WorldWideScience

Sample records for calculated average void

  1. Experimental study of average void fraction in low-flow subcooled boiling

    International Nuclear Information System (INIS)

    Sun Qi; Wang Xiaojun; Xi Zhao; Zhao Hua; Yang Ruichang

    2005-01-01

    Low-flow subcooled void fraction in medium pressure was investigated using high-temperature high-pressure single-sensor optical probe in this paper. And then average void fraction was obtained through the integral calculation of local void fraction in the cross-section. The experimental data were compared with the void fraction model proposed in advance. The results show that the predictions of this model agree with the data quite well. The comparisons of Saha and Levy models with low-flow subcooled data show that Saha model overestimates the experimental data distinctively, and Levy model also gets relatively higher predictions although it is better than Saha model. (author)

  2. Calculational benchmark comparisons for a low sodium void worth actinide burner core design

    International Nuclear Information System (INIS)

    Hill, R.N.; Kawashima, M.; Arie, K.; Suzuki, M.

    1992-01-01

    Recently, a number of low void worth core designs with non-conventional core geometries have been proposed. Since these designs lack a good experimental and computational database, benchmark calculations are useful for the identification of possible biases in performance characteristics predictions. In this paper, a simplified benchmark model of a metal fueled, low void worth actinide burner design is detailed; and two independent neutronic performance evaluations are compared. Calculated performance characteristics are evaluated for three spatially uniform compositions (fresh uranium/plutonium, batch-averaged uranium/transuranic, and batch-averaged uranium/transuranic with fission products) and a regional depleted distribution obtained from a benchmark depletion calculation. For each core composition, the flooded and voided multiplication factor, power peaking factor, sodium void worth (and its components), flooded Doppler coefficient and control rod worth predictions are compared. In addition, the burnup swing, average discharge burnup, peak linear power, and fresh fuel enrichment are calculated for the depletion case. In general, remarkably good agreement is observed between the evaluations. The most significant difference is predicted performance characteristics is a 0.3--0.5% Δk/(kk) bias in the sodium void worth. Significant differences in the transmutation rate of higher actinides are also observed; however, these differences do not cause discrepancies in the performing predictions

  3. Development of quick-response area-averaged void fraction meter

    International Nuclear Information System (INIS)

    Watanabe, Hironori; Iguchi, Tadashi; Kimura, Mamoru; Anoda, Yoshinari

    2000-11-01

    Authors are performing experiments to investigate BWR thermal-hydraulic instability under coupling of neutronics and thermal-hydraulics. To perform the experiment, it is necessary to measure instantaneously area-averaged void fraction in rod bundle under high temperature/high pressure gas-liquid two-phase flow condition. Since there were no void fraction meters suitable for these requirements, we newly developed a practical void fraction meter. The principle of the meter is based on the electrical conductance changing with void fraction in gas-liquid two-phase flow. In this meter, metal flow channel wall is used as one electrode and a L-shaped line electrode installed at the center of flow channel is used as the other electrode. This electrode arrangement makes possible instantaneous measurement of area-averaged void fraction even under the metal flow channel. We performed experiments with air/water two-phase flow to clarify the void fraction meter performance. Experimental results indicated that void fraction was approximated by α=1-I/I o , where α and I are void fraction and current (I o is current at α=0). This relation holds in the wide range of void fraction of 0∼70%. The difference between α and 1-I/I o was approximately 10% at maximum. The major reasons of the difference are a void distribution over measurement area and an electrical insulation of the center electrode by bubbles. The principle and structure of this void fraction meter are very basic and simple. Therefore, the meter can be applied to various fields on gas-liquid two-phase flow studies. (author)

  4. On the use of area-averaged void fraction and local bubble chord length entropies as two-phase flow regime indicators

    International Nuclear Information System (INIS)

    Hernandez, Leonor; Julia, J.E.; Paranjape, Sidharth; Hibiki, Takashi; Ishii, Mamoru

    2010-01-01

    In this work, the use of the area-averaged void fraction and bubble chord length entropies is introduced as flow regime indicators in two-phase flow systems. The entropy provides quantitative information about the disorder in the area-averaged void fraction or bubble chord length distributions. The CPDF (cumulative probability distribution function) of void fractions and bubble chord lengths obtained by means of impedance meters and conductivity probes are used to calculate both entropies. Entropy values for 242 flow conditions in upward two-phase flows in 25.4 and 50.8-mm pipes have been calculated. The measured conditions cover ranges from 0.13 to 5 m/s in the superficial liquid velocity j f and ranges from 0.01 to 25 m/s in the superficial gas velocity j g . The physical meaning of both entropies has been interpreted using the visual flow regime map information. The area-averaged void fraction and bubble chord length entropies capability as flow regime indicators have been checked with other statistical parameters and also with different input signals durations. The area-averaged void fraction and the bubble chord length entropies provide better or at least similar results than those obtained with other indicators that include more than one parameter. The entropy is capable to reduce the relevant information of the flow regimes in only one significant and useful parameter. In addition, the entropy computation time is shorter than the majority of the other indicators. The use of one parameter as input also represents faster predictions. (orig.)

  5. Average void fraction measurement in a two-phase vertical flow

    International Nuclear Information System (INIS)

    Mello, R.E.F. de; Behar, M.R.; Martines, E.W.

    1975-01-01

    The utilization of the radioactive tracer technique to measure the void fraction in a two phase flow air-water is presented. The radioactive tracer used was a salt of Br-82. The water flow rate varied between 0,4 and 2,0 m 3 /h, and the air flow rate between 0,2 and 1,0 m 3 /h. The resulting measured void fraction were between 0,05 and 0,32. These void fraction values were compared with those ones calculated with the measured flow rates and by use of empirical formulas, using different methods. After a convenient choice of the radioactive isotope, the measurements didn't present any special problem. The results have shown a good accordance with the values calculated by the formulas of R. Roumy, but was not possible yet to conclude, about the convenience of application and the grade of confidence of this method

  6. Void coefficient of reactivity calculation for AP-600 core

    International Nuclear Information System (INIS)

    Suparlina, L.; Budiono, T.A.; Mardha, A.; Tukiran

    1998-01-01

    Void coefficient of reactivity as one of reactor kinetics parameters has been carried out. The calculation was done into two steps which is cell calculation using WIMSD/4 and core calculation using Batan-2DIFF code programs with the condition of beginning of cycle with all fresh fuels elements and all control rods withdrawn. The one dimension transport program in four neutron energy groups is used to calculate the cell generation of various core materials cell has been calculated in 1/4 fuel element with cluster model and square pitch arrange. Moderator density have been reduced until 20% for the void coefficient of reactivity calculation. Macroscopic cross-section as the out put of WIMSD/4 is being used as the input at the diffusion neutron program for core calculation. The void coefficient of reactivity of the AP-600 core can be determined with regular neutron flux and adjoint in four energy groups and X-Y geometry. The results is shown that the K eff calculation value is different 5.2% from the design data

  7. IAEA sodium void reactivity benchmark calculations

    International Nuclear Information System (INIS)

    Hill, R.N.; Finck, P.J.

    1992-01-01

    In this paper, the IAEA-1 992 ''Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated

  8. Development of quick-response area-averaged void fraction meter. Application to BWR condition

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi; Watanabe, Hironori; Kimura, Mamoru; Anoda, Yoshinari [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-05-01

    Authors have been developed a practical conductance-type void fraction meter to measure instantaneously area-averaged void fraction in rod bundle. The principle of the meter is based on the fact that the electrical conductance changes with the change of void fraction in gas-liquid two-phase flow. According to air/water two-phase flow experiment, the void fraction was approximated by {alpha}=1-I/I{sub 0}, where {alpha} and I are void fraction and current (I{sub 0} is current at {alpha}=0). Authors investigated the performance of the void fraction meter under high temperature/high pressure conditions (BWR condition; 290degC, 7MPa). The results indicated that the void fraction was approximated by {alpha}=1-I/I{sub 0} even under high temperature/high pressure condition of stem/water flow. However, it is necessary to take account of temperature dependency of water specific conductance. Therefore, authors derived a correction equation for temperature dependency. Further, for applying the void fraction meter to a large-scale facility, it was found to be necessary to reduce the capacitance of the circuit. Then, authors developed the method to reduce the capacitance effect. Finally, authors succeeded to measure the void fraction in 2 x 2 bundle flow path at the range of 0% - 70% in the error of 10% under high temperature/high pressure and mass flux of less than 133 kg/m{sup 2}s. Developed void fraction meter is theoretically not affected by flow rate. Therefore, it can be applied to the condition of oscillating flow. (author)

  9. Calculation of the void reactivity of CANDU lattices using the SCALE code system

    Energy Technology Data Exchange (ETDEWEB)

    Valko, J. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Feher, S. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Hoogenboom, J.E. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Slobben, J. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1995-11-01

    The reactivity effect of coolant voiding in CANDU-type fuel lattices has been calculated with different methods using the SCALE code system. The known positive void reactivity coefficient of the original lattice was correctly obtained. A modified fuel bundle containing dysprosium and slightly enriched uranium to eliminate the positive reactivity effect was also calculated. Owing to the increased heterogeneity of this modified fuel the one-dimensional cylindrical calculation with XSDRN proved to be inadequate. Code options allowing bundle geometry were successfully used for the calculation of the strongly space dependent flux and spectrum changes which determine the void reactivity. (orig.).

  10. Structure of two-phase air-water flows. Study of average void fraction and flow patterns

    International Nuclear Information System (INIS)

    Roumy, R.

    1969-01-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V sg = f( ) * g(V sl ). The function g(V sl ) for the case of independent bubbles has been found to be: g(V sl ) = V sl + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V sg /V sl . (author) [fr

  11. Accurate reactivity void coefficient calculation for the fast spectrum reactor FBR-IME

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Fabiano P.C.; Vellozo, Sergio de O.; Velozo, Marta J., E-mail: fabianopetruceli@outlook.com, E-mail: vellozo@cbpf.br, E-mail: martajann@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Militar

    2017-07-01

    This paper aims to present an accurate calculation of the void reactivity coefficient for the FBR-IME, a fast spectrum reactor in development at the Engineering Military Institute (IME). The main design peculiarity lies in using mixed oxide [MOX - PuO{sub 2} + U(natural uranium)O{sub 2}] as fuel core. For this task, SCALE system was used to calculate the reactivity for several voids distributions generated by bubbles in the sodium beyond its boiling point. The results show that although the void reactivity coefficient is positive and location dependent, they are offset by other feedback effects, resulting in a negative overall coefficient. (author)

  12. Void growth suppression by dislocation impurity atmospheres

    International Nuclear Information System (INIS)

    Weertman, J.; Green, W.V.

    1976-01-01

    A detailed calculation is given of the effect of an impurity atmosphere on void growth under irradiation damage conditions. Norris has proposed that such an atmosphere can suppress void growth. The hydrostatic stress field of a dislocation that is surrounded by an impurity atmosphere was found and used to calculate the change in the effective radius of a dislocation line as a sink for interstitials and vacancies. The calculation of the impurity concentration in a Cottrell cloud takes into account the change in hydrostatic pressure produced by the presence of the cloud itself. It is found that void growth is eliminated whenever dislocations are surrounded by a condensed atmosphere of either oversized substitutional impurity atoms or interstitial impurity atoms. A condensed atmosphere will form whenever the average impurity concentration is larger than a critical concentration

  13. On the difference between DRAGON and WIMS-AECL calculations of the coolant void reactivity

    International Nuclear Information System (INIS)

    Altiparmakov, D.; Roubtsov, D.; Irish, J.D.

    2009-01-01

    A difference in the shape of the burnup dependence of the coolant void reactivity (CVR) has been observed between DRAGON and WIMS-AECL calculations. This paper discusses the root cause of the difference and assesses the impact on burnup and full-core reactor calculations. A Fortran procedure has been developed to run WIMS-AECL as necessary in order to mimic DRAGON burnup calculations with leakage effects included. The comparison of standard WIMS-AECL results and simulated DRAGON results demonstrated that the difference is due to different definitions of CVR. If the same CVR definition is used, then the results of both WIMS-AECL and DRAGON analyses are essentially indistinguishable. The discrepancies in the fuel composition and cell-averaged two-group cross sections that are due to differences in WIMS-AECL and DRAGON leakage treatments are insignificant. (author)

  14. Void fraction calculation in a channel containing boiling coolant

    International Nuclear Information System (INIS)

    Norelli, F.

    1978-01-01

    The problem of void fraction calculation was studied for a channel containing boiling coolant, when a slip ratio correlation is used. Use of fitting (e.g. polinomial or rational algebraic) for slip ratio correlation and the characteristic method are proposed in this work. In this way we are reduced to some elementary quadrature problem. Another problem discussed in the present work concerns what we must consider as ''initial condition'' in any initial value problem, in order to take into account different error distributions in steady state and in successive time-dependent calculations

  15. Equations for calculating interfacial drag and shear from void fraction correlations

    International Nuclear Information System (INIS)

    Putney, J.M.

    1988-12-01

    Equations are developed for calculating interfacial drag and shear coefficients for dispersed vapour flows from void fraction correlations. The equations have a sound physical basis and lead to physically correct coefficients in all flow situations. (author)

  16. Void effects on BWR Doppler and void reactivity feedback

    International Nuclear Information System (INIS)

    Hsiang-Shou Cheng; Diamond, D.J.

    1978-01-01

    The significance of steam voids and control rods on the Doppler feedback in a gadolinia shimmed BWR is demonstrated. The importance of bypass voids when determining void feedback is also shown. Calculations were done using a point model, i.e., feedback was expressed in terms of reactivity coefficients which were determined for individual four-bundle configurations and then appropriately combined to yield reactor results. For overpower transients the inclusion of the void effect of control rods is to reduce Doppler feedback. For overpressurization transients the inclusion of the effect of bypass void wil increase the reactivity due to void collapse. (author)

  17. Influence of the void fraction in the linear reactivity model

    International Nuclear Information System (INIS)

    Castillo, J.A.; Ramirez, J.R.; Alonso, G.

    2003-01-01

    The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)

  18. Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions

    International Nuclear Information System (INIS)

    Rouhani, S.Z.; Axelsson, E.

    1968-10-01

    The complex problem of void calculation in the different regions of flow boiling is divided in two parts. The first part includes only the description of the mechanisms and the calculation of the rates of heat transfer for vapour and liquid. It is assumed that heat is removed by vapour generation, heating of the liquid that replaces the detached bubbles, and in some parts, by single phase heat transfer. By considering the rate of vapour condensation in liquid, an equation for the differential changes in the true steam quality throughout the boiling regions is obtained. Integration of this equation yields the vapour weight fraction at any position. The second part of the problem concerns the determination of the void fractions corresponding to the calculated steam qualities. For this purpose we use the derivations of Zuber and Findlay. This model is compared with data from different geometries including small rectangular channels and large rod bundles. The data covered pressures from 19 to 138 bars, heat fluxes from 18 to 120 W/cm 2 with many different subcoolings and mass velocities. The agreement is generally very good

  19. Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z; Axelsson, E

    1968-10-15

    The complex problem of void calculation in the different regions of flow boiling is divided in two parts. The first part includes only the description of the mechanisms and the calculation of the rates of heat transfer for vapour and liquid. It is assumed that heat is removed by vapour generation, heating of the liquid that replaces the detached bubbles, and in some parts, by single phase heat transfer. By considering the rate of vapour condensation in liquid, an equation for the differential changes in the true steam quality throughout the boiling regions is obtained. Integration of this equation yields the vapour weight fraction at any position. The second part of the problem concerns the determination of the void fractions corresponding to the calculated steam qualities. For this purpose we use the derivations of Zuber and Findlay. This model is compared with data from different geometries including small rectangular channels and large rod bundles. The data covered pressures from 19 to 138 bars, heat fluxes from 18 to 120 W/cm{sup 2} with many different subcoolings and mass velocities. The agreement is generally very good.

  20. An assessment of methods of calculating sodium voiding reactivity in plutonium fuelled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Simmons, W.N.; Stevenson, J.M.

    1979-01-01

    After a survey of the requirements an assessment of the accuracy of calculations of the sodium void effect using UK methods and data is made on the basis of the following work. First, the analysis of small and large sodium voids in the MOZART and Zebra 13 small (300 MW(E)) fast reactor mock-ups and the BIZET large fast reactor mock-ups, all of conventional design. The analysis was carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code, whole reactor diffusion theory calculations of the neutron flux and perturbation theory methods. Exact perturbation theory was used in many cases, otherwise first order perturbation theory calculations were adjusted to give results equivalent to exact perturbation theory. Second, theoretical studies of some effects, including, the effects of extrapolating to fuel operating temperatures, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. Third, theoretical studies of approximations in the calculational methods including, the importance in the whole reactor calculation of the energy group structure and the spatial mesh, the importance of reactor material boundaries in the calculation of resonance shielding effects, and the use of neutron fluxes calculated using neutron diffusion theory rather than transport theory. (U.K.)

  1. Dependence of calculated void reactivity on film-boiling representation

    International Nuclear Information System (INIS)

    Whitlock, J.; Garland, W.

    1992-01-01

    Partial voiding of a fuel channel can lead to complicated neutronic analysis, because of highly nonuniform spatial distributions. An investigation of the distribution dependence of void reactivity in a Canada deuterium uranium (CANDU) lattice, specifically in the regime of film boiling, was done. Although the core is not expected to be critical at the time of sheath dryout, this study augments current knowledge of void reactivity in this type of lattice

  2. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer

    International Nuclear Information System (INIS)

    Delhaye, J.

    1968-01-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a γ-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [fr

  3. Comparison of power pulses from homogeneous and time-average-equivalent models

    International Nuclear Information System (INIS)

    De, T.K.; Rouben, B.

    1995-01-01

    The time-average-equivalent model is an 'instantaneous' core model designed to reproduce the same three dimensional power distribution as that generated by a time-average model. However it has been found that the time-average-equivalent model gives a full-core static void reactivity about 8% smaller than the time-average or homogeneous models. To investigate the consequences of this difference in static void reactivity in time dependent calculations, simulations of the power pulse following a hypothetical large-loss-of-coolant accident were performed with a homogeneous model and compared with the power pulse from the time-average-equivalent model. The results show that there is a much smaller difference in peak dynamic reactivity than in static void reactivity between the two models. This is attributed to the fact that voiding is not complete, but also to the retardation effect of the delayed-neutron precursors on the dynamic flux shape. The difference in peak reactivity between the models is 0.06 milli-k. The power pulses are essentially the same in the two models, because the delayed-neutron fraction in the time-average-equivalent model is lower than in the homogeneous model, which compensates for the lower void reactivity in the time-average-equivalent model. (author). 1 ref., 5 tabs., 9 figs

  4. A DRAGON-MCNP comparison of void reactivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, G [Ecole Polytechnique, Montreal, PQ (Canada). Inst. de Genie Nucleaire; Milgram, M S [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs.

  5. A DRAGON-MCNP comparison of void reactivity calculations

    International Nuclear Information System (INIS)

    Marleau, G.

    1995-01-01

    The determination of the reactivity coefficients associated with coolant voiding in a CANDU reactor is a subject which has attracted a large amount of interest in the last few years both from the theoretical and experimental point of view. One expects that deterministic codes such as DRAGON and WIMS-AECL or the MCNP4 Monte Carlo code should be able to adequately simulate the cell behaviour upon coolant voiding. However, the absence of an experimental database at equilibrium and discharge burnups has not permitted the full validation of any of these lattice codes, although a partial validation through comparison of two different computer codes has been considered. Here we present a comparison between DRAGON and MCNP4 of the void reactivity evaluation for fresh fuel. (author). 16 refs., 5 tabs

  6. Temperature and void reactivity coefficient calculations for the high flux isotope reactor safety analysis report

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Williams, L.R.

    1994-07-01

    This report provides documentation of a series of calculations performed in 1991 in order to provide input for the High Flux Isotope Reactor Safety Analysis Report. In particular, temperature and void reactivity coefficients were calculated for beginning-of-life, end-of-life, and xenon equilibrium (29 h) conditions. Much of the data used to prepare the computer models for these calculations was derived from the original HFIR nuclear design study

  7. Positive void reactivity

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1992-09-01

    This report is a review of some of the important aspects of the analysis of large loss-of-coolant accidents (LOCAs). One important aspect is the calculation of positive void reactivity. To study this subject the lattice physics codes used for void worth calculations and the coupled neutronic and thermal-hydraulic codes used for the transient analysis are reviewed. Also reviewed are the measurements used to help validate the codes. The application of these codes to large LOCAs is studied with attention focused on the uncertainty factor for the void worth used to bias the results. Another aspect of the subject dealt with in the report is the acceptance criteria that are applied. This includes the criterion for peak fuel enthalpy and the question of whether prompt criticality should also be a criterion. To study the former, fuel behavior measurements and calculations are reviewed. (Author) (49 refs., 2 figs., tab.)

  8. Elastic wave scattering from multiple voids (porosity)

    International Nuclear Information System (INIS)

    Thompson, D.O.; Rose, J.H.; Thompson, R.B.; Wormley, S.J.

    1983-01-01

    This paper describes the development of an ultrasonic backscatter measurement technique which provides a convenient way to determine certain characteristics of a distribution of voids (porosity) in materials. A typical ultrasonic sample prepared by placing the ''frit'' in a crucible in an RF induction heater is shown. The results of the measurements were Fourier transformed into an amplitude-frequency description, and were then deconvolved with the transducer response function. Several properties needed to characterize a void distribution are obtained from the experimental results, including average void size, the spatial extent of the voids region, the average void separation, and the volume fraction of material contained in the void distribution. A detailed comparison of values obtained from the ultrasonic measurements with visually determined results is also given

  9. An assessment of methods of calculating sodium-voiding reactivity in plutonium-fuelled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Simmons, W.N.; Stevenson, J.M.

    1980-01-01

    After a survey of the requirements an assessment of the accuracy of calculations of the sodium-void effect using UK methods and data is made on the basis of the following work: (a) The analysis of small and large sodium voids in the MOZART and Zebra 13 small (300 MW(e)) fast reactor mock-ups and the BIZET large fast reactor mock-ups, all of conventional design. The analysis was carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code, whole reactor diffusion theory calculations of the neutron flux and perturbation theory methods. Exact perturbation theory was used in many cases, otherwise first-order perturbation theory calculations were adjusted to give results equivalent to exact perturbation theory. (b) Theoretical studies of some effects, including the following: (i) The effects of extrapolating to fuel operating temperature; (ii) Fuel-cycle and burnup effects, including the gradual replacement through a fuel cycle of control-rod absorption by fission product absorption, the loss of fissile material and the change in fuel nuclide relative composition; (iii) The heterogeneity effects of large fuelled subassemblies in pin geometry. (c) Theoretical studies of approximations in the calculational methods, including the following: (i) The importance in the whole reactor calculation of the energy group structure and the spatial mesh, including comparisons of calculations in two (RZ) and three-dimensional geometry; (ii) The importance of reactor material boundaries in the calculation of resonance shielding effects; (iii) The use of neutron fluxes calculated using neutron diffusion theory rather than transport theory. (author)

  10. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jungwoon; Kim, Young-ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength.

  11. Estimation of the Void Fraction in the moderator cell of the Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jungwoon; Kim, Young-ki

    2015-01-01

    To estimate the average void fraction in the liquid hydrogen, the Kazimi and Chen correlation is used with its modified method suggested by R.E. Williams in NBSR. Since the multiplying number can be changed along the operation condition and working fluid, the different figure is applied to estimate the average void fraction in the different moderator cell shape. This approach is checked with the void fraction measurement results from the HANARO-CNS mock-up test. Owing to national research demands on cold neutron beam utilization, the Cold Neutron Research Facility had been and operated for neuron scientists all over the world. In HANARO, the CNS facility has been operated since 2009. The actual void fraction, which is the one of dominant factors affecting the cold neutron flux, is difficult to know without the real measurement performed at the cryogenic temperature using the same moderator medium. Accordingly, the two-phase mock-up test in the CNS-IPA (In-pool assembly) had been performed using the liquid hydrogen in terms of the fluidity check, void fraction measurement, operation procedure set-up, and so on for the development of the HANARO-CNS. This paper presents the estimated void fraction in the different operating conditions and geometrical shape in the comparison with the measurement data of the void fraction in the full-scale mockup test based on the Kazimi and Chen correlation. This approach is applied to estimate the average void fraction in the newly designed moderator cell using the liquid hydrogen as a working fluid in the two-phase thermosiphon. From this calculation result, the estimated average void fraction will be used to design the optimized cold neutron source to produce the maximum cold neutron flux within the desired wavelength

  12. Measurement of void fraction and bubble size distribution in two-phase flow system

    International Nuclear Information System (INIS)

    Huahun, G.

    1987-01-01

    The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before

  13. Electron microscopy observations of helium bubble-void transition effects in nimonic PE16 alloys

    International Nuclear Information System (INIS)

    Mazey, D.J.; Nelson, R.S.

    1980-01-01

    High-nickel alloys based on the Nimonic PE16 composition have been injected at temperatures of 525 0 C and 625 0 C with 1000 ppm helium to produce a high gas-bubble concentration and subsequently irradiated with 36 MeV nickel ions. Extensive heterogeneous nucleation of bubbles is observed on faulted interstitial loops and dislocations. Evidence is found in standard PE16 alloy for bimodal bubble plus void distributions which persist during nickel-ion irradiation to 30 and 60 dpa at 625 0 C and result in a low void volume swelling of approximately 1%. The observations can be correlated with the critical bubble/void transition radius which is calculated from theory to be approximately 4.4 nm. Pre-injection of helium into a 'matrix' PE16 (low Si, Ti and Al) alloy produced an initial bubble population whose average size was above the calculated transition radius such that all bubbles eventually grew as voids during subsequent nickel-ion irradiation up to 60 dpa at 625 0 C where the void volume swelling reached approximately 12%. The observations are discussed briefly and related to theoretical predictions of the bubble/void transition radius. (author)

  14. Software quality assurance plan for void fraction instrument

    International Nuclear Information System (INIS)

    Gimera, M.

    1994-01-01

    Waste Tank SY-101 has been the focus of extensive characterization work over the past few years. The waste continually generates gases, most notably hydrogen, which are periodically released from the waste. Gas can be trapped in tank waste in three forms: as void gas (bubbles), dissolved gas, or absorbed gas. Void fraction is the volume percentage of a given sample that is comprised of void gas. The void fraction instrument (VFI) acquires the data necessary to calculate void fraction. This document covers the product, Void Fraction Data Acquisition Software. The void fraction software being developed will have the ability to control the void fraction instrument hardware and acquire data necessary to calculate the void fraction in samples. This document provides the software quality assurance plan, verification and validation plan, and configuration management plan for developing the software for the instrumentation that will be used to obtain void fraction data from Tank SY-101

  15. 3D DEM simulation and analysis of void fraction distribution in a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2014-01-01

    Highlights: • We show a detailed analysis of void fraction (VF) in HTR-10 of China using DEM. • Radial distribution (RD) of VF is uniform in the core and oscillated near the wall. • Axial distribution (AD) is linearly varied along height due to effect of gravity. • Steady RD of VF in the conical base is Gaussian-like, larger than packing bed. • Joint linear and normal distribution of VF is analyzed and explained. - Abstract: The current work analyzes the radial and axial distributions of void fraction of a pebble bed high temperature reactor. A three-dimensional pebble bed corresponding to our test facility of pebble bed type gas-cooled high temperature reactor (HTR-10) in Tsinghua University is simulated via discrete element method, and the radial and axial void fraction profiles are calculated. It validates the oscillating characteristics of radial void fraction near the wall. Detailed calculations show the differences of void fraction profiles between the stationary packing bed and the dynamically discharging bed. Based on the vertically and circumferentially averaged radial distribution and horizontally averaged axial distribution of void fraction, a fully three-dimensional analytical distribution of void fraction throughout the bed is established. The results show the combined effects of gravity and void variation in the pebble bed caused by the pebble discharging. It indicates the linearly increased packing effect caused by gravity in the vertical (axial) direction and the normal distribution of void in the horizontal (radial) direction by pebble drainage. These two effects coexist in the conical base of the bed whereas only the former effect exists in the cylindrical volume of the bed

  16. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    International Nuclear Information System (INIS)

    Lavaux, Guilhem; Wandelt, Benjamin D.

    2012-01-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczyński (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.

  17. Sensitivity analysis of an impedance void meter to the void distribution in annular flow: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S. (CEA Centre d' Etudes Nucleaires de Grenoble, 38 (France). Service d' Etudes Thermohydrauliques)

    1991-04-01

    Impedance void meters are frequently used to measure the are-averaged void fraction in pipes. This is primarily for two reasons: firstly, this method is non-instrusive since the measurement can be made by electrodes flush mounted in the walls, and secondly, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or a quick closing valve system. In general, little attention is paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without a complete calculation of the potential. A solution of this problem by using the separation of variables technique is also presented. The main difficulty with this technique is the mixed nature of the boundary conditions: the boundary condition is both of Neumann and of Drichlet type on the same coordinate curve. This formulation leads to a non-separable problem, which is solved by truncating an infinite algebraic set of linear equations. The results, although strictly valid in annular flow, may give the correct trends when applied to bubbly flow. Finally, the theory provides an error estimate and a design criterion to improve the probe reliability. (orig.).

  18. Sensitivity analysis of an impedance void meter to the void distribution in annular flow: A theoretical study

    International Nuclear Information System (INIS)

    Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S.

    1991-01-01

    Impedance void meters are frequently used to measure the are-averaged void fraction in pipes. This is primarily for two reasons: firstly, this method is non-instrusive since the measurement can be made by electrodes flush mounted in the walls, and secondly, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or a quick closing valve system. In general, little attention is paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without a complete calculation of the potential. A solution of this problem by using the separation of variables technique is also presented. The main difficulty with this technique is the mixed nature of the boundary conditions: the boundary condition is both of Neumann and of Drichlet type on the same coordinate curve. This formulation leads to a non-separable problem, which is solved by truncating an infinite algebraic set of linear equations. The results, although strictly valid in annular flow, may give the correct trends when applied to bubbly flow. Finally, the theory provides an error estimate and a design criterion to improve the probe reliability. (orig.)

  19. Void formation and its impact on Cu−Sn intermetallic compound formation

    International Nuclear Information System (INIS)

    Ross, Glenn; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-01-01

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu_3Sn and Cu_6Sn_5 intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu_3Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu_3Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu_3Sn thickness and an accelerated growth rate of Cu_6Sn_5. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu_3Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu_3Sn to be consumed by Cu_6Sn_5.

  20. Improved averaging for non-null interferometry

    Science.gov (United States)

    Fleig, Jon F.; Murphy, Paul E.

    2013-09-01

    Arithmetic averaging of interferometric phase measurements is a well-established method for reducing the effects of time varying disturbances, such as air turbulence and vibration. Calculating a map of the standard deviation for each pixel in the average map can provide a useful estimate of its variability. However, phase maps of complex and/or high density fringe fields frequently contain defects that severely impair the effectiveness of simple phase averaging and bias the variability estimate. These defects include large or small-area phase unwrapping artifacts, large alignment components, and voids that change in number, location, or size. Inclusion of a single phase map with a large area defect into the average is usually sufficient to spoil the entire result. Small-area phase unwrapping and void defects may not render the average map metrologically useless, but they pessimistically bias the variance estimate for the overwhelming majority of the data. We present an algorithm that obtains phase average and variance estimates that are robust against both large and small-area phase defects. It identifies and rejects phase maps containing large area voids or unwrapping artifacts. It also identifies and prunes the unreliable areas of otherwise useful phase maps, and removes the effect of alignment drift from the variance estimate. The algorithm has several run-time adjustable parameters to adjust the rejection criteria for bad data. However, a single nominal setting has been effective over a wide range of conditions. This enhanced averaging algorithm can be efficiently integrated with the phase map acquisition process to minimize the number of phase samples required to approach the practical noise floor of the metrology environment.

  1. Cosmology with void-galaxy correlations.

    Science.gov (United States)

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  2. CTF Void Drift Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gosdin, Chris [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gergar, Marcus [Pennsylvania State Univ., University Park, PA (United States)

    2015-10-26

    This milestone report is a summary of work performed in support of expansion of the validation and verification (V&V) matrix for the thermal-hydraulic subchannel code, CTF. The focus of this study is on validating the void drift modeling capabilities of CTF and verifying the supporting models that impact the void drift phenomenon. CTF uses a simple turbulent-diffusion approximation to model lateral cross-flow due to turbulent mixing and void drift. The void drift component of the model is based on the Lahey and Moody model. The models are a function of two-phase mass, momentum, and energy distribution in the system; therefore, it is necessary to correctly model the ow distribution in rod bundle geometry as a first step to correctly calculating the void distribution due to void drift.

  3. ALBEMO, a program for the calculation of the radiation transport in void volumes with reflecting walls

    International Nuclear Information System (INIS)

    Mueller, K.; Vossebrecker, H.

    The Monte Carlo Program ALBEMO calculates the distribution of neutrons and gamma rays in void volumes which are bounded by reflecting walls with x, y, z coordinates. The program is based on the albedo method. The effect of significant simplifying assumptions is investigated. Comparisons with experiments show satisfying agreement

  4. The sink strengths of voids and the expected swelling for both random and ordered void distributions

    International Nuclear Information System (INIS)

    Quigley, T.M.; Murphy, S.M.; Bullough, R.; Wood, M.H.

    1981-10-01

    The sink strength of a void has been obtained when the void is a member of a random or ordered distribution of voids. The former sink strength derivation has employed the embedding model and the latter the cellular model. In each case the spatially varying size-effect interaction between the intrinsic point defects and the voids has been included together with the presence of other sink types in addition to the voids. The results are compared with previously published sink strengths that have made use of an approximate representation for the size-effect interactions, and indicate the importance of using the exact form of the interaction. In particular the bias for interstitials compared with vacancies of small voids is now much reduced and contamination of the surfaces of such voids no longer appears essential to facilitate the nucleation and growth of the voids. These new sink strengths have been used, in conjunction with recently published dislocation sink strengths, to calculate the expected swelling of materials containing network dislocations and voids. Results are presented for both the random and the void lattice situations. (author)

  5. Void formation and its impact on Cu−Sn intermetallic compound formation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Glenn, E-mail: Glenn.Ross@aalto.fi; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-08-25

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu{sub 3}Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu{sub 3}Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu{sub 3}Sn thickness and an accelerated growth rate of Cu{sub 6}Sn{sub 5}. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu{sub 3}Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu{sub 3}Sn to be consumed by Cu{sub 6}Sn{sub 5}.

  6. Development of the impedance void meter

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs.

  7. Calculations of void swelling in Type 316 stainless steel after a temperature change using the VS8 code

    International Nuclear Information System (INIS)

    Windsor, M.E.; Matthews, J.R.

    1985-06-01

    The report compares measurements made by Norris and Buswell of void swelling in irradiated Type 316 steel after a temperature change from 475 to 575 C, and vice versa, with calculated swelling using the VS8 FACSIMILE code. (author)

  8. A FACSIMILE code for calculating void swelling and creep, with vacancy loops present: version VS4

    International Nuclear Information System (INIS)

    Windsor, M.E.; Bullough, R.; Wood, M.H.

    1981-10-01

    This FACSIMILE code calculates void swelling and creep of irradiated materials, taking into account the effects of cavities, interstitial loops, vacancy loops, dislocation network and either grain boundaries or foil surfaces. The creep calculations are based on SIPA theory (stress induced preferred absorption), with no preferred nucleation. Either interactive or non-interactive options are available for the sink strength equations, but rate limitation is not incorporated. FACSIMILE is a computer program for solving simultaneous differential equations, and this VS4 code is one of a series of codes for calculating void swelling using increasingly complex theories. Other reports describing the VS1 and VS2 codes explain their use under control of the TSO system of the Harwell IBM 3033 computer, and explain the basic organization of the codes as required for use by FACSIMILE. The creep theory assumes that the material is under a constant uniaxial tensile stress during the irradiation. Three directions are considered for network parameters relative to the direction of the stress, and two directions for interstitial and vacancy loops. To give a full picture of these various contributions to the total creep, a large set of output parameter values are printed for each demanded dose value via a FORTRAN subroutine. (author)

  9. Void Fraction Measurement in Subcooled-Boiling Flow Using High-Frame-Rate Neutron Radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime; Hibiki, Takashi; Mishima, Kaichiro

    2001-01-01

    A high-frame-rate neutron radiography (NR) technique was applied to measure the void fraction distribution in forced-convective subcooled-boiling flow. The focus was experimental technique and error estimation of the high-frame-rate NR. The results of void fraction measurement in the boiling flow were described. Measurement errors on instantaneous and time-averaged void fractions were evaluated experimentally and analytically. Measurement errors were within 18 and 2% for instantaneous void fraction (measurement time is 0.89 ms), and time-averaged void fraction, respectively. The void fraction distribution of subcooled boiling was measured using atmospheric-pressure water in rectangular channels with channel width 30 mm, heated length 100 mm, channel gap 3 and 5 mm, inlet water subcooling from 10 to 30 K, and mass velocity ranging from 240 to 2000 kg/(m 2 .s). One side of the channel was heated homogeneously. Instantaneous void fraction and time-averaged void fraction distribution were measured parametrically. The effects of flow parameters on void fraction were investigated

  10. Ensemble averaged two-phase flow numerical simulation in vertical ducts for the void-studying behavior in BWRs

    International Nuclear Information System (INIS)

    Mohsen Sharifpur; Mahmoud Salehi; Ali Nouri Brojerdi; Ali Arefmanesh

    2003-01-01

    Investigation upon generation of vapor in the two-phase flow and predication of its behaviour is an important problem in nuclear industries. Here, the use of the ensemble averaging is to drive the governing equations for each phase in the bubbly two phase flow (two fluid model) and to simulate the water channel inside the four fuel rods along the vertical line. The governing equations will be simplified by having the experience on BWRs and data, which are obtained to find the distribution of void fraction, velocity and other parameters for each phase along the tube. Finally, we compare the results with the simulated results obtained from RELAP 5 Mode 2. The advantage of this work is to offer a new technique to solve the ensemble averaged two-phase flow by imposing the energy balance equation rather than to use the ordinary energy equations. (author)

  11. Dependence of calculated void reactivity on film boiling representation in a CANDU lattice

    Energy Technology Data Exchange (ETDEWEB)

    Whitlock, J [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics

    1994-12-31

    The distribution dependence of void reactivity in a CANDU (CANada Deuterium Uranium) lattice is studied, specifically in the regime of film boiling. A heterogeneous model of this phenomenon predicts a 4% increase in void reactivity over a homogeneous model for fresh fuel, and 11% at discharge. An explanation for this difference is offered, with regard to differing changes in neutron mean free path upon voiding. (author). 9 refs., 4 tabs., 6 figs.

  12. Relation between the conditions of helium ion implantation and helium void equilibrium parameters

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Rybalko, V.F.; Ruzhitskij, V.V.; Tolstolutskaya, G.D.

    1981-01-01

    The conditions of helium thermodynamic equilibrium in a system of voids produced by helium ion bombardment of a metal sample are studied. As an initial equation for description of the equilibrium the Clapeyron equation was used. The equation is obtained relating basic parameters of helium voids (average diameter and density) to irradiation parameters (dose, ion energy (straggling)) and properties of the metal (surface tension coefficient, yield strength). Comparison of the calculations with experimental data on helium in nickel found in literature shows that the equation yields satisfactory resutls for the dose range 1.10 16 -1x10 17 cm -2 and temperatures T [ru

  13. SACALCCYL, Calculates the average solid angle subtended by a volume; SACALC2B, Calculates the average solid angle for source-detector geometries

    International Nuclear Information System (INIS)

    Whitcher, Ralph

    2007-01-01

    1 - Description of program or function: SACALC2B calculates the average solid angle subtended by a rectangular or circular detector window to a coaxial or non-coaxial rectangular, circular or point source, including where the source and detector planes are not parallel. SACALC C YL calculates the average solid angle subtended by a cylinder to a rectangular or circular source, plane or thick, at any location and orientation. This is needed, for example, in calculating the intrinsic gamma efficiency of a detector such as a GM tube. The program also calculates the number of hits on the cylinder side and on each end, and the average path length through the detector volume (assuming no scattering or absorption). Point sources can be modelled by using a circular source of zero radius. NEA-1688/03: Documentation has been updated (January 2006). 2 - Methods: The program uses a Monte Carlo method to calculate average solid angle for source-detector geometries that are difficult to analyse by analytical methods. The values of solid angle are calculated to accuracies of typically better than 0.1%. The calculated values from the Monte Carlo method agree closely with those produced by polygon approximation and numerical integration by Gardner and Verghese, and others. 3 - Restrictions on the complexity of the problem: The program models a circular or rectangular detector in planes that are not necessarily coaxial, nor parallel. Point sources can be modelled by using a circular source of zero radius. The sources are assumed to be uniformly distributed. NEA-1688/04: In SACALC C YL, to avoid rounding errors, differences less than 1 E-12 are assumed to be zero

  14. Comparative study of void fraction models

    International Nuclear Information System (INIS)

    Borges, R.C.; Freitas, R.L.

    1985-01-01

    Some models for the calculation of void fraction in water in sub-cooled boiling and saturated vertical upward flow with forced convection have been selected and compared with experimental results in the pressure range of 1 to 150 bar. In order to know the void fraction axial distribution it is necessary to determine the net generation of vapour and the fluid temperature distribution in the slightly sub-cooled boiling region. It was verified that the net generation of vapour was well represented by the Saha-Zuber model. The selected models for the void fraction calculation present adequate results but with a tendency to super-estimate the experimental results, in particular the homogeneous models. The drift flux model is recommended, followed by the Armand and Smith models. (F.E.) [pt

  15. Analysis of void reactivity measurements in full MOX BWR physics experiments

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Yamamoto, Toru; Umano, Takuya

    2008-01-01

    In the full MOX BWR physics experiments, FUBILA, four 9x9 test assemblies simulating BWR full MOX assemblies were located in the center of the core. Changing the in-channel moderator condition of the four assemblies from 0% void to 40% and 70% void mock-up, void reactivity was measured using Amplified Source Method (ASM) technique in the subcritical cores, in which three fission chambers were located. ASM correction factors necessary to express the consistency of the detector efficiency between measured core configurations were calculated using collision probability cell calculation and 3D-transport core calculation with the nuclear data library, JENDL-3.3. Measured reactivity worth with ASM correction factor was compared with the calculated results obtained through a diffusion, transport and continuous energy Monte Carlo calculation respectively. It was confirmed that the measured void reactivity worth was reproduced well by calculations. (author)

  16. Measurement of local void fraction in a ribbed annulus

    International Nuclear Information System (INIS)

    Steimke, J.L.

    1992-01-01

    The computer code FLOWTRAN-TF is used to analyze hypothetical hydraulic accidents for the nuclear reactor at the Savannah River Site. During a hypothetical Large Break Loss-of-Coolant Accident (LOCA), reactor assemblies would contain a two-phase mixture of air and water which flows downward. Reactor assemblies consist of nested, ribbed annuli. Longitudinal ribs divide each annulus into four subchannels. For accident conditions, air and water can flow past ribs from one subchannel to another. For FLOWTRAN-TF to compute the size of those flows, it is necessary to know the local void fraction in the region of the rib. Measurements have previously been made of length-average void fraction in a ribbed annulus. However, no direct measurements were available of local void fraction. Due to the lack of data, a test was designed to measure local void fraction at the rib. One question addressed by the test was whether void fraction at the rib is solely a function of azimuthal-average void fraction or a function of additional variables such as pressure boundary conditions. This report provides a discussion of this test

  17. Time-dependence and averaging techniques in atomic photoionization calculations

    International Nuclear Information System (INIS)

    Scheibner, K.F.

    1984-01-01

    Two distinct problems in the development and application of averaging techniques to photoionization calculations are considered. The first part of the thesis is concerned with the specific problem of near-resonant three-photon ionization in hydrogen, a process for which no cross section exists. Effects of the inclusion of the laser pulse characteristics (both temporal and spatial) on the dynamics of the ionization probability and of the metastable state probability are examined. It is found, for example, that the ionization probability can decrease with increasing field intensity. The temporal profile of the laser pulse is found to affect the dynamics very little, whereas the spatial character of the pulse can affect the results drastically. In the second part of the thesis techniques are developed for calculating averaged cross sections directly without first calculating a detailed cross section. Techniques are developed whereby the detailed cross section never has to be calculated as an intermediate step, but rather, the averaged cross section is calculated directly. A variation of the moment technique and a new method based on the stabilization technique are applied successfully to atomic hydrogen and helium

  18. Influence of the void fraction in the linear reactivity model; Influencia de la fraccion de vacios en el modelo de reactividad lineal

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, J.A.; Ramirez, J.R.; Alonso, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jacm@nuclear.inin.mx

    2003-07-01

    The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)

  19. Convex-based void filling method for CAD-based Monte Carlo geometry modeling

    International Nuclear Information System (INIS)

    Yu, Shengpeng; Cheng, Mengyun; Song, Jing; Long, Pengcheng; Hu, Liqin

    2015-01-01

    Highlights: • We present a new void filling method named CVF for CAD based MC geometry modeling. • We describe convex based void description based and quality-based space subdivision. • The results showed improvements provided by CVF for both modeling and MC calculation efficiency. - Abstract: CAD based automatic geometry modeling tools have been widely applied to generate Monte Carlo (MC) calculation geometry for complex systems according to CAD models. Automatic void filling is one of the main functions in the CAD based MC geometry modeling tools, because the void space between parts in CAD models is traditionally not modeled while MC codes such as MCNP need all the problem space to be described. A dedicated void filling method, named Convex-based Void Filling (CVF), is proposed in this study for efficient void filling and concise void descriptions. The method subdivides all the problem space into disjointed regions using Quality based Subdivision (QS) and describes the void space in each region with complementary descriptions of the convex volumes intersecting with that region. It has been implemented in SuperMC/MCAM, the Multiple-Physics Coupling Analysis Modeling Program, and tested on International Thermonuclear Experimental Reactor (ITER) Alite model. The results showed that the new method reduced both automatic modeling time and MC calculation time

  20. Studies of void formation in pure metals

    International Nuclear Information System (INIS)

    Lanore, J.M.; Glowinski, L.; Risbet, A.; Regnier, P.; Flament, J.L.; Levy, V.; Adda, Y.

    1975-01-01

    Recent experiments on the effect of gases on the final configuration of vacancy clustering (void or loop), and on the local effects at dislocations are described. The contribution of this data to a general knowledge of void formation will be discussed, and Monte Carlo calculations of swelling induced by irradiation with different particles presented [fr

  1. Studies of void formation in pure metals

    International Nuclear Information System (INIS)

    Lanore, J.M.; Glowinski, L.; Risbet, A.; Regnier, P.; Flament, J.L.

    1975-01-01

    Recent experiments on the effect of gases on the final configuration of vacancy clustering (void or loop), and on the local effects at dislocations are described. The contribution of this data to our general knowledge of void formation will be discussed, and Monte Carlo calculations of swelling induced by irradiation with different particles presented

  2. Calculation of Void in the Fort Saint Vrain Material

    Energy Technology Data Exchange (ETDEWEB)

    Potter, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taylor, Craig Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coons, James Elmer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-11

    The percent void of the Fort Saint Vrain (FSV) material is estimated to be 21.1% based on the volume of the gap at the top of the drums, the volume of the coolant channels in the FSV fuel element, and the volume of the fuel handling channel in the FSV fuel element.

  3. Modification of SRIM-calculated dose and injected ion profiles due to sputtering, injected ion buildup and void swelling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing, E-mail: jing.wang@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Texas A& M University, College Station, TX 77843 (United States); Toloczko, Mychailo B. [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Bailey, Nathan [University of California, Berkeley, CA 94720 (United States); Garner, Frank A.; Gigax, Jonathan; Shao, Lin [Texas A& M University, College Station, TX 77843 (United States)

    2016-11-15

    In radiation effects on materials utilizing self-ion irradiations, it is necessary to calculate the local displacement damage level and ion injection profile because of the short distance that self-ions travel in a material and because of the strong variation of displacement rate with depth in a specimen. The most frequently used tool for this is the software package called Stopping and Range of Ions in Matter (SRIM). A SRIM-calculated depth-dependent dose level is usually determined under the implicit assumption that the target does not undergo any significant changes in volume during the process, in particular SRIM ignores the effect of sputtering, injected ions, and void swelling on the redistribution of the dose and injected ion profiles. This approach become increasingly invalid as the ion fluence reaches ever higher levels, especially for low energy ion irradiations. The original surface is not maintained due to sputter-induced erosion, while within the irradiated region of the specimen, injected ions are adding material, and if void swelling is occurring, it is creating empty space. An iterative mathematical treatment of SRIM outputs to produce corrected dose and injected ion profiles based on these phenomenon and without regard to diffusion is presented along with examples of differences between SRIM-calculated values and corrected values over a range of typical ion energies. The intent is to provide the reader with a convenient tool for more accurately calculating dose and injected ion profiles for heavy-ion irradiations.

  4. Parallel Void Thread in Long-Reach Ethernet Passive Optical Networks

    KAUST Repository

    Elrasad, Amr; Shihada, Basem

    2015-01-01

    This work investigates void filling (idle periods) in long-reach Ethernet passive optical networks. We focus on reducing grant delays and hence reducing the average packet delay. We introduce a novel approach called parallel void thread (PVT), which

  5. Morphological Segregation in the Surroundings of Cosmic Voids

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardelli, Elena; Tamone, Amelie [Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), 1290 Sauverny (Switzerland); Cava, Antonio [Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Versoix (Switzerland); Varela, Jesus, E-mail: elena.ricciardelli@epfl.ch [Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Plaza San Juan 1, E-44001 Teruel (Spain)

    2017-09-01

    We explore the morphology of galaxies living in the proximity of cosmic voids, using a sample of voids identified in the Sloan Digital Sky Survey Data Release 7. At all stellar masses, void galaxies exhibit morphologies of a later type than galaxies in a control sample, which represent galaxies in an average density environment. We interpret this trend as a pure environmental effect, independent of the mass bias, due to a slower galaxy build-up in the rarefied regions of voids. We confirm previous findings about a clear segregation in galaxy morphology, with galaxies of a later type being found at smaller void-centric distances with respect to the early-type galaxies. We also show, for the first time, that the radius of the void has an impact on the evolutionary history of the galaxies that live within it or in its surroundings. In fact, an enhanced fraction of late-type galaxies is found in the proximity of voids larger than the median void radius. Likewise, an excess of early-type galaxies is observed within or around voids of a smaller size. A significant difference in galaxy properties in voids of different sizes is observed up to 2 R {sub void}, which we define as the region of influence of voids. The significance of this difference is greater than 3 σ for all the volume-complete samples considered here. The fraction of star-forming galaxies shows the same behavior as the late-type galaxies, but no significant difference in stellar mass is observed in the proximity of voids of different sizes.

  6. Analysis of sodium-void-worths in ZPPR-3 modified phase 3 core

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, T.; Arai, K.; Otake, I. [Osaka Univ. (JP)

    1980-09-15

    The sodium-void-worths in the ZPPR-3 modified phase 3 core, in which singularities such as control-rods and sodium-followers were voided, have been analyzed using a unified diffusion coefficient. The unified diffusion coefficient is obtained by applying the Benoist formula to a super-cell consisting of different drawers, and is applicable not only to fuel drawers but also to control-rod drawers or sodium-followers. Using the coefficient the interference effect of neutron streaming between different drawers can be taken into account. The applicability of the unified diffusion coefficient to sodium-void-worth calculations has been checked in a slab model and a RZ model. The sodium-void-worths in the ZPPR-3 modified phase 3 core have been analyzed by carrying out 16-group three-dimensional diffusion calculations using the unified diffusion coefficient and the results have been compared with experimental data. The comparison indicates that the unified diffusion coefficient is useful in calculating the sodium-void-worth in a region including sodium-voided singularities.

  7. Implementation of drift-flux model in artist and assessment to thetis void distribution

    International Nuclear Information System (INIS)

    Kim, H. C.; Yun, B. J.; Moon, S. K.; Jeong, J. J.; Lee, W. J.

    1998-01-01

    A system transient analysis code, ARTIST, based on the drift-flux model is being developed to enhance capability of predicting two-phase flow void distribution at low pressure and low flow conditions. The governing equations of the ARTIST code consist of three continuity equations (mixture, liquid, and noncondensibles), two energy equations (gas and mixture) and one mixture momentum euqation constituted with the drift-flux model. Area averaged one-dimensional conservation equations are established using the flow quality expressed in terms of the relative velocity. The relative velocity is obtained from the drift flux relationship. The Chexal-Lellouche void fraction correlation is used to provide the drift velocity and the concentration parameter. The implicit one-step method and the block elimination technique are employed as numerical solution scheme for the node-flowpath thermal-hydraulic network. In order to validate the ARIST code, the steady state void distributions of the THETIS boil-off tests are simulated. The axial void distributions calculated by the Chexal-Lellouche fraction correlation at low pressure and low flow are better than those of both the two-fluid model of RELAP5/MOD3 code and the homogeneous model. The drift-flux model of the ARTIST code is an efficient tool in predicting the void distribution of two-phase flow at low pressure and low flow condtions

  8. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... and average carbon-related exhaust emissions. 600.510-12 Section 600.510-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF... Transportation. (iv) [Reserved] (2) Average carbon-related exhaust emissions will be calculated to the nearest...

  9. The evolution of voids in the adhesion approximation

    Science.gov (United States)

    Sahni, Varun; Sathyaprakah, B. S.; Shandarin, Sergei F.

    1994-08-01

    We apply the adhesion approximation to study the formation and evolution of voids in the universe. Our simulations-carried out using 1283 particles in a cubical box with side 128 Mpc-indicate that the void spectrum evolves with time and that the mean void size in the standard Cosmic Background Explorer Satellite (COBE)-normalized cold dark matter (CDM) model with H50 = 1 scals approximately as bar D(z) = bar Dzero/(1+2)1/2, where bar Dzero approximately = 10.5 Mpc. Interestingly, we find a strong correlation between the sizes of voids and the value of the primordial gravitational potential at void centers. This observation could in principle, pave the way toward reconstructing the form of the primordial potential from a knowledge of the observed void spectrum. Studying the void spectrum at different cosmological epochs, for spectra with a built in k-space cutoff we find that the number of voids in a representative volume evolves with time. The mean number of voids first increases until a maximum value is reached (indicating that the formation of cellular structure is complete), and then begins to decrease as clumps and filaments erge leading to hierarchical clustering and the subsequent elimination of small voids. The cosmological epoch characterizing the completion of cellular structure occurs when the length scale going nonlinear approaches the mean distance between peaks of the gravitaional potential. A central result of this paper is that voids can be populated by substructure such as mini-sheets and filaments, which run through voids. The number of such mini-pancakes that pass through a given void can be measured by the genus characteristic of an individual void which is an indicator of the topology of a given void in intial (Lagrangian) space. Large voids have on an average a larger measure than smaller voids indicating more substructure within larger voids relative to smaller ones. We find that the topology of individual voids is strongly epoch dependent

  10. Void fraction instrument software, Version 1,2, Acceptance test report

    International Nuclear Information System (INIS)

    Gimera, M.

    1995-01-01

    This provides the report for the void fraction instrument acceptance test software Version 1.2. The void fraction will collect data that will be used to calculate the quantity of gas trapped in waste tanks

  11. Monte Carlo validation of self shielding and void effect calculations

    International Nuclear Information System (INIS)

    Tellier, H.; Coste, M.; Raepsaet, C.; Soldevila, M.; Van der Gucht, C.

    1995-01-01

    The self shielding validation and the void effect are studied with Monte Carlo method. The satisfactory comparison obtained between the APOLLO 2 results of the self shielding effect and the TRIPOLI and MCNP results allows us to be confident in the multigroup transport code. (K.A.)

  12. Determination of void fraction from source range monitor and mass flow rate data

    International Nuclear Information System (INIS)

    McCormick, R.D.

    1986-09-01

    This is a report on the calculation of the TMI-2 primary coolant system local void fraction from source range neutron flux monitor data and from hot leg mass flowrate meter data during the first 100 minutes of the accident. The methods of calculation of void fraction from the two data sources is explained and the results are compared. It is indicated that the void fraction determined using the mass flowrate data contained an error of unknown magnitude due to the assumption of constant homogeneous volumetric flowrate used in the calculation and required further work. Void fraction determined from the source range monitor data is felt to be usable although an uncertainty analysis has not been performed

  13. Maxwellian-averaged cross sections calculated from JENDL-3.2

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ohsaka, Toshiro; Igashira, Masayuki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan)

    2000-02-01

    Maxwellian-averaged cross sections of neutron capture, fission, (n,p) and (n,{alpha}) reactions are calculated from the Japanese Evaluated Nuclear Data Library, JENDL-3.2, for applications in the astrophysics. The calculation was made in the temperature (kT) range from 1 keV to 1 MeV. Results are listed in tables. The Maxwellian-averaged capture cross sections were compared with recommendations of other authors and recent experimental data. Large discrepancies were found among them especially in the light mass nuclides. Since JENDL-3.2 reproduces relatively well the recent experimental data, we conclude that JENDL-3.2 is superior to the others in such a mass region. (author)

  14. The Metallicity of Void Dwarf Galaxies

    Science.gov (United States)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (Mr > -16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  15. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice

  16. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth the rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice [fr

  17. Average cross sections calculated in various neutron fields

    International Nuclear Information System (INIS)

    Shibata, Keiichi

    2002-01-01

    Average cross sections have been calculated for the reactions contained in the dosimetry files, JENDL/D-99, IRDF-90V2, and RRDF-98 in order to select the best data for the new library IRDF-2002. The neutron spectra used in the calculations are as follows: 1) 252 Cf spontaneous fission spectrum (NBS evaluation), 2) 235 U thermal fission spectrum (NBS evaluation), 3) Intermediate-energy Standard Neutron Field (ISNF), 4) Coupled Fast Reactivity Measurement Facility (CFRMF), 5) Coupled thermal/fast uranium and boron carbide spherical assembly (ΣΣ), 6) Fast neutron source reactor (YAYOI), 7) Experimental fast reactor (JOYO), 8) Japan Material Testing Reactor (JMTR), 9) d-Li neutron spectrum with a 2-MeV deuteron beam. The items 3)-7) represent fast neutron spectra, while JMTR is a light water reactor. The Q-value for the d-Li reaction mentioned above is 15.02 MeV. Therefore, neutrons with energies up to 17 MeV can be produced in the d-Li reaction. The calculated average cross sections were compared with the measurements. Figures 1-9 show the ratios of the calculations to the experimental data which are given. It is found from these figures that the 58 Fe(n, γ) cross section in JENDL/D-99 reproduces the measurements in the thermal and fast reactor spectra better than that in IRDF-90V2. (author)

  18. Sensitivity analysis of an impedance void distribution in annular and bubbly flow: A theoretical study

    International Nuclear Information System (INIS)

    Lemonnier, H.; Nakach, R.; Favreau, C.; Selmer-Olsen, S.

    1989-01-01

    Impedance void meters are frequently used to measure area-averaged void fraction in pipes. This is primarily due to two reasons: first, this method is non-intrusive since the measurement can be done from electrodes flush mounted in the walls, and second, the signal processing equipment is simple. Impedance probes may be calibrated by using a pressure drop measurement or quick closing valves system and low attention is generally paid to void distribution effects. It can be proved that in annular flow, the departure from radial symmetry has a strong influence on the measured mean film thickness. This can be easily demonstrated by solving the Laplace equation for the electrical potential by simple analytical methods. When some spatial symmetry conditions are encountered, it is possible to calculate directly the conductance of the two-phase medium without calculating completely the potential. A solution of this problem by using the separation of variable technique is also presented. There, the main difficulty is due to the mixity of the boundary conditions: the boundary condition is both Neumann and Dirichlet type on the same coordinate curve. This formulation leads to a non-separable problem which is solved by truncating an infinite algebraic set of linear equations. (orig.)

  19. Simulation of dust voids in complex plasmas

    Science.gov (United States)

    Goedheer, W. J.; Land, V.

    2008-12-01

    In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.

  20. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    Science.gov (United States)

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  1. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Matsubayashi, M.

    2004-01-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile

  2. Calculating Free Energies Using Average Force

    Science.gov (United States)

    Darve, Eric; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values. It is shown that in the latter case the formula reduces to the expression previously derived by den Otter and Briels. If simulations are carried out without constraining the coordinates of interest, the formula leads to a new method for calculating the free energy changes along these coordinates. This method is tested in two examples - rotation around the C-C bond of 1,2-dichloroethane immersed in water and transfer of fluoromethane across the water-hexane interface. The calculated free energies are compared with those obtained by two commonly used methods. One of them relies on determining the probability density function of finding the system at different values of the selected coordinate and the other requires calculating the average force at discrete locations along this coordinate in a series of constrained simulations. The free energies calculated by these three methods are in excellent agreement. The relative advantages of each method are discussed.

  3. Two-dimensional void reconstruction by neutron transmission

    International Nuclear Information System (INIS)

    Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.

    1978-01-01

    Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data

  4. Analysis of sodium-void experiments in ZPPR-3 modified phase 3 core

    International Nuclear Information System (INIS)

    Yoshida, T.

    1978-08-01

    In this work, large-zone sodium-void effects are studied in detail in the presence of many singularities, namely, control rods (CRs) and control rod positions (CRPs). The results of measurements and calculations are compared by CIE (calculation/experiment) values, which are 1.07 when the voided core region is free of singularities. When the void region includes CPRs, which are concurrently voided, the CIE value deteriorates and varies from 0.35 to 1.58. The agreement can be improved considerably by correcting the reactivity worth of the sodium contained in the CRPs with the aid of experimental data (CIE = 1.00 +- 0.15). The heterogeneity correction for the fuel elements was performed by the plate-cell vollision probability code KAPPER. (GL) [de

  5. A void fraction model for annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, T.N.; Gupta, C.P.; Varma, H.K.

    1985-01-01

    An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.

  6. Interfacial area, velocity and void fraction in two-phase slug flow

    International Nuclear Information System (INIS)

    Kojasoy, G.; Riznic, J.R.

    1997-01-01

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections

  7. VIDE: The Void IDentification and Examination toolkit

    Science.gov (United States)

    Sutter, P. M.; Lavaux, G.; Hamaus, N.; Pisani, A.; Wandelt, B. D.; Warren, M.; Villaescusa-Navarro, F.; Zivick, P.; Mao, Q.; Thompson, B. B.

    2015-03-01

    We present VIDE, the Void IDentification and Examination toolkit, an open-source Python/C++ code for finding cosmic voids in galaxy redshift surveys and N-body simulations, characterizing their properties, and providing a platform for more detailed analysis. At its core, VIDE uses a substantially enhanced version of ZOBOV (Neyinck 2008) to calculate a Voronoi tessellation for estimating the density field and performing a watershed transform to construct voids. Additionally, VIDE provides significant functionality for both pre- and post-processing: for example, VIDE can work with volume- or magnitude-limited galaxy samples with arbitrary survey geometries, or dark matter particles or halo catalogs in a variety of common formats. It can also randomly subsample inputs and includes a Halo Occupation Distribution model for constructing mock galaxy populations. VIDE uses the watershed levels to place voids in a hierarchical tree, outputs a summary of void properties in plain ASCII, and provides a Python API to perform many analysis tasks, such as loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles. While centered around ZOBOV, the toolkit is designed to be as modular as possible and accommodate other void finders. VIDE has been in development for several years and has already been used to produce a wealth of results, which we summarize in this work to highlight the capabilities of the toolkit. VIDE is publicly available at http://bitbucket.org/cosmicvoids/vide_public and http://www.cosmicvoids.net.

  8. Void shape effects and voids starting from cracked inclusion

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2011-01-01

    Numerical, axisymmetric cell model analyses are used to study the growth of voids in ductile metals, until the mechanism of coalescence with neighbouring voids sets in. A special feature of the present analyses is that extremely small values of the initial void volume fraction are considered, dow...

  9. Void lattices

    International Nuclear Information System (INIS)

    Chadderton, L.T.; Johnson, E.; Wohlenberg, T.

    1976-01-01

    Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)

  10. Local, zero-power void coefficient measurements in the ACPR

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, J B; Thome, F V [Sandia Laboratories (United States)

    1974-07-01

    Changes in reactivity may be stimulated in the ACPR by the local introduction of voids into the reactor coolant. The local void coefficients of reactivity which describe this effect are of interest from a reactor safety point-of-view, and their determination is the subject of this presentation. Bottled nitrogen gas was used to produce the voids. The gas was forced out of a small diameter tube which was positioned vertically in the core lattice with its open end below the fuel. The gas was passed through a pressure regulator, a valve, and a flowmeter to establish a steady flow condition, following which a delayed-critical (zero-power) reactor state was established. Correlation of the average volume of core void created by the nitrogen flow with the reactivity worth of the delayed-critical control-rod bank position produced the values of the zero-power void coefficients of reactivity. The void coefficients were determined at various core positions from {approx}6 mm to 142 mm beyond the central irradiation space and for three different flow rates. For the range of void fractions investigated, these coefficients are negative, with values ranging between -$0.02 and -$0.12. Tabular and graphical results of the measurements are presented, and details of the coefficient determination are explained. (author)

  11. Local, zero-power void coefficient measurements in the ACPR

    International Nuclear Information System (INIS)

    Rivard, J.B.; Thome, F.V.

    1974-01-01

    Changes in reactivity may be stimulated in the ACPR by the local introduction of voids into the reactor coolant. The local void coefficients of reactivity which describe this effect are of interest from a reactor safety point-of-view, and their determination is the subject of this presentation. Bottled nitrogen gas was used to produce the voids. The gas was forced out of a small diameter tube which was positioned vertically in the core lattice with its open end below the fuel. The gas was passed through a pressure regulator, a valve, and a flowmeter to establish a steady flow condition, following which a delayed-critical (zero-power) reactor state was established. Correlation of the average volume of core void created by the nitrogen flow with the reactivity worth of the delayed-critical control-rod bank position produced the values of the zero-power void coefficients of reactivity. The void coefficients were determined at various core positions from ∼6 mm to 142 mm beyond the central irradiation space and for three different flow rates. For the range of void fractions investigated, these coefficients are negative, with values ranging between -$0.02 and -$0.12. Tabular and graphical results of the measurements are presented, and details of the coefficient determination are explained. (author)

  12. Capacitance sensor for void fraction measurement in a natural circulation refrigeration circuit

    International Nuclear Information System (INIS)

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Simoes-Moreira, Jose R.

    2009-01-01

    Natural circulation is widely used in nuclear reactors for residual heat refrigeration. In this work, a conductance probe is designed and constructed to measure the instantaneous bulk void fraction in a vertical tube section. This probe is installed in a natural circulation refrigeration loop designed to simulate a nuclear reactor primary refrigeration circuit. During the operation of the natural circulation loop several gas-liquid flow patterns are observed, including oscillatory flow. The instantaneous signal generated by the capacitance probe allows the calculation of the two-phase flow void fraction. The void fraction obtained by the probe will be compared with the theoretical void fraction calculated by the computational program RELAP5/MOD3.2.2 gamma. The probe design and electronics, as well as the previous results obtained are presented and discussed. (author)

  13. Void nucleation at elevated temperatures under cascade-damage irradiation

    International Nuclear Information System (INIS)

    Semenov, A.A.; Woo, C.H.

    2002-01-01

    The effects on void nucleation of fluctuations respectively due to the randomness of point-defect migratory jumps, the random generation of free point defects in discrete packages, and the fluctuating rate of vacancy emission from voids are considered. It was found that effects of the cascade-induced fluctuations are significant only at sufficiently high total sink strength. At lower sink strengths and elevated temperatures, the fluctuation in the rate of vacancy emission is the dominant factor. Application of the present theory to the void nucleation in annealed pure copper neutron-irradiated at elevated temperatures with doses of 10 -4 -10 -2 NRT dpa showed reasonable agreement between theory and experiment. This application also predicts correctly the temporal development of large-scale spatial heterogeneous microstructure during the void nucleation stage. Comparison between calculated and experimental void nucleation rates in neutron-irradiated molybdenum at temperatures where vacancy emission from voids is negligible showed reasonable agreement as well. It was clearly demonstrated that the athermal shrinkage of relatively large voids experimentally observable in molybdenum at such temperatures may be easily explained in the framework of the present theory

  14. Video Voiding Device for Diagnosing Lower Urinary Tract Dysfunction in Men.

    Science.gov (United States)

    Shokoueinejad, Mehdi; Alkashgari, Rayan; Mosli, Hisham A; Alothmany, Nazeeh; Levin, Jacob M; Webster, John G

    2017-01-01

    We introduce a novel diagnostic Visual Voiding Device (VVD), which has the ability to visually document urinary voiding events and calculate key voiding parameters such as instantaneous flow rate. The observation of the urinary voiding process along with the instantaneous flow rate can be used to diagnose symptoms of Lower Urinary Tract Dysfunction (LUTD) and improve evaluation of LUTD treatments by providing subsequent follow-up documentations of voiding events after treatments. The VVD enables a patient to have a urinary voiding event in privacy while a urologist monitors, processes, and documents the event from a distance. The VVD consists of two orthogonal cameras which are used to visualize urine leakage from the urethral meatus, urine stream trajectory, and its break-up into droplets. A third, lower back camera monitors a funnel topped cylinder where urine accumulates that contains a floater for accurate readings regardless of the urine color. Software then processes the change in level of accumulating urine in the cylinder and the visual flow properties to calculate urological parameters. Video playback allows for reexamination of the voiding process. The proposed device was tested by integrating a mass flowmeter into the setup and simultaneously measuring the instantaneous flow rate of a predetermined voided volume in order to verify the accuracy of VVD compared to the mass flowmeter. The VVD and mass flowmeter were found to have an accuracy of ±2 and ±3% relative to full scale, respectively. A VVD clinical trial was conducted on 16 healthy male volunteers ages 23-65.

  15. Percolation through voids around overlapping spheres: A dynamically based finite-size scaling analysis

    Science.gov (United States)

    Priour, D. J.

    2014-01-01

    The percolation threshold for flow or conduction through voids surrounding randomly placed spheres is calculated. With large-scale Monte Carlo simulations, we give a rigorous continuum treatment to the geometry of the impenetrable spheres and the spaces between them. To properly exploit finite-size scaling, we examine multiple systems of differing sizes, with suitable averaging over disorder, and extrapolate to the thermodynamic limit. An order parameter based on the statistical sampling of stochastically driven dynamical excursions and amenable to finite-size scaling analysis is defined, calculated for various system sizes, and used to determine the critical volume fraction ϕc=0.0317±0.0004 and the correlation length exponent ν =0.92±0.05.

  16. Sodium voiding analysis in Kalimer

    International Nuclear Information System (INIS)

    Chang, Won-Pyo; Jeong, Kwan-Seong; Hahn, Dohee

    2001-01-01

    A sodium boiling model has been developed for calculations of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. The sodium boiling in liquid metal reactors using sodium as coolant should be modeled because of phenomenon difference observed from that in light water reactor systems. The developed model is a multiple -bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbles that fill the whole cross section of the coolant channel except for liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble. The present study is focused on not only demonstration of the sodium voiding behavior predicted by the developed model, but also confirmation on qualitative acceptance for the model. In results, the model catches important phenomena for sodium boiling, while further effort should be made for the complete analysis. (author)

  17. Partial discharges in spheroidal voids: Void orientation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1997-01-01

    Partial discharge transients can be described in terms of the charge induced on the detecting electrode. The influence of the void parameters upon the induced charge is examined and discussed for spheroidal voids. It is shown that a quantitative interpretation of the induced charge requires...

  18. Displacive stability of a void in a void lattice

    International Nuclear Information System (INIS)

    Brailsford, A.D.

    1977-01-01

    It has recently been suggested that the stability of the void-lattice structure in irradiated metals may be attributed to the effect of the overlapping of the point-defect diffusion fields associated with each void. It is shown here, however, that the effect is much too weak. When one void is displaced from its lattice site, the displacement is shown to relax to zero as proposed, but a conservative estimate indicates that the characteristic time is equivalent to an irradiation dose of the order of 300 displacements per atom which is generally much greater than the dose necessary for void-lattice formation

  19. Effect of grain size on void swelling in irradiated materials: A phase-field approach

    International Nuclear Information System (INIS)

    Chang, Kunok; Lee, Gyeonggeun; Kwon, Junhyun

    2014-01-01

    The progress of swelling is retarded as the average grain diameter increases in a pure copper case. Within the framework of the production bias model (PBM), their experimental results were quantitatively explained. The phase-field method has already been used to investigate the void/bubble behavior in the irradiated materials. In particular, Millett et al. already incorporated the interaction between the point defect and the grain boundary in their study. Therefore, they described the void denuded zones and void peaked zones adjacent to the grain boundaries, which are already observed in the experimental investigations. We performed the phase-field simulation in order to verify the role of the grain diameter on the void swelling in the cascade damage condition. In addition, our results will be compared with the experimental observations or the theoretical works, such as PBM. Two-dimensional phase-field simulations were performed to investigate the void swelling process in the irradiated materials. We clearly observed the void denuded and void peaked zones, which were already observed in formal experimental and computational approaches. We also found that the progress of swelling was retarded as the average grain diameter increased. The triple junctions, which are believed to be a critical factor t affecting the fracture, are the main cites for the void nucleation and growth in our simulations

  20. A FACSIMILE code for calculating void swelling, version VS1

    International Nuclear Information System (INIS)

    Windsor, M.; Bullough, R.; Wood, M.H.

    1979-11-01

    VS1 is the first of a series of FACSIMILE codes that are being made available to predict the swelling of materials under irradiation at different temperatures, using chemical rate equations for the point defect losses to voids, interstitial loops, dislocation network, grain boundaries and foil surfaces. In this report the rate equations used in the program are given together with a detailed description of the code and directions for its use. (author)

  1. On hydrogen-induced plastic flow localization during void growth and coalescence

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.C.; Sofronis, P. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Dodds, R.H. Jr. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2007-11-15

    Hydrogen-enhanced localized plasticity (HELP) is recognized as a viable mechanism of hydrogen embrittlement. A possible way by which the HELP mechanism can bring about macroscopic material failure is through hydrogen-induced accelerated void growth and coalescence. Assuming a periodic array of spherical voids loaded axisymmetrically, we investigate the hydrogen effect on the occurrence of plastic flow localization upon void growth and its dependence on macroscopic stress triaxiality. Under a macroscopic stress triaxiality equal to 1 and prior to void coalescence, the finite element calculation results obtained with material data relevant to A533B steel indicate that a hydrogen-induced localized shear band forms at an angle of about 45 {sup circle} from the axis of symmetry. At triaxiality equal to 3, void coalescence takes place by accelerated hydrogen-induced localization of plasticity mainly in the ligament between the voids. Lastly, we discuss the numerical results within the context of experimental observations on void growth and coalescence in the presence of hydrogen. (author)

  2. Blind void filling in LR-EPONs: How efficient it can be?

    KAUST Repository

    Elrasad, Amr; Shihada, Basem

    2015-01-01

    This work proposes a novel blind void (idle periods) filling in Long-Reach Ethernet Passive Optical Networks (LR-EPONs) namely Size Controlled Batch Void Filling (SCBVF). We emphasize on reducing grant delays and hence reducing the average packet delay. SCBVF delay reduction is achieved by early flushing data during the idle time periods (voids) between allocated grants. The proposed approach can be integrated with almost all of the previously reported dynamic bandwidth allocation schemes. SCBVF is less sensitive to differential distance between ONUs and can work well in case of small differential distances compared to previously reported void filling schemes. We support our work by extensive simulation study considering bursty traffic with long range dependency. Numerical results show a delay reduction up to 35% compared to non-void filling scheme outperforming its main competitors that can achieve up to 7% delay reduction.

  3. Blind void filling in LR-EPONs: How efficient it can be?

    KAUST Repository

    Elrasad, Amr

    2015-07-01

    This work proposes a novel blind void (idle periods) filling in Long-Reach Ethernet Passive Optical Networks (LR-EPONs) namely Size Controlled Batch Void Filling (SCBVF). We emphasize on reducing grant delays and hence reducing the average packet delay. SCBVF delay reduction is achieved by early flushing data during the idle time periods (voids) between allocated grants. The proposed approach can be integrated with almost all of the previously reported dynamic bandwidth allocation schemes. SCBVF is less sensitive to differential distance between ONUs and can work well in case of small differential distances compared to previously reported void filling schemes. We support our work by extensive simulation study considering bursty traffic with long range dependency. Numerical results show a delay reduction up to 35% compared to non-void filling scheme outperforming its main competitors that can achieve up to 7% delay reduction.

  4. Void migration in fusion materials

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    2002-01-01

    Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium

  5. Void migration in fusion materials

    Science.gov (United States)

    Cottrell, G. A.

    2002-04-01

    Neutron irradiation in a fusion power plant will cause helium bubbles and voids to form in the armour and blanket structural materials. If sufficiently large densities of such defects accumulate on the grain boundaries of the materials, the strength and the lifetimes of the metals will be reduced by helium embrittlement and grain boundary failure. This Letter discusses void migration in metals, both by random Brownian motion and by biassed flow in temperature gradients. In the assumed five-year blanket replacement time of a fusion power plant, approximate calculations show that the metals most resilient to failure are tungsten and molybdenum, and marginally vanadium. Helium embrittlement and grain boundary failure is expected to be more severe in steel and beryllium.

  6. An approach of SFR safety study through the most penalizing sodium void reactivity - 105

    International Nuclear Information System (INIS)

    Tiberi, V.; Ivanov, E.; Pignet, S.

    2010-01-01

    Sodium void reactivity effects can affect the plant safety significantly during accidental transients. Accordingly, they have to be accurately investigated for any new sodium cooled fast reactor concept, even if a fuel with a melting point lower than the sodium boiling temperature is adopted. Thus all new reactor concepts should be compared to each - others adopting the value of the maximal possible sodium void reactivity as a discrimination parameter. However, taking into account that the sodium void worth is spatially depended, it is not evident which volume could be voided in order to obtain the maximal reactivity increase. Typically the complete active core voiding (zones initially loaded with 235 U or 239 Pu) is taken into account. This paper summarizes the extensive work carried-out in the IRSN to investigate the sodium-void reactivity spatial profiles of a fast sodium-cooled reactor core in the aim of defining a methodology to search for the area where the void contribution to the reactivity is strictly positive. Perturbation theory design approach available in the ERANOS 2.1 code has been adopted to evaluate the 'area of positive void worth'. To do that, the code has been previously validated against experimental based benchmarks (IRPhEP) and reference calculations. The evaluation of the absolute values of reactivity profiles can be improved later-on adopting more sophisticated methodologies to perform more accurate calculations of the sample with the voided area determined adopting the rough procedure described here. It has been demonstrated that even the non-reference way of ERANOS calculations could be used to provide the basis for different core concepts inter-comparison. (authors)

  7. Measurement of void fractions by nuclear techniques

    International Nuclear Information System (INIS)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A.

    1997-01-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  8. Uncertainty and Sensitivity Analysis Applied to the Validation of BWR Bundle Thermal-Hydraulic Calculations

    International Nuclear Information System (INIS)

    Hernandez-Solis, Augusto

    2010-04-01

    This work has two main objectives. The first one is to enhance the validation process of the thermal-hydraulic features of the Westinghouse code POLCA-T. This is achieved by computing a quantitative validation limit based on statistical uncertainty analysis. This validation theory is applied to some of the benchmark cases of the following macroscopic BFBT exercises: 1) Single and two phase bundle pressure drops, 2) Steady-state cross-sectional averaged void fraction, 3) Transient cross-sectional averaged void fraction and 4) Steady-state critical power tests. Sensitivity analysis is also performed to identify the most important uncertain parameters for each exercise. The second objective consists in showing the clear advantages of using the quasi-random Latin Hypercube Sampling (LHS) strategy over simple random sampling (SRS). LHS allows a much better coverage of the input uncertainties than SRS because it densely stratifies across the range of each input probability distribution. The aim here is to compare both uncertainty analyses on the BWR assembly void axial profile prediction in steady-state, and on the transient void fraction prediction at a certain axial level coming from a simulated re-circulation pump trip scenario. It is shown that the replicated void fraction mean (either in steady-state or transient conditions) has less variability when using LHS than SRS for the same number of calculations (i.e. same input space sample size) even if the resulting void fraction axial profiles are non-monotonic. It is also shown that the void fraction uncertainty limits achieved with SRS by running 458 calculations (sample size required to cover 95% of 8 uncertain input parameters with a 95% confidence), result in the same uncertainty limits achieved by LHS with only 100 calculations. These are thus clear indications on the advantages of using LHS. Finally, the present study contributes to a realistic analysis of nuclear reactors, in the sense that the uncertainties of

  9. Measurements of void fraction in transparent two-phase flows by light extinction

    International Nuclear Information System (INIS)

    Shamoun, B.; El Beshbeeshy, M.; Bonazza, R.

    1998-01-01

    We report a technique for the measurement of the 2-D distribution of the line average void fraction in a two-phase flow with transparent gas and liquid components based on the Mie scattering induced by the gas bubbles on a collimated laser beam. The 2-D distribution of the line average of the interfacial area density is measured directly; the void fraction is deduced from it through an image processing algorithm. The technique is demonstrated with experiments in a pool of water injected with air and illuminated with a CW argon ion laser. (author)

  10. Determination of the void nucleation rate from void size distributions

    International Nuclear Information System (INIS)

    Brailsford, A.D.

    1977-01-01

    A method of estimating the void nucleation rate from one void size distribution and from observation of the maximum void radius at prior times is proposed. Implicit in the method are the assumptions that both variations in the critical radius with dose and vacancy thermal emission processes during post-nucleation quasi-steady-state growth may be neglected. (Auth.)

  11. Cosmic void clumps

    Science.gov (United States)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  12. Local void and slip model used in BODYFIT-2PE

    International Nuclear Information System (INIS)

    Chen, B.C.J.; Chien, T.H.; Kim, J.H.; Lellouche, G.S.

    1983-01-01

    A local void and slip model has been proposed for a two-phase flow without the need of fitting any empirical parameters. This model is based on the assumption that all bubbles have reached their terminal rise velocities in the two-phase region. This simple model seems to provide reasonable calculational results when compared with the experimental data and other void and slip models. It provides a means to account for the void and slip of a two-phase flow on a local basis. This is particularly suitable for a fine mesh thermal-hydraulic computer program such as BODYFIT-2PE

  13. Is abdominal wall contraction important for normal voiding in the female rat?

    Directory of Open Access Journals (Sweden)

    Boone Timothy B

    2007-03-01

    Full Text Available Abstract Background Normal voiding behavior in urethane-anesthetized rats includes contraction of the abdominal wall striated muscle, similar to the visceromotor response (VMR to noxious bladder distension. Normal rat voiding requires pulsatile release of urine from a pressurized bladder. The abdominal wall contraction accompanying urine flow may provide a necessary pressure increment for normal efficient pulsatile voiding. This study aimed to evaluate the occurrence and necessity of the voiding-associated abdominal wall activity in urethane-anesthetized female rats Methods A free-voiding model was designed to allow assessment of abdominal wall activity during voiding resulting from physiologic bladder filling, in the absence of bladder or urethral instrumentation. Physiologic diuresis was promoted by rapid intravascular hydration. Intercontraction interval (ICI, voided volumes and EMG activity of the rectus abdominis were quantified. The contribution of abdominal wall contraction to voiding was eliminated in a second group of rats by injecting botulinum-A (BTX, 5 U into each rectus abdominis to induce local paralysis. Uroflow parameters were compared between intact free-voiding and BTX-prepared animals. Results Abdominal wall response is present in free voiding. BTX preparation eliminated the voiding-associated EMG activity. Average per-void volume decreased from 1.8 ml to 1.1 ml (p Conclusion The voiding-associated abdominal wall response is a necessary component of normal voiding in urethane anesthetized female rats. As the proximal urethra may be the origin of the afferent signaling which results in the abdominal wall response, the importance of the bladder pressure increment due to this response may be in maintaining a normal duration intermittent pulsatile high frequency oscillatory (IPHFO/flow phase and thus efficient voiding. We propose the term Voiding-associated Abdominal Response (VAR for the physiologic voiding-associated EMG

  14. On void nucleation

    International Nuclear Information System (INIS)

    Subbotin, A.V.

    1978-01-01

    Nucleation of viable voids in irradiated materials is considered. The mechanism of evaporation and absorption of interstitials and vacancies disregarding the possibility of void merging is laid down into the basis of the discussion. The effect of irradiated material structure on void nucleation is separated from the effect of the properties of supersaturated solutions of vacancies and interstitials. An analytical expression for the nucleation rate is obtained and analyzed in different cases. The interstitials are concluded to effect severely the nucleation rate of viable voids

  15. Measurement of void fraction distribution in two-phase flow by impedance CT with neural network

    International Nuclear Information System (INIS)

    Hayashi, Hideaki; Sumida, Isao; Sakai, Sinji; Wakai, Kazunori

    1996-01-01

    This paper describes a new method for measurement of void distribution using impedance CT with a hierarchical neural network. The present method consists of four processes. First, output electric currents are calculated by simulation of various distributions of void fraction. The relationship between distribution of void fraction and electric current is called 'teaching data'. Second, the neural network learns the teaching data by the back propagation method. Third, output electric currents are measured about actual two-phase flow. Finally, distribution of void fraction is calculated by the taught neural network using the measured electric currents. In this paper, measurement and learning parameters are adjusted, experimental results obtained using the impedance CT method are compared with data obtained by the impedance probe method. The results show that our method is effective for measurement of void fraction distribution. (author)

  16. Fluid intake and voiding; habits and health knowledge in a young, healthy population.

    Science.gov (United States)

    Das, Rebekah N; Grimmer-Somers, Karen A

    2012-01-01

    Health professionals commonly advise patients with incontinence and other lower urinary tract symptoms about modifiable contributing factors such as drinking and voiding habits. Poor drinking and voiding habits may begin early in life, before symptoms emerge. However, little is known about the habits and knowledge young people have regarding healthy drinking and voiding behaviors. This research aimed to assess the habits and health knowledge of young people regarding fluid intake and voiding. A questionnaire was used to assess the drinking and voiding behaviors of first year university students and their knowledge about healthy fluid intake and voiding. The average daily fluid intake was >2 L/day for both genders. Poor drinking and voiding habits (such as high consumption of caffeinated drinks and alcohol, or nocturia) were common. Widely reported myths about the benefits of a high fluid intake were commonly believed. More informed public education regarding healthy fluid intake, and drinking and voiding habits, is required as part of the effort to reduce the development of lower urinary tract symptoms, including incontinence.

  17. An experimental and theoretical analysis of void fraction dynamics in a boiling channel

    International Nuclear Information System (INIS)

    Romberg, T.M.

    1977-01-01

    This paper describes an experimental and theoretical investigation of the void fraction dynamics at the exit of a test boiling channel which is operated near the 'instability threshold power' (the power level at which coolant flow instabilities occur). Dynamic measurements of the perturbations in channel inlet flow-rate, power input and exit void fraction are analysed using multivariate spectral analysis. The resulting experimental cross-spectral density functions between flow-rate/exit void fraction and power input/exit void fraction agree favourably with those calculated by a linearised hydrodynamic model in the frequency domain. (Author)

  18. Three-dimensional investigation of grain orientation effects on void growth in commercially pure titanium

    International Nuclear Information System (INIS)

    Pushkareva, Marina; Adrien, Jérôme; Maire, Eric; Segurado, Javier; Llorca, Javier; Weck, Arnaud

    2016-01-01

    The fracture process of commercially pure titanium was visualized in model materials containing artificial holes. These model materials were fabricated using a femtosecond laser coupled with a diffusion bonding technique to obtain voids in the interior of titanium samples. Changes in void dimensions during in-situ straining were recorded in three dimensions using x-ray computed tomography. Void growth obtained experimentally was compared with the Rice and Tracey model which predicted well the average void growth. A large scatter in void growth data was explained by differences in grain orientation which was confirmed by crystal plasticity simulations. It was also shown that grain orientation has a stronger effect on void growth than intervoid spacing and material strength. Intervoid spacing, however, appears to control whether the intervoid ligament failure is ductile or brittle.

  19. Three-dimensional investigation of grain orientation effects on void growth in commercially pure titanium

    Energy Technology Data Exchange (ETDEWEB)

    Pushkareva, Marina [Department of Mechanical Engineering, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Adrien, Jérôme; Maire, Eric [Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France); Segurado, Javier; Llorca, Javier [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain); Weck, Arnaud, E-mail: aweck@uottawa.ca [Department of Mechanical Engineering, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Centre for Research in Photonics at the University of Ottawa, 800 King Edward Ave., Ottawa, ON, Canada K1N 6N5 (Canada)

    2016-08-01

    The fracture process of commercially pure titanium was visualized in model materials containing artificial holes. These model materials were fabricated using a femtosecond laser coupled with a diffusion bonding technique to obtain voids in the interior of titanium samples. Changes in void dimensions during in-situ straining were recorded in three dimensions using x-ray computed tomography. Void growth obtained experimentally was compared with the Rice and Tracey model which predicted well the average void growth. A large scatter in void growth data was explained by differences in grain orientation which was confirmed by crystal plasticity simulations. It was also shown that grain orientation has a stronger effect on void growth than intervoid spacing and material strength. Intervoid spacing, however, appears to control whether the intervoid ligament failure is ductile or brittle.

  20. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda; Vogeley, Michael S. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Hoyle, Fiona [Pontifica Universidad Catolica de Ecuador, 12 de Octubre 1076 y Roca, Quito (Ecuador); Giovanelli, Riccardo; Haynes, Martha P., E-mail: crystal.m.moorman@drexel.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University Ithaca, NY 14853 (United States)

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the full H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.

  1. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

    Science.gov (United States)

    Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight

    2016-01-01

    After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...

  2. Impedance void-meter and neural networks for vertical two-phase flows

    International Nuclear Information System (INIS)

    Mi, Y.; Li, M.; Xiao, Z.; Tsoukalas, L.H.; Ishii, M.

    1998-01-01

    Most two-phase flow measurements, including void fraction measurements, depend on correct flow regime identification. There are two steps towards successful identification of flow regimes: one is to develop a non-intrusive instrument to demonstrate area-averaged void fluctuations, the other to develop a non-linear mapping approach to perform objective identification of flow regimes. A non-intrusive impedance void-meter provides input signals to a neural mapping approach used to identify flow regimes. After training, both supervised and self-organizing neural network learning paradigms performed flow regime identification successfully. The methodology presented holds considerable promise for multiphase flow diagnostic and measurement applications. (author)

  3. A new method for the measurement of two-phase mass flow rate using average bi-directional flow tube

    International Nuclear Information System (INIS)

    Yoon, B. J.; Uh, D. J.; Kang, K. H.; Song, C. H.; Paek, W. P.

    2004-01-01

    Average bi-directional flow tube was suggested to apply in the air/steam-water flow condition. Its working principle is similar with Pitot tube, however, it makes it possible to eliminate the cooling system which is normally needed to prevent from flashing in the pressure impulse line of pitot tube when it is used in the depressurization condition. The suggested flow tube was tested in the air-water vertical test section which has 80mm inner diameter and 10m length. The flow tube was installed at 120 of L/D from inlet of test section. In the test, the pressure drop across the average bi-directional flow tube, system pressure and average void fraction were measured on the measuring plane. In the test, fluid temperature and injected mass flow rates of air and water phases were also measured by a RTD and two coriolis flow meters, respectively. To calculate the phasic mass flow rates : from the measured differential pressure and void fraction, Chexal drift-flux correlation was used. In the test a new correlation of momentum exchange factor was suggested. The test result shows that the suggested instrumentation using the measured void fraction and Chexal drift-flux correlation can predict the mass flow rates within 10% error of measured data

  4. Design aspects of gamma densitometers for void fraction measurements in small scale two-phase flows

    International Nuclear Information System (INIS)

    Chan, A.M.C.; Banerjee, S.

    1981-01-01

    Design procedure for a single-beam gamma densitometer operated in the count mode is described. The design is simple, compact and is particularly suited for small scale two-phase flow experiments with thin-metal walled or non-metallic test sections. The choice of gamma sources, scintillators and signal processing systems is discussed. The procedure has been applied by the authors in the design of densitometers for two transient experiments: refilling and rewetting experiments and flow boiling experiments. Good average void measurements were obtained for relatively fast transients. It has also been shown that some useful flow parameters other than void fractions can be obtained if two or more densitometers are used, eg, the average rewetting and entrained liquid velocities in the refilling and rewetting experiments, and the average void velocity in the flow boiling experiments. (orig.)

  5. Absence of saturation of void growth in rate theory with anisotropic diffusion

    CERN Document Server

    Hudson, T S; Sutton, A P

    2002-01-01

    We present a first attempt at solution the problem of the growth of a single void in the presence of anisotropically diffusing radiation induced self-interstitial atom (SIA) clusters. In order to treat a distribution of voids we perform ensemble averaging over the positions of centres of voids using a mean-field approximation. In this way we are able to model physical situations in between the Standard Rate Theory (SRT) treatment of swelling (isotropic diffusion), and the purely 1-dimensional diffusion of clusters in the Production Bias Model. The background absorption by dislocations is however treated isotropically, with a bias for interstitial cluster absorption assumed similar to that of individual SIAs. We find that for moderate anisotropy, unsaturated void growth is characteristic of this anisotropic diffusion of clusters. In addition we obtain a higher initial void swelling rate than predicted by SRT whenever the diffusion is anisotropic.

  6. On the abundance of extreme voids II: a survey of void mass functions

    International Nuclear Information System (INIS)

    Chongchitnan, Siri; Hunt, Matthew

    2017-01-01

    The abundance of cosmic voids can be described by an analogue of halo mass functions for galaxy clusters. In this work, we explore a number of void mass functions: from those based on excursion-set theory to new mass functions obtained by modifying halo mass functions. We show how different void mass functions vary in their predictions for the largest void expected in an observational volume, and compare those predictions to observational data. Our extreme-value formalism is shown to be a new practical tool for testing void theories against simulation and observation.

  7. Void fraction prediction in saturated flow boiling

    International Nuclear Information System (INIS)

    Francisco J Collado

    2005-01-01

    Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for vertical and horizontal

  8. Determining the void fraction in draught sections of a boiling water cooled reactor

    International Nuclear Information System (INIS)

    Fedulin, V.N.; Barolomej, G.G.; Solodkij, V.A.; Shmelev, V.E.

    1987-01-01

    Consideration is being given to the problem of improving methods for calculation of the void fraction in large channels of cooling system of the boiling water cooled reactor during two-phase unsteady flow. Investigation of the structure of two-phase flow was conducted in draught section of the VK-50 reactor (diameter D=2 m, height H=3). The method for calculation of the void fraction in channels with H/D ratio close to 1 is suggested

  9. Visualization and void fraction measurement of decompressed boiling flow in a capillary tube

    International Nuclear Information System (INIS)

    Asano, H.; Murakawa, H.; Takenaka, N.; Takiguchi, K.; Okamoto, M.; Tsuchiya, T.; Kitaide, Y.; Maruyama, N.

    2011-01-01

    A capillary tube is often used as a throttle for a refrigerating cycle. Subcooled refrigerant usually flows from a condenser into the capillary tube. Then, the refrigerant is decompressed along the capillary tube. When the static pressure falls below the saturation pressure for the liquid temperature, spontaneous boiling occurs. A vapor-liquid two-phase mixture is discharged from the tube. In designing a capillary tube, it is necessary to calculate the flow rate for given boundary conditions on pressure and temperature at the inlet and exit. Since total pressure loss is dominated by frictional and acceleration losses during two-phase flow, it is first necessary to specify the boiling inception point. However, there will be a delay in boiling inception during decompressed flow. This study aimed to clarify the boiling inception point and two-phase flow characteristics of refrigerant in a capillary tube. Refrigerant flows in a coiled copper capillary tube were visualized by neutron radiography. The one-dimensional distribution of volumetric average void fraction was measured from radiographs through image processing. From the void fraction distribution, the boiling inception point was determined. Moreover, a simplified CT method was successfully applied to a radiograph for cross-sectional measurements. The experimental results show the flow pattern transition from intermittent flow to annular flow that occurred at a void fraction of about 0.45.

  10. Void hierarchy and cosmic structure

    International Nuclear Information System (INIS)

    Weygaert, Rien van de; Ravi Sheth

    2004-01-01

    Within the context of hierarchical scenarios of gravitational structure formation we describe how an evolving hierarchy of voids evolves on the basis of two processes, the void-in-void process and the void-in-cloud process. The related analytical formulation in terms of a two-barrier excursion problem leads to a self-similarly evolving peaked void size distribution

  11. Three-dimensional core analysis on a super fast reactor with negative local void reactivity

    International Nuclear Information System (INIS)

    Cao Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi

    2009-01-01

    Keeping negative void reactivity throughout the cycle life is one of the most important requirements for the design of a supercritical water-cooled fast reactor (super fast reactor). Previous conceptual design has negative overall void reactivity. But the local void reactivity, which is defined as the reactivity change when the coolant of one fuel assembly disappears, also needs to be kept negative throughout the cycle life because the super fast reactor is designed with closed fuel assemblies. The mechanism of the local void reactivity is theoretically analyzed from the neutrons balance point of view. Three-dimensional neutronics/thermal-hydraulic coupling calculation is employed to analyze the characteristics of the super fast reactor including the local void reactivity. Some configurations of the core are optimized to decrease the local void reactivity. A reference core is successfully designed with keeping both overall and local void reactivity negative. The maximum local void reactivity is less than -30 pcm

  12. Real-space calculations of nonspherically averaged charge densities for substitutionally disordered alloys

    International Nuclear Information System (INIS)

    Singh, P.P.; Gonis, A.

    1993-01-01

    Based on screening transformations of muffin-tin orbitals introduced by Andersen and Jepsen [Phys. Rev. Lett. 53, 2571 (1984)], we have developed a formalism for calculating the nonspherically averaged charge densities of substitutionally disordered alloys using the Korringa-Kohn-Rostoker coherent-potential-approximation (KKR CPA) method in the atomic-sphere approximation (ASA). We have validated our method by calculating charge densities for ordered structures, where we find that our approach yields charge densities that are essentially indistinguishable from the results of full-potential methods. Calculations and comparisons are reported for Si, Al, and Li. For substitutionally disordered alloys, where full-potential methods have not been implemented so far, our approach can be used to calculate reliable nonspherically averaged charge densities from spherically symmetric one-electron potentials obtained from the KKR-ASA CPA. We report on our study of differences in charge density between ordered AlLi in the L1 0 phase and substitutionally disordered Al 0.5 Li 0.5 on a face-centered-cubic lattice

  13. Effective void fraction for a BWR assembly with boiling in the bypass region

    International Nuclear Information System (INIS)

    Galperin, A.; Segev, M.; Knoglinger, E.

    1991-09-01

    Average BWR assembly cross-sections for nominal conditions, namely for zero bypass void, can be utilised in the analysis of transient conditions with boiling in the bypass. A model is developed to yield an effective channel void for such conditions. The use of this void in conjunction with the 'nominal conditions' cross section library approximately preserves the assembly K-infinity corresponding to the true channel and bypass voids. The effective void is an augmentation of the actual channel void. The augment is proportional to the bypass-to-channel volume ratio, to the bypass void, and to a weight W which is introduced to quantify the fact that a water molecule in the bypass has a different assembly criticality worth than one in the channel. The formula developed is superior to the practice of choosing W=1, namely a simple, non-weighted, transfer of water from channel to bypass. The use of this approximate effective channel void reproduces actual K-infinity values of assemblies to better than 5 mk, whereas the use of a simple model sometimes misspredicts the assembly K-infinity by 40 mK. The effective void model cannot handle cases in which both channel and bypass void value are high, simply because then the effective void α ch eff becomes meaningless. A method to treat the α eff >1 domain is developed by which corrections to cross sections are provided. Such corrections are synthesised as functions of the assembly parameters. (author) figs., tabs., refs

  14. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J W; Choi, H; Rhee, B W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  15. Enthalpy and void distributions in subchannels of PHWR fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)

  16. The effect of voids on the hardening of body-centered cubic Fe

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Ryosuke, E-mail: ryosuke.nakai@jupiter.qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi, 980-8579 (Japan); Yabuuchi, Kiyohiro, E-mail: k-yabuuchi@iae.kyoto-u.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi, 980-8579 (Japan); Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 (Japan); Nogami, Shuhei, E-mail: shuhei.nogami@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi, 980-8579 (Japan); Hasegawa, Akira, E-mail: akira.hasegawa@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-Aza-Aoba, Aobaku, Sendai, Miyagi, 980-8579 (Japan)

    2016-04-01

    The mechanical properties of metals are affected by various types of defects. Hardening is usually described through the interaction between dislocations and obstacles, in the so-called line tension theory. The strength factor in the line tension theory represents the resistance of a defect against the dislocation motion. In order to understand hardening from the viewpoint of the microstructure, an accurate determination of the strength factor of different types of defects is essential. In the present study, the strength factor of voids in body-centered cubic (BCC) Fe was investigated by two different approaches: one based on the Orowan equation to link the measured hardness with the average size and density of voids, and the other involving direct observation of the interaction between dislocations and voids by transmission electron microscope (TEM). The strength factor of voids induced by ion irradiation estimated by the Orowan equation was 0.6, whereas the strength factor estimated by the direct TEM approach was 0.8. The difference in the strength factors measured by the two approaches is due to the positional relationship between dislocations and voids: the central region of a void is stronger than the tip. Moreover, the gliding plane and the direction of dislocation may also affect the strength factor of voids. This study determined the strength factor of voids in BCC Fe accurately, and suggested that the contribution of voids to the irradiation hardening is larger than that of dislocation loops and Cu-rich precipitates. - Highlights: • The strength factor of voids in BCC Fe was experimentally investigated. • The strength factor of voids estimated by the line tension theory was 0.6. • The strength factor of voids estimated by the bowing angle of dislocations was 0.8. • The different strength factors are due to the positional relationship.

  17. Pediatric Voiding Cystourethrogram

    Science.gov (United States)

    Scan for mobile link. Children's (Pediatric) Voiding Cystourethrogram A children’s (pediatric) voiding cystourethrogram uses fluoroscopy – a form of real-time x-ray – to examine a child’s bladder ...

  18. 40 CFR 600.510-08 - Calculation of average fuel economy.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy. 600.510-08 Section 600.510-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for Model Year 1978 Passenger Automobiles...

  19. 40 CFR 600.510-93 - Calculation of average fuel economy.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy. 600.510-93 Section 600.510-93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for Model Year 1978 Passenger Automobiles...

  20. 40 CFR 600.510-86 - Calculation of average fuel economy.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy. 600.510-86 Section 600.510-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for Model Year 1978 Passenger Automobiles...

  1. The discrete cones methods for two-dimensional neutral particle transport problems with voids

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1983-01-01

    One of the most widely applied deterministic methods for time-independent, two-dimensional neutron transport calculations is the discrete ordinates method (DSN). The DSN solution, however, fails to be accurate in a void due to the ray effect. In order to circumvent this drawback, the authors have been developing a novel approximation: the discrete cones method (DCN), where a group of particles in a cone are simultaneously traced instead of particles in discrete directions for the DSN method. Programs, which apply to the DSN method in a non-vacuum region and the DCN method in a void, have been written for transport calculations in X-Y coordinates. The solutions for test problems demonstrate mitigation of the ray effect in voids without loosing the computational efficiency of the DSN method

  2. ON IMPROVEMENT OF METHODOLOGY FOR CALCULATING THE INDICATOR «AVERAGE WAGE»

    Directory of Open Access Journals (Sweden)

    Oksana V. Kuchmaeva

    2015-01-01

    Full Text Available The article describes the approaches to the calculation of the indicator of average wages in Russia with the use of several sources of information. The proposed method is based on data collected by Rosstat and the Pension Fund of the Russian Federation. The proposed approach allows capturing data on the wages of almost all groups of employees. Results of experimental calculations on the developed technique are present in this article.

  3. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer; Mesure du taux de vide local en ecoulement diphasique eau-air par un anemometre a film chaud

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a {gamma}-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [French] Nous proposons une methode de mesure du taux de vide local a en ecoulement diphasique, basee sur l'emploi d'un anemometre a film chaud a temperature constante dont on etudie la repartition du signal en amplitude dans un analyseur multicanaux. Ayant trace un profil de taux de vide local suivant un diametre d'une conduite verticale de section circulaire parcourue par un ecoulement ascendant d'eau et d'air, nous avons compare la moyenne de {alpha} sur ce diametre a la valeur obtenue par une methode d'absorption de rayons {gamma}. Les essais ont ete faits en ecoulements a bulles et a bouchons. Les deux methodes donnent des resultats concordants en particulier pour les ecoulements a bulles. Le taux de vide moyenne dans la section, calcule a partir des differents profils, a egalement ete compare avec succes aux resultats experimentaux de R. ROUMY. Dans l'etude de la structure radiale des ecoulements a bulles, nous avons verifie l'hypothese de S.G. BAJMKOFF. (auteur)

  4. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer; Mesure du taux de vide local en ecoulement diphasique eau-air par un anemometre a film chaud

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a {gamma}-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [French] Nous proposons une methode de mesure du taux de vide local a en ecoulement diphasique, basee sur l'emploi d'un anemometre a film chaud a temperature constante dont on etudie la repartition du signal en amplitude dans un analyseur multicanaux. Ayant trace un profil de taux de vide local suivant un diametre d'une conduite verticale de section circulaire parcourue par un ecoulement ascendant d'eau et d'air, nous avons compare la moyenne de {alpha} sur ce diametre a la valeur obtenue par une methode d'absorption de rayons {gamma}. Les essais ont ete faits en ecoulements a bulles et a bouchons. Les deux methodes donnent des resultats concordants en particulier pour les ecoulements a bulles. Le taux de vide moyenne dans la section, calcule a partir des differents profils, a egalement ete compare avec succes aux resultats experimentaux de R. ROUMY. Dans l'etude de la structure radiale des ecoulements a bulles, nous avons verifie l'hypothese de S.G. BAJMKOFF. (auteur)

  5. Models for coolant void reactivity evaluation in Candu Generation II and III+

    International Nuclear Information System (INIS)

    Popov, Alexi V.; Chambon, Richard P.; Le Tellier, Romain; Marleau, Guy; Hebert, Alain

    2008-01-01

    In the simulation of large-break loss-of-coolant accidents, homogenised cross-sections from trans- port calculations are used. These are usually computed in single cells or lattices representative for an infinite repeated pattern. Large coolant accidents in Candu, however, usually exhibit a checkerboard pattern of cooled and voided channels represented by lattices. It is reasonable, therefore, that homogenised cross-sections be produced in assemblies of lattices. This allows simulating the checkerboard voiding pat- tern and more realistically reproducing the lattice boundary conditions. The result is better simulation of the accident and more precise evaluation of coolant-void reactivity. For the present study, homogenised cross-sections are generated in a 2x2 heterogeneous assembly of four lattices for Generation II and III+ Candu designs. Results of reactivity calculations with the reactor code are compared to those using the traditional method. The difference is significant for Generation III+ Candu. (authors)

  6. Influence of void effects on reactivity of coupled fast-thermal system HERBE

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milovanovic, S.; Milovanovic, T.; Cuknic, O.

    1997-01-01

    Coupled fast-thermal system HERBE at the experimental zero power heavy water reactor RB is a system with the significant effects of the neutron leakage and neutron absorption. Presence of a coolant void introduces a new structure in an extremely heterogeneous core. In those conditions satisfactory results of the calculation are acquired only using specified space-energy homogenization procedure. In order to analyze transient appearances and accidental cases of the reactor systems, a procedure for modeling of influence of moderator and coolant loss on reactivity ('void effect') is developed. Reduction of the moderator volume fraction in some fuel channels due to air gaps or steam generation during the accidental moderator boiling, restricts validity of the diffusion approximation in the reactor calculations. In cases of high neutron flux gradients, which are consequence of high neutron absorption, application of diffusion approximation is questionable too. The problem may be solved using transport or Monte Carlo methods, but they are not acceptable in the routine applications. Applying new techniques based on space-energy core homogenization, such as the SPH method or the discontinuity factor method, diffusion calculations become acceptable. Calculations based on the described model show that loss of part of moderator medium introduce negative reactivity in the HERBE system. Calculated local void reactivity coefficients are used in safety analysis of hypothetical accidents

  7. Size-Effects in Void Growth

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2005-01-01

    The size-effect on ductile void growth in metals is investigated. The analysis is based on unit cell models both of arrays of cylindrical voids under plane strain deformation, as well as arrays of spherical voids using an axisymmetric model. A recent finite strain generalization of two higher order...... strain gradient plasticity models is implemented in a finite element program, which is used to study void growth numerically. The results based on the two models are compared. It is shown how gradient effects suppress void growth on the micron scale when compared to predictions based on conventional...... models. This increased resistance to void growth, due to gradient hardening, is accompanied by an increase in the overall strength for the material. Furthermore, for increasing initial void volume fraction, it is shown that the effect of gradients becomes more important to the overall response but less...

  8. Air void structure and frost resistance

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2014-01-01

    ). This observation is interesting as the parameter of total surface area of air voids normally is not included in air void analysis. The following reason for the finding is suggested: In the air voids conditions are favourable for ice nucleation. When a capillary pore is connected to an air void, ice formation...... on that capillary pores are connected to air voids. The chance that a capillary pore is connected to an air void depends on the total surface area of air voids in the system, not the spacing factor.......This article compiles results from 4 independent laboratory studies. In each study, the same type of concrete is tested at least 10 times, the air void structure being the only variable. For each concrete mix both air void analysis of the hardened concrete and a salt frost scaling test...

  9. Void fraction measurements using neutron radiography

    International Nuclear Information System (INIS)

    Glickstein, S.S.; Vance, W.H.; Joo, H.

    1992-01-01

    Real-time neutron radiography is being evaluated for studying the dynamic behavior of two phase flow and for measuring void fraction in vertical and inclined water ducts. This technique provides a unique means of visualizing the behavior of fluid flow inside thick metal enclosures. To simulate vapor conditions encountered in a fluid flow duct, an air-water flow system was constructed. Air was injected into the bottom of the duct at flow rates up to 0.47 I/s (1 cfm). The water flow rate was varied between 0--3.78 I/m (0--1 gpm). The experiments were performed at the Pennsylvania State University nuclear reactor facility using a real-time neutron radiography camera. With a thermal neutron flux on the order of 10 6 n/cm 2 /s directed through the thin duct dimension, the dynamic behavior of the air bubbles was clearly visible through 5 cm (2 in.) thick aluminum support plates placed on both sides of the duct wall. Image analysis techniques were employed to extract void fractions from the data which was recorded on videotape. This consisted of time averaging 256 video frames and measuring the gray level distribution throughout the region. The distribution of the measured void fraction across the duct was determined for various air/water mixtures. Details of the results of experiments for a variety of air and water flow conditions are presented

  10. A benchmark test of computer codes for calculating average resonance parameters

    International Nuclear Information System (INIS)

    Ribon, P.; Thompson, A.

    1983-01-01

    A set of resonance parameters has been generated from known, but secret, average values; the parameters have then been adjusted to mimic experimental data by including the effects of Doppler broadening, resolution broadening and statistical fluctuations. Average parameters calculated from the dataset by various computer codes are compared with each other, and also with the true values. The benchmark test is fully described in the report NEANDC160-U (NEA Data Bank Newsletter No. 27 July 1982); the present paper is a summary of this document. (Auth.)

  11. Determination of the equivalent intergranular void ratio - Application to the instability and the critical state of silty sand

    Directory of Open Access Journals (Sweden)

    Nguyen Trung-Kien

    2017-01-01

    Full Text Available This paper presents an experimental study of mechanical response of natural Camargue silty sand. The analysis of test results used the equivalent intergranular void ratio instead of the global void ratio. The calculation of equivalent intergranular void ratio requires the determination of parameter b which represents, physically, the fraction of active fines participating on the chain forces network, hence the strength of the soil. A new formula for determining the parameter b by using an approach based on the coordination number distribution and probability calculation is proposed. The validation of the developed relationship was done through back-analysis of published datasets in literature on the effect of fines content on silty sand behavior. It is shown that the equivalent intergranular void ratio calculated with the b value obtained by the new formula is able to provide strong correlation to not only the critical state of but also the onset of instability of various silty sands, in different terms as peak deviator stress, peak stress ratio or cyclic resistance. Therefore, it is suggested that the use of the equivalent void ratio concept and the new b calculating formula is highly desirable in predicting of the silty sand behavior.

  12. 76 FR 28947 - Bus Testing: Calculation of Average Passenger Weight and Test Vehicle Weight, and Public Meeting...

    Science.gov (United States)

    2011-05-19

    ...-0015] RIN 2132-AB01 Bus Testing: Calculation of Average Passenger Weight and Test Vehicle Weight, and... of proposed rulemaking (NPRM) regarding the calculation of average passenger weights and test vehicle... passenger weights and actual transit vehicle loads. Specifically, FTA proposed to change the average...

  13. submitter Thermal stability of interface voids in Cu grain boundaries with molecular dynamic simulations

    CERN Document Server

    Xydou, A; Aicheler, M; Djurabekova, F

    2016-01-01

    By means of molecular dynamic simulations, the stability of cylindrical voids is examined with respect to the diffusion bonding procedure. To do this, the effect of grain boundaries between the grains of different crystallographic orientations on the void closing time was studied at high temperatures from 0.7 up to 0.94 of the bulk melting temperature $(T_m)$. The diameter of the voids varied from 3.5 to 6.5 nm. A thermal instability occurring at high temperatures at the surface of the void placed in a grain boundary triggered the eventual closure of the void at all examined temperatures. The closing time has an exponential dependence on the examined temperature values. A model based on the defect diffusion theory is developed to predict the closing time for voids of macroscopic size. The diffusion coefficient within the grain boundaries is found to be overall higher than the diffusion coefficient in the region around the void surface. The activation energy for the diffusion in the grain boundary is calculate...

  14. Measurements of void fraction by an improved multi-channel conductance void meter

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Chung, Moon Ki; No, Hee Cheon

    1998-01-01

    An improved multi-channel Conductance Void Meter (CVM) was developed to measure a void fraction. Its measuring principle is basically based upon the differences of electrical conductance of a two-phase mixture due to the variation of void fraction around a sensor. The sensor is designed to be flush-mounted to the inner wall of the test section to avoid the flow disturbances. The signal processor with three channels is specially designed so as to minimize the inherent error due to the phase difference between channels. It is emphasized that the guard electrodes are electrically shielded in order not to affect the measurements of two-phase mixture conductance, but to make the electric fields evenly distributed in a measuring volume. Void fraction is measured for bubbly and slug flow regimes in a vertical air-water loop, and statistical signal processing techniques are applied to show that CVM has a good dynamic resolution which is required to investigate the structural developments of bubbly flow and the propagation of void waves in a flow channel. (author)

  15. The effects of one-dimensional migration of self-interstitial clusters on the formation of void lattices

    DEFF Research Database (Denmark)

    Heinisch, H.L.; Singh, B.N.

    2002-01-01

    under pure 3-D SIA migration, but they are extremely stable, relative to random arrays of voids, under 1-D SIA migration. Void lattices remain stable even under the condition of fairly frequent changes in the Burgers vectors of the 1-D migrating SIA clusters. Clusters with average 1-D path segments...

  16. Thermodynamic Integration Methods, Infinite Swapping and the Calculation of Generalized Averages

    OpenAIRE

    Doll, J. D.; Dupuis, P.; Nyquist, P.

    2016-01-01

    In the present paper we examine the risk-sensitive and sampling issues associated with the problem of calculating generalized averages. By combining thermodynamic integration and Stationary Phase Monte Carlo techniques, we develop an approach for such problems and explore its utility for a prototypical class of applications.

  17. Computer simulation of void formation in residual gas atom free metals by dual beam irradiation experiments

    International Nuclear Information System (INIS)

    Shimomura, Y.; Nishiguchi, R.; La Rubia, T.D. de; Guinan, M.W.

    1992-01-01

    In our recent experiments (1), we found that voids nucleate at vacancy clusters which trap gas atoms such as hydrogen and helium in ion- and neutron-irradiated copper. A molecular dynamics computer simulation, which implements an empirical embedded atom method to calculate forces that act on atoms in metals, suggests that a void nucleation occurs in pure copper at six and seven vacancy clusters. The structure of six and seven vacancy clusters in copper fluctuates between a stacking fault tetrahedron and a void. When a hydrogen is trapped at voids of six and seven vacancy, a void can keep their structure for appreciably long time; that is, the void do not relax to a stacking fault tetrahedron and grows to a large void. In order to explore the detailed atomics of void formation, it is emphasized that dual-beam irradiation experiments that utilize beams of gas atoms and self-ions should be carried out with residual gas atom free metal specimens. (author)

  18. The dark matter of galaxy voids

    Science.gov (United States)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  19. Calculating ensemble averaged descriptions of protein rigidity without sampling.

    Science.gov (United States)

    González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J

    2012-01-01

    Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG) algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG) that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars) that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.

  20. Void swelling and segregation in dilute nickel alloys

    International Nuclear Information System (INIS)

    Potter, D.I.; Rehn, L.E.; Okamoto, P.R.; Wiedersich, H.

    1977-01-01

    Five binary alloys containing 1 at.% of Al, Ti, Mo, Si and Be in nickel were irradiated at temperatures from 525 to 675 0 C with 3.5-MeV 58 Ni + ions. The resultant microstructures were examined by TEM, and void diameters, number densities and swelling are presented for each alloy over the temperature interval investigated. A systematic relation between solute misfit (size factor) and void swelling is established for these alloys. Solute concentration profiles near the irradiated surface were determined and these also exhibited a systematic behavior--undersize solutes segregated to the surface, whereas oversize solutes were depleted. The results are consistent with calculations based on strong interstitial-solute trapping by undersize solutes and vacancy-solute trapping by oversize solutes that are weak interstitial traps

  1. Void consolidation during open-die forging for ultralarge rotor shafts. (1. Formulation of void-closing behavior)

    International Nuclear Information System (INIS)

    Ono, Shin-ichi; Minami, Katsuyuki; Ochiai, Tomoyuki; Iwadate, Tadao; Nakata, Shin-ichi.

    1995-01-01

    Open-die forging experiments using different die geometries under hot isothermal conditions and three-dimensional simulations using rigid-plastic finite-element method were performed to formulate a void-closing behavior using only two factors; the integral of hydrostatic stress and the equivalent strain. First, upsetting, side-upsetting and V-shape die cogging of several cylinders with a spherical void at the center are carried out and the information on the void volume reduction is obtained. Seconds, the same forgings, but without voids is treated numerically and the development of stress and strain at the location of voids is investigated. Then, by combining these results, and using regression analysis, it is found that the void volume reduction is expressed as a polynomial function of the two factors. When the polynomial function is used, various forging methods can be evaluated quantitatively in terms of void-closing behavior. Therefore it is beneficial to optimize the forging process for a large rotor shaft. (author)

  2. Measurement of the local void fraction at high pressures in a heating channel

    International Nuclear Information System (INIS)

    Martin, R.

    1969-01-01

    Void fraction measurements were made in two phase flow boiling systems at high pressures in a uniformly heated, rectangular channel with a high aspect ratio. The local void fraction values were calculated from measurements of the absorption of a thin collimated X-ray beam (2 mm x 0.05 mm). The mean void fraction in a horizontal section results from integration of the local values across the section. At a fixed measuring station the quality and- void fraction were varied by changing the heat flux, flow rate and pressure systematically. Two channels were used differing in length and thickness (150.8 cm x 5.3 cm x 0.2 cm and the significant features of this study are: -1) The void fraction measurements are among the first obtained at such high pressure (80 to 140 kg/cm 2 ); -2) In the experimental region under consideration the measurements are systematic and numerous enough to allow accurate interpolations: mass velocity from 50 to 220 g/cm 2 .s, heat flux from 40 to 170 W/cm 2 and calculated steam quality from -0.2 to 0.2; -3) Many tests were performed under local boiling conditions with the mean temperature of the fluid below the saturation temperature; and -4) These results were compared to the predictions of certain models presented in the literature and simple empirical formulae were developed to fit the experimental results. (author) [fr

  3. Constraints on Cosmology and Gravity from the Dynamics of Voids.

    Science.gov (United States)

    Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen

    2016-08-26

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.

  4. On cavitation instabilities with interacting voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2012-01-01

    voids so far apart that the radius of the plastic zone around each void is less than 1% of the current spacing between the voids, can still affect each others at the occurrence of a cavitation instability such that one void stops growing while the other grows in an unstable manner. On the other hand...

  5. Breeding capability and void reactivity analysis of heavy-water-cooled thorium reactor

    International Nuclear Information System (INIS)

    Permana, Sidik; Takaki, Naoyuki; Sekimoto, Hiroshi

    2008-01-01

    The fuel breeding and void reactivity coefficient of thorium reactors have been investigated using heavy water as coolant for several parametric surveys on moderator-to-fuel ratio (MFR) and burnup. The equilibrium fuel cycle burnup calculation has been performed, which is coupled with the cell calculation for this evaluation. The η of 233 U shows its superiority over other fissile nuclides in the surveyed MFR ranges and always stays higher than 2.1, which indicates that the reactor has a breeding condition for a wide range of MFR. A breeding condition with a burnup comparable to that of a standard PWR or higher can be achieved by adopting a larger pin gap (1-6 mm), and a pin gap of about 2 mm can be used to achieve a breeding ratio (BR) of 1.1. A feasible design region of the reactors, which fulfills the breeding condition and negative void reactivity coefficient, has been found. A heavy-water-cooled PWR-type Th- 233 U fuel reactor can be designed as a breeder reactor with negative void coefficient. (author)

  6. A new mathematical process for the calculation of average forms of teeth.

    Science.gov (United States)

    Mehl, A; Blanz, V; Hickel, R

    2005-12-01

    Qualitative visual inspections and linear metric measurements have been predominant methods for describing the morphology of teeth. No quantitative formulation exists for the description of dental features. The aim of this study was to determine and validate a mathematical process for calculation of the average form of first maxillary molars, including the general occlusal features. Stone replicas of 174 caries-free first maxillary molar crowns from young patients ranging from 6 to 9 years of age were measured 3-dimensionally with a laser scanning system at a resolution of approximately 100,000 points. Then, the average tooth was computed, which captured the common features of the molar's surface quantitatively. This new method adapts algorithms both from computer science and neuroscience to detect and associate the same features and same surface points (correspondences) between 1 reference tooth and all other teeth. In this study, the method was tested for 7 different reference teeth. The algorithm does not involve any prior knowledge about teeth and their features. Irrespective of the reference tooth used, the procedure yielded average teeth that showed nearly no differences (less than +/-30 microm). This approach provides a valid quantitative process for calculating 3-dimensional (3D) averages of occlusal surfaces of teeth even in the event of a high number of digitized surface points. Additionally, because this process detects and assigns point-wise feature correspondences between all library teeth, it may also serve as a basis for a more substantiated principal component analysis evaluating the main natural shape deviations from the 3D average.

  7. Comparative sodium void effects for different advanced liquid metal reactor fuel and core designs

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Gedeon, S.R.; Omberg, R.P.

    1991-01-01

    An analysis of metal-, oxide-, and nitride-fueled advanced liquid metal reactor cores was performed to investigate the calculated differences in sodium void reactivity, and to determine the relationship between sodium void reactivity and burnup reactivity swing using the three fuel types. The results of this analysis indicate that nitride fuel has the least positive sodium void reactivity for any given burnup reactivity swing. Thus, it appears that a good design compromise between transient overpower and loss of flow response is obtained using nitride fuel. Additional studies were made to understand these and other nitride advantages. (author)

  8. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds

    Science.gov (United States)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.

  9. Void swelling behaviour of austenitic stainless steel during electron irradiation

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Ti Zhongxin

    1994-04-01

    The irradiation swelling behaviour of 00Cr17Ni14Mo2 austenitic stainless steel (AISI 316L) was investigated by means of high voltage electron microscope. Results showed that in solution annealed condition almost no swelling incubation period existed, and the swelling shifted from the transition period to the steady-state one when the displacement damage was around 40 dpa. In cold rolled condition there was evidently incubation period, and when the displacement damage was up to 84 dpa the swelling still remained in the transition period. The average size and density of voids in both conditions were measured, and the factors, which influenced the void swelling, were discussed. (3 figs.)

  10. Development of Calculation Algorithm for ECCS Kinematic Shock

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Chan; Yoon, Duk-Joo; Ha, Sang-Jun [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    The void fraction of inverted U-pipes in front of SI(Safety Injection) pumps impact on the pipe system of ECCS(Emergency Core Cooling Systems). This phenomena is called as 'Kinematic Shock'. The purpose of this paper is to achieve the more exactly calculation when the kinematic shock is calculated by simplified equation. The behavior of the void packet of the ECCS pipes is illustrated by the simplified (other name is kinematic shock equation).. The kinematic shock is defined as the depth of total length of void clusters in the pipes of ECCS when the void cluster is continually reached along the part of pipes in vertical direction. In this paper, the simplified equation is evaluated by comparing calculation error each other.]. The more exact methods of calculating the depth of the kinematic shock in ECCS is achieved. The error of kinematic shock calculation is strongly depended on the calculation search gap and the order of Taylor's expansion. From this study, to select the suitable search gap and the suitable calculation order, differential root method, secant method, and Taylor's expansion form are compared one another.

  11. OrthoANI: An improved algorithm and software for calculating average nucleotide identity.

    Science.gov (United States)

    Lee, Imchang; Ouk Kim, Yeong; Park, Sang-Cheol; Chun, Jongsik

    2016-02-01

    Species demarcation in Bacteria and Archaea is mainly based on overall genome relatedness, which serves a framework for modern microbiology. Current practice for obtaining these measures between two strains is shifting from experimentally determined similarity obtained by DNA-DNA hybridization (DDH) to genome-sequence-based similarity. Average nucleotide identity (ANI) is a simple algorithm that mimics DDH. Like DDH, ANI values between two genome sequences may be different from each other when reciprocal calculations are compared. We compared 63 690 pairs of genome sequences and found that the differences in reciprocal ANI values are significantly high, exceeding 1 % in some cases. To resolve this problem of not being symmetrical, a new algorithm, named OrthoANI, was developed to accommodate the concept of orthology for which both genome sequences were fragmented and only orthologous fragment pairs taken into consideration for calculating nucleotide identities. OrthoANI is highly correlated with ANI (using BLASTn) and the former showed approximately 0.1 % higher values than the latter. In conclusion, OrthoANI provides a more robust and faster means of calculating average nucleotide identity for taxonomic purposes. The standalone software tools are freely available at http://www.ezbiocloud.net/sw/oat.

  12. On grain size dependent void swelling in pure copper irradiated with fission neutrons

    International Nuclear Information System (INIS)

    Singh, B.N.; Eldrup, M.; Golubov, S.I.; Zinkle, S.J.

    2001-03-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms (SIAs). The phenomenon was investigated already in the 1970s and it was demonstrated that the grain size dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under cascade damage conditions was radically different and could not be explained in terms of the SRT. In an effort to understand the source of this significant difference, the effect of grain size on void swelling under cascade damage conditions has been investigated both experimentally and theoretically in pure copper irradiated with fission neutrons at 623K to a dose level of ∼0.3 dpa (displacement per atom). The post-irradiation defect microstructure including voids was investigated using transmission electron microscopy and positron annihilation spectroscopy. The evolution of void swelling was calculated within the framework of the production bias model (PBM) and the SRT. The grain size dependent void swelling measured experimentally is in good accord with the theoretical results obtained using PMB. Implications of these results on modeling of void swelling under cascade damage conditions are discussed. (au)

  13. Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Park, Sung-Hyeon; Kim, Hak-Sung; Jang, Jin-Wook

    2015-01-01

    In this work, a terahertz time-domain spectroscopy (THz-TDS) imaging technique was used as a non-destructive inspection method for detecting voids in integrated circuit (IC) packages. Transmission and reflection modes, with an angle of incidence of 30°, were used to detect voids in IC packages. The locations of the detected voids in the IC packages could be calculated by analyzing THz waveforms. Finally, voids that are positioned at the different interfaces in the IC package samples could be successfully detected and imaged. Therefore, this THz-TDS imaging technique is expected to be a promising technique for non-destructive evaluation of IC packages. (paper)

  14. Calculating ensemble averaged descriptions of protein rigidity without sampling.

    Directory of Open Access Journals (Sweden)

    Luis C González

    Full Text Available Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.

  15. Void Formation during Diffusion - Two-Dimensional Approach

    Science.gov (United States)

    Wierzba, Bartek

    2016-06-01

    The final set of equations defining the interdiffusion process in solid state is presented. The model is supplemented by vacancy evolution equation. The competition between the Kirkendall shift, backstress effect and vacancy migration is considered. The proper diffusion flux based on the Nernst-Planck formula is proposed. As a result, the comparison of the experimental and calculated evolution of the void formation in the Fe-Pd diffusion couple is shown.

  16. Statistics and geometry of cosmic voids

    International Nuclear Information System (INIS)

    Gaite, José

    2009-01-01

    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological N-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids

  17. The determination of the local conditions for void initiation in front of a crack tip for materials with second-phase particles

    Energy Technology Data Exchange (ETDEWEB)

    Sabirov, I. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria)]. E-mail: sabirov@unileoben.ac.at; Duschlbauer, D. [Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gusshausstrasse 27-29, A-1040 Vienna (Austria); Pettermann, H.E. [Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gusshausstrasse 27-29, A-1040 Vienna (Austria); Kolednik, O. [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria)

    2005-02-25

    A procedure is proposed to determine, for second-phase particles near a crack tip, the maximum particle stresses at the moment of void initiation by either particle fracture or particle/matrix interface separation. A digital image analysis system is applied to perform a quantitative analysis of corresponding fracture surface regions from stereo image pairs taken in the scanning electron microscope. The fracture surface analysis is used to measure, for individual particles, the crack tip opening displacement at the moment of void initiation and the particle location with respect to the crack tip. From these data, the stress tensor at the moment of void initiation is calculated from the Hutchinson-Rice-Rosengren (HRR) field theory. The corresponding average local stresses within the particle are evaluated by a non-linear Mori-Tanaka-type approach. These stresses are compared to estimates according to the models by Argon et al. [A.S. Argon, J. Im, R. Safoglu, Metall. Trans. 6 (1975) 825] and Beremin [F.M. Beremin, Metall. Trans. 12 (1981) 723]. The procedure is demonstrated on an Al6061-10% Al{sub 2}O{sub 3} metal matrix composite.

  18. Void nucleation at heterogeneities

    International Nuclear Information System (INIS)

    Seyyedi, S.A.; Hadji-Mirzai, M.; Russell, K.C.

    The energetics and kinetics of void nucleation at dislocations and interfaces are analyzed. These are potential void nucleation sites only when they are not point defect sinks. Both kinds of site are found to be excellent catalysts in the presence of inert gas

  19. A mechanistic determination of horizontal flow regime bound using void wave celerity

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.W. [Ajou Univ., Suwon (Korea, Republic of)

    1995-09-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed.

  20. A mechanistic determination of horizontal flow regime bound using void wave celerity

    International Nuclear Information System (INIS)

    Park, J.W.

    1995-01-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed

  1. Is the far border of the Local Void expanding?

    Science.gov (United States)

    Iwata, I.; Chamaraux, P.

    2011-07-01

    Context. According to models of evolution in the hierarchical structure formation scenarios, voids of galaxies are expected to expand. The Local Void (LV) is the closest large void, and it provides a unique opportunity to test observationally such an expansion. It has been found that the Local Group, which is on the border of the LV, is running away from the void center at ~260 km s-1. Aims: In this study we investigate the motion of the galaxies at the far-side border of the LV to examine the presence of a possible expansion. Methods: We selected late-type, edge-on spiral galaxies with radial velocities between 3000 km s-1 and 5000 km s-1, and carried out HI 21 cm line and H-band imaging observations. The near-infrared Tully-Fisher relation was calibrated with a large sample of galaxies and carefully corrected for Malmquist bias. It was used to compute the distances and the peculiar velocities of the LV sample galaxies. Among the 36 sample LV galaxies with good quality HI line width measurements, only 15 galaxies were selected for measuring their distances and peculiar velocities, in order to avoid the effect of Malmquist bias. Results: The average peculiar velocity of these 15 galaxies is found to be -419+208-251 km s-1, which is not significantly different from zero. Conclusions: Due to the intrinsically large scatter of Tully-Fisher relation, we cannot conclude whether there is a systematic motion against the center of the LV for the galaxies at the far-side boundary of the void. However, our result is consistent with the hypothesis that those galaxies at the far-side boundary have an average velocity of ~260 km s-1 equivalent to what is found at the position of the Local Group. Based on data taken at Nançay radiotelescope operated by Observatoire de Paris, CNRS and Université d'Orléans, Infrared Survey Facility (IRSF) which is operated by Nagoya university under the cooperation of South African Astronomical Observatory, Kyoto University, and National

  2. Some implications of batch average burnup calculations on predicted spent fuel compositions

    International Nuclear Information System (INIS)

    Alexander, C.W.; Croff, A.G.

    1984-01-01

    The accuracy of using batch-averaged burnups to determine spent fuel characteristics (such as isotopic composition, activity, etc.) was examined for a typical pressurized-water reactor (PWR) fuel discharge batch by comparing characteristics computed by (a) performing a single depletion calculation using the average burnup of the spent fuel and (b) performing separate depletion calculations based on the relative amounts of spent fuel in each of twelve burnup ranges and summing the results. The computations were done using ORIGEN 2. Procedure (b) showed a significant shift toward a greater quantity of the heavier transuranics, which derive from multiple neutron captures, and a corresponding decrease in the amounts of lower transuranics. Those characteristics which derive primarily from fission products, such as total radioactivity and total thermal power, are essentially identical for the two procedures. Those characteristics that derive primarily from the heavier transuranics, such as spontaneous fission neutrons, are underestimated by procedure (a)

  3. CT measurements of SAP voids in concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Bentz, Dale P.; Hasholt, Marianne Tange

    2010-01-01

    X-ray computed tomography (CT) scanning is used to determine the SAP void distribution in hardened concrete. Three different approaches are used to analyse a binary data set created from CT measurement. One approach classifies a cluster of connected, empty voxels (volumetric pixel of a 3D image......) as one void, whereas the other two approaches are able to classify a cluster of connected, empty voxels as a number of individual voids. Superabsorbent polymers (SAP) have been used to incorporate air into concrete. An advantage of using SAP is that it enables control of the amount and size...... of the created air voids. The results indicate the presence of void clusters. To identify the individual voids, special computational approaches are needed. The addition of SAP results in a dominant peak in two of the three air void distributions. Based on the position (void diameter) of the peak, it is possible...

  4. Quantifying the distribution of paste-void spacing of hardened cement paste using X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Tae Sup, E-mail: taesup@yonsei.ac.kr [School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Kim, Kwang Yeom, E-mail: kimky@kict.re.kr [Korea Institute of Construction Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang, 411-712 (Korea, Republic of); Choo, Jinhyun, E-mail: jinhyun@stanford.edu [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305 (United States); Kang, Dong Hun, E-mail: timeriver@naver.com [School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)

    2012-11-15

    The distribution of paste-void spacing in cement-based materials is an important feature related to the freeze-thaw durability of these materials, but its reliable estimation remains an unresolved problem. Herein, we evaluate the capability of X-ray computed tomography (CT) for reliable quantification of the distribution of paste-void spacing. Using X-ray CT images of three mortar specimens having different air-entrainment characteristics, we calculate the distributions of paste-void spacing of the specimens by applying previously suggested methods for deriving the exact spacing of air-void systems. This methodology is assessed by comparing the 95th percentile of the cumulative distribution function of the paste-void spacing with spacing factors computed by applying the linear-traverse method to 3D air-void system and reconstructing equivalent air-void distribution in 3D. Results show that the distributions of equivalent void diameter and paste-void spacing follow lognormal and normal distributions, respectively, and the ratios between the 95th percentile paste-void spacing value and the spacing factors reside within the ranges reported by previous numerical studies. This experimental finding indicates that the distribution of paste-void spacing quantified using X-ray CT has the potential to be the basis for a statistical assessment of the freeze-thaw durability of cement-based materials. - Highlights: Black-Right-Pointing-Pointer The paste-void spacing in 3D can be quantified by X-ray CT. Black-Right-Pointing-Pointer The distribution of the paste-void spacing follows normal distribution. Black-Right-Pointing-Pointer The spacing factor and 95th percentile of CDF of paste-void spacing are correlated.

  5. Alignment of voids in the cosmic web

    NARCIS (Netherlands)

    Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.

    2008-01-01

    We investigate the shapes and mutual alignment of voids in the large-scale matter distribution of a Lambda cold dark matter (Lambda CDM) cosmology simulation. The voids are identified using the novel watershed void finder (WVF) technique. The identified voids are quite non-spherical and slightly

  6. THE PREDICTION OF VOID VOLUME IN SUBCOOLED NUCLEATE POOL BOILING

    Energy Technology Data Exchange (ETDEWEB)

    Duke, E. E. [General Dynamics, San Diego, CA (United States)

    1963-11-15

    A three- step equation was developed that adequately describes the average volume of vapor occurring on a horizontal surface due to nucleate pool boiling of subcooled water. Since extensive bubble frequency data are lacking, the data of others were combined with experimental observations to make predictions of void volume at ambient pressure with various degrees of subcooling. (auth)

  7. Analysis on void reactivity of DCA lattice

    International Nuclear Information System (INIS)

    Min, B. J.; Noh, K. H.; Choi, H. B.; Yang, M. K.

    2001-01-01

    In case of loss of coolant accident, the void reactivity of CANDU fuel provides the positive reactivity and increases the reactor power rapidly. Therefore, it is required to secure credibility of the void reactivity for the design and analysis of reactor, which motivated a study to assess the measurement data of void reactivity. The assessment of lattice code was performed with the experimental data of void reactivity at 30, 70, 87 and 100% of void fractions. The infinite multiplication factors increased in four types of fuels as the void fractions of them grow. The infinite multiplication factors of uranium fuels are almost within 1%, but those of Pu fuels are over 10% by the results of WIMS-AECL and MCNP-4B codes. Moreover, coolant void reactivity of the core loaded with plutonium fuel is more negative compared with that with uranium fuel because of spectrum hardening resulting from large void fraction

  8. A subchannel and CFD analysis of void distribution for the BWR fuel bundle test benchmark

    International Nuclear Information System (INIS)

    In, Wang-Kee; Hwang, Dae-Hyun; Jeong, Jae Jun

    2013-01-01

    Highlights: ► We analyzed subchannel void distributions using subchannel, system and CFD codes. ► The mean error and standard deviation at steady states were compared. ► The deviation of the CFD simulation was greater than those of the others. ► The large deviation of the CFD prediction is due to interface model uncertainties. -- Abstract: The subchannel grade and microscopic void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility have been evaluated with a subchannel analysis code MATRA, a system code MARS and a CFD code CFX-10. Sixteen test series from five different test bundles were selected for the analysis of the steady-state subchannel void distributions. Four test cases for a high burn-up 8 × 8 fuel bundle with a single water rod were simulated using CFX-10 for the microscopic void distribution benchmark. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5 to 25%. The results of the transient calculations were also similar to each other and very reasonable. The CFD simulation reproduced the overall radial void distribution trend which produces less vapor in the central part of the bundle and more vapor in the periphery. However, the predicted variation of the void distribution inside the subchannels is small, while the measured one is large showing a very high concentration in the center of the subchannels. The variations of the void distribution between the center of the subchannels and the subchannel gap are estimated to be about 5–10% for the CFD prediction and more than 20% for the experiment

  9. Uncertainty Margin of Void Packet Determination for Ultrasonic Test in NPP

    International Nuclear Information System (INIS)

    Lee, Seungchan; Sung, Jejung; Lee, Jongchan; Kim, Jonguk

    2014-01-01

    In this study, the uncertainty of the void packet determination is estimated and the conservatism is reviewed by comparing with realistic uncertainty of Heckle's uncertainty. The methodology of ISO GUM is fully applied to calculate uncertainty, combined uncertainty and effective degree of freedom. Here some results are achieved as below: Combined uncertainty(UT) : 4.98%, Combined uncertainty(Heckle) : 1.44%, Degree of freedom: 5 ∼ 15, Effective degree of freedom(UT): 24.11, Effective degree of freedom(Heckle): 28.54, K value of t-distribution(UT): 2.042, K value of t-distribution(Heckle): 2.04, The uncertainty of this study using UT is enough in the case of achieving conservatism when the void packet determination of the safety related system is determined. As result of this study, UT uncertainty is more conservative than the Heckle's realistic uncertainty. From these results, it is shown that UT method has the great safety margin in determining the void packet. In comparing UT uncertainty with realistic uncertainty, this study (UT) has the conservatism of more than 3.4 times. UT method is good method to determine the void packet of ECCS pipe and to achieve the safety margin. In a safety related system, a void packet determination is issued by US NRC through the Generic Letter 2008-01. In case of the safety function, ECCS, CSS, and RHR systems are affected by the void packet. The related study has been being carried out by KHNP since 2012. In this study, the void packet determination using a ultra sonic test method has been carried out in some sites. This paper shows the uncertainty of the method using the ultra sonic test. The key parameters are introduced and estimated. Specially, the measurement conservatism for NPP is introduced to show the uncertainty margin

  10. Uncertainty Margin of Void Packet Determination for Ultrasonic Test in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungchan; Sung, Jejung [Korea Hydro Nuclear Power Electricity Co., Daejeon (Korea, Republic of); Lee, Jongchan; Kim, Jonguk [FNC Technology Co., LTD., Yongin (Korea, Republic of)

    2014-05-15

    In this study, the uncertainty of the void packet determination is estimated and the conservatism is reviewed by comparing with realistic uncertainty of Heckle's uncertainty. The methodology of ISO GUM is fully applied to calculate uncertainty, combined uncertainty and effective degree of freedom. Here some results are achieved as below: Combined uncertainty(UT) : 4.98%, Combined uncertainty(Heckle) : 1.44%, Degree of freedom: 5 ∼ 15, Effective degree of freedom(UT): 24.11, Effective degree of freedom(Heckle): 28.54, K value of t-distribution(UT): 2.042, K value of t-distribution(Heckle): 2.04, The uncertainty of this study using UT is enough in the case of achieving conservatism when the void packet determination of the safety related system is determined. As result of this study, UT uncertainty is more conservative than the Heckle's realistic uncertainty. From these results, it is shown that UT method has the great safety margin in determining the void packet. In comparing UT uncertainty with realistic uncertainty, this study (UT) has the conservatism of more than 3.4 times. UT method is good method to determine the void packet of ECCS pipe and to achieve the safety margin. In a safety related system, a void packet determination is issued by US NRC through the Generic Letter 2008-01. In case of the safety function, ECCS, CSS, and RHR systems are affected by the void packet. The related study has been being carried out by KHNP since 2012. In this study, the void packet determination using a ultra sonic test method has been carried out in some sites. This paper shows the uncertainty of the method using the ultra sonic test. The key parameters are introduced and estimated. Specially, the measurement conservatism for NPP is introduced to show the uncertainty margin.

  11. Temperature controlled 'void' formation

    International Nuclear Information System (INIS)

    Dasgupta, P.; Sharma, B.D.

    1975-01-01

    The nucleation and growth of voids in structural materials during high temperature deformation or irradiation is essentially dependent upon the existence of 'vacancy supersaturation'. The role of temperature dependent diffusion processes in 'void' formation under varying conditions, and the mechanical property changes associated with this microstructure are briefly reviewed. (author)

  12. Dynamic void behavior in polymerizing polymethyl methacrylate cement.

    Science.gov (United States)

    Muller, Scott D; McCaskie, Andrew W

    2006-02-01

    Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids.

  13. Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2011-01-01

    Failure under intense shearing at close to zero stress triaxiality is widely observed for ductile metallic materials, and is identified in experiments as smeared-out dimples on the fracture surface. Numerical cell-model studies of equal sized voids have revealed that the mechanism governing...... this shear failure mode boils down to the interaction between primary voids which rotate and elongate until coalescence occurs under severe plastic deformation of the internal ligaments. The objective of this paper is to analyze this failure mechanism of primary voids and to study the effect of smaller...... secondary damage that co-exists with or nucleation in the ligaments between larger voids that coalesce during intense shearing. A numerical cell-model study is carried out to gain a parametric understanding of the overall material response for different initial conditions of the two void populations...

  14. Structure of two-phase air-water flows. Study of average void fraction and flow patterns; Structure des ecoulements diphasiques eau-air. Etude de la fraction de vide moyenne et des configurations d'ecoulement

    Energy Technology Data Exchange (ETDEWEB)

    Roumy, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V{sub sg} = f(<{alpha}>) * g(V{sub sl}). The function g(V{sub sl}) for the case of independent bubbles has been found to be: g(V{sub sl}) = V{sub sl} + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V{sub sg}/V{sub sl}. (author) [French] Ce rapport est une etude experimentale d'un melange diphasique eau-air dans des tubes verticaux de differents diametres. Nous avons mesure la fraction de vide moyenne dans une portion de canal de longueur 2 m, au moyen d'un systeme de vannes a fermeture rapide et simultanee. Au moyen de sondes resistives et de photographies nous avons determine la configuration de l'ecoulement et trace des cartes donnant les frontieres entre les differentes configurations d'ecoulement: bulles independantes, bulles agglomerees, bouchons, semi-annulaire, annulaire. Nous montrons que pour les regimes a bulles et a bouchons, une equation de la forme V{sub sg} = f(<{alpha}>) * g(V{sub sl}) relie la fraction de vide moyenne aux vitesses superficielles de chacune des phases. Nous avons pu determiner la fonction g(V{sub sl}) dans le cas du regime a bulles independantes, et nous trouvons g(V{sub sl}) = V{sub sl} + 20. Pour les regimes semi-annulaire et annulaire, il semble qu'en premiere approximation, la fraction de vide moyenne ne depende que

  15. Dose calculation with respiration-averaged CT processed from cine CT without a respiratory surrogate

    International Nuclear Information System (INIS)

    Riegel, Adam C.; Ahmad, Moiz; Sun Xiaojun; Pan Tinsu

    2008-01-01

    Dose calculation for thoracic radiotherapy is commonly performed on a free-breathing helical CT despite artifacts caused by respiratory motion. Four-dimensional computed tomography (4D-CT) is one method to incorporate motion information into the treatment planning process. Some centers now use the respiration-averaged CT (RACT), the pixel-by-pixel average of the ten phases of 4D-CT, for dose calculation. This method, while sparing the tedious task of 4D dose calculation, still requires 4D-CT technology. The authors have recently developed a means to reconstruct RACT directly from unsorted cine CT data from which 4D-CT is formed, bypassing the need for a respiratory surrogate. Using RACT from cine CT for dose calculation may be a means to incorporate motion information into dose calculation without performing 4D-CT. The purpose of this study was to determine if RACT from cine CT can be substituted for RACT from 4D-CT for the purposes of dose calculation, and if increasing the cine duration can decrease differences between the dose distributions. Cine CT data and corresponding 4D-CT simulations for 23 patients with at least two breathing cycles per cine duration were retrieved. RACT was generated four ways: First from ten phases of 4D-CT, second, from 1 breathing cycle of images, third, from 1.5 breathing cycles of images, and fourth, from 2 breathing cycles of images. The clinical treatment plan was transferred to each RACT and dose was recalculated. Dose planes were exported at orthogonal planes through the isocenter (coronal, sagittal, and transverse orientations). The resulting dose distributions were compared using the gamma (γ) index within the planning target volume (PTV). Failure criteria were set to 2%/1 mm. A follow-up study with 50 additional lung cancer patients was performed to increase sample size. The same dose recalculation and analysis was performed. In the primary patient group, 22 of 23 patients had 100% of points within the PTV pass γ criteria

  16. Microstructural characterization of XLPE electrical insulation in power cables: determination of void size distributions using TEM

    International Nuclear Information System (INIS)

    Markey, L; Stevens, G C

    2003-01-01

    In an effort to progress in our understanding of the ageing mechanisms of high voltage cables submitted to electrical and thermal stresses, we present a quantitative study of voids, the defects which are considered to be partly responsible for cable failure. We propose a method based on large data sets of transmission electron microscopy (TEM) observations of replicated samples allowing for the determination of void concentration distribution as a function of void size in the mesoscopic to microscopic range at any point in the cable insulation. A theory is also developed to calculate the effect of etching on the apparent size of the voids observed. We present the first results of this sort ever obtained on two industrial cables, one of which was aged in an AC field. Results clearly indicate that a much larger concentration of voids occur near the inner semiconductor compared to the bulk of the insulation, independently of ageing. An effect of ageing can also be seen near the inner semiconductor, resulting in an increase in the total void internal surface area and a slight shift of the concentration curve towards larger voids, with the peak moving from about 40 nm to about 50 nm

  17. Nucleation of voids and other irradiation-produced defect aggregates

    International Nuclear Information System (INIS)

    Wiedersich, H.; Katz, J.L.

    1976-01-01

    The nucleation of defect clusters in crystalline solids from radiation-produced defects is different from the usual nucleation processes in one important aspect: the condensing defects, interstitial atoms and vacancies, can mutually annihilate and are thus similar to matter and antimatter. The nucleation process is described as the simultaneous reaction of vacancies and interstitials (and gas atoms if present) with embryos of all sizes. The reaction rates for acquisition of point defects (and gas atoms) are calculated from their respective jump frequencies and concentrations in the supersaturated system. The reaction rates for emission of point defects are derived from the free energies of the defect clusters in the thermodynamic equilibrium system, i.e., the system without excess point defects. This procedure differs from that used in conventional nucleation theory and permits the inclusion of the ''antimatter'' defect into the set of reaction-rate equations in a straightforward manner. The method is applied to steady-state nucleation, during irradiation, of both dislocation loops and voids in the absence and in the presence of immobile and mobile gas. The predictions of the nucleation theory are shown to be in qualitative agreement with experimental observations, e.g., void densities increase with increasing displacement rates; gases such as helium enhance void nucleation; at low displacement rates and at high temperatures the presence of gas is essential to void formation. For quantitative predictions, the theory must be extended to include the termination of nucleation

  18. Using voids to unscreen modified gravity

    Science.gov (United States)

    Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo; Cautun, Marius

    2018-04-01

    The Vainshtein mechanism, present in many models of gravity, is very effective at screening dark matter haloes such that the fifth force is negligible and general relativity is recovered within their Vainshtein radii. Vainshtein screening is independent of halo mass and environment, in contrast to e.g. chameleon screening, making it difficult to test. However, our previous studies have found that the dark matter particles in filaments, walls, and voids are not screened by the Vainshtein mechanism. We therefore investigate whether cosmic voids, identified as local density minima using a watershed technique, can be used to test models of gravity that exhibit Vainshtein screening. We measure density, velocity, and screening profiles of stacked voids in cosmological N-body simulations using both dark matter particles and dark matter haloes as tracers of the density field. We find that the voids are completely unscreened, and the tangential velocity and velocity dispersion profiles of stacked voids show a clear deviation from Λ cold dark matter at all radii. Voids have the potential to provide a powerful test of gravity on cosmological scales.

  19. STM-Induced Void Formation at the Al{sub 2}O{sub 3}/Ni{sub 3}Al(111) Interface

    Energy Technology Data Exchange (ETDEWEB)

    Magtoto, N.P.; Niu, C.; Anzaldura, M.; Kelber, J.A.; Jennison, D.R.

    2000-09-21

    Under UHV conditions at 300 K, the applied electric field and/or resulting current from an STM tip creates nanoscale voids at the interface between an epitaxial, 7.0 {angstrom} thick Al{sub 2}O{sub 3} film and a Ni{sub 3}Al(111) substrate. This phenomenon is independent of tip polarity. Constant current (1 nA) images obtained at +0.1 V bias and +2.0 bias voltage (sample positive) reveal that voids are within the metal at the interface and, when small, are capped by the oxide film. Void size increases with time of exposure. The rate of void growth increases with applied bias/field and tunneling current, and increases significantly for field strengths >5 MV/cm, well below the dielectric breakdown threshold of 12 {+-} 1 MV/cm. Slower rates of void growth are, however, observed at lower applied field strengths. Continued growth of voids, to {approximately}30 {angstrom} deep and {approximately}500 {angstrom} wide, leads to the eventual failure of the oxide overlayer. Density Functional Theory calculations suggest a reduction-oxidation (REDOX) mechanism: interracial metal atoms are oxidized via transport into the oxide, while oxide surface Al cations are reduced to admetal species which rapidly diffuse away. This is found to be exothermic in model calculations, regardless of the details of the oxide film structure; thus, the barriers to void formation are kinetic rather than thermodynamic. We discuss our results in terms of mechanisms for the localized pitting corrosion of aluminum, as our results suggest nanovoid formation requires just electric field and current, which are ubiquitous in environmental conditions.

  20. Calculation of weighted averages approach for the estimation of ping tolerance values

    Science.gov (United States)

    Silalom, S.; Carter, J.L.; Chantaramongkol, P.

    2010-01-01

    A biotic index was created and proposed as a tool to assess water quality in the Upper Mae Ping sub-watersheds. The Ping biotic index was calculated by utilizing Ping tolerance values. This paper presents the calculation of Ping tolerance values of the collected macroinvertebrates. Ping tolerance values were estimated by a weighted averages approach based on the abundance of macroinvertebrates and six chemical constituents that include conductivity, dissolved oxygen, biochemical oxygen demand, ammonia nitrogen, nitrate nitrogen and orthophosphate. Ping tolerance values range from 0 to 10. Macroinvertebrates assigned a 0 are very sensitive to organic pollution while macroinvertebrates assigned 10 are highly tolerant to pollution.

  1. Post-void residual urine under 150 ml does not exclude voiding dysfunction in women

    DEFF Research Database (Denmark)

    Khayyami, Yasmine; Klarskov, Niels; Lose, Gunnar

    2016-01-01

    INTRODUCTION AND HYPOTHESIS: It has been claimed that post-void residual urine (PVR) below 150 ml rules out voiding dysfunction in women with stress urinary incontinence (SUI) and provides license to perform sling surgery. The cut-off of 150 ml seems arbitrary, not evidence-based, and so we sough...

  2. Documenting Student Performance: An Alternative to the Traditional Calculation of Grade Point Averages

    Science.gov (United States)

    Volwerk, Johannes J.; Tindal, Gerald

    2012-01-01

    Traditionally, students in secondary and postsecondary education have grade point averages (GPA) calculated, and a cumulative GPA computed to summarize overall performance at their institutions. GPAs are used for acknowledgement and awards, as partial evidence for admission to other institutions (colleges and universities), and for awarding…

  3. Separation of nucleation and growth of voids during tensile deformation of a dual phase steel using synchrotron microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Requena, Guillermo, E-mail: guillermo.requena@tuwien.ac.at [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Maire, Eric; Leguen, Claire [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Thuillier, Sandrine [LIMATB, Université de Bretagne-Sud, rue de Saint Maudé, BP 92116, 56321 Lorient Cedex (France)

    2014-01-01

    The damage evolution in a DP980 dual phase steel is followed in situ by synchrotron microtomography during tensile deformation focusing on the effect that the triaxiality, induced by different sample geometries, exerts on damage formation and damage evolution. The growth of existing voids is separated from the voids nucleated between consecutive deformation steps using three-dimensional image analysis. The experimental results are correlated with those obtained by finite element analysis using a Gurson–Tvergaard–Needleman framework with a Chu and Needleman formulation to introduce the effect of nucleation of cavities. A relatively simple way to determine the nucleation parameters is proposed based on the volume of nucleated voids obtained from the tomographies. The evolution of the total volume fraction of cavities obtained from the calculations shows a good agreement with the experiments for the notched samples and reflects the effect of triaxiality on damage. Contrarily to experiments, the calculated accumulated volume fraction of nucleated voids does not reflect the effect of triaxiality suggesting the necessity to implement this parameter in the nucleation model.

  4. General theory for calculating disorder-averaged Green's function correlators within the coherent potential approximation

    Science.gov (United States)

    Zhou, Chenyi; Guo, Hong

    2017-01-01

    We report a diagrammatic method to solve the general problem of calculating configurationally averaged Green's function correlators that appear in quantum transport theory for nanostructures containing disorder. The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of transport calculations within the formalism. The theory is applied to calculate the quantum transport properties such as average ac conductance and transmission moments of a disordered tight-binding model, and results are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety of physical systems where disorder scattering is important.

  5. 38 CFR 3.207 - Void or annulled marriage.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled. A...

  6. Effects of two-phase mixing and void drift models on subchannel void fraction predictions in vertical bundles

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.H. [McMaster Univ., Hamilton, Ontario (Canada)], E-mail: leungk4@mcmaster.ca

    2009-07-01

    The evaluation of the subchannel code ASSERT against the OECD/NEA BFBT benchmark data demonstrated that at low pressures, the void fraction in the corner and side subchannels of a vertical bundle was over-predicted. Preliminary results suggest that this was due to the use of Carlucci's empirical correlation for void drift beyond its applicable range of pressure. Further examination indicates that the choice of the mixing and void drift models has a negligible effect on the error of the subchannel void fraction predictions. A single, isolated subchannel was simulated and results suggest that the root cause behind the over-prediction is inadequate mixing at the sides and corners of the bundle. Increasing the magnitude of the void drift coefficients in Carlucci's model at low pressure was found to improve the overall accuracy of the predictions. A simple correlation relating {omega} to the outlet pressure was found to increase the number of points falling within experimental error by 1.0%. (author)

  7. Effects of two-phase mixing and void drift models on subchannel void fraction predictions in vertical bundles

    International Nuclear Information System (INIS)

    Leung, K.H.

    2009-01-01

    The evaluation of the subchannel code ASSERT against the OECD/NEA BFBT benchmark data demonstrated that at low pressures, the void fraction in the corner and side subchannels of a vertical bundle was over-predicted. Preliminary results suggest that this was due to the use of Carlucci's empirical correlation for void drift beyond its applicable range of pressure. Further examination indicates that the choice of the mixing and void drift models has a negligible effect on the error of the subchannel void fraction predictions. A single, isolated subchannel was simulated and results suggest that the root cause behind the over-prediction is inadequate mixing at the sides and corners of the bundle. Increasing the magnitude of the void drift coefficients in Carlucci's model at low pressure was found to improve the overall accuracy of the predictions. A simple correlation relating Ω to the outlet pressure was found to increase the number of points falling within experimental error by 1.0%. (author)

  8. Void Measurement by the ({gamma}, n) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Zia

    1962-09-15

    It is proposed to use the ({gamma}, n) reaction for the measurement of the integrated void volume fraction in two phase flow of D{sub 2}O inside a duct. This method is applicable to different channel geometries, and it is shown to be insensitive to the pattern of void distribution over the cross-sectional area of the channels The method has been tested on mock-ups of voids in a round duct of 6 mm inside diameter. About 40 m.c. {sup 24}Na was used as a source of gamma-rays. The test results show that the maximum measured error in this arrangement is less than 2.5 % (net void) for a range of 2.7 % to 44.44 % actual void volume fractions.

  9. Void Measurement by the (γ, n) Reaction

    International Nuclear Information System (INIS)

    Rouhani, S. Zia

    1962-09-01

    It is proposed to use the (γ, n) reaction for the measurement of the integrated void volume fraction in two phase flow of D 2 O inside a duct. This method is applicable to different channel geometries, and it is shown to be insensitive to the pattern of void distribution over the cross-sectional area of the channels The method has been tested on mock-ups of voids in a round duct of 6 mm inside diameter. About 40 m.c. 24 Na was used as a source of gamma-rays. The test results show that the maximum measured error in this arrangement is less than 2.5 % (net void) for a range of 2.7 % to 44.44 % actual void volume fractions

  10. Determination of a cross-sectional void fraction in a tube bundle using a single beam gamma densitometer

    International Nuclear Information System (INIS)

    Guichard, J.; Mezoul, B.; Peturaud, P.; Thomas, B.

    1991-06-01

    In order to qualify 3-dimensional two-phase flow computer codes modelling average flows in tube bundles, cross-section average void fractions must be measured over sub-channels. On the VATICAN mockup, such void fractions(integrated on the mockup thickness) are determined using a single (narrow) beam gamma densitometer. But to avoid a refined exploration of each measurement mesh, for each test, empirical calibration curves have been developed in a regular mesh of the mockup, in axial flow conditions. These calibration curves, which evaluate the sought cross-sectional value as a function of a chordal void fraction (right in the inter-rod gap) depend only on heat flux density and pressure. The data are consistent with the ARMAND-MASSENA and LELLOUCHE-ZOLOTAR slip correlations, and they are fitted by 3rd degree polynomials, for each heat flux density investigated, with a good accuracy. Unfortunately, preliminary testing and analysis indicate that the use of these calibration curves in subcooled boiling and transverse mixing zones might result in significant uncertainties and errors

  11. Vesicoureteral reflux in children: comparison of contrast - enhanced voiding ultrasonography with radiographic voiding cystourethrography - preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Chong Hyun; Kim, Hyun Joo; Goo, Hyun Woo; Kim, Hungy; Lee, Jung Joo; Kim, Ellen Ai-Rhan; Kim, Ki Soo; Park, Young Seo; Pi, Soo Young [Ulsan Univ. College of Medicine, Seoul (Korea, Republic of)

    2001-01-01

    To compared the usefullness of contrst-enhanced voiding ultrasonogrphy (US) with that of radiogrphic voiding cystourethrography (VCUG) for the diagnosis of vesicoureteral reflux (VUR) in children. Ninety-five kidney-ureter units of 47 patients referred for investigation of VUR underwent contrast -enhanced voiding US followed by radiographic VCUG. After baseline US examination of the urinaru tract, residual urine in the bladder was drained through an inserted Foley catheter and the bladder was gravityfilled at a height of 1 m with normal saline. A galactose-based, microbubble-containning echo-enhancing agent (Lvovist; Dchering, Berlin, Germany) was then administered. The amount of this was approximately 10% of bldder capacity, and VUR was diagnosed when microbubbles appeared in the ureter or pelvocalyceal system. Using radiographic VCUG as a reference point, the accuracy with which contrst-enhanced voiding US detected VUR was calcilated. In 87 of 95 kidney-ureter units (91.6%), the two methods showed similiar results regarding the diagnosis or exclusion of VUR, which was detected by both in 12 units, but by neither in 75. VUR was shown to occcur in a total of 20 units, but in eight of these by one method only. In two units, VUR detected by contrast-enhanced voiding US was was not demostarted by radiographic VCUG; in six units, the resverse was true. In the detection of VUR, contrast-enhanced voiding us showed a sensitivity of 66.7%, a sprcificity of 97.4%, a positive predictive value of 85.7%, and a negative predictive value of 92.6%. Contrst-enhanced voiding US is highly specific and has high positive and nagative predictive values; its sensitivity, however, is not sufficiently high. The modality appears to be a useful diagnostic tool for the detection of VUR without exposure to ionizing radiation, though to be certain of its value, more experience of its use its first required.

  12. Vesicoureteral reflux in children: comparison of contrast - enhanced voiding ultrasonography with radiographic voiding cystourethrography - preliminary report

    International Nuclear Information System (INIS)

    Yoon, Chong Hyun; Kim, Hyun Joo; Goo, Hyun Woo; Kim, Hungy; Lee, Jung Joo; Kim, Ellen Ai-Rhan; Kim, Ki Soo; Park, Young Seo; Pi, Soo Young

    2001-01-01

    To compared the usefullness of contrst-enhanced voiding ultrasonogrphy (US) with that of radiogrphic voiding cystourethrography (VCUG) for the diagnosis of vesicoureteral reflux (VUR) in children. Ninety-five kidney-ureter units of 47 patients referred for investigation of VUR underwent contrast -enhanced voiding US followed by radiographic VCUG. After baseline US examination of the urinaru tract, residual urine in the bladder was drained through an inserted Foley catheter and the bladder was gravityfilled at a height of 1 m with normal saline. A galactose-based, microbubble-containning echo-enhancing agent (Lvovist; Dchering, Berlin, Germany) was then administered. The amount of this was approximately 10% of bldder capacity, and VUR was diagnosed when microbubbles appeared in the ureter or pelvocalyceal system. Using radiographic VCUG as a reference point, the accuracy with which contrst-enhanced voiding US detected VUR was calcilated. In 87 of 95 kidney-ureter units (91.6%), the two methods showed similiar results regarding the diagnosis or exclusion of VUR, which was detected by both in 12 units, but by neither in 75. VUR was shown to occcur in a total of 20 units, but in eight of these by one method only. In two units, VUR detected by contrast-enhanced voiding US was was not demostarted by radiographic VCUG; in six units, the resverse was true. In the detection of VUR, contrast-enhanced voiding us showed a sensitivity of 66.7%, a sprcificity of 97.4%, a positive predictive value of 85.7%, and a negative predictive value of 92.6%. Contrst-enhanced voiding US is highly specific and has high positive and nagative predictive values; its sensitivity, however, is not sufficiently high. The modality appears to be a useful diagnostic tool for the detection of VUR without exposure to ionizing radiation, though to be certain of its value, more experience of its use its first required

  13. Pores and Void in Asclepiades’ Physical Theory

    Science.gov (United States)

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299

  14. A NEW STATISTICAL PERSPECTIVE TO THE COSMIC VOID DISTRIBUTION

    International Nuclear Information System (INIS)

    Pycke, J-R; Russell, E.

    2016-01-01

    In this study, we obtain the size distribution of voids as a three-parameter redshift-independent log-normal void probability function (VPF) directly from the Cosmic Void Catalog (CVC). Although many statistical models of void distributions are based on the counts in randomly placed cells, the log-normal VPF that we obtain here is independent of the shape of the voids due to the parameter-free void finder of the CVC. We use three void populations drawn from the CVC generated by the Halo Occupation Distribution (HOD) Mocks, which are tuned to three mock SDSS samples to investigate the void distribution statistically and to investigate the effects of the environments on the size distribution. As a result, it is shown that void size distributions obtained from the HOD Mock samples are satisfied by the three-parameter log-normal distribution. In addition, we find that there may be a relation between the hierarchical formation, skewness, and kurtosis of the log-normal distribution for each catalog. We also show that the shape of the three-parameter distribution from the samples is strikingly similar to the galaxy log-normal mass distribution obtained from numerical studies. This similarity between void size and galaxy mass distributions may possibly indicate evidence of nonlinear mechanisms affecting both voids and galaxies, such as large-scale accretion and tidal effects. Considering the fact that in this study, all voids are generated by galaxy mocks and show hierarchical structures in different levels, it may be possible that the same nonlinear mechanisms of mass distribution affect the void size distribution.

  15. Experiments in ZED-2 to study the physics of low-void reactivity fuel in CANDU

    International Nuclear Information System (INIS)

    Zeller, M.B.; Celli, A.; McPhee, G.P.

    1994-01-01

    Prospective CANDU clients have indicated a desire for a zero or negative coolant void reactivity. In response to this market requirement AECL Research and AECL CANDU are jointly developing and testing a Low-Void Reactivity Fuel (LVRF) bundle, which will be retrofitable to the current generation of CANDU reactors. An important component of the LVRF program is the undertaking of reactor-physics experiments in the zero-energy ZED-2 lattice test facility at Chalk River Laboratories. Preliminary void-reactivity measurements have already been performed in ZED-2 using a limited amount of the prototype fuel. These experiments were to provide a proof-of-principle for the LVRF concept. A more comprehensive set of experiments are planned for later this year. Experiments to be performed include: measuring the critical buckling of CANDU-type lattices containing LVRF, with and without coolant in the channels; measuring the reactivity effect of heating the LVRF fuel and coolant in ZED-2 hot channels; and measuring detailed reaction rates and neutron density distributions across a LVRF bundle, in voided and D 2 O-cooled channels, by the foil activation method. This paper describes the experimental approach to be used for the study and presents calculations employing transport and diffusion theory to predict the results. The codes used for the simulations are the lattice code WIMS-AECL and the core code CONIFERS. Included in the paper are results from the preliminary measurement of void coefficient for LVRF in a ZED-2 lattice and a comparison of those results to predictions based on WIMS-AECL calculations. (author). 3 refs., 1 tab., 10 figs

  16. An improved electrical-conductance sensor for void-fraction measurement in a horizontal pipe

    International Nuclear Information System (INIS)

    Ko, Min Seok; Jemg, Dong Wook; Kim, Sin; Lee, Bo An; Won, Woo Youn; Lee, Yeon Gun

    2015-01-01

    The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor

  17. International Benchmark on Pressurised Water Reactor Sub-channel and Bundle Tests. Volume II: Benchmark Results of Phase I: Void Distribution

    International Nuclear Information System (INIS)

    Rubin, Adam; Avramova, Maria; Velazquez-Lozada, Alexander

    2016-03-01

    results were achieved by codes that used either turbulent mixing or dispersion terms for modelling cross-flow. It was also noted that, for the bundle cases, some of the codes did not correctly calculate the bundle-averaged thermal equilibrium quality, and this may indicate an inability to predict the correct void fraction. A time shift was noted in the void fraction results for the temperature increase transient cases, indicating that the test apparatus may have experienced unexpected heat transfer between the downcomer and test section. This heat transfer is only expected to be of significance in the transient test cases, as the steady-state cases allow the system to reach thermal equilibrium

  18. Nonlocal plasticity effects on interaction of different size voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof

    2004-01-01

    A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between...... dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for. (C) 2003 Elsevier Ltd. All rights reserved....

  19. Prediction of void fraction in subcooled flow boiling

    International Nuclear Information System (INIS)

    Petelin, S.; Koncar, B.

    1998-01-01

    The information on heat transfer and especially on the void fraction in the reactor core under subcooled conditions is very important for the water-cooled nuclear reactors, because of its influence upon the reactivity of the systems. This paper gives a short overview of subcooled boiling phenomenon and indicates the simplifications made by the RELAP5 model of subcooled boiling. RELAP5/MOD3.2 calculations were compared with simple one-dimensional models and with high-pressure Bartolomey experiments.(author)

  20. An analytical approach to the positive reactivity void coefficient of TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Edgue, Erdinc; Yarman, Tolga

    1988-01-01

    Previous calculations of reactivity void coefficient of I.T.U. TRIGA Mark-II Reactor was done by the second author et al. The theoretical predictions were afterwards, checked in this reactor experimentally. In this work an analytical approach is developed to evaluate rather quickly the reactivity void coefficient of I.T.U. TRIGA Mark-II, versus the size of the void inserted into the reactor. It is thus assumed that the reactor is a cylindrical, bare nuclear system. Next a belt of water of 2πrΔrH is introduced axially at a distance r from the center line of the system. r here, is the thickness of the belt, and H is the height of the reactor. The void is described by decreasing the water density in the belt region. A two group diffusion theory is adopted to determine the criticality of our configuration. The space dependency of the group fluxes are, thereby, assumed to be J 0 (2.405 r / R) cos (π Z / H), the same as that associated with the original bare reactor uniformly loaded prior to the change. A perturbation type of approach, thence, furnishes the effect of introducing a void in the belt region. The reactivity void coefficient can, rather surprisingly, be indeed positive. To our knowledge, this fact had not been established, by the supplier. The agreement of our predictions with the experimental results is good. (author)

  1. Effect of helium on void formation in nickel

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Simonen, E.P.

    1977-01-01

    This study examines the influence of helium on void formation in self-ion irradiated nickel. Helium was injected either simultaneously with, or prior to, the self-ion bombardment. The void microstructure was characterized as a function of helium deposition rate and the total heavy-ion dose. In particular, at 575 0 C and 5 X 10 -3 displacements per atom per second the void density is found to be proportional to the helium deposition rate. The dose dependence of swelling is initially dominated by helium driven nucleation. The void density rapidly saturates after which swelling continues with increasing dose only from void growth. It is concluded that helium promotes void nucleation in nickel with either helium implantation technique, pre-injection or simultaneous injection. Qualitative differences, however, are recognized. (Auth.)

  2. The influence of combined addition of phosphorus and titanium on void swelling of austenitic Fe-Cr-Ni alloys at 646-700 K

    International Nuclear Information System (INIS)

    Watanabe, H.; Muroga, T.; Yoshida, N.

    1994-01-01

    The influence of combined addition of phosphorus and titanium on void swelling of model Fe-Cr-Ni austenitic alloys at 646 to 700 K under fast neutron irradiation has been investigated, in comparison with that of a complex austenitic alloy (JPCA-2). In the model alloys, void swelling decreased with increasing phosphorus content. Void average size and density of JPCA-2 were comparable to those of the 0.024P alloy. The fact that these two alloys have the same phosphorus level suggests the void swelling of the model alloys would be strongly suppressed by increasing the phosphorus concentration and/or coaddition of phosphorus and titanium. The present study demonstrated that the phosphorus level is the strongest determinant of void swelling of both model and complex austenitic alloys. ((orig.))

  3. BASIC program to compute uranium density and void volume fraction in laboratory-scale uranium silicide aluminum dispersion plate-type fuel

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro

    1991-05-01

    BASIC program simple and easy to operate has been developed to compute uranium density and void volume fraction for laboratory-scale uranium silicide aluminum dispersion plate-type fuel, so called miniplate. An example of the result of calculation is given in order to demonstrate how the calculated void fraction correlates with the microstructural distribution of the void in a miniplate prepared in our laboratory. The program is also able to constitute data base on important parameters for miniplates from experimentally-determined values of density, weight of each constituent and dimensions of miniplates. Utility programs pertinent to the development of the BASIC program are also given which run in the popular MS-DOS environment. All the source lists are attached and brief description for each program is made. (author)

  4. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-01-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  5. Analysis of Differences in Void Coefficient Predictions for Mixed-Oxide-Fueled Tight-Pitch Light Water Reactor Cells

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Shiroya, Seiji; Kanda, Keiji; Cathalau, Stephane; Carre, Franck-Olivier; Aizawa, Otohiko; Takeda, Toshikazu

    2000-01-01

    Analysis of the benchmark problems on the void coefficient of mixed-oxide (MOX)-fueled tight-pitch cells has been performed using the Japanese SRAC code system with the JENDL-3.2 library and the French APOLLO-2 code with the CEA93 library based on JEF-2.2. The benchmark problems have been specified to investigate the physical phenomena occurring during the progressive voidage of MOX-fueled tight-pitch lattices, such as high conversion light water reactor lattices, and to evaluate the impact of nuclear data and calculational methods. Despite the most recently compiled nuclear data libraries and the sophisticated calculation schemes employed in both code systems, the k ∞ and void reactivity values obtained by the two code systems show considerable discrepancy especially in the highly voided state. The discrepancy of k ∞ values shows an obvious dependence on void fraction and also has been shown to be sensitive to the isotopic composition of plutonium. The observed discrepancies are analyzed by being decomposed into contributing isotopes and reactions and have been shown to be caused by a complicated balance of both negative and positive components, which are mainly attributable to differences in a limited number of isotopes including 239 Pu, 241 Pu, 16 O, and stainless steel

  6. Lecture background notes on transient sodium boiling and voiding in fast reactors

    International Nuclear Information System (INIS)

    Okrent, D.; Fauske, H.K.

    1972-01-01

    This set of lecture background notes includes the following: (1) Introductory remarks on fast reactor safety, which are intended to provide some perspective on the role played by sodium boiling. (2) A discussion of superheat which reviews the experimental data and nucleation models with emphasis on the pressure-temperature history effect on radius of active cavity sites, including the role played by inert gas. (3) A discussion of the growth and collapse of spherical bubbles. (4) A historical description of the development of computer codes to describe voiding and a detailed description of the analytical formulation of typical models for calculating voiding due to boiling, fission gas release, and molten fuel-coolant interaction. (U.S.)

  7. Convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks

    Science.gov (United States)

    Long, Yin; Zhang, Xiao-Jun; Wang, Kui

    2018-05-01

    In this paper, convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks (RBDNs) are studied. First, we find and demonstrate that the average degree is convergent in the form of power law. Meanwhile, we discover that the ratios of the back items to front items of convergent reminder are independent of network link number for large network size, and we theoretically prove that the limit of the ratio is a constant. Moreover, since it is difficult to calculate the analytical solution of the average degree for large network sizes, we adopt numerical method to obtain approximate expression of the average degree to approximate its analytical solution. Finally, simulations are presented to verify our theoretical results.

  8. Calculation of Dancoff correction for cylindrical cells including void

    International Nuclear Information System (INIS)

    Lima, C.P.B.; Martinez, A.S.

    1989-01-01

    This paper presents a method developed to the calculation of an analytical expression to the Dancoff Correction for fuel rods surrounded by air gaps. The Dancoff Correction has an important role in the calculation of the multigroup constants. The approximated expression obtained to the Dancoff Correction may be used in the available methods for the multigroup constants calculation, based in its simple and precise form. (author) [pt

  9. Voiding dysfunction in children aged five to 15 years

    Directory of Open Access Journals (Sweden)

    Karaklajić Dragana

    2004-01-01

    Full Text Available Voiding dysfunction in children was analyzed in 91 patients in a period from January 1st to October 1st 1998. Most of the patients had functional voiding disorder (92.31%, and only 7.69% manifested monosymptomatic night enuresis. The number of girls was bigger in the group of patients with voiding dysfunction while the boys were predominant in the group with mono-symptomatic nocturnal enuresis. More than a half of children with functional voiding disorder had repeated urinal infections (58.23%, incontinence (93.49%, need for urgent voiding (68.13%, and vesicoureteral reflux (47.61%. The most common type of voiding dysfunction was urge syndrome/urge incontinence. The incidence of dysfunctional voiding disorder was more often in children with scaring changes of kidney which were diagnosed by static scintigraphy.

  10. Physics calculations for the Clinch River Breeder Reactor

    International Nuclear Information System (INIS)

    Kalimullah; Kier, P.H.; Hummel, H.H.

    1977-06-01

    Calculations of distributions of power and sodium void reactivity, unvoided and voided Doppler coefficients and steel and fuel worths have been performed using diffusion theory and first-order perturbation theory for the LWR discharge Pu-fueled CRBR at BOL, the FFTF-grade Pu-fueled CRBR at BOL and for the beginning and end of equilibrium cycle of the LWR-Pu-fueled CRBR. The results of the burnup and breeding ratio calculations performed for obtaining the reactor compositions during the equilibrium cycle are also reported. Effects of sodium and steel contents on the distributions of sodium void reactivity and steel worth have also been studied. Errors and uncertainties in the reactivity coefficients due to cross-sections and the two-dimensional geometric representations of the reactor used in the calculations have also been estimated. Comparisons of the results with those in the CRBR PSAR are also discussed

  11. Voids and superstructures: correlations and induced large-scale velocity flows

    Science.gov (United States)

    Lares, Marcelo; Luparello, Heliana E.; Maldonado, Victoria; Ruiz, Andrés N.; Paz, Dante J.; Ceccarelli, Laura; Garcia Lambas, Diego

    2017-09-01

    The expanding complex pattern of filaments, walls and voids build the evolving cosmic web with material flowing from underdense on to high density regions. Here, we explore the dynamical behaviour of voids and galaxies in void shells relative to neighbouring overdense superstructures, using the Millenium simulation and the main galaxy catalogue in Sloan Digital Sky Survey data. We define a correlation measure to estimate the tendency of voids to be located at a given distance from a superstructure. We find voids-in-clouds (S-types) preferentially located closer to superstructures than voids-in-voids (R-types) although we obtain that voids within ˜40 h-1 Mpc of superstructures are infalling in a similar fashion independently of void type. Galaxies residing in void shells show infall towards the closest superstructure, along with the void global motion, with a differential velocity component depending on their relative position in the shell with respect to the direction to the superstructure. This effect is produced by void expansion and therefore is stronger for R-types. We also find that galaxies in void shells facing the superstructure flow towards the overdensities faster than galaxies elsewhere at the same relative distance to the superstructure. The results obtained for the simulation are also reproduced for the Sky Survey Data Release data with a linearized velocity field implementation.

  12. Void migration, coalescence and swelling in fusion materials

    International Nuclear Information System (INIS)

    Cottrell, G.A.

    2003-01-01

    A recent analysis of the migration of voids and bubbles, produced in neutron irradiated fusion materials, is outlined. The migration, brought about by thermal hopping of atoms on the surface of a void, is normally a random Brownian motion but, in a temperature gradient, can be slightly biassed up the gradient. Two effects of such migrations are the transport of voids and trapped transmutation helium atoms to grain boundaries, where embrittlement may result; and the coalescence of migrating voids, which reduces the number of non-dislocation sites available for the capture of knock-on point defects and thereby enables the dislocation bias process to maintain void swelling. A selection of candidate fusion power plant armour and structural metals have been analysed. The metals most resistant to void migration and its effects are tungsten and molybdenum. Steel and beryllium are least so and vanadium is intermediate

  13. Methodology for determining void swelling at very high damage under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Getto, E., E-mail: embecket@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Sun, K. [Department of Materials Science Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Taller, S.; Monterrosa, A.M.; Jiao, Z. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Was, G.S. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-08-15

    At very high damage levels in ion irradiated samples, the decrease in effective density of the irradiated material due to void swelling can lead to errors in quantifying swelling. HT9 was pre-implanted with 10 appm He and subjected to a raster-scanned beam with a damage rate of ∼1 × 10{sup −3} dpa/s at 460{sup o}C. Voids were characterized from 0 to 1300 nm. Fixed damage rate and fixed depth methods were developed to account for damage-dependent porosity increase and resulting dependence on depth. The fixed depth method was more appropriate as it limits undue effects from the injected interstitial while maintaining a usable void distribution. By keeping the depth fixed and accounting for the change in damage rate due to reduced density, the steady state swelling rate was 10% higher than calculation of swelling from raw data. This method is easily translatable to other materials, ion types and energies and limits the impact of the injected interstitial.

  14. A NEM diffusion code for fuel management and time average core calculation

    International Nuclear Information System (INIS)

    Mishra, Surendra; Ray, Sherly; Kumar, A.N.

    2005-01-01

    A computer code based on Nodal expansion method has been developed for solving two groups three dimensional diffusion equation. This code can be used for fuel management and time average core calculation. Explicit Xenon and fuel temperature estimation are also incorporated in this code. TAPP-4 phase-B physics experimental results were analyzed using this code and a code based on FD method. This paper gives the comparison of the observed data and the results obtained with this code and FD code. (author)

  15. Three-dimensional simulations of void collapse in energetic materials

    Science.gov (United States)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  16. Nucleation of voids - the impurity effect

    International Nuclear Information System (INIS)

    Chen, I-W; Taiwo, A.

    1984-01-01

    Nucleation of voids under irradiation in multicomponent alloys remains an unsolved theoretical problem. Of particular interest are the effects of nonequilibrium solute segregation phenomena on the critical nucleus and the nucleation rate. The resolution of the multicomponent nucleation in a dissipative system also has broader implication to the field of irreversible thermodynamics. The present paper describes a recent study of solute segregation effects in void nucleation. We begin with a thermodynamic model for a nonequilibrium void with interfacial segregation. The thermodynamic model is coupled with kinetic considerations of solute/solvent diffusion under a bias, which is itself related to segregation by the coating effect, to assess the stability of void embryos. To determine nucleation rate, we develop a novel technique by extending the most probable path method in statistical mechanics for nonequilibrium steady state to simulate large fluctuation with nonlinear dissipation. The path of nucleation is determined by solving an analogous problem on particle trajectory in classical dynamics. The results of both the stability analysis and the fluctuation analysis establish the paramount significance of the impurity effect via the mechanism of nonequilibrium segregation. We conclude that over-segregation is probably the most general cause for the apparently low nucleation barriers that are responsible for nearly ubiquitous occurrence of void swelling in common metals

  17. Correction for dynamic bias error in transmission measurements of void fraction

    International Nuclear Information System (INIS)

    Andersson, P.; Sundén, E. Andersson; Svärd, S. Jacobsson; Sjöstrand, H.

    2012-01-01

    Dynamic bias errors occur in transmission measurements, such as X-ray, gamma, or neutron radiography or tomography. This is observed when the properties of the object are not stationary in time and its average properties are assessed. The nonlinear measurement response to changes in transmission within the time scale of the measurement implies a bias, which can be difficult to correct for. A typical example is the tomographic or radiographic mapping of void content in dynamic two-phase flow systems. In this work, the dynamic bias error is described and a method to make a first-order correction is derived. A prerequisite for this method is variance estimates of the system dynamics, which can be obtained using high-speed, time-resolved data acquisition. However, in the absence of such acquisition, a priori knowledge might be used to substitute the time resolved data. Using synthetic data, a void fraction measurement case study has been simulated to demonstrate the performance of the suggested method. The transmission length of the radiation in the object under study and the type of fluctuation of the void fraction have been varied. Significant decreases in the dynamic bias error were achieved to the expense of marginal decreases in precision.

  18. Core concept of fast power reactor with zero sodium void reactivity

    International Nuclear Information System (INIS)

    Matveev, V.I.; Chebeskov, A.N.; Krivitsky, I.Y.

    1991-01-01

    The paper presents a core concept of BN-800 - type fast power reactor with zero sodium void reactivity (SVR). Consideration is given to the layout-and some design features of such a core. Some considerations on the determination of the required SVR value as one of the fast reactor safety criteria in accidents with coolant boiling are presented. Some methodical considerations an the development of calculation models that give a correct description of the new core features are stated. The results of the integral SVR calculation studies are included. reactivity excursions under different scenarios of sodium boiling are estimated, some corrections into the calculated SVR value are discussed. (author)

  19. Void fraction in horizontal bulk flow boiling at high flow qualities

    International Nuclear Information System (INIS)

    Collado, Fancisco J.; Monne, Carlos; Pascau, Antonio

    2008-01-01

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities (≤0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality (≤0.2)

  20. Effect of void cluster on ductile failure evolution

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    The behavior of a non-uniform void distribution in a ductile material is investigated by using a cell model analysis to study a material with a periodic pattern of void clusters. The special clusters considered consist of a number of uniformly spaced voids located along a plane perpendicular...

  1. Coolant Void Reactivity Analysis of CANDU Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Models of CANDU-6 and ACR-700 fuel lattices were constructed for a single bundle and 2 by 2 checkerboard to understand the physics related to CVR. Also, a familiar four factor formula was used to predict the specific contributions to reactivity change in order to achieve an understanding of the physics issues related to the CVR. At the same time, because the situation of coolant voiding should bring about a change of neutron behavior, the spectral changes and neutron current were also analyzed. The models of the CANDU- 6 and ACR-700 fuel lattices were constructed using the Monte Carlo code MCNP6 using the ENDF/B-VII.0 continuous energy cross section library based on the specification from AECL. The CANDU fuel lattice was searched through sensitivity studies of each design parameter such as fuel enrichment, fuel pitch, and types of burnable absorber for obtaining better behavior in terms of CVR. Unlike the single channel coolant voiding, the ACR-700 bundle has a positive reactivity change upon 2x2 checkerboard coolant voiding. Because of the new path for neutron moderation, the neutrons from the voided channel move to the no-void channel where they lose energy and come back to the voided channel as thermal neutrons. This phenomenon causes the positive CVR when checkerboard voiding occurs. The sensitivity study revealed the effects of the moderator to fuel volume ratio, fuel enrichment, and burnable absorber on the CVR. A fuel bundle with low moderator to fuel volume ratio and high fuel enrichment can help achieve negative CVR.

  2. Friction stir welding process to repair voids in aluminum alloys

    Science.gov (United States)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  3. Measurement of void fractions by nuclear techniques; Medicion de fracciones de vacio por tecnicas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  4. On nonlinear excitation of voids in dusty plasmas

    International Nuclear Information System (INIS)

    Nebbat, E.; Annou, R.; Bharuthram, R.

    2007-01-01

    The void, which is a dust-free region inside the dust cloud in the plasma, results from a balance of the electrostatic force and the ion-drag force on a dust particulate that has numerous forms, some of which are based on models whereas others are driven from first principles. To explain the generation of voids, K. Avinash, A. Bhattacharjee, and S. Hu [Phys. Rev. Lett. 90, 075001 (2003)] proposed a time-dependent nonlinear model that describes the void as a result of an instability. We augment this model by incorporating the grain drift and reintroducing the velocity convective term as well as by replacing the modeled ion-drag force by a more accurate one. The analysis is conducted in a spherical configuration. It is revealed that the void formation is a threshold phenomenon, i.e., it depends on the grain size. Furthermore, the void possesses a sharp boundary beyond which the dust density decreases and may present a corrugated aspect. For big size grains, the use of both ion-drag forces leads to voids of the same dimension, though for grains of small sizes, the Avinash force drives voids of a higher dimension. The model shows good agreement with the experiment

  5. Critical Void Volume Fraction fc at Void Coalescence for S235JR Steel at Low Initial Stress Triaxiality

    Science.gov (United States)

    Grzegorz Kossakowski, Paweł; Wciślik, Wiktor

    2017-10-01

    The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.

  6. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  7. Treatment of two-phase turbulent mixing, void drift and diversion cross-flow in a hydraulically non-equilibrium subchannel flow

    International Nuclear Information System (INIS)

    Sadatomi, Michio; Kawahara, Akimaro; Sato, Yoshifusa

    1997-01-01

    A practical way of treating two-phase turbulent mixing, void drift and diversion cross-flow on a subchannel analysis has been studied. Experimental data on the axial variations of subchannel flow parameters, such as flow rates of both phases, pressure, void fraction and concentrations of tracers for both phases, were obtained for hydraulically non-equilibrium two-phase subchannel flows in a vertical multiple channel made up of two-identical circular subchannels. These data were analyzed on the basis of the following four assumptions: (1) the turbulent mixing is independent of both the void drift and the diversion cross-flow; (2) the turbulent mixing rates of both phases in a non-equilibrium flow are equal to those in the equilibrium flow that the flow under consideration will attain; (3) the void drift is independent of the diversion cross-flow; and (4) the lateral gas velocity due to the void drift is predictable from Lahey et al.'s void settling model even in a non-equilibrium flow with the diversion cross-flow. The validity of the assumptions (1) and (2) was assured by comparing the concentration distribution data with the calculations, and that of the assumptions (3) and (4) by analyzing the data on flow rates of both phases, pressure and void fraction (author)

  8. Analysis of the OPERA-15 two-dimensional voiding experiment using the SAS4A code

    International Nuclear Information System (INIS)

    Briggs, L.L.

    1984-01-01

    Overall, SAS4A appears to do a good job for simulating the OPERA-15 experiment. For most of the experiment parameters, the code calculations compare quite well with the experimental data. The lack of a multi-dimensional voiding model has the effect of extending the flow coastdown time until voiding starts; otherwise, the code simulates the accident progression satisfactorily. These results indicate a need for further work in this area in the form of a tandem analysis by a two-dimensional flow code and a one-dimensional version of that code to confirm the observations derived from the SAS4A analysis

  9. Measurements of void fraction in a water-molten tin system by X-ray absorption

    International Nuclear Information System (INIS)

    Baker, Michael C.; Bonazza, Riccardo; Corradini, Michael L.

    1998-01-01

    A facility has been developed to study the explosive interactions of gas-water injection into a molten tin pool. The experimental apparatus allows for variable nitrogen gas and water injection into the base of a steel tank containing up to 25 kg of molten tin. Due to the opaque nature of the molten metal-gas-water mixture and steel tank, a visualization and measurement technique using continuous high energy x-rays had to be developed. Visualization of the multiphase mixture can be done at 220 Hz with 256x256 pixel resolution or at 30 Hz with 480x1128 pixel resolution. These images are stored digitally and subsequently processed to obtain two dimensional mappings of the chordal average void fraction in the mixture. The image processing method has been used to measure void fraction in experiments that did not include water in the injection mixture. This work includes a comparison to previous studies of integral void fraction data in pools of molten metal with gas injection. (author)

  10. Whole core transport calculation for the VHTR hexagonal core

    International Nuclear Information System (INIS)

    Cho, J. Y.; Kim, K. S.; Lee, C. C.; Joo, H. G.

    2007-01-01

    Recently, the DeCART code which performs the whole core calculation by coupling the radial MOC transport kernel with the axial nodal kernel has equipped a kernel to deal with the hexagonal geometry and applied to the VHTR hexagonal core to examine the accuracy and the computational efficiency of the implemented kernel. The implementation includes a modular ray tracing module based on the hexagonal assembly and a multi-group CMFD module to perform an efficient transport calculation. The requirements for the modular ray are: (1) the assembly based path linking and (2) the complete reflection capabilities. The first requirement is met by adjusting the azimuthal angle and the ray spacing for the modular ray to construct a core ray by the path linking. The second requirement is met by expanding the constructed azimuthal angle in the range of [0,30 degree] to the remained range to reflect completely at the core boundaries. The considered reflecting surface angles for the complete reflection are 30n's (n=1,2,1,12). The CMFD module performs the equivalent diffusion calculation to the radial MOC transport calculation based on the homogenized structure units. The structure units include the hexagonal pin cells and gap cells appearing at the assembly boundary. Therefore, the CMFD module is programmed to deal with the unstructured cells such as the gap cells. The CMFD equation consists of the two parts of (1) the conventional FDM and (2) the current corrective parts. Since the second part of the CMFD equation guarantees the reproducibility of the radial MOC transport solutions for the cell averaged reaction rate and the net current at the cell surfaces, how to build the first part of the CMFD equation is not important. Therefore, the first part of the CMFD equation is roughly built by using the normal distance from the gravity center to the surface. The VHTR core uses helium as a coolant which is realized as a void hole in a neutronics calculation. This void hole which

  11. Calculations of the properties of superconducting alloys via the average T-matrix approximation

    International Nuclear Information System (INIS)

    Chatterjee, P.

    1980-01-01

    The theoretical formula of McMillan, modified via the multiple-scattering theory by Gomersall and Gyorffy, has been very successful in computing the electron-phonon coupling constant (lambda) and the transition temperature (Tsub(c)) of many superconducting elements and compounds. For disordered solids, such as substitutional alloys, however, this theory fails because of the breakdown of the translational symmetry used in the multiple-scattering theory. Under these conditions the problem can still be solved if the t-matrix is averaged in the random phase approximation (average T-matrix approximation). Gomersall and Gyorffy's expression is reformulated for lambda in the random phase approximation. This theory is applied to calculate lambda and Tsub(c) of the binary substitutional NbMo alloy system at different concentrations. The results appear to be in fair agreement with experiments. (author)

  12. Dynamics of core voiding during boiloff experiments

    International Nuclear Information System (INIS)

    Analytis, G.T.; Aksan, S.N.; Stierli, F.; Yadigaroglu, G.

    1987-01-01

    A series of boiloff experiments were conducted at the EIR NEPTUN test facility with a bundle consisting of 37 PWR fuel rod simulators. The test section was filled with subcooled coolant and the power was turned on. After an initial heatup phase, coolant was expelled from the test section due to rapid vapor generation near the mid-plane where the power generation was highest. Gradual boiloff of the remaining water followed. It was found that the ''collapsed liquid level'' (CLL) and the rod temperature histories could be predicted well, provided the initial expulsion of the coolant was calculated correctly. The axial void fraction and enthalpy profiles calculated with TRAC-BD/MOD1 provided the information needed for understanding the importance of heat transfer to the coolant before the inception of vapor generation, and the sensitivity of the results to the interfacial friction correlation used

  13. Learning from errors: analysis of medication order voiding in CPOE systems.

    Science.gov (United States)

    Kannampallil, Thomas G; Abraham, Joanna; Solotskaya, Anna; Philip, Sneha G; Lambert, Bruce L; Schiff, Gordon D; Wright, Adam; Galanter, William L

    2017-07-01

    Medication order voiding allows clinicians to indicate that an existing order was placed in error. We explored whether the order voiding function could be used to record and study medication ordering errors. We examined medication orders from an academic medical center for a 6-year period (2006-2011; n  = 5 804 150). We categorized orders based on status (void, not void) and clinician-provided reasons for voiding. We used multivariable logistic regression to investigate the association between order voiding and clinician, patient, and order characteristics. We conducted chart reviews on a random sample of voided orders ( n  = 198) to investigate the rate of medication ordering errors among voided orders, and the accuracy of clinician-provided reasons for voiding. We found that 0.49% of all orders were voided. Order voiding was associated with clinician type (physician, pharmacist, nurse, student, other) and order type (inpatient, prescription, home medications by history). An estimated 70 ± 10% of voided orders were due to medication ordering errors. Clinician-provided reasons for voiding were reasonably predictive of the actual cause of error for duplicate orders (72%), but not for other reasons. Medication safety initiatives require availability of error data to create repositories for learning and training. The voiding function is available in several electronic health record systems, so order voiding could provide a low-effort mechanism for self-reporting of medication ordering errors. Additional clinician training could help increase the quality of such reporting. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. OECD/NEA burnup credit criticality benchmarks phase IIIA: Criticality calculations of BWR spent fuel assemblies in storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ando, Yoshihira [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    2000-09-01

    The report describes the final results of Phase IIIA Benchmarks conducted by the Burnup Credit Criticality Calculation Working Group under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The benchmarks are intended to confirm the predictive capability of the current computer code and data library combinations for the neutron multiplication factor (k{sub eff}) of a layer of irradiated BWR fuel assembly array model. In total 22 benchmark problems are proposed for calculations of k{sub eff}. The effects of following parameters are investigated: cooling time, inclusion/exclusion of FP nuclides and axial burnup profile, and inclusion of axial profile of void fraction or constant void fractions during burnup. Axial profiles of fractional fission rates are further requested for five cases out of the 22 problems. Twenty-one sets of results are presented, contributed by 17 institutes from 9 countries. The relative dispersion of k{sub eff} values calculated by the participants from the mean value is almost within the band of {+-}1%{delta}k/k. The deviations from the averaged calculated fission rate profiles are found to be within {+-}5% for most cases. (author)

  15. Air void clustering.

    Science.gov (United States)

    2015-06-01

    Air void clustering around coarse aggregate in concrete has been identified as a potential source of : low strengths in concrete mixes by several Departments of Transportation around the country. Research was : carried out to (1) develop a quantitati...

  16. Time averaging procedure for calculating the mass and energy transfer rates in adiabatic two phase flow

    International Nuclear Information System (INIS)

    Boccaccini, L.V.

    1986-07-01

    To take advantages of the semi-implicit computer models - to solve the two phase flow differential system - a proper averaging procedure is also needed for the source terms. In fact, in some cases, the correlations normally used for the source terms - not time averaged - fail using the theoretical time step that arises from the linear stability analysis used on the right handside. Such a time averaging procedure is developed with reference to the bubbly flow regime. Moreover, the concept of mass that must be exchanged to reach equilibrium from a non-equilibrium state is introduced to limit the mass transfer during a time step. Finally some practical calculations are performed to compare the different correlations for the average mass transfer rate developed in this work. (orig.) [de

  17. LOG-NORMAL DISTRIBUTION OF COSMIC VOIDS IN SIMULATIONS AND MOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E.; Pycke, J.-R., E-mail: er111@nyu.edu, E-mail: jrp15@nyu.edu [Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi (United Arab Emirates)

    2017-01-20

    Following up on previous studies, we complete here a full analysis of the void size distributions of the Cosmic Void Catalog based on three different simulation and mock catalogs: dark matter (DM), haloes, and galaxies. Based on this analysis, we attempt to answer two questions: Is a three-parameter log-normal distribution a good candidate to satisfy the void size distributions obtained from different types of environments? Is there a direct relation between the shape parameters of the void size distribution and the environmental effects? In an attempt to answer these questions, we find here that all void size distributions of these data samples satisfy the three-parameter log-normal distribution whether the environment is dominated by DM, haloes, or galaxies. In addition, the shape parameters of the three-parameter log-normal void size distribution seem highly affected by environment, particularly existing substructures. Therefore, we show two quantitative relations given by linear equations between the skewness and the maximum tree depth, and between the variance of the void size distribution and the maximum tree depth, directly from the simulated data. In addition to this, we find that the percentage of voids with nonzero central density in the data sets has a critical importance. If the number of voids with nonzero central density reaches ≥3.84% in a simulation/mock sample, then a second population is observed in the void size distributions. This second population emerges as a second peak in the log-normal void size distribution at larger radius.

  18. Void growth to coalescence in a non-local material

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2008-01-01

    of different material length parameters in a multi-parameter theory is studied, and it is shown that the important length parameter is the same as under purely hydrostatic loading. It is quantified how micron scale voids grow less rapidly than larger voids, and the implications of this in the overall strength...... of the material is emphasized. The size effect on the onset of coalescence is studied, and results for the void volume fraction and the strain at the onset of coalescence are presented. It is concluded that for cracked specimens not only the void volume fraction, but also the typical void size is of importance...... to the fracture strength of ductile materials....

  19. The influence of transmutation, void swelling, and flux/spectra uncertainties on the electrical properties of copper and copper alloys

    International Nuclear Information System (INIS)

    Edwards, D.J.; Garner, F.A.; Greenwood, L.R.

    1993-09-01

    A comparison of the predicted and measured electrical conductivities of MARZ copper and two copper alloys irradiated in FFTF shows that the calculated transmutation rates agree within 15% with those required to produce the observed changes. It also appears that the contribution of transmutants and void swelling to conductivity changes are directly additive. Of the three models studied, Euken's model has been found to best describe the contribution of void swelling to conductivity loss

  20. Influence of void ratio on thermal performance of heat pipe receiver

    International Nuclear Information System (INIS)

    Gui Xiaohong; Tang Dawei; Liang Shiqiang; Lin Bin; Yuan Xiugan

    2012-01-01

    Highlights: ► The temperature gradient increases significantly and the utility ratio of PCM decreases obviously as void ratio increases. ► Void cavity influences the process of phase change greatly. ► PCM melts slowly during sunlight periods and freezes slowly during eclipse periods as void ratio increases. ► The temperature gradient of PCM zone is very significant with the effect of void cavity. - Abstract: In this paper, influence of void ratio on thermal performance of heat pipe receiver under microgravity is numerically simulated. Accordingly, mathematical model is set up. Numerical method is offered. The temperature field of Phase Change Material (PCM) canister is shown. Numerical results are compared with numerical ones of National Aeronautics and Space Administration (NASA). Numerical results show that the temperature gradient increases significantly and the utility ratio of PCM decreases obviously as void ratio increases. Void cavity influences the process of phase change greatly. PCM melts slowly during sunlight periods and freezes slowly during eclipse periods as void ratio increases. The thermal resistance of void cavity is much bigger than that of PCM canister wall. Void cavity prevents the heat transfer between PCM zone and canister wall. The temperature gradient of PCM zone is very significant with the effect of void cavity. So the thermal stress of heat pipe receiver may increase, and the lifetime may decrease as void ratio increases.

  1. Void growth and coalescence in metals deformed at elevated temperature

    DEFF Research Database (Denmark)

    Klöcker, H.; Tvergaard, Viggo

    2000-01-01

    For metals deformed at elevated temperatures the growth of voids to coalescence is studied numerically. The voids are assumed to be present from the beginning of deformation, and the rate of deformation considered is so high that void growth is dominated by power law creep of the material, without...... any noticeable effect of surface diffusion. Axisymmetric unit cell model computations are used to study void growth in a material containing a periodic array of voids, and the onset of the coalescence process is defined as the stage where plastic flow localizes in the ligaments between neighbouring...... voids. The focus of the study is on various relatively high stress triaxialties. In order to represent the results in terms of a porous ductile material model a set of constitutive relations are used, which have been proposed for void growth in a material undergoing power law creep....

  2. Effect of the critical size of initial voids on stress-induced migration

    International Nuclear Information System (INIS)

    Aoyagi, Minoru

    2004-01-01

    The stress-induced migration phenomenon is one of the problems related to the reliability of metal interconnections in semiconductor devices. This phenomenon causes voids and fractures in interconnections. The basic feature of this phenomenon is vacancy migration to minute initial voids. Expanding initial voids grow into larger voids and fractures. The purpose of this work is to theoretically clarify the effects of residual thermal stress and void surface stress on the behavior of the initial voids which exist immediately after a passivation process. Using a spherical metal sample with a spherical void under external stress, vacancy absorption or emission was investigated between the void surface and the sample surface. The behavior of vacancies and atoms was also investigated in interconnections under residual thermal stress. We show that the void or sample surface becomes a vacancy sink or source, depending on the mutual relationship between the surface stress due to the surface-free energy and the residual thermal stress. We also reveal that the initial voids, which exist immediately after a passivation process, grow into larger voids and fractures when the size of the initial voids exceeds the critical size. If the size of the initial void can be controlled to below the critical size, voids and fractures do not occur

  3. Void growth to coalescence in a non-local material

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    of different material length parameters in a multi-parameter theory is studied, and it is shown that the important length parameter is the same as under purely hydrostatic loading. It is quantified how micron scale voids grow less rapidly than larger voids, and the implications of this in the overall strength...... of the material is emphasized. It is concluded that for cracked specimens not only the void volume fraction, but also the typical void size is of importance to the fracture strength of ductile materials....

  4. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    Science.gov (United States)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy

  5. Void fraction in horizontal bulk flow boiling at high flow qualities

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Fancisco J.; Monne, Carlos [Dpto. de Ingenieria Mecanica, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain); Pascau, Antonio [Dpto. de Ciencia de los Materiales y Fluidos, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-04-15

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities ({<=}0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality ({<=}0.2). (author)

  6. Validation uncertainty of MATRA code for subchannel void distributions

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae-Hyun; Kim, S. J.; Kwon, H.; Seo, K. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To extend code capability to the whole core subchannel analysis, pre-conditioned Krylov matrix solvers such as BiCGSTAB and GMRES are implemented in MATRA code as well as parallel computing algorithms using MPI and OPENMP. It is coded by fortran 90, and has some user friendly features such as graphic user interface. MATRA code was approved by Korean regulation body for design calculation of integral-type PWR named SMART. The major role subchannel code is to evaluate core thermal margin through the hot channel analysis and uncertainty evaluation for CHF predictions. In addition, it is potentially used for the best estimation of core thermal hydraulic field by incorporating into multiphysics and/or multi-scale code systems. In this study we examined a validation process for the subchannel code MATRA specifically in the prediction of subchannel void distributions. The primary objective of validation is to estimate a range within which the simulation modeling error lies. The experimental data for subchannel void distributions at steady state and transient conditions was provided on the framework of OECD/NEA UAM benchmark program. The validation uncertainty of MATRA code was evaluated for a specific experimental condition by comparing the simulation result and experimental data. A validation process should be preceded by code and solution verification. However, quantification of verification uncertainty was not addressed in this study. The validation uncertainty of the MATRA code for predicting subchannel void distribution was evaluated for a single data point of void fraction measurement at a 5x5 PWR test bundle on the framework of OECD UAM benchmark program. The validation standard uncertainties were evaluated as 4.2%, 3.9%, and 2.8% with the Monte-Carlo approach at the axial levels of 2216 mm, 2669 mm, and 3177 mm, respectively. The sensitivity coefficient approach revealed similar results of uncertainties but did not account for the nonlinear effects on the

  7. Closure behavior of spherical void in slab during hot rolling process

    Science.gov (United States)

    Cheng, Rong; Zhang, Jiongming; Wang, Bo

    2018-04-01

    The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..

  8. Evaluation of the Air Void Analyzer

    Science.gov (United States)

    2013-07-01

    concrete using image analysis: Petrography of cementitious materials. ASTM STP 1215. S.M. DeHayes and D. Stark, eds. Philadelphia, PA: American...Administration (FHWA). 2006. Priority, market -ready technologies and innovations: Air Void Analyzer. Washington D.C. PDF file. Germann Instruments (GI). 2011...tests and properties of concrete and concrete-making materials. STP 169D. West Conshohocken, PA: ASTM International. Magura, D.D. 1996. Air void

  9. On the observability of coupled dark energy with cosmic voids

    Science.gov (United States)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  10. Void formation in irradiated binary nickel alloys

    International Nuclear Information System (INIS)

    Shaikh, M.A.; Ahmed, M.; Akhter, J.I.

    1994-01-01

    In this work a computer program has been used to compute void radius, void density and swelling parameter for nickel and binary nickel-carbon alloys irradiated with nickel ions of 100 keV. The aim is to compare the computed results with experimental results already reported

  11. Molecular dynamics modeling and simulation of void growth in two dimensions

    Science.gov (United States)

    Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.

    2013-10-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.

  12. Molecular dynamics modeling and simulation of void growth in two dimensions

    International Nuclear Information System (INIS)

    Chang, H-J; Segurado, J; LLorca, J; Rodríguez de la Fuente, O; Pabón, B M

    2013-01-01

    The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids. (paper)

  13. Alignment of galaxy spins in the vicinity of voids

    International Nuclear Information System (INIS)

    Slosar, Anže; White, Martin

    2009-01-01

    We provide limits on the alignment of galaxy orientations with the direction to the void center for galaxies lying near the edges of voids. We locate spherical voids in volume limited samples of galaxies from the Sloan Digital Sky Survey using the HB inspired void finder and investigate the orientation of (color selected) spiral galaxies that are nearly edge-on or face-on. In contrast with previous literature, we find no statistical evidence for departure from random orientations. Expressed in terms of the parameter c, introduced by Lee and Pen to describe the strength of such an alignment, we find that c0.11(0.13) at 95% (99.7%) confidence limit within a context of a toy model that assumes a perfectly spherical voids with sharp boundaries

  14. Structure-dependent behavior of stress-induced voiding in Cu interconnects

    International Nuclear Information System (INIS)

    Wu Zhenyu; Yang Yintang; Chai Changchun; Li Yuejin; Wang Jiayou; Li Bin; Liu Jing

    2010-01-01

    Stress modeling and cross-section failure analysis by focused-ion-beam have been used to investigate stress-induced voiding phenomena in Cu interconnects. The voiding mechanism and the effect of the interconnect structure on the stress migration have been studied. The results show that the most concentrated tensile stress appears and voids form at corners of vias on top surfaces of Cu M1 lines. A simple model of stress induced voiding in which vacancies arise due to the increase of the chemical potential under tensile stress and diffuse under the force of stress gradient along the main diffusing path indicates that stress gradient rather than stress itself determines the voiding rate. Cu interconnects with larger vias show less resistance to stress-induced voiding due to larger stress gradient at corners of vias.

  15. Void Fraction Instrument operation and maintenance manual

    International Nuclear Information System (INIS)

    Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

    1994-09-01

    This Operations and Maintenance Manual (O ampersand MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document

  16. Effects of Void Uncertainties on Pin Power Distributions and the Void Reactivity Coefficient for a 10X10 BWR Assembly

    International Nuclear Information System (INIS)

    Jatuff, F.; Krouthen, J.; Helmersson, S.; Chawla, R.

    2004-01-01

    A significant source of uncertainty in Boiling Water Reactor physics is associated with the precise characterisation of the axially-dependent neutron moderation properties of the coolant inside the fuel assembly channel, and the corresponding effects on reactor physics parameters such as the lattice neutron multiplication, the neutron migration length, and the pin-by-pin power distribution. In this paper, the effects of particularly relevant void fraction uncertainties on reactor physics parameters have been studied for a BWR assembly of type Westinghouse SVEA-96 using the CASMO-4, HELIOS/PRESTO-2 and MCNP4C codes. The SVEA-96 geometry is characterised by the sub-division of the assembly into four different sub-bundles by means of an inner bypass with a cruciform shape. The study has covered the following issues: (a) the effects of different cross-section data libraries on the void coefficient of reactivity, for a wide range of void fractions; (b) the effects due to a heterogeneous vs. homogeneous void distribution inside the sub-bundles; and (c) the consequences of partly inserted absorber blades producing different void fractions in different sub-bundles. (author)

  17. Relationship between voided volume and the urge to void among patients with lower urinary tract symptoms.

    Science.gov (United States)

    Blaivas, Jerry G; Tsui, Johnson F; Amirian, Michael; Ranasinghe, Buddima; Weiss, Jeffrey P; Haukka, Jari; Tikkinen, Kari A O

    2014-12-01

    The aim of this study was to explore the relationship between voided volume (VV) and urge to void among patients with lower urinary tract symptoms. Consecutive adult patients (aged 23-90 years) were enrolled, and completed a 24 h bladder diary and the Urgency Perception Scale (UPS). Patients were categorized as urgency or non-urgency based on the Overactive Bladder Symptom Score. The relationship between UPS and VV (based on the bladder diary) was analyzed by Spearman's rho and proportional odds model. In total, 1265 micturitions were evaluated in 117 individuals (41 men, 76 women; 56 individuals in the urgency and 61 in the non-urgency group). The mean (± SD) VV and UPS were 192 ± 127 ml and 2.4 ± 1.2 ml in the urgency group and 173 ± 124 ml and 1.7 ± 1.1 ml in the non-urgency group, respectively. Spearman's rho (between UPS and VV) was 0.21 [95% confidence interval (CI) 0.13-029, p < 0.001] for the urgency group, 0.32 (95% CI 0.25-0.39, p < 0.001) for the non-urgency group, and 0.28 (95% CI 0.23-0.33, p < 0.001) for the total cohort. Urgency patients had higher UPS [odds ratio (OR) 3.1, 95% CI 2.5-3.8]. Overall, each additional 50 ml VV increased the odds of having a higher UPS with OR 1.2 (95% CI 1.2-1.3). The relationship between VV and UPS score was similar in both groups (p = 0.548 for interaction). Although urgency patients void with a higher UPS score, among both urgency and non-urgency patients there is only a weak correlation between VV and the urge to void. This suggests that there are factors other than VV that cause the urge to void.

  18. OECD/NEA burnup credit criticality benchmarks phase IIIB: Burnup calculations of BWR fuel assemblies for storage and transport

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of ±10% relative to the average, although some results, esp. 155 Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k ∞ also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  19. OECD/NEA burnup credit criticality benchmarks phase IIIB. Burnup calculations of BWR fuel assemblies for storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  20. Visualization and void-fraction measurements in a molten metal bath

    Science.gov (United States)

    Baker, Michael Charles

    In the experimental study of multiphase flow phenomena, including intense multiphase interactions, such as vapor explosions, the fluids are often opaque. To obtain images, suitable for quantitative analysis, of such phenomena requires the use of something other than visible light, such as x-rays or neutrons. In this study a unique flow visualization technique using a continuous high energy x-ray source to measure void fraction with good spatial and temporal resolution in pools of liquid metal has been developed. In the present experiments, 11 to 21 kg of molten tin at 360sp° C to 425sp° C is collected in a pre-heated stainless steel test section of rectangular cross section (18 x 10 cm). In the base of the test section are two injection ports for the introduction of nitrogen gas and water. Each port is composed of two coaxial tubes. Nitrogen gas flows through the annular region and either nitrogen gas or water flows through the central tube. The test section is imaged using a high energy x-ray source (Varian Linatron 3000A) with a peak energy of 9 MeV and a maximum on axis dose rate of 30 Gy/min. The transmitted x-rays are viewed with an imaging system composed of a high density silicate glass screen, a mirror, a lens coupled image intensifier, and a CCD camera. Two interchangeable CCD cameras allow for either high resolution imaging (1128 x 480 pixels) at a frame rate of 30 Hz or low resolution imaging (256 x 256 pixels) at a frame rate of 220 Hz. The collected images are digitally processed to obtain the chordal averaged local and volume integral void fractions. At the experimental conditions examined, estimated relative uncertainty using this measurement technique is 10% for worst case conditions. The upper bound on the relative systematic error due to void dynamics is estimated to be 20%. Reasonable agreement has been demonstrated between the data generated from the processed images, past integral void fraction experimental data, and a semi-empirical drift

  1. Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill

    Science.gov (United States)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-08-01

    Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.

  2. Reliability Impact of Stockpile Aging: Stress Voiding; TOPICAL

    International Nuclear Information System (INIS)

    ROBINSON, DAVID G.

    1999-01-01

    The objective of this research is to statistically characterize the aging of integrated circuit interconnects. This report supersedes the stress void aging characterization presented in SAND99-0975, ''Reliability Degradation Due to Stockpile Aging,'' by the same author. The physics of the stress voiding, before and after wafer processing have been recently characterized by F. G. Yost in SAND99-0601, ''Stress Voiding during Wafer Processing''. The current effort extends this research to account for uncertainties in grain size, storage temperature, void spacing and initial residual stress and their impact on interconnect failure after wafer processing. The sensitivity of the life estimates to these uncertainties is also investigated. Various methods for characterizing the probability of failure of a conductor line were investigated including: Latin hypercube sampling (LHS), quasi-Monte Carlo sampling (qMC), as well as various analytical methods such as the advanced mean value (Ah/IV) method. The comparison was aided by the use of the Cassandra uncertainty analysis library. It was found that the only viable uncertainty analysis methods were those based on either LHS or quasi-Monte Carlo sampling. Analytical methods such as AMV could not be applied due to the nature of the stress voiding problem. The qMC method was chosen since it provided smaller estimation error for a given number of samples. The preliminary results indicate that the reliability of integrated circuits due to stress voiding is very sensitive to the underlying uncertainties associated with grain size and void spacing. In particular, accurate characterization of IC reliability depends heavily on not only the frost and second moments of the uncertainty distribution, but more specifically the unique form of the underlying distribution

  3. Generalized Rate Theory for Void and Bubble Swelling and its Application to Plutonium Metal Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolfer, W. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    In the classical rate theory for void swelling, vacancies and self-interstitials are produced by radiation in equal numbers, and in addition, thermal vacancies are also generated at the sinks, primarily at edge dislocations, at voids, and at grain boundaries. In contrast, due to the high formation energy of self-interstitials for normal metals and alloys, their thermal generation is negligible, as pointed out by Bullough and Perrin. However, recent DFT calculations of the formation energy of self-interstitial atoms in bcc metals have revealed that the sum of formation and migration energies for self-interstitials atoms (SIA) is of the same order of magnitude as for vacancies. The ratio of the activation energies for thermal generation of SIA and vacancies is presented. For fcc metals, this ratio is around three, but for bcc metals it is around 1.5. Reviewing theoretical predictions of point defect properties in δ-Pu, this ratio could possibly be less than one. As a result, thermal generation of SIA in bcc metals and in plutonium must be taken into considerations when modeling the growth of voids and of helium bubbles, and the classical rate theory (CRT) for void and bubble swelling must be extended to a generalized rate theory (GRT).

  4. The association of age of toilet training and dysfunctional voiding

    Directory of Open Access Journals (Sweden)

    Hodges SJ

    2014-10-01

    Full Text Available Steve J Hodges, Kyle A Richards, Ilya Gorbachinsky, L Spencer KraneDepartment of Urology, Wake Forest University, Winston-Salem, NC, USAObjective: To determine whether age of toilet training is associated with dysfunctional voiding in children.Materials and methods: We compared patients referred to the urologic clinics for voiding dysfunction with age-matched controls without urinary complaints. Characteristics including age and reason for toilet training, method of training, and encopresis or constipation were compared between both groups.Results: Initiation of toilet training prior to 24 months and later than 36 months of age were associated with dysfunctional voiding. However, dysfunctional voiding due to late toilet training was also associated with constipation.Conclusion: Dysfunctional voiding may be due to delayed emptying of the bowel and bladder by children. The symptoms of dysfunctional voiding are more common when toilet training early, as immature children may be less likely to empty in a timely manner, or when training late due to (or in association with constipation.Keywords: voiding dysfunction, constipation

  5. Structural control of void formation in dual phase steels

    DEFF Research Database (Denmark)

    Azuma, Masafumi

    The objective of this study is to explore the void formation mechanisms and to clarify the influence of the hardness and structural parameters (volume fraction, size and morphology) of martensite particles on the void formation and mechanical properties in dual phase steels composed of ferrite...... and (iii) strain localization. The critical strain for void formation depends on hardness of the martensite, but is independent of the volume fraction, shape, size and distribution of the martensite. The strain partitioning between the martensite and ferrite depends on the volume fraction and hardness...... of the martensite accelerates the void formation in the martensite by enlarging the size of voids both in the martensite and ferrite. It is suggested that controlling the hardness and structural parameters associated with the martensite particles such as morphology, size and volume fraction are the essential...

  6. Void fraction fluctuations in two-phase gas-liquid flow

    International Nuclear Information System (INIS)

    Ulbrich, R.

    1987-01-01

    Designs of the apparatus in which two-phase gas-liquid flow occurs are usually based on the mean value of parameters such as pressure drop and void fraction. The flow of two-phase mixtures generally presents a very complicated flow structure, both in terms of the unsteady formation on the interfacial area and in terms of the fluctuations of the velocity, pressure and other variables within the flow. When the gas void fraction is near 0 or 1 / bubble or dispersed flow regimes / then oscillations of void fraction are very small. The intermittent flow such as plug and slug/ froth is characterized by alternately flow portions of liquid and gas. It influences the change of void fractions in time. The results of experimental research of gas void fraction fluctuations in two-phase adiabatic gas-liquid flow in a vertical pipe are presented

  7. Development of a three dimensional homogeneous calculation model for the BFS-62 critical experiment. Preparation of adjusted equivalent measured values for sodium void reactivity values. Final report

    International Nuclear Information System (INIS)

    Manturov, G.; Semenov, M.; Seregin, A.; Lykova, L.

    2004-01-01

    The BFS-62 critical experiments are currently used as 'benchmark' for verification of IPPE codes and nuclear data, which have been used in the study of loading a significant amount of Pu in fast reactors. The BFS-62 experiments have been performed at BFS-2 critical facility of IPPE (Obninsk). The experimental program has been arranged in such a way that the effect of replacement of uranium dioxied blanket by the steel reflector as well as the effect of replacing UOX by MOX on the main characteristics of the reactor model was studied. Wide experimental program, including measurements of the criticality-keff, spectral indices, radial and axial fission rate distributions, control rod mock-up worth, sodium void reactivity effect SVRE and some other important nuclear physics parameters, was fulfilled in the core. Series of 4 BFS-62 critical assemblies have been designed for studying the changes in BN-600 reactor physics from existing state to hybrid core. All the assemblies are modeling the reactor state prior to refueling, i.e. with all control rod mock-ups withdrawn from the core. The following items are chosen for the analysis in this report: Description of the critical assembly BFS-62-3A as the 3rd assembly in a series of 4 BFS critical assemblies studying BN-600 reactor with MOX-UOX hybrid zone and steel reflector; Development of a 3D homogeneous calculation model for the BFS-62-3A critical experiment as the mock-up of BN-600 reactor with hybrid zone and steel reflector; Evaluation of measured nuclear physics parameters keff and SVRE (sodium void reactivity effect); Preparation of adjusted equivalent measured values for keff and SVRE. Main series of calculations are performed using 3D HEX-Z diffusion code TRIGEX in 26 groups, with the ABBN-93 cross-section set. In addition, precise calculations are made, in 299 groups and Ps-approximation in scattering, by Monte-Carlo code MMKKENO and discrete ordinate code TWODANT. All calculations are based on the common system

  8. Shock loading and reactive flow modeling studies of void induced AP/AL/HTPB propellant

    Science.gov (United States)

    Miller, P. J.; Lindfors, A. J.

    1998-07-01

    The unreactive Hugoniot of a class 1.3 propellant has been investigated by shock compression experiments. The results are analyzed in terms of an ignition and growth reactive flow model using the DYNA2D hydrocode. The calculated shock ignition parameters of the model show a linear dependence on measured void volume which appears to reproduce the observed gauge records well. Shock waves were generated by impact in a 75 mm single stage powder gun. Manganin and PVDF pressure gauges provided pressure-time histories to 140 kbar. The propellants were of similar formulation differing only in AP particle size and the addition of a burn rate modifer (Fe2O3) from that of previous investigations. Results show neglible effect of AP particle size on shock response in contrast to the addition of Fe2O3 which appears to `stiffen' the unreactive Hugoniot and enhances significantly the reactive rates under shock. The unreactive Hugoniot, within experimental error, compares favorably to the solid AP Hugoniot. Shock experiments were performed on propellant samples strained to induce insitu voids. The material state was quantified by uniaxial tension dialatometry. The experimental records show a direct correlation between void volume (0 to 1.7%) and chemical reactivity behind the shock front. These results are discussed in terms of `hot spot' ignition resulting from the shock collapse of the voids.

  9. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir

    2011-08-17

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006). The extended model contains all the deformation phases in ductile porous materials, i.e. elastic deformation, plastic deformation including deviatoric and volumetric (void growth) plasticity followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. We finally show the model\\'s ability to predict the damage mechanisms and fracture surface profile of a notched round bar under tension as observed in experiments. © Springer-Verlag 2011.

  10. Atomistic simulations of void migration under thermal gradient in UO2

    International Nuclear Information System (INIS)

    Desai, Tapan G.; Millett, Paul; Tonks, Michael; Wolf, Dieter

    2010-01-01

    It is well known that within a few hours after startup of a nuclear reactor, the temperature gradient within a fuel element causes migration of voids/bubbles radially inwards to form a central hole. To understand the atomic processes that control this migration of voids, we performed molecular dynamics (MD) simulations on single crystal UO 2 with voids of diameter 2.2 nm. An external temperature gradient was applied across the simulation cell. At the end of the simulation run, it was observed that the voids had moved towards the hot end of the simulation cell. The void migration velocity obtained from the simulations was compared with the available phenomenological equations for void migration due to different transport mechanisms. Surface diffusion of the slowest moving specie, i.e. uranium, was found to be the dominant mechanism for void migration. The contribution from lattice diffusion and the thermal stress gradient to the void migration was analyzed and found to be negligible. By extrapolation, a crossover from the surface-diffusion-controlled mechanism to the lattice-diffusion-controlled mechanism was found to occur for voids with sizes in the μm range.

  11. Physics study of Canada deuterium uranium lattice with coolant void reactivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Shin, Ho Cheol [Korea Hydro and Nuclear Power Central Research Institute (KHNP-CRI), Daejeon (Korea, Republic of)

    2017-02-15

    This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 x 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.

  12. Parents Function and Behavioral Disorders in Children with and without Diurnal Voiding Dysfunction: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Parsa Yousefi

    2014-09-01

    Full Text Available Background: Diurnal voiding dysfunction is one of the most common causes of pediatric urology clinic admissions. It can cause behavioral problems for children and their parents. We lunch this study to compare the parents’ function and children’s behavior problem in pediatric patients suffering from diurnal voiding dysfunction referring Arak Amir Kabir hospital. Materials and Methods: To perform this case-control study, we recruit 116 children with diurnal voiding dysfunction and compared them with other 116 children non-affected children aged between 5 to 16 years old. The child behavior checklist (CBCL4/18 for children behavior assessment and Global Assessment of Functioning (GAF for the evaluation of their parent’s behavior was completed by the parents. Data was analyzed using ANOVA, qualitative variables and χ2 formula. Results: Among 116 patient with voiding dysfunction, 10 case (8.6% showed behavioral problem while this figure was 3 case (2.6% in the control group, denoting a significant difference (p=0.04. Moreover 20 children (17.2% in the case group and 9 children (7.8% in the control group had internalizing problem (p=0.02. Twenty two children (19% with voiding dysfunction and 8 children (6.9% in the healthy group had externalizing problem which was also a significant difference (p=0.01. As a significant difference (0.01, the parent’s average stress and behavior scores in case and control group were 3.65 and 3.76, respectively. Conclusion: The higher prevalence of behavioral problem in the children suffering from diurnal voiding dysfunction and their parent’s functional impairment highlights the importance of early parent’s intervention for early treatment and subsequently prevention of future behavioral problem in their sibling.

  13. Partial discharges within two spherical voids in an epoxy resin

    International Nuclear Information System (INIS)

    Illias, H A; Mokhlis, H; Tunio, M A; Chen, G; Bakar, A H A

    2013-01-01

    A void in a dielectric insulation material may exist due to imperfection in the insulation manufacturing or long term stressing. Voids have been identified as one of the common sources of partial discharge (PD) activity within an insulation system, such as in cable insulation and power transformers. Therefore, it is important to study PD phenomenon within void cavities in insulation. In this work, a model of PD activity within two spherical voids in a homogeneous dielectric material has been developed using finite element analysis software to study the parameters affecting PD behaviour. The parameters that have been taken into account are the void surface conductivity, electron generation rate and the inception and extinction fields. Measurements of PD activity within two spherical voids in an epoxy resin under ac sinusoidal applied voltage have also been performed. The simulation results have been compared with the measurement data to validate the model and to identify the parameters affecting PD behaviour. Comparison between measurements of PD activity within single and two voids in a dielectric material have also been made to observe the difference of the results under both conditions. (paper)

  14. A sharp interface model for void growth in irradiated materials

    Science.gov (United States)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

  15. From Voids to Yukawaballs And Back

    International Nuclear Information System (INIS)

    Land, V.; Goedheer, W. J.

    2008-01-01

    When dust particles are introduced in a radio-frequency discharge under micro-gravity conditions, usually a dust free void is formed due to the ion drag force pushing the particles away from the center. Experiments have shown that it is possible to close the void by reducing the power supplied to the discharge. This reduces the ion density and with that the ratio between the ion drag force and the opposing electric force. We have studied the behavior of a discharge with a large amount of dust particles (radius 3.4 micron) with our hydrodynamic model, and simulated the closure of the void for conditions similar to the experiment. We also approached the formation of a Yukawa ball from the other side, starting with a discharge at low power and injecting batches of dust, while increasing the power to prevent extinction of the discharge. Eventually the same situation could be reached.

  16. Towards the reanalysis of void coefficients measurements at proteus for high conversion light water reactor lattices

    Energy Technology Data Exchange (ETDEWEB)

    Hursin, M.; Koeberl, O.; Perret, G. [Paul Scherrer Institut PSI, 5232 Villigen (Switzerland)

    2012-07-01

    High Conversion Light Water Reactors (HCLWR) allows a better usage of fuel resources thanks to a higher breeding ratio than standard LWR. Their uses together with the current fleet of LWR constitute a fuel cycle thoroughly studied in Japan and the US today. However, one of the issues related to HCLWR is their void reactivity coefficient (VRC), which can be positive. Accurate predictions of void reactivity coefficient in HCLWR conditions and their comparisons with representative experiments are therefore required. In this paper an inter comparison of modern codes and cross-section libraries is performed for a former Benchmark on Void Reactivity Effect in PWRs conducted by the OECD/NEA. It shows an overview of the k-inf values and their associated VRC obtained for infinite lattice calculations with UO{sub 2} and highly enriched MOX fuel cells. The codes MCNPX2.5, TRIPOLI4.4 and CASMO-5 in conjunction with the libraries ENDF/B-VI.8, -VII.0, JEF-2.2 and JEFF-3.1 are used. A non-negligible spread of results for voided conditions is found for the high content MOX fuel. The spread of eigenvalues for the moderated and voided UO{sub 2} fuel are about 200 pcm and 700 pcm, respectively. The standard deviation for the VRCs for the UO{sub 2} fuel is about 0.7% while the one for the MOX fuel is about 13%. This work shows that an appropriate treatment of the unresolved resonance energy range is an important issue for the accurate determination of the void reactivity effect for HCLWR. A comparison to experimental results is needed to resolve the presented discrepancies. (authors)

  17. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir; Arciniega, Roman; El Sayed, Tamer

    2011-01-01

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006

  18. Archaeology of Void Spaces

    Science.gov (United States)

    Look, Cory

    The overall goal of this research is to evaluate the efficacy of pXRF for the identification of ancient activity areas at Pre-Columbian sites in Antigua that range across time periods, geographic regions, site types with a variety of features, and various states of preservation. These findings have important implications for identifying and reconstructing places full of human activity but void of material remains. A synthesis for an archaeology of void spaces requires the construction of new ways of testing anthrosols, and identifying elemental patterns that can be used to connect people with their places and objects. This research begins with an exploration of rich middens in order to study void spaces. Midden archaeology has been a central focus in Caribbean research, and consists of an accumulation of discarded remnants from past human activities that can be tested against anthrosols. The archaeological collections visited for this research project involved creating new databases to generate a comprehensive inventory of sites, materials excavated, and assemblages available for study. Of the more than 129 Pre-Columbian sites documented in Antigua, few sites have been thoroughly surveyed or excavated. Twelve Pre-Columbian sites, consisting of thirty-six excavated units were selected for study; all of which contained complete assemblages for comparison and soil samples for testing. These excavations consisted almost entirely of midden excavations, requiring new archaeological investigations to be carried out in spaces primarily void of material remains but within the village context. Over the course of three seasons excavations, shovel test pits, and soil augers were used to obtain a variety of anthrosols and archaeological assemblages in order to generate new datasets to study Pre-Columbian activity areas. The selection of two primary case study sites were used for comparison: Indian Creek and Doigs. Findings from this research indicate that accounting for the

  19. Effect of voids-controlled vacancy supersaturations on B diffusion

    International Nuclear Information System (INIS)

    Marcelot, O.; Claverie, A.; Cristiano, F.; Cayrel, F.; Alquier, D.; Lerch, W.; Paul, S.; Rubin, L.; Jaouen, H.; Armand, C.

    2007-01-01

    We present here preliminary results on boron diffusion in presence of pre-formed voids of different characteristics. The voids were fabricated by helium implantation followed by annealing allowing the desorption of He prior to boron implantation. We show that under such conditions boron diffusion is always largely reduced and can even be suppressed in some cases. Boron diffusion suppression can be observed in samples not containing nanovoids in the boron-rich region. It is suggested that direct trapping of Si(int)s by the voids is not the mechanism responsible for the reduction of boron diffusion in such layers. Alternatively, our experimental results suggest that this reduction of diffusivity is more probably due to the competition between two Ostwald ripening phenomena taking place at the same time: in the boron-rich region, the competitive growth of extrinsic defects at the origin of TED and, in the void region, the Ostwald ripening of the voids which involves large supersaturations of Vs

  20. Effect of voids-controlled vacancy supersaturations on B diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Marcelot, O. [CEMES/CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France)]. E-mail: marcelot@cemes.fr; Claverie, A. [CEMES/CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Cristiano, F. [LAAS/CNRS, 7 av. du Col. Roche, 31077 Toulouse (France); Cayrel, F. [LMP, Universite de Tours, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Alquier, D. [LMP, Universite de Tours, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Lerch, W. [Mattson Thermal Products GmbH, Daimlerstr. 10, D-89160 Dornstadt (Germany); Paul, S. [Mattson Thermal Products GmbH, Daimlerstr. 10, D-89160 Dornstadt (Germany); Rubin, L. [Axcelis Technologies, 108 Cherry Hill Drive, Beverly MA 01915 (United States); Jaouen, H. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles (France); Armand, C. [LNMO/INSA, Service analyseur ionique, 135 av. de Rangueil, 31077 Toulouse (France)

    2007-04-15

    We present here preliminary results on boron diffusion in presence of pre-formed voids of different characteristics. The voids were fabricated by helium implantation followed by annealing allowing the desorption of He prior to boron implantation. We show that under such conditions boron diffusion is always largely reduced and can even be suppressed in some cases. Boron diffusion suppression can be observed in samples not containing nanovoids in the boron-rich region. It is suggested that direct trapping of Si(int)s by the voids is not the mechanism responsible for the reduction of boron diffusion in such layers. Alternatively, our experimental results suggest that this reduction of diffusivity is more probably due to the competition between two Ostwald ripening phenomena taking place at the same time: in the boron-rich region, the competitive growth of extrinsic defects at the origin of TED and, in the void region, the Ostwald ripening of the voids which involves large supersaturations of Vs.

  1. On the formation of voids in internal tin Nb$_{3}$Sn superconductors

    CERN Document Server

    Scheuerlein, C; Haibel, A

    2007-01-01

    In this article we describe three void growth mechanisms in Nb$_{3}$Sn strands of the internal tin design on the basis of combined synchrotron micro-tomography and x-ray diffraction measurements during in-situ heating cycles. Initially void growth is driven by a reduction of void surface area by void agglomeration. The main void volume increase is caused by density changes during the formation of Cu3Sn in the strand. Subsequent transformation of Cu-Sn intermetallics into the lower density a-bronze reduces the void volume again. Long lasting temperature ramps and isothermal holding steps can neither reduce the void volume nor improve the chemical strand homogeneity prior to the superconducting A15 phase nucleation and growth.

  2. Void shrinkage in stainless steel during high energy electron irradiation

    International Nuclear Information System (INIS)

    Singh, B.N.; Foreman, A.J.E.

    1976-03-01

    During irradiation of thin foils of an austenitic stainless steel in a high voltage electron microscope, steadily growing voids have been observed to suddenly shrink and disappear at the irradiation temperature of 650 0 Cthe phenomenon has been observed in specimens both with and withoutimplanted helium. Possible mechanisms for void shrinkage during irradiation are considered. It is suggested that the dislocation-pipe-diffusion of vacancies from or of self-interstitial atoms to the voids can explain the shrinkage behaviour of voids observed during our experiments. (author)

  3. Comment on theories for helium-assisted void nucleation

    International Nuclear Information System (INIS)

    Russell, K.C.

    1976-01-01

    Voids form by agglomeration of irradiation-induced vacancies which remain after preferential absorption of self interstitials at dislocation lines. Helium which is formed by (n,α) transmutations and, in simulation studies, may be ion-implanted, often plays an important, but puzzling role. In some materials, very few voids form in the absence of helium, even after intense irradiation. In many other materials , voids form readily under a variety of irradiation conditions, even in the absence of helium. Why some materials require helium - typically in the 10 -6 apa (atom per atom) range - and others do not, and the reason for that particular level are by no means clear. The physics of void nucleation, particularly the role of helium, have been the subject of several theoretical papers. This note presents a critique of these theories, and then briefly outlines a new analysis which is not subject to their limitations. (Auth.)

  4. Nucleation and growth of voids by radiation. Pt. 2

    International Nuclear Information System (INIS)

    Mayer, R.M.; Brown, L.M.

    1980-01-01

    The original model of Brown, Kelly and Mayer [1] for the nucleation of interstitial loops has been extended to take into account the following: (i) mobility of the vacancies, (ii) generation and migration of gas atoms during irradiation, (iii) nucleation and growth of voids, and (iv) vacancy emission from voids and clusters at high temperatures. Using chemicalrate equations, additional expressions are formulated for the nucleation and growth of vacancy loops and voids. (orig.)

  5. Radiation-induced void swelling in metals and alloys

    International Nuclear Information System (INIS)

    Zelinskij, V.F.; Neklyudov, I.M.; Ozhigov, L.S.; Reznichenko, Eh.A.; Rozhkov, V.V.; Chernyaeva, T.T.

    1979-01-01

    Main regularities in the development of radiation-induced void swelling are considered. Special attention is paid to consideration of a possibility to obtain information on material behaviour under conditions of reactor irradiation proceeding from the data of simulation experiments and to methods of rate control, for the processes which occur in material during irradiation and further annealing by the way of rationalized alloying, of thermomechanical treatment and programmed change of irradiation conditions under operation. Problems of initiation and growth of voids in irradiated materials are discussed as well as the ways to decrease the rate of radiation-induced void swelling

  6. Numerical simulation of void growth under dynamic loading

    International Nuclear Information System (INIS)

    Iqbal, A.

    1996-01-01

    Following a brief general review of developments in material behavior under high strain rates, a cylindrical cell surrounding a spherical void in OFHC copper is numerically simulated by Zerri-Armstrong model. This simulation results show that the plastic deformation tends to be concentrated in the vicinity of voids either in the axial or transverse direction depending upon the stress state. This event is associated with the accelerated void through accompanying coalescence causing ductile fracture. A3-node triangular mesh generation code used as input for finite element code is developed by a 'Central Generation' technique. (author)

  7. Method of simulating spherical voids for use as a radiographic standard

    International Nuclear Information System (INIS)

    Foster, B.E.

    1977-01-01

    A method of simulating small spherical voids in metal is provided. The method entails drilling or etching a hemispherical depression of the desired diameter in each of two sections of metal, the sections being flat plates or different diameter cylinders. A carbon bead is placed in one of the hemispherical voids and is used as a guide to align the second hemispherical void with that in the other plate. The plates are then bonded together with epoxy, tape or similar material and the two aligned hemispheres form a sphere within the material; thus a void of a known size has been created. This type of void can be used to simulate a pore in the development of radiographic techniques of actual voids (porosity) in welds and serve as a radiographic standard

  8. Size-effects at a crack-tip interacting with a number of voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof

    2008-01-01

    A strain gradient plasticity theory is used to analyse the growth of discretely represented voids in front of a blunting crack tip, in order to study the influence of size effects on two competing mechanisms of crack growth. For a very small void volume fraction the crack tip tends to interact...... of the characteristic material length relative to the initial void radius. For a case showing the multiple void mechanism, it is found that the effect of the material length can change the behaviour towards the void by void mechanism. A material model with three characteristic length scales is compared with a one...

  9. New insight on bubble-void transition effects in irradiated materials

    International Nuclear Information System (INIS)

    Dubinko, V.I.

    1993-01-01

    An account of elastic interaction between cavities and point defects is shown to result in new critical quantities for bubblevoid transition effects in irradiated cubic crystals. In contrast to previous theories, the present one gives not only critical quantities which determine the onset of bias-driven void swelling but the maximum stationary number density and the corresponding mean radius of voids as well as the duration of the bimodal regime. The void density and swelling rate are shown to be independent from the gas level. In the region of low temperatures/high dose rates, the void density appears to be independent from irradiation parameters as well. The relationships among material constants are found at which the stabilization of gas bubbles occurs via the dislocation loop punching mechanism resulting in a drastic change in the cavity behaviour under irradiation such as the saturation (or even suppression) of void swelling and void lattice formation. The theoretical results are compared with experimental data and further experimental tests are proposed. (author). 38 refs., 1 tab., 11 figs

  10. MADNIX a code to calculate prompt fission neutron spectra and average prompt neutron multiplicities

    International Nuclear Information System (INIS)

    Merchant, A.C.

    1986-03-01

    A code has been written and tested on the CDC Cyber-170 to calculate the prompt fission neutron spectrum, N(E), as a function of both the fissioning nucleus and its excitation energy. In this note a brief description of the underlying physical principles involved and a detailed explanation of the required input data (together with a sample output for the fission of 235 U induced by 14 MeV neutrons) are presented. Weisskopf's standard nuclear evaporation theory provides the basis for the calculation. Two important refinements are that the distribution of fission-fragment residual nuclear temperature and the cooling of the fragments as neutrons are emitted approximately taken into account, and also the energy dependence of the cross section for the inverse process of compound nucleus formation is included. This approach is then used to calculate the average number of prompt neutrons emitted per fission, v-bar p . At high excitation energies, where fission is still possible after neutron emission, the consequences of the competition between first, second and third chance fission on N(E) and v-bar p are calculated. Excellent agreement with all the examples given in the original work of Madland and Nix is obtained. (author) [pt

  11. Development of an electrical sensor for measurement of void fraction and identification of flow regime in a horizontal pipe

    International Nuclear Information System (INIS)

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Ko, Min Seok; Kim, Sin

    2015-01-01

    The electrical signals of the electrical impedance sensor depend on the flow structure as well as the void fraction. For this reason, the electrical responses to a given void fraction differ according to the flow pattern. For reliable void fraction measurement, hence, information on the flow pattern should be given. Based on this idea, a new improved conductance sensor is proposed in this study to measure the void fraction and simultaneously determine the flow pattern of the air-water two-phase mixture in a horizontal pipe. The proposed sensor is composed of a 3-electrode set of adjacent and opposite electrodes. The opposite electrodes measures the void fraction, the adjacent electrode serves to determine the flow patterns. Prior to the real applications of the proposed approach, several numerical calculations based on the FEM are performed to optimize the electrode and insulator sizes in terms of the sensor linearity. The numerical results are assessed in comparison with the data from static experiments. The sensor system is applied for a horizontal flow loop with 40 mm in inner diameter and 5 m in length and its measurement performance for the void fraction is compared with that of a wire-mesh sensor system. In this study, an electrical sensor for measuring the void fraction and identifying flow pattern in horizontal pipes has been designed. For optimization of the sensor, numerical analysis have been performed in order to determine the geometry and verified it through static experiments. Also, the loop experiments were conducted for several flow rate conditions covering stratified and intermittent flow regimes and the experimental results for the void fractions measured by the proposed sensor were compared with those of a wire-mesh sensor. The comparison results are in overall good agreements

  12. Dislocation and void segregation in copper during neutron irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Horsewell, Andy

    1986-01-01

    ); the irradiation experiments were carried out at 250 degree C. The irradiated specimens were examined by transmission electron microscopy. At both doses, the irradiation-induced structure was found to be highly segregated; the dislocation loops and segments were present in the form of irregular walls and the voids...... density, the void swelling rate was very high (approximately 2. 5% per dpa). The implications of the segregated distribution of sinks for void formation and growth are briefly discussed....

  13. Peculiarities of void fraction measurement applied to physical installation channels cooled by forced helium flow

    International Nuclear Information System (INIS)

    Danilov, V.V.; Filippov, Yu.P.; Mamedov, I.S.

    1989-01-01

    The methods of optimizing the transducers designed for measurements of the void fraction of two-phase flows in the channels of round and annular cross section are presented. On the basis of the analysis performed concrete solution of relatively high technical characteristics are proposed. Rated and actual characteristics of signal ranges and measurement errors are given for both sensors. Influence of the mass velocity on the void fraction of adiabatic two-phase flows is theoretically analyzed. Effects of friction and of liquid-into-vapour entrainment are shown. Calculation results are compared with the obtained experimental data for helium. Special attention is given to the specific features of the processes in channels with different cross section. 17 refs.; 5 figs.; 1 tab

  14. Stress Voiding in IC Interconnects - Rules of Evidence for Failure Analysts

    Energy Technology Data Exchange (ETDEWEB)

    FILTER, WILLIAM F.

    1999-09-17

    Mention the words ''stress voiding'', and everyone from technology engineer to manager to customer is likely to cringe. This IC failure mechanism elicits fear because it is insidious, capricious, and difficult to identify and arrest. There are reasons to believe that a damascene-copper future might be void-free. Nevertheless, engineers who continue to produce ICs with Al-alloy interconnects, or who assess the reliability of legacy ICs with long service life, need up-to-date insights and techniques to deal with stress voiding problems. Stress voiding need not be fearful. Not always predictable, neither is it inevitable. On the contrary, stress voids are caused by specific, avoidable processing errors. Analytical work, though often painful, can identify these errors when stress voiding occurs, and vigilance in monitoring the improved process can keep it from recurring. In this article, they show that a methodical, forensics approach to failure analysis can solve suspected cases of stress voiding. This approach uses new techniques, and patiently applies familiar ones, to develop evidence meeting strict standards of proof.

  15. "Dark energy" in the Local Void

    Science.gov (United States)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  16. Calculation of the average radiological detriment of two samples from a breast screening programme

    International Nuclear Information System (INIS)

    Ramos, M.; Sanchez, A.M.; Verdu, G.; Villaescusa, J.I.; Salas, M.D.; Cuevas, M.D.

    2002-01-01

    In 1992 started in the Comunidad Valenciana the Breast Cancer Screening Programme. The programme is oriented to asymptomatic women between 45 and 65 years old, with two mammograms in each breast for the first time that participate and a simple one in later interventions. Between November of 2000 and March of 2001 was extracted a first sample of 100 woman records for all units of the programme. The data extracted in each sample were the kV-voltage, the X-ray tube load and the breast thickness and age of the woman exposed, used directly in dose and detriment calculation. By means of MCNP-4B code and according to the European Protocol for the quality control of the physical and technical aspects of mammography screening, the average total and glandular doses were calculated, and later compared

  17. Nucleation of voids in materials supersaturated with mobile interstitials, vacancies and divacancies

    International Nuclear Information System (INIS)

    Wolfer, W.G.; Si-Ahmed, A.

    1982-01-01

    In previous void nucleation theories, the void size has been allowed to change only by one atomic volume through vacancy or interstitial absorption or through vacancy emission. To include the absorption of divacancies, the classical nucleation theory is here extended to include double-step transitions between clusters. The new nucleation theory is applied to study the effect of divacancies on void formation. It is found that the steady-state void nucleation rate is enhanced by several orders of magnitude as compared to results with previous void nucleation theories. However, to obtain void nucleation rates comparable to measured ones, the effect of impurities, segregation and insoluble gases must still be invoked. (author)

  18. Effect of Dark Energy Perturbation on Cosmic Voids Formation

    Science.gov (United States)

    Endo, Takao; Nishizawa, Atsushi J.; Ichiki, Kiyotomo

    2018-05-01

    In this paper, we present the effects of dark energy perturbation on the formation and abundance of cosmic voids. We consider dark energy to be a fluid with a negative pressure characterised by a constant equation of state w and speed of sound c_s^2. By solving fluid equations for two components, namely, dark matter and dark energy fluids, we quantify the effects of dark energy perturbation on the sizes of top-hat voids. We also explore the effects on the size distribution of voids based on the excursion set theory. We confirm that dark energy perturbation negligibly affects the size evolution of voids; c_s^2=0 varies the size only by 0.1% as compared to the homogeneous dark energy model. We also confirm that dark energy perturbation suppresses the void size when w -1 (Basse et al. 2011). In contrast to the negligible impact on the size, we find that the size distribution function on scales larger than 10 Mpc/h highly depends on dark energy perturbation; compared to the homogeneous dark energy model, the number of large voids of radius 30Mpc is 25% larger for the model with w = -0.9 and c_s^2=0 while they are 20% less abundant for the model with w = -1.3 and c_s^2=0.

  19. FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30 MHz to 3 GHz

    International Nuclear Information System (INIS)

    Wang Jianqing; Fujiwara, Osamu; Kodera, Sachiko; Watanabe, Soichi

    2006-01-01

    Due to the difficulty of the specific absorption rate (SAR) measurement in an actual human body for electromagnetic radio-frequency (RF) exposure, in various compliance assessment procedures the incident electric field or power density is being used as a reference level, which should never yield a larger whole-body average SAR than the basic safety limit. The relationship between the reference level and the whole-body average SAR, however, was established mainly based on numerical calculations for highly simplified human modelling dozens of years ago. Its validity is being questioned by the latest calculation results. In verifying the validity of the reference level with respect to the basic SAR limit for RF exposure, it is essential to have a high accuracy of human modelling and numerical code. In this study, we made a detailed error analysis in the whole-body average SAR calculation for the finite-difference time-domain (FDTD) method in conjunction with the perfectly matched layer (PML) absorbing boundaries. We derived a basic rule for the PML employment based on a dielectric sphere and the Mie theory solution. We then attempted to clarify to what extent the whole-body average SAR may reach using an anatomically based Japanese adult model and a scaled child model. The results show that the whole-body average SAR under the ICNIRP reference level exceeds the basic safety limit nearly 30% for the child model both in the resonance frequency and 2 GHz band

  20. FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30 MHz to 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianqing [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Fujiwara, Osamu [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kodera, Sachiko [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Watanabe, Soichi [National Institute of Information and Communications Technology, Nukui-kitamachi, Koganei, Tokyo 184-8795 (Japan)

    2006-09-07

    Due to the difficulty of the specific absorption rate (SAR) measurement in an actual human body for electromagnetic radio-frequency (RF) exposure, in various compliance assessment procedures the incident electric field or power density is being used as a reference level, which should never yield a larger whole-body average SAR than the basic safety limit. The relationship between the reference level and the whole-body average SAR, however, was established mainly based on numerical calculations for highly simplified human modelling dozens of years ago. Its validity is being questioned by the latest calculation results. In verifying the validity of the reference level with respect to the basic SAR limit for RF exposure, it is essential to have a high accuracy of human modelling and numerical code. In this study, we made a detailed error analysis in the whole-body average SAR calculation for the finite-difference time-domain (FDTD) method in conjunction with the perfectly matched layer (PML) absorbing boundaries. We derived a basic rule for the PML employment based on a dielectric sphere and the Mie theory solution. We then attempted to clarify to what extent the whole-body average SAR may reach using an anatomically based Japanese adult model and a scaled child model. The results show that the whole-body average SAR under the ICNIRP reference level exceeds the basic safety limit nearly 30% for the child model both in the resonance frequency and 2 GHz band.

  1. Severe Embrittlement of Neutron Irradiated Austenitic Steels Arising from High Void Swelling

    International Nuclear Information System (INIS)

    Neustroev, V.S.; Garner, F.

    2007-01-01

    Full text of publication follows: Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components. Similar loss of ductility is expected when swelling arises in fusion and light water reactor environments. Above 7-16% swelling there is complete loss of ductility, with the onset of ductility loss beginning at lower swelling in ring-pull tensile tests than for flat tensile specimens. For steels that develop extensive precipitation during irradiation, the critical swelling level is even lower. A model is presented to demonstrate the effect of voids acting alone to produce the embrittlement. Although voids are not very effective hardeners, they are very effective to generate stress concentrations between voids. The stress concentration ratio increases strongly when the void diameter exceeds ∼40% of the void-to-void separation distance. When the volume fraction of voids is rather high (about 16 % and higher), a geometric situation develops where it is possible to create an intense field of deformation glide planes residing at an angle of 45 deg. to the void-to-void axis. Significant localized flow then proceeds on these planes for specimen stress levels that are significantly lower than the yield stress. Voids also segregate nickel to their surfaces such that flow localization occurs in the low-nickel inter-void regions to produce strain-induced martensite, which is further accelerated by stress concentrations at the advancing crack tip, leading to catastrophic failure. (authors)

  2. Void coalescence mechanism for combined tension and large amplitude cyclic shearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Andersen, Rasmus Grau; Tvergaard, Viggo

    2017-01-01

    Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs failure has been demonstrated to involve collapse, rotation, and elongation of existing voids. Under intense shearing, the voids are flat...

  3. Modeling multiscale evolution of numerous voids in shocked brittle material.

    Science.gov (United States)

    Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng

    2014-04-01

    The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.

  4. Modelling the void deformation and closure by hot forging of ingot castings

    DEFF Research Database (Denmark)

    Christiansen, Peter; Hattel, Jesper Henri; Kotas, Petr

    2012-01-01

    by mechanical deformation. The aim of this paper is to analyze numerically if and to what degree the voids areclosed by the forging. Using the commercial simulation software ABAQUS, both simplified model ingots and physically manufactured ingots containing prescribed void distributions are deformed and analyzed....... The analysis concernsboth the void density change and the location of the voids in the part after deformation. The latter can be important for the subsequent reliability of the parts, for instance regarding fatigue properties. The analysis incorporates the Gurson yield criterion for metals containing voids...... and focuses on how the voids deform depending on their size and distribution in the ingot as well ashow the forging forces are applied....

  5. Effect of stress-state and spacing on voids in a shear-field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2012-01-01

    in the overall average stress state can be prescribed. This also allows for studies of the effect of different initial void spacing in the two in-plane coordinate directions. The stress states considered are essentially simple shear, with various levels of tensile stresses or compressive stresses superposed, i.......e. low positive stress triaxiality or even negative stress triaxiality. For high aspect ratio unit cells a clear localization band is found inside the cell, which actually represents several parallel bands, due to periodicity. In the materials represented by a low aspect ratio unit cell localization...

  6. Controlling Interfacial Separation in Porous Structures by Void Patterning

    Science.gov (United States)

    Ghareeb, Ahmed; Elbanna, Ahmed

    Manipulating interfacial response for enhanced adhesion or fracture resistance is a problem of great interest to scientists and engineers. In many natural materials and engineering applications, an interface exists between a porous structure and a substrate. A question that arises is how the void distribution in the bulk may affect the interfacial response and whether it is possible to alter the interfacial toughness without changing the surface physical chemistry. In this paper, we address this question by studying the effect of patterning voids on the interfacial-to-the overall response of an elastic plate glued to a rigid substrate by bilinear cohesive material. Different patterning categories are investigated; uniform, graded, and binary voids. Each case is subjected to upward displacement at the upper edge of the plate. We show that the peak force and maximum elongation at failure depend on the voids design and by changing the void size, alignment or gradation we may control these performance measures. We relate these changes in the measured force displacement response to energy release rate as a measure of interfacial toughness. We discuss the implications of our results on design of bulk heterogeneities for enhanced interfacial behavior.

  7. Evaluation analysis of correlations for predicting the void fraction and slug velocity of slug flow in an inclined narrow rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoxing, E-mail: yanchaoxing0808@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); Yan, Changqi, E-mail: Changqi_yan@163.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); Shen, Yunhai [Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610041 (China); Sun, Licheng; Wang, Yang [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China)

    2014-07-01

    Highlights: • 46 void fraction correlations are evaluated on void fraction. • Evaluation of void fraction correlations on slug velocity is studied. • Effect of void fraction correlations on separated frictional pressure drop is studied. • Drift-flux type correlation shows best agreement with experimental data. • Evaluation is investigated in different flow regions. - Abstract: A visualized investigation was conducted on inclined upward air–water slug flow in a narrow rectangular duct with the cross section of 43 mm × 3.25 mm. The slug velocity and void fraction were obtained through image processing. 46 correlations for predicting void fraction, covering the types of slip ratio, Kβ, Lockhart and Martinelli, drift-flux and general were evaluated against the experimental data. In the experiment, four inclined conditions including 0°, 10°, 20° and 30° were investigated and the ranges of gas and liquid superficial velocity were 0.16–2.63 m/s and 0.12–3.59 m/s, respectively. The results indicate that the inclination has no significant influence on prediction error for a given correlation and the drift-flux type correlations are more competitive than the others in the prediction of slug velocity and void fraction. In addition, most of drift-flux type correlations are quite accurate in turbulent flow region, while they provide relative poor predictions in laminar flow region. As for the frictional pressure drop separated from the measured total pressure drop, the deviation arising from the calculation of the void fraction by different correlations is significant in laminar flow region, whereas is negligible in turbulent flow region.

  8. Electromigration of intergranular voids in metal films for microelectronic interconnects

    CERN Document Server

    Averbuch, A; Ravve, I

    2003-01-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the v...

  9. Void nucleation in spheroidized steels during tensile deformation

    International Nuclear Information System (INIS)

    Fisher, J.R. Jr.

    1980-04-01

    An investigation was conducted to determine the effects of various mechanical and material parameters on void formation at cementite particles in axisymmetric tensile specimens of spheroidized plain carbon steels. Desired microstructures for each of three steel types were obtained. Observations of void morphology with respect to various microstructural features were made using optical and scanning electron microscopy

  10. Tank SY-101 void fraction instrument functional design criteria

    International Nuclear Information System (INIS)

    McWethy, L.M.

    1994-01-01

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations

  11. Risk management of low air void asphalt concrete mixtures.

    Science.gov (United States)

    2013-07-01

    Various forms of asphalt pavement distress, such as rutting, shoving and bleeding, can be attributed, in many cases, to low air voids in : the mixtures during production and placement. The occurrence of low air void contents during plant production m...

  12. Microscopic Void Detection for Predicting Remaining Life in Electric Cable Insulation

    International Nuclear Information System (INIS)

    Horvath, David A.; Avila, Steven M.

    2003-01-01

    A reliable method of testing for remaining life in electric cable insulation has continued to elude the nuclear industry as it seeks to extend the life and license of its nuclear stations. Until recently, a trendable, measurable electrical property has not been found, and unexpected cable failures continue to be reported. Most reliable approaches to date rely on monitoring mechanical properties, which are assumed to degrade faster than the insulation's electrical properties. This paper introduces a promising technique based on void characterization, which is dependent on an electrical property related to dielectric strength. A relationship between insulation void characteristics (size and density) and the onset of partial discharge is known to exist. A similar relationship can be shown between void characteristics and unacceptable leakage currents (another typical cable failure criterion). For low-voltage cables, it is believed void content can be correlated to mechanical property degradation.This paper will report on an approach for using void information, research results showing the existence of trendable void characteristics in commonly used electric insulation materials, and techniques for detecting the voids (both laboratory- and field-based techniques). Acoustical microscopy was found to be potentially more suitable than conventional ultrasound for nondestructive in situ detection and monitoring of void characteristics in jacketed multiconductor insulation while ignoring the jacket. Also, optical and scanning electron microscope techniques will play an essential role in establishing the database necessary for continued development and implementation of this promising technique

  13. Descriptors of sensation confirm the multidimensional nature of desire to void.

    Science.gov (United States)

    Das, Rebekah; Buckley, Jonathan D; Williams, Marie T

    2015-02-01

    To collect and categorize descriptors of "desire to void" sensation, determine the reliability of descriptor categories and assess whether descriptor categories discriminate between people with and without symptoms of overactive bladder. This observational, repeated measures study involved 64 Australian volunteers (47 female), aged 50 years or more, with and without symptoms of overactive bladder. Descriptors of desire to void sensation were derived from a structured interview (conducted on two occasions, 1 week apart). Descriptors were recorded verbatim and categorized in a three-stage process. Overactive bladder status was determined by the Overactive Bladder Awareness Tool and the Overactive Bladder Symptom Score. McNemar's test assessed the reliability of descriptors volunteered between two occasions and Partial Least Squares Regression determined whether language categories discriminated according to overactive bladder status. Post hoc Chi squared analysis and relative risk calculation determined the size and direction of overactive bladder prediction. Thirteen language categories (Urgency, Fullness, Pressure, Tickle/tingle, Pain/ache, Heavy, Normal, Intense, Sudden, Annoying, Uncomfortable, Anxiety, and Unique somatic) encapsulated 344 descriptors of sensation. Descriptor categories were stable between two interviews. The categories "Urgency" and "Fullness" predicted overactive bladder status. Participants who volunteered "Urgency" descriptors were twice as likely to have overactive bladder and participants who volunteered "Fullness" descriptors were almost three times as likely not to have overactive bladder. The sensation of desire to void is reliably described over sessions separated by a week, the language used reflects multiple dimensions of sensation, and can predict overactive bladder status. © 2013 Wiley Periodicals, Inc.

  14. Effect of initial void shape on ductile failure in a shear field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    For voids in a shear field unit cell model analyses have been used to show that ductile failure is predicted even though the stress triaxiality is low or perhaps negative, so that the void volume fraction does not grow during deformation. Here, the effect of the void shape is studied by analyzing...... with circular cross-section, i.e. the voids in shear flatten out to micro-cracks, which rotate and elongate until interaction with neighboring micro-cracks gives coalescence. Even though the mechanism of ductile failure is the same, the load carrying capacity predicted, for the same initial void volume fraction...

  15. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S.; Su, Jian

    2017-01-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  16. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S., E-mail: reina@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Su, Jian, E-mail: sujian@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Engenharia Nuclear

    2017-07-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  17. Measurements of void fraction in a heated tube in the rewetting conditions

    International Nuclear Information System (INIS)

    Freitas, R.L.

    1983-01-01

    The methods of void fraction measurements by transmission and diffusion of cold, thermal and epithermal neutrons were studied with cylindrical alluminium pieces simulating the steam. A great set of void fraction found in a wet zone was examined and a particulsar attention was given to the sensitivity effects of the method, mainly for high void fraction. Several aspects of the measurement techniques were analyzed, such as the effect of the phase radial distribution, neutron energy, water tempeture, effect of the void axial gradient. The technique of thermal neutron diffusion measurement was used to measure the axial profile of void fraction in a steady two-phase flow, where the pressure, mass velocity and heat flux are representative of the wet conditions. Experimental results are presented and compared with different void fraction models. (E.G.) [pt

  18. Discrete modelling of ductile crack growth by void growth to coalescence

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    of the ligaments between the crack-tip and a void or between voids involves the development of very large strains, which are included in the model by using remeshing at several stages of the plastic deformation. The material is here described by standard isotropic hardening Mises theory. For a very small void...

  19. Force field inside the void in complex plasmas under microgravity conditions

    International Nuclear Information System (INIS)

    Kretschmer, M.; Khrapak, S.A.; Zhdanov, S.K.; Thomas, H.M.; Morfill, G.E.; Fortov, V.E.; Lipaev, A.M.; Molotkov, V.I.; Ivanov, A.I.; Turin, M.V.

    2005-01-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the 'trampoline effect'). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force

  20. Direct evidence of void passivation in Cu(InGa)(SSe)2 absorber layers

    International Nuclear Information System (INIS)

    Lee, Dongho; Kim, Young-Su; Mo, Chan B.; Huh, Kwangsoo; Yang, JungYup; Nam, Junggyu; Baek, Dohyun; Park, Sungchan; Kim, ByoungJune; Kim, Dongseop; Lee, Jaehan; Heo, Sung; Park, Jong-Bong; Kang, Yoonmook

    2015-01-01

    We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se) ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer

  1. Theory of void swelling, irradiation creep and growth

    International Nuclear Information System (INIS)

    Wood, M.H.; Bullough, R.; Hayns, M.R.

    Recent progress in our understanding of the fundamental mechanisms involved in swelling, creep and growth of materials subjected to irradiation is reviewed. The topics discussed are: the sink types and their strengths in the lossy continuum; swelling and void distribution analysis, including recent work on void nucleation; and, irradiation creep and growth of zirconium and zircaloy are taken as an example

  2. Understanding void fraction in steady state and dynamic environments

    International Nuclear Information System (INIS)

    Chexal, B.; Maulbetsch, J.; Harrison, J.; Petersen, C.; Jensen, P.; Horowitz, J.

    1997-01-01

    Understanding void fraction behavior in steady-state and dynamic environments is important to accurately predict the thermal-hydraulic behavior of two-phase or two-component systems. The Chexal-Lellouche (C-L) void fraction mode described herein covers the full range of pressures, flows, void fractions, and fluid types (steam-water, air-water, and refrigerants). A drift flux model formulation is used which covers the complete range of concurrent and countercurrent flows. The (1996) model revises the earlier C-L void fraction correlation, improves the capability of the model in countercurrent flow based on the incorporation of additional data, and improves the characteristics of the correlation that are important in transient programs. The model has been qualified with data from a number of steady state two-phase and two-component tests, and has been incorporated into the transient analysis code RELAP5 and RETRAN-3D and evaluated with a variety of transient and steady state tests. A 'plug-in' module for the void fraction correlation has been developed and implemented in RELAP5 and RETRAN-3D. The module is available as source code for inclusion into other thermal-hydraulic programs and can be used in any program that utilizes the same interface variables

  3. Calculation of the ground-state energy and average distance between particles for the nonsymmetric muonic 3He atom

    International Nuclear Information System (INIS)

    Eskandari, M.R.; Rezaie, B.

    2005-01-01

    A calculation of the ground-state energy and average distance between particles in the nonsymmetric muonic 3 He atom is given. We have used a wave function with one free parameter, which satisfies boundary conditions such as the behavior of the wave function when two particles are close to each other or far away. In the proposed wave function, the electron-muon correlation function is also considered. It has a correct behavior for r 12 tending to zero and infinity. The calculated values for the energy and expectation values of r 2n are compared with the multibox variational approach and the correlation function hyperspherical harmonic method. In addition, to show the importance and accuracy of approach used, the method is applied to evaluate the ground-state energy and average distance between the particles of nonsymmetric muonic 4 He atom. Our obtained results are very close to the values calculated by the mentioned methods and giving strong indications that the proposed wave functions, in addition to being very simple, provide relatively accurate values for the energy and expectation values of r 2n , emphasizing the importance of the local properties of the wave function

  4. Evaluation of accuracy of Monte Carlo code MVP with VHTRC experiments. Multiplication factor at criticality, burnable poison worth and void worth

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Yamashita, Kiyonobu; Fiujimoto, Nozomu; Nakano, Masaaki , Yamane, Tsuyoshi; Akino, Fujiyoshi.

    1997-11-01

    Experimental data of VHTRC (Very High Temperature Reactor Critical Assembly) were analyzed using Monte Carlo code MVP (general purpose Monte Carlo code of neutron and photon transport calculations based on the continuous energy method). The calculation accuracy of the code was evaluated by the analysis for nuclear characteristics of a HTGR (high temperature gas-cooled reactor). The MVP code can analyze with a detailed three-dimensional core model with a few approximations. The HTGRs have following characteristics from view point of nuclear design : they have burnable poisons, many void holes, namely, the control insertion holes and so on. Taking account of these characteristics, multiplication factor at criticality, burnable poison worth, and void worth were evaluated. The maximum calculation errors were 0.8%Δk, 7%, and 25% respectively, From these results, it can be concluded that the MVP code is able to be applied to the nuclear characteristics analysis of the HTGR like the High Temperature Engineering Test Reactor (HTTR). (author)

  5. Neutron gauging to detect voids in polyurethane

    International Nuclear Information System (INIS)

    Tsang, F.Y.; Alger, D.M.; Brugger, R.M.

    1978-01-01

    Thermal-neutron radiography and fast-neutron gauging measurements were made to evaluate the feasibility of detecting voids in a polyurethane block placed between steel plates. This sandwich of polyurethane and steel simulates the walls of a canister being designed to hold explosive devices. The polyurethane would act as a shock absorber in the canister. A large fabrication cost saving would result by casting the polyurethane, but a nondestructive testing (NDT) method is needed to determine the uniformity of the polyurethane fill. The radiography measurements used a beam of thermal neutrons, while the gauging used filtered beams of 24 keV and fission spectrum neutrons. For the 83-mm-thick polyurethane and 130-mm-thick steel matrix, the thermal-neutron radiography was able to detect only those voids equal to about one-half the polyurethane thickness. The gauging detected voids in the path of the neutron beam of a few millimetres thickness in seconds to minutes. The gauging is feasible as an NDT method for the canister application

  6. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NARCIS (Netherlands)

    van de Weygaert, Rien; Shandarin, S.; Saar, E.; Einasto, J.

    2016-01-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe

  7. Effect of main stream void distribution on cavitating hydrofoil

    International Nuclear Information System (INIS)

    Ito, J.

    1993-01-01

    For the safety analysis of a loss of coolant accident in a pressurized water reactor, it is important to establish an analytical method which predicts the pump performance under gas-liquid two-phase flow condition. J.H. Kim briefly reviewed several major two-phase flow pump models, and discussed the parameters that could significantly affect two-phase pump behavior. The parameter pointed out to be of the most importance is void distribution at the pump inlet. This says that the pipe bend near the pump inlet makes the void distribution at the pump inlet nonuniform, and this matter can have a significant effect on the impeller blade performance. This paper proposes an analytical method of solution for a partially cavitating hydrofoil placed in the main stream of incompressible homogeneous bubbly two-phase flow conditions whose void fraction is exponentially distributed normal to chordline. The paper clarifies the effect of main stream void distribution parameter on the partially cavitating hydrofoil characteristics

  8. On localization and void coalescence as a precursor to ductile fracture.

    Science.gov (United States)

    Tekoğlu, C; Hutchinson, J W; Pardoen, T

    2015-03-28

    Two modes of plastic flow localization commonly occur in the ductile fracture of structural metals undergoing damage and failure by the mechanism involving void nucleation, growth and coalescence. The first mode consists of a macroscopic localization, usually linked to the softening effect of void nucleation and growth, in either a normal band or a shear band where the thickness of the band is comparable to void spacing. The second mode is coalescence with plastic strain localizing to the ligaments between voids by an internal necking process. The ductility of a material is tied to the strain at macroscopic localization, as this marks the limit of uniform straining at the macroscopic scale. The question addressed is whether macroscopic localization occurs prior to void coalescence or whether the two occur simultaneously. The relation between these two modes of localization is studied quantitatively in this paper using a three-dimensional elastic-plastic computational model representing a doubly periodic array of voids within a band confined between two semi-infinite outer blocks of the same material but without voids. At sufficiently high stress triaxiality, a clear separation exists between the two modes of localization. At lower stress triaxialities, the model predicts that the onset of macroscopic localization and coalescence occur simultaneously. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. The use of graphite for the reduction of void reactivity in CANDU reactors

    International Nuclear Information System (INIS)

    Min, B.J.; Kim, B.G.; Sim, K-S.

    1995-01-01

    Coolant void reactivity can be reduced by using burnable poison in CANDU reactors. The use of graphite in the fuel bundle is introduced to reduce coolant void reactivity by adding an appropriate amount of burnable poison in the central rod. This study shows that sufficiently low void reactivity which in controllable by Reactor Regulating System (RRS) can be achieved by using graphite used fuel with slightly enriched uranium. Zero void reactivity can be also obtained by using graphite used fuel with a large central rod. A new fuel bundle with graphite rods can substantially reduce the void reactivity with less burnup penalty compared to previously proposed low void reactivity fuel with depleted uranium. (author)

  10. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  11. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Sun, Xiaodong; Liu, Yang

    2016-01-01

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  12. The role of bulk recombination in the theory of void swelling

    International Nuclear Information System (INIS)

    Hayns, M.R.

    1978-01-01

    Bulk point defect recombination in the rate theory of void swelling is considered in two ways. First the importance of recombination in the overall void swelling problem is assessed in the light of current experimental data on the temperature dependence of the sink densities. It is found that the assumption that recombination is negligible at and above the peak swelling temperature is not generally true, and is often the reverse of this. Secondly recombination is included in the sink strengths themselves very much in the same spirit as the interactive correction terms have been for losses to other sinks. An approximate numerical procedure has been used to evaluate the resulting coupled sink strengths. Using only the corrections to the cavity sink strengths we have shown that these new terms are only significant at temperatures well in excess of the swelling peak in ST316 under HVEM irradiations and that they need not be included as a general rule in rate theory calculations. Comparisons with a mathematical, perturbation theory treatment of the same problem and with full numerical cellular model results confirm the usefulness of the prsent method. (author)

  13. Breaking the vicious circle: Onabotulinum toxin A in children with therapy-refractory dysfunctional voiding

    NARCIS (Netherlands)

    L.A. 't Hoen (Lisette); J. van den Hoek (Joop); K.P. Wolffenbuttel (Katja); F. van der Toorn; J.R. Scheepe (Jeroen)

    2015-01-01

    textabstractIntroduction An increased activity of the external urethral sphincter or pelvic floor muscles during voluntary voiding leads to dysfunctional voiding. Frequently reported symptoms are urinary incontinence, urinary tract infections and high post-void residuals. Dysfunctional voiding is a

  14. The geometrically averaged density of states calculated from the local Green's function as a measure of localization

    International Nuclear Information System (INIS)

    Wortis, R.; Song Yun; Atkinson, W.A.

    2008-01-01

    With the goal of measuring localization in disordered interacting systems, we examine the finite-size scaling of the geometrically averaged density of states calculated from the local Green's function with finite energy resolution. Our results show that, unlike in a simple energy binning procedure, there is no limit in which the finite energy resolution is irrelevant

  15. Study on characteristics of void fraction in vertical countercurrent two-phase flow by neutron radiography

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Sudo, Yukio; Haga, Katsuhiro

    1996-01-01

    In order to make clear the flow mechanism and characteristics of falling water limitation under the countercurrent two-phase flow, that is, the countercurrent flow limitation (CCFL), in a vertical channel, a technique of neutron radiography (NRG) provided in the Research Nuclear Reactor JRR-3M was applied to an air-water system of vertical rectangular channels of 50 and 782 mm in length with 66 mm in channel width and 2.3 mm in channel gap under atmospheric pressure. The neutron radiography facility used in this study has a high thermal neutron flux that is suitable for visualization of fluid phenomena. A real-time electronic imaging method was used for capturing two-phase flow images in a vertical channel. It was found the technique applied was very potential to clarify the characteristics of instantaneous, local and average void fractions which were important to understand flow mechanism of the phenomena, while the measurements of void fraction had not been applied fully effectively to understanding of the flow mechanism of CCFL, because the differential pressure for determining void fraction is, in general, too small along the tested channel and is fluctuating too frequently to be measured accurately enough. From the void fraction measured by NRG as well as through direct flow observation, it was revealed that the shorter side walls of rectangular channel tested were predominantly wetted by water falling down with the longer side walls being rather dry by ascending air flow. It was strongly suggested that the analytical flow model thus obtained and proposed for the CCFL based on the flow observation was most effective

  16. Air void clustering : [technical summary].

    Science.gov (United States)

    2015-06-01

    Air void clustering around coarse aggregate in concrete has been : identified as a potential source of low strengths in concrete mixes by : several Departments of Transportation around the country. Research : was carried out to (1) develop a quantita...

  17. Characteristics of dust voids in a strongly coupled laboratory dusty plasma

    Science.gov (United States)

    Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.

    2018-05-01

    A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.

  18. The metallurgical approach on the solder voids behaviour in surface mount devices

    International Nuclear Information System (INIS)

    Mohabattul Zaman Bukhari

    1996-01-01

    Solder voids are believed to cause poor heat dissiption in the Surface Mount devices and reduce the reliability of the devices at higher operating services. There are a lot of factors involved in creating voids such as gas/flux entrapment, wettability, outgasseous, air bubbles in the solder paste, inconsistency of solder coverage and improper metal scheme selection. This study was done to observe the behaviour of the solder voids in term of flux entrapmentt and wettability. It is believed that flux entrapment and wettability are verify this hypothesis. Two types of metal scheme were chosen which are Nickel (Ni) plated and Tin (Sn) plated heatsink. X-ray techniques such as Radiographic Inspection Analysis and EDAX were used to detect the minute solder voids. The solder voids observed on the heatsinks and Copper shims after the reflow process are believed to be a non contact voids that resulted from some portion of the surface not wetting properly

  19. (100) faceted anion voids in electron irradiated fluorite

    International Nuclear Information System (INIS)

    Johnson, E.

    1979-01-01

    High fluence electron irradiation of fluorite crystals in the temperature range 150 to 320 K results in formation of a simple cubic anion void superlattice. Above 320 K the damage structure changes to a random distribution of large [001] faceted anion voids. This voidage behaviour, similar to that observed in a range of irradiated metals, is discussed in terms points defect rather than conventional colour centre terminology. (Auth.)

  20. Partial discharges in ellipsoidal and spheroidal voids

    DEFF Research Database (Denmark)

    Crichton, George C; Karlsson, P. W.; Pedersen, Aage

    1989-01-01

    Transients associated with partial discharges in voids can be described in terms of the charges induced on the terminal electrodes of the system. The relationship between the induced charge and the properties which are usually measured is discussed. The method is illustrated by applying it to a s......Transients associated with partial discharges in voids can be described in terms of the charges induced on the terminal electrodes of the system. The relationship between the induced charge and the properties which are usually measured is discussed. The method is illustrated by applying...

  1. Filling the Astronomical Void - A Visual Medium for a Visual Subject

    Science.gov (United States)

    Ryan, J.

    1996-12-01

    Astronomy is fundamentally a visual subject. The modern science of astronomy has at its foundation the ancient art of observing the sky visually. The visual elements of astronomy are arguably the most important. Every person in the entire world is affected by visually-observed astronomical phenomena such as the seasonal variations in daylight. However, misconceptions abound and the average person cannot recognize the simple signs in the sky that point to the direction, the hour and the season. Educators and astronomy popularizers widely lament that astronomy is not appreciated in our society. Yet, there is a remarkable dearth of popular literature for teaching the visual elements of astronomy. This is what I refer to as *the astronomical void.* Typical works use illustrations sparsely, relying most heavily on text-based descriptions of the visual astronomical phenomena. Such works leave significant inferential gaps to the inexperienced reader, who is unequipped for making astronomical observations. Thus, the astronomical void remains unfilled by much of the currently available literature. I therefore propose the introduction of a visually-oriented medium for teaching the visual elements of Astronomy. To this end, I have prepared a series of astronomy "comic strips" that are intended to fill the astronomical void. By giving the illustrations the central place, the comic strip medium permits the depiction of motion and other sequential activity, thus effectively representing astronomical phenomena. In addition to the practical advantages, the comic strip is a "user friendly" medium that is inviting and entertaining to a reader. At the present time, I am distributing a monthly comic strip entitled *Starman*, which appears in the newsletters of over 120 local astronomy organizations and on the web at http://www.cyberdrive.net/ starman. I hope to eventually publish a series of full-length books and believe that astronomical comic strips will help expand the perimeter of

  2. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    Science.gov (United States)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  3. Flux pinning by voids in surface-oxidized superconducting niobium and vanadium

    International Nuclear Information System (INIS)

    Meij, G.P. van der.

    1984-03-01

    The volume pinning force in several niobium and vanadium samples with voids is determined at various temperatures. Reasonable agreement is found with the collective pinning theory of Larkin and Ovchinnikov above the field of maximum pinning, if the flux line lattice is assumed to be amorphous in this region and if the elementary pinning force is calculated from the quasi-classical theory of Thuneberg, Kurkijaervi, and Rainer. Also some history and relaxation effects are studied in an alternating field. A qualitative explanation is given in terms of flux line dislocations, which reduce the shear strength of the flux line lattice. (Auth.)

  4. Void formation by annealing of neutron-irradiated plastically deformed molybdenum

    International Nuclear Information System (INIS)

    Petersen, K.; Nielsen, B.; Thrane, N.

    1976-01-01

    The positron annihilation technique has been used in order to study the influence of plastic deformation on the formation and growth of voids in neutron irradiated molybdenum single crystals treated by isochronal annealing. Samples were prepared in three ways: deformed 12-19% before irradiation, deformed 12-19% after irradiation, and - for reference purposes -non-deformed. In addition a polycrystalline sample was prepared in order to study the influence of the grain boundaries. All samples were irradiated at 60 0 C with a flux of 2.5 x 10 18 fast neutrons/cm 2 . After irradiation the samples were subjected to isochronal annealing. It was found that deformation before irradiation probably enhanced the formation of voids slightly. Deformation after irradiation strongly reduced the void formation. The presence of grain boundaries in the polycrystalline sample had a reducing influence on the growth of voids. (author)

  5. Investigation of CTF void fraction prediction by ENTEK BM experiment data

    International Nuclear Information System (INIS)

    Hoang Minh Giang; Hoang Tan Hung; Nguyen Phu Khanh

    2015-01-01

    Recently, CTF, a version of COBRA-TF code is reviewed to validate its simulation models by several experiments such as Castellana 4x4 rod bundle, EPRI 5x5 bundle tests, PSBT bundle tests and TPTF experiment. These above experiments provide enthalpy, mass flux (Castellana), temperature (EPRI) and void fraction (PSBT, TPTF) at exit channel only. In order to simulate PWR rod bundle flow behavior, it is necessary to review CTF with more experiment in high pressure condition and it is found that the ENTEK BM facility is suitable for this purpose. The ENTEK BM facility is used to simulate Russia RBMK and VVER rod bundle two phase flow with pressure at 3 and 7 MPa and it gives measured void fraction distribution along the channel. This study focus on two points: (a) accuracy assessment between CTF void fraction distribution predictions versus experiment void fraction distributions and (b) investigation of void fraction prediction uncertainty from propagation of input deviations caused by measured accuracy. (author)

  6. The Effects of Void on Natural Ventilation Performance in Multi-Storey Housing

    Directory of Open Access Journals (Sweden)

    Fakhriah Muhsin

    2016-08-01

    Full Text Available Enhancing natural ventilation performance in multi-storey housing is very important for the living environment in terms of health and thermal comfort purposes. One of the most important design strategies to enhance natural ventilation in multi-storey housing is through the provision of voids. A void is a passive architectural feature, which is located in the middle of deep plan buildings. It is very crucial to consider the configurations of voids in the buildings for enhancing natural ventilation, especially for multi-storey housing. In this study, Malaysian Medium Cost Multi-Storey Housing (MMCMSH, which is an example of multi-storey housing located in a suburban area, has been selected in this study. This study aims to investigate the potential of void for enhancing natural ventilation performance in multi-storey housing by the comparison of two different void configurations. Field measurement of MMCMSH has been conducted to validate Computational Fluid Dynamic (CFD model and Atmospheric Boundary Layer (ABL is an important parameter for setting up the CFD Model’s domain. Ventilation rate (Q, which is necessary for comfort and health reasons, is an important parameter for the comparison of the different void configurations. This study revealed that the provision of void can enhance natural ventilation performance in multi-storey housing with an increase in the value of Q, from 3.44% to 40.07%, by enlarging the void’s width by 50% compared to the existing void.

  7. Void distributions in liquid BiBr{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, K [Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Endo, H [Faculty of Science, Kyoto University, Kyoto 606-8224 (Japan); Hoshino, H [Faculty of Education, Hirosaki University, Hirosaki 036-8560 (Japan); Kawakita, Y [Faculty of Sciences, Kyushu University, Fukuoka 810-8560 (Japan); Kohara, S; Itou, M [Japan Synchrotron Radiation Research Institute(JASRI), Sayo-cho 679-5198 (Japan)

    2008-02-15

    The X-ray diffraction experiments and the reverse Monte Carlo analysis for liquid BiBr{sub 3} have been performed to clarify the distribution of Bi and Br ions around voids, comparing with previous results derived in the neutron diffraction experiments. The hexagonal cages involving voids are formed by the corner-sharing of the trigonal pyramidal BiBr{sub 3} blocks. The neighboring cages are linked together in highly correlated fashion. The observed pre-peak in S(Q) at 1.3A{sup -1} is related to the pre-peak of the void-based S'{sub CC} (Q) due to an intermediate chemical order in the structure. The pre-peak intensity increases with increasing temperature. This characteristic change for the pre-peak intensity is discussed by considering the modifications of the topology and stacking in the hexagonal cages.

  8. X-ray Computed Tomography Assessment of Air Void Distribution in Concrete

    Science.gov (United States)

    Lu, Haizhu

    Air void size and spatial distribution have long been regarded as critical parameters in the frost resistance of concrete. In cement-based materials, entrained air void systems play an important role in performance as related to durability, permeability, and heat transfer. Many efforts have been made to measure air void parameters in a more efficient and reliable manner in the past several decades. Standardized measurement techniques based on optical microscopy and stereology on flat cut and polished surfaces are widely used in research as well as in quality assurance and quality control applications. Other more automated methods using image processing have also been utilized, but still starting from flat cut and polished surfaces. The emergence of X-ray computed tomography (CT) techniques provides the capability of capturing the inner microstructure of materials at the micrometer and nanometer scale. X-ray CT's less demanding sample preparation and capability to measure 3D distributions of air voids directly provide ample prospects for its wider use in air void characterization in cement-based materials. However, due to the huge number of air voids that can exist within a limited volume, errors can easily arise in the absence of a formalized data processing procedure. In this study, air void parameters in selected types of cement-based materials (lightweight concrete, structural concrete elements, pavements, and laboratory mortars) have been measured using micro X-ray CT. The focus of this study is to propose a unified procedure for processing the data and to provide solutions to deal with common problems that arise when measuring air void parameters: primarily the reliable segmentation of objects of interest, uncertainty estimation of measured parameters, and the comparison of competing segmentation parameters.

  9. Influence of the voids fraction in the power distribution for two different types of fuel assemblies

    International Nuclear Information System (INIS)

    Jacinto C, S.; Del Valle G, E.; Alonso V, G.; Martinez C, E.

    2017-09-01

    In this work an analysis of the influence of the voids fraction in the power distribution was carried out, in order to understand more about the fission process and the energy produced by the fuel assembly type BWR. The fast neutron flux was analyzed considering neutrons with energies between 0.625 eV and 10 MeV. Subsequently, the thermal neutron flux analysis was carried out in a range between 0.005 eV and 0.625 eV. Likewise, its possible implications in the power distribution of the fuel cell were also analyzed. These analyzes were carried out for different void fraction values: 0.2, 0.4 and 0.8. The variations in different burn steps were also studied: 20, 40 and 60 Mwd / kg. These values were studied in two different types of fuel cells: Ge-12 and SVEA-96, with an average initial enrichment of 4.11%. (Author)

  10. The dipole moment of a wall-charged void in a bulk dielectric

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1993-01-01

    The dipole moment of a wall-charged void is examined with reference to the spatial extent of the surface charge density σ and the distribution of this charge. The salient factors influencing the void dipole moment are also examined. From a study of spherical voids, it is shown that, although the σ......-distribution influences the dipole moment, the spatial extent of σ has a greater influence. This behavior is not unexpected. For a void of fixed dimensions, the smaller the charged surface area, the greater is the charges, and thus the greater the dipole moment...

  11. Uroflowmetry in neurologically normal children with voiding disorders

    DEFF Research Database (Denmark)

    Jensen, K M; Nielsen, K.K.; Kristensen, E S

    1985-01-01

    of neurological deficits underwent a complete diagnostic program including intravenous urography, voiding cystography and cystoscopy as well as spontaneous uroflowmetry, cystometry-emg and pressure-flow-emg study. The incidence of dyssynergia was 22%. However, neither the flow curve pattern nor single flow...... variables were able to identify children with dyssynergia. Consequently uroflowmetry seems inefficient in the screening for dyssynergia in neurological normal children with voiding disorders in the absence of anatomical bladder outlet obstruction....

  12. Direct evidence of void passivation in Cu(InGa)(SSe){sub 2} absorber layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongho; Kim, Young-Su; Mo, Chan B.; Huh, Kwangsoo; Yang, JungYup, E-mail: jungyupyang@gmail.com, E-mail: ddang@korea.ac.kr; Nam, Junggyu; Baek, Dohyun; Park, Sungchan; Kim, ByoungJune; Kim, Dongseop [PV Development Team, Energy Solution Business Division, Samsung SDI, 467 Beonyeong-ro, Seobuk-gu, Cheonan-si, Chungcheongnam-do 331-330 (Korea, Republic of); Lee, Jaehan [Core Technology Laboratory, Battery Research Center, Samsung SDI, 130 Samsung-ro, Yeongtong-gu Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Heo, Sung; Park, Jong-Bong [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Kang, Yoonmook, E-mail: jungyupyang@gmail.com, E-mail: ddang@korea.ac.kr [KUKIST Green School, Graduate School of Energy and Environment, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

    2015-02-23

    We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se) ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.

  13. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ Powder

    Directory of Open Access Journals (Sweden)

    Chen Barad

    2017-12-01

    Full Text Available Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  14. Voids in the Cosmic Web as a probe of dark energy

    Directory of Open Access Journals (Sweden)

    B. Novosyadlyj

    2017-03-01

    Full Text Available The formation of large voids in the Cosmic Web from the initial adiabatic cosmological perturbations of space-time metric, density and velocity of matter is investigated in cosmological model with the dynamical dark energy accelerating expansion of the Universe. It is shown that the negative density perturbations with the initial radius of about 50 Mpc in comoving to the cosmological background coordinates and the amplitude corresponding to the r.m.s. temperature fluctuations of the cosmic microwave background lead to the formation of voids with the density contrast up to -0.9, maximal peculiar velocity about 400 km/s and the radius close to the initial one. An important feature of voids formation from the analyzed initial amplitudes and profiles is establishing the surrounding overdensity shell. We have shown that the ratio of the peculiar velocity in units of the Hubble flow to the density contrast in the central part of a void does not depend or weakly depends on the distance from the center of the void. It is also shown that this ratio is sensitive to the values of dark energy parameters and can be used to find them based on the observational data on mass density and peculiar velocities of galaxies in the voids.

  15. Fast and interrupted expansion in cyclic void growth in dusty plasma

    International Nuclear Information System (INIS)

    Van de Wetering, F M J H; Brooimans, R J C; Nijdam, S; Beckers, J; Kroesen, G M W

    2015-01-01

    Low-pressure acetylene plasmas are able to spontaneously form dust particles. This will result in a dense cloud of solid particles that is levitated in the plasma. The formed particles can grow up to micrometers. We observed a spontaneous interruption in the expansion of the so-called dust void. A dust void is a macroscopic region in the plasma that is free of nanoparticles. The phenomenon is periodical and reproducible. We refer to the expansion interruption as ‘hiccup’. The expanding void is an environment in which a new cycle of dust particle formation can start. At a certain moment in time, this cycle reaches the (sudden) coagulation phase and as a result the void will temporarily shrink. To substantiate this reasoning, the electron density is determined non-intrusively using microwave cavity resonance spectroscopy. Moreover, video imaging of laser light scattering of the dust particles provides their spatial distribution. The emission intensity of a single argon transition is measured similarly. Our results support the aforementioned hypothesis for what happens during the void hiccup. The void dynamics preceding the hiccup are modeled using a simple analytical model for the two dominant forces (ion drag and electric) working on a nanoparticle in a plasma. The model results qualitatively reproduce the measurements. (paper)

  16. Void worths in subcritical cores cooled by lead-bismuth

    International Nuclear Information System (INIS)

    Wallenius, Janne; Tucek, Kamil; Gudowski, Waclaw

    2001-01-01

    The introduction lead-bismuth coolant in accelerator driven transmutation systems (ADS) was: good neutron economy (higher source efficiency); natural circulation possible (decay heat removal); synergy with spallation target (simplified coolant management); high temperature of boiling (larger overpower margin); smaller void worths (operation at higher k-values). This paper deals with different aspects of the void worths in JAERI ADS

  17. Void fraction and flow regime determination by optical probe for boiling two-phase flow in a tube subchannel

    International Nuclear Information System (INIS)

    Cheng Huiping; Wu Hongtao; Ba Changxi; Yan Xiaoming; Huang Suyi

    1995-12-01

    In view of the need to determine void fraction and flow regime of vapor-liquid two-phase flow in the steam generator test model, domestic made optical probe was applied on a small-scale freon two-phase flow test rig. Optical probe signals were collected at a sampling rate up to 500 Hz and converted into digital form. Both the time signal, and the amplitude probability density function and FFT spectrum function calculated thereof were analysed in the time and frequency domains respectively. The threshold characterizing vapor or liquid contact with the probe tip was determined from the air-water two-phase flow pressure drop test results. Then, the boiling freon two-phase flow void fraction was determined by single threshold method, and compared with numerical heat transfer computation. Typical patterns which were revealed by the above-mentioned time signal and the functions were found corresponding to distinct flow regimes, as corroborated by visual observation. The experiment shows that the optical probe was a promising technique for two-phase flow void fraction measurement and flow regime identification (3 refs., 15 figs., 1 tab.)

  18. Market value calculation and the solution of circularity between value and the weighted average cost of capital WACC

    Directory of Open Access Journals (Sweden)

    Ignacio Vélez-Pareja

    2009-12-01

    Full Text Available Most finance textbooks present the Weighted Average Cost of Capital (WACC calculation as: WACC = Kd×(1-T×D% + Ke×E%, where Kd is the cost of debt before taxes, T is the tax rate, D% is the percentage of debt on total value, Ke is the cost of equity and E% is the percentage of equity on total value. All of them precise (but not with enough emphasis that the values to calculate D% y E% are market values. Although they devote special space and thought to calculate Kd and Ke, little effort is made to the correct calculation of market values. This means that there are several points that are not sufficiently dealt with: Market values, location in time, occurrence of tax payments, WACC changes in time and the circularity in calculating WACC. The purpose of this note is to clear up these ideas, solve the circularity problem and emphasize in some ideas that usually are looked over. Also, some suggestions are presented on how to calculate, or estimate, the equity cost of capital.

  19. Shallow Reflection Method for Water-Filled Void Detection and Characterization

    Science.gov (United States)

    Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.

    2018-04-01

    Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.

  20. Calculation of saturated hydraulic conductivity of bentonite

    International Nuclear Information System (INIS)

    He Jun

    2006-01-01

    Hydraulic conductivity test has some defects such as weak repeatability, time-consuming. Taking bentonite as dual porous media, the calculation formula of the distance, d 2 , between montmorillonite in intraparticle pores is deduced. Improved calculated method of hydraulic conductivity is obtained using d 2 and Poiseuille law. The method is valid through the comparison with results of test and other methods. The method is very convenient to calculate hydraulic conductivity of bentonite of certain montmorillonite content and void ratio. (authors)

  1. Calculation system for physical analysis of boiling water reactors

    International Nuclear Information System (INIS)

    Bouveret, F.

    2001-01-01

    Although Boiling Water Reactors generate a quarter of worldwide nuclear electricity, they have been only little studied in France. A certain interest now shows up for these reactors. So, the aim of the work presented here is to contribute to determine a core calculation methodology with CEA (Commissariat a l'Energie Atomique) codes. Vapour production in the reactor core involves great differences in technological options from pressurised water reactor. We analyse main physical phenomena for BWR and offer solutions taking them into account. BWR fuel assembly heterogeneity causes steep thermal flux gradients. The two dimensional collision probability method with exact boundary conditions makes possible to calculate accurately the flux in BWR fuel assemblies using the APOLLO-2 lattice code but induces a very long calculation time. So, we determine a new methodology based on a two-level flux calculation. Void fraction variations in assemblies involve big spectrum changes that we have to consider in core calculation. We suggest to use a void history parameter to generate cross-sections libraries for core calculation. The core calculation code has also to calculate the depletion of main isotopes concentrations. A core calculation associating neutronics and thermal-hydraulic codes lays stress on points we still have to study out. The most important of them is to take into account the control blade in the different calculation stages. (author)

  2. Chemical differences between voided and bladder urine in the aye-aye (Daubentonia madagascariensis): implications for olfactory communication studies.

    Science.gov (United States)

    Delbarco-Trillo, Javier; Harelimana, Innocent H; Goodwin, Thomas E; Drea, Christine M

    2013-07-01

    Urine serves a communicative function in many mammalian species. In some species, the signaling function of urine can be enhanced by the addition of chemical compounds from glands along the distal portion of the urogenital tract. Although urine marking is the main mode of chemical communication in many primate species, there has been no study of the contribution of urogenital secretions to the chemical complexity of primate urine. Here, we compared the chemical composition of bladder urine versus voided urine in the aye-aye, Daubentonia madagascariensis, a strepsirrhine primate that relies on urine in intraspecific communication. Both types of urine, collected from each of 11 aye-ayes representing both sexes of varying adult ages, underwent headspace analysis via gas chromatography and mass spectrometry. Although the average number of compounds was similar in bladder and voided urine, 17% of the compounds detected occurred exclusively in voided urine (but only in a subset of individuals). An overall measure of chemical complexity (using a nonmetric multidimensional scaling analysis) showed that both types of urine were chemically different at the individual level. There was no apparent sex or age differences in the chemical components found in aye-aye urine. Nonetheless, the individual dissimilarities between bladder urine and voided urine indicate chemical contributions from structures along the urogenital tract and offer further support for the relevance of urinary communication in the aye-aye. © 2012 Wiley Periodicals, Inc.

  3. Suggestion of an average bidirectional flow tube for the measurement of single and two phase flow rate

    International Nuclear Information System (INIS)

    Yun, B.J.; Kang, K.H.; Euh, D.J.; Song, C.H.; Baek, W.P.

    2005-01-01

    Full text of publication follows: A new type instrumentation, average bidirectional flow tube, was suggested to apply to the single and two phase flow condition. Its working principle is similar to that of the Pitot tube. The pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than static pressure of flow field due to the suction effect at the downstream. It gives an amplification effect of measured pressure difference at the flow tube. The proposed instrumentation has the characteristics that it could be applicable to low flow condition and measure bidirectional flow. It was tested in the air-water vertical and horizontal test sections which have 0.08 m inner diameter. The pressure difference across the average bidirectional flow tube, system pressure, average void fraction and injection phasic mass flow rates were measured on the measuring plane. Test was performed primarily in the single phase water and air flow condition to get the amplification factor k of the flow tube. The test was also performed in the air-water two phase flow condition and the covered flow regimes were bubbly, slug, churn turbulent flow in the vertical pipe and stratified flow in the horizontal pipe. In order to calculate the phasic and total mass flow rates from the measured differential pressure, Chexal drift-flux correlation and momentum exchange factor between the two phases were introduced. The test result shows that the suggested instrumentation with the measured void fraction, Chexal drift-flux correlation and Bosio and Malnes' momentum exchange model can predict the phasic mass flow rates within 15% error compared to the true values. A new momentum exchange model was also suggested and it gives up to 5% improvement of the measured mass flow rate compared to combination of Bosio and Malnes' momentum exchange model. (authors)

  4. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M. I.; Borg, Ulrik; Niordson, Christian Frithiof

    singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation and strain......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation the dislocations are all of edge character and are modelled as line...... predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model chosen to be $0.325\\mu m$ (around ten times the slip plane spacing in the discrete dislocation models)....

  5. Plasticity size effects in voided crystals

    DEFF Research Database (Denmark)

    Hussein, M.I.; Borg, Ulrik; Niordson, Christian Frithiof

    2008-01-01

    as line singularities in an elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and annihilation are incorporated through a set of constitutive rules. Over the range of length scales investigated, both the discrete dislocation......The shear and equi-biaxial straining responses of periodic voided single crystals are analysed using discrete dislocation plasticity and a continuum strain gradient crystal plasticity theory. In the discrete dislocation formulation, the dislocations are all of edge character and are modelled...... between predictions of the two formulations for all crystal types and void volume fractions considered when the material length scale in the non-local plasticity model is chosen to be 0.325 mu m (about 10 times the slip plane spacing in the discrete dislocation models)....

  6. Sodium-cooled fast reactor (SFR) fuel assembly design with graphite-moderating rods to reduce the sodium void reactivity coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Hyuck; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr; Park, Hae Min; Jeong, Yong Hoon, E-mail: jeongyh@kaist.ac.kr

    2014-12-15

    Highlights: • The graphite rod-inserted SFR fuel assembly is proposed to achieve low sodium void reactivity. • The neutronics/thermal-hydraulics analyses are performed for the proposed SFR cores. • The sodium void reactivity is improved about 960–1030 pcm compared to reference design. - Abstract: The concept of a graphite-moderating rod-inserted sodium-cooled fast reactor (SFR) fuel assembly is proposed in this study to achieve a low sodium void reactivity coefficient. Using this concept, two types of SFR cores are analyzed; the proposed SFR type 1 core has new SFR fuel assemblies at the inner/mid core regions while the proposed SFR type 2 core has a B{sub 4}C absorber sandwich in the middle of the active core region as well as new SFR fuel assemblies at the inner/mid core regions. For the proposed SFR core designs, neutronics and thermal-hydraulic analyses are performed using the DIF3D, REBUS3, and the MATRA-LMR codes. In the neutronics analysis, the sodium void reactivity coefficient is obtained in various void situations. The two types of proposed core designs reduce the sodium void reactivity coefficient by about 960–1030 pcm compared to the reference design. However, the TRU enrichment for the proposed SFR core designs is increased. In the thermal hydraulic analysis, the temperature distributions are calculated for the two types of proposed core designs and the mass flow rate is optimized to satisfy the design constraints for the highest power generating assembly. The results of this study indicate that the proposed SFR assembly design concept, which adopts graphite-moderating rods which are inserted into the fuel assembly, can feasibly minimize the sodium void reactivity coefficient. Single TRU enrichment and an identical fuel slug diameter throughout the SFR core are also achieved because the radial power peak can be flattened by varying the number of moderating rods in each core region.

  7. Idiopathic detrusor sphincter dyssynergia in neurologically normal patients with voiding abnormalities

    DEFF Research Database (Denmark)

    Jørgensen, T M; Djurhuus, J C; Schrøder, H D

    1982-01-01

    Symptomatology and clinical manifestations of detrusor sphincter dyssynergia are described in 23 patients without neurological disease. Their cardinal symptoms were recurrent cystitis, enuresis, frequent voiding, back pain during voiding and anal discomfort. The major objective finding was vesico......Symptomatology and clinical manifestations of detrusor sphincter dyssynergia are described in 23 patients without neurological disease. Their cardinal symptoms were recurrent cystitis, enuresis, frequent voiding, back pain during voiding and anal discomfort. The major objective finding...... was vesicoureteral reflux in 11 cases with kidney scarring in 10. Bladder trabeculation was found in 13 patients, bladder hyperreflexia in 8, and significant residual urine in 16 patients. The etiology of detrusor sphincter dyssynergia in non-neurological patients is discussed. By means of exclusion it is most...

  8. Void reactivity decomposition for the Sodium-cooled Fast Reactor in equilibrium fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sun Kaichao, E-mail: kaichao.sun@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Krepel, Jiri; Mikityuk, Konstantin; Pelloni, Sandro [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Chawla, Rakesh [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2011-07-15

    Highlights: > We analyze the void reactivity effect for three ESFR core fuel cycle states. > The void reactivity effect is decomposed by neutron balance method. > Novelly, the normalization to the integral flux in the active core is applied. > The decomposition is compared with the perturbation theory based results. > The mechanism and the differences of the void reactivity effect are explained. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many advantages, but has one dominating neutronic drawback - a positive sodium void reactivity. The aim of this study is to develop and apply a methodology, which should help better understand the causes and consequences of the sodium void effect. It focuses not only on the beginning-of-life (BOL) state of the core, but also on the beginning of open and closed equilibrium (BOC and BEC, respectively) fuel cycle conditions. The deeper understanding of the principal phenomena involved may subsequently lead to appropriate optimization studies. Various voiding scenarios, corresponding to different spatial zones, e.g. node or assembly, have been analyzed, and the most conservative case - the voiding of both inner and outer fuel zones - has been selected as the reference scenario. On the basis of the neutron balance method, the corresponding SFR void reactivity has been decomposed reaction-, isotope-, and energy-group-wise. Complementary results, based on generalized perturbation theory and sensitivity analysis, are also presented. The numerical analysis for both neutron balance and perturbation theory methods has been carried out using appropriate modules of the ERANOS code system. A strong correlation between the flux worth, i.e. the product of flux and adjoint flux, and the void reactivity importance distributions has been found for the node- and assembly-wise voiding scenarios. The neutron balance based decomposition has shown that the void effect is caused mainly by the

  9. Void reactivity decomposition for the Sodium-cooled Fast Reactor in equilibrium fuel cycle

    International Nuclear Information System (INIS)

    Sun Kaichao; Krepel, Jiri; Mikityuk, Konstantin; Pelloni, Sandro; Chawla, Rakesh

    2011-01-01

    Highlights: → We analyze the void reactivity effect for three ESFR core fuel cycle states. → The void reactivity effect is decomposed by neutron balance method. → Novelly, the normalization to the integral flux in the active core is applied. → The decomposition is compared with the perturbation theory based results. → The mechanism and the differences of the void reactivity effect are explained. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many advantages, but has one dominating neutronic drawback - a positive sodium void reactivity. The aim of this study is to develop and apply a methodology, which should help better understand the causes and consequences of the sodium void effect. It focuses not only on the beginning-of-life (BOL) state of the core, but also on the beginning of open and closed equilibrium (BOC and BEC, respectively) fuel cycle conditions. The deeper understanding of the principal phenomena involved may subsequently lead to appropriate optimization studies. Various voiding scenarios, corresponding to different spatial zones, e.g. node or assembly, have been analyzed, and the most conservative case - the voiding of both inner and outer fuel zones - has been selected as the reference scenario. On the basis of the neutron balance method, the corresponding SFR void reactivity has been decomposed reaction-, isotope-, and energy-group-wise. Complementary results, based on generalized perturbation theory and sensitivity analysis, are also presented. The numerical analysis for both neutron balance and perturbation theory methods has been carried out using appropriate modules of the ERANOS code system. A strong correlation between the flux worth, i.e. the product of flux and adjoint flux, and the void reactivity importance distributions has been found for the node- and assembly-wise voiding scenarios. The neutron balance based decomposition has shown that the void effect is caused mainly

  10. An advanced ultrasonic technique for slow and void fraction measurements of two-phase flow

    International Nuclear Information System (INIS)

    Faccini, J.L.H.; Su, J.; Harvel, G.D.; Chang, J.S.

    2004-01-01

    In this paper, we present a hybrid type counterpropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with previous experimental and numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A counterpropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section is presented. We can draw the following conclusions: 1) the ultrasonic system was able to characterize the 2 flow patterns simulated (stratified and plug flow); 2) the results obtained for water volumetric fraction require more experimental work to determine exactly the technique uncertainties but, a priori, they are consistent with earlier work; and 3) the experimental uncertainties can be reduced by improving the data acquisition system, changing the acquisition time interval from seconds to milliseconds

  11. How institutional voids influence Brazilian foreign direct investment in Angola

    Directory of Open Access Journals (Sweden)

    Renato Virches

    2017-04-01

    Full Text Available How do institutional voids influence emerging market multinationals (EMNEs foreign direct investment (FDI in developing countries? In this article we respond to this question by examining Brazilian FDI in Angola as our analytical setting. We focus on the host country’s institutions and its institutional voids as essential factors that attract the FDI of EMNES to developing countries. The research indicates that Brazilian companies fill in much of these voids within the market intermediaries, often creating a point of competitive advantage, and also creating advantages in relation to FDI from other economies that invest in Angola. The scarce literature on FDI in Africa has been largely dedicated to the analysis of Chinese investment in the region. We aim to complement recent research on the influence of the host country’s institutions on the behavior of FDI in developing countries, explaining how some EMNEs are able to use the institutional voids of developing countries as market opportunities. Our findings should provide also implications for EMNEs managers from other emerging markets by providing a better understanding of how Brazilian multinationals expand their business in less developed countries, handle institutional voids and manage relationships with local and foreign institutions in the host country.

  12. Magnetic resonance voiding cystography in the diagnosis of vesicoureteral reflux: comparative study with voiding cystourethrography.

    Science.gov (United States)

    Lee, Sang Kwon; Chang, Yongmin; Park, Noh Hyuck; Kim, Young Hwan; Woo, Seongku

    2005-04-01

    To evaluate the feasibility of magnetic resonance voiding cystography (MRVC) compared with voiding cystourethrography (VCUG) for detecting and grading vesicoureteral reflux (VUR). MRVC was performed upon 20 children referred for investigation of reflux. Either coronal T1-weighted spin-echo (SE) or gradient-echo (GE) (fast multiplanar spoiled gradient-echo (FMPSPGR) or turbo fast low-angle-shot (FLASH)) images were obtained before and after transurethral administration of gadolinium solution, and immediately after voiding. The findings of MRVC were compared with those of VCUG and technetium-99m ((99m)Tc) dimercaptosuccinic acid (DMSA) single-photon emission computed tomography (SPECT) performed within 6 months of MRVC. VUR was detected in 23 ureterorenal units (16 VURs by both methods, 5 VURs by VCUG, and 2 VURs by MRVC). With VCUG as the standard of reference, the sensitivity of MRVC was 76.2%; the specificity, 90.0%; the positive predictive value, 88.9%; and the negative predictive value, 78.3%. There was concordance between two methods regarding the grade of reflux in all 16 ureterorenal units with VUR detected by both methods. Of 40 kidneys, MRVC detected findings of renal damage or reflux nephropathy in 13 kidneys, and (99m)Tc DMSA renal SPECT detected findings of reflux nephropathy in 17 kidneys. Although MRVC is shown to have less sensitivity for VUR than VCUG, MRVC may represent a method of choice offering a safer nonradiation test that can additionally evaluate the kidneys for changes related to reflux nephropathy. Copyright 2005 Wiley-Liss, Inc.

  13. Close correlation of herpes zoster-induced voiding dysfunction with severity of zoster-related pain: A single faculty retrospective study.

    Science.gov (United States)

    Fujii, Mizue; Takahashi, Ichiro; Honma, Masaru; Ishida-Yamamoto, Akemi

    2015-11-01

    Herpes zoster (HZ), a common vesiculo-erythematous skin disease associated with reactivation of varicella zoster virus in the cranial nerve, dorsal root, and autonomic ganglia, is accompanied by several related symptoms represented by postherpetic neuralgia. Among them, involvement of vesicorectal dysfunction is relatively rare. The vesicorectal symptom can usually be recovered in transient course, but is quite important in terms of impaired quality of life. Male individuals affected with HZ and skin lesions on sacral dermatome have been reported as independent risk factors of zoster-related voiding dysfunction. In this study, urinary symptoms were focused upon and six patients with zoster-related voiding dysfunction at a single faculty of dermatology in Japan from 2009 to 2014 were retrospectively analyzed. All patients showed HZ lesions on the sacral area and the urinary symptom recovered in approximately 2 months (14 days to 7 months). The term of treatment for zoster-associated urinary dysfunction was positively correlated with that for zoster-related pain without significance (r = 0.661, P = 0.153). Average treatment term for pain relief of sacral HZ accompanied by voiding dysfunction (91.3 ± 76.44 days) was significantly longer than that of sacral HZ without urinary symptom (18.9 ± 20.42 days) (P = 0.032). These results suggested that zoster-related voiding dysfunction would mainly be involved in sacral HZ and closely associated with severity of zoster-related pain. Dermatologists should be aware that severe zoster-related pain accompanied by sacral HZ, which is related to prolonged treatment of pain relief, can be a predictive factor of voiding dysfunction. © 2015 Japanese Dermatological Association.

  14. A variational constitutive model for the distribution and interactions of multi-sized voids

    KAUST Repository

    Liu, Jinxing

    2013-07-29

    The evolution of defects or voids, generally recognized as the basic failure mechanism in most metals and alloys, has been intensively studied. Most investigations have been limited to spatially periodic cases with non-random distributions of the radii of the voids. In this study, we use a new form of the incompressibility of the matrix to propose the formula for the volumetric plastic energy of a void inside a porous medium. As a consequence, we are able to account for the weakening effect of the surrounding voids and to propose a general model for the distribution and interactions of multi-sized voids. We found that the single parameter in classical Gurson-type models, namely void volume fraction is not sufficient for the model. The relative growth rates of voids of different sizes, which can in principle be obtained through physical or numerical experiments, are required. To demonstrate the feasibility of the model, we analyze two cases. The first case represents exactly the same assumption hidden in the classical Gurson\\'s model, while the second embodies the competitive mechanism due to void size differences despite in a much simpler manner than the general case. Coalescence is implemented by allowing an accelerated void growth after an empirical critical porosity in a way that is the same as the Gurson-Tvergaard-Needleman model. The constitutive model presented here is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is shown by simulating a tensile test on a notched round bar. © 2013 The Author(s).

  15. PD-related stresses in the bulk dielectric for ellipsoidal voids

    DEFF Research Database (Denmark)

    Pedersen, Aage; Crichton, George C; McAllister, Iain Wilson

    1994-01-01

    In a previous study, the existence of a field enhancement in the solid dielectric in the vicinity of void undergoing PD activity was established. That study was undertaken with reference to a spherical void. In this paper, a more general investigation of this phenomenon of field enhancement...

  16. Use of electrical resistivity to detect underground mine voids in Ohio

    Science.gov (United States)

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  17. Void fraction measurement in two-phase flow with X-rays

    International Nuclear Information System (INIS)

    Hufschmidt, W.; Clercq, E. de.

    1984-01-01

    The exact knowledge of the void fraction in two-phase flow systems with water and vapour is of great importance for water-reactors. A mesurement method not disturbing the fluid flow is the absorption technique X-rays. This method has been tested for the present case of small absorption lengths (about 16mm). In collaboration with the 'Lehrstuhl fuer elektronische Schaltungen' of the Ruhruniversitaet, Bochum (FRG), a rapid measurement device has been developed using ionization chambers. At present steady-state fluid in vertical tubes with homogeneous distribution of the two-phases water-vapour are tested at pressures in the range from 70 to 150 bars and rather good agreements with calculated values are found

  18. Void formation in ODS EUROFER produced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Ortega, Y.; Monge, M.A.; Castro, V. de; Munoz, A.; Leguey, T.; Pareja, R.

    2009-01-01

    Positron annihilation experiments were performed on oxide dispersion strengthened (ODS) and non-ODS EUROFER prepared by mechanical alloying and hot isostatic pressing. The results revealed the presence of small voids in these materials in the as-HIPed conditions. Their evolution under isochronal annealing experiments was investigated. The coincidence Doppler broadening spectra of ODS EUROFER exhibited a characteristic signature attributed to positron annihilation in Ar-decorated voids at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature showed three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. In the temperature range 823-1323 K void coarsening had effect. Above 1323 K some voids annealed out, but others, associated to oxide particles and small precipitates, survived to annealing at 1523 K. Transmission electron microscopy observations were also performed to verify the characteristics of the surviving defects after annealing at 1523 K.

  19. Void formation in ODS EUROFER produced by hot isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Y. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)], E-mail: yanicet@fis.ucm.es; Monge, M.A. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Castro, V. de [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Munoz, A.; Leguey, T.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2009-04-30

    Positron annihilation experiments were performed on oxide dispersion strengthened (ODS) and non-ODS EUROFER prepared by mechanical alloying and hot isostatic pressing. The results revealed the presence of small voids in these materials in the as-HIPed conditions. Their evolution under isochronal annealing experiments was investigated. The coincidence Doppler broadening spectra of ODS EUROFER exhibited a characteristic signature attributed to positron annihilation in Ar-decorated voids at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature showed three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. In the temperature range 823-1323 K void coarsening had effect. Above 1323 K some voids annealed out, but others, associated to oxide particles and small precipitates, survived to annealing at 1523 K. Transmission electron microscopy observations were also performed to verify the characteristics of the surviving defects after annealing at 1523 K.

  20. Radiation-induced segregation and void formation in C+ ion-irradiated vanadium-carbon alloys

    International Nuclear Information System (INIS)

    Takeyama, T.; Ohnuki, S.; Takahashi, H.; Sato, Y.; Mochizuki, S.

    1982-01-01

    To clarify the effect of interstitial elements on radiation-induced segregation and void formation in V and V-C alloys irradiated by 200 keV C + ions to a dose of 48 dpa at 973 K, the microstructural observation and the measurement of C segregation to the surfaces were carried out by TEM and XPS. Voids, dislocations and precipitates were produced in all of the specimens during irradiation. The addition of C in V led to a reduction of void size and to increase in void number density, consequently the void swelling was suppressed strongly. Radiation-induced segregation of C was observed clearly on and near the irradiated surfaces of V-C alloys and as a result of the enrichment of C atoms, carbides precipitated on the surfaces. It is the first evidence of the radiation-induced segregation of interstitial elements on the surfaces. Also, quasi-carbides were observed on the (210) habit plaints near large voids and dislocations in V. The phenomena show that C atoms, which was insolved and/or implanted, interact strongly with vacancies rather than self-interstitial atoms and migrate with vacancies toward defect sinks, such as surfaces, voids, and dislocations. The segregated zones of C reduced the sink efficiency of the defects, and showed the effect of the suppression on void in V-C alloys. (author)

  1. Detection of Vesico-Ureteric Reflux Using Voiding Hippuran Ureterograms

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J. B.; Palser, R. [Section of Nuclear Medicine, Manitoba Cancer Treatment and Research Foundation, Winnipeg General Hospital, Winnipeg (Canada); Macpherson, R. I. [Children' s Hospital of Winnipeg, Winnipeg (Canada)

    1971-02-15

    Initial results of a technique for the demonstration of vesico-ureteric reflux in children are described. Hippuran-{sup 131}I (15 {mu}Ci) (ortho-iodohippurate) is injected intravenously. A standard renogram is obtained. Additional collimation is added to the recording probes and they are positioned to record the radioactivity from the mid-ureteric region. Recordings of normal and abnormal peristaltic activity during per-ora hydration of the patient are thus obtained. When the child is willing to void, he is placed upright on a bed pan, the probes positioned to record over the lower ureteric region and recordings are made while the child voids. All data are recorded on a 512-channel analyser operated in the multi-scaler node. Data are punched out on paper tape and, after an 11 point computer smoothing program, are displayed graphically. These recordings show different patterns in normal children and those with vesico-ureteric reflux. There are several advantages to this technique over the standard radiological and other radionuclide voiding cystoureterograms. The results are compared with contrast voiding cystourethrograms in both normal children and those with vesico-ureteric reflux. (author)

  2. Constitutive modeling of rate dependence and microinertia effects in porous-plastic materials with multi-sized voids (MSVs)

    KAUST Repository

    Liu, Jinxing

    2012-11-27

    Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes the influence of voids with a single parameter, namely the void-volume fraction, excluding any possible effects of the void-size distribution. We extend our newly proposed model including the multi-sized void (MSV) effect and the void-interaction effect for the capability of working for both moderate and high loading rate cases, where either rate dependence or microinertia becomes considerable or even dominant. Parametric studies show that the MSV-related competitive mechanism among void growth leads to the dependence of the void growth rate on void size, which directly influences the void\\'s contribution to the total energy composition. We finally show that the stress-strain constitutive behavior is also affected by this MSV-related competitive mechanism. The stabilizing effect due to rate sensitivity and microinertia is emphasized. © 2013 IOP Publishing Ltd.

  3. On recoil energy dependent void swelling in pure copper: Theoretical treatment

    International Nuclear Information System (INIS)

    Golubov, S.I.; Singh, B.N.; Trinkaus, H.

    2000-06-01

    Over the years, an enormous amount of experimental results have been reported on damage accumulation (e.g. void swelling) in metals and alloys irradiated under vastly different recoil energy conditions. Unfortunately, however, very little is known either experimentally or theoretically about the effect of recoil energy on damage accumulation. Recently, dedicated irradiation experiments using 2.5 MeV electrons, 3.0 MeV protons and fission neutrons have been carried out to determine the effect of recoil energy on the damage accumulation behaviour in pure copper and the results have been reported in Part I of this paper (Singh, Eldrup, Horsewell, Ehrhart and Dworschak 2000). The present paper attempts to provide a theoretical framework within which the effect of recoil energy on damage accumulation behaviour can be understood. The damage accumulation under Frenkel pair production (e.g. 2.5 MeV electron) has been treated in terms of the standard rate theory (SRT) model whereas the evolution of the defect microstructure under cascade damage conditions (e.g. 3.0 MeV protons and fission neutrons) has been calculated within the framework of the production bias model (PBM). Theoretical results, in agreement with experimental results, show that the damage accumulation behaviour is very sensitive to recoil energy and under cascade damage conditions can be treated only within the framework of the PBM. The intracascade clustering of self-interstitial atoms (SIAs) and the properties of SIA clusters such as one-dimensional diffusional transport and thermal stability are found to be the main reasons for the recoil energy dependent vacancy supersaturation. The vacancy supersaturation is the main driving force for the void nucleation and void swelling. In the case of Frenkel pair production, the experimental results are found to be consistent with the SRT model with a dislocation bias value of 2 %. (au)

  4. Calculation of local bed to wall heat transfer in a fluidized-bed

    International Nuclear Information System (INIS)

    Kilkis, B.I.

    1987-01-01

    Surface to bed heat transfer in a fluidized-bed largely depends upon its local and global hydrodynamical behavior including particle velocity, particle trajectory, gas velocity, and void fraction. In this study, a computer program was developed in order to calculate the local bed to wall heat transfer, by accounting for the local and global instantaneous hydrodynamics of the bed. This is accomplished by utilizing the CHEMFLUB computer program. This information at a given location is interpreted so that the most appropriate heat transfer model is utilized for each time increment. These instantaneous heat transfer coefficient for the given location. Repeating the procedure for different locations, a space average heat transfer coefficient is also calculated. This report briefly summarizes the various heat transfer models employed and gives sample computer results reporting the case study for Mickley - Trilling's experimental set-up. Comparisons with available experimental data and correlations are also provided in order to compare and evaluate the computer results

  5. Assessment Using ANL Experiments on Void Fraction in a Vertical Tube

    Energy Technology Data Exchange (ETDEWEB)

    Han, KyuHyun; Bang, YoungSeok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-05-15

    A licensing application of a safety analysis code, SPACE, was submitted and is currently under KINS' review. This code was developed to consider three fluid fields, i.e. liquid, vapor and droplet, for a realistic simulation of accident phenomena. Therefore, there may be a concern that this code could predict different behavior compared to the existing codes. To assess the important performance independently and to compare with prediction results of SPACE might be helpful to regulatory review for identifying validity of the code. The interfacial friction could largely affect prediction of thermal hydraulic phenomena during LOCA or non- LOCA. This paper provides MARS-KS prediction of void fraction experiments in a vertical tube by ANL and compares with SPACE prediction results. It was found that the similar interfacial friction model adopting the drift flux correlations were implemented in both codes. Experimental void fractions of the ANL test presented in this paper correspond to bubbly, slug and churn flow regions. Agreements in general sense between the experiment and the predicted values were identified through calculations. Thus, similar accuracy for this experiment can be expected in SPACE and MARS-KS. It was also shown that drift flux interfacial friction model for intermediate flow channel (diameter of 7cm) is valid.

  6. The Santiago-Harvard-Edinburgh-Durham void comparison - I. SHEDding light on chameleon gravity tests

    Science.gov (United States)

    Cautun, Marius; Paillas, Enrique; Cai, Yan-Chuan; Bose, Sownak; Armijo, Joaquin; Li, Baojiu; Padilla, Nelson

    2018-05-01

    We present a systematic comparison of several existing and new void-finding algorithms, focusing on their potential power to test a particular class of modified gravity models - chameleon f(R) gravity. These models deviate from standard general relativity (GR) more strongly in low-density regions and thus voids are a promising venue to test them. We use halo occupation distribution (HOD) prescriptions to populate haloes with galaxies, and tune the HOD parameters such that the galaxy two-point correlation functions are the same in both f(R) and GR models. We identify both three-dimensional (3D) voids and two-dimensional (2D) underdensities in the plane of the sky to find the same void abundance and void galaxy number density profiles across all models, which suggests that they do not contain much information beyond galaxy clustering. However, the underlying void dark matter density profiles are significantly different, with f(R) voids being more underdense than GR ones, which leads to f(R) voids having a larger tangential shear signal than their GR analogues. We investigate the potential of each void finder to test f(R) models with near-future lensing surveys such as EUCLID and LSST. The 2D voids have the largest power to probe f(R) gravity, with an LSST analysis of tunnel (which is a new type of 2D underdensity introduced here) lensing distinguishing at 80 and 11σ (statistical error) f(R) models with parameters, |fR0| = 10-5 and 10-6, from GR.

  7. Voids and overdensities of coupled Dark Energy

    International Nuclear Information System (INIS)

    Mainini, Roberto

    2009-01-01

    We investigate the clustering properties of dynamical Dark Energy even in association of a possible coupling between Dark Energy and Dark Matter. We find that within matter inhomogeneities, Dark Energy migth form voids as well as overdensity depending on how its background energy density evolves. Consequently and contrarily to what expected, Dark Energy fluctuations are found to be slightly suppressed if a coupling with Dark Matter is permitted. When considering density contrasts and scales typical of superclusters, voids and supervoids, perturbations amplitudes range from |δ φ | ∼ O(10 −6 ) to |δ φ | ∼ O(10 −4 ) indicating an almost homogeneous Dark Energy component

  8. Radar application in void and bar detection

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani

    2003-01-01

    Radar is one of the new non-destructive testing techniques for concrete and structures inspection. Radar is a non-ionizing electromagnetic wave that can penetrate deep into concrete or soil in about several tenths of meters. Method of inspection using radar enables us to perform high resolution detection, imaging and mapping of subsurface concrete and soil condition. This paper will discuss the use of radar for void and bar detection and sizing. The samples used in this paper are custom made samples and comparison will be made to validate the use of radar in detecting, locating and also size determination of voids and bars. (Author)

  9. Void redistribution in sand under post-earthquake loading

    International Nuclear Information System (INIS)

    Boulanger, R.W.; Truman, S.P.

    1996-01-01

    A mechanism for void redistribution in an infinite slope under post-earthquake loading conditions is described by consideration of the in situ loading paths that can occur under post-earthquake conditions and the results of triaxial tests designed to represent specific in situ post-earthquake loading paths. The mechanism is illustrated by application to an example problem. Void redistribution is shown to be a phenomena that may be more pronounced at the field scale than at the laboratory scale. (author). 12 refs., 4 figs

  10. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    International Nuclear Information System (INIS)

    Shan, Tzu-Ray; Thompson, Aidan P

    2014-01-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO 2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N 2 and H 2 O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  11. Generation of nano-voids inside polylactide using femtosecond laser radiation

    Science.gov (United States)

    Viertel, Tina; Pabst, Linda; Olbrich, Markus; Ebert, Robby; Horn, Alexander; Exner, Horst

    2017-12-01

    The arrangement of nanometer-sized voids, induced by focusing intense laser radiation within transparent material can allow the generation of transparent components with dimensions in the micrometer to nanometre range due to internal contour cut and thus satisfy the progressive miniaturization of products in micro-optics and medical technologies. For further improvements in the precision of those components, a deep understanding of the involved processes during the interaction of laser radiation within the material is necessary. In this work, voids inside bulk polylactide (PLA), a bioabsorbable polymer, were generated using a femtosecond laser ( λ = 1030 nm, τH = 180 fs) with single and multiple pulse irradiation. The dependence of the spot size was examined by the use of four microscope objectives with focus radii of 4.9, 3.3, 2 and 1.2 µm. For the experiments, the pulse energy and focusing depth into the material were varied. The dimensions of the voids were experimentally determined as function of the intensity. Differences in the lateral and axial extents of the voids were obtained for different focus radii and focusing depths at same intensities. Furthermore, the intensity distribution of the laser radiation inside the material for the different focus radii and focusing depths, and their dependence on the lateral and axial sizes of the voids was simulated and compared with the experimental results.

  12. Stress redistribution and void growth in butt-welded canisters for spent nuclear fuel

    International Nuclear Information System (INIS)

    Josefson, B.L.; Karlsson, L.; Haeggblad, H.Aa.

    1993-02-01

    The stress-redistribution in Cu-Fe canisters for spent nuclear fuel during waiting for deposition and after final deposition is calculated numerically. The constitutive equation modelling creep deformation during this time period employs values on materials parameters determined within the SKB-project on 'mechanical integrity of canisters for spent nuclear fuel'. The welding residual stresses are redistributed without lowering maximum values during the waiting period, a very low amount of void growth is predicted for this type of copper during the deposition period. This leads to an estimated very large rupture time

  13. Finding Brazing Voids by Holography

    Science.gov (United States)

    Galluccio, R.

    1986-01-01

    Vibration-induced interference fringes reveal locations of defects. Holographic apparatus used to view object while vibrated ultrasonically. Interference fringes in hologram reveal brazing defects. Holographic technique locates small voids in large brazed joints. Identifies unbrazed regions 1 in. to second power (6 cm to the second power) or less in area.

  14. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neuron spectrum of the Integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also show a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. 13 refs., 1 fig., 4 tabs

  15. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neutron spectrum of the integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also allow a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. (author)

  16. Wire-Mesh Tomography Measurements of Void Fraction in Rectangular Bubble Columns

    International Nuclear Information System (INIS)

    Reddy Vanga, B.N.; Lopez de Bertodano, M.A.; Zaruba, A.; Prasser, H.M.; Krepper, E.

    2004-01-01

    Bubble Columns are widely used in the process industry and their scale-up from laboratory scale units to industrial units have been a subject of extensive study. The void fraction distribution in the bubble column is affected by the column size, superficial velocity of the dispersed phase, height of the liquid column, size of the gas bubbles, flow regime, sparger design and geometry of the bubble column. The void fraction distribution in turn affects the interfacial momentum transfer in the bubble column. The void fraction distribution in a rectangular bubble column 10 cm wide and 2 cm deep has been measured using Wire-Mesh Tomography. Experiments were performed in an air-water system with the column operating in the dispersed bubbly flow regime. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. A 'wall peak' has been observed in the measured void fraction profiles, for the higher gas flow rates. This 'wall peak' seems to be unique, as this distribution has not been previously reported in bubble column literature. Low gas flow rates yielded the conventional 'center peak' void profile. The effect of column height and superficial gas velocity on the void distribution has been investigated. Wire-mesh Tomography also facilitates the measurement of bubble size distribution in the column. This paper presents the measurement principle and the experimental results for a wide range of superficial gas velocities. (authors)

  17. Effect of scale size, orientation type and dispensing method on void ...

    Indian Academy of Sciences (India)

    AIZAT ABAS

    2018-04-13

    Apr 13, 2018 ... reduce the formation of void during encapsulation process. Keywords. Ball grid ... Additionally, the usage of LBM to study of void in CUF was again conducted by ... models are fabricated using clear Perspex and plastics beads.

  18. Experimental investigation of the effect of injected interstitials on void formation

    International Nuclear Information System (INIS)

    Badger, B. Jr.; Plumton, D.L.; Zinkle, S.J.; Sindelar, R.L.; Kulcinski, G.L.; Dodd, R.A.; Wolfer, W.G.

    1984-01-01

    Pure nickel, a pure 316-type stainless steel (P7) and two high strength copper alloys have been irradiated with either 14-MeV nickel or copper ions to a peak damage level of 50 dpa (K = 0.8) at homologous temperatures ranging from 0.4 to 0.6 Tm. The irradiated foils have been examined in cross section in an electron microscope. The injected interstitial effect on the suppression of the measured void densities in Ni and P7 was found to increase with decreasing temperature. The comparison of these results with nucleation theory shows good qualitative agreement. Quantitative discrepancies are attributed to diffusional spreading of point defects and to the presence of impurity atoms in the matrix. A copper alloy irradiated at 300 0 C showed a small heterogeneous void density characteristic of the high temperature end of the void swelling regime, while no voids formed in the alloys irradiated > 400 0 C. This result is in excellent agreement with nucleation theory which indicates the void swelling regime in ion-irradiated, low impurity copper should be less than 300 0 C (0.42 Tm)

  19. Measurement of the thermal Sunyaev-Zel'dovich effect around cosmic voids

    Science.gov (United States)

    Alonso, David; Hill, J. Colin; Hložek, Renée; Spergel, David N.

    2018-03-01

    We stack maps of the thermal Sunyaev-Zel'dovich effect produced by the Planck Collaboration around the centers of cosmic voids defined by the distribution of galaxies in the CMASS sample of the Baryon Oscillation Spectroscopic Survey, scaled by the void effective radii. We report a first detection of the associated cross-correlation at the 3.4 σ level: voids are under-pressured relative to the cosmic mean. We compare the measured Compton-y profile around voids with a model based solely on the spatial modulation of halo abundance with environmental density. The amplitude of the detected signal is marginally lower than predicted by an overall amplitude αv=0.67 ±0.2 . We discuss the possible interpretations of this measurement in terms of modeling uncertainties, excess pressure in low-mass halos, or nonlocal heating mechanisms.

  20. Kinetic aspects of the growth of platelets and voids in H implanted Si

    International Nuclear Information System (INIS)

    Grisolia, J.; Cristiano, F.; Ben Assayag, G.; Claverie, A.

    2001-01-01

    We have undertaken a systematic and quantitative study of the extended defects formed after high-dose proton implantation in silicon. This study is based on the transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) experiments to 'follow' the thermal evolution of platelets and voids for a large variety of annealing conditions up to 900 deg. C. Up to about 500 deg. C, only platelets are observed and, as the anneal proceeds, they grow in size and reduce their density through the conservative exchange of hydrogen (H) atoms. On the contrary, above 500 deg. C, H starts to diffuse out of the defect-rich region and this out-diffusion can be completed after 700 deg. C anneals. Concurrently, platelets tend to disappear and voids appear. Above 700 deg. C anneals, hydrogen cannot be detected anymore in the layers and only voids remain. Upon time, they also grow in size and reduce their density. This is again attributed to the Ostwald ripening of voids which involves now vacancy diffusion from small voids to large ones. In summary, we have shown that platelets and voids both undergo quasi-conservative ripening upon annealing; at low-temperature (LT) platelets exchange the H atoms they are composed of while at high-temperature voids exchange vacancies

  1. A theoretical derivation of the transients related to partial discharges in ellipsoidal voids

    DEFF Research Database (Denmark)

    Crichton, George C; Karlsson, A.; Pedersen, Aage

    1988-01-01

    be drawn about the effects of the gas within the void as well as the size, shape, and location of voids. The method is illustrated by applying it to a spheroidal void in a simple disk-type gas-insulated-substation (GIS) spacer. It is found that the nonattaching gas generates an induced charge...

  2. Impact of benign prostatic hyperplasia surgical treatment on voiding and urinary bladder filling symptoms

    Directory of Open Access Journals (Sweden)

    Milićević Snježana

    2010-01-01

    Full Text Available Background/Aim. Benign prostatic hyperplasia (BHP is one of the most common diseases of elderly men. The aim of this study was to evaluate the effect of surgical treatment of benign prostatic hyperplasia to voiding and urinary bladder filling symptoms. Quantification of voiding and filling symptoms was done with the International Prostate Symptom Score (IPSS. Method. The study included 80 patients with BHP, of whom 40 were treated with open prostatectomy (group A, and other 40 with transurethral resection of prostate gland (group B. All the patients were under 80 years old (average age in the group A was 70.23 years with a variation interval of 21 years, and in the group B 69.37 years with a variation interval of 22 years, with a value of IPSS > 19 points, quantity of residual urine higher than 150 mL, the weight of benign prostatic gland hyperplasia tissue over 30 grams for the method of prostate transurethral resection, and over 80 grams for the method of open prostatectomy. To all patients, for two times, the value of IPSS was determined, and then in a postoperative period in time intervals of 4 and 12 weeks. Results. Arithmetic mean of IPSS preoperatively was 32.05 points in the group A and 31.75 points in the group B. During the postoperative check-ups in time intervals of 4 and 12 weeks, arithmetic means of IPSS in the group A were 5.4 and 1.85 points, respectively, and in the group B 11.425 and 9.025 points, respectively. Surgical treatment had better effect on voiding symptoms than on urinary bladder filling ones. Conclusion. After the mentioned surgical procedures a significant reduction of the lower urinary tract symptoms quantified by the IPSS was observed. Surgical treatment of BHP had a more pronounced effect on the voiding symptoms in relation to filling ones.

  3. Core concepts for ''zero-sodium-void-worth core'' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fueled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a ''pancaked'' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. 16 refs., 2 figs., 3 tabs

  4. Active infrared thermography for visualizing subsurface micro voids in an epoxy molding compound

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Yeol [Test and Package Center, Samsung Electronics, Asan(Korea, Republic of); Hwang, Soon Kyu; Choi, Jae Mook; Sohn, Hoon [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-04-15

    This paper presents an automated subsurface micro void detection technique based on pulsed infrared thermography for inspecting epoxy molding compounds (EMC) used in electronic device packaging. Subsurface micro voids are first detected and visualized by extracting a lock-in amplitude image from raw thermal images. Binary imaging follows to achieve better visualization of subsurface micro voids. A median filter is then applied for removing sparse noise components. The performance of the proposed technique is tested using 36 EMC samples, which have subsurface (below 150 μm ~ 300 μm from the inspection surface) micro voids (150 μm ~ 300 μm in diameter). The experimental results show that the subsurface micro voids can be successfully detected without causing any damage to the EMC samples, making it suitable for automated online inspection.

  5. Core concepts for 'zero-sodium-void-worth core' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fuelled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a 'pancaked' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket-zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. (author)

  6. Predictive efficacy of radioisotope voiding cystography for renal outcome

    International Nuclear Information System (INIS)

    Kim, Seok Ki; Lee, Dong Soo; Kim, Kwang Myeung; Choi, Whang; Chung, June Key; Lee, Myung Chul

    2000-01-01

    As vesicoureteral reflux (VUR) could lead to renal functional deterioration when combined with urinary tract infection, we need to decide whether operative anti-reflux treatment should be performed at the time of diagnosis of VUR. Predictive value of radioisotope voiding cystography (RIVCG) for renal outcome was tested. In 35 children (18 males, 17 females), radiologic voiding cystoure-thrography (VCU), RIVCG and DMSA scan were performed. Change in renal function was evaluated using the follow-up DMSA scan, ultrasonography, and clinical information. Discriminant analysis was performed using individual or integrated variables such as reflux amount and extent at each phase of voiding on RIVCG, in addition to age, gender and cortical defect on DMSA scan at the time of diagnosis. Discriminant function was composed and its performance was examined. Reflux extent at the filling phase and reflux amount and extent at postvoiding phase had a significant prognostic value. Total reflux amount was a composite variable to predict prognosis. Discriminant function composed of reflux extent at the filling phase and reflux amount and extent at postvoiding phase showed better positive predictive value and specificity than conventional reflux grading. RIVCG could predict renal outcome by disclosing characteristic reflux pattern during various voiding phases.=20

  7. Relation Between Bitumen Content and Percentage Air Voids in Semi Dense Bituminous Concrete

    Science.gov (United States)

    Panda, R. P.; Das, Sudhanshu Sekhar; Sahoo, P. K.

    2018-06-01

    Hot mix asphalt (HMA) is a heterogeneous mix of aggregate, mineral filler, bitumen, additives and air voids. Researchers have indicated that the durability of the HMA is sensitive on the actual bitumen content and percentage air void. This paper aims at establishing the relationship between the bitumen content and the percentage air voids in Semi Dense Bituminous Concrete (SDBC) using Viscosity Grade-30 (VG-30) bitumen. Total 54 samples have been collected, for formulation and validation of relationship and observed that the percentage air voids increases with decrease in actual bitumen content and vice versa. A minor increase in percentage air voids beyond practice of designed air voids in Marshall Method of design is required for better performance, indicating a need for reducing the codal provision of minimum bitumen content for SDBC as specified in Specification for Road & Bridges (Fourth Revision) published by Indian Road Congress, 2001. The study shows a possibility of reducing designed minimum bitumen content from codal provision for SDBC by 0.2% of weight with VG-30 grade of Bitumen.

  8. Relation Between Bitumen Content and Percentage Air Voids in Semi Dense Bituminous Concrete

    Science.gov (United States)

    Panda, R. P.; Das, Sudhanshu Sekhar; Sahoo, P. K.

    2018-02-01

    Hot mix asphalt (HMA) is a heterogeneous mix of aggregate, mineral filler, bitumen, additives and air voids. Researchers have indicated that the durability of the HMA is sensitive on the actual bitumen content and percentage air void. This paper aims at establishing the relationship between the bitumen content and the percentage air voids in Semi Dense Bituminous Concrete (SDBC) using Viscosity Grade-30 (VG-30) bitumen. Total 54 samples have been collected, for formulation and validation of relationship and observed that the percentage air voids increases with decrease in actual bitumen content and vice versa. A minor increase in percentage air voids beyond practice of designed air voids in Marshall Method of design is required for better performance, indicating a need for reducing the codal provision of minimum bitumen content for SDBC as specified in Specification for Road & Bridges (Fourth Revision) published by Indian Road Congress, 2001. The study shows a possibility of reducing designed minimum bitumen content from codal provision for SDBC by 0.2% of weight with VG-30 grade of Bitumen.

  9. Voiding patterns in men evaluated by a questionnaire survey

    DEFF Research Database (Denmark)

    Sommer, P; Nielsen, K K; Bauer, T

    1990-01-01

    A questionnaire on obstructive and irritative voiding symptoms was sent to 572 men aged between 20 and 79 years, selected at random from the National Register; 337 questionnaires were completed. None of the responders had consulted a doctor because of voiding symptoms. There was a significant...... voiding symptoms in men aged 60 to 79 years without subjective prostatism was the same as in patients admitted with prostatism, although most of the men had milder symptoms. Only nocturia and urge incontinence were more prevalent in patients admitted with prostatism. About 20% of men in the oldest decades...... had symptoms equal in severity to those found in men undergoing prostatectomy; 29% and 11% of men in the eighth decade [corrected] had nocturia twice and 3 times or more respectively; 19% complained of urge incontinence. More information on possible treatment is needed....

  10. A (giant) void is not mandatory to explain away dark energy with a Lemaître-Tolman model

    Science.gov (United States)

    Célérier, M.-N.; Bolejko, K.; Krasiński, A.

    2010-07-01

    Context. Lemaître-Tolman (L-T) toy models with a central observer have been used to study the effect of large scale inhomogeneities on the SN Ia dimming. Claims that a giant void is mandatory to explain away dark energy in this framework are currently dominating. Aims: Our aim is to show that L-T models exist that reproduce a few features of the ΛCDM model, but do not contain the giant cosmic void. Methods: We propose to use two sets of data - the angular diameter distance together with the redshift-space mass-density and the angular diameter distance together with the expansion rate - both defined on the past null cone as functions of the redshift. We assume that these functions are of the same form as in the ΛCDM model. Using the Mustapha-Hellaby-Ellis algorithm, we numerically transform these initial data into the usual two L-T arbitrary functions and solve the evolution equation to calculate the mass distribution in spacetime. Results: For both models, we find that the current density profile does not exhibit a giant void, but rather a giant hump. However, this hump is not directly observable, since it is in a spacelike relation to a present observer. Conclusions: The alleged existence of the giant void was a consequence of the L-T models used earlier because their generality was limited a priori by needless simplifying assumptions, like, for example, the bang-time function being constant. Instead, one can feed any mass distribution or expansion rate history on the past light cone as initial data to the L-T evolution equation. When a fully general L-T metric is used, the giant void is not implied.

  11. Transcutaneous sacral neurostimulation for irritative voiding dysfunction.

    Science.gov (United States)

    Walsh, I K; Johnston, R S; Keane, P F

    1999-01-01

    Patients with irritative voiding dysfunction are often unresponsive to standard clinical treatment. We evaluated the response of such individuals to transcutaneous electrical stimulation of the third sacral nerve. 32 patients with refractory irritative voiding dysfunction (31 female and 1 male; mean age 47 years) were recruited to the study. Ambulatory transcutaneous electrical neurostimulation was applied bilaterally to the third sacral dermatomes for 1 week. Symptoms of frequency, nocturia, urgency, and bladder pain were scored by each patient throughout and up to 6 months following treatment. The mean daytime frequency was reduced from 11.3 to 7.96 (p = 0.01). Nocturia episodes were reduced from a mean of 2.6 to 1.8 (p = 0.01). Urgency and bladder pain mean symptom scores were reduced from 5.97 to 4.89 and from 1.48 to 0.64, respectively. After stopping therapy, symptoms returned to pretreatment levels within 2 weeks in 40% of the patients and within 6 months in 100%. Three patients who continued with neurostimulation remained satisfied with this treatment modality at 6 months. Transcutaneous third sacral nerve stimulation may be an effective and noninvasive ambulatory technique for the treatment of patients with refractory irritative voiding dysfunction. Following an initial response, patients may successfully apply this treatment themselves to ensure long-term relief.

  12. Work Capacity of the Bladder During Voiding: A Novel Method to Evaluate Bladder Contractile Function and Bladder Outlet Obstruction

    Directory of Open Access Journals (Sweden)

    Ning Liu

    2015-01-01

    Full Text Available Background: Work in voiding (WIV of the bladder may be used to evaluate bladder status throughout urination rather than at a single time point. Few studies, however, have assessed WIV owing to the complexity of its calculations. We have developed a method of calculating work capacity of the bladder while voiding and analyzed the associations of bladder work parameters with bladder contractile function and bladder outlet obstruction (BOO. Methods: The study retrospectively evaluated 160 men and 23 women, aged >40 years and with a detrusor pressure at maximal flow rate (P det Q max of ≥40 cmH 2 O in men, who underwent urodynamic testing. The bladder power integration method was used to calculate WIV; WIV per second (WIV/t and WIV per liter of urine voided (WIV/v were also calculated. In men, the relationships between these work capacity parameters and P det Q max and Abrams-Griffiths (AG number were determined using linear-by-linear association tests, and relationships between work capacity parameters and BOO grade were investigated using Spearman′s association test. Results: The mean WIV was 1.15 ± 0.78 J and 1.30 ± 0.88 J, mean WIV/t was 22.95 ± 14.45 mW and 23.78 ± 17.02 mW, and mean WIV/v was 5.59 ± 2.32 J/L and 2.83 ± 1.87 J/L in men and women, respectively. In men, WIV/v showed significant positive associations with P det Q max (r = 0.845, P = 0.000, AG number (r = 0.814, P = 0.000, and Schafer class (r = 0.726, P = 0.000. Conversely, WIV and WIV/t showed no associations with P det Q max or AG number. In patients with BOO (Schafer class > II, WIV/v correlated positively with increasing BOO grade. Conclusions: WIV can be calculated from simple urodynamic parameters using the bladder power integration method. WIV/v may be a marker of BOO grade, and the bladder contractile function can be evaluated by WIV and WIV/t.

  13. Studies of void growth in a thin ductile layer between ceramics

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1997-01-01

    The growth of voids in a thin ductile layer between ceramics is analysed numerically, using an axisymmetric cell model to represent an array of uniformly distributed spherical voids at the central plane of the layer. The purpose is to determine the full traction-separation law relevant to crack...... growth by a ductile mechanism along the thin layer. Plastic flow in the layer is highly constrained by the ceramics, so that a high. level of triaxial tension develops, leading in some cases to cavitation instabilities. The computations are continued to a state near the occurrence of void coalescence....

  14. Two-phase flow void fraction measurement using gamma ray attenuation technique

    International Nuclear Information System (INIS)

    Silva, R.D. da.

    1985-01-01

    The present work deals with experimental void fraction measurements in two-phase water-nitrogen flow, by using a gamma ray attenuation technique. Several upward two-phase flow regimes in a vertical tube were simulated. The water flow was varied from 0.13 to 0.44 m 3 /h while the nitrogen flow was varied between 0.01 and 0.1 m 3 /h. The mean volumetric void fraction was determined based on the measured linear void fraction for each flow condition. The results were compared with other authors data and showed a good agreement. (author) [pt

  15. Spatial averaging of fields from half-wave dipole antennas and corresponding SAR calculations in the NORMAN human voxel model between 65 MHz and 2 GHz.

    Science.gov (United States)

    Findlay, R P; Dimbylow, P J

    2009-04-21

    If an antenna is located close to a person, the electric and magnetic fields produced by the antenna will vary in the region occupied by the human body. To obtain a mean value of the field for comparison with reference levels, the Institute of Electrical and Electronic Engineers (IEEE) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend spatially averaging the squares of the field strength over the height the body. This study attempts to assess the validity and accuracy of spatial averaging when used for half-wave dipoles at frequencies between 65 MHz and 2 GHz and distances of lambda/2, lambda/4 and lambda/8 from the body. The differences between mean electric field values calculated using ten field measurements and that of the true averaged value were approximately 15% in the 600 MHz to 2 GHz range. The results presented suggest that the use of modern survey equipment, which takes hundreds rather than tens of measurements, is advisable to arrive at a sufficiently accurate mean field value. Whole-body averaged and peak localized SAR values, normalized to calculated spatially averaged fields, were calculated for the NORMAN voxel phantom. It was found that the reference levels were conservative for all whole-body SAR values, but not for localized SAR, particularly in the 1-2 GHz region when the dipole was positioned very close to the body. However, if the maximum field is used for normalization of calculated SAR as opposed to the lower spatially averaged value, the reference levels provide a conservative estimate of the localized SAR basic restriction for all frequencies studied.

  16. Estimation of coolant void reactivity for CANDU-NG lattice using DRAGON and validation using MCNP5 and TRIPOLI-4.3

    International Nuclear Information System (INIS)

    Karthikeyan, R.; Tellier, R. L.; Hebert, A.

    2006-01-01

    The Coolant Void Reactivity (CVR) is an important safety parameter that needs to be estimated at the design stage of a nuclear reactor. It helps to have an a priori knowledge of the behavior of the system during a transient initiated by the loss of coolant. In the present paper, we have attempted to estimate the CVR for a CANDU New Generation (CANDU-NG) lattice, as proposed at an early stage of the Advanced CANDU Reactor (ACR) development. We have attempted to estimate the CVR with development version of the code DRAGON, using the method of characteristics. DRAGON has several advanced self-shielding models incorporated in it, each of them compatible with the method of characteristics. This study will bring to focus the performance of these self-shielding models, especially when there is voiding of such a tight lattice. We have also performed assembly calculations in 2 x 2 pattern for the CANDU-NG fuel, with special emphasis on checkerboard voiding. The results obtained have been validated against Monte Carlo codes MCNP5 and TRIPOLI-4.3. (authors)

  17. Effects of wall roughness and entry length on void profile in vertical bubbly flow

    International Nuclear Information System (INIS)

    Takamasa, Tomoji

    1988-01-01

    An experimental study of upward air-water bubbly two-phase flow in an entry region was performed with various rough wall test tubes. The objective of the work is to clarify the effects of wall roughness and entry length on void profile. The fluid flows in the vertical circular test tube of 25 mm I.D. under nearly atmospheric pressure, at room temperature. The void profile changes from a pattern similar in appearance to the saddle shape which has local void peaks near the wall, into the power law shape whose curve is approximated by a power law formula, with increasing wall roughness and/or entry length. That is, wall roughness and entry length have a similar effect upon void profile. There are two patterns in the power law shape, a pattern with sharp center peak and a pattern with obtuse center peak. As wall roughness and/or entry length increase, the void profile changes from the former pattern to the latter pattern. At enough long entry length (L/D ≅ 150), every void profile has almost the same power law shape independent of wall roughness. Some void profiles are asymmetric to the axis. (author)

  18. Deep penetration calculations

    International Nuclear Information System (INIS)

    Thompson, W.L.; Deutsch, O.L.; Booth, T.E.

    1980-04-01

    Several Monte Carlo techniques are compared in the transport of neutrons of different source energies through two different deep-penetration problems each with two parts. The first problem involves transmission through a 200-cm concrete slab. The second problem is a 90 0 bent pipe jacketed by concrete. In one case the pipe is void, and in the other it is filled with liquid sodium. Calculations are made with two different Los Alamos Monte Carlo codes: the continuous-energy code MCNP and the multigroup code MCMG

  19. Multiple void formation in plasmas containing multispecies charged grains

    International Nuclear Information System (INIS)

    Liu, Y. H.; Chen, Z. Y.; Bogaerts, A.; Yu, M. Y.

    2006-01-01

    Self-organized separation of charged-dust species in two-dimensional dusty plasmas is studied by means of molecular-dynamics simulation. The multispecies dust grains, interacting through a screened Coulomb potential with a long-range attractive component, are confined by an external quadratic potential and subjected to a radially outward ion drag force. It is found that, in general, the species are spatially separated by bandlike dust-free (or void) regions, and grains of the same species tend to populate a common shell. At large ion drag and/or large plasma screening, a central disklike void as well as concentric bandlike voids separating the different species appear. Because of the outward drag and the attractive component of the dust-dust interaction forces, highly asymmetrical states consisting of species-separated dust clumps can also exist despite the fact that all the forces are either radial or central

  20. The relationship between temperament, gender, and childhood dysfunctional voiding.

    Science.gov (United States)

    Colaco, Marc; Dobkin, Roseanne D; Sterling, Matthew; Schneider, Dona; Barone, Joseph

    2013-08-01

    Dysfunctional voiding (DV) is an extremely common pediatric complaint. The goal of this study was to examine the relationship between DV and childhood temperament. Information about the voiding behaviors and temperaments of 50 children was examined using a case-control model. Caregivers were asked to fill out the Children's Behavior Questionnaire in order to rate their child on the dimensions of surgency, negative affect, and effortful control. The relationship between DV and these dimensions was then evaluated. Males with DV were found to have lower effortful control than males with normal voiding habits. Females with DV did not demonstrate a difference in effortful control, but did demonstrate a higher rate of surgency. The results suggest that temperament does have an association with DV. These findings are in line with temperamental associations with other externalizing trouble behaviors and may inform potential treatment strategies for DV.

  1. M-CHOLINOLYTICS IN RHEABILITATION OF CHILDREN WITH VOIDING DISFUNCTION AND URNARY BLADDER HYPERACTIVITY

    Directory of Open Access Journals (Sweden)

    I.V. Kazanskaya

    2006-01-01

    Full Text Available Voiding dysfunction is a common problem in pediatrics. Hyperactive urinary bladder is the most frequent cause of voiding dysfunction. Macholinolytic drugs are the first choice treatment for urinary bladder hyperactivity. The «urination pathology» center has investigated the efficacy of an macholinolytic, oxybutynin. The study included 25 children (aged 6–14 with different causes of voiding dysfunction and bladder hyperactivity. Oxybutynin was administered with a dosage of 5 mg twice a day, the follow up period was 8 weeks. The control evaluation of urodynamics (voiding rhythm, uroflowmetry, residual urine volume was performed at 4–8 weeks. Symptoms of bladder hyperactivity have been eliminated in 50% of patients, the bladder capacity has increased in 70% of cases, the frequency of night and day incontinence has diminished. The report demonstrates that oxybutynin has been most effective in patients with urinary bladder volume between 80 and 100 ml. the side effects, as dryness of mucous membranes and voiding difficulties, have been rarely observed. These side effects could be avoided by individual dose titration.Key words: voiding dysfunction, urinary bladder hyperactivity, oxybutynin, children.

  2. Transient void fraction measurements in rod bundle geometries

    International Nuclear Information System (INIS)

    Chan, A.M.C.

    1998-01-01

    A new gamma densitometer with a Ba-133 source and a Nal(TI) scintillator operated in the count mode has been designed for transient void fraction measurements in the RD-14M heated channels containing a seven-element heater bundle. The device was calibrated dynamically in the laboratory using an air-water flow loop. The void fraction measured was found to compare well with values obtained using the trapped-water method. The device was also found to follow very well the passage of air slugs in pulsating flow with slug passing frequencies of up to about 1.5 hz. (author)

  3. Void porosity measurements in coastal structures

    NARCIS (Netherlands)

    Bosma, C.; Verhagen, H.J.; D'Angremond, K.; Sint Nicolaas, W.

    2002-01-01

    The paper describes the use of two fundamental design parameters, the void porosity and layer thickness in rock armour constructions. These design parameters are very sensible for factors such as the boundary definition of a rock layer, rock production properties, intrinsic properties and

  4. Dynamics of voids and clusters and fluctuations in the cosmic background radiation

    International Nuclear Information System (INIS)

    Salpeter, E.E.

    1983-01-01

    The author summarizes briefly calculations on spherically symmetric models without dissipation for the dynamical development of large voids and galaxy (super)clusters from small underdensities and overdensities, respectively, at the recombination era. Implications are mentioned and conjectures for more complex geometries are discussed. He infers the density fluctuations which must have been present just after the recombination era to produce some present-day configuration. Fluctuations in the present-day cosmic background radiation are related to this and their inferred amplitude depends very strongly on the present-day value of the cosmological density parameter. The relation to observed upper limits on these fluctuations are discussed. (Auth.)

  5. Analysis on the Multiplication Factor with the Change of Corium Mass and Void Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Sun; Park, Chang Je; Song, Jin Ho; Ha, Kwang Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The neutron absorbing materials and fuel rods would be separately arranged and relocated, since the control materials in metallic structures have lower melting points than that of the oxide fuel (UO{sub 2}) rod materials. In addition, core reflood for a BWR is normally accomplished by supplying unborated water unlikely for a PWR. Therefore, a potential for a recriticality event to occur may exist, if unborated coolant injection is initiated with this configuration in the reactor core. The re-criticality in this system, however, brings into question what the uranium mass is required to achieve a critical level. Furthermore, the additional decay heat from molten fuel (corium) will produce an increase of void and eventually results in under-moderation of neutrons. The prior verification of these consequential physical variations in criticality eigenvalue (effective multiplication factor, k{sub eff}) should be greatly contributed to control and termination of re-criticality. Therefore, this study addresses what uranium mass of corium could achieve re-criticality of an accident core, and how effect the coolant void fraction has on eigenvalue (k{sub eff}) and its reactivity. To analyze the critical mass and the effect on criticality upon changing coolant density, k{sub eff} values were calculated using the MCNPX 2.5.0 code, and the reactivity change was also investigated. As a result, a large change in corium mass leads to a little change in k{sub eff} value, nevertheless, only about 60 kg of uranium is necessary to achieve a critical level. Thus, the amounts to reach a re-criticality are not fairly large, considering the actual uranium quantities loaded in the reactor core. Based on the condition with k{sub eff} greater than unity, the absolute values of k{sub eff} decrease rate and the coolant density coefficient were gradually increased due to the steady increments of coolant void (i.e., decrease in coolant density). In addition, the k{sub eff} value approaches the

  6. Effects of void anisotropy on the ignition and growth rates of energetic materials

    Science.gov (United States)

    Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    Initiation of heterogeneous energetic materials is thought to occur at hot spots; reaction fronts propagate from sites of such hot spots into the surrounding material resulting in complete consumption of the material. Heterogeneous materials, such as plastic bonded explosives (PBXs) and pressed materials contain numerous voids, defects and interfaces at which hot spots can occur. Amongst the various mechanisms of hot spot formation, void collapse is considered to be the predominant one in the high strain rate loading conditions. It is established in the past the shape of the voids has a significant effect on the initiation behavior of energetic materials. In particular, void aspect ratio and orientations play an important role in this regard. This work aims to quantify the effects of void aspect ratio and orientation on the ignition and growth rates of chemical reaction from the hot spot. A wide range of aspect ratio and orientations is considered to establish a correlation between the ignition and growth rates and the void morphology. The ignition and growth rates are obtained from high fidelity reactive meso-scale simulations. The energetic material considered in this work is HMX and Tarver McGuire HMX decomposition model is considered to capture the reaction mechanism of HMX. The meso-scale simulations are performed using a Cartesian grid based Eulerian solver SCIMITAR3D. The void morphology is shown to have a significant effect on the ignition and growth rates of HMX.

  7. A numerical study of the influence of the void drift model on the predictions of the assert subchannel code

    International Nuclear Information System (INIS)

    Tye, P.; Teyssedou, A.; Troche, N.; Kiteley, J.

    1996-01-01

    One of the factors which is important in order to ensure the continued safe operation of nuclear reactors is the ability to accurately predict the 'Critical Heat Flux' (CHF) throughout the rod bundles in the fuel channel. One method currently used by the Canadian nuclear industry to predict the CHF in the fuel bundles of CANDU reactors is to use the ASSERT subchannel code to predict the local thermal-hydraulic conditions prevailing at each axial location in each subchannel in conjunction with appropriate correlations or the CHF look-up table. The successful application of the above methods depends greatly on the ability of ASSERT to accurately predict the local flow conditions throughout the fuel channel. In this paper, full range qualitative verification tests, using the ASSERT subchannel code are presented which show the influence of the void drift model on the predictions of the local subchannel quality. For typical cases using a 7 rod subset of a full 37 element rod bundle taken from the ASSERT validation database, it will be shown that the void drift term can significantly influence the calculated distribution of the quality in the rod bundle. In order to isolate, as much as possible, the influence of the void drift term this first numerical study is carried out with the rod bundle oriented both vertically and horizontally. Subsequently, additional numerical experiments will be presented which show the influence that the void drift model has on the predicted CHF locations. (author)

  8. The Metallicity of Void Dwarf Galaxies

    NARCIS (Netherlands)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the

  9. Self-organized voids revisited: Experimental verification of the formation mechanism

    International Nuclear Information System (INIS)

    Song Juan; Jiang Yan; Ye Jun-Yi; Qian Meng-Di; Lin Xian; Bian Hua-Dong; Dai Ye; Ma Guo-Hong; Luo Fang-Fang; Chen Qing-Xi; Zhao Quan-Zhong; Qiu Jian-Rong

    2014-01-01

    We conduct several experiments to further clarify the formation mechanism of a self-organized void array induced by a single laser beam, including energy-related experiments, refractive-index-contrast-related experiments, depth-related experiments, and effective-numerical-aperture experiment. These experiments indicate that the interface spherical aberration is indeed responsible for the formation of void arrays. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Taylor-plasticity-based analysis of length scale effects in void growth

    KAUST Repository

    Liu, Junxian

    2014-09-25

    We have studied the void growth problem by employing the Taylor-based strain gradient plasticity theories, from which we have chosen the following three, namely, the mechanism-based strain gradient (MSG) plasticity (Gao et al 1999 J. Mech. Phys. Solids 47 1239, Huang et al 2000 J. Mech. Phys. Solids 48 99-128), the Taylor-based nonlocal theory (TNT; 2001 Gao and Huang 2001 Int. J. Solids Struct. 38 2615) and the conventional theory of MSG (CMSG; Huang et al 2004 Int. J. Plast. 20 753). We have addressed the following three issues which occur when plastic deformation at the void surface is unconstrained. (1) Effects of elastic deformation. Elasticity is essential for cavitation instability. It is therefore important to guarantee that the gradient term entering the Taylor model is the effective plastic strain gradient instead of the total strain gradient. We propose a simple elastic-plastic decomposition method. When the void size approaches the minimum allowable initial void size related to the maximum allowable geometrically necessary dislocation density, overestimation of the flow stress due to the negligence of the elastic strain gradient is on the order of lεY/R0 near the void surface, where l, εY and R0 are, respectively, the intrinsic material length scale, the yield strain and the initial void radius. (2) MSG intrinsic inconsistency, which was initially mentioned in Gao et al (1999 J. Mech. Phys. Solids 47 1239) but has not been the topic of follow-up studies. We realize that MSG higher-order stress arises due to the linear-strain-field approximation within the mesoscale cell with a nonzero size, lε. Simple analysis shows that within an MSG mesoscale cell near the void surface, the difference between microscale and mesoscale strains is on the order of (lε/R0)2, indicating that when lε/R0 ∼ 1.0, the higher-order stress effect can make the MSG result considerably different from the TNT or CMSG results. (3) Critical condition for cavitation instability

  11. Design concept and testing of an in-bundle gamma densitometer for subchannel void fraction measurements in the THTF electrically heated rod bundle

    International Nuclear Information System (INIS)

    Felde, D.K.

    1982-04-01

    A design concept is presented for an in-bundle gamma densitometer system for measurement of subchannel average fluid density and void fraction in rod or tube bundles. This report describes (1) the application of the design concept to the Thermal-Hydraulic Test Facility (THTF) electrically heated rod bundle; and (2) results from tests conducted in the THTF

  12. Mechanistic model for void distribution in flashing flow

    International Nuclear Information System (INIS)

    Riznic, J.; Ishii, M.; Afgan, N.

    1987-01-01

    A problem of discharging of an initially subcooled liquid from a high pressure condition into a low pressure environment is quite important in several industrial systems such as nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites is used. The model predictions in terms of the void fraction are compared to Moby Dick and BNL experimental data. It shows that satisfactory agreements could be obtained from the present model without any floating parameter to be adjusted with data. This result indicates that, at least for the experimental conditions considered here, the mechanistic prediction of the flashing phenomenon is possible based on the present wall nucleation based model. 43 refs., 4 figs

  13. Loss of urinary voiding sensation due to herpes zoster.

    Science.gov (United States)

    Hiraga, Akiyuki; Nagumo, Kiyomi; Sakakibara, Ryuji; Kojima, Shigeyuki; Fujinawa, Naoto; Hashimoto, Tasuku

    2003-01-01

    A case of sacral herpes zoster infection in a 56-year-old man with the complication of loss of urinary voiding sensation is presented. He had typical herpes zoster eruption on the left S2 dermatome, hypalgesia of the S1-S4 dermatomes, and absence of urinary voiding sensation. There was no other urinary symptom at the first medical examination. Urinary complications associated with herpes zoster are uncommon, but two types, acute cystitis and acute retention, have been recognized. No cases of loss of urinary voiding sensation due to herpes zoster have been reported. In this case, hypalgesia of the sacral dermatomes was mild compared to the marked loss of urethral sensation. This inconsistency is explained by the hypothesis that the number of urethral fibers is very small as compared to that of cutaneous fibers, therefore, urethral sensation would be more severely disturbed than cutaneous sensation. Copyright 2003 Wiley-Liss, Inc.

  14. A New Kind of Void Soap-free P(MMA-EA-MAA) Latex Particles

    Institute of Scientific and Technical Information of China (English)

    Kai KANG; Cheng You KAN; Yi DU; Yu Zhong LI; De Shan LIU

    2005-01-01

    Soap-free P(MMA-EA-MAA) particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and methacrylic acid (MAA), and large voids inside the particles were generated by alkali posttreatment in the presence of 2-butanone. Results indicated that the size of void and the particle volume were related with the amount of 2-butanone. The generation mechanism of voids was proposed.

  15. Development of measurement method of void fraction distribution on subcooled flow boiling using neutron radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Matsubayashi, Masahito; Akimoto, Hajime

    1999-03-01

    In relation to the development of a solid target of high intensity neutron source, plasma-facing components of fusion reactor and so forth, it is indispensable to estimate the void fraction for high-heat-load subcooled flow boiling of water. Since the existing prediction method of void fraction is based on the database for tubes, it is necessary to investigate extendibility of the existing prediction method to narrow-gap rectangular channels that is used in the high-heat-load devices. However, measurement method of void fraction in the narrow-gap rectangular channel has not been established yet because of the difficulty of measurement. The objectives of this investigation are development of a new system for bubble visualization and void fraction measurement on subcooled flow boiling in narrow-gap rectangular channels using the neutron radiography, and establishment of void fraction database by using this measurement system. This report describes the void fraction measurement method by the neutron radiography technique, and summarizes the measured void fraction data in one-side heated narrow-gap rectangular channels at subcooled boiling condition. (author)

  16. Effect of void fraction correlations on two-phase pressure drop during flow boiling in narrow rectangular channel

    International Nuclear Information System (INIS)

    Huang, Dong; Gao, Puzhen; Chen, Chong; Lan, Shu

    2013-01-01

    Highlights: • Most of the slip ratio models and the Lockhart–Martinelli parameter based models give similar results. • The drift flux void fraction models give relatively small values. • The effect of void fraction correlations on two-phase friction pressure drop is inconspicuous. • The effect of void fraction correlations on two-phase acceleration pressure drop is significant. - Abstract: The void fraction of water during flow boiling in vertical narrow rectangular channel is experimentally investigated. The void fraction is indirectly determined using the present experimental data with various void fraction correlations or models published in the open literature. The effects of mass flux, mass quality, system pressure and inlet subcooling on the void fraction and pressure drop are discussed in detail. In addition, comparison and discussion among the numerous void fraction correlations are carried out. The effect of void fraction correlations on two-phase pressure drop is presented as well. The results reveal that most of the slip ratio correlations and the Lockhart–Martinelli parameter based void fraction correlations have results close to each other at mass quality higher than 0.2. The drift flux void fraction correlations give small values which are incompatible with other models making it inapplicable for narrow rectangular channel. The alteration of void fraction correlations has an inconspicuous effect on two-phase frictional pressure drop, while an obvious effect on two-phase accelerational pressure drop during flow boiling in narrow rectangular channel

  17. Newtonian self-gravitating system in a relativistic huge void universe model

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Ryusuke; Nakao, Ken-ichi [Department of Mathematics and Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan); Yoo, Chul-Moon, E-mail: ryusuke@sci.osaka-cu.ac.jp, E-mail: knakao@sci.osaka-cu.ac.jp, E-mail: yoo@gravity.phys.nagoya-u.ac.jp [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2016-12-01

    We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.

  18. Effect of hardness of martensite and ferrite on void formation in dual phase steel

    DEFF Research Database (Denmark)

    Azuma, M.; Goutianos, Stergios; Hansen, Niels

    2012-01-01

    The influence of the hardness of martensite and ferrite phases in dual phase steel on void formation has been investigated by in situ tensile loading in a scanning electron microscope. Microstructural observations have shown that most voids form in martensite by evolving four steps: plastic...... deformation of martensite, crack initiation at the martensite/ferrite interface, crack propagation leading to fracture of martensite particles and void formation by separation of particle fragments. It has been identified that the hardness effect is associated with the following aspects: strain partitioning...... between martensite and ferrite, strain localisation and critical strain required for void formation. Reducing the hardness difference between martensite and ferrite phases by tempering has been shown to be an effective approach to retard the void formation in martensite and thereby is expected to improve...

  19. Void swelling in fast reactor irradiated high purity binary iron-chromium alloys

    International Nuclear Information System (INIS)

    Little, E.A.; Stow, D.A.

    The void swelling characteristics of a series of high purity binary iron-chromium alloys containing 0 - 615 0 C. The void swelling behaviour can be qualitatively rationalized in terms of point defect trapping and precipitation processes involving chromium atoms

  20. Average Bandwidth Allocation Model of WFQ

    Directory of Open Access Journals (Sweden)

    Tomáš Balogh

    2012-01-01

    Full Text Available We present a new iterative method for the calculation of average bandwidth assignment to traffic flows using a WFQ scheduler in IP based NGN networks. The bandwidth assignment calculation is based on the link speed, assigned weights, arrival rate, and average packet length or input rate of the traffic flows. We prove the model outcome with examples and simulation results using NS2 simulator.

  1. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    Directory of Open Access Journals (Sweden)

    Huajun Li

    2016-01-01

    Full Text Available Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA. Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works.

  2. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    Science.gov (United States)

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  3. Evaluation of purinergic mechanism for the treatment of voiding dysfunction: a study in conscious spinal cord-injured rats.

    Science.gov (United States)

    Lu, Shing-Hwa; Groat, William C de; Lin, Alex T L; Chen, Kuang-Kuo; Chang, Luke S

    2007-10-01

    To investigate the effect of a selective P2X(3-)P2X(2/3) purinergic receptor antagonist (a-317491) on detrusor hyperreflexia in conscious chronic spinal cord-injured female rats. Six chronic spinal cord-transected female Sprague-Dawley rats (290-336 g) were used in this study. Spinal transection at the T8-T9 segmental level was performed using aseptic techniques under halothane anesthesia. Fourteen to 16 weeks after spinal transection, A-317491, a selective P2X(3-)P2X(2/3) purinergic receptor antagonist, was administered intravenously in cystometry studies at increasing doses of 0.03, 0.1, 0.3, 1, 3, 10 and 30 micromol/kg at 40-50 minute intervals. Cystometrograms (CMGs) were performed before and after the administration of each dose of the drug. The continuous filling of CMGs revealed a large number of small-amplitude (> 8 cmH(2)O), non-voiding contractions (NVCs) (average, 9.7 per voiding cycle) preceding voiding contractions (mean amplitude, 31 cmH(2)O; duration, 2.5 minutes), which occurred at an interval of 539 seconds and at a pressure threshold of 5.7 cmH(2)O. When tested in a range of doses (0.03-30 micromol/kg, intravenous), A-317491 in doses between 1 and 30 micromol/kg significantly (p spinal cord injury in rats.

  4. Void initiation from interfacial debonding of spherical silicon particles inside a silicon-copper nanocomposite: a molecular dynamics study

    Science.gov (United States)

    Cui, Yi; Chen, Zengtao

    2017-02-01

    Silicon particles with diameters from 1.9 nm to 30 nm are embedded in a face-centered-cubic copper matrix to form nanocomposite specimens for simulation. The interfacial debonding of silicon particles from the copper matrix and the subsequent growth of nucleated voids are studied via molecular dynamics (MD). The MD results are examined from several different perspectives. The overall mechanical performance is monitored by the average stress-strain response and the accumulated porosity. The ‘relatively farthest-traveled’ atoms are identified to characterize the onset of interfacial debonding. The relative displacement field is plotted to illustrate both subsequent interfacial debonding and the growth of a nucleated void facilitated by a dislocation network. Our results indicate that the initiation of interfacial debonding is due to the accumulated surface stress if the matrix is initially dislocation-free. However, pre-existing dislocations can make a considerable difference. In either case, the dislocation emission also contributes to the subsequent debonding process. As for the size effect, the debonding of relatively larger particles causes a drop in the stress-strain curve. The volume fraction of second-phase particles is found to be more influential than the size of the simulation box on the onset of interfacial debonding. The volume fraction of second-phase particles also affects the shape of the nucleated void and, therefore, influences the stress response of the composite.

  5. Influence of second phase dispersion on void formation during irradiation

    International Nuclear Information System (INIS)

    Sundararaman, M.; Banerjee, S.; Krishnan, R.

    Irradiation-induced void formation in alloys has been found to be strongly influenced by the microstructure, the important microstructural parameters being the dislocation density and the nature, density and distribution of second-phase precipitates. The effects of various types of precipitates on void swelling have been examined using the generally-accepted model of void formation : void embryos are assumed to grow in a situation where equal numbers of vacancies and interstitials are continuously generated by the incident irradiation, the interstitials being somewhat perferentially absorbed in some sinks present in the material. The mechanism of the trapping of defects by a distribution of precipitates has been discussed and the available experimental results on the suppression of void formation in materials containing coherent precipitates have been reviewed. Experimental results on the microstructure developed in a nickel-base alloys, Inconel-718 (considered to be a candidate material for structural applications in fast reactors), have been presented. The method of determination of the coherency strain associated with the precipitates has been illustrated with the help of certain observations made on this alloy. The major difficulty in using a two-phase alloy in an irradiation environment is associated with the irradiation-induced instability of the precipitates. Several processes such as precipitate dislocation (in which the incident radiation removes the outer layer of precipitates by recoil), enhanced diffusion disordering, fragmentation of precipitates, etc. are responsible for bringinq about a significant change in the structure of a two-phase material during irradiation. The effect of these processes on the continued performance of a two-phase alloy subjected to irradiation at an elevated temperature has been discussed. (auth.)

  6. Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jensen, Ole Mejlhede; Laustsen, Sara

    2013-01-01

    the difference between poor and satisfactory frost-resistance. Furthermore, the results indicate that voids created directly by SAP protect concrete against frost deterioration just like other air voids; if the concrete contains enough SAP voids, these alone can provide sufficient frost resistance. © 2013 RILEM....

  7. Void fraction prediction in two-phase flows independent of the liquid phase density changes

    International Nuclear Information System (INIS)

    Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.

    2014-01-01

    Gamma-ray densitometry is a frequently used non-invasive method to determine void fraction in two-phase gas liquid pipe flows. Performance of flow meters using gamma-ray attenuation depends strongly on the fluid properties. Variations of the fluid properties such as density in situations where temperature and pressure fluctuate would cause significant errors in determination of the void fraction in two-phase flows. A conventional solution overcoming such an obstacle is periodical recalibration which is a difficult task. This paper presents a method based on dual modality densitometry using Artificial Neural Network (ANN), which offers the advantage of measuring the void fraction independent of the liquid phase changes. An experimental setup was implemented to generate the required input data for training the network. ANNs were trained on the registered counts of the transmission and scattering detectors in different liquid phase densities and void fractions. Void fractions were predicted by ANNs with mean relative error of less than 0.45% in density variations range of 0.735 up to 0.98 gcm −3 . Applying this method would improve the performance of two-phase flow meters and eliminates the necessity of periodical recalibration. - Highlights: • Void fraction was predicted independent of density changes. • Recorded counts of detectors/void fraction were used as inputs/output of ANN. • ANN eliminated necessity of recalibration in changeable density of two-phase flows

  8. Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials

    International Nuclear Information System (INIS)

    Weck, A.; Wilkinson, D.S.; Maire, E.; Toda, H.

    2008-01-01

    The literature contains many models for the process of void nucleation, growth and coalescence leading to ductile fracture. However, these models lack in-depth experimental validation, in part because void coalescence is difficult to capture experimentally. In this paper, an embedded array of holes is obtained by diffusion bonding a sheet filled with laser-drilled holes between two intact sheets. The experiments have been performed with both pure copper and Glidcop. Using X-ray computed tomography, we show that void growth and coalescence (or linkage) are well captured in both materials. The Brown and Embury model for void coalescence underestimates coalescence strains due to constraining effects. However, both the Rice and Tracey model for void growth and the Thomason model for void coalescence give good predictions for copper samples when stress triaxiality is considered. The Thomason model, however, fails to predict coalescence for the Glidcop samples; this is primarily due to secondary void nucleation

  9. Quantifying voids effecting delamination in carbon/epoxy composites: static and fatigue fracture behavior

    Science.gov (United States)

    Hakim, I.; May, D.; Abo Ras, M.; Meyendorf, N.; Donaldson, S.

    2016-04-01

    On the present work, samples of carbon fiber/epoxy composites with different void levels were fabricated using hand layup vacuum bagging process by varying the pressure. Thermal nondestructive methods: thermal conductivity measurement, pulse thermography, pulse phase thermography and lock-in-thermography, and mechanical testing: modes I and II interlaminar fracture toughness were conducted. Comparing the parameters resulted from the thermal nondestructive testing revealed that voids lead to reductions in thermal properties in all directions of composites. The results of mode I and mode II interlaminar fracture toughness showed that voids lead to reductions in interlaminar fracture toughness. The parameters resulted from thermal nondestructive testing were correlated to the results of mode I and mode II interlaminar fracture toughness and voids were quantified.

  10. The effect of form pressure on the air void structure of SCC

    DEFF Research Database (Denmark)

    Jensen, Mikkel Vibæk; Hasholt, Marianne Tange; Geiker, Mette Rica

    2005-01-01

    The high workability of self-compacting concrete (SCC) invites to high casting rates. However, casting walls at high rate may result in large pressure at the bottom of the form and subsequently compression of the air voids. This paper deals with the influence of hydrostatic pressure during setting...... on the air void structure of hardened, air entrained SCC. The subject was examined through laboratory investigations of SCC with two different amounts of air entrainment. The condition in the form was simulated by using containers making it possible to cure concrete under various pressures corresponding...... to the bottom of castings of 0, 2, 4, and 6 meters height. The laboratory investigations were supplemented with data from two full-scale wall castings. The air void structure of the hardened concretes was determined on plane sections. The results indicate that the pressure related changes of the air void...

  11. Prediction of pool void fraction by new drift flux correlation

    International Nuclear Information System (INIS)

    Kataoka, I.; Ishii, M.

    1986-06-01

    A void fraction for a bubbling or boiling pool system is one of the important parameters in analyzing heat and mass transfer processes. Using the drift flux formulation, correlations for the pool void fraction have been developed in collaboration with a large number of experimental data. It has been found that the drift velocity in a pool system depends upon vessel diameter, system pressure, gas flux and fluid physical properties. The results show that the relative velocity and void fraction can be quite different from those predicted by conventional correlations. In terms of the rise velocity, four different regimes are identified. These are bubbly, churn-turbulent, slug and cap bubble regimes. The present correlations are shown to agree with the experimental data over wide ranges of parameters such as vessel diameter, system pressure, gas flux and physical properties. 39 refs., 41 figs

  12. Nucleation from a cluster of inclusions, leading to void coalescense

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2017-01-01

    A cell model analysis is used to study the nucleation and subsequent growth of voids from a non-uniform distribution of inclusions in a ductile material. Nucleation is modeled as either stress controlled or strain controlled. The special clusters considered consist of a number of uniformly spaced...... inclusions located along a plane perpendicular to the maximum principal tensile stress. A plane strain approximation is used, where the inclusions are parallel cylinders perpendicular to the plane. Clusters with different numbers of inclusions are compared with the nucleation and growth from a single...... inclusion, such that the total initial volume of the inclusions is the same for the clusters and the single inclusion. After nucleation, local void coalescence inside the clusters is accounted for, since this makes it possible to compare the rate of growth of the single larger void that results from...

  13. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yanqing [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0340 (United States); Xu, Shuozhi, E-mail: shuozhixu@gatech.edu [GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2016-12-15

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  14. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    International Nuclear Information System (INIS)

    Su, Yanqing; Xu, Shuozhi

    2016-01-01

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  15. Modeling and Simulation of Voids in Composite Tape Winding Process Based on Domain Superposition Technique

    Science.gov (United States)

    Deng, Bo; Shi, Yaoyao

    2017-11-01

    The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.

  16. Effect of Contact Conditions on Void Coalescence at Low Stress Triaxiality Shearing

    DEFF Research Database (Denmark)

    Dahl, Jonas; Nielsen, Kim Lau; Tvergaard, Viggo

    2012-01-01

    , the deformed voids develop into shapes that closely resemble micro-cracks. It is found that the predictions using the frictionless pseudo-contact approach are in rather good agreement with corresponding simulations that fully account for frictionless contact. In particular, good agreement is found at close...... to zero stress triaxiality. Furthermore, it is shown that accounting for friction at the void surface strongly postpones the onset of coalescence, hence, increasing the overall material ductility. The changes in overall material behavior are here presented for a wide range of initial material and loading...... conditions, such as various stress triaxialities, void sizes, and friction coefficients....

  17. Electromagnetic wave survey on voids behind waterway channel lining; Suiro kaikyo sokuheki haimen kudo no denjiha tansa

    Energy Technology Data Exchange (ETDEWEB)

    Koitabashi, H [Tokyo Electric Power Co. Inc., Tokyo (Japan); Inagaki, M

    1996-10-01

    Voids behind lining were surveyed by applying electromagnetic wave reflection method to the waterway channel of a hydraulic power plant. Since waterway channel lining is ranged from oblique to vertical direction, voids are hardly formed. However, formation of voids or cavities behind lining is supposed such as voids between ground and lining due to change with time or consolidation settlement, and voids due to soil loss. Electromagnetic radar reflection suggesting continuous void was observed behind terrace concrete lining. As the result of core boring, thin continuous void of 2-5cm thick and more than 100m long was found. This was possibly formed by consolidation settlement for a long time. In some sites, continuous void signal was observed at the upper part of side walls although this signal was smaller than that at the upper part of a terrace. This continuous cavity of 10-20cm thick and 20m long was different from voids, and unevenly distributed at the upper part of an open channel along flowing surface with large flow rate. In addition, it is necessary to clarify the relation to cracks. 2 refs., 4 figs.

  18. Irradiation-induced void evolution in iron: A phase-field approach with atomistic derived parameters

    International Nuclear Information System (INIS)

    Wang Yuan-Yuan; Ding Jian-Hua; Huang Shao-Song; Zhao Ji-Jun; Liu Wen-Bo; Ke Xiao-Qin; Wang Yun-Zhi; Zhang Chi

    2017-01-01

    A series of material parameters are derived from atomistic simulations and implemented into a phase field (PF) model to simulate void evolution in body-centered cubic (bcc) iron subjected to different irradiation doses at different temperatures. The simulation results show good agreement with experimental observations — the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial. (paper)

  19. Void fraction prediction of NUPEC PSBT tests by CATHARE code

    International Nuclear Information System (INIS)

    Del Nevo, A.; Michelotti, L.; Moretti, F.; Rozzia, D.; D'Auria, F.

    2011-01-01

    The current generation of thermal-hydraulic system codes benefits of about sixty years of experiments and forty years of development and are considered mature tools to provide best estimate description of phenomena and detailed reactor system representations. However, there are continuous needs for checking the code capabilities in representing nuclear system, for drawing attention to their weak points, for identifying models which need to be refined for best-estimate calculations. Prediction of void fraction and Departure from Nucleate Boiling (DNB) in system thermal-hydraulics is currently based on empirical approaches. The database carried out by Nuclear Power Engineering Corporation (NUPEC), Japan addresses these issues. It is suitable for supporting the development of new computational tools based on more mechanistic approaches (i.e. three-field codes, two-phase CFD, etc.) as well as for validating current generation of thermal-hydraulic system codes. Selected experiments belonging to this database are used for the OECD/NRC PSBT benchmark. The paper reviews the activity carried out by CATHARE2 code on the basis of the subchannel (four test sections) and presents rod bundle (different axial power profile and test sections) experiments available in the database in steady state and transient conditions. The results demonstrate the accuracy of the code in predicting the void fraction in different thermal-hydraulic conditions. The tests are performed varying the pressure, coolant temperature, mass flow and power. Sensitivity analyses are carried out addressing nodalization effect and the influence of the initial and boundary conditions of the tests. (author)

  20. Nebular metallicities in two isolated local void dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Nicholls, David C.; Jerjen, Helmut; Dopita, Michael A. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd., Weston ACT 2611 (Australia); Basurah, Hassan, E-mail: David.Nicholls@anu.edu.au [Astronomy Department, King Abdulaziz University, P.O. Box 80203, Jeddah (Saudi Arabia)

    2014-01-01

    Isolated dwarf galaxies, especially those situated in voids, may provide insight into primordial conditions in the universe and the physical processes that govern star formation in undisturbed stellar systems. The metallicity of H II regions in such galaxies is key to investigating this possibility. From the SIGRID sample of isolated dwarf galaxies, we have identified two exceptionally isolated objects, the Local Void galaxy [KK98]246 (ESO 461-G036) and another somewhat larger dwarf irregular on the edge of the Local Void, MCG-01-41-006 (HIPASS J1609-04). We report our measurements of the nebular metallicities in these objects. The first object has a single low luminosity H II region, while the second is in a more vigorous star forming phase with several bright H II regions. We find that the metallicities in both galaxies are typical for galaxies of this size, and do not indicate the presence of any primordial gas, despite (for [KK98]246) the known surrounding large reservoir of neutral hydrogen.

  1. Nebular Metallicities in Two Isolated Local Void Dwarf Galaxies

    Science.gov (United States)

    Nicholls, David C.; Jerjen, Helmut; Dopita, Michael A.; Basurah, Hassan

    2014-01-01

    Isolated dwarf galaxies, especially those situated in voids, may provide insight into primordial conditions in the universe and the physical processes that govern star formation in undisturbed stellar systems. The metallicity of H II regions in such galaxies is key to investigating this possibility. From the SIGRID sample of isolated dwarf galaxies, we have identified two exceptionally isolated objects, the Local Void galaxy [KK98]246 (ESO 461-G036) and another somewhat larger dwarf irregular on the edge of the Local Void, MCG-01-41-006 (HIPASS J1609-04). We report our measurements of the nebular metallicities in these objects. The first object has a single low luminosity H II region, while the second is in a more vigorous star forming phase with several bright H II regions. We find that the metallicities in both galaxies are typical for galaxies of this size, and do not indicate the presence of any primordial gas, despite (for [KK98]246) the known surrounding large reservoir of neutral hydrogen.

  2. Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling

    Energy Technology Data Exchange (ETDEWEB)

    Neustroev, V.S. [FSUE ' SSC RF Research Institute of Atomic Reactors' , Dimitrovgrad (Russian Federation)], E-mail: neustroev@niiar.ru; Garner, F.A. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2009-04-30

    Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components and introducing limitations on low temperature handling especially. It is shown that the degradation is actually a form of quasi-embrittlement arising from intense flow localization with high levels of localized ductility involving micropore coalescence and void-to-void cracking. Voids initially serve as hardening components whose effect is overwhelmed by the void-induced reduction in shear and Young's moduli at high swelling levels. Thus the alloy appears to soften even as the ductility plunges toward zero on a macroscopic level although a large amount of deformation occurs microscopically at the failure site. Thus the failure is better characterized as 'quasi-embrittlement' which is a suppression of uniform deformation. This case should be differentiated from that of real embrittlement which involves the complete suppression of the material's capability for plastic deformation.

  3. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier in...

  4. Modification of redshift and luminosity by voids in the expanding universe

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Humitaka

    1985-03-01

    Propagation of light in a clumpy universe is examined for redshift and luminosity. Taking a spherical void model and Swiss Chesse model, the modification is found to be the third order of (Hrsub(b)/c) for the redshift and the first order of it for the luminosity, rsub(b) being the radius of a void or a Swiss Cheese hole.

  5. Design comparisons of TRU burner cores with similar sodium void worth

    International Nuclear Information System (INIS)

    Sang Ji, Kim; Young Il, Kim; Young Jin, Kim; Nam Zin, Cho

    2001-01-01

    This study summarizes the neutronic performance and fuel cycle behavior of five geometrically-different transuranic (TRU) burner cores with similar low sodium void reactivity. The conceptual cores encompass core geometries for annular, two-region homogeneous, dual pin type, pan-shaped and H-shaped cores. They have been designed with the same assembly specifications and managed to have similar end-of-cycle sodium void reactivities and beginning-of-cycle peak power densities through the changes in the core size and configuration. The requirement of low sodium void reactivity is shown to lead each design concept to characteristic neutronics performance and fuel cycle behavior. The H-/pan-shaped cores allow the core compaction as well as higher rate of TRU burning. (author)

  6. Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects

    KAUST Repository

    Mora Cordova, Angel; Liu, Jinxing; El Sayed, Tamer S.

    2014-01-01

    In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood

  7. Noninvasive Medical Tools for Evaluating Voiding Pattern in Real Life

    Directory of Open Access Journals (Sweden)

    Kwonsoo Chun

    2017-04-01

    Full Text Available Voiding dysfunction is a common disease that contributes to a lower quality of life and has an increased prevalence in the elderly population. Noninvasive and objective methods such as uroflowmetry (UFM and voiding diaries (VDs are essential for exact diagnosis and effective treatment of this condition because patients with different causes of voiding dysfunction can complain of the same lower urinary tract symptoms. Further, different treatment options can be determined based on the diagnosis made from these symptoms. In order to improve the quality of UFM and VDs and to provide a convenient testing environment, several advances have been made by previous investigators. In this study, we investigate the history and technological mechanisms of UFM and VDs. We also aim to review UFM from the viewpoint of clinical and at-home uses, including the recently proposed toilet-shaped UFM and electronic VDs.

  8. Analysis of stress-strain relationship in materials containing voids by means of plastic finite element method

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Tabuchi, Masaaki

    2000-01-01

    Applying the finite element method in two dimensions, an analysis is performed to derive the stress-strain relationship of material containing voids in matrix, and which is subjected to large deformation. The conditions assumed for the analysis are applicability of continuum body mechanics, Mises yield criterion, J2 flow theory, power work-hardening, plane stress in two-dimensional system and uniform cyclically recurring void distribution. Taking as example a case of material presenting 0.3 work-hardening, it is indicated from the analysis that: With voids arrayed in square lattice, total elongation would be little affected by change in void size; With a void spacing in lattice of 10 μ m, a uniform elongation 12-14% should be obtained in a wide range of void sizes from 0.01 to 8.0 μm; Tensile strength should start to lower at a void areal fraction of around 1%; A sharply lowered uniform elongation of a level far below 1% should be presented by material of low work-hardening exponent. The severe decline of ductility seen with 316 stainless steel upon neutron irradiation at temperatures around 600 K is interpreted as resulting from a combination of low work-hardening and the presence of voids in matrix. (author)

  9. Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the 134Cs/137Cs ratio method

    International Nuclear Information System (INIS)

    Endo, T.; Sato, S.; Yamamoto, A.

    2012-01-01

    Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the 134 Cs/ 137 Cs ratio method for measured radioactivities of 134 Cs and 137 Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured 134 Cs/ 137 Cs ratio from the contaminated soil is 0.996±0.07 as of March 11, 2011. Based on the 134 Cs/ 137 Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2±1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost the same evaluation values of 134 Cs/ 137 Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on 134 Cs/ 137 Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)

  10. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2016-01-01

    Molecular dynamics simulation was performed to investigate dislocation mechanism of void growth at twin boundary (TB) of nanotwinned nickel. Simulation results show that the deformation of nanotwinned nickel containing a void at TB is dominated by the slip involving both leading and trailing partials, where the trailing partials are the dissociation products of stair-rod dislocations formed by the leading partials. The growth of a void at TB is attributed to the successive emission of the leading partials followed by trailing partials as well as the escape of these partial dislocations from the void surface. - Highlights: • Dislocation mechanism of void growth at TB of nanotwinned nickel is investigated. • Deformation of the nanotwinned nickel is dominated by leading and trailing partials. • Growth of void at TB is caused by successive emission and escape of these partials.

  11. 40 CFR 1065.525 - Engine starting, restarting, shutdown, and optional repeating of void discrete modes.

    Science.gov (United States)

    2010-07-01

    ..., and optional repeating of void discrete modes. 1065.525 Section 1065.525 Protection of Environment... repeating of void discrete modes. (a) Start the engine using one of the following methods: (1) Start the... during one of the modes of a discrete-mode test, you may void the results only for that individual mode...

  12. JNC results of BFS-62-3A benchmark calculation (CRP: Phase 5)

    International Nuclear Information System (INIS)

    Ishikawa, M.

    2004-01-01

    The present work is the results of JNC, Japan, for the Phase 5 of IAEA CRP benchmark problem (BFS-62-3A critical experiment). Analytical Method of JNC is based on Nuclear Data Library JENDL-3.2; Group Constant Set JFS-3-J3.2R: 70-group, ABBN-type self-shielding factor table based on JENDL-3.2; Effective Cross-section - Current-weighted multigroup transport cross-section. Cell model for the BFS as-built tube and pellets was (Case 1) Homogeneous Model based on IPPE definition; (Case 2) Homogeneous atomic density equivalent to JNC's heterogeneous calculation only to cross-check the adjusted correction factors; (Case 3) Heterogeneous model based on JNC's evaluation, One-dimensional plate-stretch model with Tone's background cross-section method (CASUP code). Basic diffusion Calculation was done in 18-groups and three-dimensional Hex-Z model (by the CITATION code), with Isotropic diffusion coefficients (Case 1 and 2), and Benoist's anisotropic diffusion coefficients (Case 3). For sodium void reactivity, the exact perturbation theory was applied both to basic calculation and correction calculations, ultra-fine energy group correction - approx. 100,000 group constants below 50 keV, and ABBN-type 175 group constants with shielding factors above 50 keV. Transport theory and mesh size correction 18-group, was used for three-dimensional Hex-Z model (the MINIHEX code based on the S4-P0 transport method, which was developed by JNC. Effective delayed Neutron fraction in the reactivity scale was fixed at 0.00623 by IPPE evaluation. Analytical Results of criticality values and sodium void reactivity coefficient obtained by JNC are presented. JNC made a cross-check of the homogeneous model and the adjusted correction factors submitted by IPPE, and confirmed they are consistent. JNC standard system showed quite satisfactory analytical results for the criticality and the sodium void reactivity of BFS-62-3A experiment. JNC calculated the cross-section sensitivity coefficients of BFS

  13. Influence investigation of a void region on modeling light propagation in a heterogeneous medium.

    Science.gov (United States)

    Yang, Defu; Chen, Xueli; Ren, Shenghan; Qu, Xiaochao; Tian, Jie; Liang, Jimin

    2013-01-20

    A void region exists in some biological tissues, and previous studies have shown that inaccurate images would be obtained if it were not processed. A hybrid radiosity-diffusion method (HRDM) that couples the radiosity theory and the diffusion equation has been proposed to deal with the void problem and has been well demonstrated in two-dimensional and three-dimensional (3D) simple models. However, the extent of the impact of the void region on the accuracy of modeling light propagation has not been investigated. In this paper, we first implemented and verified the HRDM in 3D models, including both the regular geometries and a digital mouse model, and then investigated the influences of the void region on modeling light propagation in a heterogeneous medium. Our investigation results show that the influence of the region can be neglected when the size of the void is less than a certain range, and other cases must be taken into account.

  14. Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive

    Energy Technology Data Exchange (ETDEWEB)

    Herring, Stuart Davis [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Jensen, Niels G [Los Alamos National Laboratory

    2010-01-01

    The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in a micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.

  15. The Effect of Void Shape on the Mechanical Properties of Rock

    International Nuclear Information System (INIS)

    D.O. Potyondy

    2006-01-01

    The bonded-particle model for rock (Potyondy and Cundall, 2004) represents rock by a dense packing of non-uniform-sized circular or spherical particles that are bonded together at their contact points and whose mechanical behavior is simulated by the distinct-element method using the two- and three-dimensional programs PFC2D and PFC3D. A bonded-particle model of lithophysal tuff has been used to study the effect of lithophysae (hollow, bubble-like voids) on the mechanical properties (Young's modulus and unconfined compressive strength) of this rock, and to quantify the variability of these properties. The model reproduces the failure mechanisms observed in the laboratory and exhibits a reduction of strength and modulus with increasing lithophysal volume fraction. The effect of void shape on mechanical properties is studied by inserting randomly distributed voids of simple shape (circle, triangle and star) and by inserting voids corresponding with lithophysal cavities identified in panel maps of the walls of a tunnel through this material. These studies address tunnel-stability issues associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed US high-level nuclear waste repository

  16. The difference between alternative averages

    Directory of Open Access Journals (Sweden)

    James Vaupel

    2012-09-01

    Full Text Available BACKGROUND Demographers have long been interested in how compositional change, e.g., change in age structure, affects population averages. OBJECTIVE We want to deepen understanding of how compositional change affects population averages. RESULTS The difference between two averages of a variable, calculated using alternative weighting functions, equals the covariance between the variable and the ratio of the weighting functions, divided by the average of the ratio. We compare weighted and unweighted averages and also provide examples of use of the relationship in analyses of fertility and mortality. COMMENTS Other uses of covariances in formal demography are worth exploring.

  17. Effects contributing to positive coolant void reactivity in CANDU

    International Nuclear Information System (INIS)

    Whitlock, J.J.; Garland, W.J.; Milgram, M.S.

    1995-01-01

    The lattice cell code WIMS-AECL (Ref. 3) is used to model a typical CANDU lattice cell, using nominal geometric bucklings, the PIJ option, and 69-group Winfrith library. The effect of cell voiding is modeled as a 100% instantaneous removal of coolant from the lattice. This is conservative because of the neglect of time dependence and partial core voiding, considered more plausible in CANDU. Results are grouped into three spectral groups: fast neutrons (0.821 to 10 MeV), epithermal neutrons (0.625 eV to 0.821 MeV), and thermal neutrons (<0.625 eV)

  18. Beta-energy averaging and beta spectra

    International Nuclear Information System (INIS)

    Stamatelatos, M.G.; England, T.R.

    1976-07-01

    A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality

  19. Analysis of sodium-void experiments in ZPPR-3 modified Phase 3 core

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.

    1978-08-01

    An analysis is presented of a series of sodium-void reactivity measurements performed in assembly 3 of Zero Power Plutonium Reactor (ZPPR-3), a mockup of the US Demoplant. In this series, large-zone sodium-void effects were studied in detail in the presence of many singularities, namely, control rods (CRs) and control rod positions (CRPs). The Karlsruhe data-and-method have been applied to an analysis of these experiments, and the results are presented. The work is aimed at complementing the sodium-void reactivity analysis based on the SNEAK experiments, where it was difficult to simulate a large plutonium-core of a prototype fast breeder reactor.

  20. Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects

    KAUST Repository

    Mora Cordova, Angel

    2014-07-01

    In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood to be the most important factor that controls the initiation of ductile fracture. We include sensitivity of stress triaxiality in a variational porous plasticity model, which was originally derived from hydrostatic expansion. Under loading conditions rather than hydrostatic deformation, we allow the critical pressure for voids to be exceeded so that the growth due to plasticity becomes dependent on the stress triaxiality. The limitations of the spherical void growth assumption are investigated. Our improved constitutive model is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is also indicated by a numerical simulation of a compact tensile (CT) test. © 2013 Elsevier Inc.