    Williams, Ben; Johnston, Iain

    2016-01-01

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modelling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondri...

  15. Part E: Evolutionary Computation

    DEFF Research Database (Denmark)

    2015-01-01

    of Computational Intelligence. First, comprehensive surveys of genetic algorithms, genetic programming, evolution strategies, parallel evolutionary algorithms are presented, which are readable and constructive so that a large audience might find them useful and – to some extent – ready to use. Some more general...... kinds of evolutionary algorithms, have been prudently analyzed. This analysis was followed by a thorough analysis of various issues involved in stochastic local search algorithms. An interesting survey of various technological and industrial applications in mechanical engineering and design has been...... topics like the estimation of distribution algorithms, indicator-based selection, etc., are also discussed. An important problem, from a theoretical and practical point of view, of learning classifier systems is presented in depth. Multiobjective evolutionary algorithms, which constitute one of the most...

  16. Contemporary issues in evolutionary biology

    Indian Academy of Sciences (India)

    These discussions included, among others, the possible consequences of nonDNA-based inheritance—epigenetics and cultural evolution, niche construction, and developmental mechanisms on our understanding of the evolutionary process, speciation, complexity in biology, and constructing a formal evolutionary theory.

  17. Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes.

    Science.gov (United States)

    Gao, Lei; Yi, Xuan; Yang, Yong-Xia; Su, Ying-Juan; Wang, Ting

    2009-06-11

    Ferns have generally been neglected in studies of chloroplast genomics. Before this study, only one polypod and two basal ferns had their complete chloroplast (cp) genome reported. Tree ferns represent an ancient fern lineage that first occurred in the Late Triassic. In recent phylogenetic analyses, tree ferns were shown to be the sister group of polypods, the most diverse group of living ferns. Availability of cp genome sequence from a tree fern will facilitate interpretation of the evolutionary changes of fern cp genomes. Here we have sequenced the complete cp genome of a scaly tree fern Alsophila spinulosa (Cyatheaceae). The Alsophila cp genome is 156,661 base pairs (bp) in size, and has a typical quadripartite structure with the large (LSC, 86,308 bp) and small single copy (SSC, 21,623 bp) regions separated by two copies of an inverted repeat (IRs, 24,365 bp each). This genome contains 117 different genes encoding 85 proteins, 4 rRNAs and 28 tRNAs. Pseudogenes of ycf66 and trnT-UGU are also detected in this genome. A unique trnR-UCG gene (derived from trnR-CCG) is found between rbcL and accD. The Alsophila cp genome shares some unusual characteristics with the previously sequenced cp genome of the polypod fern Adiantum capillus-veneris, including the absence of 5 tRNA genes that exist in most other cp genomes. The genome shows a high degree of synteny with that of Adiantum, but differs considerably from two basal ferns (Angiopteris evecta and Psilotum nudum). At one endpoint of an ancient inversion we detected a highly repeated 565-bp-region that is absent from the Adiantum cp genome. An additional minor inversion of the trnD-GUC, which is possibly shared by all ferns, was identified by comparison between the fern and other land plant cp genomes. By comparing four fern cp genome sequences it was confirmed that two major rearrangements distinguish higher leptosporangiate ferns from basal fern lineages. The Alsophila cp genome is very similar to that of the

  18. Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes

    Directory of Open Access Journals (Sweden)

    Yang Yong-Xia

    2009-06-01

    Full Text Available Abstract Background Ferns have generally been neglected in studies of chloroplast genomics. Before this study, only one polypod and two basal ferns had their complete chloroplast (cp genome reported. Tree ferns represent an ancient fern lineage that first occurred in the Late Triassic. In recent phylogenetic analyses, tree ferns were shown to be the sister group of polypods, the most diverse group of living ferns. Availability of cp genome sequence from a tree fern will facilitate interpretation of the evolutionary changes of fern cp genomes. Here we have sequenced the complete cp genome of a scaly tree fern Alsophila spinulosa (Cyatheaceae. Results The Alsophila cp genome is 156,661 base pairs (bp in size, and has a typical quadripartite structure with the large (LSC, 86,308 bp and small single copy (SSC, 21,623 bp regions separated by two copies of an inverted repeat (IRs, 24,365 bp each. This genome contains 117 different genes encoding 85 proteins, 4 rRNAs and 28 tRNAs. Pseudogenes of ycf66 and trnT-UGU are also detected in this genome. A unique trnR-UCG gene (derived from trnR-CCG is found between rbcL and accD. The Alsophila cp genome shares some unusual characteristics with the previously sequenced cp genome of the polypod fern Adiantum capillus-veneris, including the absence of 5 tRNA genes that exist in most other cp genomes. The genome shows a high degree of synteny with that of Adiantum, but differs considerably from two basal ferns (Angiopteris evecta and Psilotum nudum. At one endpoint of an ancient inversion we detected a highly repeated 565-bp-region that is absent from the Adiantum cp genome. An additional minor inversion of the trnD-GUC, which is possibly shared by all ferns, was identified by comparison between the fern and other land plant cp genomes. Conclusion By comparing four fern cp genome sequences it was confirmed that two major rearrangements distinguish higher leptosporangiate ferns from basal fern lineages. The

  19. Research traditions and evolutionary explanations in medicine.

    Science.gov (United States)

    Méthot, Pierre-Olivier

    2011-02-01

    In this article, I argue that distinguishing 'evolutionary' from 'Darwinian' medicine will help us assess the variety of roles that evolutionary explanations can play in a number of medical contexts. Because the boundaries of evolutionary and Darwinian medicine overlap to some extent, however, they are best described as distinct 'research traditions' rather than as competing paradigms. But while evolutionary medicine does not stand out as a new scientific field of its own, Darwinian medicine is united by a number of distinctive theoretical and methodological claims. For example, evolutionary medicine and Darwinian medicine can be distinguished with respect to the styles of evolutionary explanations they employ. While the former primarily involves 'forward looking' explanations, the latter depends mostly on 'backward looking' explanations. A forward looking explanation tries to predict the effects of ongoing evolutionary processes on human health and disease in contemporary environments (e.g., hospitals). In contrast, a backward looking explanation typically applies evolutionary principles from the vantage point of humans' distant biological past in order to assess present states of health and disease. Both approaches, however, are concerned with the prevention and control of human diseases. In conclusion, I raise some concerns about the claim that 'nothing in medicine makes sense except in the light of evolution'.

  20. Applications of evolutionary economic geography

    NARCIS (Netherlands)

    Boschma, R.A.; Frenken, K.; Puranam, Krishna Kishore; Ravi Kumar Jain B., xx

    2008-01-01

    This paper is written as the first chapter of an edited volume on evolutionary economics and economic geography (Frenken, K., editor, Applied Evolutionary Economics and Economic Geography, Cheltenham: Edward Elgar, expected publication date February 2007). The paper reviews empirical applications of

  1. Comparative mitogenomics, phylogeny and evolutionary history of Leptogorgia (Gorgoniidae).

    Science.gov (United States)

    Poliseno, Angelo; Feregrino, Christian; Sartoretto, Stéphane; Aurelle, Didier; Wörheide, Gert; McFadden, Catherine S; Vargas, Sergio

    2017-10-01

    Molecular analyses of the ecologically important gorgonian octocoral genus Leptogorgia are scant and mostly deal with few species from restricted geographical regions. Here we explore the phylogenetic relationships and the evolutionary history of Leptogorgia using the complete mitochondrial genomes of six Leptogorgia species from different localities in the Atlantic, Mediterranean and eastern Pacific as well as four other genera of Gorgoniidae and Plexauridae. Our mitogenomic analyses showed high inter-specific diversity, variable nucleotide substitution rates and, for some species, novel genomic features such as ORFs of unknown function. The phylogenetic analyses using complete mitogenomes and an extended mtMutS dataset recovered Leptogorgia as polyphyletic, and the species considered in the analyses were split into two defined groups corresponding to different geographic regions, namely the eastern Pacific and the Atlantic-Mediterranean. Our phylogenetic analysis based on mtMutS also showed a clear separation between the eastern Atlantic and South African Leptogorgia, suggesting the need of a taxonomic revision for these forms. A time-calibrated phylogeny showed that the separation of eastern Pacific and western Atlantic species started ca. 20Mya and suggested a recent divergence for eastern Pacific species and for L. sarmentosa-L. capverdensis. Our results also revealed high inter-specific diversity among eastern Atlantic and South African species, highlighting a potential role of the geographical diversification processes and geological events occurring during the last 30Ma in the Atlantic on the evolutionary history of these organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Evolutionary tracks of extended radio sources

    International Nuclear Information System (INIS)

    Baldwin, J.E.

    1982-01-01

    We know almost nothing about the evolutionary tracks of extragalactic radio sources but those tracks are, however, strongly constrained by the distribution of sources in the radio luminosity, P, overall physical size, D, diagram. The P-D diagram for the 3CR 166 source sample of Jenkins et al. (1977) is presented with later additions. Most of the sources are identified and have known redshifts. Because of doubts about the completeness of the sample in this region, the author has made searches in the 6C 151MHz survey for sources with specific surface brightnesses. The numbers found to a limiting flux density of 1-2 Jy suggest that there is no serious underestimate of the numbers in 166 source sample. (Auth.)

  3. Late replication domains are evolutionary conserved in the Drosophila genome.

    Science.gov (United States)

    Andreyenkova, Natalya G; Kolesnikova, Tatyana D; Makunin, Igor V; Pokholkova, Galina V; Boldyreva, Lidiya V; Zykova, Tatyana Yu; Zhimulev, Igor F; Belyaeva, Elena S

    2013-01-01

    Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species.

  4. Clustering of Pan- and Core-genome of Lactobacillus provides Novel Evolutionary Insights for Differentiation.

    Science.gov (United States)

    Inglin, Raffael C; Meile, Leo; Stevens, Marc J A

    2018-04-24

    Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20'800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species' level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class "genetic information processing" is conserved in the core-genome but that "signaling and cellular processes" is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus' evolution is directed

  5. Evolutionary disarmament in interspecific competition.

    Science.gov (United States)

    Kisdi, E; Geritz, S A

    2001-12-22

    Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races.

  6. Iris double recognition based on modified evolutionary neural network

    Science.gov (United States)

    Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai

    2017-11-01

    Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.

  7. Incorporating evolutionary principles into environmental management and policy

    DEFF Research Database (Denmark)

    Lankau, Richard; Jørgensen, Peter Søgaard; Harris, David J.

    2011-01-01

    As policymakers and managers work to mitigate the effects of rapid anthropogenic environmental changes, they need to consider organisms’ responses. In light of recent evidence that evolution can be quite rapid, this now includes evolutionary responses. Evolutionary principles have a long history...... in conservation biology, and the necessary next step for the field is to consider ways in which conservation policy makers and managers can proactively manipulate evolutionary processes to achieve their goals. In this review, we aim to illustrate the potential conservation benefits of an increased understanding...... of evolutionary history and prescriptive manipulation of three basic evolutionary factors: selection, variation, and gene flow. For each, we review and propose ways that policy makers and managers can use evolutionary thinking to preserve threatened species, combat pest species, or reduce undesirable evolutionary...

  8. Statistical calculation of complete events in medium-energy nuclear collisions

    International Nuclear Information System (INIS)

    Randrup, J.

    1984-01-01

    Several heavy-ion accelerators throughout the world are presently able to deliver beams of heavy nuclei with kinetic energies in the range from tens to hundreds of MeV per nucleon, the so-called medium or intermediate energy range. At such energies a large number of final channels are open, each consisting of many nuclear fragments. The disassembly of the collision system is expected to be a very complicated process and a detailed dynamical description is beyond their present capability. However, by virtue of the complexity of the process, statistical considerations may be useful. A statistical description of the disassembly yields the least biased expectations about the outcome of a collision process and provides a meaningful reference against which more specific dynamical models, as well as the data, can be discussed. This lecture presents the essential tools for formulating a statistical model for the nuclear disassembly process. The authors consider the quick disassembly (explosion) of a hot nuclear system, a so-called source, into multifragment final states, which complete according to their statistical weight. First some useful notation is introduced. Then the expressions for exclusive and inclusive distributions are given and the factorization of an exclusive distribution into inclusive ones is carried out. In turn, the grand canonical approximation for one-fragment inclusive distributions is introduced. Finally, it is outlined how to generate a statistical sample of complete final states. On this basis, a model for statistical simulation of complete events in medium-energy nuclear collisions has been developed

  9. Evolutionary economics and industry location

    NARCIS (Netherlands)

    Boschma, R.A.; Frenken, K.

    2003-01-01

    This paper aims to provide the outlines of an evolutionary economic geography of industry location. We discuss two evolutionary explanations of industry location, that is, one that concentrates on spin-offs, and one that focuses attention on knowledge and agglomeration economies. We claim that both

  10. Evolutionary institutionalism.

    Science.gov (United States)

    Fürstenberg, Dr Kai

    Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.

  11. A finite-buffer queue with a single vacation policy: An analytical study with evolutionary positioning

    Directory of Open Access Journals (Sweden)

    Woźniak Marcin

    2014-12-01

    Full Text Available In this paper, application of an evolutionary strategy to positioning a GI/M/1/N-type finite-buffer queueing system with exhaustive service and a single vacation policy is presented. The examined object is modeled by a conditional joint transform of the first busy period, the first idle time and the number of packets completely served during the first busy period. A mathematical model is defined recursively by means of input distributions. In the paper, an analytical study and numerical experiments are presented. A cost optimization problem is solved using an evolutionary strategy for a class of queueing systems described by exponential and Erlang distributions.

  12. Evolutionary foundations for cancer biology.

    Science.gov (United States)

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.

  13. Evolutionary principles and their practical application

    DEFF Research Database (Denmark)

    Hendry, A. P.; Kinnison, M. T.; Heino, M.

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles...... are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design...... of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently...

  14. Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria

    Science.gov (United States)

    Kowalczuk, Zdzisław; Białaszewski, Tomasz

    2018-01-01

    A novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals and applied during parental crossover in the processes of evolutionary multi-objective optimization (EMOO). The article introduces the principles of the genetic-gender approach (GGA) and virtual gender approach (VGA), which are not just evolutionary techniques, but constitute a completely new rule (philosophy) for use in solving MOO tasks. The proposed approaches are validated against principal representatives of the EMOO algorithms of the state of the art in solving benchmark problems in the light of recognized EC performance criteria. The research shows the superiority of the gender approach in terms of effectiveness, reliability, transparency, intelligibility and MOO problem simplification, resulting in the great usefulness and practicability of GGA and VGA. Moreover, an important feature of GGA and VGA is that they alleviate the 'curse' of dimensionality typical of many engineering designs.

  15. Motivational and evolutionary aspects of a physical exercise training program: a longitudinal study.

    Directory of Open Access Journals (Sweden)

    João Paulo Pereira Rosa

    2015-05-01

    Full Text Available Several studies have indicated that motivational level and prior expectations are relevant aspects to increase commitment to physical activity. Moreover, these aspects are not properly described in terms of proximal (Self Determination Theory and distal (evolutionary explanations in the literature. This paper aims to verify if level of motivation (BREQ-2 and expectations regarding regular physical exercise (IMPRAF-54 before starting a one-year exercise program could determine likelihood of completion. Ninety-four volunteers (53 women included a completed protocol group (CPG n=21 and drop-out group (DG n=73. The IMPRAF-54 scale was used to assess six different expectations associated with physical activity, and the BREQ-2 inventory was used to assess the level of motivation in five steps (from amotivation to intrinsic motivation. Both questionnaires were assessed before the regular exercise program. The CPG group presented higher sociability and lower pleasure scores according to IMPRAF-54 domains. A logistic regression showed that a one-point increment on sociability score increased the chance of completing the program by 10%, and the same one-point increment on pleasure score reduced the chance of completing the protocol by 16%. ROC curves were also calculated to establish IMPRAF-54 cutoffs for adherence (Sociability - 18.5 points – 81% sensibility/50% specificity and dropout (Pleasure – 25.5 points – 86% sensibility/20% specificity of the exercise protocol. Our results indicate that an expectation of social interaction was a positive factor in predicting adherence to exercise. Grounded in SDT and its innate needs (competence, autonomy, relatedness, physical exercise is not an end; it is a means to achieve autonomy and self-cohesion. The association of physical activity with social practices, like in hunter-gathering groups, can engage people to be physically active and can provide better results in adherence exercise programs for the

  16. Comparative systems biology across an evolutionary gradient within the Shewanella genus.

    Science.gov (United States)

    Konstantinidis, Konstantinos T; Serres, Margrethe H; Romine, Margaret F; Rodrigues, Jorge L M; Auchtung, Jennifer; McCue, Lee-Ann; Lipton, Mary S; Obraztsova, Anna; Giometti, Carol S; Nealson, Kenneth H; Fredrickson, James K; Tiedje, James M

    2009-09-15

    To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology including the species definition. Here, we take advantage of the completed genomic sequences, expressed proteomic profiles, and physiological studies of 10 closely related Shewanella strains and species to provide quantitative insights into this issue. Our analyses revealed that, despite extensive horizontal gene transfer within these genomes, the genotypic and phenotypic similarities among the organisms were generally predictable from their evolutionary relatedness. The power of the predictions depended on the degree of ecological specialization of the organisms evaluated. Using the gradient of evolutionary relatedness formed by these genomes, we were able to partly isolate the effect of ecology from that of evolutionary divergence and to rank the different cellular functions in terms of their rates of evolution. Our ranking also revealed that whole-cell protein expression differences among these organisms, when the organisms were grown under identical conditions, were relatively larger than differences at the genome level, suggesting that similarity in gene regulation and expression should constitute another important parameter for (new) species description. Collectively, our results provide important new information toward beginning a systems-level understanding of bacterial species and genera.

  17. Autonomous Evolution of Complete Piano Pieces and Performances

    DEFF Research Database (Denmark)

    Dahlstedt, Palle

    2007-01-01

    Evolutionary algorithms are used to evolve musical score material and corresponding performance data, in an autonomous process. In this way complete piano compositions are created and subsequently performed on a computer-controlled grand piano. The efficiency of the creative evolution depends...... gestures. This is combined with a set of automated formalized selection criteria based on experiences from human selection processes in a previous, interactive version of the same system, leading to surprisingly musical output and convincing performances. The system is also capable of rudimentary learning...

  18. Gender Inequality in Interaction--An Evolutionary Account

    Science.gov (United States)

    Hopcroft, Rosemary L.

    2009-01-01

    In this article I argue that evolutionary theorizing can help sociologists and feminists better understand gender inequality. Evolutionary theory explains why control of the sexuality of young women is a priority across most human societies both past and present. Evolutionary psychology has extended our understanding of male violence against…

  19. Calculation Methods for Wallenius’ Noncentral Hypergeometric Distribution

    DEFF Research Database (Denmark)

    Fog, Agner

    2008-01-01

    Two different probability distributions are both known in the literature as "the" noncentral hypergeometric distribution. Wallenius' noncentral hypergeometric distribution can be described by an urn model without replacement with bias. Fisher's noncentral hypergeometric distribution...... is the conditional distribution of independent binomial variates given their sum. No reliable calculation method for Wallenius' noncentral hypergeometric distribution has hitherto been described in the literature. Several new methods for calculating probabilities from Wallenius' noncentral hypergeometric...... distribution are derived. Range of applicability, numerical problems, and efficiency are discussed for each method. Approximations to the mean and variance are also discussed. This distribution has important applications in models of biased sampling and in models of evolutionary systems....

  20. Making evolutionary biology a basic science for medicine

    Science.gov (United States)

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  1. Contemporary issues in evolutionary biology

    Indian Academy of Sciences (India)

    We are delighted to bring to the readers, a set of peer-reviewed papers on evolutionary biology, published as a special issue of the Journal of Genetics. These papers emanated from ruminations upon and discussions at the Foundations of. Evolutionary Theory: the Ongoing Synthesis meeting at Coorg, India, in February ...

  2. Complete Chloroplast Genome Sequence of Coptis chinensis Franch. and Its Evolutionary History

    Science.gov (United States)

    He, Yang; Deng, Cao; Fan, Gang; Qin, Shishang

    2017-01-01

    The Coptis chinensis Franch. is an important medicinal plant from the Ranunculales. We used next generation sequencing technology to determine the complete chloroplast genome of C. chinensis. This genome is 155,484 bp long with 38.17% GC content. Two 26,758 bp long inverted repeats separated the genome into a typical quadripartite structure. The C. chinensis chloroplast genome consists of 128 gene loci, including eight rRNA gene loci, 28 tRNA gene loci, and 92 protein-coding gene loci. Most of the SSRs in C. chinensis are poly-A/T. The numbers of mononucleotide SSRs in C. chinensis and other Ranunculaceae species are fewer than those in Berberidaceae species, while the number of dinucleotide SSRs is greater than that in the Berberidaceae. C. chinensis diverged from other Ranunculaceae species an estimated 81 million years ago (Mya). The divergence between Ranunculaceae and Berberidaceae was ~111 Mya, while the Ranunculales and Magnoliaceae shared a common ancestor during the Jurassic, ~153 Mya. Position 104 of the C. chinensis ndhG protein was identified as a positively selected site, indicating possible selection for the photosystem-chlororespiration system in C. chinensis. In summary, the complete sequencing and annotation of the C. chinensis chloroplast genome will facilitate future studies on this important medicinal species. PMID:28698879

  3. Complete Chloroplast Genome Sequence of Coptis chinensis Franch. and Its Evolutionary History

    Directory of Open Access Journals (Sweden)

    Yang He

    2017-01-01

    Full Text Available The Coptis chinensis Franch. is an important medicinal plant from the Ranunculales. We used next generation sequencing technology to determine the complete chloroplast genome of C. chinensis. This genome is 155,484 bp long with 38.17% GC content. Two 26,758 bp long inverted repeats separated the genome into a typical quadripartite structure. The C. chinensis chloroplast genome consists of 128 gene loci, including eight rRNA gene loci, 28 tRNA gene loci, and 92 protein-coding gene loci. Most of the SSRs in C. chinensis are poly-A/T. The numbers of mononucleotide SSRs in C. chinensis and other Ranunculaceae species are fewer than those in Berberidaceae species, while the number of dinucleotide SSRs is greater than that in the Berberidaceae. C. chinensis diverged from other Ranunculaceae species an estimated 81 million years ago (Mya. The divergence between Ranunculaceae and Berberidaceae was ~111 Mya, while the Ranunculales and Magnoliaceae shared a common ancestor during the Jurassic, ~153 Mya. Position 104 of the C. chinensis ndhG protein was identified as a positively selected site, indicating possible selection for the photosystem-chlororespiration system in C. chinensis. In summary, the complete sequencing and annotation of the C. chinensis chloroplast genome will facilitate future studies on this important medicinal species.

  4. Self-consistent Green’s-function technique for bulk and surface impurity calculations: Surface core-level shifts by complete screening

    DEFF Research Database (Denmark)

    Aldén, M.; Abrikosov, I. A.; Johansson, B.

    1994-01-01

    of the frozen-core and atomic-sphere approximation but, in addition, includes the dipole contribution to the intersphere potential. Within the concept of complete screening, we identify the surface core-level binding-energy shift with the surface segregation energy of a core-ionized atom and use the Green......'s-function impurity technique in a comprehensive study of the surface core-level shifts (SCLS) of the 4d and 5d transition metals. In those cases, where observed data refer to single crystals, we obtain good agreement with experiment, whereas the calculations typically underestimate the measured shift obtained from...

  5. Complete genome sequencing and evolutionary analysis of Indian isolates of Dengue virus type 2

    Energy Technology Data Exchange (ETDEWEB)

    Dash, Paban Kumar, E-mail: pabandash@rediffmail.com; Sharma, Shashi; Soni, Manisha; Agarwal, Ankita; Parida, Manmohan; Rao, P.V.Lakshmana

    2013-07-05

    Highlights: •Complete genome of Indian DENV-2 was deciphered for the first time in this study. •The recent Indian DENV-2 revealed presence of many unique amino acid residues. •Genotype shift (American to Cosmopolitan) characterizes evolution of DENV-2 in India. •Circulation of a unique clade of DENV-2 in South Asia was identified. -- Abstract: Dengue is the most important arboviral infection of global public health significance. It is now endemic in most parts of the South East Asia including India. Though Dengue virus type 2 (DENV-2) is predominantly associated with major outbreaks in India, complete genome information of Indian DENV-2 is not available. In this study, the full-length genome of five DENV-2 isolates (four from 2001 to 2011 and one from 1960), from different parts of India was determined. The complete genome of the Indian DENV-2 was found to be 10,670 bases long with an open reading frame coding for 3391 amino acids. The recent Indian DENV-2 (2001–2011) revealed a nucleotide sequence identity of around 90% and 97% with an older Indian DENV-2 (1960) and closely related Sri Lankan and Chinese DENV-2 respectively. Presence of unique amino acid residues and non-conservative substitutions in critical amino acid residues of major structural and non-structural proteins was observed in recent Indian DENV-2. Selection pressure analysis revealed positive selection in few amino acid sites of the genes encoding for structural and non-structural proteins. The molecular phylogenetic analysis based on comparison of both complete coding region and envelope protein gene with globally diverse DENV-2 viruses classified the recent Indian isolates into a unique South Asian clade within Cosmopolitan genotype. A shift of genotype from American to Cosmopolitan in 1970s characterized the evolution of DENV-2 in India. Present study is the first report on complete genome characterization of emerging DENV-2 isolates from India and highlights the circulation of a

  6. Complete genome sequencing and evolutionary analysis of Indian isolates of Dengue virus type 2

    International Nuclear Information System (INIS)

    Dash, Paban Kumar; Sharma, Shashi; Soni, Manisha; Agarwal, Ankita; Parida, Manmohan; Rao, P.V.Lakshmana

    2013-01-01

    Highlights: •Complete genome of Indian DENV-2 was deciphered for the first time in this study. •The recent Indian DENV-2 revealed presence of many unique amino acid residues. •Genotype shift (American to Cosmopolitan) characterizes evolution of DENV-2 in India. •Circulation of a unique clade of DENV-2 in South Asia was identified. -- Abstract: Dengue is the most important arboviral infection of global public health significance. It is now endemic in most parts of the South East Asia including India. Though Dengue virus type 2 (DENV-2) is predominantly associated with major outbreaks in India, complete genome information of Indian DENV-2 is not available. In this study, the full-length genome of five DENV-2 isolates (four from 2001 to 2011 and one from 1960), from different parts of India was determined. The complete genome of the Indian DENV-2 was found to be 10,670 bases long with an open reading frame coding for 3391 amino acids. The recent Indian DENV-2 (2001–2011) revealed a nucleotide sequence identity of around 90% and 97% with an older Indian DENV-2 (1960) and closely related Sri Lankan and Chinese DENV-2 respectively. Presence of unique amino acid residues and non-conservative substitutions in critical amino acid residues of major structural and non-structural proteins was observed in recent Indian DENV-2. Selection pressure analysis revealed positive selection in few amino acid sites of the genes encoding for structural and non-structural proteins. The molecular phylogenetic analysis based on comparison of both complete coding region and envelope protein gene with globally diverse DENV-2 viruses classified the recent Indian isolates into a unique South Asian clade within Cosmopolitan genotype. A shift of genotype from American to Cosmopolitan in 1970s characterized the evolution of DENV-2 in India. Present study is the first report on complete genome characterization of emerging DENV-2 isolates from India and highlights the circulation of a

  7. Context dependent DNA evolutionary models

    DEFF Research Database (Denmark)

    Jensen, Jens Ledet

    This paper is about stochastic models for the evolution of DNA. For a set of aligned DNA sequences, connected in a phylogenetic tree, the models should be able to explain - in probabilistic terms - the differences seen in the sequences. From the estimates of the parameters in the model one can...... start to make biologically interpretations and conclusions concerning the evolutionary forces at work. In parallel with the increase in computing power, models have become more complex. Starting with Markov processes on a space with 4 states, and extended to Markov processes with 64 states, we are today...... studying models on spaces with 4n (or 64n) number of states with n well above one hundred, say. For such models it is no longer possible to calculate the transition probability analytically, and often Markov chain Monte Carlo is used in connection with likelihood analysis. This is also the approach taken...

  8. Archaeogenetics in evolutionary medicine.

    Science.gov (United States)

    Bouwman, Abigail; Rühli, Frank

    2016-09-01

    Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.

  9. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

    Science.gov (United States)

    Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir

    2011-01-01

    Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353

  10. Mean-Potential Law in Evolutionary Games

    Science.gov (United States)

    Nałecz-Jawecki, Paweł; Miekisz, Jacek

    2018-01-01

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  11. Is evolutionary psychology a metatheory for psychology? A discussion of four major issues in psychology from an evolutionary developmental perspective

    NARCIS (Netherlands)

    Ploeger, A.; van der Maas, H.L.J.; Raijmakers, M.E.J.

    2008-01-01

    Evolutionary psychology has been proposed as a metatheoretical framework for psychology. We argue that evolutionary psychology should be expanded if it is to offer new insights regarding the major issues in psychology. Evolutionary developmental biology can provide valuable new insights into issues

  12. Comparison of evolutionary computation algorithms for solving bi ...

    Indian Academy of Sciences (India)

    failure probability. Multiobjective Evolutionary Computation algorithms (MOEAs) are well-suited for Multiobjective task scheduling on heterogeneous environment. The two Multi-Objective Evolutionary Algorithms such as Multiobjective Genetic. Algorithm (MOGA) and Multiobjective Evolutionary Programming (MOEP) with.

  13. Species co-evolutionary algorithm: a novel evolutionary algorithm based on the ecology and environments for optimization

    DEFF Research Database (Denmark)

    Li, Wuzhao; Wang, Lei; Cai, Xingjuan

    2015-01-01

    and affect each other in many ways. The relationships include competition, predation, parasitism, mutualism and pythogenesis. In this paper, we consider the five relationships between solutions to propose a co-evolutionary algorithm termed species co-evolutionary algorithm (SCEA). In SCEA, five operators...

  14. Fixation Time for Evolutionary Graphs

    Science.gov (United States)

    Nie, Pu-Yan; Zhang, Pei-Ai

    Evolutionary graph theory (EGT) is recently proposed by Lieberman et al. in 2005. EGT is successful for explaining biological evolution and some social phenomena. It is extremely important to consider the time of fixation for EGT in many practical problems, including evolutionary theory and the evolution of cooperation. This study characterizes the time to asymptotically reach fixation.

  15. Parasites and deleterious mutations: interactions influencing the evolutionary maintenance of sex.

    Science.gov (United States)

    Park, A W; Jokela, J; Michalakis, Y

    2010-05-01

    The restrictive assumptions associated with purely genetic and purely ecological mechanisms suggest that neither of the two forces, in isolation, can offer a general explanation for the evolutionary maintenance of sex. Consequently, attention has turned to pluralistic models (i.e. models that apply both ecological and genetic mechanisms). Existing research has shown that combining mutation accumulation and parasitism allows restrictive assumptions about genetic and parasite parameter values to be relaxed while still predicting the maintenance of sex. However, several empirical studies have shown that deleterious mutations and parasitism can reduce fitness to a greater extent than would be expected if the two acted independently. We show how interactions between these genetic and ecological forces can completely reverse predictions about the evolution of reproductive modes. Moreover, we demonstrate that synergistic interactions between infection and deleterious mutations can render sex evolutionarily stable even when there is antagonistic epistasis among deleterious mutations, thereby widening the conditions for the evolutionary maintenance of sex.

  16. Assessing the evolutionary rate of positional orthologous genes in prokaryotes using synteny data

    Directory of Open Access Journals (Sweden)

    Lespinet Olivier

    2007-11-01

    Full Text Available Abstract Background Comparison of completely sequenced microbial genomes has revealed how fluid these genomes are. Detecting synteny blocks requires reliable methods to determining the orthologs among the whole set of homologs detected by exhaustive comparisons between each pair of completely sequenced genomes. This is a complex and difficult problem in the field of comparative genomics but will help to better understand the way prokaryotic genomes are evolving. Results We have developed a suite of programs that automate three essential steps to study conservation of gene order, and validated them with a set of 107 bacteria and archaea that cover the majority of the prokaryotic taxonomic space. We identified the whole set of shared homologs between two or more species and computed the evolutionary distance separating each pair of homologs. We applied two strategies to extract from the set of homologs a collection of valid orthologs shared by at least two genomes. The first computes the Reciprocal Smallest Distance (RSD using the PAM distances separating pairs of homologs. The second method groups homologs in families and reconstructs each family's evolutionary tree, distinguishing bona fide orthologs as well as paralogs created after the last speciation event. Although the phylogenetic tree method often succeeds where RSD fails, the reverse could occasionally be true. Accordingly, we used the data obtained with either methods or their intersection to number the orthologs that are adjacent in for each pair of genomes, the Positional Orthologous Genes (POGs, and to further study their properties. Once all these synteny blocks have been detected, we showed that POGs are subject to more evolutionary constraints than orthologs outside synteny groups, whichever the taxonomic distance separating the compared organisms. Conclusion The suite of programs described in this paper allows a reliable detection of orthologs and is useful for evaluating gene

  17. Evolutionary computation in zoology and ecology.

    Science.gov (United States)

    Boone, Randall B

    2017-12-01

    Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.

  18. Evolutionary accounts of human behavioural diversity

    Science.gov (United States)

    Brown, Gillian R.; Dickins, Thomas E.; Sear, Rebecca; Laland, Kevin N.

    2011-01-01

    Human beings persist in an extraordinary range of ecological settings, in the process exhibiting enormous behavioural diversity, both within and between populations. People vary in their social, mating and parental behaviour and have diverse and elaborate beliefs, traditions, norms and institutions. The aim of this theme issue is to ask whether, and how, evolutionary theory can help us to understand this diversity. In this introductory article, we provide a background to the debate surrounding how best to understand behavioural diversity using evolutionary models of human behaviour. In particular, we examine how diversity has been viewed by the main subdisciplines within the human evolutionary behavioural sciences, focusing in particular on the human behavioural ecology, evolutionary psychology and cultural evolution approaches. In addition to differences in focus and methodology, these subdisciplines have traditionally varied in the emphasis placed on human universals, ecological factors and socially learned behaviour, and on how they have addressed the issue of genetic variation. We reaffirm that evolutionary theory provides an essential framework for understanding behavioural diversity within and between human populations, but argue that greater integration between the subfields is critical to developing a satisfactory understanding of diversity. PMID:21199836

  19. Evolutionary games on graphs

    Science.gov (United States)

    Szabó, György; Fáth, Gábor

    2007-07-01

    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

  20. A Note on Evolutionary Algorithms and Its Applications

    Science.gov (United States)

    Bhargava, Shifali

    2013-01-01

    This paper introduces evolutionary algorithms with its applications in multi-objective optimization. Here elitist and non-elitist multiobjective evolutionary algorithms are discussed with their advantages and disadvantages. We also discuss constrained multiobjective evolutionary algorithms and their applications in various areas.

  1. A dynamic parking charge optimal control model under perspective of commuters' evolutionary game behavior

    Science.gov (United States)

    Lin, XuXun; Yuan, PengCheng

    2018-01-01

    In this research we consider commuters' dynamic learning effect by modeling the trip mode choice behavior from a new perspective of dynamic evolutionary game theory. We explore the behavior pattern of different types of commuters and study the evolution path and equilibrium properties under different traffic conditions. We further establish a dynamic parking charge optimal control (referred to as DPCOC) model to alter commuters' trip mode choice while minimizing the total social cost. Numerical tests show. (1) Under fixed parking fee policy, the evolutionary results are completely decided by the travel time and the only method for public transit induction is to increase the parking charge price. (2) Compared with fixed parking fee policy, DPCOC policy proposed in this research has several advantages. Firstly, it can effectively turn the evolutionary path and evolutionary stable strategy to a better situation while minimizing the total social cost. Secondly, it can reduce the sensitivity of trip mode choice behavior to traffic congestion and improve the ability to resist interferences and emergencies. Thirdly, it is able to control the private car proportion to a stable state and make the trip behavior more predictable for the transportation management department. The research results can provide theoretical basis and decision-making references for commuters' mode choice prediction, dynamic setting of urban parking charge prices and public transit induction.

  2. Applied evolutionary economics and economic geography

    NARCIS (Netherlands)

    Frenken, K.

    2007-01-01

    Applied Evolutionary Economics and Economic Geography" aims to further advance empirical methodologies in evolutionary economics, with a special emphasis on geography and firm location. It does so by bringing together a select group of leading scholars including economists, geographers and

  3. Diversity-Guided Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær

    2002-01-01

    Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few...... algorithms have used a measure to guide the search. The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results...

  4. Phylogenetic inference with weighted codon evolutionary distances.

    Science.gov (United States)

    Criscuolo, Alexis; Michel, Christian J

    2009-04-01

    We develop a new approach to estimate a matrix of pairwise evolutionary distances from a codon-based alignment based on a codon evolutionary model. The method first computes a standard distance matrix for each of the three codon positions. Then these three distance matrices are weighted according to an estimate of the global evolutionary rate of each codon position and averaged into a unique distance matrix. Using a large set of both real and simulated codon-based alignments of nucleotide sequences, we show that this approach leads to distance matrices that have a significantly better treelikeness compared to those obtained by standard nucleotide evolutionary distances. We also propose an alternative weighting to eliminate the part of the noise often associated with some codon positions, particularly the third position, which is known to induce a fast evolutionary rate. Simulation results show that fast distance-based tree reconstruction algorithms on distance matrices based on this codon position weighting can lead to phylogenetic trees that are at least as accurate as, if not better, than those inferred by maximum likelihood. Finally, a well-known multigene dataset composed of eight yeast species and 106 codon-based alignments is reanalyzed and shows that our codon evolutionary distances allow building a phylogenetic tree which is similar to those obtained by non-distance-based methods (e.g., maximum parsimony and maximum likelihood) and also significantly improved compared to standard nucleotide evolutionary distance estimates.

  5. Lessons in modularity: the evolutionary ecology of colonial invertebrates

    Directory of Open Access Journals (Sweden)

    Roger N. Hughes

    2005-06-01

    Full Text Available Benthic colonial invertebrates share with higher plants a modular construction and a sessile adult life. Both types of organism show parallel evolutionary responses to common selective forces, but in contrast to the long-established focus on plants, comparable study of colonial invertebrates has developed relatively recently, largely owing to the application of new techniques in image processing and molecular biology. Species whose life cycles are readily completed under laboratory conditions and whose colonies are easily propagated from cuttings provide powerful models for experimentally investigating fundamental evolutionary problems, including metabolic allometry, the manifestation of ageing and the origin of allorecognition systems. Free of the confounding influences of behavioural manipulation and costs of copulation, colonial invertebrates whose water-borne sperm fertilize retained eggs lend themselves well to the experimental study of cryptic female choice, sperm competition and sexual conflict. In these respects, it will be productive to adopt and extend theoretical frameworks developed for flowering plants to guide experimental investigation of modular animals. Since mate choice occurs at the cellular level in modular animals, reproductive isolation is uncorrelated with morphology and cryptic speciation is likely to be widespread.

  6. Evolutionary analyses of non-genealogical bonds produced by introgressive descent.

    Science.gov (United States)

    Bapteste, Eric; Lopez, Philippe; Bouchard, Frédéric; Baquero, Fernando; McInerney, James O; Burian, Richard M

    2012-11-06

    All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.

  7. The complete mitochondrial genomes of the Galápagos iguanas, Amblyrhynchus cristatus and Conolophus subcristatus.

    Science.gov (United States)

    MacLeod, Amy; Irisarri, Iker; Vences, Miguel; Steinfartz, Sebastian

    2016-09-01

    The Galápagos iguanas are among the oldest vertebrate lineages on the Galápagos archipelago, and the evolutionary history of this clade is of great interest to biologists. We describe here the complete mitochondrial genomes of the marine iguana, Amblyrhynchus cristatus (Genbank accession number: KT277937) and the land iguana Conolophus subcristatus (Genbank accession number: KT277936). The genomes contain 13 protein-coding genes, 22 transfer RNAs, and two ribosomal RNAs genes, as well as a control region (CR). Both species have an identical gene order, which matches that of Iguana iguana. The CR of both Galápagos iguanas features similar tandem repeats units, which are absent in I. iguana. We present a phylogeny of the Iguanidae based on complete mitochondrial genomes, which confirms the sister-group relationship of Galápagos iguanas. These new mitochondrial genomes constitute an important data source for future exploration of the phylogenetic relationships and evolutionary history of the Galápagos iguanas.

  8. Evolutionary perspectives on ageing.

    Science.gov (United States)

    Reichard, Martin

    2017-10-01

    From an evolutionary perspective, ageing is a decrease in fitness with chronological age - expressed by an increase in mortality risk and/or decline in reproductive success and mediated by deterioration of functional performance. While this makes ageing intuitively paradoxical - detrimental to individual fitness - evolutionary theory offers answers as to why ageing has evolved. In this review, I first briefly examine the classic evolutionary theories of ageing and their empirical tests, and highlight recent findings that have advanced our understanding of the evolution of ageing (condition-dependent survival, positive pleiotropy). I then provide an overview of recent theoretical extensions and modifications that accommodate those new discoveries. I discuss the role of indeterminate (asymptotic) growth for lifetime increases in fecundity and ageing trajectories. I outline alternative views that challenge a universal existence of senescence - namely the lack of a germ-soma distinction and the ability of tissue replacement and retrogression to younger developmental stages in modular organisms. I argue that rejuvenation at the organismal level is plausible, but includes a return to a simple developmental stage. This may exempt a particular genotype from somatic defects but, correspondingly, removes any information acquired during development. A resolution of the question of whether a rejuvenated individual is the same entity is central to the recognition of whether current evolutionary theories of ageing, with their extensions and modifications, can explain the patterns of ageing across the Tree of Life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Interpreting Evolutionary Diagrams: When Topology and Process Conflict

    Science.gov (United States)

    Catley, Kefyn M.; Novick, Laura R.; Shade, Courtney K.

    2010-01-01

    The authors argue that some diagrams in biology textbooks and the popular press presented as depicting evolutionary relationships suggest an inappropriate (anagenic) conception of evolutionary history. The goal of this research was to provide baseline data that begin to document how college students conceptualize the evolutionary relationships…

  10. Evolutionary engineering of industrial microorganisms-strategies and applications.

    Science.gov (United States)

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  11. Democratizing evolutionary biology, lessons from insects

    DEFF Research Database (Denmark)

    Dunn, Robert Roberdeau; Beasley, DeAnna E.

    2016-01-01

    The engagement of the public in the scientific process is an old practice. Yet with recent advances in technology, the role of the citizen scientist in studying evolutionary processes has increased. Insects provide ideal models for understanding these evolutionary processes at large scales. This ...

  12. Evolutionary dynamics of protein domain architecture in plants

    Directory of Open Access Journals (Sweden)

    Zhang Xue-Cheng

    2012-01-01

    Full Text Available Abstract Background Protein domains are the structural, functional and evolutionary units of the protein. Protein domain architectures are the linear arrangements of domain(s in individual proteins. Although the evolutionary history of protein domain architecture has been extensively studied in microorganisms, the evolutionary dynamics of domain architecture in the plant kingdom remains largely undefined. To address this question, we analyzed the lineage-based protein domain architecture content in 14 completed green plant genomes. Results Our analyses show that all 14 plant genomes maintain similar distributions of species-specific, single-domain, and multi-domain architectures. Approximately 65% of plant domain architectures are universally present in all plant lineages, while the remaining architectures are lineage-specific. Clear examples are seen of both the loss and gain of specific protein architectures in higher plants. There has been a dynamic, lineage-wise expansion of domain architectures during plant evolution. The data suggest that this expansion can be largely explained by changes in nuclear ploidy resulting from rounds of whole genome duplications. Indeed, there has been a decrease in the number of unique domain architectures when the genomes were normalized into a presumed ancestral genome that has not undergone whole genome duplications. Conclusions Our data show the conservation of universal domain architectures in all available plant genomes, indicating the presence of an evolutionarily conserved, core set of protein components. However, the occurrence of lineage-specific domain architectures indicates that domain architecture diversity has been maintained beyond these core components in plant genomes. Although several features of genome-wide domain architecture content are conserved in plants, the data clearly demonstrate lineage-wise, progressive changes and expansions of individual protein domain architectures, reinforcing

  13. Hierarchical classification with a competitive evolutionary neural tree.

    Science.gov (United States)

    Adams, R G.; Butchart, K; Davey, N

    1999-04-01

    A new, dynamic, tree structured network, the Competitive Evolutionary Neural Tree (CENT) is introduced. The network is able to provide a hierarchical classification of unlabelled data sets. The main advantage that the CENT offers over other hierarchical competitive networks is its ability to self determine the number, and structure, of the competitive nodes in the network, without the need for externally set parameters. The network produces stable classificatory structures by halting its growth using locally calculated heuristics. The results of network simulations are presented over a range of data sets, including Anderson's IRIS data set. The CENT network demonstrates its ability to produce a representative hierarchical structure to classify a broad range of data sets.

  14. Android malware detection based on evolutionary super-network

    Science.gov (United States)

    Yan, Haisheng; Peng, Lingling

    2018-04-01

    In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.

  15. Evolutionary theory and the naturalist fallacy

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    2008-01-01

    that great work of art are also automatically fitness-enhancing in the present day environment, at that there are simple correllations between whether a work of art has a high aesthetic value and whether it is fitness-enhancing or not.  Keywords :  Evolutionary aesthetics, film theory, literary theory......The article is an invited response to a target article by Joseph Carroll entitled "An evolutionary paradigm for literary study". It argues that the target article  misuse the fact that works of art are based on adaptations that were fitness-enhancing in the era of evolutionary adaptations to claim...

  16. Evolutionary public health: introducing the concept.

    Science.gov (United States)

    Wells, Jonathan C K; Nesse, Randolph M; Sear, Rebecca; Johnstone, Rufus A; Stearns, Stephen C

    2017-07-29

    The emerging discipline of evolutionary medicine is breaking new ground in understanding why people become ill. However, the value of evolutionary analyses of human physiology and behaviour is only beginning to be recognised in the field of public health. Core principles come from life history theory, which analyses the allocation of finite amounts of energy between four competing functions-maintenance, growth, reproduction, and defence. A central tenet of evolutionary theory is that organisms are selected to allocate energy and time to maximise reproductive success, rather than health or longevity. Ecological interactions that influence mortality risk, nutrient availability, and pathogen burden shape energy allocation strategies throughout the life course, thereby affecting diverse health outcomes. Public health interventions could improve their own effectiveness by incorporating an evolutionary perspective. In particular, evolutionary approaches offer new opportunities to address the complex challenges of global health, in which populations are differentially exposed to the metabolic consequences of poverty, high fertility, infectious diseases, and rapid changes in nutrition and lifestyle. The effect of specific interventions is predicted to depend on broader factors shaping life expectancy. Among the important tools in this approach are mathematical models, which can explore probable benefits and limitations of interventions in silico, before their implementation in human populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A teleofunctional account of evolutionary mismatch.

    Science.gov (United States)

    Cofnas, Nathan

    When the environment in which an organism lives deviates in some essential way from that to which it is adapted, this is described as "evolutionary mismatch," or "evolutionary novelty." The notion of mismatch plays an important role, explicitly or implicitly, in evolution-informed cognitive psychology, clinical psychology, and medicine. The evolutionary novelty of our contemporary environment is thought to have significant implications for our health and well-being. However, scientists have generally been working without a clear definition of mismatch. This paper defines mismatch as deviations in the environment that render biological traits unable, or impaired in their ability, to produce their selected effects (i.e., to perform their proper functions in Neander's sense). The machinery developed by Millikan in connection with her account of proper function, and with her related teleosemantic account of representation, is used to identify four major types, and several subtypes, of evolutionary mismatch. While the taxonomy offered here does not in itself resolve any scientific debates, the hope is that it can be used to better formulate empirical hypotheses concerning the effects of mismatch. To illustrate, it is used to show that the controversial hypothesis that general intelligence evolved as an adaptation to handle evolutionary novelty can, contra some critics, be formulated in a conceptually coherent way.

  18. The evolutionary ecology of molecular replicators.

    Science.gov (United States)

    Nee, Sean

    2016-08-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.

  19. Multiobjective Multifactorial Optimization in Evolutionary Multitasking.

    Science.gov (United States)

    Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen

    2016-05-03

    In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.

  20. Evolutionary heritage influences Amazon tree ecology

    Science.gov (United States)

    Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517

  1. Evolutionary heritage influences Amazon tree ecology.

    Science.gov (United States)

    Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R

    2016-12-14

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.

  2. Evolutionary cell biology: two origins, one objective.

    Science.gov (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  3. How to Identify and Interpret Evolutionary Tree Diagrams

    Science.gov (United States)

    Kong, Yi; Anderson, Trevor; Pelaez, Nancy

    2016-01-01

    Evolutionary trees are key tools for modern biology and are commonly portrayed in textbooks to promote learning about biological evolution. However, many people have difficulty in understanding what evolutionary trees are meant to portray. In fact, some ideas that current professional biologists depict with evolutionary trees are neither clearly…

  4. Evolutionary biology of bacterial and fungal pathogens

    National Research Council Canada - National Science Library

    Baquero, F

    2008-01-01

    ... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...

  5. Regional systems of innovation: an evolutionary perspective

    OpenAIRE

    P Cooke; M G Uranga; G Etxebarria

    1998-01-01

    The authors develop the concept of regional systems of innovation and relate it to preexisting research on national systems of innovation. They argue that work conducted in the 'new regional science' field is complementary to systems of innovation approaches. They seek to link new regional work to evolutionary economics, and argue for the development of evolutionary regional science. Common elements of interest to evolutionary innovation research and new regional science are important in unde...

  6. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae

    Directory of Open Access Journals (Sweden)

    Dong-Keun Yi

    2016-06-01

    Full Text Available The plant chloroplast (cp genome has maintained a relatively conserved structure and gene content throughout evolution. Cp genome sequences have been used widely for resolving evolutionary and phylogenetic issues at various taxonomic levels of plants. Here, we report the complete cp genome of Abies nephrolepis. The A. nephrolepis cp genome is 121,336 base pairs (bp in length including a pair of short inverted repeat regions (IRa and IRb of 139 bp each separated by a small single copy (SSC region of 54,323 bp (SSC and a large single copy region of 66,735 bp (LSC. It contains 114 genes, 68 of which are protein coding genes, 35 tRNA and four rRNA genes, six open reading frames, and one pseudogene. Seventeen repeat units and 64 simple sequence repeats (SSR have been detected in A. nephrolepis cp genome. Large IR sequences locate in 42-kb inversion points (1186 bp. The A. nephrolepis cp genome is identical to Abies koreana’s which is closely related to taxa. Pairwise comparison between two cp genomes revealed 140 polymorphic sites in each. Complete cp genome sequence of A. nephrolepis has a significant potential to provide information on the evolutionary pattern of Abietoideae and valuable data for development of DNA markers for easy identification and classification.

  7. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  8. Complete genome sequence of a Chinese isolate of pepper vein yellows virus and evolutionary analysis based on the CP, MP and RdRp coding regions.

    Science.gov (United States)

    Liu, Maoyan; Liu, Xiangning; Li, Xun; Zhang, Deyong; Dai, Liangyin; Tang, Qianjun

    2016-03-01

    The genome sequence of pepper vein yellows virus (PeVYV) (PeVYV-HN, accession number KP326573), isolated from pepper plants (Capsicum annuum L.) grown at the Hunan Vegetables Institute (Changsha, Hunan, China), was determined by deep sequencing of small RNAs. The PeVYV-HN genome consists of 6244 nucleotides, contains six open reading frames (ORFs), and is similar to that of an isolate (AB594828) from Japan. Its genomic organization is similar to that of members of the genus Polerovirus. Sequence analysis revealed that PeVYV-HN shared 92% sequence identity with the Japanese PeVYV genome at both the nucleotide and amino acid levels. Evolutionary analysis based on the coat protein (CP), movement protein (MP), and RNA-dependent RNA polymerase (RdRP) showed that PeVYV could be divided into two major lineages corresponding to their geographical origins. The Asian isolates have a higher population expansion frequency than the African isolates. Negative selection and genetic drift (founder effect) were found to be the potential drivers of the molecular evolution of PeVYV. Moreover, recombination was not the distinct cause of PeVYV evolution. This is the first report of a complete genomic sequence of PeVYV in China.

  9. Evolutionary mysteries in meiosis.

    Science.gov (United States)

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E; Wijnker, Erik; Haag, Christoph R

    2016-10-19

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  10. Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management.

    Science.gov (United States)

    Laugen, Ane T; Engelhard, Georg H; Whitlock, Rebecca; Arlinghaus, Robert; Dankel, Dorothy J; Dunlop, Erin S; Eikeset, Anne M; Enberg, Katja; Jørgensen, Christian; Matsumura, Shuichi; Nusslé, Sébastien; Urbach, Davnah; Baulier, Loїc; Boukal, David S; Ernande, Bruno; Johnston, Fiona D; Mollet, Fabian; Pardoe, Heidi; Therkildsen, Nina O; Uusi-Heikkilä, Silva; Vainikka, Anssi; Heino, Mikko; Rijnsdorp, Adriaan D; Dieckmann, Ulf

    2014-03-01

    Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.

  11. Freud: the first evolutionary psychologist?

    Science.gov (United States)

    LeCroy, D

    2000-04-01

    An evolutionary perspective on attachment theory and psychoanalytic theory brings these two fields together in interesting ways. Application of the evolutionary principle of parent-offspring conflict to attachment theory suggests that attachment styles represent context-sensitive, evolved (adaptive) behaviors. In addition, an emphasis on offspring counter-strategies to adult reproductive strategies leads to consideration of attachment styles as overt manifestations of psychodynamic mediating processes, including the defense mechanisms of repression and reaction formation.

  12. Protecting the larger fish: an ecological, economical and evolutionary analysis using a demographic model

    DEFF Research Database (Denmark)

    Verdiell, Nuria Calduch

    . Recently, there is increasing evidence that this size-selective fishing reduces the chances of maintaining populations at levels sufficient to produce maximum sustainable yields, the chances of recovery/rebuilding populations that have been depleted/collapsed and may causes rapid evolutionary changes...... and the consequent changes in yield. We attempt to evaluate the capability of the larger fish to mitigate the evolutionary change on life-history traits caused by fishing, while also maintaining a sustainable annual yield. This is achieved by calculating the expected selection response on three life-history traits......Many marine fish stocks are reported as overfished on a global scale. This overfishing not only removes fish biomass, but also causes dramatic changes in the age and size structure of fish stocks. In particular, targeting of the larger individuals truncates the age and size structure of stocks...

  13. Motivational and evolutionary aspects of a physical exercise training program: a longitudinal study

    Science.gov (United States)

    Rosa, João P. P.; de Souza, Altay A. L.; de Lima, Giscard H. O.; Rodrigues, Dayane F.; de Aquino Lemos, Valdir; da Silva Alves, Eduardo; Tufik, Sergio; de Mello, Marco T.

    2015-01-01

    Several studies have indicated that motivational level and prior expectations influence one’s commitment to physical activity. Moreover, these aspects are not properly described in terms of proximal (SDT, Self Determination Theory) and distal (evolutionary) explanations in the literature. This paper aims to verify if level of motivation (BREQ-2, Behavioral Regulation in Exercise Questionnaire-2) and expectations regarding regular physical exercise (IMPRAF-54) before starting a 1-year exercise program could determine likelihood of completion. Ninety-four volunteers (53 women) included a completed protocol group (CPG; n = 21) and drop-out group (n = 73). The IMPRAF-54 scale was used to assess six different expectations associated with physical activity, and the BREQ-2 inventory was used to assess the level of motivation in five steps (from amotivation to intrinsic motivation). Both questionnaires were assessed before starting a regular exercise program. The CPG group presented higher sociability and lower pleasure scores according to IMPRAF-54 domains. A logistic regression analysis showed that a one-point increment on sociability score increased the chance of completing the program by 10%, and the same one-point increment on pleasure score reduced the chance of completing the protocol by 16%. ROC curves were also calculated to establish IMPRAF-54 cutoffs for adherence (Sociability – 18.5 points – 81% sensibility/50% specificity) and dropout (Pleasure – 25.5 points – 86% sensibility/20% specificity) of the exercise protocol. Our results indicate that an expectation of social interaction was a positive factor in predicting adherence to exercise. Grounded in SDT and its innate needs (competence, autonomy, relatedness), physical exercise is not an end; it is a means to achieve autonomy and self-cohesion. The association of physical activity with social practices, as occurs in hunter-gathering groups, can engage people to be physically active and can provide

  14. [Evolutionary medicine: an introduction. Evolutionary biology, a missing element in medical teaching].

    Science.gov (United States)

    Swynghedauw, Bernard

    2009-05-01

    The aim of this brief review article is to help to reconcile medicine with evolutionary biology, a subject that should be taught in medical school. Evolutionary medicine takes the view that contemporary ills are related to an incompatibility between the environment in which humans currently live and their genomes, which have been shaped by diferent environmental conditions during biological evolution. Human activity has recently induced acute environmental modifications that have profoundly changed the medical landscape. Evolutionary biology is an irreversible, ongoing and discontinuous process characterized by periods of stasis followed by accelerations. Evolutionary biology is determined by genetic mutations, which are selected either by Darwinian selective pressure or randomly by genetic drift. Most medical events result from a genome/environment conflict. Some may be purely genetic, as in monogenic diseases, and others purely environmental, such as traffic accidents. Nevertheless, in most common diseases the clinical landscape is determined by the conflict between these two factors, the genetic elements of which are gradually being unraveled Three examples are examined in depth:--The medical consequences of the greenhouse effect. The absence of excess mortality during recent heat waves suggests that the main determinant of mortality in the 2003 heatwave was heatstroke and old age. The projected long-term effects of global warming call for research on thermolysis, a forgotten branch of physiology.--The hygiene hypothesis postulates that the exponential rise in autoimmune and allergic diseases is linked to lesser exposure to infectious agents, possibly involving counter-regulatory factors such as IL-10.--The recent rise in the incidence of obesity and type 2 diabetes in rich countries can be considered to result from a conflict between a calorie-rich environment and gene variants that control appetite. These variants are currently being identified by genome

  15. Calculation of a complete data set for n + 83Kr, 84Kr, 85Kr and 86Kr in the energy region 0.001-20 MeV

    International Nuclear Information System (INIS)

    Cai Chonghai

    1999-01-01

    Complete reaction cross sections, secondary neutron spectra and elastic scattering angular distributions of 83 Kr, 84 Kr, 85 Kr and 86 Kr in the energy region 0.001-20 MeV are calculated, theoretical results are in ENDF/B-6 in pretty good accordance with experimental data

  16. A Multiagent Evolutionary Algorithm for the Resource-Constrained Project Portfolio Selection and Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Yongyi Shou

    2014-01-01

    Full Text Available A multiagent evolutionary algorithm is proposed to solve the resource-constrained project portfolio selection and scheduling problem. The proposed algorithm has a dual level structure. In the upper level a set of agents make decisions to select appropriate project portfolios. Each agent selects its project portfolio independently. The neighborhood competition operator and self-learning operator are designed to improve the agent’s energy, that is, the portfolio profit. In the lower level the selected projects are scheduled simultaneously and completion times are computed to estimate the expected portfolio profit. A priority rule-based heuristic is used by each agent to solve the multiproject scheduling problem. A set of instances were generated systematically from the widely used Patterson set. Computational experiments confirmed that the proposed evolutionary algorithm is effective for the resource-constrained project portfolio selection and scheduling problem.

  17. Neutronic and thermal-hydraulic calculations for the AP-1000 NPP with the MCNP6 and SERPENT codes

    International Nuclear Information System (INIS)

    Stefani, Giovanni Laranjo; Maiorino, Jose R.; Santos, Thiago A.

    2015-01-01

    The AP-1000 is an evolutionary PWR reactor designed as an evolution of the AP-600 project. The reactor is already pre-licensed by NRC, and is considered to have achieved high standards of safety, possible short construction time and good economic competitiveness. The core is a 17x17 typical assembly using Zirlo as cladding, 3 different enrichment regions, and is controlled by boron, control banks, and burnable poison. The expected fuel final burnup is 62 MWD/ton U and a cycle of 18 months. In this paper we present results for neutronic and thermal-hydraulic calculations for the AP-1000. We use the MCNP6 and SERPENT codes to calculate the first cycle of operation. The calculated parameters are K eff at BOL and EOL and its variation with burnup and neutron flux, and reactivity coefficients. The production of transuranic elements such as Pu-239 and Pu-241, and burning fuel are calculated over time. In the work a complete reactor was burned for 450 days with no control elements, boron or burnable poison were considered, these results were compared with data provided by the Westinghouse. The results are compared with those reported in the literature. A simple thermal hydraulic analysis allows verification of thermal limits such as fuel and cladding temperatures, and MDNB. (author)

  18. Neutronic and thermal-hydraulic calculations for the AP-1000 NPP with the MCNP6 and SERPENT codes

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, Giovanni Laranjo; Maiorino, Jose R.; Santos, Thiago A., E-mail: giovanni.laranjo@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais; Rossi, Pedro R., E-mail: pedro.russorossi@gmail.com [FERMIUM - Tecnologia Nuclear, Sao Paulo, SP (Brazil)

    2015-07-01

    The AP-1000 is an evolutionary PWR reactor designed as an evolution of the AP-600 project. The reactor is already pre-licensed by NRC, and is considered to have achieved high standards of safety, possible short construction time and good economic competitiveness. The core is a 17x17 typical assembly using Zirlo as cladding, 3 different enrichment regions, and is controlled by boron, control banks, and burnable poison. The expected fuel final burnup is 62 MWD/ton U and a cycle of 18 months. In this paper we present results for neutronic and thermal-hydraulic calculations for the AP-1000. We use the MCNP6 and SERPENT codes to calculate the first cycle of operation. The calculated parameters are K{sub eff} at BOL and EOL and its variation with burnup and neutron flux, and reactivity coefficients. The production of transuranic elements such as Pu-239 and Pu-241, and burning fuel are calculated over time. In the work a complete reactor was burned for 450 days with no control elements, boron or burnable poison were considered, these results were compared with data provided by the Westinghouse. The results are compared with those reported in the literature. A simple thermal hydraulic analysis allows verification of thermal limits such as fuel and cladding temperatures, and MDNB. (author)

  19. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  20. A Hybrid Chaotic Quantum Evolutionary Algorithm

    DEFF Research Database (Denmark)

    Cai, Y.; Zhang, M.; Cai, H.

    2010-01-01

    A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....

  1. New pillars of evolutionary theory in the light of genomics

    International Nuclear Information System (INIS)

    Lopez Carrascal, Camilo Ernesto

    2011-01-01

    The evolutionist theory proposed by Darwin is one of the fundamental pillars in biology. Darwin's theory was solidified with the modern synthesis of evolutionary biology thanks to the rediscovery of Mendel's work, which laid the genetic basis of heredity. In recent years, great progress has been acquired in the sequencing and analyses of complete genomes, which have provided several elements to discuss some Darwinists tenets of evolution. The evidence of gene duplication and whole-genome duplication, the horizontal gene transfer and the endosymbiosis process question the idea that evolution proceeds through the gradual accumulation of infinitesimally small random changes. The new evidence of neutral selection on the genomics context reveals other mechanisms of evolution not necessarily related with the idea of progress or with an adaptationist program as was originally stated by the Darwin's theory. in this paper, I present these and other concepts such as gene regulation, molecular mechanisms of development and some environmental aspects (epigenesis and phenotypic plasticity) as starting points to think in the necessity to update the evolutionary theory which in my opinion should be more inclusive, pluralistic and consistent with our current knowledge.

  2. Evolutionary explanations in medicine: how do they differ and how to benefit from them.

    Science.gov (United States)

    Lozano, George A

    2010-04-01

    Evolutionary explanations, many of which have appeared on the pages of this journal, are becoming more pervasive and influential in medicine, so it is becoming more important to understand how these types of explanations differ from the proximate approach that is more common in medicine, and how the evolutionary approach can contribute to medicine. Understanding of any biological phenomenon can occur at four levels: (1) ontogeny (2) causation, (3) function and (4) evolution. These approaches are not mutually exclusive, and whereas the first two are more common in medical practice, a complete explanation requires all four levels of analysis. Two major differences among these approaches are the apparent degree of immediacy associated with them, and the extent to which they apply to individuals rather than populations. Criticisms of adaptive explanations often arise from a failure to understand the complementary nature of these four types of explanations. Other unwarranted criticisms result from a failure to appreciate that adaptive explanations often apply to populations, not individuals. A third type of criticism is driven by the mistaken belief that adaptive explanations somehow justify morally reprehensible behaviours. Finally, evolutionary explanations sometimes face the criticism of "personal incredulity". Adaptive explanations must be consistent with basic evolutionary concepts and must adhere to the physical reality of the phenomenon in question. Their value, however, comes not in devising a seemingly rational explanation, but in their predictions. Testable predictions must be explicitly stated and clearly articulated. They must differ from those of arising from other hypotheses and must not only be interesting to evolutionary biologists, but also useful to medical practitioners. Integration of the proximate and the ultimate approaches is possible and potentially beneficial to both evolutionists and physicians, but it requires some basic understanding of our

  3. Evolutionary medicine: its scope, interest and potential.

    Science.gov (United States)

    Stearns, Stephen C

    2012-11-07

    This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host-pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous.

  4. Temporal knowledge and autobiographical memory: an evolutionary perspective

    OpenAIRE

    Skowronski, John J.; Sedikides, Constantine

    2007-01-01

    Section I: Philosophical issues 1. Evolutionary pyschology in the round , Robin Dunbar & Louise Barrett 2. The power of culture , Henry Plotkin 3. Evolution and psychology in philosophical perspective , Matteo Mameli 4. Niche construction, human behavioural ecology and evolutionary psychology , Kevin N Laland 5. Group level evolutionary processes , David Sloan Wilson Section II: The comparative Approach 6. Homologizing the mind , Drew Rendall, Hugh Nottman & John ...

  5. The ABCs of an evolutionary education science: The academic, behavioral, and cultural implications of an evolutionary approach to education theory and practice

    Science.gov (United States)

    Kauffman, Rick, Jr.

    Calls for improving research-informed policy in education are everywhere. Yet, while there is an increasing trend towards science-based practice, there remains little agreement over which of the sciences to consult and how to organize a collective effort between them. What Education lacks is a general theoretical framework through which policies can be constructed, implemented, and assessed. This dissertation submits that evolutionary theory can provide a suitable framework for coordinating educational policies and practice, and can provide the entire field of education with a clearer sense of how to better manage the learning environment. This dissertation explores two broad paths that outline the conceptual foundations for an Evolutionary Education Science: "Teaching Evolution" and "Using Evolution to Teach." Chapter 1 introduces both of these themes. After describing why evolutionary science is best suited for organizing education research and practice, Chapter 1 proceeds to "teach" an overview of the "evolutionary toolkit"---the mechanisms and principles that underlie the modern evolutionary perspective. The chapter then employs the "toolkit" in examining education from an evolutionary perspective, outlining the evolutionary precepts that can guide theorizing and research in education, describing how educators can "use evolution to teach.". Chapters 2-4 expand on this second theme. Chapters 2 and 3 describe an education program for at-risk 9th and 10th grade students, the Regents Academy, designed entirely with evolutionary principles in mind. The program was rigorously assessed in a randomized control design and has demonstrated success at improving students' academic performance (Chapter 2) and social & behavioral development (Chapter 3). Chapter 4 examines current teaching strategies that underlie effective curriculum-instruction-assessment practices and proposes a framework for organizing successful, evidence-based strategies for neural

  6. Evolutionary Game Theory: A Renaissance

    Directory of Open Access Journals (Sweden)

    Jonathan Newton

    2018-05-01

    Full Text Available Economic agents are not always rational or farsighted and can make decisions according to simple behavioral rules that vary according to situation and can be studied using the tools of evolutionary game theory. Furthermore, such behavioral rules are themselves subject to evolutionary forces. Paying particular attention to the work of young researchers, this essay surveys the progress made over the last decade towards understanding these phenomena, and discusses open research topics of importance to economics and the broader social sciences.

  7. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  8. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  9. The integration of Darwinism and evolutionary morphology: Alexej Nikolajevich Sewertzoff (1866-1936) and the developmental basis of evolutionary change.

    Science.gov (United States)

    Levit, George S; Hossfeld, Uwe; Olsson, Lennart

    2004-07-15

    The growth of evolutionary morphology in the late 19th and early 20th centuries was inspired by the work of Carl Gegenbaur (1826-1903) and his protégé and friend Ernst Haeckel (1834-1919). However, neither of them succeeded in creating and applying a strictly Darwinian (selectionist) methodology. This task was left to the next generation of evolutionary morphologists. In this paper we present a relatively unknown researcher, Alexej Nikolajevich Sewertzoff (1866-1936) who made important contributions towards a synthesis of Darwinism and evolutionary morphology. Copyright 2004 Wiley-Liss, Inc.

  10. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  11. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  12. Islamic medicine and evolutionary medicine: a comparative analysis.

    Science.gov (United States)

    Saniotis, Arthur

    2012-01-01

    The advent of evolutionary medicine in the last two decades has provided new insights into the causes of human disease and possible preventative strategies. One of the strengths of evolutionary medicine is that it follows a multi-disciplinary approach. Such an approach is vital to future biomedicine as it enables for the infiltration of new ideas. Although evolutionary medicine uses Darwinian evolution as a heuristic for understanding human beings' susceptibility to disease, this is not necessarily in conflict with Islamic medicine. It should be noted that current evolutionary theory was first expounded by various Muslim scientists such as al-Jāḥiẓ, al-Ṭūsī, Ibn Khaldūn and Ibn Maskawayh centuries before Darwin and Wallace. In this way, evolution should not be viewed as being totally antithetical to Islam. This article provides a comparative overview of Islamic medicine and Evolutionary medicine as well as drawing points of comparison between the two approaches which enables their possible future integration.

  13. [Evolutionary perspective in precocious puberty].

    Science.gov (United States)

    Hochberg, Ze'ev

    2014-10-01

    Pubertal development is subject to substantial heritability, but much variation remains to be explained, including fast changes over the last 150 years, that cannot be explained by changes of gene frequency in the population. This article discusses the influence of environmental factors to adjust maturational tempo in the service of fitness goals. Utilizing evolutionary development thinking (evo-devo), the author examines adolescence as an evolutionary life-history stage in its developmental context. The transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, social needs of adolescence and maturation toward youth and adulthood. Using Belsky's evolutionary theory of socialization, I show that familial psychosocial environment during the infancy-childhood and childhood-juvenility transitions foster a fast life-history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. The implications of the evo-devo framework for theory building, illuminates new directions in the understanding of precocious puberty other than a diagnosis of a disease.

  14. Evolutionary engineering for industrial microbiology.

    Science.gov (United States)

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  15. Handbook of differential equations evolutionary equations

    CERN Document Server

    Dafermos, CM

    2008-01-01

    The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE's, written by leading experts.- Review of new results in the area- Continuation of previous volumes in the handbook series covering Evolutionary PDEs- Written by leading experts

  16. Evolutionary Genomics of Life in (and from) the Sea

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Dehal, Paramvir; Fuerstenberg, Susan I.

    2006-01-09

    High throughput genome sequencing centers that were originally built for the Human Genome Project (Lander et al., 2001; Venter et al., 2001) have now become an engine for comparative genomics. The six largest centers alone are now producing over 150 billion nucleotides per year, more than 50 times the amount of DNA in the human genome, and nearly all of this is directed at projects that promise great insights into the pattern and processes of evolution. Unfortunately, this data is being produced at a pace far exceeding the capacity of the scientific community to provide insightful analysis, and few scientists with training and experience in evolutionary biology have played prominent roles to date. One of the consequences is that poor quality analyses are typical; for example, orthology among genes is generally determined by simple measures of sequence similarity, when this has been discredited by molecular evolutionary biologists decades ago. Here we discuss the how genomes are chosen for sequencing and how the scientific community can have input. We describe the PhIGs database and web tools (Dehal and Boore 2005a; http://PhIGs.org), which provide phylogenetic analysis of all gene families for all completely sequenced genomes and the associated 'Synteny Viewer', which allows comparisons of the relative positions of orthologous genes. This is the best tool available for inferring gene function across multiple genomes. We also describe how we have used the PhIGs methods with the whole genome sequences of a tunicate, fish, mouse, and human to conclusively demonstrate that two rounds of whole genome duplication occurred at the base of vertebrates (Dehal and Boore 2005b). This evidence is found in the large scale structure of the positions of paralogous genes that arose from duplications inferred by evolutionary analysis to have occurred at the base of vertebrates.

  17. Evolutionary algorithms for mobile ad hoc networks

    CERN Document Server

    Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

    2014-01-01

    Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

  18. The use of well completion efficiency in the assessment of formation damage in initial well completion and workover operations

    Directory of Open Access Journals (Sweden)

    Amieibibama JOSEPH

    2016-07-01

    Full Text Available The calculation of well completion efficiency is very important in comparing pre/post workover or re-entry completion efficiencies of wells to enable the quantification and ranking of the success of workover operations. However, the quantification of the success of an operation could be misleading if comparisons are wrongly placed on wells or fields basis by different operators. In this work, comparative analysis of pre and post well completion efficiencies for different completions types are evaluated for wells in different fields using averaging techniques. According with this, the aim is to quantify the success rate of workover operations. The average completion efficiencies were calculated using the arithmetic mean for wells in different reservoirs and fields having the same completion type. The analysis of the results from the workover operation showed that some operations were successful while others are not and no field had all operations completely successful. Those that were adjudged successful are fields were enhanced production due to the operations was able to offset low productions from failed operations. However, it was observed in some fields that there was complete failure in the operations as all post-operation productions are lower than the pre-operation productions. The operations where failure occurred are due to loss of completion fluids into the formations, resulting to formation damage. Hence, chemical consolidation treatments must be handled with caution as they seem to be more susceptible to damage than other completion types.

  19. Evolutionary change in physiological phenotypes along the human lineage.

    Science.gov (United States)

    Vining, Alexander Q; Nunn, Charles L

    2016-01-01

    Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  20. Human genomic disease variants: a neutral evolutionary explanation.

    Science.gov (United States)

    Dudley, Joel T; Kim, Yuseob; Liu, Li; Markov, Glenn J; Gerold, Kristyn; Chen, Rong; Butte, Atul J; Kumar, Sudhir

    2012-08-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.

  1. Comparing Evolutionary Strategies on a Biobjective Cultural Algorithm

    Directory of Open Access Journals (Sweden)

    Carolina Lagos

    2014-01-01

    Full Text Available Evolutionary algorithms have been widely used to solve large and complex optimisation problems. Cultural algorithms (CAs are evolutionary algorithms that have been used to solve both single and, to a less extent, multiobjective optimisation problems. In order to solve these optimisation problems, CAs make use of different strategies such as normative knowledge, historical knowledge, circumstantial knowledge, and among others. In this paper we present a comparison among CAs that make use of different evolutionary strategies; the first one implements a historical knowledge, the second one considers a circumstantial knowledge, and the third one implements a normative knowledge. These CAs are applied on a biobjective uncapacitated facility location problem (BOUFLP, the biobjective version of the well-known uncapacitated facility location problem. To the best of our knowledge, only few articles have applied evolutionary multiobjective algorithms on the BOUFLP and none of those has focused on the impact of the evolutionary strategy on the algorithm performance. Our biobjective cultural algorithm, called BOCA, obtains important improvements when compared to other well-known evolutionary biobjective optimisation algorithms such as PAES and NSGA-II. The conflicting objective functions considered in this study are cost minimisation and coverage maximisation. Solutions obtained by each algorithm are compared using a hypervolume S metric.

  2. Some Analytical Properties of the Model for Stochastic Evolutionary Games in Finite Populations with Non-uniform Interaction Rate

    International Nuclear Information System (INIS)

    Quan Ji; Wang Xianjia

    2013-01-01

    Traditional evolutionary games assume uniform interaction rate, which means that the rate at which individuals meet and interact is independent of their strategies. But in some systems, especially biological systems, the players interact with each other discriminately. Taylor and Nowak (2006) were the first to establish the corresponding non-uniform interaction rate model by allowing the interaction rates to depend on strategies. Their model is based on replicator dynamics which assumes an infinite size population. But in reality, the number of individuals in the population is always finite, and there will be some random interference in the individuals' strategy selection process. Therefore, it is more practical to establish the corresponding stochastic evolutionary model in finite populations. In fact, the analysis of evolutionary games in a finite size population is more difficult. Just as Taylor and Nowak said in the outlook section of their paper, ''The analysis of non-uniform interaction rates should be extended to stochastic game dynamics of finite populations''. In this paper, we are exactly doing this work. We extend Taylor and Nowak's model from infinite to finite case, especially focusing on the infiuence of non-uniform connection characteristics on the evolutionary stable state of the system. We model the strategy evolutionary process of the population by a continuous ergodic Markov process. Based on the limit distribution of the process, we can give the evolutionary stable state of the system. We make a complete classification of the symmetric 2 × 2 games. For each case game, the corresponding limit distribution of the Markov-based process is given when noise intensity is small enough. In contrast with most literatures in evolutionary games using the simulation method, all our results obtained are analytical. Especially, in the dominant-case game, coexistence of the two strategies may become evolutionary stable states in our model. This result can be

  3. An Evolutionary Psychology Approach to Consumer Choice

    Directory of Open Access Journals (Sweden)

    ZURINA BT MOHAIDIN

    2013-07-01

    Full Text Available Human behaviour can be explained not only through experience and environments but also by incorporating evolutionary explanation. Consumer behaviour could not be understood accurately without infusing Darwinian evolutionary theory which has contributed in the knowledge of human nature. Evolutionary psychology revolves around the human’s evolved mental and the impact on human’s traits and behaviour where the influence of the environment to our genes would determine our individual behaviour and traits, resulting in variation among us. Foraging which is a part of behavioural ecology involves many sequences or repetitions of animals’ activities and decision making which is useful to relate these patterns of activities to the decisions made in human consumption. The aim of this research is to investigate the similarities of human consumption and ecological behaviour by employing interpretative and comparative approach. It is hoped that by applying the evolutionary theory in explaining consumer choice, this study is able to contribute to the development of behavioural ecology in human consumption. The analysis of the data is done aggregately for 200 consumers and individually for 20 consumers, who have purchased four product categories over a year. This study concludes that the theories of evolutionary psychology can fit to the consumers’ buying behaviour implicating its usefulness in explaining the consumers’ choice.

  4. The four cornerstones of Evolutionary Toxicology.

    Science.gov (United States)

    Bickham, John W

    2011-05-01

    Evolutionary Toxicology is the study of the effects of chemical pollutants on the genetics of natural populations. Research in Evolutionary Toxicology uses experimental designs familiar to the ecotoxicologist with matched reference and contaminated sites and the selection of sentinel species. It uses the methods of molecular genetics and population genetics, and is based on the theories and concepts of evolutionary biology and conservation genetics. Although it is a relatively young field, interest is rapidly growing among ecotoxicologists and more and more field studies and even controlled laboratory experiments are appearing in the literature. A number of population genetic impacts have been observed in organisms exposed to pollutants which I refer to here as the four cornerstones of Evolutionary Toxicology. These include (1) genome-wide changes in genetic diversity, (2) changes in allelic or genotypic frequencies caused by contaminant-induced selection acting at survivorship loci, (3) changes in dispersal patterns or gene flow which alter the genetic relationships among populations, and (4) changes in allelic or genotypic frequencies caused by increased mutation rates. It is concluded that population genetic impacts of pollution exposure are emergent effects that are not necessarily predictable from the mode of toxicity of the pollutant. Thus, to attribute an effect to a particular contaminant requires a careful experimental design which includes selection of appropriate reference sites, detailed chemistry analyses of environmental samples and tissues, and the use of appropriate biomarkers to establish exposure and effect. This paper describes the field of Evolutionary Toxicology and discusses relevant field studies and their findings. © Springer Science+Business Media, LLC 2011

  5. Applied evolutionary economics and economic geography

    OpenAIRE

    Peter Sunley

    2008-01-01

    Applied Evolutionary Economics and Economic Geography aims to further advance empirical methodologies in evolutionary economics, with a special emphasis on geography and firm location. It does so by bringing together a select group of leading scholars including economists, geographers and sociologists, all of whom share an interest in explaining the uneven distribution of economic activities in space and the historical processes that have produced these patterns.

  6. On economic applications of evolutionary game theory

    OpenAIRE

    Daniel Friedman

    1998-01-01

    Evolutionary games have considerable unrealized potential for modeling substantive economic issues. They promise richer predictions than orthodox game models but often require more extensive specifications. This paper exposits the specification of evolutionary game models and classifies the possible asymptotic behavior for one and two dimensional models.

  7. On the Evolutionary Stability of Bargaining Inefficiency

    DEFF Research Database (Denmark)

    Poulsen, Anders

    This paper investigates whether 'tough' bargaining behavior, which gives rise to inefficiency, can be evolutionary stable. We show that in a two-stage Nash Demand Game tough behavior survives. Indeed, almost all the surplus may be wasted. We also study the Ultimatum Game. Here evolutionary select...

  8. Evolutionary Robotics: What, Why, and Where to

    Directory of Open Access Journals (Sweden)

    Stephane eDoncieux

    2015-03-01

    Full Text Available Evolutionary robotics applies the selection, variation, and heredity principles of natural evolution to the design of robots with embodied intelligence. It can be considered as a subfield of robotics that aims to create more robust and adaptive robots. A pivotal feature of the evolutionary approach is that it considers the whole robot at once, and enables the exploitation of robot features in a holistic manner. Evolutionary robotics can also be seen as an innovative approach to the study of evolution based on a new kind of experimentalism. The use of robots as a substrate can help address questions that are difficult, if not impossible, to investigate through computer simulations or biological studies. In this paper we consider the main achievements of evolutionary robotics, focusing particularly on its contributions to both engineering and biology. We briefly elaborate on methodological issues, review some of the most interesting findings, and discuss important open issues and promising avenues for future work.

  9. Evolutionary ethics from Darwin to Moore.

    Science.gov (United States)

    Allhoff, Fritz

    2003-01-01

    Evolutionary ethics has a long history, dating all the way back to Charles Darwin. Almost immediately after the publication of the Origin, an immense interest arose in the moral implications of Darwinism and whether the truth of Darwinism would undermine traditional ethics. Though the biological thesis was certainly exciting, nobody suspected that the impact of the Origin would be confined to the scientific arena. As one historian wrote, 'whether or not ancient populations of armadillos were transformed into the species that currently inhabit the new world was certainly a topic about which zoologists could disagree. But it was in discussing the broader implications of the theory...that tempers flared and statements were made which could transform what otherwise would have been a quiet scholarly meeting into a social scandal' (Farber 1994, 22). Some resistance to the biological thesis of Darwinism sprung from the thought that it was incompatible with traditional morality and, since one of them had to go, many thought that Darwinism should be rejected. However, some people did realize that a secular ethics was possible so, even if Darwinism did undermine traditional religious beliefs, it need not have any effects on moral thought. Before I begin my discussion of evolutionary ethics from Darwin to Moore, I would like to make some more general remarks about its development. There are three key events during this history of evolutionary ethics. First, Charles Darwin published On the Origin of the Species (Darwin 1859). Since one did not have a fully developed theory of evolution until 1859, there exists little work on evolutionary ethics until then. Shortly thereafter, Herbert Spencer (1898) penned the first systematic theory of evolutionary ethics, which was promptly attacked by T.H. Huxley (Huxley 1894). Second, at about the turn of the century, moral philosophers entered the fray and attempted to demonstrate logical errors in Spencer's work; such errors were alluded

  10. [Charles Darwin and the problem of evolutionary progress].

    Science.gov (United States)

    Iordanskiĭ, N N

    2010-01-01

    According to Ch. Darwin's evolutionary theory, evolutionary progress (interpreted as morpho-physiological progress or arogenesis in recent terminology) is one of logical results of natural selection. At the same time, natural selection does not hold any factors especially promoting evolutionary progress. Darwin emphasized that the pattern of evolutionary changes depends on organism nature more than on the pattern of environment changes. Arogenesis specificity is determined by organization of rigorous biological systems - integral organisms. Onward progressive development is determined by fundamental features of living organisms: metabolism and homeostasis. The concept of social Darwinism differs fundamentally from Darwin's ideas about the most important role of social instincts in progress of mankind. Competition and selection play secondary role in socio-cultural progress of human society.

  11. Evolutionary adaptations: theoretical and practical implications for visual ergonomics.

    Science.gov (United States)

    Fostervold, Knut Inge; Watten, Reidulf G; Volden, Frode

    2014-01-01

    The literature discussing visual ergonomics often mention that human vision is adapted to light emitted by the sun. However, theoretical and practical implications of this viewpoint is seldom discussed or taken into account. The paper discusses some of the main theoretical implications of an evolutionary approach to visual ergonomics. Based on interactional theory and ideas from ecological psychology an evolutionary stress model is proposed as a theoretical framework for future research in ergonomics and human factors. The model stresses the importance of developing work environments that fits with our evolutionary adaptations. In accordance with evolutionary psychology, the environment of evolutionary adaptedness (EEA) and evolutionarily-novel environments (EN) are used as key concepts. Using work with visual display units (VDU) as an example, the paper discusses how this knowledge can be utilized in an ergonomic analysis of risk factors in the work environment. The paper emphasises the importance of incorporating evolutionary theory in the field of ergonomics. Further, the paper encourages scientific practices that further our understanding of any phenomena beyond the borders of traditional proximal explanations.

  12. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Hindi and English. Port 1. Resonance, Vo1.7 ... they use. Of course, many evolutionary biologists do work with fossils or DNA, or both, but there are also large numbers of ... The first major division that I like to make is between studies focussed ...

  13. The complete mitochondrial genome of the big-belly seahorse, Hippocampus abdominalis (Lesson 1827).

    Science.gov (United States)

    Wang, Lei; Chen, Zaizhong; Leng, Xiangjun; Gao, Jianzhong; Chen, Xiaowu; Li, Zhongpu; Sun, Peiying; Zhao, Yuming

    2016-11-01

    In this study, the complete mitogenome sequence of the big-belly seahorse, Hippocampus abdominalis (Lesson, 1827) (Syngnathiformes: Syngnathidae), has been sequenced by the next-generation sequencing method. The assembled mitogenome is 16 521 bp in length which includes 13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs genes. The overall base composition of the seahorse is 31.1% for A, 23.6% for C, 16.0% for G, 29.3% for T and shows 87% identities similar to tiger tail seahorse, Hippocampus comes. The complete mitogenome of the big-belly seahorse provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for seahorse family.

  14. Evaluating alternative gait strategies using evolutionary robotics.

    Science.gov (United States)

    Sellers, William I; Dennis, Louise A; W -J, Wang; Crompton, Robin H

    2004-05-01

    Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids.

  15. The evolutionary rate dynamically tracks changes in HIV-1 epidemics

    Energy Technology Data Exchange (ETDEWEB)

    Maljkovic-berry, Irina [Los Alamos National Laboratory; Athreya, Gayathri [Los Alamos National Laboratory; Daniels, Marcus [Los Alamos National Laboratory; Bruno, William [Los Alamos National Laboratory; Korber, Bette [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory

    2009-01-01

    Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changed over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.

  16. The First Joke: Exploring the Evolutionary Origins of Humor

    Directory of Open Access Journals (Sweden)

    Joseph Polimeni

    2006-01-01

    Full Text Available Humor is a complex cognitive function which often leads to laughter. Contemporary humor theorists have begun to formulate hypotheses outlining the possible innate cognitive structures underlying humor. Humor's conspicuous presence in the behavioral repertoire of humankind invites adaptive explanations. This article explores the possible adaptive features of humor and ponders its evolutionary path through hominid history. Current humor theories and previous evolutionary ideas on humor are reviewed. In addition, scientific fields germane to the evolutionary study of humor are examined: animal models, genetics, children's humor, humor in pathological conditions, neurobiology, humor in traditional societies and cognitive archeology. Candidate selection pressures and associated evolutionary mechanisms are considered. The authors conclude that several evolutionary-related topics such as the origins of language, cognition underlying spiritual feelings, hominid group size, and primate teasing could have special relevance to the origins of humor.

  17. Predicting loss of evolutionary history: Where are we?

    Science.gov (United States)

    Veron, Simon; Davies, T Jonathan; Cadotte, Marc W; Clergeau, Philippe; Pavoine, Sandrine

    2017-02-01

    The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic

  18. How evolutionary principles improve the understanding of human health and disease.

    Science.gov (United States)

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-03-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies.

  19. Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a Unifying Perspective.

    Science.gov (United States)

    Lion, Sébastien

    2018-01-01

    Evolutionary biology and ecology have a strong theoretical underpinning, and this has fostered a variety of modeling approaches. A major challenge of this theoretical work has been to unravel the tangled feedback loop between ecology and evolution. This has prompted the development of two main classes of models. While quantitative genetics models jointly consider the ecological and evolutionary dynamics of a focal population, a separation of timescales between ecology and evolution is assumed by evolutionary game theory, adaptive dynamics, and inclusive fitness theory. As a result, theoretical evolutionary ecology tends to be divided among different schools of thought, with different toolboxes and motivations. My aim in this synthesis is to highlight the connections between these different approaches and clarify the current state of theory in evolutionary ecology. Central to this approach is to make explicit the dependence on environmental dynamics of the population and evolutionary dynamics, thereby materializing the eco-evolutionary feedback loop. This perspective sheds light on the interplay between environmental feedback and the timescales of ecological and evolutionary processes. I conclude by discussing some potential extensions and challenges to our current theoretical understanding of eco-evolutionary dynamics.

  20. What Is Sexual Orientation All About? Explaining an Evolutionary Paradox

    OpenAIRE

    Brad Bowins

    2015-01-01

    Numerous psychological, biological, and evolutionary theories have been proposed to explain sexual orientation. For a theory to be valid it must account for the evolutionary or Darwinian paradox of how homosexual behavior seemingly blocking evolutionary fitness could have evolved. Typically it is only evolutionary based theories that attempt to address this issue. All theories proposed to date have limitations, a major one being that they tend to be specific for male or female sexual orientat...

  1. Towards complete sets of farnesylated and geranylgeranylated proteins.

    Directory of Open Access Journals (Sweden)

    Sebastian Maurer-Stroh

    2007-04-01

    Full Text Available Three different prenyltransferases attach isoprenyl anchors to C-terminal motifs in substrate proteins. These lipid anchors serve for membrane attachment or protein-protein interactions in many pathways. Although well-tolerated selective prenyltransferase inhibitors are clinically available, their mode of action remains unclear since the known substrate sets of the various prenyltransferases are incomplete. The Prenylation Prediction Suite (PrePS has been applied for large-scale predictions of prenylated proteins. To prioritize targets for experimental verification, we rank the predictions by their functional importance estimated by evolutionary conservation of the prenylation motifs within protein families. The ranked lists of predictions are accessible as PRENbase (http://mendel.imp.univie.ac.at/sat/PrePS/PRENbase and can be queried for verification status, type of modifying enzymes (anchor type, and taxonomic distribution. Our results highlight a large group of plant metal-binding chaperones as well as several newly predicted proteins involved in ubiquitin-mediated protein degradation, enriching the known functional repertoire of prenylated proteins. Furthermore, we identify two possibly prenylated proteins in Mimivirus. The section HumanPRENbase provides complete lists of predicted prenylated human proteins-for example, the list of farnesyltransferase targets that cannot become substrates of geranylgeranyltransferase 1 and, therefore, are especially affected by farnesyltransferase inhibitors (FTIs used in cancer and anti-parasite therapy. We report direct experimental evidence verifying the prediction of the human proteins Prickle1, Prickle2, the BRO1 domain-containing FLJ32421 (termed BROFTI, and Rab28 (short isoform as exclusive farnesyltransferase targets. We introduce PRENbase, a database of large-scale predictions of protein prenylation substrates ranked by evolutionary conservation of the motif. Experimental evidence is presented for

  2. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors

    Directory of Open Access Journals (Sweden)

    Tatiana Tatarinova

    2015-01-01

    Full Text Available Proteins of the same functional family (for example, kinases may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content tend to have longer genes than species with low GC3 content.

  3. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors.

    Science.gov (United States)

    Tatarinova, Tatiana; Salih, Bilal; Dien Bard, Jennifer; Cohen, Irit; Bolshoy, Alexander

    2015-01-01

    Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content.

  4. The evolutionary implications of epigenetic inheritance.

    Science.gov (United States)

    Jablonka, Eva

    2017-10-06

    The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.

  5. Evolutionary Computing for Intelligent Power System Optimization and Control

    DEFF Research Database (Denmark)

    This new book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization the...... theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems....

  6. The great opportunity: Evolutionary applications to medicine and public health.

    Science.gov (United States)

    Nesse, Randolph M; Stearns, Stephen C

    2008-02-01

    Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for

  7. Density functional theory and evolution algorithm calculations of elastic properties of AlON

    Energy Technology Data Exchange (ETDEWEB)

    Batyrev, I. G.; Taylor, D. E.; Gazonas, G. A.; McCauley, J. W. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2014-01-14

    Different models for aluminum oxynitride (AlON) were calculated using density functional theory and optimized using an evolutionary algorithm. Evolutionary algorithm and density functional theory (DFT) calculations starting from several models of AlON with different Al or O vacancy locations and different positions for the N atoms relative to the vacancy were carried out. The results show that the constant anion model [McCauley et al., J. Eur. Ceram. Soc. 29(2), 223 (2009)] with a random distribution of N atoms not adjacent to the Al vacancy has the lowest energy configuration. The lowest energy structure is in a reasonable agreement with experimental X-ray diffraction spectra. The optimized structure of a 55 atom unit cell was used to construct 220 and 440 atom models for simulation cells using DFT with a Gaussian basis set. Cubic elastic constant predictions were found to approach the experimentally determined AlON single crystal elastic constants as the model size increased from 55 to 440 atoms. The pressure dependence of the elastic constants found from simulated stress-strain relations were in overall agreement with experimental measurements of polycrystalline and single crystal AlON. Calculated IR intensity and Raman spectra are compared with available experimental data.

  8. On Reciprocal Causation in the Evolutionary Process.

    Science.gov (United States)

    Svensson, Erik I

    2018-01-01

    Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause-effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist . Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach

  9. MultiSeq: unifying sequence and structure data for evolutionary analysis

    Directory of Open Access Journals (Sweden)

    Wright Dan

    2006-08-01

    Full Text Available Abstract Background Since the publication of the first draft of the human genome in 2000, bioinformatic data have been accumulating at an overwhelming pace. Currently, more than 3 million sequences and 35 thousand structures of proteins and nucleic acids are available in public databases. Finding correlations in and between these data to answer critical research questions is extremely challenging. This problem needs to be approached from several directions: information science to organize and search the data; information visualization to assist in recognizing correlations; mathematics to formulate statistical inferences; and biology to analyze chemical and physical properties in terms of sequence and structure changes. Results Here we present MultiSeq, a unified bioinformatics analysis environment that allows one to organize, display, align and analyze both sequence and structure data for proteins and nucleic acids. While special emphasis is placed on analyzing the data within the framework of evolutionary biology, the environment is also flexible enough to accommodate other usage patterns. The evolutionary approach is supported by the use of predefined metadata, adherence to standard ontological mappings, and the ability for the user to adjust these classifications using an electronic notebook. MultiSeq contains a new algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of a homologous group of distantly related proteins. The method, based on the multidimensional QR factorization of multiple sequence and structure alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. Conclusion MultiSeq is a major extension of the Multiple Alignment tool that is provided as part of VMD, a structural

  10. Evolutionary allometry of the thoracolumbar centra in felids and bovids.

    Science.gov (United States)

    Jones, Katrina E

    2015-07-01

    Mammals have evolved a remarkable range of body sizes, yet their overall body plan remains unaltered. One challenge of evolutionary biology is to understand the mechanisms by which this size diversity is achieved, and how the mechanical challenges associated with changing body size are overcome. Despite the importance of the axial skeleton in body support and locomotion, and much interest in the allometry of the appendicular skeleton, little is known about vertebral allometry outside primates. This study compares evolutionary allometry of the thoracolumbar centra in two families of quadrupedal running mammals: Felidae and Bovidae. I test the hypothesis that, as size increases, the thoracolumbar region will resist increasing loads by becoming a) craniocaudally shorter, and b) larger in cross-sectional area, particularly in the sagittal plane. Length, width, and height of the thoracolumbar centra of 23 felid and 34 bovid species were taken. Thoracic, prediaphragmatic, lumbar, and postdiaphragmatic lengths were calculated, and diameters were compared at three equivalent positions: the midthoracic, the diaphragmatic and the midlumbar vertebra. Allometric slopes were calculated using a reduced major axis regression, on both raw and independent contrasts data. Slopes and elevations were compared using an ANCOVA. As size increases the thoracolumbar centra become more robust, showing preferential reinforcement in the sagittal plane. There was less allometric shortening of the thoracic than the lumbar region, perhaps reflecting constraints due to its connection with the respiratory apparatus. The thoracic region was more robust in bovids than felids, whereas the lumbar region was longer and more robust in felids than bovids. Elongation of lumbar centra increases the outlever of sagittal bending at intervertebral joints, increasing the total pelvic displacement during dorsomobile running. Both locomotor specializations and functional regionalization of the axial skeleton

  11. Neutronic study of nuclear reactors. Complete calculation of TRIGA MARKII reactor and calculations of fuel temperature coefficients. (Qualification of WIMS code)

    International Nuclear Information System (INIS)

    Benmansour, L.

    1992-01-01

    The present work shows a group of results, obtained by a neutronic study, concerning the TRIGA MARK II reactor and LIGHT WATER reactors. These studies aim to make cell and diffusion calculations. WIMS D-4 with extended library and DIXY programs are used and tested for those purposes. We also have proceeded to a qualification of WIMS code based on the fuel temperature coefficient calculations. 33 refs.; 23 figs.; 30 tabs. (author)

  12. EVOLUTIONARY THEORY AND THE MARKET COMPETITION

    Directory of Open Access Journals (Sweden)

    SIRGHI Nicoleta

    2014-12-01

    Full Text Available Evolutionary theory study of processes that transform economy for firms, institutions, industries, employment, production, trade and growth within, through the actions of diverse agents from experience and interactions, using evolutionary methodology. Evolutionary theory analyses the unleashing of a process of technological and institutional innovation by generating and testing a diversity of ideas which discover and accumulate more survival value for the costs incurred than competing alternatives.This paper presents study the behavior of the firms on the market used the evolutionary theory.The paper is to present in full the developments that have led to the re-assessment of theories of firms starting from the criticism on Coase's theory based on the lack of testable hypotheses and on non-operative definition of transaction costs. In the literature in the field studies on firms were allotted a secondary place for a long period of time, to date the new theories of the firm hold a dominant place in the firms’ economic analysis. In an article, published in 1937, Ronald H. Coase identified the main sources of the cost of using the market mechanism. The firms theory represent a issue intensively studied in the literature in the field, regarding the survival, competitiveness and innovation of firm on the market. The research of Nelson and Winter, “An Evolutionary Theory of Economic Change” (1982 is the starting point for a modern literature in the field which considers the approach of the theory of the firm from an evolutionary perspective. Nelson and Winter have shown that the “orthodox” theory, is objectionable primarily by the fact that the hypothesis regarding profit maximization has a normative character and is not valid in any situation. Nelson and Winter reconsidered their microeconomic analysis showing that excessive attention should not be paid to market equilibrium but rather to dynamic processes resulting from irreversible

  13. Evolutionary epistemology, rationality, and the sociology of knowledge

    CERN Document Server

    Bartley, W W

    1993-01-01

    This collection of essays in support of the theory of evolutionary epistemology includes articles by Karl Popper, Peter Munz and Gerhard Vollmer. This volume attempts to show how an evolutionary and non-justificational approach affects the sociology of knowledge.

  14. Molluscan Evolutionary Development

    DEFF Research Database (Denmark)

    Wanninger, Andreas Wilhelm Georg; Koop, Damien; Moshel-Lynch, Sharon

    2008-01-01

    Brought together by Winston F. Ponder and David R. Lindberg, thirty-six experts on the evolution of the Mollusca provide an up-to-date review of its evolutionary history. The Mollusca are the second largest animal phylum and boast a fossil record of over 540 million years. They exhibit remarkable...

  15. Evolutionary genomics and HIV restriction factors.

    Science.gov (United States)

    Pyndiah, Nitisha; Telenti, Amalio; Rausell, Antonio

    2015-03-01

    To provide updated insights into innate antiviral immunity and highlight prototypical evolutionary features of well characterized HIV restriction factors. Recently, a new HIV restriction factor, Myxovirus resistance 2, has been discovered and the region/residue responsible for its activity identified using an evolutionary approach. Furthermore, IFI16, an innate immunity protein known to sense several viruses, has been shown to contribute to the defense to HIV-1 by causing cell death upon sensing HIV-1 DNA. Restriction factors against HIV show characteristic signatures of positive selection. Different patterns of accelerated sequence evolution can distinguish antiviral strategies--offense or defence--as well as the level of specificity of the antiviral properties. Sequence analysis of primate orthologs of restriction factors serves to localize functional domains and sites responsible for antiviral action. We use recent discoveries to illustrate how evolutionary genomic analyses help identify new antiviral genes and their mechanisms of action.

  16. Phylogenetic relationships and divergence dates of softshell turtles (Testudines: Trionychidae) inferred from complete mitochondrial genomes.

    Science.gov (United States)

    Li, H; Liu, J; Xiong, L; Zhang, H; Zhou, H; Yin, H; Jing, W; Li, J; Shi, Q; Wang, Y; Liu, J; Nie, L

    2017-05-01

    The softshell turtles (Trionychidae) are one of the most widely distributed reptile groups in the world, and fossils have been found on all continents except Antarctica. The phylogenetic relationships among members of this group have been previously studied; however, disagreements regarding its taxonomy, its phylogeography and divergence times are still poorly understood as well. Here, we present a comprehensive mitogenomic study of softshell turtles. We sequenced the complete mitochondrial genomes of 10 softshell turtles, in addition to the GenBank sequence of Dogania subplana, Lissemys punctata, Trionyx triunguis, which cover all extant genera within Trionychidae except for Cyclanorbis and Cycloderma. These data were combined with other mitogenomes of turtles for phylogenetic analyses. Divergence time calibration and ancestral reconstruction were calculated using BEAST and RASP software, respectively. Our phylogenetic analyses indicate that Trionychidae is the sister taxon of Carettochelyidae, and support the monophyly of Trionychinae and Cyclanorbinae, which is consistent with morphological data and molecular analysis. Our phylogenetic analyses have established a sister taxon relationship between the Asian Rafetus and the Asian Palea + Pelodiscus + Dogania + Nilssonia + Amyda, whereas a previous study grouped the Asian Rafetus with the American Apalone. The results of divergence time estimates and area ancestral reconstruction show that extant Trionychidae originated in Asia at around 108 million years ago (MA), and radiations mainly occurred during two warm periods, namely Late Cretaceous-Early Eocene and Oligocene. By combining the estimated divergence time and the reconstructed ancestral area of softshell turtles, we determined that the dispersal of softshell turtles out of Asia may have taken three routes. Furthermore, the times of dispersal seem to be in agreement with the time of the India-Asia collision and opening of the Bering Strait, which

  17. Observational and evolutionary aspects of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Vanbeveren, D.

    1980-01-01

    The author considers (i) the binary status of Wolf-Rayet stars, (ii) the evolutionary status of Wolf-Rayet stars, (iii) the chemical abundances of Wolf-Rayet stars and (iv) evolutionary models for some known Wolf-Rayet systems. (G.T.H.)

  18. Ancestral assumptions and the clinical uncertainty of evolutionary medicine.

    Science.gov (United States)

    Cournoyea, Michael

    2013-01-01

    Evolutionary medicine is an emerging field of medical studies that uses evolutionary theory to explain the ultimate causes of health and disease. Educational tools, online courses, and medical school modules are being developed to help clinicians and students reconceptualize health and illness in light of our evolutionary past. Yet clinical guidelines based on our ancient life histories are epistemically weak, relying on the controversial assumptions of adaptationism and advocating a strictly biophysical account of health. To fulfill the interventionist goals of clinical practice, it seems that proximate explanations are all we need to develop successful diagnostic and therapeutic guidelines. Considering these epistemic concerns, this article argues that the clinical relevance of evolutionary medicine remains uncertain at best.

  19. The human dark side: evolutionary psychology and original sin.

    Science.gov (United States)

    Lee, Joseph; Theol, M

    2014-04-01

    Human nature has a dark side, something important to religions. Evolutionary psychology has been used to illuminate the human shadow side, although as a discipline it has attracted criticism. This article seeks to examine the evolutionary psychology's understanding of human nature and to propose an unexpected dialog with an enduring account of human evil known as original sin. Two cases are briefly considered: murder and rape. To further the exchange, numerous theoretical and methodological criticisms and replies of evolutionary psychology are explored jointly with original sin. Evolutionary psychology can partner with original sin since they share some theoretical likenesses and together they offer insights into the nature of what it means to be human.

  20. DNA evolutionary algorithm (DNAEA) for source term identification in convection-diffusion equation

    International Nuclear Information System (INIS)

    Yang, X-H; Hu, X-X; Shen, Z-Y

    2008-01-01

    The source identification problem is changed into an optimization problem in this paper. This is a complicated nonlinear optimization problem. It is very intractable with traditional optimization methods. So DNA evolutionary algorithm (DNAEA) is presented to solve the discussed problem. In this algorithm, an initial population is generated by a chaos algorithm. With the shrinking of searching range, DNAEA gradually directs to an optimal result with excellent individuals obtained by DNAEA. The position and intensity of pollution source are well found with DNAEA. Compared with Gray-coded genetic algorithm and pure random search algorithm, DNAEA has rapider convergent speed and higher calculation precision

  1. Testing evolutionary convergence on Europa

    Energy Technology Data Exchange (ETDEWEB)

    Chela-Flores, Julian [Instituto de Estudios Avanzados, Caracas (Venezuela); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2002-11-01

    A major objective in solar system exploration is the insertion of appropriate biology-oriented experiments in future missions. We discuss various reasons for suggesting that this type of research be considered a high priority for feasibility studies and, subsequently, for technological development of appropriate melters and submersibles. Based on numerous examples, we argue in favour of the assumption that Darwin's theory is valid for the evolution of life anywhere in the universe. We have suggested how to obtain preliminary insights into the question of the distribution of life in the universe. Universal evolution of intelligent behaviour is at the end of an evolutionary pathway, in which evolution of ion channels in the membrane of microorganisms occurs in its early stages. Further, we have argued that a preliminary test of this conjecture is feasible with experiments on the Europan surface or ocean, involving evolutionary biosignatures (ion channels). This aspect of the exploration for life in the solar system should be viewed as a complement to the astronomical approach for the search of evidence of the later stages of the evolutionary pathways towards intelligent behaviour. (author)

  2. Application of the extended completeness relation to the absorbing boundary condition

    International Nuclear Information System (INIS)

    Iwasaki, Masataka; Otani, Reiji; Ito, Makoto

    2015-01-01

    The strength function of the linear response by the external field is calculated in the formalism of the absorbing boundary condition (ABC). The dipole excitation of a schematic two-body system is treated in the present study. The extended completeness relation, which is assumed on the analogy of the formulation in the complex scaling method (CSM), is applied to the calculation of the strength function. The calculation of the strength function is successful in the present formalism and hence, the extended completeness relation seems to work well in the ABC formalism. The contributions from the resonance and the non-resonant continuum are also analyzed according to the decomposition of the energy levels in the extended completeness relation. (author)

  3. Darwin’s legacy in South African evolutionary biology

    Directory of Open Access Journals (Sweden)

    S. D. Johnson

    2010-02-01

    Full Text Available In the two decades after publication of the Origin of Species, Charles Darwin facilitated the publication of numerous scientific papers by settler naturalists in South Africa. This helped to establish the strong tradition of natural history which has characterised evolutionary research in South African museums, herbaria and universities. Significant developments in the early 20th century included the hominid fossil discoveries of Raymond Dart, Robert Broom, and others, but there was otherwise very little South African involvement in the evolutionary synthesis of the 1930s and 1940s. Evolutionary biology developed into a distinct discipline in South Africa during the 1970s and 1980s when it was dominated by mammalian palaeontology and a vigorous debate around species concepts. In the post-apartheid era, the main focus of evolutionary biology has been the construction of phylogenies for African plants and animals using molecular data, and the use of these phylogenies to answer questions about taxonomic classification and trait evolution. South African biologists have also recently contributed important evidence for some of Darwin’s ideas about plant–animal coevolution, sexual selection, and the role of natural selection in speciation. A bibliographic analysis shows that South African authors produce 2–3% of the world’s publications in the field of evolutionary biology, which is much higher than the value of about 0.5% for publications in all sciences. With its extraordinary biodiversity and well-developed research infrastructure, South Africa is an ideal laboratory from which to advance evolutionary research.

  4. The evolutionary psychology of hunger.

    Science.gov (United States)

    Al-Shawaf, Laith

    2016-10-01

    An evolutionary psychological perspective suggests that emotions can be understood as coordinating mechanisms whose job is to regulate various psychological and physiological programs in the service of solving an adaptive problem. This paper suggests that it may also be fruitful to approach hunger from this coordinating mechanism perspective. To this end, I put forward an evolutionary task analysis of hunger, generating novel a priori hypotheses about the coordinating effects of hunger on psychological processes such as perception, attention, categorization, and memory. This approach appears empirically fruitful in that it yields a bounty of testable new hypotheses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    Science.gov (United States)

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  6. Evaluation of models generated via hybrid evolutionary algorithms ...

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.

  7. Evolutionary Perspectives on the Development of Social Exchanges.

    Science.gov (United States)

    Sheese, Brad E.; Graziano, William G.

    2002-01-01

    Argues that apparent incompatibilities between social exchange and developmental perspectives can be resolved by using evolutionary theories to extend the logic of social exchange. Discusses the implications of an expanded evolutionary perspective on social exchange and development, proposing that developmental context and genetic relatedness may…

  8. Evolutionary game theory: cells as players.

    Science.gov (United States)

    Hummert, Sabine; Bohl, Katrin; Basanta, David; Deutsch, Andreas; Werner, Sarah; Theissen, Günter; Schroeter, Anja; Schuster, Stefan

    2014-12-01

    In two papers we review game theory applications in biology below the level of cognitive living beings. It can be seen that evolution and natural selection replace the rationality of the actors appropriately. Even in these micro worlds, competing situations and cooperative relationships can be found and modeled by evolutionary game theory. Also those units of the lowest levels of life show different strategies for different environmental situations or different partners. We give a wide overview of evolutionary game theory applications to microscopic units. In this first review situations on the cellular level are tackled. In particular metabolic problems are discussed, such as ATP-producing pathways, secretion of public goods and cross-feeding. Further topics are cyclic competition among more than two partners, intra- and inter-cellular signalling, the struggle between pathogens and the immune system, and the interactions of cancer cells. Moreover, we introduce the theoretical basics to encourage scientists to investigate problems in cell biology and molecular biology by evolutionary game theory.

  9. Evolutionary rate variation and RNA secondary structure prediction

    DEFF Research Database (Denmark)

    Knudsen, B.; Andersen, E.S.; Damgaard, C.

    2004-01-01

    Predicting RNA secondary structure using evolutionary history can be carried out by using an alignment of related RNA sequences with conserved structure. Accurately determining evolutionary substitution rates for base pairs and single stranded nucleotides is a concern for methods based on this type...... by applying rates derived from tRNA and rRNA to the prediction of the much more rapidly evolving 5'-region of HIV-1. We find that the HIV-1 prediction is in agreement with experimental data, even though the relative evolutionary rate between A and G is significantly increased, both in stem and loop regions...

  10. [Evolutionary medicine: the future looking at the past].

    Science.gov (United States)

    Carvalho, Serafim; Rosado, Margarida

    2008-01-01

    Evolutionary medicine is an emergent basic science that offers new and varied perspectives to the comprehension of the human health and disease, considering them as a result of a gap between our modern lives and the environment where human beings evolve. This work's goals are to understand the importance of the evolutionary theories on concepts of health and disease, providing a new insight on medicine investigation. This bibliography review is based on Medline and PsycINFO articles research between 1996 and 2007 about review and experimental studies published in English, using the key words evolutionary and medicine, psychiatry, psychology, behaviour, health, disease, gene. There were selected forty-five articles based on and with special interest on the authors' practice. There were also consulted some allusive books. The present human genome and phenotypes are essentially Palaeolithic ones: they are not adapted to the modern life style, thus favouring the so called diseases of civilization. Fitting evolutionary strategies, apparently protective ones, when excessive, are the core syndromes of many emotional disruptive behaviours and diseases. Having the stone age's genes, we are obliged to live in the space age. With the evolutionary approach, postmodern medicine is detecting better the vulnerabilities, restrictions, biases, adaptations and maladaptations of human body, its actual diseases and its preventions and treatment.

  11. The evolutionary ecology of clonally propagated domesticated plants.

    Science.gov (United States)

    McKey, Doyle; Elias, Marianne; Pujol, Benoît; Duputié, Anne

    2010-04-01

    While seed-propagated crops have contributed many evolutionary insights, evolutionary biologists have often neglected clonally propagated crops. We argue that widespread notions about their evolution under domestication are oversimplified, and that they offer rich material for evolutionary studies. The diversity of their wild ancestors, the diverse ecologies of the crop populations themselves, and the intricate mix of selection pressures, acting not only on the parts harvested but also on the parts used by humans to make clonal propagules, result in complex and diverse evolutionary trajectories under domestication. We examine why farmers propagate some plants clonally, and discuss the evolutionary dynamics of sexual reproduction in clonal crops. We explore how their mixed clonal/sexual reproductive systems function, based on the sole example studied in detail, cassava (Manihot esculenta). Biotechnology is now expanding the number of clonal crops, continuing the 10 000-yr-old trend to increase crop yields by propagating elite genotypes. In an era of rapid global change, it is more important than ever to understand how the adaptive potential of clonal crops can be maintained. A key component of strategies for preserving this adaptive potential is the maintenance of mixed clonal/sexual systems, which can be achieved by encouraging and valuing farmer knowledge about the sexual reproductive biology of their clonal crops.

  12. Evolutionary sequence of models of planetary nebulae

    International Nuclear Information System (INIS)

    Vil'koviskij, Eh.Ya.; Kondrat'eva, L.N.; Tambovtseva, L.V.

    1983-01-01

    The evolutionary sequences of model planetary nebulae of different masses have been calculated. The computed emission line intensities are compared with the observed ones by means of the parameter ''reduced size of the nebula'', Rsub(n). It is shown that the evolution tracks of Schonberner for the central stars are consistent with the observed data. Part of ionized mass Mi in any nebulae does not not exceed 0.3 b and in the average Msu(i) 3 years at actual values of radius Rsub(i) <0.025 ps. Then the luminosity growth slows down to the maximum temperature which central star reaches and decreases with sharp decrease of the star luminosity. At that, the radius of ionized zone of greater mass nebulae can even decrease, inspite of the constant expansion of the nebula. As a result nebulae of great masses having undergone the evolution can be included in the number of observed compact objects (Rsub(n) < 0.1 ps)

  13. Indoor Thermal Comfort, an Evolutionary Biology Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, John L.

    2006-04-15

    As is becoming increasingly clear, the human species evolvedin the East African savannah. Details of the precise evolutionary chainremain unresolved however it appears that the process lasted severalmillion years, culminating with the emergence of modern Homo sapiensroughly 200,000 years ago. Following that final evolutionary developmentmodern Homo sapiens relatively quickly populated the entire world.Clearly modern Homo sapiens is a successful, resourceful and adaptablespecies. In the developed societies, modern humans live an existence farremoved from our evolutionary ancestors. As we have learned over the lastcentury, this "new" lifestyle can often result in unintendedconsequences. Clearly, our modern access to food, shelter, transportationand healthcare has resulted in greatly expanded expected lifespan butthis new lifestyle can also result in the emergence of different kinds ofdiseases and health problems. The environment in modern buildings haslittle resemblance to the environment of the savannah. We strive tocreate environments with little temperature, air movement and lightvariation. Building occupants often express great dissatisfaction withthese modern created environments and a significant fraction even developsomething akin to allergies to specific buildings (sick buildingsyndrome). Are the indoor environments we are creating fundamentallyunhealthy -- when examined from an evolutionary perspective?

  14. BEAST: Bayesian evolutionary analysis by sampling trees

    Directory of Open Access Journals (Sweden)

    Drummond Alexei J

    2007-11-01

    Full Text Available Abstract Background The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. Results BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. Conclusion BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.

  15. Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rachel Lockridge; Macey, J. Robert; Jaekel, Martin; Wake, David B.; Boore, Jeffrey L.

    2004-08-01

    The evolutionary history of the largest salamander family (Plethodontidae) is characterized by extreme morphological homoplasy. Analysis of the mechanisms generating such homoplasy requires an independent, molecular phylogeny. To this end, we sequenced 24 complete mitochondrial genomes (22 plethodontids and two outgroup taxa), added data for three species from GenBank, and performed partitioned and unpartitioned Bayesian, ML, and MP phylogenetic analyses. We explored four dataset partitioning strategies to account for evolutionary process heterogeneity among genes and codon positions, all of which yielded increased model likelihoods and decreased numbers of supported nodes in the topologies (PP > 0.95) relative to the unpartitioned analysis. Our phylogenetic analyses yielded congruent trees that contrast with the traditional morphology-based taxonomy; the monophyly of three out of four major groups is rejected. Reanalysis of current hypotheses in light of these new evolutionary relationships suggests that (1) a larval life history stage re-evolved from a direct-developing ancestor multiple times, (2) there is no phylogenetic support for the ''Out of Appalachia'' hypothesis of plethodontid origins, and (3) novel scenarios must be reconstructed for the convergent evolution of projectile tongues, reduction in toe number, and specialization for defensive tail loss. Some of these novel scenarios imply morphological transformation series that proceed in the opposite direction than was previously thought. In addition, they suggest surprising evolutionary lability in traits previously interpreted to be conservative.

  16. Evolutionary relationships among Astroviridae

    NARCIS (Netherlands)

    Lukashov, Vladimir V.; Goudsmit, Jaap

    2002-01-01

    To study the evolutionary relationships among astroviruses, all available sequences for members of the family Astroviridae were collected. Phylogenetic analysis distinguished two deep-rooted groups: one comprising mammalian astroviruses, with ovine astrovirus being an outlier, and the other

  17. EVOLUTIONARY TRAJECTORIES OF ULTRACOMPACT 'BLACK WIDOW' PULSARS WITH VERY LOW MASS COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O. G.; De Vito, M. A. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata and Instituto de Astrofisica de La Plata (IALP), CCT-CONICET-UNLP, Paseo del Bosque S/N (B1900FWA), La Plata (Argentina); Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, R. do Matao 1226 (05508-090), Cidade Universitaria, Sao Paulo, SP (Brazil)

    2012-07-10

    The existence of millisecond pulsars with planet-mass companions in close orbits is challenging from the stellar evolution point of view. We calculate in detail the evolution of binary systems self-consistently, including mass transfer, evaporation, and irradiation of the donor by X-ray feedback, demonstrating the existence of a new evolutionary path leading to short periods and compact donors as required by the observations of PSR J1719-1438. We also point out the alternative of an exotic nature of the companion planet-mass star.

  18. On the Evolutionary Stability of 'Tough' Bargaining Behavior

    DEFF Research Database (Denmark)

    Poulsen, Anders

    2003-01-01

    This paper investigates whether 'tough' bargaining behavior, which gives rise to inefficiency, can be evolutionary stable. We show that in a two-stage Nash Demand Game such behavior survives. We also study the Ultimatum Game. Here evolutionary selection wipes out all tough behavior, as long as th...

  19. Epidemiological, evolutionary and co-evolutionary implications of context-dependent parasitism

    Science.gov (United States)

    Vale, Pedro F.; Wilson, Alastair J.; Best, Alex; Boots, Mike; Little, Tom J.

    2013-01-01

    Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster growing parasites do not appear to cause more damage and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa we show how easily an interaction can shift from a severe interaction, i.e. when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modelling pathogen evolution and disease spread under different levels of infection severity, and find that environmental shifts that promote tolerance ultimately result in populations harbouring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus our results suggest two mechanisms that could underlie co-evolutionary hot- and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection. PMID:21460572

  20. Shaping communicative colour signals over evolutionary time

    Science.gov (United States)

    Oyola Morales, José R.; Vital-García, Cuauhcihuatl; Hews, Diana K.; Martins, Emília P.

    2016-01-01

    Many evolutionary forces can shape the evolution of communicative signals, and the long-term impact of each force may depend on relative timing and magnitude. We use a phylogenetic analysis to infer the history of blue belly patches of Sceloporus lizards, and a detailed spectrophotometric analysis of four species to explore the specific forces shaping evolutionary change. We find that the ancestor of Sceloporus had blue patches. We then focus on four species; the first evolutionary shift (captured by comparison of S. merriami and S. siniferus) represents an ancient loss of the belly patch by S. siniferus, and the second evolutionary shift, bounded by S. undulatus and S. virgatus, represents a more recent loss of blue belly patch by S. virgatus. Conspicuousness measurements suggest that the species with the recent loss (S. virgatus) is the least conspicuous. Results for two other species (S. siniferus and S. merriami) suggest that over longer periods of evolutionary time, new signal colours have arisen which minimize absolute contrast with the habitat while maximizing conspicuousness to a lizard receiver. Specifically, males of the species representing an ancient loss of blue patch (S. siniferus) are more conspicuous than are females in the UV, whereas S. merriami males have evolved a green element that makes their belly patches highly sexually dimorphic but no more conspicuous than the white bellies of S. merriami females. Thus, our results suggest that natural selection may act more immediately to reduce conspicuousness, whereas sexual selection may have a more complex impact on communicative signals through the introduction of new colours. PMID:28018661

  1. Evolutionary dynamics of complex communications networks

    CERN Document Server

    Karyotis, Vasileios; Papavassiliou, Symeon

    2013-01-01

    Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to

  2. Avoiding Local Optima with Interactive Evolutionary Robotics

    Science.gov (United States)

    2012-07-09

    the top of a flight of stairs selects for climbing ; suspending the robot and the target object above the ground and creating rungs between the two will...REPORT Avoiding Local Optimawith Interactive Evolutionary Robotics 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The main bottleneck in evolutionary... robotics has traditionally been the time required to evolve robot controllers. However with the continued acceleration in computational resources, the

  3. Evolution and the American social sciences: An evolutionary social scientist's view.

    Science.gov (United States)

    Thayer, Bradley A

    2004-03-01

    American social scientists rarely ever use evolutionary concepts to explain behavior, despite the potential of such concepts to elucidate major social problems. I argue that this observation can be understood as the product of three influences: an ideologically narrowed political liberalism; a fear of ''Social Darwinism'' as a scientific idea, rather than a scientific apostasy; and a widely believed criticism of evolutionary thinking as deterministic, reductionistic, and Panglossian. I ask what is to be done to encourage social scientists to learn and to apply evolutionary lessons. I answer with four solutions. First, evolutionary social scientists should more effectively educate their non-evolutionary students and colleagues. Second, they should publicize, even popularize, accessible refutations of perennially misleading criticisms. Third, they should more credibly assure skeptics that evolutionary theory not only keeps the ''social'' in social science but better explains social behavior than can any individual-level theory, such as rational-choice theory. Fourth, they should recall that biology took generations to become Darwinian, and they must understand that the social sciences may take as long to become evolutionary.

  4. Origins of evolutionary transitions

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... ... of events: 'Entities that were capable of independent replication ... There have been many major evolutionary events that this definition of .... selection at level x to exclusive selection at x – will probably require a multiplicity ...

  5. Computational intelligence synergies of fuzzy logic, neural networks and evolutionary computing

    CERN Document Server

    Siddique, Nazmul

    2013-01-01

    Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspect

  6. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    Science.gov (United States)

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Economic growth and technological change : an evolutionary interpretation

    NARCIS (Netherlands)

    Verspagen, B.

    2000-01-01

    The aim of this paper is to apply insights from evolutionary economic theory to the question of what can explain recent trends in economic growth, with emphasis on the role of technological change. Obviously, a basic question that precedes this question is "what is evolutionary economic theory"? The

  8. Evolutionary medicine and chronic inflammatory state--known and new concepts in pathophysiology.

    Science.gov (United States)

    Straub, Rainer H

    2012-05-01

    During the last 10 years, a series of exciting observations has led to a new theory of pathophysiology using insights from evolutionary biology and neuroendocrine immunology to understand the sequelae of chronic inflammatory disease. According to this theory, disease sequelae can be explained based on redirection of energy-rich fuels from storage organs to the activated immune system. These disease sequelae are highly diverse and include the following: sickness behavior, anorexia, malnutrition, muscle wasting-cachexia, cachectic obesity, insulin resistance with hyperinsulinemia, dyslipidemia, increase of adipose tissue near inflamed tissue, alterations of steroid hormone axes, elevated sympathetic tone and local sympathetic nerve fiber loss, decreased parasympathetic tone, hypertension, inflammation-related anemia, and osteopenia. Since these disease sequelae can be found in many animal models of chronic inflammatory diseases with mammals (e.g., monkeys, mice, rats, rabbits, etc.), the evolutionary time line goes back at least 70 million years. While the initial version of this theory could explain prominent sequelae of chronic inflammatory disease, it did not however address two features important in the pathogenesis of immune-mediated diseases: the time point when an acute inflammatory disease becomes chronic, and the appearance of hypertension in chronic inflammation. To address these aspects more specifically, a new version of the theory has been developed. This version defines more precisely the moment of transition from acute inflammatory disease to chronic inflammatory disease as a time in which energy stores become empty (complete energy consumption). Depending on the amount of stored energy, this time point can be calculated to be 19-43 days. Second, the revised theory addresses the mechanisms of essential hypertension since, on the basis of water loss, acute inflammatory diseases can stimulate water retention using a positively selected water retention

  9. The Application of Fitness Sharing Method in Evolutionary Algorithm to Optimizing the Travelling Salesman Problem (TSP

    Directory of Open Access Journals (Sweden)

    Nurmaulidar Nurmaulidar

    2015-04-01

    Full Text Available Travelling Salesman Problem (TSP is one of complex optimization problem that is difficult to be solved, and require quite a long time for a large number of cities. Evolutionary algorithm is a precise algorithm used in solving complex optimization problem as it is part of heuristic method. Evolutionary algorithm, like many other algorithms, also experiences a premature convergence phenomenon, whereby variation is eliminated from a population of fairly fit individuals before a complete solution is achieved. Therefore it requires a method to delay the convergence. A specific method of fitness sharing called phenotype fitness sharing has been used in this research. The aim of this research is to find out whether fitness sharing in evolutionary algorithm is able to optimize TSP. There are two concepts of evolutionary algorithm being used in this research. the first one used single elitism and the other one used federated solution. The two concepts had been tested to the method of fitness sharing by using the threshold of 0.25, 0.50 and 0.75. The result was then compared to a non fitness sharing method. The result in this study indicated that by using single elitism concept, fitness sharing was able to give a more optimum result for the data of 100-1000 cities. On the other hand, by using federation solution concept, fitness sharing can yield a more optimum result for the data above 1000 cities, as well as a better solution of data-spreading compared to the method without fitness sharing.

  10. Evolutionary Aesthetics and Print Advertising

    Directory of Open Access Journals (Sweden)

    Kamil Luczaj

    2015-06-01

    Full Text Available The article analyzes the extent to which predictions based on the theory of evolutionary aesthetics are utilized by the advertising industry. The purpose of a comprehensive content analysis of print advertising is to determine whether the items indicated by evolutionists such as animals, flowers, certain types of landscapes, beautiful humans, and some colors are part of real advertising strategies. This article has shown that many evolutionary hypotheses (although not all of them are supported by empirical data. Along with these hypotheses, some inferences from Bourdieu’s cultural capital theory were tested. It turned out that advertising uses both biological schemata and cultural patterns to make an image more likable.

  11. Literary study and evolutionary theory : A review essay.

    Science.gov (United States)

    Carroll, J

    1998-09-01

    Several recent books have claimed to integrate literary study with evolutionary biology. All of the books here considered, except Robert Storey's, adopt conceptions of evolutionary theory that are in some way marginal to the Darwinian adaptationist program. All the works attempt to connect evolutionary study with various other disciplines or methodologies: for example, with cultural anthropology, cognitive psychology, the psychology of emotion, neurobiology, chaos theory, or structuralist linguistics. No empirical paradigm has yet been established for this field, but important steps have been taken, especially by Storey, in formulating basic principles, identifying appropriate disciplinary connections, and marking out lines of inquiry. Reciprocal efforts are needed from biologists and social scientists.

  12. Evolutionary Graphs with Frequency Dependent Fitness

    Science.gov (United States)

    Nie, Pu-Yan; Zhang, Pei-Ai

    Evolutionary graph theory was recently proposed by Lieberman et al. in 2005. In the previous papers about evolutionary graphs (EGs), the fitness of the residents in the EGs is in general assumed to be unity, and the fitness of a mutant is assumed to be a constant r. We aim to extend EG to general cases in this paper, namely, the fitness of a mutant is heavily dependent upon frequency. The corresponding properties for these new EGs are analyzed, and the fixation probability is obtained for large population.

  13. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.

    Science.gov (United States)

    Petrov, Petar; Syrjänen, Riikka; Smith, Jacqueline; Gutowska, Maria Weronika; Uchida, Tatsuya; Vainio, Olli; Burt, David W

    2015-01-01

    "Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.

  14. The Complete Chloroplast Genome Sequences of Six Rehmannia Species

    Directory of Open Access Journals (Sweden)

    Shuyun Zeng

    2017-03-01

    Full Text Available Rehmannia is a non-parasitic genus in Orobanchaceae including six species mainly distributed in central and north China. Its phylogenetic position and infrageneric relationships remain uncertain due to potential hybridization and polyploidization. In this study, we sequenced and compared the complete chloroplast genomes of six Rehmannia species using Illumina sequencing technology to elucidate the interspecific variations. Rehmannia plastomes exhibited typical quadripartite and circular structures with good synteny of gene order. The complete genomes ranged from 153,622 bp to 154,055 bp in length, including 133 genes encoding 88 proteins, 37 tRNAs, and 8 rRNAs. Three genes (rpoA, rpoC2, accD have potentially experienced positive selection. Plastome size variation of Rehmannia was mainly ascribed to the expansion and contraction of the border regions between the inverted repeat (IR region and the single-copy (SC regions. Despite of the conserved structure in Rehmannia plastomes, sequence variations provide useful phylogenetic information. Phylogenetic trees of 23 Lamiales species reconstructed with the complete plastomes suggested that Rehmannia was monophyletic and sister to the clade of Lindenbergia and the parasitic taxa in Orobanchaceae. The interspecific relationships within Rehmannia were completely different with the previous studies. In future, population phylogenomic works based on plastomes are urgently needed to clarify the evolutionary history of Rehmannia.

  15. Incorporating Development Into Evolutionary Psychology

    Directory of Open Access Journals (Sweden)

    David F. Bjorklund

    2016-09-01

    Full Text Available Developmental thinking is gradually becoming integrated within mainstream evolutionary psychology. This is most apparent with respect to the role of parenting, with proponents of life history theory arguing that cognitive and behavioral plasticity early in life permits children to select different life history strategies, with such strategies being adaptive solutions to different fitness trade-offs. I argue that adaptations develop and are based on the highly plastic nature of infants’ and children’s behavior/cognition/brains. The concept of evolved probabilistic cognitive mechanisms is introduced, defined as information processing mechanisms evolved to solve recurrent problems faced by ancestral populations that are expressed in a probabilistic fashion in each individual in a generation and are based on the continuous and bidirectional interaction over time at all levels of organization, from the genetic through the cultural. Early perceptual/cognitive biases result in behavior that, when occurring in a species-typical environment, produce continuous adaptive changes in behavior (and cognition, yielding adaptive outcomes. Examples from social learning and tool use are provided, illustrating the development of adaptations via evolved probabilistic cognitive mechanisms. The integration of developmental concepts into mainstream evolutionary psychology (and evolutionary concepts into mainstream developmental psychology will provide a clearer picture of what it means to be human.

  16. Evolutionary ecology of virus emergence.

    Science.gov (United States)

    Dennehy, John J

    2017-02-01

    The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.

  17. Evolutionary period changes in rotating hot pre--white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Kawaler, S.D.; Winget, D.E.; Hansen, C.J.

    1985-11-15

    We have calculated and splitting of high order nonradial g-modes due to slow rotation in models of hot pre-white dwarf (''PWD'') stars of 0.60 M/sub sun/. We have investigated the effects of rotational spin-up, produced by gravitational contraction, on the rate of evolutionary period change for the cases of uniform and differential rotation. For models in the luminosity range of PG 1159-035 (Lapprox.100 L/sub sun/), we find that rotation rates of a few thousand seconds for modes with m< or approx. =-2 produce values of d(ln P)/dt that are consistent with the measurement of the rate of period change of the 516 second period of PG 1159-035.

  18. Combining Environment-Driven Adaptation and Task-Driven Optimisation in Evolutionary Robotics

    NARCIS (Netherlands)

    Haasdijk, E.W.; Bredeche, Nicolas; Eiben, A.E.

    2014-01-01

    Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting

  19. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    Science.gov (United States)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  20. Applications of Evolutionary Computation

    NARCIS (Netherlands)

    Mora, Antonio M.; Squillero, Giovanni; Di Chio, C; Agapitos, Alexandros; Cagnoni, Stefano; Cotta, Carlos; Fernández De Vega, F; Di Caro, G A; Drechsler, R.; Ekárt, A; Esparcia-Alcázar, Anna I.; Farooq, M; Langdon, W B; Merelo-Guervós, J.J.; Preuss, M; Richter, O.-M.H.; Silva, Sara; Sim$\\$~oes, A; Squillero, Giovanni; Tarantino, Ernesto; Tettamanzi, Andrea G B; Togelius, J; Urquhart, Neil; Uyar, A S; Yannakakis, G N; Smith, Stephen L; Caserta, Marco; Ramirez, Adriana; Voß, Stefan; Squillero, Giovanni; Burelli, Paolo; Mora, Antonio M.; Squillero, Giovanni; Jan, Mathieu; Matthias, M; Di Chio, C; Agapitos, Alexandros; Cagnoni, Stefano; Cotta, Carlos; Fernández De Vega, F; Di Caro, G A; Drechsler, R.; Ekárt, A; Esparcia-Alcázar, Anna I.; Farooq, M; Langdon, W B; Merelo-Guervós, J.J.; Preuss, M; Richter, O.-M.H.; Silva, Sara; Sim$\\$~oes, A; Squillero, Giovanni; Tarantino, Ernesto; Tettamanzi, Andrea G B; Togelius, J; Urquhart, Neil; Uyar, A S; Yannakakis, G N; Caserta, Marco; Ramirez, Adriana; Voß, Stefan; Squillero, Giovanni; Burelli, Paolo; Esparcia-Alcazar, Anna I; Silva, Sara; Agapitos, Alexandros; Cotta, Carlos; De Falco, Ivanoe; Cioppa, Antonio Della; Diwold, Konrad; Ekart, Aniko; Tarantino, Ernesto; Vega, Francisco Fernandez De; Burelli, Paolo; Sim, Kevin; Cagnoni, Stefano; Simoes, Anabela; Merelo, J.J.; Urquhart, Neil; Haasdijk, Evert; Zhang, Mengjie; Squillero, Giovanni; Eiben, A E; Tettamanzi, Andrea G B; Glette, Kyrre; Rohlfshagen, Philipp; Schaefer, Robert; Caserta, Marco; Ramirez, Adriana; Voß, Stefan

    2015-01-01

    The application of genetic and evolutionary computation to problems in medicine has increased rapidly over the past five years, but there are specific issues and challenges that distinguish it from other real-world applications. Obtaining reliable and coherent patient data, establishing the clinical

  1. Complex systems, evolutionary planning?

    NARCIS (Netherlands)

    Bertolini, L.; de Roo, G.; Silva, E.A.

    2010-01-01

    Coping with uncertainty is a defining challenge for spatial planners. Accordingly, most spatial planning theories and methods are aimed at reducing uncertainty. However, the question is what should be done when this seems impossible? This chapter proposes an evolutionary interpretation of spatial

  2. Why is economic geography not an evolutionary science? : towards an evolutionary economic geography

    NARCIS (Netherlands)

    Boschma, R.A.; Frenken, K.; Martin, R.

    2008-01-01

    The paper explains the commonalities and differences between neoclassical, institutional and evolutionary approaches that have been influential in economic geography during the last couple of decades. By separating the three approaches in terms of theoretical content and research methodology, we can

  3. Why is economic geography not an evolutionary science? ; towards an evolutionary economic geography

    NARCIS (Netherlands)

    Boschma, R.A.; Frenken, K.

    2006-01-01

    The paper explains the commonalities and differences between neoclassical, institutional and evolutionary approaches that have been influential in economic geography during the last couple of decades. By separating the three approaches in terms of theoretical content and research methodology, wecan

  4. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed

    2017-01-05

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population games, namely so-called “stable games”. In particular, it was shown that a combination of stable games and (an analogue of) passive evolutionary dynamics results in stable convergence to Nash equilibrium. This paper considers the converse question of necessary conditions for evolutionary dynamics to exhibit stable behaviors for all generalized stable games. Using methods from robust control analysis, we show that if an evolutionary dynamic does not satisfy a passivity property, then it is possible to construct a generalized stable game that results in instability. The results are illustrated on selected evolutionary dynamics with particular attention to replicator dynamics, which are also shown to be lossless, a special class of passive systems.

  5. Evolutionary and Ecological Consequences of Interspecific Hybridization in Cladocerans

    NARCIS (Netherlands)

    Schwenk, K.; Spaak, P.

    1995-01-01

    The evolutionary process of interspecific hybridization in cladocerans is reviewed based on ecological and population genetic data. The evolutionary consequences of hybridization, biogeographic patterns and fitness comparisons are analyzed within the conceptual framework of theories on

  6. International Conference of Intelligence Computation and Evolutionary Computation ICEC 2012

    CERN Document Server

    Intelligence Computation and Evolutionary Computation

    2013-01-01

    2012 International Conference of Intelligence Computation and Evolutionary Computation (ICEC 2012) is held on July 7, 2012 in Wuhan, China. This conference is sponsored by Information Technology & Industrial Engineering Research Center.  ICEC 2012 is a forum for presentation of new research results of intelligent computation and evolutionary computation. Cross-fertilization of intelligent computation, evolutionary computation, evolvable hardware and newly emerging technologies is strongly encouraged. The forum aims to bring together researchers, developers, and users from around the world in both industry and academia for sharing state-of-art results, for exploring new areas of research and development, and to discuss emerging issues facing intelligent computation and evolutionary computation.

  7. A Double Evolutionary Pool Memetic Algorithm for Examination Timetabling Problems

    Directory of Open Access Journals (Sweden)

    Yu Lei

    2014-01-01

    Full Text Available A double evolutionary pool memetic algorithm is proposed to solve the examination timetabling problem. To improve the performance of the proposed algorithm, two evolutionary pools, that is, the main evolutionary pool and the secondary evolutionary pool, are employed. The genetic operators have been specially designed to fit the examination timetabling problem. A simplified version of the simulated annealing strategy is designed to speed the convergence of the algorithm. A clonal mechanism is introduced to preserve population diversity. Extensive experiments carried out on 12 benchmark examination timetabling instances show that the proposed algorithm is able to produce promising results for the uncapacitated examination timetabling problem.

  8. Genome-wide detection of selection and other evolutionary forces

    DEFF Research Database (Denmark)

    Xu, Zhuofei; Zhou, Rui

    2015-01-01

    As is well known, pathogenic microbes evolve rapidly to escape from the host immune system and antibiotics. Genetic variations among microbial populations occur frequently during the long-term pathogen–host evolutionary arms race, and individual mutation beneficial for the fitness can be fixed...... to scan genome-wide alignments for evidence of positive Darwinian selection, recombination, and other evolutionary forces operating on the coding regions. In this chapter, we describe an integrative analysis pipeline and its application to tracking featured evolutionary trajectories on the genome...

  9. Human compulsivity: A perspective from evolutionary medicine.

    Science.gov (United States)

    Stein, Dan J; Hermesh, Haggai; Eilam, David; Segalas, Cosi; Zohar, Joseph; Menchon, Jose; Nesse, Randolph M

    2016-05-01

    Biological explanations address not only proximal mechanisms (for example, the underlying neurobiology of obsessive-compulsive disorder), but also distal mechanisms (that is, a consideration of how particular neurobiological mechanisms evolved). Evolutionary medicine has emphasized a series of explanations for vulnerability to disease, including constraints, mismatch, and tradeoffs. The current paper will consider compulsive symptoms in obsessive-compulsive and related disorders and behavioral addictions from this evolutionary perspective. It will argue that while obsessive-compulsive disorder (OCD) is typically best conceptualized as a dysfunction, it is theoretically and clinically valuable to understand some symptoms of obsessive-compulsive and related disorders in terms of useful defenses. The symptoms of behavioral addictions can also be conceptualized in evolutionary terms (for example, mismatch), which in turn provides a sound foundation for approaching assessment and intervention. Copyright © 2016. Published by Elsevier B.V.

  10. Infrastructure system restoration planning using evolutionary algorithms

    Science.gov (United States)

    Corns, Steven; Long, Suzanna K.; Shoberg, Thomas G.

    2016-01-01

    This paper presents an evolutionary algorithm to address restoration issues for supply chain interdependent critical infrastructure. Rapid restoration of infrastructure after a large-scale disaster is necessary to sustaining a nation's economy and security, but such long-term restoration has not been investigated as thoroughly as initial rescue and recovery efforts. A model of the Greater Saint Louis Missouri area was created and a disaster scenario simulated. An evolutionary algorithm is used to determine the order in which the bridges should be repaired based on indirect costs. Solutions were evaluated based on the reduction of indirect costs and the restoration of transportation capacity. When compared to a greedy algorithm, the evolutionary algorithm solution reduced indirect costs by approximately 12.4% by restoring automotive travel routes for workers and re-establishing the flow of commodities across the three rivers in the Saint Louis area.

  11. An evolutionary behaviorist perspective on orgasm

    Science.gov (United States)

    Fleischman, Diana S.

    2016-01-01

    Evolutionary explanations for sexual behavior and orgasm most often posit facilitating reproduction as the primary function (i.e. greater rate of fertilization). Other reproductive benefits of sexual pleasure and orgasm such as improved bonding of parents have also been discussed but not thoroughly. Although sex is known to be highly reinforcing, behaviorist principles are rarely invoked alongside evolutionary psychology in order to account for human sexual and social behavior. In this paper, I will argue that intense sexual pleasure, especially orgasm, can be understood as a primary reinforcer shaped by evolution to reinforce behavior that facilitates reproductive success (i.e. conception through copulation). Next, I will describe an evolutionary account of social shaping. In particular, I will focus on how humans evolved to use orgasm and sexual arousal to shape the social behavior and emotional states of others through both classical and operant conditioning and through both reproductive and non-reproductive forms of sexual behavior. Finally, I will describe how orgasm is a signal of sensitivity to reinforcement that is itself reinforcing. PMID:27799083

  12. An Evolutionary Perspective on Toxic Leadership

    Directory of Open Access Journals (Sweden)

    Lucia Ovidia VREJA

    2016-12-01

    Full Text Available Charles Darwin’s prediction from 1859, that future psychology was going to be built on principles derived from evolutionary theory came at last to be fulfilled. Nowadays, there are at least four disciplines that attempt to explain human behaviours as evolutionary adaptations (or maladaptations to the natural and/or social environment: human sociobiology, human behavioural ecology, evolutionary psychology, memetics and gene–culture coevolution theory (in our view, the most adequate of all. According to gene–culture coevolution theory, articulated language was the singular phenomenon that permitted humans to become a cultural species, and from that moment on culture become itself a selection factor. Culture means transmission of information from one generation to the next and learning from other individuals’ experiences, trough language. So, it is of critical importance to have good criteria for the selection of those individuals from whom we should learn. Yet when humans also choose their leaders from among those role-models, according to the same criteria, this mechanism can become a maladaptation and the result can be toxic leadership.

  13. Evolutionary Theory's Increasing Role in Personality and Social Psychology

    Directory of Open Access Journals (Sweden)

    Gregory D. Webster

    2007-01-01

    Full Text Available Has the emergence of evolutionary psychology had an increasing impact on personality and social psychological research published over the past two decades? If so, is its growing influence substantially different from that of other emerging psychological areas? These questions were addressed in the present study by conducting a content analysis of the Journal of Personality and Social Psychology (JPSP from 1985 to 2004 using the PsycINFO online abstract database. Specifically, keyword searches for “evol*” or “Darwin*” revealed that the percentage of JPSP articles drawing on evolutionary theory was modest, but increased significantly between 1985 and 2004. To compare the growing impact of evolutionary psychology with other psychological areas, similar keywords searches were performed in JPSP for emotion and motivation, judgment and decision making, neuroscience and psychophysiology, stereotyping and prejudice, and terror management theory. The increase in evolutionary theory in JPSP over time was practically equal to the mean increase over time for the other five areas. Thus, evolutionary psychology has played an increasing role in shaping personality and social psychological research over the past 20 years, and is growing at a rate consistent with other emerging psychological areas.

  14. Evolutionary medicine: update on the relevance to family practice.

    Science.gov (United States)

    Naugler, Christopher T

    2008-09-01

    To review the relevance of evolutionary medicine to family practice and family physician training. Articles were located through a MEDLINE search, using the key words evolution, Darwin, and adaptation. Most references presented level III evidence (expert opinion), while a minority provided level II evidence (epidemiologic studies). Evolutionary medicine deals with the interplay of biology and the environment in the understanding of human disease. Yet medical schools have virtually ignored the need for family physicians to have more than a cursory knowledge of this topic. A review of the main trends in this field most relevant to family practice revealed that a basic knowledge of evolutionary medicine might help in explaining the causation of diseases to patients. Evolutionary medicine has also proven key to explaining the reasons for the development of antibiotic resistance and has the potential to explain cancer pathogenesis. As an organizing principle, this field also has potential in the teaching of family medicine. Evolutionary medicine should be studied further and incorporated into medical training and practice. Its practical utility will be proven through the generation of testable hypotheses and their application in relation to disease causation and possible prevention.

  15. Evolutionary rate patterns of the Gibberellin pathway genes

    Directory of Open Access Journals (Sweden)

    Zhang Fu-min

    2009-08-01

    Full Text Available Abstract Background Analysis of molecular evolutionary patterns of different genes within metabolic pathways allows us to determine whether these genes are subject to equivalent evolutionary forces and how natural selection shapes the evolution of proteins in an interacting system. Although previous studies found that upstream genes in the pathway evolved more slowly than downstream genes, the correlation between evolutionary rate and position of the genes in metabolic pathways as well as its implications in molecular evolution are still less understood. Results We sequenced and characterized 7 core structural genes of the gibberellin biosynthetic pathway from 8 representative species of the rice tribe (Oryzeae to address alternative hypotheses regarding evolutionary rates and patterns of metabolic pathway genes. We have detected significant rate heterogeneity among 7 GA pathway genes for both synonymous and nonsynonymous sites. Such rate variation is mostly likely attributed to differences of selection intensity rather than differential mutation pressures on the genes. Unlike previous argument that downstream genes in metabolic pathways would evolve more slowly than upstream genes, the downstream genes in the GA pathway did not exhibited the elevated substitution rate and instead, the genes that encode either the enzyme at the branch point (GA20ox or enzymes catalyzing multiple steps (KO, KAO and GA3ox in the pathway had the lowest evolutionary rates due to strong purifying selection. Our branch and codon models failed to detect signature of positive selection for any lineage and codon of the GA pathway genes. Conclusion This study suggests that significant heterogeneity of evolutionary rate of the GA pathway genes is mainly ascribed to differential constraint relaxation rather than the positive selection and supports the pathway flux theory that predicts that natural selection primarily targets enzymes that have the greatest control on fluxes.

  16. Invisible hand effect in an evolutionary minority game model

    Science.gov (United States)

    Sysi-Aho, Marko; Saramäki, Jari; Kaski, Kimmo

    2005-03-01

    In this paper, we study the properties of a minority game with evolution realized by using genetic crossover to modify fixed-length decision-making strategies of agents. Although the agents in this evolutionary game act selfishly by trying to maximize their own performances only, it turns out that the whole society will eventually be rewarded optimally. This “invisible hand” effect is what Adam Smith over two centuries ago expected to take place in the context of free market mechanism. However, this behaviour of the society of agents is realized only under idealized conditions, where all agents are utilizing the same efficient evolutionary mechanism. If on the other hand part of the agents are adaptive, but not evolutionary, the system does not reach optimum performance, which is also the case if part of the evolutionary agents form a uniformly acting “cartel”.

  17. Evolutionary mysteries in meiosis

    NARCIS (Netherlands)

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E.; Wijnker, Erik; Haag, Christoph R.

    2016-01-01

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these

  18. Editorial overview: Evolutionary psychology

    NARCIS (Netherlands)

    Gangestad, S.W.; Tybur, J.M.

    2016-01-01

    Functional approaches in psychology - which ask what behavior is good for - are almost as old as scientific psychology itself. Yet sophisticated, generative functional theories were not possible until developments in evolutionary biology in the mid-20th century. Arising in the last three decades,

  19. Treatment resistance in urothelial carcinoma: an evolutionary perspective.

    Science.gov (United States)

    Vlachostergios, Panagiotis J; Faltas, Bishoy M

    2018-05-02

    The emergence of treatment-resistant clones is a critical barrier to cure in patients with urothelial carcinoma. Setting the stage for the evolution of resistance, urothelial carcinoma is characterized by extensive mutational heterogeneity, which is detectable even in patients with early stage disease. Chemotherapy and immunotherapy both act as selective pressures that shape the evolutionary trajectory of urothelial carcinoma throughout the course of the disease. A detailed understanding of the dynamics of evolutionary drivers is required for the rational development of curative therapies. Herein, we describe the molecular basis of the clonal evolution of urothelial carcinomas and the use of genomic approaches to predict treatment responses. We discuss various mechanisms of resistance to chemotherapy with a focus on the mutagenic effects of the DNA dC->dU-editing enzymes APOBEC3 family of proteins. We also review the evolutionary mechanisms underlying resistance to immunotherapy, such as the loss of clonal tumour neoantigens. By dissecting treatment resistance through an evolutionary lens, the field will advance towards true precision medicine for urothelial carcinoma.

  20. Evolutionary Computation Methods and their applications in Statistics

    Directory of Open Access Journals (Sweden)

    Francesco Battaglia

    2013-05-01

    Full Text Available A brief discussion of the genesis of evolutionary computation methods, their relationship to artificial intelligence, and the contribution of genetics and Darwin’s theory of natural evolution is provided. Then, the main evolutionary computation methods are illustrated: evolution strategies, genetic algorithms, estimation of distribution algorithms, differential evolution, and a brief description of some evolutionary behavior methods such as ant colony and particle swarm optimization. We also discuss the role of the genetic algorithm for multivariate probability distribution random generation, rather than as a function optimizer. Finally, some relevant applications of genetic algorithm to statistical problems are reviewed: selection of variables in regression, time series model building, outlier identification, cluster analysis, design of experiments.

  1. Applications of evolutionary computation in image processing and pattern recognition

    CERN Document Server

    Cuevas, Erik; Perez-Cisneros, Marco

    2016-01-01

    This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an...

  2. How conservative are evolutionary anthropologists?: a survey of political attitudes.

    Science.gov (United States)

    Lyle, Henry F; Smith, Eric A

    2012-09-01

    The application of evolutionary theory to human behavior has elicited a variety of critiques, some of which charge that this approach expresses or encourages conservative or reactionary political agendas. In a survey of graduate students in psychology, Tybur, Miller, and Gangestad (Human Nature, 18, 313-328, 2007) found that the political attitudes of those who use an evolutionary approach did not differ from those of other psychology grad students. Here, we present results from a directed online survey of a broad sample of graduate students in anthropology that assays political views. We found that evolutionary anthropology graduate students were very liberal in their political beliefs, overwhelmingly voted for a liberal U.S. presidential candidate in the 2008 election, and identified with liberal political parties; in this, they were almost indistinguishable from non-evolutionary anthropology students. Our results contradict the view that evolutionary anthropologists hold conservative or reactionary political views. We discuss some possible reasons for the persistence of this view in terms of the sociology of science.

  3. Accuracy of Digitally Fabricated Wax Denture Bases and Conventional Completed Complete Dentures

    Directory of Open Access Journals (Sweden)

    Bogna Stawarczyk

    2017-12-01

    Full Text Available The purpose of this investigation was to analyze the accuracy of digitally fabricated wax trial dentures and conventionally finalized complete dentures in comparison to a surface tessellation language (STL-dataset. A generated data set for the denture bases and the tooth sockets was used, converted into STL-format, and saved as reference. Five mandibular and 5 maxillary denture bases were milled from wax blanks and denture teeth were waxed into their tooth sockets. Each complete denture was checked on fit, waxed onto the dental cast, and digitized using an optical laboratory scanning device. The complete dentures were completed conventionally using the injection method, finished, and scanned. The resulting STL-datasets were exported into the three-dimensional (3D software GOM Inspect. Each of the 5 mandibular and 5 maxillary complete dentures was aligned with the STL- and the wax trial denture dataset. Alignment was performed based on a best-fit algorithm. A three-dimensional analysis of the spatial divergences in x-, y- and z-axes was performed by the 3D software and visualized in a color-coded illustration. The mean positive and negative deviations between the datasets were calculated automatically. In a direct comparison between maxillary wax trial dentures and complete dentures, complete dentures showed higher deviations from the STL-dataset than the wax trial dentures. The deviations occurred in the area of the teeth as well as in the distal area of the denture bases. In contrast, the highest deviations in both the mandibular wax trial dentures and the mandibular complete dentures were observed in the distal area. The complete dentures showed higher deviations on the occlusal surfaces of the teeth compared to the wax dentures. Computer-aided design/computer-aided manufacturing (CAD/CAM-fabricated wax dentures exhibited fewer deviations from the STL-reference than the complete dentures. The deviations were significantly greater in the

  4. The complete mitochondrial genome of the Antarctic stalked jellyfish, Haliclystus antarcticus Pfeffer, 1889 (Staurozoa: Stauromedusae

    Directory of Open Access Journals (Sweden)

    Hsing-Hui Li

    2016-06-01

    Full Text Available In present study, the complete mitogenome sequence of the Antarctic stalked jellyfish, Haliclystus antarcticus Pfeffer (Staurozoa: Stauromedusae has been sequenced by next-generation sequencing method. The assembled mitogenome comprises of 15,766 bp including 13 protein coding genes, 7 transfer RNAs, and 2 ribosomal RNA genes. The overall base of Antarctic stalked jellyfish constitutes of 26.5% for A, 19.6% for C, 19.8% for G, 34.1% for T and show 90% identity to Sessile Jelly, Haliclystus sanjuanensis, in the northeastern Pacific Ocean. The complete mitogenome of the Antarctic stalked jellyfish, contributes fundamental and significant DNA molecular data for further phylogeography and evolutionary analysis for seahorse phylogeny. The complete sequence was deposited in DBBJ/EMBL/GenBank under accession number KU947038.

  5. Distribution Learning in Evolutionary Strategies and Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Krause, Oswin

    The thesis is concerned with learning distributions in the two settings of Evolutionary Strategies (ESs) and Restricted Boltzmann Machines (RBMs). In both cases, the distributions are learned from samples, albeit with different goals. Evolutionary Strategies are concerned with finding an optimum ...

  6. Multi-objective mixture-based iterated density estimation evolutionary algorithms

    NARCIS (Netherlands)

    Thierens, D.; Bosman, P.A.N.

    2001-01-01

    We propose an algorithm for multi-objective optimization using a mixture-based iterated density estimation evolutionary algorithm (MIDEA). The MIDEA algorithm is a prob- abilistic model building evolutionary algo- rithm that constructs at each generation a mixture of factorized probability

  7. When theory trumps ideology: Lessons from evolutionary psychology.

    Science.gov (United States)

    Tybur, Joshua M; Navarrete, Carlos David

    2015-01-01

    Evolutionary psychologists are personally liberal, just as social psychologists are. Yet their research has rarely been perceived as liberally biased--if anything, it has been erroneously perceived as motivated by conservative political agendas. Taking a closer look at evolutionary psychologists might offer the broader social psychology community guidance in neutralizing some of the biases Duarte et al. discuss.

  8. Vestibule and Cask Preparation Mechanical Handling Calculation

    International Nuclear Information System (INIS)

    Ambre, N.

    2004-01-01

    The scope of this document is to develop the size, operational envelopes, and major requirements of the equipment to be used in the vestibule, cask preparation area, and the crane maintenance area of the Fuel Handling Facility. This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAIC Company L.L.C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC--28-01R W12101'' (Ref. 167124). This correspondence was appended by further correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC--28-01R W12101; TDL No. 04-024'' (Ref. 16875 1). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process

  9. Computing the Quartet Distance Between Evolutionary Trees in Time O(n log n)

    DEFF Research Database (Denmark)

    Brodal, Gerth Sølfting; Fagerberg, Rolf; Pedersen, Christian Nørgaard Storm

    2003-01-01

    Evolutionary trees describing the relationship for a set of species are central in evolutionary biology, and quantifying differences between evolutionary trees is therefore an important task. The quartet distance is a distance measure between trees previously proposed by Estabrook, McMorris, and ...... unrooted evolutionary trees of n species, where all internal nodes have degree three, in time O(n log n. The previous best algorithm for the problem uses time O(n 2).......Evolutionary trees describing the relationship for a set of species are central in evolutionary biology, and quantifying differences between evolutionary trees is therefore an important task. The quartet distance is a distance measure between trees previously proposed by Estabrook, Mc......Morris, and Meacham. The quartet distance between two unrooted evolutionary trees is the number of quartet topology differences between the two trees, where a quartet topology is the topological subtree induced by four species. In this paper we present an algorithm for computing the quartet distance between two...

  10. Ecological and evolutionary consequences of niche construction for its agent.

    Science.gov (United States)

    Kylafis, Grigoris; Loreau, Michel

    2008-10-01

    Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant-soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction.

  11. Evolutionary Game Theory Analysis of Tumor Progression

    Science.gov (United States)

    Wu, Amy; Liao, David; Sturm, James; Austin, Robert

    2014-03-01

    Evolutionary game theory applied to two interacting cell populations can yield quantitative prediction of the future densities of the two cell populations based on the initial interaction terms. We will discuss how in a complex ecology that evolutionary game theory successfully predicts the future densities of strains of stromal and cancer cells (multiple myeloma), and discuss the possible clinical use of such analysis for predicting cancer progression. Supported by the National Science Foundation and the National Cancer Institute.

  12. Evolutionary Sound Synthesis Controlled by Gestural Data

    Directory of Open Access Journals (Sweden)

    Jose Fornari

    2011-05-01

    Full Text Available This article focuses on the interdisciplinary research involving Computer Music and Generative Visual Art. We describe the implementation of two interactive artistic systems based on principles of Gestural Data (WILSON, 2002 retrieval and self-organization (MORONI, 2003, to control an Evolutionary Sound Synthesis method (ESSynth. The first implementation uses, as gestural data, image mapping of handmade drawings. The second one uses gestural data from dynamic body movements of dance. The resulting computer output is generated by an interactive system implemented in Pure Data (PD. This system uses principles of Evolutionary Computation (EC, which yields the generation of a synthetic adaptive population of sound objects. Considering that music could be seen as “organized sound” the contribution of our study is to develop a system that aims to generate "self-organized sound" – a method that uses evolutionary computation to bridge between gesture, sound and music.

  13. EvAg: A Scalable Peer-to-Peer Evolutionary Algorithm

    NARCIS (Netherlands)

    Laredo, J.L.J.; Eiben, A.E.; van Steen, M.R.; Merelo, J.J.

    2010-01-01

    This paper studies the scalability of an Evolutionary Algorithm (EA) whose population is structured by means of a gossiping protocol and where the evolutionary operators act exclusively within the local neighborhoods. This makes the algorithm inherently suited for parallel execution in a

  14. Convex hull ranking algorithm for multi-objective evolutionary algorithms

    NARCIS (Netherlands)

    Davoodi Monfrared, M.; Mohades, A.; Rezaei, J.

    2012-01-01

    Due to many applications of multi-objective evolutionary algorithms in real world optimization problems, several studies have been done to improve these algorithms in recent years. Since most multi-objective evolutionary algorithms are based on the non-dominated principle, and their complexity

  15. Charisma as signal : An evolutionary perspective on charismatic leadership

    NARCIS (Netherlands)

    Grabo, Allen; Spisak, Brian R.; van Vugt, Mark

    2017-01-01

    We present an evolutionary perspective on charismatic leadership, arguing that charisma has evolved as a credible signal of a person's ability to solve a coordination challenge requiring urgent collective action from group members. We suggest that a better understanding of charisma's evolutionary

  16. Evolutionary process of deep-sea bathymodiolus mussels.

    Science.gov (United States)

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular

  17. Evolutionary game theory and organizational ecology: The case of resource-partitioning theory

    OpenAIRE

    ZHOU, Chaohong; VAN WITTELOOSTUIJN, Arjen

    2009-01-01

    Abstract: In this paper, we construct a mathematical model that applies tools from evolutionary game theory to issues in organizational ecology. Evolutionary game theory shares the key feature of mathematical rigor with the industrial organization tradition, but is similar to organizational ecology by emphasizing evolutionary dynamics. Evolutionary game theory may well be a complementary modeling tool for the analytical study of organizational ecology issues, next to formal logic, standard ga...

  18. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.

    Science.gov (United States)

    Gilbert, Scott F; Bosch, Thomas C G; Ledón-Rettig, Cristina

    2015-10-01

    The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.

  19. Towards Automatic Controller Design using Multi-Objective Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf

    of evolutionary computation, a choice was made to use multi-objective algorithms for the purpose of aiding in automatic controller design. More specifically, the choice was made to use the Non-dominated Sorting Genetic Algorithm II (NSGAII), which is one of the most potent algorithms currently in use...... for automatic controller design. However, because the field of evolutionary computation is relatively unknown in the field of control engineering, this thesis also includes a comprehensive introduction to the basic field of evolutionary computation as well as a description of how the field has previously been......In order to design the controllers of tomorrow, a need has risen for tools that can aid in the design of these. A desire to use evolutionary computation as a tool to achieve that goal is what gave inspiration for the work contained in this thesis. After having studied the foundations...

  20. Evolutionary genetics: the Drosophila model

    Indian Academy of Sciences (India)

    Unknown

    Evolutionary genetics straddles the two fundamental processes of life, ... of the genus Drosophila have been used extensively as model systems in experimental ... issue will prove interesting, informative and thought-provoking for both estab-.

  1. Biochemistry and evolutionary biology

    Indian Academy of Sciences (India)

    Biochemical information has been crucial for the development of evolutionary biology. On the one hand, the sequence information now appearing is producing a huge increase in the amount of data available for phylogenetic analysis; on the other hand, and perhaps more fundamentally, it allows understanding of the ...

  2. The evolutionary diversification of seed size: using the past to understand the present.

    Science.gov (United States)

    Sims, Hallie J

    2012-05-01

    The Devonian origin of seed plants and subsequent morphological diversification of seeds during the late Paleozoic represents an adaptive radiation into unoccupied ecological niche space. A plant's seed size is correlated with its life-history strategy, growth form, and seed dispersal syndrome. The fossil record indicates that the oldest seed plants had relatively small seeds, but the Mississippian seed size envelope increased significantly with the diversification of larger seeded lineages. Fossil seeds equivalent to the largest extant gymnosperm seeds appeared by the Pennsylvanian, concurrent with morphological diversification of growth forms and dispersal syndromes as well as the clade's radiation into new environments. Wang's Analysis of Skewness indicates that the evolutionary trend of increasing seed size resulted from primarily passive processes in Pennsylvanian seed plants. The distributions of modern angiosperms indicate a more diverse system of active and some passive processes, unbounded by Paleozoic limits; multiple angiosperm lineages independently evolved though the upper and lower bounds. Quantitative measures of preservation suggest that, although our knowledge of Paleozoic seeds is far from complete, the evolutionary trend in seed size is unlikely to be an artifact of taphonomy. © 2012 The Author. Evolution© 2012 The Society for the Study of Evolution.

  3. Selfish genetic elements, genetic conflict, and evolutionary innovation.

    Science.gov (United States)

    Werren, John H

    2011-06-28

    Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible "evolutionary functions" of SGEs.

  4. Achieving sustainable plant disease management through evolutionary principles.

    Science.gov (United States)

    Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J

    2014-09-01

    Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Directory of Open Access Journals (Sweden)

    Neil W. Blackstone

    2016-04-01

    Full Text Available Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  6. The Neural Systems of Forgiveness: An Evolutionary Psychological Perspective

    Directory of Open Access Journals (Sweden)

    Joseph Billingsley

    2017-05-01

    Full Text Available Evolution-minded researchers posit that the suite of human cognitive adaptations may include forgiveness systems. According to these researchers, forgiveness systems regulate interpersonal motivation toward a transgressor in the wake of harm by weighing multiple factors that influence both the potential gains of future interaction with the transgressor and the likelihood of future harm. Although behavioral research generally supports this evolutionary model of forgiveness, the model’s claims have not been examined with available neuroscience specifically in mind, nor has recent neuroscientific research on forgiveness generally considered the evolutionary literature. The current review aims to help bridge this gap by using evolutionary psychology and cognitive neuroscience to mutually inform and interrogate one another. We briefly summarize the evolutionary research on forgiveness, then review recent neuroscientific findings on forgiveness in light of the evolutionary model. We emphasize neuroscientific research that links desire for vengeance to reward-based areas of the brain, that singles out prefrontal areas likely associated with inhibition of vengeful feelings, and that correlates the activity of a theory-of-mind network with assessments of the intentions and blameworthiness of those who commit harm. In addition, we identify gaps in the existing neuroscientific literature, and propose future research directions that might address them, at least in part.

  7. Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment

    Science.gov (United States)

    Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.

    2018-01-01

    Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574

  8. Endogenous money: the evolutionary versus revolutionary views

    OpenAIRE

    Louis-Philippe Rochon; Sergio Rossi

    2013-01-01

    The purpose of this paper is to shed light on the endogenous nature of money. Contrary to the established post-Keynesian, or evolutionary, view, this paper argues that money has always been endogenous, irrespective of the historical period. Instead of the evolutionary theory of money and banking that can be traced back to Chick (1986), this paper puts forward a revolutionary definition of endogenous money consistent with many aspects of post-Keynesian economics as well as with the monetary ci...

  9. Radiation shielding calculation for the MOX fuel fabrication plant Melox

    International Nuclear Information System (INIS)

    Lee, Y.K.; Nimal, J.C.; Chiron, M.

    1994-01-01

    Radiation shielding calculation is an important engineering work in the design of the MOX fuel fabrication plant MELOX. Due to the recycle of plutonium and uranium from UO2 spent fuel reprocessing and the large capacity of production (120t HM/yr.), the shielding design requires more attention in this LWR fuel plant. In MELOX, besides several temporary storage facilities of massive fissile material, about one thousand radioactive sources with different geometries, forms, densities, quantities and Pu concentrations, are distributed through different workshops from the PuO 2 powder reception unit to the fuel assembly packing room. These sources, with or without close shield, stay temporarily in different locations, containers and glove boxes. In order to optimize the dimensions, the material and the cost of shield as well as to limit the calculation work in a reasonable engineer-hours, a calculation scheme for shielding design of MELOX is developed. This calculation scheme has been proved to be useful in consideration of the feedback from the evolutionary design and construction. The validated shielding calculations give a predictive but reliable radiation doses information. (authors). 2 figs., 10 refs

  10. Diabetes and Obesity—An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Sylvia Kirchengast

    2017-01-01

    Full Text Available Obesity and type II diabetes belong to the most serious public health challenges of the 21st century. Initially both diseases were typical of affluent societies. Currently both conditions however are increasingly found in low and middle income countries. In future obesity and diabetes are expected to reach epidemic proportions and affect developing countries to a greater extent than developed ones. A globalization of obesity and diabetes is observable. Recently prevalence rates increased, especially in Asia, the Near and Middle East, the Western Pacific region and even in Sub-Saharan Africa. Evolutionary Anthropology tries to understand the evolutionary mechanisms promoting rising obesity and diabetes type II rates. Homo sapiens evolved in an environment quite different from our recent one. Profound changes in physical activity patterns and nutritional habits during the last 10,000 years and increasingly during the last 200 years increased the risk of obesity and diabetes type II. Consequently our recent environment is called “obesogenic”. This mismatch has been recently observable among societies experiencing rapid cultural changes characterized by Westernization and modernization. This review focuses on obesity and type II diabetes from the viewpoint of evolutionary anthropology.

  11. On the evolutionary origins of equity.

    Directory of Open Access Journals (Sweden)

    Stéphane Debove

    Full Text Available Equity, defined as reward according to contribution, is considered a central aspect of human fairness in both philosophical debates and scientific research. Despite large amounts of research on the evolutionary origins of fairness, the evolutionary rationale behind equity is still unknown. Here, we investigate how equity can be understood in the context of the cooperative environment in which humans evolved. We model a population of individuals who cooperate to produce and divide a resource, and choose their cooperative partners based on how they are willing to divide the resource. Agent-based simulations, an analytical model, and extended simulations using neural networks provide converging evidence that equity is the best evolutionary strategy in such an environment: individuals maximize their fitness by dividing benefits in proportion to their own and their partners' relative contribution. The need to be chosen as a cooperative partner thus creates a selection pressure strong enough to explain the evolution of preferences for equity. We discuss the limitations of our model, the discrepancies between its predictions and empirical data, and how interindividual and intercultural variability fit within this framework.

  12. Spatial evolutionary epidemiology of spreading epidemics.

    Science.gov (United States)

    Lion, S; Gandon, S

    2016-10-26

    Most spatial models of host-parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. © 2016 The Author(s).

  13. Expanding Evolutionary Theory beyond Darwinism with Elaborating, Self-Organizing, and Fractionating Complex Evolutionary Systems

    Science.gov (United States)

    Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.

    2010-01-01

    Earth systems increase in complexity, diversity, and interconnectedness with time, driven by tectonic/solar energy that keeps the systems far from equilibrium. The evolution of Earth systems is facilitated by three evolutionary mechanisms: "elaboration," "fractionation," and "self-organization," that share…

  14. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes.

    Directory of Open Access Journals (Sweden)

    Benjamin R Jack

    2016-05-01

    Full Text Available Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein-protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes.

  15. Learning: An Evolutionary Analysis

    Science.gov (United States)

    Swann, Joanna

    2009-01-01

    This paper draws on the philosophy of Karl Popper to present a descriptive evolutionary epistemology that offers philosophical solutions to the following related problems: "What happens when learning takes place?" and "What happens in human learning?" It provides a detailed analysis of how learning takes place without any direct transfer of…

  16. Do we need an extended evolutionary synthesis?

    Science.gov (United States)

    Pigliucci, Massimo

    2007-12-01

    The Modern Synthesis (MS) is the current paradigm in evolutionary biology. It was actually built by expanding on the conceptual foundations laid out by its predecessors, Darwinism and neo-Darwinism. For sometime now there has been talk of a new Extended Evolutionary Synthesis (EES), and this article begins to outline why we may need such an extension, and how it may come about. As philosopher Karl Popper has noticed, the current evolutionary theory is a theory of genes, and we still lack a theory of forms. The field began, in fact, as a theory of forms in Darwin's days, and the major goal that an EES will aim for is a unification of our theories of genes and of forms. This may be achieved through an organic grafting of novel concepts onto the foundational structure of the MS, particularly evolvability, phenotypic plasticity, epigenetic inheritance, complexity theory, and the theory of evolution in highly dimensional adaptive landscapes.

  17. Evolutionary stability concepts in a stochastic environment

    Science.gov (United States)

    Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi

    2017-09-01

    Over the past 30 years, evolutionary game theory and the concept of an evolutionarily stable strategy have been not only extensively developed and successfully applied to explain the evolution of animal behaviors, but also widely used in economics and social sciences. Nonetheless, the stochastic dynamical properties of evolutionary games in randomly fluctuating environments are still unclear. In this study, we investigate conditions for stochastic local stability of fixation states and constant interior equilibria in a two-phenotype model with random payoffs following pairwise interactions. Based on this model, we develop the concepts of stochastic evolutionary stability (SES) and stochastic convergence stability (SCS). We show that the condition for a pure strategy to be SES and SCS is more stringent than in a constant environment, while the condition for a constant mixed strategy to be SES is less stringent than the condition to be SCS, which is less stringent than the condition in a constant environment.

  18. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    Directory of Open Access Journals (Sweden)

    Annalise B. Paaby

    2016-06-01

    Full Text Available Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits.

  19. Are hotspots of evolutionary potential adequately protected in southern California?

    Science.gov (United States)

    Vandergast, A.G.; Bohonak, A.J.; Hathaway, S.A.; Boys, J.; Fisher, R.N.

    2008-01-01

    Reserves are often designed to protect rare habitats, or "typical" exemplars of ecoregions and geomorphic provinces. This approach focuses on current patterns of organismal and ecosystem-level biodiversity, but typically ignores the evolutionary processes that control the gain and loss of biodiversity at these and other levels (e.g., genetic, ecological). In order to include evolutionary processes in conservation planning efforts, their spatial components must first be identified and mapped. We describe a GIS-based approach for explicitly mapping patterns of genetic divergence and diversity for multiple species (a "multi-species genetic landscape"). Using this approach, we analyzed mitochondrial DNA datasets from 21 vertebrate and invertebrate species in southern California to identify areas with common phylogeographic breaks and high intrapopulation diversity. The result is an evolutionary framework for southern California within which patterns of genetic diversity can be analyzed in the context of historical processes, future evolutionary potential and current reserve design. Our multi-species genetic landscapes pinpoint six hotspots where interpopulation genetic divergence is consistently high, five evolutionary hotspots within which genetic connectivity is high, and three hotspots where intrapopulation genetic diversity is high. These 14 hotspots can be grouped into eight geographic areas, of which five largely are unprotected at this time. The multi-species genetic landscape approach may provide an avenue to readily incorporate measures of evolutionary process into GIS-based systematic conservation assessment and land-use planning.

  20. Langley's CSI evolutionary model: Phase O

    Science.gov (United States)

    Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.

  1. The evolutionary history of bears is characterized by gene flow across species

    Science.gov (United States)

    Kumar, Vikas; Lammers, Fritjof; Bidon, Tobias; Pfenninger, Markus; Kolter, Lydia; Nilsson, Maria A.; Janke, Axel

    2017-01-01

    Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow. PMID:28422140

  2. The evolutionary history of bears is characterized by gene flow across species.

    Science.gov (United States)

    Kumar, Vikas; Lammers, Fritjof; Bidon, Tobias; Pfenninger, Markus; Kolter, Lydia; Nilsson, Maria A; Janke, Axel

    2017-04-19

    Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow.

  3. Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.

    Science.gov (United States)

    Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej

    2016-11-01

    The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  4. Evolutionary cost management in the nuclear industry

    International Nuclear Information System (INIS)

    Lombardi, C.G.; Mazzini, R.A.

    1986-01-01

    The reader is urged to consider the material in ''The Evolutionary Theory of Cost Management'' carefully before proceeding with the material in this paper. The recommendations in this paper flow from the revised line of thinking generated by the evolutionary approach. The suggestions will be difficult to accept in the absence of an understanding of the underlying theory. Although the authors briefly discuss some of the theory, it is nevertheless recommended that the reader develop a fuller understanding of the concepts by studying the prior paper

  5. Evolutionary optimization of production materials workflow processes

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2014-01-01

    We present an evolutionary optimisation technique for stochastic production processes, which is able to find improved production materials workflow processes with respect to arbitrary combinations of numerical quantities associated with the production process. Working from a core fragment...... of the BPMN language, we employ an evolutionary algorithm where stochastic model checking is used as a fitness function to determine the degree of improvement of candidate processes derived from the original process through mutation and cross-over operations. We illustrate this technique using a case study...

  6. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.

    Directory of Open Access Journals (Sweden)

    Petar Petrov

    Full Text Available "Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.

  7. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes

    DEFF Research Database (Denmark)

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca

    2018-01-01

    , we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical......Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational...... engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined...

  8. Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.

    Science.gov (United States)

    Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D

    2017-10-01

    Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.

  9. Evolutionary trends in Heteroptera

    NARCIS (Netherlands)

    Cobben, R.H.

    1968-01-01

    1. This work, the first volume of a series dealing with evolutionary trends in Heteroptera, is concerned with the egg system of about 400 species. The data are presented systematically in chapters 1 and 2 with a critical review of the literature after each family.

    2. Chapter 3 evaluates facts

  10. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Wiering, M.; van Otterlo, M.

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,

  11. Evolutionary robotics – A review

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    a need for a technique by which the robot is able to acquire new behaviours automatically .... Evolutionary robotics is a comparatively new field of robotics research, which seems to ..... Technical Report: PCIA-94-04, Institute of Psychology,.

  12. Entrepreneurs and Evolutionary Biology: The Relationship between Testosterone and New Venture Creation

    Science.gov (United States)

    White, Roderick E.; Thornhill, Stewart; Hampson, Elizabeth

    2006-01-01

    Biological evolutionary processes select for heritable behaviors providing a survival and reproductive advantage. Accordingly, how we behave is, at least in part, affected by the evolutionary history of our species. This research uses evolutionary psychology as the theoretical perspective for exploring the relationship between a heritable…

  13. Holomorphic Yukawa couplings for complete intersection Calabi-Yau manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Blesneag, Stefan [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom); Buchbinder, Evgeny I. [The University of Western Australia,35 Stirling Highway, Crawley WA 6009 (Australia); Lukas, Andre [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2017-01-27

    We develop methods to compute holomorphic Yukawa couplings for heterotic compactifications on complete intersection Calabi-Yau manifolds, generalising results of an earlier paper for Calabi-Yau hypersurfaces. Our methods are based on constructing the required bundle-valued forms explicitly and evaluating the relevant integrals over the projective ambient space. We also show how our approach relates to an earlier, algebraic one to calculate the holomorphic Yukawa couplings. A vanishing theorem, which we prove, implies that certain Yukawa couplings allowed by low-energy symmetries are zero due to topological reasons. To illustrate our methods, we calculate Yukawa couplings for SU(5)-based standard models on a co-dimension two complete intersection manifold.

  14. Social traits, social networks and evolutionary biology.

    Science.gov (United States)

    Fisher, D N; McAdam, A G

    2017-12-01

    The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic

  15. The extended evolutionary synthesis: its structure, assumptions and predictions

    Science.gov (United States)

    Laland, Kevin N.; Uller, Tobias; Feldman, Marcus W.; Sterelny, Kim; Müller, Gerd B.; Moczek, Armin; Jablonka, Eva; Odling-Smee, John

    2015-01-01

    Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology. PMID:26246559

  16. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes.

    Science.gov (United States)

    Weaver, Steven; Shank, Stephen D; Spielman, Stephanie J; Li, Michael; Muse, Spencer V; Kosakovsky Pond, Sergei L

    2018-01-02

    Inference of how evolutionary forces have shaped extant genetic diversity is a cornerstone of modern comparative sequence analysis. Advances in sequence generation and increased statistical sophistication of relevant methods now allow researchers to extract ever more evolutionary signal from the data, albeit at an increased computational cost. Here, we announce the release of Datamonkey 2.0, a completely re-engineered version of the Datamonkey web-server for analyzing evolutionary signatures in sequence data. For this endeavor, we leveraged recent developments in open-source libraries that facilitate interactive, robust, and scalable web application development. Datamonkey 2.0 provides a carefully curated collection of methods for interrogating coding-sequence alignments for imprints of natural selection, packaged as a responsive (i.e. can be viewed on tablet and mobile devices), fully interactive, and API-enabled web application. To complement Datamonkey 2.0, we additionally release HyPhy Vision, an accompanying JavaScript application for visualizing analysis results. HyPhy Vision can also be used separately from Datamonkey 2.0 to visualize locally-executed HyPhy analyses. Together, Datamonkey 2.0 and HyPhy Vision showcase how scientific software development can benefit from general-purpose open-source frameworks. Datamonkey 2.0 is freely and publicly available at http://www.datamonkey. org, and the underlying codebase is available from https://github.com/veg/datamonkey-js. © The Author 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Exponential Expansion in Evolutionary Economics

    DEFF Research Database (Denmark)

    Frederiksen, Peter; Jagtfelt, Tue

    2013-01-01

    This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...... concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light...

  18. Evolutionary Algorithms Application Analysis in Biometric Systems

    Directory of Open Access Journals (Sweden)

    N. Goranin

    2010-01-01

    Full Text Available Wide usage of biometric information for person identity verification purposes, terrorist acts prevention measures and authenticationprocess simplification in computer systems has raised significant attention to reliability and efficiency of biometricsystems. Modern biometric systems still face many reliability and efficiency related issues such as reference databasesearch speed, errors while recognizing of biometric information or automating biometric feature extraction. Current scientificinvestigations show that application of evolutionary algorithms may significantly improve biometric systems. In thisarticle we provide a comprehensive review of main scientific research done in sphere of evolutionary algorithm applicationfor biometric system parameter improvement.

  19. Molluscan Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  20. Ancient Biomolecules and Evolutionary Inference

    DEFF Research Database (Denmark)

    Cappellini, Enrico; Prohaska, Ana; Racimo, Fernando

    2018-01-01

    Over the last decade, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, the field now stands on firm foundations. Researchers now successfully retrieve nucleo...

  1. Evolutionary Acquisition and Spiral Development Tutorial

    National Research Council Canada - National Science Library

    Hantos, P

    2005-01-01

    .... NSS Acquisition Policy 03-01 provided some space-oriented customization and, similarly to the original DOD directives, also positioned Evolutionary Acquisition and Spiral Development as preferred...

  2. Evolutionary process of deep-sea bathymodiolus mussels.

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Miyazaki

    Full Text Available BACKGROUND: Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. METHODOLOGY/PRINCIPAL FINDING: We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI and NADH dehydrogenase subunit 4 (ND4 genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. CONCLUSIONS/SIGNIFICANCE: The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of

  3. On the evolutionary relationship between chondrocytes and osteoblasts

    Directory of Open Access Journals (Sweden)

    Patsy eGomez-Picos

    2015-09-01

    Full Text Available Vertebrates are the only animals that produce bone, but the molecular genetic basis for this evolutionary novelty remains obscure. Here, we synthesize information from traditional evolutionary and modern molecular genetic studies in order to generate a working hypothesis on the evolution of the gene regulatory network (GRN underlying bone formation. To make this argument, we focus on three skeletal tissues that comprise the majority of the vertebrate skeleton: immature cartilage, mature cartilage, and bone. Immature cartilage is produced during early stages of cartilage differentiation and can persist into adulthood, whereas mature cartilage undergoes additional stages of differentiation, including hypertrophy and mineralization. Functionally, histologically, and embryologically, these three skeletal tissues are very similar, yet unique, suggesting that one might have evolved from another. Traditional studies of the fossil record, comparative anatomy and embryology demonstrate clearly that immature cartilage evolved before mature cartilage or bone. Modern molecular approaches show that the GRNs regulating differentiation of these three skeletal cell fates are similar, yet unique, just like the functional and histological features of the tissues themselves. Intriguingly, the Sox9 GRN driving cartilage formation appears to be dominant to the Runx2 GRN of bone. Emphasizing an embryological and evolutionary transcriptomic view, we hypothesize that the Runx2 GRN underlying bone formation was co-opted from mature cartilage. We discuss how modern molecular genetic experiments, such as comparative transcriptomics, can test this hypothesis directly, meanwhile permitting levels of constraint and adaptation to be evaluated quantitatively. Therefore, comparative transcriptomics may revolutionize understanding of not only the clade-specific evolution of skeletal cells, but also the generation of evolutionary novelties, providing a modern paradigm for the

  4. Evolutionary change and phylogenetic relationships in light of horizontal gene transfer.

    Science.gov (United States)

    Boto, Luis

    2015-06-01

    Horizontal gene transfer has, over the past 25 years, become a part of evolutionary thinking. In the present paper I discuss horizontal gene transfer (HGT) in relation to contingency, natural selection, evolutionary change speed and the Tree-of-Life endeavour, with the aim of contributing to the understanding of the role of HGT in evolutionary processes. In addition, the challenges that HGT imposes on the current view of evolution are emphasized.

  5. Evolution and development: some insights from evolutionary theory

    Directory of Open Access Journals (Sweden)

    DAVID JEAN R.

    2001-01-01

    Full Text Available Developmental biology and evolutionary biology are both mature integrative disciplines which started in the 19th century and then followed parallel and independent scientific pathways. Recently, a genetical component has stepped into both disciplines (developmental genetics and evolutionary genetics pointing out the need for future convergent maturation. Indeed, the Evo-Devo approach is becoming popular among developmental biologists, based on the facts that distant groups share a common ancestry, that precise phylogenies can be worked out and that homologous genes often play similar roles during the development of very different organisms. In this essay, I try to show that the real future of Evo-Devo thinking is still broader. The evolutionary theory is a set of diverse concepts which can and should be used in any biological field. Evolutionary thinking trains to ask « why » questions and to provide logical and plausible answers. It can shed some light on a diversity of general problems such as how to distinguish homologies from analogies, the costs and benefits of multicellularity, the origin of novel structures (e.g. the head, or the evolution of sexual reproduction. In the next decade, we may expect a progressive convergence between developmental genetics and quantitative genetics.

  6. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Science.gov (United States)

    2012-01-01

    Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920

  7. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-12-01

    Full Text Available Abstract Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas.

  8. THE THEORY OF THE FIRM AND THE EVOLUTIONARY GAMES

    Directory of Open Access Journals (Sweden)

    Sirghi Nicoleta

    2013-07-01

    Full Text Available The neoclassical theory of the firm deals with the pattern of perfect competition, within which the perfect information available to economic agents provides instant allocation of production factors and access to economic goods. The Austrian School (C. Menger, L. von Mises, Hayek, etc. supported the idea of minimal state intervention on the markets, bringing important conceptual developments on the theory of the firm. Hirschleifer (1982 put forward the model of social and institutional functioning, arguing that the game theory is able to predict the outcome of the collective behavior and the human characteristics necessary for building the respective institutions.The evolutionary theory provides the firm and the entrepreneur the recognition of the functions of innovation, of generating and exploiting information and of organizing and coordinating production. The evolutionary perspective of the firm assumes the existence of a body of knowledge that is acquired through and builds up the organizational memory, subsequently found in routines, all choices being made based on these routines (Nelson and Winter, 2002. The evolution of the firm is considered to be similar to natural selection, but unlike the classic market selection, the evolutionists suggest the existence of a plurality of selection media. The present research is structured as follows: a brief introduction into the theories of the firm, the second part of the paper analyzes the theories of the firm from an institutional, neo-institutional and evolutionary perspective. In the third part of the paper the evolutionary games are described and analyzed from the evolutionary perspective of the firm. The last part of the paper represents a study of the “hawk-dove” game dynamic replicator. The final conclusions of the paper show that the evolutionary theory brings valuable contributions to the foundation of explanations regarding economic phenomena, indicating new directions for advanced

  9. Darwin in Mind: New Opportunities for Evolutionary Psychology

    Science.gov (United States)

    Bolhuis, Johan J.; Brown, Gillian R.; Richardson, Robert C.; Laland, Kevin N.

    2011-01-01

    Evolutionary Psychology (EP) views the human mind as organized into many modules, each underpinned by psychological adaptations designed to solve problems faced by our Pleistocene ancestors. We argue that the key tenets of the established EP paradigm require modification in the light of recent findings from a number of disciplines, including human genetics, evolutionary biology, cognitive neuroscience, developmental psychology, and paleoecology. For instance, many human genes have been subject to recent selective sweeps; humans play an active, constructive role in co-directing their own development and evolution; and experimental evidence often favours a general process, rather than a modular account, of cognition. A redefined EP could use the theoretical insights of modern evolutionary biology as a rich source of hypotheses concerning the human mind, and could exploit novel methods from a variety of adjacent research fields. PMID:21811401

  10. Darwinian foundations for evolutionary economics

    NARCIS (Netherlands)

    Stoelhorst, J.W.

    2008-01-01

    This paper engages with the methodological debate on the contribution of Darwinism to Veblen's (1898) evolutionary research program for economics. I argue that ontological continuity, generalized Darwinism, and multi-level selection are necessary building blocks for an explanatory framework that can

  11. Genetical Genomics for Evolutionary Studies

    NARCIS (Netherlands)

    Prins, J.C.P.; Smant, G.; Jansen, R.C.

    2012-01-01

    Genetical genomics combines acquired high-throughput genomic data with genetic analysis. In this chapter, we discuss the application of genetical genomics for evolutionary studies, where new high-throughput molecular technologies are combined with mapping quantitative trait loci (QTL) on the genome

  12. The drug target genes show higher evolutionary conservation than non-target genes.

    Science.gov (United States)

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  13. Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal

    DEFF Research Database (Denmark)

    Turajlic, Samra; Xu, Hang; Litchfield, Kevin

    2018-01-01

    The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show...... that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors...... outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance....

  14. Misrepresentations of evolutionary psychology in sex and gender textbooks.

    Science.gov (United States)

    Winegard, Benjamin M; Winegard, Bo M; Deaner, Robert O

    2014-05-20

    Evolutionary psychology has provoked controversy, especially when applied to human sex differences. We hypothesize that this is partly due to misunderstandings of evolutionary psychology that are perpetuated by undergraduate sex and gender textbooks. As an initial test of this hypothesis, we develop a catalog of eight types of errors and document their occurrence in 15 widely used sex and gender textbooks. Consistent with our hypothesis, of the 12 textbooks that discussed evolutionary psychology, all contained at least one error, and the median number of errors was five. The most common types of errors were "Straw Man," "Biological Determinism," and "Species Selection." We conclude by suggesting improvements to undergraduate sex and gender textbooks.

  15. Upon Accounting for the Impact of Isoenzyme Loss, Gene Deletion Costs Anticorrelate with Their Evolutionary Rates.

    Directory of Open Access Journals (Sweden)

    Christopher Jacobs

    Full Text Available System-level metabolic network models enable the computation of growth and metabolic phenotypes from an organism's genome. In particular, flux balance approaches have been used to estimate the contribution of individual metabolic genes to organismal fitness, offering the opportunity to test whether such contributions carry information about the evolutionary pressure on the corresponding genes. Previous failure to identify the expected negative correlation between such computed gene-loss cost and sequence-derived evolutionary rates in Saccharomyces cerevisiae has been ascribed to a real biological gap between a gene's fitness contribution to an organism "here and now" and the same gene's historical importance as evidenced by its accumulated mutations over millions of years of evolution. Here we show that this negative correlation does exist, and can be exposed by revisiting a broadly employed assumption of flux balance models. In particular, we introduce a new metric that we call "function-loss cost", which estimates the cost of a gene loss event as the total potential functional impairment caused by that loss. This new metric displays significant negative correlation with evolutionary rate, across several thousand minimal environments. We demonstrate that the improvement gained using function-loss cost over gene-loss cost is explained by replacing the base assumption that isoenzymes provide unlimited capacity for backup with the assumption that isoenzymes are completely non-redundant. We further show that this change of the assumption regarding isoenzymes increases the recall of epistatic interactions predicted by the flux balance model at the cost of a reduction in the precision of the predictions. In addition to suggesting that the gene-to-reaction mapping in genome-scale flux balance models should be used with caution, our analysis provides new evidence that evolutionary gene importance captures much more than strict essentiality.

  16. Upon Accounting for the Impact of Isoenzyme Loss, Gene Deletion Costs Anticorrelate with Their Evolutionary Rates.

    Science.gov (United States)

    Jacobs, Christopher; Lambourne, Luke; Xia, Yu; Segrè, Daniel

    2017-01-01

    System-level metabolic network models enable the computation of growth and metabolic phenotypes from an organism's genome. In particular, flux balance approaches have been used to estimate the contribution of individual metabolic genes to organismal fitness, offering the opportunity to test whether such contributions carry information about the evolutionary pressure on the corresponding genes. Previous failure to identify the expected negative correlation between such computed gene-loss cost and sequence-derived evolutionary rates in Saccharomyces cerevisiae has been ascribed to a real biological gap between a gene's fitness contribution to an organism "here and now" and the same gene's historical importance as evidenced by its accumulated mutations over millions of years of evolution. Here we show that this negative correlation does exist, and can be exposed by revisiting a broadly employed assumption of flux balance models. In particular, we introduce a new metric that we call "function-loss cost", which estimates the cost of a gene loss event as the total potential functional impairment caused by that loss. This new metric displays significant negative correlation with evolutionary rate, across several thousand minimal environments. We demonstrate that the improvement gained using function-loss cost over gene-loss cost is explained by replacing the base assumption that isoenzymes provide unlimited capacity for backup with the assumption that isoenzymes are completely non-redundant. We further show that this change of the assumption regarding isoenzymes increases the recall of epistatic interactions predicted by the flux balance model at the cost of a reduction in the precision of the predictions. In addition to suggesting that the gene-to-reaction mapping in genome-scale flux balance models should be used with caution, our analysis provides new evidence that evolutionary gene importance captures much more than strict essentiality.

  17. Determination of orbitals for use in configuration interaction calculations

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Davidson, E.R.; Ruedenberg, K.; Hinze, J.

    1978-01-01

    For a full configuration interaction (CI) calculation the choice of orbitals is completely irrelevant, i.e., the calculated wavefunction is unaffected by an arbitrary unitary transformation of the orbitals; it depends only on the space spanned by the original basis set. For most chemical systems it is not possible to realistically carry out a full CI calculation, so that specification of the orbital set is important. Even for less-than-full CI calculations, it can be shown, however, that for certain types of calculations the wavefunction is unaffected by restricted transformations among the orbital set. For example, for CI calculations based on a single configuration plus a complete set of excitations of a given type (single, double, etc.), the calculated wavefunction is independent of transformations among the set of occupied orbitals and among the set of virtual orbitals. The wavefunction does, however, depend on transformations which mix the occupied and virtual orbitals

  18. Complete Normal Ordering 1: Foundations

    CERN Document Server

    Ellis, John; Skliros, Dimitri P.

    2016-01-01

    We introduce a new prescription for quantising scalar field theories perturbatively around a true minimum of the full quantum effective action, which is to `complete normal order' the bare action of interest. When the true vacuum of the theory is located at zero field value, the key property of this prescription is the automatic cancellation, to any finite order in perturbation theory, of all tadpole and, more generally, all `cephalopod' Feynman diagrams. The latter are connected diagrams that can be disconnected into two pieces by cutting one internal vertex, with either one or both pieces free from external lines. In addition, this procedure of `complete normal ordering' (which is an extension of the standard field theory definition of normal ordering) reduces by a substantial factor the number of Feynman diagrams to be calculated at any given loop order. We illustrate explicitly the complete normal ordering procedure and the cancellation of cephalopod diagrams in scalar field theories with non-derivative i...

  19. On the Existence of Evolutionary Learning Equilibriums

    Directory of Open Access Journals (Sweden)

    Masudul Alam Choudhury

    2011-12-01

    Full Text Available The usual kinds of Fixed-Point Theorems formalized on the existence of competitive equilibrium that explain much of economic theory at the core of economics can operate only on bounded and closed sets with convex mappings. But these conditions are hardly true of the real world of economic and financial complexities and perturbations. The category of learning sets explained by continuous fields of interactive, integrative and evolutionary behaviour caused by dynamic preferences at the individual and institutional and social levels cannot maintain the assumption of closed, bounded and convex sets. Thus learning sets and multi-system inter-temporal relations explained by pervasive complementarities and  participation between variables and entities, and evolution by learning, have evolutionary equilibriums. Such a study requires a new methodological approach. This paper formalizes such a methodology for evolutionary equilibriums in learning spaces. It briefly points out the universality of learning equilibriums in all mathematical structures. For a particular case though, the inter-systemic interdependence between sustainable development and ethics and economics in the specific understanding of learning domain is pointed out.

  20. Evolutionary Dynamics and Diversity in Microbial Populations

    Science.gov (United States)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  1. The evolution of different forms of sociality: behavioral mechanisms and eco-evolutionary feedback.

    Directory of Open Access Journals (Sweden)

    Daniel J van der Post

    Full Text Available Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from "leader-follower" societies to "fission-fusion" societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality.

  2. How Much Can Evolutionary Psychology Inform the Educational Sciences?

    Science.gov (United States)

    Halpern, Diane F.

    2008-01-01

    In response to a stimulating article by David C. Geary on the value of understanding the evolutionary basis of learning as a guide to instruction, I raise several objections. When evolutionary theory is used to explain everything from sex differences in math and reading to why children are bored in school, it loses its explanatory power. There is…

  3. Evolutionary and Modern Image Content Differentially Influence the Processing of Emotional Pictures

    Directory of Open Access Journals (Sweden)

    Matthias Dhum

    2017-08-01

    Full Text Available From an evolutionary perspective, environmental threats relevant for survival constantly challenged human beings. Current research suggests the evolution of a fear processing module in the brain to cope with these threats. Recently, humans increasingly encountered modern threats (e.g., guns or car accidents in addition to evolutionary threats (e.g., snakes or predators which presumably required an adaptation of perception and behavior. However, the neural processes underlying the perception of these different threats remain to be elucidated. We investigated the effect of image content (i.e., evolutionary vs. modern threats on the activation of neural networks of emotion processing. During functional magnetic resonance imaging (fMRI 41 participants watched affective pictures displaying evolutionary-threatening, modern-threatening, evolutionary-neutral and modern-neutral content. Evolutionary-threatening stimuli evoked stronger activations than modern-threatening stimuli in left inferior frontal gyrus and thalamus, right middle frontal gyrus and parietal regions as well as bilaterally in parietal regions, fusiform gyrus and bilateral amygdala. We observed the opposite effect, i.e., higher activity for modern-threatening than for evolutionary-threatening stimuli, bilaterally in the posterior cingulate and the parahippocampal gyrus. We found no differences in subjective arousal ratings between the two threatening conditions. On the valence scale though, subjects rated modern-threatening pictures significantly more negative than evolutionary-threatening pictures, indicating a higher level of perceived threat. The majority of previous studies show a positive relationship between arousal rating and amygdala activity. However, comparing fMRI results with behavioral findings we provide evidence that neural activity in fear processing areas is not only driven by arousal or valence, but presumably also by the evolutionary content of the stimulus. This has

  4. Bridging the gap between Schumpeterian competition and evolutionary game theory

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    This paper suggests that the analysis of Schumpeterian competition within the Nelson-Winter model should be complemented with evolutionary game theory. This model and its limitations for density-dependent Schumpeterian strategies are presented in terms of the equations of evolutionary dynamics. F...

  5. Realism, Relativism, and Evolutionary Psychology

    NARCIS (Netherlands)

    Derksen, M.

    Against recent attempts to forge a reconciliation between constructionism and realism, I contend that, in psychology at least, stirring up conflict is a more fruitful strategy. To illustrate this thesis, I confront a school of psychology with strong realist leanings, evolutionary psychology, with

  6. Ernst Mayr and Evolutionary Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 7. Polemics and Synthesis: Ernst Mayr and Evolutionary Biology. Renee M Borges. General Article Volume 10 Issue 7 July 2005 pp 21-33. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Evolutionary trends in directional hearing

    DEFF Research Database (Denmark)

    Carr, Catherine E; Christensen-Dalsgaard, Jakob

    2016-01-01

    Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds...

  8. ADAPTIVE SELECTION OF AUXILIARY OBJECTIVES IN MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

    Directory of Open Access Journals (Sweden)

    I. A. Petrova

    2016-05-01

    Full Text Available Subject of Research.We propose to modify the EA+RL method, which increases efficiency of evolutionary algorithms by means of auxiliary objectives. The proposed modification is compared to the existing objective selection methods on the example of travelling salesman problem. Method. In the EA+RL method a reinforcement learning algorithm is used to select an objective – the target objective or one of the auxiliary objectives – at each iteration of the single-objective evolutionary algorithm.The proposed modification of the EA+RL method adopts this approach for the usage with a multiobjective evolutionary algorithm. As opposed to theEA+RL method, in this modification one of the auxiliary objectives is selected by reinforcement learning and optimized together with the target objective at each step of the multiobjective evolutionary algorithm. Main Results.The proposed modification of the EA+RL method was compared to the existing objective selection methods on the example of travelling salesman problem. In the EA+RL method and its proposed modification reinforcement learning algorithms for stationary and non-stationary environment were used. The proposed modification of the EA+RL method applied with reinforcement learning for non-stationary environment outperformed the considered objective selection algorithms on the most problem instances. Practical Significance. The proposed approach increases efficiency of evolutionary algorithms, which may be used for solving discrete NP-hard optimization problems. They are, in particular, combinatorial path search problems and scheduling problems.

  9. Schroedinger operators and evolutionary strategies

    International Nuclear Information System (INIS)

    Asselmeyer, T.

    1997-01-01

    First we introduce a simple model for the description of evolutionary algorithms, which is based on 2nd order partial differential equations for the distribution function of the individuals. Then we turn to the properties of Boltzmann's and Darwin's strategy. the next chapter is dedicated to the mathematical properties of Schroedinger operators. Both statements on the spectral density and their reproducibility during the simulation are summarized. The remaining of this chapter are dedicated to the analysis of the kernel as well as the dependence of the Schroedinger operator on the potential. As conclusion from the results of this chapter we obtain the classification of the strategies in dependence of the fitness. We obtain the classification of the evolutionary strategies, which are described by a 2nd order partial differential equation, in relation to their solution behaviour. Thereafter we are employed with the variation of the mutation distribution

  10. Genome-wide investigation reveals high evolutionary rates in annual model plants.

    Science.gov (United States)

    Yue, Jia-Xing; Li, Jinpeng; Wang, Dan; Araki, Hitoshi; Tian, Dacheng; Yang, Sihai

    2010-11-09

    Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those

  11. An evolutionary explanation of the value premium puzzle

    OpenAIRE

    Hens, Thorsten; Lensberg, Terje; Schenk-Hoppé, Klaus Reiner; Wöhrmann, Peter

    2011-01-01

    As early as 1934 Graham and Dodd conjectured that excess returns from value investment originate from a tendency of stock prices to converge towards a fundamental value. This paper confirms their insights within the evolutionary finance model of Evstigneev et al. (Econ Theory 27:449–468, (Evstigneev et al. 2006)). Our empirical results show the predictive power of the evolutionary benchmark valuation for the relative market capitalization and its dynamics in the sample of firms listed in the ...

  12. An evolutionary medicine approach to understanding factors that contribute to chronic obstructive pulmonary disease.

    Science.gov (United States)

    Aoshiba, Kazutetsu; Tsuji, Takao; Itoh, Masayuki; Yamaguchi, Kazuhiro; Nakamura, Hiroyuki

    2015-01-01

    Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work.

  13. Evolutionary biology: a basic science for medicine in the 21st century.

    Science.gov (United States)

    Perlman, Robert L

    2011-01-01

    Evolutionary biology was a poorly developed discipline at the time of the Flexner Report and was not included in Flexner's recommendations for premedical or medical education. Since that time, however, the value of an evolutionary approach to medicine has become increasingly recognized. There are several ways in which an evolutionary perspective can enrich medical education and improve medical practice. Evolutionary considerations rationalize our continued susceptibility or vulnerability to disease; they call attention to the idea that the signs and symptoms of disease may be adaptations that prevent or limit the severity of disease; they help us understand the ways in which our interventions may affect the evolution of microbial pathogens and of cancer cells; and they provide a framework for thinking about population variation and risk factors for disease. Evolutionary biology should become a foundational science for the medical education of the future.

  14. Bridging developmental systems theory and evolutionary psychology using dynamic optimization.

    Science.gov (United States)

    Frankenhuis, Willem E; Panchanathan, Karthik; Clark Barrett, H

    2013-07-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic optimization integrates developmental systems theorists' focus on dynamics and contingency with the 'design stance' of evolutionary psychology. It provides a theoretical framework as well as a set of tools for exploring the properties of developmental systems that natural selection might favor, given particular evolutionary ecologies. We also discuss limitations of the approach. © 2013 Blackwell Publishing Ltd.

  15. Stability properties of nonlinear dynamical systems and evolutionary stable states

    Energy Technology Data Exchange (ETDEWEB)

    Gleria, Iram, E-mail: iram@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL (Brazil); Brenig, Leon [Faculté des Sciences, Université Libre de Bruxelles, 1050 Brussels (Belgium); Rocha Filho, Tarcísio M.; Figueiredo, Annibal [Instituto de Física and International Center for Condensed Matter Physics, Universidade de Brasília, 70919-970 Brasília-DF (Brazil)

    2017-03-18

    Highlights: • We address the problem of equilibrium stability in a general class of non-linear systems. • We link Evolutionary Stable States (ESS) to stable fixed points of square quasi-polynomial (QP) systems. • We show that an interior ES point may be related to stable interior fixed points of QP systems. - Abstract: In this paper we address the problem of stability in a general class of non-linear systems. We establish a link between the concepts of asymptotic stable interior fixed points of square Quasi-Polynomial systems and evolutionary stable states, a property of some payoff matrices arising from evolutionary games.

  16. Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time

    KAUST Repository

    Pinsky, Malin L.

    2016-12-15

    The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12–24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19–36 km) or 19 km (15–27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life.

  17. A view on reactions of complete fusion

    International Nuclear Information System (INIS)

    Delchev, I.I.; Petkov, I.J.

    1978-11-01

    Complete fusion reactions are analysed within the framework of a theoretical model. Energy density interaction potentials are made use of and are renormalized for the purpose. A large number of heavy ion reactions are studied and the calculated critical angular moments are compared with experimental data

  18. Haldane and modern evolutionary genetics

    Indian Academy of Sciences (India)

    Brian Charlesworth

    2017-11-24

    Nov 24, 2017 ... q(t) of an allele at a locus among the gametes produced at time t, to its .... the importance of disease as an evolutionary factor, which is now a ..... VII. Selection intensity as a function of mortality rate. Proc. Camb. Philos. Soc.

  19. Evolutionary design of discrete controllers for hybrid mechatronic systems

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2015-01-01

    This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....

  20. [Evolutionary medicine: A new look on health and disease].

    Science.gov (United States)

    Bauduer, F

    2017-03-01

    Evolutionary medicine represents an innovative approach deriving from evolutionary biology. It includes the initial Darwin's view, its actualization in the light of progresses in genetics and also dissident theories (i.e. non gene-based) particularly epigenetics. This approach enables us to reconsider the pathophysiology of numerous diseases, as for instance, infection, and our so-called diseases of civilization especially obesity, type 2 diabetes, allergy or cancer. Evolutionary medicine may also improve our knowledge regarding inter-individual variation in susceptibility to disease or drugs. Furthermore, it points out the impact of our behaviors and environment on the genesis of a series of diseases. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  1. QuartetS-DB: a large-scale orthology database for prokaryotes and eukaryotes inferred by evolutionary evidence

    Directory of Open Access Journals (Sweden)

    Yu Chenggang

    2012-06-01

    Full Text Available Abstract Background The concept of orthology is key to decoding evolutionary relationships among genes across different species using comparative genomics. QuartetS is a recently reported algorithm for large-scale orthology detection. Based on the well-established evolutionary principle that gene duplication events discriminate paralogous from orthologous genes, QuartetS has been shown to improve orthology detection accuracy while maintaining computational efficiency. Description QuartetS-DB is a new orthology database constructed using the QuartetS algorithm. The database provides orthology predictions among 1621 complete genomes (1365 bacterial, 92 archaeal, and 164 eukaryotic, covering more than seven million proteins and four million pairwise orthologs. It is a major source of orthologous groups, containing more than 300,000 groups of orthologous proteins and 236,000 corresponding gene trees. The database also provides over 500,000 groups of inparalogs. In addition to its size, a distinguishing feature of QuartetS-DB is the ability to allow users to select a cutoff value that modulates the balance between prediction accuracy and coverage of the retrieved pairwise orthologs. The database is accessible at https://applications.bioanalysis.org/quartetsdb. Conclusions QuartetS-DB is one of the largest orthology resources available to date. Because its orthology predictions are underpinned by evolutionary evidence obtained from sequenced genomes, we expect its accuracy to continue to increase in future releases as the genomes of additional species are sequenced.

  2. Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application

    International Nuclear Information System (INIS)

    Khalili-Garakani, Amirhossein; Ivakpour, Javad; Kasiri, Norollah

    2016-01-01

    Highlights: • Presenting an evolutionary synthesis algorithm. • Reducing configuration nominees based on exergy loss diagram of distillation columns. • Reduction of search space without decreasing the comprehensiveness and precision of the synthesis algorithm. • Rigorous simulation and optimization of sequences. - Abstract: Exergy analysis proved to be important in understanding of regions with poor energy efficiency and improve the design of distillation processes. In this study a new method based on exergy analysis is developed for the synthesis of a light ends recovery unit. The algorithm is some kinds of evolutionary one which employ total exergy loss diagrams of distillation columns for limiting the search space and reducing configuration nominees. The new method presented here for the light end separation unit, applies exergy loss diagrams as a powerful tool in locating the weak spot in the distillation columns of the Brugma sequence (as a first guess) and change the structure of the sequence step by step to achieve the best sequence. The results show that the new method could reduce the amount of calculations between 16% and 55% of the cases considered in this case study. The reduction of the search space takes place without decreasing the comprehensiveness and precision of the synthesis algorithm. Besides the amount of reduction in total annual cost and exergy loss of the optimum sequence is considerable.

  3. Evolutionary dynamics of ecological niche in three Rhinogobio fishes from the upper Yangtze River inferred from morphological traits

    Science.gov (United States)

    Wang, Meirong; Liu, Fei; Lin, Pengcheng; Yang, Shaorong; Liu, Huanzhang

    2015-01-01

    In the past decades, it has been debated whether ecological niche should be conserved among closely related species (phylogenetic niche conservatism, PNC) or largely divergent (traditional ecological niche theory and ecological speciation) and whether niche specialist and generalist might remain in equilibrium or niche generalist could not appear. In this study, we employed morphological traits to describe ecological niche and test whether different niche dimensions exhibit disparate evolutionary patterns. We conducted our analysis on three Rhinogobio fish species (R. typus,R. cylindricus, and R. ventralis) from the upper Yangtze River, China. Among the 32 measured morphological traits except body length, PCA extracted the first four principal components with their loading scores >1.000. To find the PNC among species, Mantel tests were conducted with the Euclidean distances calculated from the four principal components (representing different niche dimensions) against the pairwise distances calculated from mitochondrial cytochrome b sequence variations. The results showed that the second and the third niche dimension, both related to swimming ability and behavior, exhibited phylogenetic conservatism. Further comparison on niche breadth among these three species revealed that the fourth dimension of R. typus showed the greatest width, indicating that this dimension exhibited niche generalism. In conclusion, our results suggested that different niche dimensions could show different evolutionary dynamic patterns: they may exhibit PNC or not, and some dimensions may evolve generalism. PMID:25691981

  4. Evolutionary trade-offs in kidney injury and repair.

    Science.gov (United States)

    Lei, Yutian; Anders, Hans-Joachim

    2017-11-01

    Evolutionary medicine has proven helpful to understand the origin of human disease, e.g. in identifying causal roles of recent environmental changes impacting on human physiology (environment-phenotype mismatch). In contrast, diseases affecting only a limited number of members of a species often originate from evolutionary trade-offs for usually physiologic adaptations assuring reproductive success in the context of extrinsic threats. For example, the G1 and G2 variants of the APOL1 gene supporting control of Trypanosoma infection come with the trade-off that they promote the progression of kidney disease. In this review we extend the concept of evolutionary nephrology by discussing how the physiologic adaptations (danger responses) to tissue injury create evolutionary trade-offs that drive histopathological changes underlying acute and chronic kidney diseases. The evolution of multicellular organisms positively selected a number of danger response programs for their overwhelming benefits in assuring survival such as clotting, inflammation, epithelial healing and mesenchymal healing, i.e. fibrosis and sclerosis. Upon kidney injury these danger programs often present as pathomechanisms driving persistent nephron loss and renal failure. We explore how classic kidney disease entities involve insufficient or overshooting activation of these danger response programs for which the underlying genetic basis remains largely to be defined. Dissecting the causative and hierarchical relationships between danger programs should help to identify molecular targets to control kidney injury and to improve disease outcomes.

  5. Heterogeneous update mechanisms in evolutionary games: Mixing innovative and imitative dynamics

    Science.gov (United States)

    Amaral, Marco Antonio; Javarone, Marco Alberto

    2018-04-01

    Innovation and evolution are two processes of paramount relevance for social and biological systems. In general, the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative ones change strategy without the need for a copying source. The proposed model is analyzed by means of analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision methods, highlighting the role of innovation in evolutionary games.

  6. Support vector machines and evolutionary algorithms for classification single or together?

    CERN Document Server

    Stoean, Catalin

    2014-01-01

    When discussing classification, support vector machines are known to be a capable and efficient technique to learn and predict with high accuracy within a quick time frame. Yet, their black box means to do so make the practical users quite circumspect about relying on it, without much understanding of the how and why of its predictions. The question raised in this book is how can this ‘masked hero’ be made more comprehensible and friendly to the public: provide a surrogate model for its hidden optimization engine, replace the method completely or appoint a more friendly approach to tag along and offer the much desired explanations? Evolutionary algorithms can do all these and this book presents such possibilities of achieving high accuracy, comprehensibility, reasonable runtime as well as unconstrained performance.

  7. Strengths and Weaknesses of McNamara's Evolutionary Psychological Model of Dreaming

    Directory of Open Access Journals (Sweden)

    Sandra Olliges

    2010-10-01

    Full Text Available This article includes a brief overview of McNamara's (2004 evolutionary model of dreaming. The strengths and weaknesses of this model are then evaluated in terms of its consonance with measurable neurological and biological properties of dreaming, its fit within the tenets of evolutionary theories of dreams, and its alignment with evolutionary concepts of cooperation and spirituality. McNamara's model focuses primarily on dreaming that occurs during rapid eye movement (REM sleep; therefore this article also focuses on REM dreaming.

  8. An Efficient Evolutionary Based Method For Image Segmentation

    OpenAIRE

    Aslanzadeh, Roohollah; Qazanfari, Kazem; Rahmati, Mohammad

    2017-01-01

    The goal of this paper is to present a new efficient image segmentation method based on evolutionary computation which is a model inspired from human behavior. Based on this model, a four layer process for image segmentation is proposed using the split/merge approach. In the first layer, an image is split into numerous regions using the watershed algorithm. In the second layer, a co-evolutionary process is applied to form centers of finals segments by merging similar primary regions. In the t...

  9. An Evolutionary Approach to Regional Systems of Innovation

    DEFF Research Database (Denmark)

    Gunnarsson, Jan Sture Gunnar; Wallin, Torsten

    This article examines how the birth and the development of regional systems of innovation are connected with economic selection and points to implications for regional-level policies. The research questions are explored using an evolutionary model, which emphasises geographical spaces and product......This article examines how the birth and the development of regional systems of innovation are connected with economic selection and points to implications for regional-level policies. The research questions are explored using an evolutionary model, which emphasises geographical spaces...

  10. An evolutionary approach to regional systems of innovation

    DEFF Research Database (Denmark)

    Gunnarsson, Jan Sture Gunnar; Wallin, Torsten

    2011-01-01

    This article examines how the birth and the development of regional systems of innovation are connected with economic selection and points to implications for regional-level policies. The research questions are explored using an evolutionary model, which emphasises geographical spaces and product......This article examines how the birth and the development of regional systems of innovation are connected with economic selection and points to implications for regional-level policies. The research questions are explored using an evolutionary model, which emphasises geographical spaces...

  11. Completed sequence and corrected annotation of the genome of maize Iranian mosaic virus.

    Science.gov (United States)

    Ghorbani, Abozar; Izadpanah, Keramatollah; Dietzgen, Ralf G

    2018-03-01

    Maize Iranian mosaic virus (MIMV) is a negative-sense single-stranded RNA virus that is classified in the genus Nucleorhabdovirus, family Rhabdoviridae. The MIMV genome contains six open reading frames (ORFs) that encode in 3΄ to 5΄ order the nucleocapsid protein (N), phosphoprotein (P), putative movement protein (P3), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). In this study, we determined the first complete genome sequence of MIMV using Illumina RNA-Seq and 3'/5' RACE. MIMV genome ('Fars' isolate) is 12,426 nucleotides in length. Unexpectedly, the predicted N gene ORF of this isolate and of four other Iranian isolates is 143 nucleotides shorter than that of the MIMV coding-complete reference isolate 'Shiraz 1' (Genbank NC_011542), possibly due to a minor error in the previous sequence. Genetic variability among the N, P, P3 and G ORFs of Iranian MIMV isolates was limited, but highest in the G gene ORF. Phylogenetic analysis of complete nucleorhabdovirus genomes demonstrated a close evolutionary relationship between MIMV, maize mosaic virus and taro vein chlorosis virus.

  12. Evolutionary Psychology and Intelligence Research

    Science.gov (United States)

    Kanazawa, Satoshi

    2010-01-01

    This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative…

  13. On evolutionary ray-projection dynamics

    NARCIS (Netherlands)

    Joosten, Reinoud A.M.G.; Roorda, Berend

    2011-01-01

    We introduce the ray-projection dynamics in evolutionary game theory by employing a ray projection of the relative fitness (vector) function, i.e., a projection unto the unit simplex along a ray through the origin. Ray-projection dynamics are weakly compatible in the terminology of Friedman

  14. Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks.

    Science.gov (United States)

    Billiard, Sylvain; Ferrière, Régis; Méléard, Sylvie; Tran, Viet Chi

    2015-11-01

    How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. Population dynamics are driven by births and deaths, mutations at birth, and competition between individuals. Trait values influence ecological processes (demographic events, competition), and competition generates selection on trait variation, thus closing the eco-evolutionary feedback loop. The demographic effects of the trait are also expected to influence the generation and maintenance of neutral variation. We consider a large population limit with rare mutation, under the assumption that the neutral marker mutates faster than the trait under selection. We prove the convergence of the stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process (SFVP). When restricted to the trait space this process is the Trait Substitution Sequence first introduced by Metz et al. (1996). During the invasion of a favorable mutation, a genetical bottleneck occurs and the marker associated with this favorable mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how the neutral diversity is restored afterwards, we obtain the condition for a time-scale separation; under this condition, we show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions. We discuss the implications of the SFVP for our understanding of the dynamics of neutral variation under eco-evolutionary feedbacks and illustrate the main phenomena with simulations. Our results highlight the joint importance of mutations, ecological parameters, and trait values in the restoration of neutral diversity after a selective sweep.

  15. Evolutionary hotspots in the Mojave Desert

    Science.gov (United States)

    Vandergast, Amy G.; Inman, Richard D.; Barr, Kelly R.; Nussear, Kenneth E.; Esque, Todd C.; Hathaway, Stacie A.; Wood, Dustin A.; Medica, Philip A.; Breinholt, Jesse W.; Stephen, Catherine L.; Gottscho, Andrew D.; Marks, Sharyn B.; Jennings, W. Bryan; Fisher, Robert N.

    2013-01-01

    Genetic diversity within species provides the raw material for adaptation and evolution. Just as regions of high species diversity are conservation targets, identifying regions containing high genetic diversity and divergence within and among populations may be important to protect future evolutionary potential. When multiple co-distributed species show spatial overlap in high genetic diversity and divergence, these regions can be considered evolutionary hotspots. We mapped spatial population genetic structure for 17 animal species across the Mojave Desert, USA. We analyzed these in concurrence and located 10 regions of high genetic diversity, divergence or both among species. These were mainly concentrated along the western and southern boundaries where ecotones between mountain, grassland and desert habitat are prevalent, and along the Colorado River. We evaluated the extent to which these hotspots overlapped protected lands and utility-scale renewable energy development projects of the Bureau of Land Management. While 30–40% of the total hotspot area was categorized as protected, between 3–7% overlapped with proposed renewable energy project footprints, and up to 17% overlapped with project footprints combined with transmission corridors. Overlap of evolutionary hotspots with renewable energy development mainly occurred in 6 of the 10 identified hotspots. Resulting GIS-based maps can be incorporated into ongoing landscape planning efforts and highlight specific regions where further investigation of impacts to population persistence and genetic connectivity may be warranted.

  16. Multiscale structure in eco-evolutionary dynamics

    Science.gov (United States)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  17. Evolutionary epistemology a multiparadigm program

    CERN Document Server

    Pinxten, Rik

    1987-01-01

    This volume has its already distant origin in an inter­national conference on Evolutionary Epistemology the editors organized at the University of Ghent in November 1984. This conference aimed to follow up the endeavor started at the ERISS (Epistemologically Relevant Internalist Sociology of Science) conference organized by Don Campbell and Alex Rosen­ berg at Cazenovia Lake, New York, in June 1981, whilst in­ jecting the gist of certain current continental intellectual developments into a debate whose focus, we thought, was in danger of being narrowed too much, considering the still underdeveloped state of affairs in the field. Broadly speaking, evolutionary epistemology today con­ sists of two interrelated, yet qualitatively distinct inves­ tigative efforts. Both are drawing on Darwinian concepts, which may explain why many people have failed to discriminate them. One is the study of the evolution of the cognitive apparatus of living organisms, which is first and foremost the province of biologists and...

  18. Divergent evolutionary processes associated with colonization of offshore islands.

    Science.gov (United States)

    Martínková, Natália; Barnett, Ross; Cucchi, Thomas; Struchen, Rahel; Pascal, Marine; Pascal, Michel; Fischer, Martin C; Higham, Thomas; Brace, Selina; Ho, Simon Y W; Quéré, Jean-Pierre; O'Higgins, Paul; Excoffier, Laurent; Heckel, Gerald; Hoelzel, A Rus; Dobney, Keith M; Searle, Jeremy B

    2013-10-01

    Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic 'ark'. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land-use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island. © 2013 John Wiley & Sons Ltd.

  19. A contig-based strategy for the genome-wide discovery of microRNAs without complete genome resources.

    Directory of Open Access Journals (Sweden)

    Jun-Zhi Wen

    Full Text Available MicroRNAs (miRNAs are important regulators of many cellular processes and exist in a wide range of eukaryotes. High-throughput sequencing is a mainstream method of miRNA identification through which it is possible to obtain the complete small RNA profile of an organism. Currently, most approaches to miRNA identification rely on a reference genome for the prediction of hairpin structures. However, many species of economic and phylogenetic importance are non-model organisms without complete genome sequences, and this limits miRNA discovery. Here, to overcome this limitation, we have developed a contig-based miRNA identification strategy. We applied this method to a triploid species of edible banana (GCTCV-119, Musa spp. AAA group and identified 180 pre-miRNAs and 314 mature miRNAs, which is three times more than those were predicted by the available dataset-based methods (represented by EST+GSS. Based on the recently published miRNA data set of Musa acuminate, the recall rate and precision of our strategy are estimated to be 70.6% and 92.2%, respectively, significantly better than those of EST+GSS-based strategy (10.2% and 50.0%, respectively. Our novel, efficient and cost-effective strategy facilitates the study of the functional and evolutionary role of miRNAs, as well as miRNA-based molecular breeding, in non-model species of economic or evolutionary interest.

  20. Individual-based modeling of ecological and evolutionary processes

    Science.gov (United States)

    DeAngelis, Donald L.; Mooij, Wolf M.

    2005-01-01

    Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.

  1. When Reputation Enforces Evolutionary Cooperation in Unreliable MANETs.

    Science.gov (United States)

    Tang, Changbing; Li, Ang; Li, Xiang

    2015-10-01

    In self-organized mobile ad hoc networks (MANETs), network functions rely on cooperation of self-interested nodes, where a challenge is to enforce their mutual cooperation. In this paper, we study cooperative packet forwarding in a one-hop unreliable channel which results from loss of packets and noisy observation of transmissions. We propose an indirect reciprocity framework based on evolutionary game theory, and enforce cooperation of packet forwarding strategies in both structured and unstructured MANETs. Furthermore, we analyze the evolutionary dynamics of cooperative strategies and derive the threshold of benefit-to-cost ratio to guarantee the convergence of cooperation. The numerical simulations verify that the proposed evolutionary game theoretic solution enforces cooperation when the benefit-to-cost ratio of the altruistic exceeds the critical condition. In addition, the network throughput performance of our proposed strategy in structured MANETs is measured, which is in close agreement with that of the full cooperative strategy.

  2. Fixation times in evolutionary games under weak selection

    International Nuclear Information System (INIS)

    Altrock, Philipp M; Traulsen, Arne

    2009-01-01

    In evolutionary game dynamics, reproductive success increases with the performance in an evolutionary game. If strategy A performs better than strategy B, strategy A will spread in the population. Under stochastic dynamics, a single mutant will sooner or later take over the entire population or go extinct. We analyze the mean exit times (or average fixation times) associated with this process. We show analytically that these times depend on the payoff matrix of the game in an amazingly simple way under weak selection, i.e. strong stochasticity: the payoff difference Δπ is a linear function of the number of A individuals i, Δπ=u i+v. The unconditional mean exit time depends only on the constant term v. Given that a single A mutant takes over the population, the corresponding conditional mean exit time depends only on the density dependent term u. We demonstrate this finding for two commonly applied microscopic evolutionary processes.

  3. Evolutionary programming for goal-driven dynamic planning

    Science.gov (United States)

    Vaccaro, James M.; Guest, Clark C.; Ross, David O.

    2002-03-01

    Many complex artificial intelligence (IA) problems are goal- driven in nature and the opportunity exists to realize the benefits of a goal-oriented solution. In many cases, such as in command and control, a goal-oriented approach may be the only option. One of many appropriate applications for such an approach is War Gaming. War Gaming is an important tool for command and control because it provides a set of alternative courses of actions so that military leaders can contemplate their next move in the battlefield. For instance, when making decisions that save lives, it is necessary to completely understand the consequences of a given order. A goal-oriented approach provides a slowly evolving tractably reasoned solution that inherently follows one of the principles of war: namely concentration on the objective. Future decision-making will depend not only on the battlefield, but also on a virtual world where military leaders can wage wars and determine their options by playing computer war games much like the real world. The problem with these games is that the built-in AI does not learn nor adapt and many times cheats, because the intelligent player has access to all the information, while the user has access to limited information provided on a display. These games are written for the purpose of entertainment and actions are calculated a priori and off-line, and are made prior or during their development. With these games getting more sophisticated in structure and less domain specific in scope, there needs to be a more general intelligent player that can adapt and learn in case the battlefield situations or the rules of engagement change. One such war game that might be considered is Risk. Risk incorporates the principles of war, is a top-down scalable model, and provides a good application for testing a variety of goal- oriented AI approaches. By integrating a goal-oriented hybrid approach, one can develop a program that plays the Risk game effectively and move

  4. Sex Differences in Social Behavior: Are the Social Role and Evolutionary Explanations Compatible?

    Science.gov (United States)

    Archer, John

    1996-01-01

    Examines competing claims of two explanations of sex differences in social behavior, social role theory, and evolutionary psychology. Findings associated with social role theory are weighed against evolutionary explanations. It is suggested that evolutionary theory better accounts for the overall pattern of sex differences and for their origins.…

  5. Protein structure database search and evolutionary classification.

    Science.gov (United States)

    Yang, Jinn-Moon; Tung, Chi-Hua

    2006-01-01

    As more protein structures become available and structural genomics efforts provide structural models in a genome-wide strategy, there is a growing need for fast and accurate methods for discovering homologous proteins and evolutionary classifications of newly determined structures. We have developed 3D-BLAST, in part, to address these issues. 3D-BLAST is as fast as BLAST and calculates the statistical significance (E-value) of an alignment to indicate the reliability of the prediction. Using this method, we first identified 23 states of the structural alphabet that represent pattern profiles of the backbone fragments and then used them to represent protein structure databases as structural alphabet sequence databases (SADB). Our method enhanced BLAST as a search method, using a new structural alphabet substitution matrix (SASM) to find the longest common substructures with high-scoring structured segment pairs from an SADB database. Using personal computers with Intel Pentium4 (2.8 GHz) processors, our method searched more than 10 000 protein structures in 1.3 s and achieved a good agreement with search results from detailed structure alignment methods. [3D-BLAST is available at http://3d-blast.life.nctu.edu.tw].

  6. Introduction to Evolutionary Algorithms

    CERN Document Server

    Yu, Xinjie

    2010-01-01

    Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm opti

  7. Biology Needs Evolutionary Software Tools: Let’s Build Them Right

    Science.gov (United States)

    Team, Galaxy; Goecks, Jeremy; Taylor, James

    2018-01-01

    Abstract Research in population genetics and evolutionary biology has always provided a computational backbone for life sciences as a whole. Today evolutionary and population biology reasoning are essential for interpretation of large complex datasets that are characteristic of all domains of today’s life sciences ranging from cancer biology to microbial ecology. This situation makes algorithms and software tools developed by our community more important than ever before. This means that we, developers of software tool for molecular evolutionary analyses, now have a shared responsibility to make these tools accessible using modern technological developments as well as provide adequate documentation and training. PMID:29688462

  8. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.

    Science.gov (United States)

    Jiménez, Fernando; Sánchez, Gracia; Juárez, José M

    2014-03-01

    This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case

  9. Evolutionary game theory using agent-based methods.

    Science.gov (United States)

    Adami, Christoph; Schossau, Jory; Hintze, Arend

    2016-12-01

    Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Toward a general evolutionary theory of oncogenesis.

    Science.gov (United States)

    Ewald, Paul W; Swain Ewald, Holly A

    2013-01-01

    We propose an evolutionary framework, the barrier theory of cancer, which is based on the distinction between barriers to oncogenesis and restraints. Barriers are defined as mechanisms that prevent oncogenesis. Restraints, which are more numerous, inhibit but do not prevent oncogenesis. Processes that compromise barriers are essential causes of cancer; those that interfere with restraints are exacerbating causes. The barrier theory is built upon the three evolutionary processes involved in oncogenesis: natural selection acting on multicellular organisms to mold barriers and restraints, natural selection acting on infectious organisms to abrogate these protective mechanisms, and oncogenic selection which is responsible for the evolution of normal cells into cancerous cells. The barrier theory is presented as a first step toward the development of a general evolutionary theory of cancer. Its attributes and implications for intervention are compared with those of other major conceptual frameworks for understanding cancer: the clonal diversification model, the stem cell theory and the hallmarks of cancer. The barrier theory emphasizes the practical value of distinguishing between essential and exacerbating causes. It also stresses the importance of determining the scope of infectious causation of cancer, because individual pathogens can be responsible for multiple essential causes in infected cells.

  11. Resistance and relatedness on an evolutionary graph

    Science.gov (United States)

    Maciejewski, Wes

    2012-01-01

    When investigating evolution in structured populations, it is often convenient to consider the population as an evolutionary graph—individuals as nodes, and whom they may act with as edges. There has, in recent years, been a surge of interest in evolutionary graphs, especially in the study of the evolution of social behaviours. An inclusive fitness framework is best suited for this type of study. A central requirement for an inclusive fitness analysis is an expression for the genetic similarity between individuals residing on the graph. This has been a major hindrance for work in this area as highly technical mathematics are often required. Here, I derive a result that links genetic relatedness between haploid individuals on an evolutionary graph to the resistance between vertices on a corresponding electrical network. An example that demonstrates the potential computational advantage of this result over contemporary approaches is provided. This result offers more, however, to the study of population genetics than strictly computationally efficient methods. By establishing a link between gene transfer and electric circuit theory, conceptualizations of the latter can enhance understanding of the former. PMID:21849384

  12. Complete tree-level calculation of the reaction e+e-→μ+μ-b anti b and the Higgs boson signal at LEP200 and NLC energies

    International Nuclear Information System (INIS)

    Boos, E.

    1993-07-01

    A complete tree-level calculation of the reaction e + e - →μ + μ - b anti b in the electroweak standard theory for the energy range of LEP200 and the Next Linear Collider is presented. The matrix elements have been calculated by employing the computer program CompHEP, the phase space integrals by the Monte Carlo integrator and event generator BASES/SPRING. The dependence of the 4-fermion cross section on energy, Higgs boson mass and Higgs width is studied in detail. Interference contributions between the various diagrams are found not to alter significantly the production and decay distributions of the Higgs boson. It is shown that already the counting rate of the reaction e + e - →μ + μ - b anti b at LEP200 can provide evidence for the existence of the Higgs boson. The dependence of the μ + μ - b anti b cross section on the Higgs width will allow to extract information on this width in particular at LEP200 energies. (orig.)

  13. Complete nucleotide sequence and organization of the mitogenome ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-01

    Feb 1, 2010 ... In this study, the complete mitochondrial genome (mitogenome) of E. autonoe was .... skew” was calculated for the PCGs between two strands and the ..... codon stem and 7 bp in the anticodon loop, but also con- tained a ...

  14. Ecological and evolutionary processes at expanding range margins.

    Science.gov (United States)

    Thomas, C D; Bodsworth, E J; Wilson, R J; Simmons, A D; Davies, Z G; Musche, M; Conradt, L

    2001-05-31

    Many animals are regarded as relatively sedentary and specialized in marginal parts of their geographical distributions. They are expected to be slow at colonizing new habitats. Despite this, the cool margins of many species' distributions have expanded rapidly in association with recent climate warming. We examined four insect species that have expanded their geographical ranges in Britain over the past 20 years. Here we report that two butterfly species have increased the variety of habitat types that they can colonize, and that two bush cricket species show increased fractions of longer-winged (dispersive) individuals in recently founded populations. Both ecological and evolutionary processes are probably responsible for these changes. Increased habitat breadth and dispersal tendencies have resulted in about 3- to 15-fold increases in expansion rates, allowing these insects to cross habitat disjunctions that would have represented major or complete barriers to dispersal before the expansions started. The emergence of dispersive phenotypes will increase the speed at which species invade new environments, and probably underlies the responses of many species to both past and future climate change.

  15. Investigating evolutionary constraints on the detection of threatening stimuli in preschool children.

    Science.gov (United States)

    Zsido, Andras N; Deak, Anita; Losonci, Adrienn; Stecina, Diana; Arato, Akos; Bernath, Laszlo

    2018-04-01

    Numerous objects and animals could be threatening, and thus, children learn to avoid them early. Spiders and syringes are among the most common targets of fears and phobias of the modern word. However, they are of different origins: while the former is evolutionary relevant, the latter is not. We sought to investigate the underlying mechanisms that make the quick detection of such stimuli possible and enable the impulse to avoid them in the future. The respective categories of threatening and non-threatening targets were similar in shape, while low-level visual features were controlled. Our results showed that children found threatening cues faster, irrespective of the evolutionary age of the cues. However, they detected non-threatening evolutionary targets faster than non-evolutionary ones. We suggest that the underlying mechanism may be different: general feature detection can account for finding evolutionary threatening cues quickly, while specific features detection is more appropriate for modern threatening stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Nature vs. Nurture: The Role of Environmental Resources in Evolutionary Deep Intelligence

    OpenAIRE

    Chung, Audrey G.; Fieguth, Paul; Wong, Alexander

    2018-01-01

    Evolutionary deep intelligence synthesizes highly efficient deep neural networks architectures over successive generations. Inspired by the nature versus nurture debate, we propose a study to examine the role of external factors on the network synthesis process by varying the availability of simulated environmental resources. Experimental results were obtained for networks synthesized via asexual evolutionary synthesis (1-parent) and sexual evolutionary synthesis (2-parent, 3-parent, and 5-pa...

  17. THE NEUROBIOLOGICAL, SOCIAL AND EVOLUTIONARY ASPECTS OF INTER PERSONAL ATTRACTION

    OpenAIRE

    Smrithi; Devdas; Ashok; Meghashree; Aarathi

    2015-01-01

    Interpersonal Attraction is the attraction between two people, which leads to friendships and even romantic relationships. Although Interpersonal Attraction has been a long - standing concept, only recently it is being studied regarding its neurobiological and socio evolutionary basis. It is now a major area of research in Social as well as Evolutionary Psychology.

  18. The Explanatory Value of Inclusive Fitness for Evolutionary Theory

    OpenAIRE

    Rubin, Hannah

    2017-01-01

    At the heart of evolutionary theory is the concept of 'fitness', which is, standardly, an organism's reproductive success. Many evolutionary theorists argue, however, that to explain the evolution of social traits, such as altruism, we must use a different notion of fitness. This 'inclusive fitness', which includes the reproductive success of relatives, is seen as indispensable for studying social evolution. Recently, however, both biologists and philosophers have critically scrutinized its s...

  19. Historical change and evolutionary theory.

    Science.gov (United States)

    Masters, Roger D

    2007-09-01

    Despite advances in fields like genetics, evolutionary psychology, and human behavior and evolution--which generally focus on individual or small group behavior from a biological perspective--evolutionary biology has made little impact on studies of political change and social history. Theories of natural selection often seem inapplicable to human history because our social behavior is embedded in language (which makes possible the concepts of time and social identity on which what we call "history" depends). Peter Corning's Holistic Darwinism reconceptualizes evolutionary biology, making it possible to go beyond the barriers separating the social and natural sciences. Corning focuses on two primary processes: "synergy" (complex multivariate interactions at multiple levels between a species and its environment) and "cybernetics" (the information systems permitting communication between individuals and groups over time). Combining this frame of reference with inclusive fitness theory, it is possible to answer the most important (and puzzling) question in human history: How did a species that lived for millennia in hunter-gatherer bands form centralized states governing large populations of non-kin (including multi-ethnic empires as well as modern nation-states)? The fragility and contemporary ethnic violence in Kenya and the Congo should suffice as evidence that these issues need to be taken seriously. To explain the rise and fall of states as well as changes in human laws and customs--the core of historical research--it is essential to show how the provision of collective goods can overcome the challenge of self-interest and free-riding in some instances, yet fail to do so in others. To this end, it is now possible to consider how a state providing public goods can--under circumstances that often include effective leadership--contribute to enhanced inclusive fitness of virtually all its members. Because social behavior needs to adapt to ecology, but ecological

  20. Cooperation and conflict in cancer: An evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Jonathan Featherston

    2012-09-01

    Full Text Available Evolutionary approaches to carcinogenesis have gained prominence in the literature and enhanced our understanding of cancer. However, an appreciation of neoplasia in the context of evolutionary transitions, particularly the transition from independent genes to a fullyintegrated genome, is largely absent. In the gene–genome evolutionary transition, mobile genetic elements (MGEs can be studied as the extant exemplars of selfish autonomous lowerlevel units that cooperated to form a higher-level, functionally integrated genome. Here,we discuss levels of selection in cancer cells. In particular, we examine the tension between gene and genome units of selection by examining the expression profiles of MGE domains in an array of human cancers. Overall, across diverse cancers, there is an aberrant expression of several families of mobile elements, including the most common MGE in the human genome, retrotransposon LINE 1. These results indicate an alternative life-history strategy for MGEs in the cancers studied. Whether the aberrant expression is the cause or effect oftumourigenesis is unknown, although some evidence suggests that dysregulation of MGEs can play a role in cancer origin and progression. These data are interpreted in combination with phylostratigraphic reports correlating the origin of cancer genes with multicellularity and other potential increases in complexity in cancer cell populations. Cooperation and conflict between individuals at the gene, genome and cell level provide an evolutionary medicineperspective of cancer that enhances our understanding of disease pathogenesis and treatment.

  1. Estimating true evolutionary distances under the DCJ model.

    Science.gov (United States)

    Lin, Yu; Moret, Bernard M E

    2008-07-01

    Modern techniques can yield the ordering and strandedness of genes on each chromosome of a genome; such data already exists for hundreds of organisms. The evolutionary mechanisms through which the set of the genes of an organism is altered and reordered are of great interest to systematists, evolutionary biologists, comparative genomicists and biomedical researchers. Perhaps the most basic concept in this area is that of evolutionary distance between two genomes: under a given model of genomic evolution, how many events most likely took place to account for the difference between the two genomes? We present a method to estimate the true evolutionary distance between two genomes under the 'double-cut-and-join' (DCJ) model of genome rearrangement, a model under which a single multichromosomal operation accounts for all genomic rearrangement events: inversion, transposition, translocation, block interchange and chromosomal fusion and fission. Our method relies on a simple structural characterization of a genome pair and is both analytically and computationally tractable. We provide analytical results to describe the asymptotic behavior of genomes under the DCJ model, as well as experimental results on a wide variety of genome structures to exemplify the very high accuracy (and low variance) of our estimator. Our results provide a tool for accurate phylogenetic reconstruction from multichromosomal gene rearrangement data as well as a theoretical basis for refinements of the DCJ model to account for biological constraints. All of our software is available in source form under GPL at http://lcbb.epfl.ch.

  2. Evolutionary Biology Research in India

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. Evolutionary Biology Research in India. Information and Announcements Volume 5 Issue 10 October 2000 pp 102-104. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/10/0102-0104 ...

  3. Hybrid Projected Gradient-Evolutionary Search Algorithm for Mixed Integer Nonlinear Optimization Problems

    National Research Council Canada - National Science Library

    Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram

    2005-01-01

    The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...

  4. Isolation and complete genome sequencing of Mimivirus bombay, a Giant Virus in sewage of Mumbai, India

    Directory of Open Access Journals (Sweden)

    Anirvan Chatterjee

    2016-09-01

    Full Text Available We report the isolation and complete genome sequencing of a new Mimiviridae family member, infecting Acanthamoeba castellanii, from sewage in Mumbai, India. The isolated virus has a particle size of about 435 nm and a 1,182,200-bp genome. A phylogeny based on the DNA polymerase sequence placed the isolate as a new member of the Mimiviridae family lineage A and was named as Mimivirus bombay. Extensive presence of Mimiviridae family members in different environmental niches, with remarkably similar genome size and genetic makeup, point towards an evolutionary advantage that needs to be further investigated. The complete genome sequence of Mimivirus bombay was deposited at GenBank/EMBL/DDBJ under the accession number KU761889.

  5. Next generation sequencing yields the complete mitochondrial genome of the largescale mullet, Liza macrolepis (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Tsai, Shiou-Yi; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique

    2016-11-01

    In this study, the complete mitogenome sequence of largescale mullet (Teleostei: Mugilidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome, consisting of 16,832 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs genes, and a non-coding control region of D-loop. D-loop which has a length of 1094 bp is located between tRNA-Pro and tRNA-Phe. The overall base composition of largescale mullet is 27.8% for A, 30.1% for C, 16.2% for G, and 25.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for Mugilidae.

  6. Next generation sequencing yields the complete mitochondrial genome of the Hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der

    2016-05-01

    In this study, the complete mitogenome sequence of hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,829 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop contains 1057 bp length is located between tRNA-Pro and tRNA-Phe. The overall base composition of P. labiosus is 28.0% for A, 29.3% for C, 15.5% for G and 27.2% for T. The complete mitogenome may provide essential and important DNA molecular data for further population, phylogenetic and evolutionary analysis for Mugilidae.

  7. The Schistosoma mansoni phylome: using evolutionary genomics to gain insight into a parasite’s biology

    Directory of Open Access Journals (Sweden)

    Silva Larissa

    2012-11-01

    Full Text Available Abstract Background Schistosoma mansoni is one of the causative agents of schistosomiasis, a neglected tropical disease that affects about 237 million people worldwide. Despite recent efforts, we still lack a general understanding of the relevant host-parasite interactions, and the possible treatments are limited by the emergence of resistant strains and the absence of a vaccine. The S. mansoni genome was completely sequenced and still under continuous annotation. Nevertheless, more than 45% of the encoded proteins remain without experimental characterization or even functional prediction. To improve our knowledge regarding the biology of this parasite, we conducted a proteome-wide evolutionary analysis to provide a broad view of the S. mansoni’s proteome evolution and to improve its functional annotation. Results Using a phylogenomic approach, we reconstructed the S. mansoni phylome, which comprises the evolutionary histories of all parasite proteins and their homologs across 12 other organisms. The analysis of a total of 7,964 phylogenies allowed a deeper understanding of genomic complexity and evolutionary adaptations to a parasitic lifestyle. In particular, the identification of lineage-specific gene duplications pointed to the diversification of several protein families that are relevant for host-parasite interaction, including proteases, tetraspanins, fucosyltransferases, venom allergen-like proteins, and tegumental-allergen-like proteins. In addition to the evolutionary knowledge, the phylome data enabled us to automatically re-annotate 3,451 proteins through a phylogenetic-based approach rather than solely sequence similarity searches. To allow further exploitation of this valuable data, all information has been made available at PhylomeDB (http://www.phylomedb.org. Conclusions In this study, we used an evolutionary approach to assess S. mansoni parasite biology, improve genome/proteome functional annotation, and provide insights into

  8. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    International Nuclear Information System (INIS)

    Salazar, Daniel; Rocco, Claudio M.; Galvan, Blas J.

    2006-01-01

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature

  9. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Daniel [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain) and Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: danielsalazaraponte@gmail.com; Rocco, Claudio M. [Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve; Galvan, Blas J. [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain)]. E-mail: bgalvan@step.es

    2006-09-15

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.

  10. Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking

    Science.gov (United States)

    Poluyan, Sergey; Ershov, Nikolay

    2018-02-01

    In this study we examine the possibility of using evolutionary optimization algorithms in protein-peptide docking. We present the main assumptions that reduce the docking problem to a continuous global optimization problem and provide a way of using evolutionary optimization algorithms. The Rosetta all-atom force field was used for structural representation and energy scoring. We describe the parallelization scheme and MPI/OpenMP realization of the considered algorithms. We demonstrate the efficiency and the performance for some algorithms which were applied to a set of benchmark tests.

  11. Threat-detection in child development: an evolutionary perspective.

    Science.gov (United States)

    Boyer, Pascal; Bergstrom, Brian

    2011-03-01

    Evidence for developmental aspects of fear-targets and anxiety suggests a complex but stable pattern whereby specific kinds of fears emerge at different periods of development. This developmental schedule seems appropriate to dangers encountered repeatedly during human evolution. Also consistent with evolutionary perspective, the threat-detection systems are domain-specific, comprising different kinds of cues to do with predation, intraspecific violence, contamination-contagion and status loss. Proper evolutionary models may also be relevant to outstanding issues in the domain, notably the connections between typical development and pathology. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Testing evolutionary hypotheses for phenotypic divergence using landscape genetics.

    Science.gov (United States)

    Funk, W Chris; Murphy, Melanie A

    2010-02-01

    Understanding the evolutionary causes of phenotypic variation among populations has long been a central theme in evolutionary biology. Several factors can influence phenotypic divergence, including geographic isolation, genetic drift, divergent natural or sexual selection, and phenotypic plasticity. But the relative importance of these factors in generating phenotypic divergence in nature is still a tantalizing and unresolved problem in evolutionary biology. The origin and maintenance of phenotypic divergence is also at the root of many ongoing debates in evolutionary biology, such as the extent to which gene flow constrains adaptive divergence (Garant et al. 2007) and the relative importance of genetic drift, natural selection, and sexual selection in initiating reproductive isolation and speciation (Coyne & Orr 2004). In this issue, Wang & Summers (2010) test the causes of one of the most fantastic examples of phenotypic divergence in nature: colour pattern divergence among populations of the strawberry poison frog (Dendrobates pumilio) in Panama and Costa Rica (Fig. 1). This study provides a beautiful example of the use of the emerging field of landscape genetics to differentiate among hypotheses for phenotypic divergence. Using landscape genetic analyses, Wang & Summers were able to reject the hypotheses that colour pattern divergence is due to isolation-by-distance (IBD) or landscape resistance. Instead, the hypothesis left standing is that colour divergence is due to divergent selection, in turn driving reproductive isolation among populations with different colour morphs. More generally, this study provides a wonderful example of how the emerging field of landscape genetics, which has primarily been applied to questions in conservation and ecology, now plays an essential role in evolutionary research.

  13. Development of antibiotic regimens using graph based evolutionary algorithms.

    Science.gov (United States)

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Ecological and evolutionary effects of stickleback on community structure.

    Directory of Open Access Journals (Sweden)

    Simone Des Roches

    Full Text Available Species' ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus. We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density and evolutionary (phenotypic diversity and specialization factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities.

  15. Integrated evolutionary computation neural network quality controller for automated systems

    Energy Technology Data Exchange (ETDEWEB)

    Patro, S.; Kolarik, W.J. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Industrial Engineering

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  16. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    Science.gov (United States)

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  17. Evolutionary modelling of transitions to sustainable development

    International Nuclear Information System (INIS)

    Safarzynska, K.

    2010-01-01

    This thesis has examined how evolutionary economics can contribute to modelling the micromechanisms that underlie transitions towards sustainable development. In general, transitions are fundamental or structural system changes. They involve, or even require, escaping lock-in of dominant, environmentally unsustainable technologies, introducing major technical or social innovations, and changing prevailing social practices and structures. Due to the complexity of socioeconomic interactions, it is not always possible to identify, and thus target with appropriate policy instruments, causes of specific unsustainable patterns of behaviour. Formal modelling exercises can help improve our understanding of the interaction of various transition mechanisms which are otherwise difficult to grasp intuitively. They allow exploring effects of policy interventions in complex systems. However, existing models of transitions focus on social phenomena and seldom address economic problems. As opposed, mainstream (neoclassical) economic models of technological change do not account for social interactions, and changing heterogeneity of users and their perspectives - even though all of these can influence the direction of innovations and patterns of socio-technological development. Evolutionary economics offers an approach that goes beyond neoclassical economics - in the sense of employing more realistic assumptions regarding the behaviour and heterogeneity of consumers, firms and investors. It can complement current transition models by providing them with a better understanding of associated economic dynamics. In this thesis, formal models were proposed to illustrate the usefulness of a range of evolutionary-economic techniques for modelling transitions. Modelling exercises aimed to explain the core properties of socio-economic systems, such as lock-in, path-dependence, coevolution, group selection and recombinant innovation. The studies collected in this dissertation illustrate that

  18. The Evolutionary Psychology of Envy and Jealousy

    Science.gov (United States)

    Ramachandran, Vilayanur S.; Jalal, Baland

    2017-01-01

    The old dogma has always been that the most complex aspects of human emotions are driven by culture; Germans and English are thought to be straight-laced whereas Italians and Indians are effusive. Yet in the last two decades there has been a growing realization that even though culture plays a major role in the final expression of human nature, there must be a basic scaffolding specified by genes. While this is recognized to be true for simple emotions like anger, fear, and joy, the relevance of evolutionary arguments for more complex nuances of emotion have been inadequately explored. In this paper, we consider envy or jealousy as an example; the feeling evoked when someone is better off than you. Our approach is broadly consistent with traditional evolutionary psychology (EP) approaches, but takes it further by exploring the complexity and functional logic of the emotion – and the precise social triggers that elicit them – by using deliberately farfetched, and contrived “thought experiments” that the subject is asked to participate in. When common sense (e.g., we should be jealous of Bill Gates – not of our slightly richer neighbor) appears to contradict observed behavior (i.e., we are more envious of our neighbor) the paradox can often be resolved by evolutionary considerations which h predict the latter. Many – but not all – EP approaches fail because evolution and common sense do not make contradictory predictions. Finally, we briefly raise the possibility that gaining deeper insight into the evolutionary origins of certain undesirable emotions or behaviors can help shake them off, and may therefore have therapeutic utility. Such an approach would complement current therapies (such as cognitive behavior therapies, psychoanalysis, psychopharmacologies, and hypnotherapy), rather than negate them. PMID:28970815

  19. The Evolutionary Psychology of Envy and Jealousy

    Directory of Open Access Journals (Sweden)

    Vilayanur S. Ramachandran

    2017-09-01

    Full Text Available The old dogma has always been that the most complex aspects of human emotions are driven by culture; Germans and English are thought to be straight-laced whereas Italians and Indians are effusive. Yet in the last two decades there has been a growing realization that even though culture plays a major role in the final expression of human nature, there must be a basic scaffolding specified by genes. While this is recognized to be true for simple emotions like anger, fear, and joy, the relevance of evolutionary arguments for more complex nuances of emotion have been inadequately explored. In this paper, we consider envy or jealousy as an example; the feeling evoked when someone is better off than you. Our approach is broadly consistent with traditional evolutionary psychology (EP approaches, but takes it further by exploring the complexity and functional logic of the emotion – and the precise social triggers that elicit them – by using deliberately farfetched, and contrived “thought experiments” that the subject is asked to participate in. When common sense (e.g., we should be jealous of Bill Gates – not of our slightly richer neighbor appears to contradict observed behavior (i.e., we are more envious of our neighbor the paradox can often be resolved by evolutionary considerations which h predict the latter. Many – but not all – EP approaches fail because evolution and common sense do not make contradictory predictions. Finally, we briefly raise the possibility that gaining deeper insight into the evolutionary origins of certain undesirable emotions or behaviors can help shake them off, and may therefore have therapeutic utility. Such an approach would complement current therapies (such as cognitive behavior therapies, psychoanalysis, psychopharmacologies, and hypnotherapy, rather than negate them.

  20. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population.

    Directory of Open Access Journals (Sweden)

    Timothée Bonnet

    2017-01-01

    Full Text Available In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative genetic models are able to provide us with an understanding of the causes and consequences of

  1. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population

    Science.gov (United States)

    Wandeler, Peter; Camenisch, Glauco

    2017-01-01

    In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox” highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is

  2. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    OpenAIRE

    Neil W. Blackstone

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real?the endosymbiosis that led to the mitochondrion is often described as ?non-Darwinian? because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious?all of the major fea...

  3. The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities.

    Science.gov (United States)

    Brucker, Robert M; Bordenstein, Seth R

    2012-02-01

    The comparative structure of bacterial communities among closely related host species remains relatively unexplored. For instance, as speciation events progress from incipient to complete stages, does divergence in the composition of the species' microbial communities parallel the divergence of host nuclear genes? To address this question, we used the recently diverged species of the parasitoid wasp genus Nasonia to test whether the evolutionary relationships of their bacterial microbiotas recapitulate the Nasonia phylogenetic history. We also assessed microbial diversity in Nasonia at different stages of development to determine the role that host age plays in microbiota structure. The results indicate that all three species of Nasonia share simple larval microbiotas dominated by the γ-proteobacteria class; however, bacterial species diversity increases as Nasonia develop into pupae and adults. Finally, under identical environmental conditions, the relationships of the microbial communities reflect the phylogeny of the Nasonia host species at multiple developmental stages, which suggests that the structure of an animal's microbial community is closely allied with divergence of host genes. These findings highlight the importance of host evolutionary relationships on microbiota composition and have broad implications for future studies of microbial symbiosis and animal speciation. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  4. Distribution of Marburg virus in Africa: An evolutionary approach.

    Science.gov (United States)

    Zehender, Gianguglielmo; Sorrentino, Chiara; Veo, Carla; Fiaschi, Lisa; Gioffrè, Sonia; Ebranati, Erika; Tanzi, Elisabetta; Ciccozzi, Massimo; Lai, Alessia; Galli, Massimo

    2016-10-01

    The aim of this study was to investigate the origin and geographical dispersion of Marburg virus, the first member of the Filoviridae family to be discovered. Seventy-three complete genome sequences of Marburg virus isolated from animals and humans were retrieved from public databases and analysed using a Bayesian phylogeographical framework. The phylogenetic tree of the Marburg virus data set showed two significant evolutionary lineages: Ravn virus (RAVV) and Marburg virus (MARV). MARV divided into two main clades; clade A included isolates from Uganda (five from the European epidemic in 1967), Kenya (1980) and Angola (from the epidemic of 2004-2005); clade B included most of the isolates obtained during the 1999-2000 epidemic in the Democratic Republic of the Congo (DRC) and a group of Ugandan isolates obtained in 2007-2009. The estimated mean evolutionary rate of the whole genome was 3.3×10(-4) substitutions/site/year (credibility interval 2.0-4.8). The MARV strain had a mean root time of the most recent common ancestor of 177.9years ago (YA) (95% highest posterior density 87-284), thus indicating that it probably originated in the mid-XIX century, whereas the RAVV strain had a later origin dating back to a mean 33.8 YA. The most probable location of the MARV ancestor was Uganda (state posterior probability, spp=0.41), whereas that of the RAVV ancestor was Kenya (spp=0.71). There were significant migration rates from Uganda to the DRC (Bayes Factor, BF=42.0) and in the opposite direction (BF=5.7). Our data suggest that Uganda may have been the cradle of Marburg virus in Africa. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  6. How cultural evolutionary theory can inform social psychology and vice versa.

    Science.gov (United States)

    Mesoudi, Alex

    2009-10-01

    Cultural evolutionary theory is an interdisciplinary field in which human culture is viewed as a Darwinian process of variation, competition, and inheritance, and the tools, methods, and theories developed by evolutionary biologists to study genetic evolution are adapted to study cultural change. It is argued here that an integration of the theories and findings of mainstream social psychology and of cultural evolutionary theory can be mutually beneficial. Social psychology provides cultural evolution with a set of empirically verified microevolutionary cultural processes, such as conformity, model-based biases, and content biases, that are responsible for specific patterns of cultural change. Cultural evolutionary theory provides social psychology with ultimate explanations for, and an understanding of the population-level consequences of, many social psychological phenomena, such as social learning, conformity, social comparison, and intergroup processes, as well as linking social psychology with other social science disciplines such as cultural anthropology, archaeology, and sociology.

  7. NEPTUNE: a modular system for light-water reactor calculation

    International Nuclear Information System (INIS)

    Bouchard, J.; Kanevoky, A.; Reuss, P.

    1975-01-01

    A complete modular system of light water reactor calculations has been designed. It includes basic nuclear data processing, the APOLLO phase: transport calculations for cells, multicells, fuel assemblies or reactors, the NEPTUNE phase: reactor calculations. A fuel management module, devoted to the automatic determination of the best shuffling strategy is included in NEPTUNE [fr

  8. The concept of ageing in evolutionary algorithms: Discussion and inspirations for human ageing.

    Science.gov (United States)

    Dimopoulos, Christos; Papageorgis, Panagiotis; Boustras, George; Efstathiades, Christodoulos

    2017-04-01

    This paper discusses the concept of ageing as this applies to the operation of Evolutionary Algorithms, and examines its relationship to the concept of ageing as this is understood for human beings. Evolutionary Algorithms constitute a family of search algorithms which base their operation on an analogy from the evolution of species in nature. The paper initially provides the necessary knowledge on the operation of Evolutionary Algorithms, focusing on the use of ageing strategies during the implementation of the evolutionary process. Background knowledge on the concept of ageing, as this is defined scientifically for biological systems, is subsequently presented. Based on this information, the paper provides a comparison between the two ageing concepts, and discusses the philosophical inspirations which can be drawn for human ageing based on the operation of Evolutionary Algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evolutionary computation techniques a comparative perspective

    CERN Document Server

    Cuevas, Erik; Oliva, Diego

    2017-01-01

    This book compares the performance of various evolutionary computation (EC) techniques when they are faced with complex optimization problems extracted from different engineering domains. Particularly focusing on recently developed algorithms, it is designed so that each chapter can be read independently. Several comparisons among EC techniques have been reported in the literature, however, they all suffer from one limitation: their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. In each chapter, a complex engineering optimization problem is posed, and then a particular EC technique is presented as the best choice, according to its search characteristics. Lastly, a set of experiments is conducted in order to compare its performance to other popular EC methods.

  10. An evolutionary approach to financial history.

    Science.gov (United States)

    Ferguson, N

    2009-01-01

    Financial history is not conventionally thought of in evolutionary terms, but it should be. Traditional ways of thinking about finance, dating back to Hilferding, emphasize the importance of concentration and economies of scale. But these approaches overlook the rich "biodiversity" that characterizes the financial world. They also overlook the role of natural selection. To be sure, natural selection in the financial world is not exactly analogous to the processes first described by Darwin and elaborated on by modern biologists. There is conscious adaptation as well as random mutation. Moreover, there is something resembling "intelligent design" in finance, whereby regulators and legislators act in a quasidivine capacity, putting dinosaurs on life support. The danger is that such interventions in the natural processes of the market may ultimately distort the evolutionary process, by getting in the way of Schumpeter's "creative destruction."

  11. Applying evolutionary biology to address global challenges

    Science.gov (United States)

    Carroll, Scott P.; Jørgensen, Peter Søgaard; Kinnison, Michael T.; Bergstrom, Carl T.; Denison, R. Ford; Gluckman, Peter; Smith, Thomas B.; Strauss, Sharon Y.; Tabashnik, Bruce E.

    2014-01-01

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  12. Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion.

    Science.gov (United States)

    Sotiras, Aristeidis; Toledo, Jon B; Gur, Raquel E; Gur, Ruben C; Satterthwaite, Theodore D; Davatzikos, Christos

    2017-03-28

    During adolescence, the human cortex undergoes substantial remodeling to support a rapid expansion of behavioral repertoire. Accurately quantifying these changes is a prerequisite for understanding normal brain development, as well as the neuropsychiatric disorders that emerge in this vulnerable period. Past accounts have demonstrated substantial regional heterogeneity in patterns of brain development, but frequently have been limited by small samples and analytics that do not evaluate complex multivariate imaging patterns. Capitalizing on recent advances in multivariate analysis methods, we used nonnegative matrix factorization (NMF) to uncover coordinated patterns of cortical development in a sample of 934 youths ages 8-20, who completed structural neuroimaging as part of the Philadelphia Neurodevelopmental Cohort. Patterns of structural covariance (PSCs) derived by NMF were highly reproducible over a range of resolutions, and differed markedly from common gyral-based structural atlases. Moreover, PSCs were largely symmetric and showed correspondence to specific large-scale functional networks. The level of correspondence was ordered according to their functional role and position in the evolutionary hierarchy, being high in lower-order visual and somatomotor networks and diminishing in higher-order association cortex. Furthermore, PSCs showed divergent developmental associations, with PSCs in higher-order association cortex networks showing greater changes with age than primary somatomotor and visual networks. Critically, such developmental changes within PSCs were significantly associated with the degree of evolutionary cortical expansion. Together, our findings delineate a set of structural brain networks that undergo coordinated cortical thinning during adolescence, which is in part governed by evolutionary novelty and functional specialization.

  13. Evolutionary game dynamics in a growing structured population

    Energy Technology Data Exchange (ETDEWEB)

    Poncela, Julia; Gomez-Gardenes, Jesus; Moreno, Yamir [Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, E-50009 Zaragoza (Spain); Traulsen, Arne [Emmy-Noether Group for Evolutionary Dynamics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen (Germany)], E-mail: traulsen@evolbio.mpg.de

    2009-08-15

    We discuss a model for evolutionary game dynamics in a growing, network-structured population. In our model, new players can either make connections to random preexisting players or preferentially attach to those that have been successful in the past. The latter depends on the dynamics of strategies in the game, which we implement following the so-called Fermi rule such that the limits of weak and strong strategy selection can be explored. Our framework allows to address general evolutionary games. With only two parameters describing the preferential attachment and the intensity of selection, we describe a wide range of network structures and evolutionary scenarios. Our results show that even for moderate payoff preferential attachment, over represented hubs arise. Interestingly, we find that while the networks are growing, high levels of cooperation are attained, but the same network structure does not promote cooperation as a static network. Therefore, the mechanism of payoff preferential attachment is different to those usually invoked to explain the promotion of cooperation in static, already-grown networks.

  14. Evolutionary game dynamics in a growing structured population

    International Nuclear Information System (INIS)

    Poncela, Julia; Gomez-Gardenes, Jesus; Moreno, Yamir; Traulsen, Arne

    2009-01-01

    We discuss a model for evolutionary game dynamics in a growing, network-structured population. In our model, new players can either make connections to random preexisting players or preferentially attach to those that have been successful in the past. The latter depends on the dynamics of strategies in the game, which we implement following the so-called Fermi rule such that the limits of weak and strong strategy selection can be explored. Our framework allows to address general evolutionary games. With only two parameters describing the preferential attachment and the intensity of selection, we describe a wide range of network structures and evolutionary scenarios. Our results show that even for moderate payoff preferential attachment, over represented hubs arise. Interestingly, we find that while the networks are growing, high levels of cooperation are attained, but the same network structure does not promote cooperation as a static network. Therefore, the mechanism of payoff preferential attachment is different to those usually invoked to explain the promotion of cooperation in static, already-grown networks.

  15. Evolutionary speed limited by water in arid Australia.

    Science.gov (United States)

    Goldie, Xavier; Gillman, Len; Crisp, Mike; Wright, Shane

    2010-09-07

    The covariation of biodiversity with climate is a fundamental pattern in nature. However, despite the ubiquity of this relationship, a consensus on the ultimate cause remains elusive. The evolutionary speed hypothesis posits direct mechanistic links between ambient temperature, the tempo of micro-evolution and, ultimately, species richness. Previous research has demonstrated faster rates of molecular evolution in warmer climates for a broad range of poikilothermic and homeothermic organisms, in both terrestrial and aquatic environments. In terrestrial systems, species richness increases with both temperature and water availability and the interaction of those terms: productivity. However, the influence of water availability as an independent variable on micro-evolutionary processes has not been examined previously. Here, using methodology that limits the potentially confounding role of cladogenetic and demographic processes, we report, to our knowledge, the first evidence that woody plants living in the arid Australian Outback are evolving more slowly than related species growing at similar latitudes in moist habitats on the mesic continental margins. These results support a modified evolutionary speed explanation for the relationship between the water-energy balance and plant diversity patterns.

  16. A study of driver's route choice behavior based on evolutionary game theory.

    Science.gov (United States)

    Jiang, Xiaowei; Ji, Yanjie; Du, Muqing; Deng, Wei

    2014-01-01

    This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent.

  17. Evolutionary plant physiology: Charles Darwin's forgotten synthesis

    Science.gov (United States)

    Kutschera, Ulrich; Niklas, Karl J.

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin’s son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin’s work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  18. Evolutionary plant physiology: Charles Darwin's forgotten synthesis.

    Science.gov (United States)

    Kutschera, Ulrich; Niklas, Karl J

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin's son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin's work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  19. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Graziele Pereira Oliveira

    2017-01-01

    Full Text Available For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV, raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’ that could be evolved gradually by nucleotides’ gain and loss and point mutations.

  20. Investigating intertemporal choice through experimental evolutionary robotics.

    Science.gov (United States)

    Paglieri, Fabio; Parisi, Domenico; Patacchiola, Massimiliano; Petrosino, Giancarlo

    2015-06-01

    In intertemporal choices, subjects face a trade-off between value and delay: achieving the most valuable outcome requires a longer time, whereas the immediately available option is objectively poorer. Intertemporal choices are ubiquitous, and comparative studies reveal commonalities and differences across species: all species devalue future rewards as a function of delay (delay aversion), yet there is a lot of inter-specific variance in how rapidly such devaluation occurs. These differences are often interpreted in terms of ecological rationality, as depending on environmental factors (e.g., feeding ecology) and the physiological and morphological constraints of different species (e.g., metabolic rate). Evolutionary hypotheses, however, are hard to verify in vivo, since it is difficult to observe precisely enough real environments, not to mention ancestral ones. In this paper, we discuss the viability of an approach based on evolutionary robotics: in Study 1, we evolve robots without a metabolism in five different ecologies; in Study 2, we evolve metabolic robots (i.e., robots that consume energy over time) in three different ecologies. The intertemporal choices of the robots are analyzed both in their ecology and under laboratory conditions. Results confirm the generality of delay aversion and the usefulness of studying intertemporal choice through experimental evolutionary robotics. Copyright © 2015 Elsevier B.V. All rights reserved.