WorldWideScience

Sample records for calcium-sensing receptor gene

  1. Polymorphisms in the calcium-sensing receptor gene are associated with clinical outcome of neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Laia Masvidal

    Full Text Available BACKGROUND: Neuroblastic tumors include the neuroblastomas, ganglioneuroblastomas, and ganglioneuromas. Clinical behavior of these developmental malignancies varies from regression to aggressive growth with metastatic dissemination. Several clinical, histological, genetic, and biological features are associated with this diversity of clinical presentations. The calcium-sensing receptor (CaSR is a G-protein coupled receptor with a key role in calcium homeostasis. We have previously reported that it is expressed in benign, differentiated neuroblastic tumors, but silenced by genetic and epigenetic events in unfavorable neuroblastomas. We have now analyzed three functionally relevant polymorphisms clustered at the signal transduction region of the CaSR (rs1801725, rs1042636 and rs1801726 to assess if genetic variants producing a less active receptor are associated with more aggressive disease course. METHODS: Polymorphisms were analyzed in DNA samples from 65 patients using specific Taqman Genotyping Assays. RESULTS: Mildly inactivating variant rs1801725 was associated with clinical stage 4 (P = 0.002 and the histological subgroup of undifferentiated neuroblastomas (P = 0.046. Patients harboring this polymorphism had significantly lower overall (P = 0.022 and event-free survival (P = 0.01 rates than those who were homozygous for the most common allele among Caucasians. However, this single locus genotype was not independently associated with outcome in multivariate analyses. Conversely, the tri-locus haplotype TAC was independently associated with an increased risk of death in the entire cohort (Hazard Ratio = 2.45; 95% Confidence Interval [1.14-5.29]; P = 0.022 and also in patients diagnosed with neuroblastomas (Hazard Ratio = 2.74; 95% Confidence Interval [1.20-6.25]; P = 0.016. CONCLUSIONS: The TAC haplotype includes the moderately inactivating variant rs1801725 and absence of the gain-of-function rs1042636

  2. A novel mutation in the calcium-sensing receptor gene in an Irish pedigree showing familial hypocalciuric hypercalcemia: a case report.

    LENUS (Irish Health Repository)

    Elamin, Wael F

    2010-01-01

    Familial hypocalciuric hypercalcemia is a rare autosomal dominant disorder characterized by asymptomatic and non-progressive hypercalcemia due to mutations of the calcium-sensing receptor gene. Disorders of calcium metabolism are very common in the elderly, and they can coexist with familial hypocalciuric hypercalcemia in affected families.

  3. Familial hypocalciuric hypercalcemia and calcium sensing receptor

    DEFF Research Database (Denmark)

    Mrgan, Monija; Nielsen, Sanne; Brixen, Kim

    2014-01-01

    Familial hypocalciuric hypercalcemia (FHH) is a lifelong, benign autosomal dominant disease characterized by hypercalcemia, normal to increased parathyroid hormone level, and a relatively low renal calcium excretion. Inactivation of the calcium-sensing receptor in heterozygous patients results in...... FHH, while in homozygous patients as well as in compound heterozygous or dominant negative heterozygous patients, it may result in neonatal severe hyperparathyroidism (NSHPT). Parathyroid surgery is not indicated in FHH and does not lower plasma calcium unless total parathyroidectomy is performed, in...

  4. Genome-wide meta-analysis for serum calcium identifies significantly associated SNPs near the calcium-sensing receptor (CASR gene.

    Directory of Open Access Journals (Sweden)

    Karen Kapur

    2010-07-01

    Full Text Available Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR gene on 3q13. The top hit with a p-value of 6.3 x 10(-37 is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1 x 10(-21, a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02 x 10(-4. This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation.

  5. A genetic polymorphism (rs17251221 in the calcium-sensing receptor gene (CASR is associated with stone multiplicity in calcium nephrolithiasis.

    Directory of Open Access Journals (Sweden)

    Yii-Her Chou

    Full Text Available Calcium nephrolithiasis is one of the most common causes of renal stones. While the prevalence of this disease has increased steadily over the last 3 decades, its pathogenesis is still unclear. Previous studies have indicated that a genetic polymorphism (rs17251221 in the calcium-sensing receptor gene (CASR is associated with the total serum calcium levels. In this study, we collected DNA samples from 480 Taiwanese subjects (189 calcium nephrolithiasis patients and 291 controls for genotyping the CASR gene. Our results indicated no significant association between the CASR polymorphism (rs17251221 and the susceptibility of calcium nephrolithiasis. However, we found a significant association between rs17251221 and stone multiplicity. The risk of stone multiplicity was higher in patients with the GG+GA genotype than in those with the AA genotype (chi-square test: P = 0.008; odds ratio  =  4.79; 95% confidence interval, 1.44-15.92; Yates' correction for chi-square test: P = 0.013. In conclusion, our results provide evidence supporting the genetic effects of CASR on the pathogenesis of calcium nephrolithiasis.

  6. New concepts in calcium-sensing receptor pharmacology and signalling

    OpenAIRE

    Ward, Donald T.; Riccardi, Daniela

    2012-01-01

    The calcium-sensing receptor (CaR) is the key controller of extracellular calcium (Ca2+o) homeostasis via its regulation of parathyroid hormone (PTH) secretion and renal Ca2+ reabsorption. The CaR-selective calcimimetic drug Cinacalcet stimulates the CaR to suppress PTH secretion in chronic kidney disease and represents the world's first clinically available receptor positive allosteric modulator (PAM). Negative CaR allosteric modulators (NAMs), known as calcilytics, can increase PTH secretio...

  7. Association of Calcium-Sensing Receptor (CASR rs 1801725 with Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Fateme Rostami

    2012-07-01

    Full Text Available Background: Calcium induces apoptosis in intestinal epithelial cells and subsequently prevents colorectal cancer through ion calcium receptor. Calcium-sensing receptor mutation reduces the expression of this receptor, and subsequently in reduces calcium transportation. Many studies have shown that Calcium-sensing receptor gene polymorphism may increase the risk of colorectal cancer. The purpose of this study is to assess the prevalence of calcium-sensing receptor polymorphisms (rs 1801725 in Iran society and to examine the role of this polymorphism in the increased risk of colorectal cancer (CRC.Materials and Methods: The research was a case-control study. 105 patients with colorectal cancer and 105 controls were randomly studied using polymerase chain reaction and restriction fragment length polymorphism. χ2 test and software 16- SPSS were used for statistical analysis.Results: In patient samples, the frequency of the genotypes TT, GT, GG in gene CASR rs 1801725 was respectively 64.8, 32.4, and 2.9 and the frequency of this polymorphism in control samples was respectively 51.2, 45.7, and 2.9. Frequency of allele G in patient samples was 0/48 and frequency of allele T was 0.25. In addition, Frequency of allele G in control samples was 0.74 and Frequency of allele T was calculated 0.19.Conclusion: The results show that calcium-sensing receptor variant (1801725 rs is not associated with increased risk of colorectal cancer.

  8. Calcium-sensing receptor activation depresses synaptic transmission

    OpenAIRE

    Phillips, Cecilia G.; Harnett, Mark T.; Chen, Wenyan; Smith, Stephen M.

    2008-01-01

    At excitatory synapses, decreases in cleft [Ca] arising from activity-dependent transmembrane Ca flux reduce the probability of subsequent transmitter release. Intense neural activity, induced by physiological and pathological stimuli, disturb the external microenvironment reducing extracellular [Ca] ([Ca]o) and thus may impair neurotransmission. Increases in [Ca]o activate the extracellular calcium sensing receptor (CaSR) which in turn inhibits non-selective cation channels (NSCC) at the maj...

  9. Biased agonism of the calcium-sensing receptor

    DEFF Research Database (Denmark)

    Thomsen, Alex Rojas Bie; Hvidtfeldt, Maja; Bräuner-Osborne, Hans

    2012-01-01

    calcium-sensing receptor (CaSR), by looking at 12 well-known orthosteric CaSR agonists in 3 different CaSR signaling pathways: G(q/11) protein, G(i/o) protein, and extracellular signal-regulated kinases 1 and 2 (ERK1/2). Here we show that apart from G(q/11) and G(i/o) signaling, ERK1/2 is activated...

  10. The Calcium-Sensing Receptor in the Breast

    OpenAIRE

    VanHouten, Joshua N.; Wysolmerski, John J

    2013-01-01

    Normal breast epithelial cells and breast cancer cells express the calcium-sensing receptor (CaSR), the master regulator of systemic calcium metabolism. During lactation, activation of the CaSR in mammary epithelial cells downregulates PTHrP levels in milk and in the circulation, and increases calcium transport into milk. In contrast, in breast cancer cells the CaSR upregulates PTHrP production. A switch in G-protein usage underlies the opposing effects of the CaSR on PTHrP expression in norm...

  11. The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone

    OpenAIRE

    Kos, Claudine H; Karaplis, Andrew C.; Peng, Ji-Bin; Hediger, Matthias A; Goltzman, David; Mohammad, Khalid S.; Guise, Theresa A.; Pollak, Martin R.

    2003-01-01

    The extracellular calcium-sensing receptor (CaR; alternate gene names, CaR or Casr) is a membrane-spanning G protein–coupled receptor. CaR is highly expressed in the parathyroid gland, and is activated by extracellular calcium (Ca2+o). Mice homozygous for null mutations in the CaR gene (CaR–/–) die shortly after birth because of the effects of severe hyperparathyroidism and hypercalcemia. A wide variety of functions have been attributed to CaR. However, the lethal CaR-deficient phenotype has ...

  12. The Intron 4 Polymorphism in the Calcium-Sensing Receptor Gene in Diabetes Mellitus and its Chronic Complications, Diabetic Nephropathy and Non-Diabetic Renal Disease

    Directory of Open Access Journals (Sweden)

    Viera Železníková

    2014-10-01

    Full Text Available Background/Aims: Calcium-Sensing Receptor (CaSR significantly affects calcium-phosphate metabolism in kidneys, and it is implicated in the pathogenesis of diabetes mellitus (DM due to its expression in pancreatic F-cells. The role of CaSR as one of the players in pathogenesis of chronic kidney disease (CKD has been speculated. Methods: 158 Type 2 diabetic patients divided into three groups according to occurrence and type of kidney complications, 66 nondiabetic patients CKD, and 93 healthy subjects were enrolled into the study to analyze the role of two CaSR polymorphisms (in the codon 990 and in the intron 4 in ethiopathogenesis of DM and CKD. The Type 2 diabetic groups consisted of 48 patients without any kidney abnormalities, 58 patients with diabetic nephropathy (DN, and 52 patients with nondiabetic renal disease (NDRD. The distribution of genotype and allele frequencies was studied using PCR with the TaqMan Discrimination Assay or followed by the Restriction Fragment Length Polymorphism method, respectively. Results: We have found that the intron 4 polymorphism is a risk factor for the development of DM and CKD, except DN, while the codon 990 does not show any disease association. Conclusion: We conclude that CaSR is a general factor in pancreas and kidney pathologies. i 2014 S. Karger AG, Basel

  13. Interaction of CPCCOEt with a chimeric mGlu1b and calcium sensing receptor

    DEFF Research Database (Denmark)

    Bräuner-Osborne, H; Jensen, Anders A.; Krogsgaard-Larsen, P

    1999-01-01

    7-Hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt) has previously been shown to be a selective non-competitive antagonist at the metabotropic glutamate (mGlu) receptor subtype 1. In this study we have tested the effect of CPCCOEt on mGlu1b, the calcium sensing receptor (...

  14. Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells

    OpenAIRE

    Yutaka Maruyama; Reiko Yasuda; Motonaka Kuroda; Yuzuru Eto

    2012-01-01

    Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi su...

  15. Regulation of Differentiation by Calcium-Sensing Receptor in Normal and Tumoral Developing Nervous System

    Science.gov (United States)

    Mateo-Lozano, Silvia; García, Marta; Rodríguez-Hernández, Carlos J.; de Torres, Carmen

    2016-01-01

    During normal development of the nervous system (NS), neural progenitor cells (NPCs) produce specialized populations of neurons and glial cells upon cell fate restriction and terminal differentiation. These sequential processes require the dynamic regulation of thousands of genes. The calcium-sensing receptor (CaSR) is temporally and spatially regulated in both neurons and glial cells during development of the NS. In particular, CaSR expression and function have been shown to play a significant role during differentiation of NPCs toward the oligodendrocyte lineage and also in maturation of cerebellar granule cell precursors (GCPs). Moreover, CaSR regulates axonal and dendritic growth in both central and peripheral nervous systems (PNSs), a process necessary for proper construction of mature neuronal networks. On the other hand, several lines of evidence support a role for CaSR in promotion of cell differentiation and inhibition of proliferation in neuroblastoma, a tumor arising from precursor cells of developing PNS. Thus, among the variety of NS functions in which the CaSR participates, this mini-review focuses on its role in differentiation of normal and tumoral cells. Current knowledge of the mechanisms responsible for CaSR regulation and function in these contexts is also discussed, together with the therapeutic opportunities provided by CaSR allosteric modulators.

  16. Involvement of the Calcium-sensing Receptor in Human Taste Perception

    OpenAIRE

    Ohsu, Takeaki; Amino, Yusuke; Nagasaki, Hiroaki; Yamanaka, Tomohiko; Takeshita, Sen; Hatanaka, Toshihiro; MARUYAMA, Yutaka; Miyamura, Naohiro; Eto, Yuzuru

    2009-01-01

    By human sensory analyses, we found that various extracellular calcium-sensing receptor (CaSR) agonists enhance sweet, salty, and umami tastes, although they have no taste themselves. These characteristics are known as “kokumi taste” and often appear in traditional Japanese cuisine. Although GSH is a typical kokumi taste substance (taste enhancer), its mode of action is poorly understood. Here, we demonstrate how the kokumi taste is enhanced by the CaSR, a close relative of the class C G-prot...

  17. Diverse roles of extracellular calcium-sensing receptor in the central nervous system

    DEFF Research Database (Denmark)

    Bandyopadhyay, Sanghamitra; Tfelt-Hansen, Jacob; Chattopadhyay, Naibedya

    2010-01-01

    The G-protein-coupled calcium-sensing receptor (CaSR), upon activation by Ca(2+) or other physiologically relevant polycationic molecules, performs diverse functions in the brain. The CaSR is widely expressed in the central nervous system (CNS) and is characterized by a robust increase in its...... cell surface expression, activation, signaling, and functions. In normal physiology as well as in pathologic conditions, CaSR is activated by signals arising from mineral ions, amino acids, polyamines, glutathione, and amyloid-beta in conjunction with Ca(2+) and other divalent cationic ligands. Ca...

  18. Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension.

    Science.gov (United States)

    Tang, Haiyang; Yamamura, Aya; Yamamura, Hisao; Song, Shanshan; Fraidenburg, Dustin R; Chen, Jiwang; Gu, Yali; Pohl, Nicole M; Zhou, Tong; Jiménez-Pérez, Laura; Ayon, Ramon J; Desai, Ankit A; Goltzman, David; Rischard, Franz; Khalpey, Zain; Black, Stephan M; Garcia, Joe G N; Makino, Ayako; Yuan, Jason X J

    2016-05-01

    An increase in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and a critical stimulation for PASMC proliferation and migration. Previously, we demonstrated that expression and function of calcium sensing receptors (CaSR) in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH) and animals with experimental pulmonary hypertension (PH) were greater than in PASMC from normal subjects and control animals. However, the mechanisms by which CaSR triggers Ca(2+) influx in PASMC and the implication of CaSR in the development of PH remain elusive. Here, we report that CaSR functionally interacts with TRPC6 to regulate [Ca(2+)]cyt in PASMC. Downregulation of CaSR or TRPC6 with siRNA inhibited Ca(2+)-induced [Ca(2+)]cyt increase in IPAH-PASMC (in which CaSR is upregulated), whereas overexpression of CaSR or TRPC6 enhanced Ca(2+)-induced [Ca(2+)]cyt increase in normal PASMC (in which CaSR expression level is low). The upregulated CaSR in IPAH-PASMC was also associated with enhanced Akt phosphorylation, whereas blockade of CaSR in IPAH-PASMC attenuated cell proliferation. In in vivo experiments, deletion of the CaSR gene in mice (casr(-/-)) significantly inhibited the development and progression of experimental PH and markedly attenuated acute hypoxia-induced pulmonary vasoconstriction. These data indicate that functional interaction of upregulated CaSR and upregulated TRPC6 in PASMC from IPAH patients and animals with experimental PH may play an important role in the development and progression of sustained pulmonary vasoconstriction and pulmonary vascular remodeling. Blockade or downregulation of CaSR and/or TRPC6 with siRNA or miRNA may be a novel therapeutic strategy to develop new drugs for patients with pulmonary arterial hypertension. PMID:26968768

  19. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora; Quandt, Dagmar; Meusch, Undine; Rothe, Kathrin; Schubert, Kristin; Schöneberg, Torsten; Schaefer, Michael; Krügel, Ute; Smajilovic, Sanela; Bräuner-Osborne, Hans; Baerwald, Christoph; Wagner, Ulf

    2012-01-01

    calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration...... this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  20. The calcium-sensing receptor and calcimimetics in blood pressure modulation

    DEFF Research Database (Denmark)

    Smajilovic, Sanela; Yano, Shozo; Jabbari, Reza;

    2011-01-01

    Calcium is a crucial second messenger in the cardiovascular system. However, calcium may also be an extracellular first messenger through a G-protein-coupled receptor that senses extracellular concentration (Ca(2+)(o)), the calcium-sensing receptor (CaR). The most prominent physiological function...... vascular tone. This review will summarize the current knowledge on the possible functions of the CaR and calcimimetics on blood pressure regulation....... associated with hyperparathyroidism. Although a plethora of studies demonstrated the CaR in heart and blood vessels, exact roles of the receptor in the cardiovascular system still remain to be elucidated. However, several studies point toward a possibility that the CaR might be involved in the regulation of...

  1. Calcium-Sensing Receptors of Human Neural Cells Play Crucial Roles in Alzheimer's Disease

    Science.gov (United States)

    Chiarini, Anna; Armato, Ubaldo; Liu, Daisong; Dal Prà, Ilaria

    2016-01-01

    In aged subjects, late-onset Alzheimer's disease (LOAD) starts in the lateral entorhinal allocortex where a failure of clearance mechanisms triggers an accumulation of neurotoxic amyloid-β42 oligomers (Aβ42-os). In neurons and astrocytes, Aβ42-os enhance the transcription of Aβ precursor protein (APP) and β-secretase/BACE1 genes. Thus, by acting together with γ-secretase, the surpluses of APP and BACE1 amplify the endogenous production of Aβ42-os which pile up, damage mitochondria, and are oversecreted. At the plasmalemma, exogenous Aβ42-os bind neurons' and astrocytes' calcium-sensing receptors (CaSRs) activating a set of intracellular signaling pathways which upkeep Aβ42-os intracellular accumulation and oversecretion by hindering Aβ42-os proteolysis. In addition, Aβ42-os accumulating in the extracellular milieu spread and reach mounting numbers of adjacent and remoter teams of neurons and astrocytes which in turn are recruited, again via Aβ42-os•CaSR-governed mechanisms, to produce and release additional Aβ42-os amounts. This relentless self-sustaining mechanism drives AD progression toward upper cortical areas. Later on accumulating Aβ42-os elicit the advent of hyperphosphorylated (p)-Tau oligomers which acting together with Aβ42-os and other glial neurotoxins cooperatively destroy wider and wider cognition-related cortical areas. In parallel, Aβ42-os•CaSR signals also elicit an excess production and secretion of nitric oxide and vascular endothelial growth factor-A from astrocytes, of Aβ42-os and myelin basic protein from oligodendrocytes, and of proinflammatory cytokines, nitric oxide and (likely) Aβ42-os from microglia. Activated astrocytes and microglia survive the toxic onslaught, whereas neurons and oligodendrocytes increasingly die. However, we have shown that highly selective allosteric CaSR antagonists (calcilytics), like NPS 2143 and NPS 89626, efficiently suppress all the neurotoxic effects Aβ42-os•CaSR signaling drives in

  2. CALCIUM-SENSING RECEPTORS OF HUMAN NEURAL CELLS PLAY CRUCIAL ROLES IN ALZHEIMER’S DISEASE

    Directory of Open Access Journals (Sweden)

    Anna eChiarini

    2016-04-01

    Full Text Available In aged subjects, late-onset Alzheimer’s disease (LOAD starts in the lateral entorhinal allocortex where a failure of clearance mechanisms triggers an accumulation neurotoxic of amyloid-β42 oligomers (Aβ42-os. In neurons and astrocytes, Aβ42-os enhance the transcription of Aβ precursor protein (APP and β-secretase/BACE1 genes. Thus, by acting together with γ-secretase, the surpluses of APP and BACE1 amplify the endogenous production of Aβ42-os which pile up, damage mitochondria, and are oversecreted. At the plasmalemma, exogenous Aβ42-os bind neurons' and astrocytes' calcium-sensing receptors (CaSRs activating a set of intracellular signalling pathways which upkeep Aβ42-os intracellular accumulation and oversecretion by hindering Aβ42-os proteolysis. In addition, Aβ42-os accumulating in the extracellular milieu spread and reach mounting numbers of adjacent and remoter teams of neurons and astrocytes which in turn are recruited, again via Aβ42-osCaSR-governed mechanisms, to produce and release additional Aβ42-os amounts. This relentless self-sustaining mechanism drives AD progression towards upper cortical areas. Later on accumulating Aβ42-os elicit the advent of hyperphosphorylated (p-Tau oligomers which acting together with Aβ42-os and other glial neurotoxins cooperatively destroy wider and wider cognition-related cortical areas. In parallel, Aβ42-osCaSR signals also elicit an excess production and secretion of nitric oxide and vascular endothelial growth factor-A from astrocytes, of Aβ42-os and myelin basic protein from oligodendrocytes, and of proinflammatory cytokines, nitric oxide and (likely Aβ42-os from microglia. Activated astrocytes and microglia survive the toxic onslaught, whereas neurons and oligodendrocytes increasingly die. However, we have shown that highly selective allosteric CaSR antagonists (calcilytics, like NPS 2143 and NPS 89626, efficiently suppress all the neurotoxic effects Aβ42-osCaSR signalling

  3. Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells.

    Directory of Open Access Journals (Sweden)

    Yutaka Maruyama

    Full Text Available Recently, we reported that calcium-sensing receptor (CaSR is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca(2+ concentration ([Ca(2+](i in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca(2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami.

  4. Structural mechanism of ligand activation in human calcium-sensing receptor

    Science.gov (United States)

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor; Zuo, Hao; Sturchler, Emmanuel; Cheng, Tat Cheung; Subramanyam, Prakash; Brown, Alice P; Brennan, Sarah C; Mun, Hee-chang; Bush, Martin; Chen, Yan; Nguyen, Trang X; Cao, Baohua; Chang, Donald D; Quick, Matthias; Conigrave, Arthur D; Colecraft, Henry M; McDonald, Patricia; Fan, Qing R

    2016-01-01

    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+ homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+ and PO43- ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ ions stabilize the active state, PO43- ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits. DOI: http://dx.doi.org/10.7554/eLife.13662.001 PMID:27434672

  5. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: syh200415@126.com [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  6. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    International Nuclear Information System (INIS)

    Research highlights: → Calcium-sensing receptor (CaR) activation stimulates TRP channels. → CaR promoted transient receptor potential C3 (TRPC3) expression. → Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. → TRPC channels activation induced by CaR activator sustained the increased [Ca2+]i to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca2+ overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca2+ overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca2+]i levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca2+ stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca2+]i in the absence of [Ca2+]o and the subsequent restoration of [Ca2+]o sustained the increased [Ca2+]i for a few minutes, whereas, the persisting elevation of [Ca2+]i was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl3) or spermine also resulted in the same effect and the duration of [Ca2+]i increase was also shortened in the absence of [Ca2+]o. In adult and neonatal rat cardiomyocytes, GdCl3 increased the expression of TRPC3 mRNA and protein, which were reversed by SKF96365 but not by inhibitors of the L-type channels and the Na+/Ca2+ exchangers

  7. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling.

    Directory of Open Access Journals (Sweden)

    Michael P Grant

    Full Text Available Calcium sensing receptors (CaSR interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium.

  8. A Novel Role for the Calcium Sensing Receptor in Rat Diabetic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Shiyun Dong

    2015-01-01

    Full Text Available Background: Diabetic encephalopathy is a common complication of diabetes, and it may be involved in altering intracellular calcium concentrations ([Ca2+]i at its onset. The calcium sensing receptor (CaSR is a G-protein coupled receptor, however, the functional involvement of CaSR in diabetic encephalopathy remains unclear. Methods: In this study, diabetic rats were modeled by STZ (50 mg/kg. At the end of 4, 8 and 12 weeks, the CaSR expression in hippocampus was analyzed by Western blot. In neonatal rat hippocampal neurons, the [Ca2+]i was detected by laser scanning confocal microscopy, the production of reactive oxygen species (ROS in mitochondria, the level of NO and the mitochondrial transmembrane potential were measured by MitoSOX, DAF-FM and JC-1, respectively. Results: Our results showed in hippocampal neurons treated with high glucose, CaSR regulated [Ca2+]i through the PLC-IP3 pathway. CaSR expression was decreased and was involved in the changes in [Ca2+]i. Mitochondrial membrane potential, NO release and expression of p-eNOS decreased, while the production of ROS in mitochondria increased. Conclusion: Down-regulation of CaSR expression was accompanied by neuronal injury, calcium disturbance, increased ROS production and decreased release of NO. Up-regulation of CaSR expression attenuated these changes through a positive compensatory protective mechanism to inhibit and delay diabetic encephalopathy in rats.

  9. Calcium-sensing receptor: A new target for therapy of diarrhea.

    Science.gov (United States)

    Cheng, Sam Xianjun

    2016-03-01

    Management of acute diarrhea remains a global challenge, particularly in resource-limiting countries. Oral rehydration solution (ORS), a passive rehydrating therapy developed approximately 40 years ago, remains the mainstay treatment. Although ORS is effective for hydration, since it does not inhibit enterotoxin-mediated excessive secretion, reduced absorption and compromised barrier function - the primary mechanisms of diarrhea, ORS does not offer a rapid relief of diarrhea symptom. There are a few alternative therapies available, yet the use of these drugs is limited by their expense, lack of availability and/or safety concerns. Novel anti-diarrheal therapeutic approaches, particularly those simple affordable therapies, are needed. This article explores intestinal calcium-sensing receptor (CaSR), a newly uncovered target for therapy of diarrhea. Unlike others, targeting this host antidiarrheal receptor system appears "all-inclusive": it is anti-secretory, pro-absorptive, anti-motility, and anti-inflammatory. Thus, activating CaSR reverses changes of both secretory and inflammatory diarrheas. Considering its unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators, it is possible that through targeting of CaSR with a combination of specific nutrients, novel oral rehydrating solutions that are inexpensive and practical to use in all countries may be developed. PMID:26973410

  10. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  11. Extracellular calcium-sensing receptor: structural and functional features and association with diseases

    Directory of Open Access Journals (Sweden)

    O.M. Hauache

    2001-05-01

    Full Text Available The recently cloned extracellular calcium-sensing receptor (CaR is a G protein-coupled receptor that plays an essential role in the regulation of extracellular calcium homeostasis. This receptor is expressed in all tissues related to this control (parathyroid glands, thyroid C-cells, kidneys, intestine and bones and also in tissues with apparently no role in the maintenance of extracellular calcium levels, such as brain, skin and pancreas. The CaR amino acid sequence is compatible with three major domains: a long and hydrophilic aminoterminal extracellular domain, where most of the activating and inactivating mutations described to date are located and where the dimerization process occurs, and the agonist-binding site is located, a hydrophobic transmembrane domain involved in the signal transduction mechanism from the extracellular domain to its respective G protein, and a carboxyterminal intracellular tail, with a well-established role for cell surface CaR expression and for signal transduction. CaR cloning was immediately followed by the association of genetic human diseases with inactivating and activating CaR mutations: familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism are caused by CaR-inactivating mutations, whereas autosomal dominant hypoparathyroidism is secondary to CaR-activating mutations. Finally, we will comment on the development of drugs that modulate CaR function by either activating (calcimimetic drugs or antagonizing it (calcilytic drugs, and on their potential therapeutic implications, such as medical control of specific cases of primary and uremic hyperparathyroidism with calcimimetic drugs and a potential treatment for osteoporosis with a calcilytic drug.

  12. Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis

    OpenAIRE

    Wang, Wen-Hua; Yi, Xiao-Qian; Han, Ai-Dong; Liu, Ting-Wu; Chen, Juan; Wu, Fei-Hua; Dong, Xue-Jun; He, Jun-Xian; Pei, Zhen-Ming; Zheng, Hai-Lei

    2011-01-01

    The Arabidopsis calcium-sensing receptor CAS is a crucial regulator of extracellular calcium-induced stomatal closure. Free cytosolic Ca2+ (Ca2+ i) increases in response to a high extracellular calcium (Ca2+ o) level through a CAS signalling pathway and finally leads to stomatal closure. Multidisciplinary approaches including histochemical, pharmacological, fluorescent, electrochemical, and molecular biological methods were used to discuss the relationship of hydrogen peroxide (H2O2) and nitr...

  13. Calcium Sensing Receptor Promotes Cardiac Fibroblast Proliferation and Extracellular Matrix Secretion

    Directory of Open Access Journals (Sweden)

    Xinying Zhang

    2014-02-01

    Full Text Available Aims: Calcium-sensing receptor (CaR acts as a G protein coupled receptor that mediates the increase of the intracellular Ca2+ concentration. The expression of CaR has been confirmed in various cell types, including cardiomyocytes, smooth muscle cells, neurons and vascular endothelial cells. However, whether CaR is expressed and functions in cardiac fibroblasts has remained unknown. The present study investigated whether CaR played a role in cardiac fibroblast proliferation and extracellular matrix (ECM secretion, both in cultured rat neonatal cardiac fibroblasts and in a model of cardiac hypertrophy induced by isoproterenol (ISO. Methods and Results: Immunofluorescence, immunohistochemistry and Western blot analysis revealed the presence of CaR in cardiac fibroblasts. Calcium and calindol, a specific activator of CaR, elevated the intracellular calcium concentration in cardiac fibroblasts. Pretreatment of cardiac fibroblasts with calhex231, a specific inhibitor of CaR, U73122 and 2-APB attenuated the calindol- and extracellular calcium-induced increase in intracellular calcium ([Ca2+]i. Cardiac fibroblast proliferation and migration were assessed by MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, cell count and the cell scratch assay. ECM production was detected by expression of matrix metalloproteinase-3 and -9 (MMP-3 and -9. Activation of CaR promoted cardiac fibroblast proliferation and migration and ECM secretion. More importantly, calhex231, suppressed cardiac fibroblast proliferation and migration and MMP-3 and -9 expression. To further investigate the effect of CaR on cardiac fibrosis, a model of ISO-induced cardiac hypertrophy was established. Pretreatment with calhex231 prevented cardiac fibrosis and decreased the expression of MMP-3 and -9 expression. Conclusions: Our results are the first report that CaR plays an important role in Ca2+ signaling involved in cardiac fibrosis through the phospholipase C- inositol 3

  14. Clinical Expression of Calcium Sensing Receptor Polymorphism (A986S) in Normocalcemic and Asymptomatic Hyperparathyroidism.

    Science.gov (United States)

    Díaz-Soto, G; Romero, E; Castrillón, J L P; Jauregui, O I; de Luis Román, D

    2016-03-01

    Normocalcemic and asymptomatic hyperparathyroidism diagnosis are becoming more common. However, their pathophysiology is incompletely known. The aim of the present study was to evaluate the clinical effect of calcium-sensing receptor polymorphism (A986S) in normocalcemic and asymtomatic HPT. Prospective study conducted with 61 consecutive normocalcemic and asymptomatic HPT patients was followed up during a minimum period of 1 year. Secondary causes of hyperparathyroidism were ruled out. Calcium and phosphorus metabolism parameters were evaluated in at least 2 determinations during follow-up to classify as normocalcemic or asymptomatic hyperparathyroidism. Bone mineral density and A986S polymorphism genotype were also analyzed. Thiry-eight patients (62.3%) had the genotype A986A, and 23 (36.7%) patients had A986S (20 patients, 32.8%) or S986S (3 patients, 4.9%). Age, sex, and genotype distributions were comparable in both normocalcemic and asymptomatic hyperparathyroidism. In normocalcemic patients, S allele genotype was associated to statistically significant higher level of intact PTH: 92.0 (SD 18.5) vs. 110.6 (SD 24.4) pg/ml, p<0.05; and remained significant after adjustment by multiple linear regression. In asymptomatic hyperparathyroidism, A986A genotype resulted in a statistically significant higher level of intact PTH, alkaline phosphatase and procollagen amino-terminal propeptide; but only serum calcium remained as an independent predictor of serum intact PTH levels after a multiple linear regression. Bone mineral densitometry between genotypes did not show statistically significant differences. A986S polymorphism of CaSR is an independent predictor of PTH level in normocalcemic hyperparathyroidism patients, but not in asymptomatic hyperparathyroidism. More studies are needed to evaluate the effect of other polymorphisms in normocalcemic and asymptomatic hyperparathyroidism. PMID:26332755

  15. The Calcium-Sensing Receptor Is Necessary for the Rapid Development of Hypercalcemia in Human Lung Squamous Cell Carcinoma

    OpenAIRE

    Gwendolen Lorch; Serge Viatchenko-Karpinski; Hsiang-Ting Ho; Dirksen, Wessel P.; Toribio, Ramiro E.; John Foley; Sandor Györke; Rosol, Thomas J.

    2011-01-01

    The calcium-sensing receptor (CaR) is responsible for the regulation of extracellular calcium (Ca2+o) homeostasis. CaR activation has been shown to increase proliferation in several cancer cell lines; however, its presence or function has never been documented in lung cancer. We report that Ca2+o-activated CaR results in MAPK-mediated stimulation of parathyroid hormone-related protein (PTHrP) production in human lung squamous cell carcinoma (SCC) lines and humoral hypercalcemia of malignancy ...

  16. A role for the extracellular calcium-sensing receptor in cell-cell communication in pancreatic islets of langerhans

    OpenAIRE

    Kitsou-Mylona, Isidora; Burns, Christopher; Squires, Paul; Persaud, Shanta; Jones, Peter

    2008-01-01

    Background: The extracellular calcium-sensing receptor (CaR) is expressed in many tissues that are not associated with Ca2+ homeostasis, including the endocrine cells in pancreatic islets of Langerhans. We have demonstrated previously that pharmacological activation of the CaR stimulates insulin secretion from islet β-cells and insulin-secreting MIN6 cells. Methods: In the present study we have investigated the effects of CaR activation on MIN6 cell proliferation and have used shRNA-mediated ...

  17. Strontium is a biased agonist of the calcium-sensing receptor in rat medullary thyroid carcinoma 6-23 cells

    DEFF Research Database (Denmark)

    Thomsen, Alex Rojas Bie; Worm, Jesper; Jacobsen, Stine Engesgaard;

    2012-01-01

    The calcium-sensing receptor (CaSR)-specific allosteric modulator cinacalcet has revolutionized the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. However, its application is limited to patients with end-stage renal disease because of hypocalcemic side effects...... CaSR is poorly understood, the objective of the present study was to investigate biased signaling of CaSR by using rat medullary thyroid carcinoma 6-23 cells as a model of thyroid parafollicular C-cells. By doing concentration-response experiments we focused on the ability of two well known Ca...

  18. In vivo imaging of human breast cancer mouse model with high level expression of calcium sensing receptor at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Baio, Gabriella; Tagliafico, Alberto; Neumaier, Carlo Emanuele [National Cancer Institute, Department of Diagnostic Imaging, IST, Genoa (Italy); Fabbi, Marina; Carbotti, Grazia [National Cancer Institute, Unit of Immunological Therapy, IST, Genoa (Italy); Emionite, Laura; Cilli, Michele [National Cancer Institute, Animal Facility, IST, Genoa (Italy); Salvi, Sandra; Truini, Mauro [National Cancer Institute, Department of Pathology, IST, Genoa (Italy); Ghedin, Piero; Prato, Sabina [General Electric, GE, Milano (Italy)

    2012-03-15

    To demonstrate that manganese can visualise calcium sensing receptor (CaSR)-expressing cells in a human breast cancer murine model, as assessed by clinical 3T magnetic resonance (MR). Human MDA-MB-231-Luc or MCF7-Luc breast cancer cells were orthotopically grown in NOD/SCID mice to a minimum mass of 5 mm. Mice were evaluated on T1-weighted sequences before and after intravenous injection of MnCl{sub 2}. To block the CaSR-activated Ca{sup 2+} channels, verapamil was injected at the tumour site 5 min before Mn{sup 2+} administration. CaSR expression in vivo was studied by immunohistochemistry. Contrast enhancement was observed at the tumour periphery 10 min after Mn{sup 2+} administration, and further increased up to 40 min. In verapamil-treated mice, no contrast enhancement was observed. CaSR was strongly expressed at the tumour periphery. Manganese enhanced magnetic resonance imaging can visualise CaSR-expressing breast cancer cells in vivo, opening up possibilities for a new MR contrast agent. (orig.)

  19. Enhanced expression of the calcium-sensing receptor in reactive astrocytes following ischemic injury in vivo and in vitro.

    Science.gov (United States)

    Pak, Ha-Jin; Riew, Tae-Ryong; Shin, Yoo-Jin; Choi, Jeong-Heon; Jin, Xuyan; Lee, Mun-Yong

    2016-07-15

    We recently demonstrated that the G protein-coupled calcium-sensing receptor (CaSR) is associated with the pathogenesis of ischemic stroke and may be involved in vascular remodeling and astrogliosis. To further substantiate the involvement of CaSR in the astroglial reaction common to ischemic insults, we investigated the temporal and cell type-specific expression patterns of CaSR in the hippocampus after transient forebrain ischemia. CaSR was constitutively expressed in neurons of the pyramidal and granule cell layers, whereas increased CaSR immunoreactivity was observed in reactive astrocytes, but not in activated microglia or macrophages, in the CA1 region of the post-ischemic hippocampus. Astroglial induction of CaSR expression was evident on days 3-7 after reperfusion and appeared to increase progressively through day 28, at which time CaSR expression was prominent in astrocytes with a highly reactive hypertrophic phenotype and elevated levels of glial fibrillary acidic protein. This expression pattern was supported by results of immunoblot analyses. Furthermore, CaSR expression was upregulated in rat primary cortical astrocytes exposed to oxygen-glucose deprivation, which undergo reactive gliosis-like changes. Thus, our results demonstrate that selective and long-lasting astroglial induction of CaSR expression is a common characteristic of ischemic injury and suggest its involvement in the ischemia-induced astroglial reaction. PMID:27288786

  20. Calcium sensing receptor suppresses human pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway.

    Science.gov (United States)

    Tang, Bo; Chow, Jimmy Y C; Dong, Tobias Xiao; Yang, Shi-Ming; Lu, De-Sheng; Carethers, John M; Dong, Hui

    2016-07-10

    The calcium sensing receptor (CaSR) is functionally expressed in normal human pancreases, but its pathological role in pancreatic tumorigenesis is currently unknown. We sought to investigate the role of CaSR in pancreatic cancer (PC) and the underlying molecular mechanisms. We revealed that the expression of CaSR was consistently downregulated in the primary cancer tissues from PC patients, which was correlated with tumor size, differentiation and poor survival of the patients. CaSR activation markedly suppressed pancreatic tumorigenesis in vitro and in vivo likely through the Ca(2+) entry mode of Na(+)/Ca(2+) exchanger 1 (NCX1) to induce Ca(2+) entry into PC cells. Moreover, NCX1-mediated Ca(2+) entry resulted in Ca(2+)-dependent inhibition of β-catenin signaling in PC cells, eventually leading to the inhibition of pancreatic tumorigenesis. Collectively, we demonstrate for the first time that CaSR exerts a suppressive function in pancreatic tumorigenesis through a novel NCX1/Ca(2+)/β-catenin signaling pathway. Targeting this specific signaling pathway could be a potential therapeutic strategy for PC. PMID:27108064

  1. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    International Nuclear Information System (INIS)

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca2+ stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca2+ imaging, we found that the depletion of ER/SR Ca2+ stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca2+ ([Ca2+]i), followed by sustained increase depending on extracellular Ca2+. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na+/Ca2+ exchanger inhibitors, inhibited [Ca2+]i relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl3) or by an increased extracellular Ca2+([Ca2+]o) increased the concentration of intracelluar Ca2+, whereas, the sustained elevation of [Ca2+]i was reduced in the presence of SKF96365. Similarly, the duration of [Ca2+]i increase was also shortened in the absence of extracellular Ca2+. Western blot analysis showed that GdCl3 increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl3. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca2+-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  2. Calcium-sensing receptors regulate cardiomyocyte Ca2+ signaling via the sarcoplasmic reticulum-mitochondrion interface during hypoxia/reoxygenation

    Directory of Open Access Journals (Sweden)

    Lu Fang-hao

    2010-06-01

    Full Text Available Abstract Communication between the SR (sarcoplasmic reticulum, SR and mitochondria is important for cell survival and apoptosis. The SR supplies Ca2+ directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM. Although it has been demonstrated that CaR (calcium sensing receptor activation is involved in intracellular calcium overload during hypoxia/reoxygenation (H/Re, the role of CaR activation in the cardiomyocyte apoptotic pathway remains unclear. We postulated that CaR activation plays a role in the regulation of SR-mitochondrial inter-organelle Ca2+ signaling, causing apoptosis during H/Re. To investigate the above hypothesis, cultured cardiomyocytes were subjected to H/Re. We examined the distribution of IP3Rs in cardiomyocytes via immunofluorescence and Western blotting and found that type 3 IP3Rs were located in the SR. [Ca2+]i, [Ca2+]m and [Ca2+]SR were determined using Fluo-4, x-rhod-1 and Fluo 5N, respectively, and the mitochondrial membrane potential was detected with JC-1 during reoxygenation using laser confocal microscopy. We found that activation of CaR reduced [Ca2+]SR, increased [Ca2+]i and [Ca2+]m and decreased the mitochondrial membrane potential during reoxygenation. We found that the activation of CaR caused the cleavage of BAP31, thus generating the pro-apoptotic p20 fragment, which induced the release of cytochrome c from mitochondria and the translocation of bak/bax to mitochondria. Taken together, these results reveal that CaR activation causes Ca2+ release from the SR into the mitochondria through IP3Rs and induces cardiomyocyte apoptosis during hypoxia/reoxygenation.

  3. Expression of a functional extracellular calcium-sensing receptor in human aortic endothelial cells

    International Nuclear Information System (INIS)

    Extracellular Ca2+ concentration ([Ca2+]o) regulates the functions of many cell types through a G protein-coupled [Ca2+]o-sensing receptor (CaR). Whether the receptor is functionally expressed in vascular endothelial cells is largely unknown. In cultured human aortic endothelial cells (HAEC), RT-PCR yielded the expected 555-bp product corresponding to the CaR, and CaR protein was demonstrated by fluorescence immunostaining and Western blot. RT-PCR also demonstrated the expression in HAEC of alternatively spliced variants of the CaR lacking exon 5. Although stimulation of fura 2-loaded HAEC by several CaR agonists (high [Ca2+]o, neomycin, and gadolinium) failed to increase intracellular Ca2+ concentration ([Ca2+]i), the CaR agonist spermine stimulated an increase in [Ca2+]i that was diminished in buffer without Ca2+ and was abolished after depletion of an intracellular Ca2+ pool with thapsigargin or after blocking IP3- and ryanodine receptor-mediated Ca2+ release with xestospongin C and with high concentration ryanodine, respectively. Spermine stimulated an increase in DAF-FM fluorescence in HAEC, consistent with NO production. Both the increase in [Ca2+]i and in NO production were reduced or absent in HAEC transfected with siRNA specifically targeted to the CaR. HAEC express a functional CaR that responds to the endogenous polyamine spermine with an increase in [Ca2+]i, primarily due to release of IP3- and ryanodine-sensitive intracellular Ca2+ stores, leading to the production of NO. Expression of alternatively spliced variants of the CaR may result in the absence of a functional response to other known CaR agonists in HAEC

  4. Switching of G-protein Usage by the Calcium-sensing Receptor Reverses Its Effect on Parathyroid Hormone-related Protein Secretion in Normal Versus Malignant Breast Cells*

    OpenAIRE

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Zawalich, Walter; Wysolmerski, John

    2008-01-01

    The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that signals in response to extracellular calcium and regulates parathyroid hormone secretion. The CaR is also expressed on normal mammary epithelial cells (MMECs), where it has been shown to inhibit secretion of parathyroid hormone-related protein (PTHrP) and participate in the regulation of calcium and bone metabolism during lactation. In contrast to normal breast cells, the CaR has been reported to s...

  5. Calcilytic Ameliorates Abnormalities of Mutant Calcium-Sensing Receptor (CaSR) Knock-In Mice Mimicking Autosomal Dominant Hypocalcemia (ADH).

    Science.gov (United States)

    Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio

    2015-11-01

    Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a

  6. The calcium-sensing receptor-dependent regulation of cell-cell adhesion and keratinocyte differentiation requires Rho and Filamin A

    OpenAIRE

    Tu, Chia-Ling; Chang, Wenhan; Bikle, Daniel D.

    2011-01-01

    Extracellular Ca2+ (Ca2+o) acting through the calcium-sensing receptor (CaR) induces E-cadherin mediated cell-cell adhesion and cellular signals mediating cell differentiation in epidermal keratinocytes. Previous studies indicate that the CaR regulates cell-cell adhesion through the Fyn/Src tyrosine kinases. Here we investigate whether Rho GTPase is a part of the CaR-mediated signaling cascade regulating cell adhesion and differentiation. Suppressing endogenous Rho A expression by small inter...

  7. Role of receptor activity modifying protein 1 in function of the calcium sensing receptor in the human TT thyroid carcinoma cell line.

    Directory of Open Access Journals (Sweden)

    Aditya J Desai

    Full Text Available The Calcium Sensing Receptor (CaSR plays a role in calcium homeostasis by sensing minute changes in serum Ca(2+ and modulating secretion of calciotropic hormones. It has been shown in transfected cells that accessory proteins known as Receptor Activity Modifying Proteins (RAMPs, specifically RAMPs 1 and 3, are required for cell-surface trafficking of the CaSR. These effects have only been demonstrated in transfected cells, so their physiological relevance is unclear. Here we explored CaSR/RAMP interactions in detail, and showed that in thyroid human carcinoma cells, RAMP1 is required for trafficking of the CaSR. Furthermore, we show that normal RAMP1 function is required for intracellular responses to ligands. Specifically, to confirm earlier studies with tagged constructs, and to provide the additional benefit of quantitative stoichiometric analysis, we used fluorescence resonance energy transfer to show equal abilities of RAMP1 and 3 to chaperone CaSR to the cell surface, though RAMP3 interacted more efficiently with the receptor. Furthermore, a higher fraction of RAMP3 than RAMP1 was observed in CaSR-complexes on the cell-surface, suggesting different ratios of RAMPs to CaSR. In order to determine relevance of these findings in an endogenous expression system we assessed the effect of RAMP1 siRNA knock-down in medullary thyroid carcinoma TT cells, (which express RAMP1, but not RAMP3 constitutively and measured a significant 50% attenuation of signalling in response to CaSR ligands Cinacalcet and neomycin. Blockade of RAMP1 using specific antibodies induced a concentration-dependent reduction in CaSR-mediated signalling in response to Cinacalcet in TT cells, suggesting a novel functional role for RAMP1 in regulation of CaSR signalling in addition to its known role in receptor trafficking. These data provide evidence that RAMPs traffic the CaSR as higher-level oligomers and play a role in CaSR signalling even after cell surface localisation has

  8. Review article: loss of the calcium-sensing receptor in colonic epithelium is a key event in the pathogenesis of colon cancer.

    LENUS (Irish Health Repository)

    Rogers, Ailín C

    2012-03-01

    The calcium-sensing receptor (CaSR) is expressed abundantly in normal colonic epithelium and lost in colon cancer, but its exact role on a molecular level and within the carcinogenesis pathway is yet to be described. Epidemiologic studies show that inadequate dietary calcium predisposes to colon cancer; this may be due to the ability of calcium to bind and upregulate the CaSR. Loss of CaSR expression does not seem to be an early event in carcinogenesis; indeed it is associated with late stage, poorly differentiated, chemo-resistant tumors. Induction of CaSR expression in neoplastic colonocytes arrests tumor progression and deems tumors more sensitive to chemotherapy; hence CaSR may be an important target in colon cancer treatment. The CaSR has a complex role in colon cancer; however, more investigation is required on a molecular level to clarify its exact function in carcinogenesis. This review describes the mechanisms by which the CaSR is currently implicated in colon cancer and identifies areas where further study is needed.

  9. Calcium-sensing receptor and aquaporin 2 interplay in hypercalciuria-associated renal concentrating defect in humans. An in vivo and in vitro study.

    Directory of Open Access Journals (Sweden)

    Giuseppe Procino

    Full Text Available One mechanism proposed for reducing the risk of calcium renal stones is activation of the calcium-sensing receptor (CaR on the apical membranes of collecting duct principal cells by high luminal calcium. This would reduce the abundance of aquaporin-2 (AQP2 and in turn the rate of water reabsorption. While evidence in cells and in hypercalciuric animal models supports this hypothesis, the relevance of the interplay between the CaR and AQP2 in humans is not clear. This paper reports for the first time a detailed correlation between urinary AQP2 excretion under acute vasopressin action (DDAVP treatment in hypercalciuric subjects and in parallel analyzes AQP2-CaR crosstalk in a mouse collecting duct cell line (MCD4 expressing endogenous and functional CaR. In normocalciurics, DDAVP administration resulted in a significant increase in AQP2 excretion paralleled by an increase in urinary osmolality indicating a physiological response to DDAVP. In contrast, in hypercalciurics, baseline AQP2 excretion was high and did not significantly increase after DDAVP. Moreover DDAVP treatment was accompanied by a less pronounced increase in urinary osmolality. These data indicate reduced urinary concentrating ability in response to vasopressin in hypercalciurics. Consistent with these results, biotinylation experiments in MCD4 cells revealed that membrane AQP2 expression in unstimulated cells exposed to CaR agonists was higher than in control cells and did not increase significantly in response to short term exposure to forskolin (FK. Interestingly, we found that CaR activation by specific agonists reduced the increase in cAMP and prevented any reduction in Rho activity in response to FK, two crucial pathways for AQP2 translocation. These data support the hypothesis that CaR-AQP2 interplay represents an internal renal defense to mitigate the effects of hypercalciuria on the risk of calcium precipitation during antidiuresis. This mechanism and possibly reduced

  10. Calcium-Sensing Receptor in Human Peripheral Blood T Lymphocytes Is Involved in the AMI Onset and Progression through the NF-κB Signaling Pathway.

    Science.gov (United States)

    Zeng, Jing-Ya; Du, Jing-Jing; Pan, Ying; Wu, Jian; Bi, Hai-Liang; Cui, Bao-Hong; Zhai, Tai-Yu; Sun, Yong; Sun, Yi-Hua

    2016-01-01

    Acute myocardial infarction (AMI) is a condition triggered by an inflammatory process that seriously affects human health. Calcium-sensing receptor (CaSR) in T lymphocytes is involved during the inflammation reaction. However, the relationship between them is not very clear. In this study, we collected human peripheral blood T lymphocytes from patients with AMI and in different stages of percutaneous coronary intervention (PCI) (at the onset of AMI, the first day after PCI (PCI-1), PCI-3, and PCI-5) to study the CaSR and NF-κB pathway protein expression, cytokine release and T cell apoptosis. The results showed that the expressions of CaSR, P-p65, Caspase-12, and the secretions of Th-1 and Th-2 type cytokines were increased at the onset of AMI, especially on the PCI-1. Meanwhile, the apoptosis rate of CD(3+), CD(4+) and CD(8+) T lymphocytes also increased. However, from PCI-3, all the indicators began to decline. In addition, we also found that positive CaSR small interfering RNA (siRNA) transfection in T lymphocytes and NF-κB pathway blocker Bay-11-7082 reversed the increased expressions of CaSR, P-p65, Caspase-12, reduced the secretions of Th-1 and Th-2 type cytokines, and decreased T lymphocytes apoptosis rate not only in the AMI patients but also in the normal controls. All of these results indicated that CaSR in the human peripheral blood T lymphocytes were involved in the AMI onset and progression, which probably was related to the NF-κB pathway. Our study demonstrated the relationship between AMI and CaSR, and will provide new effective prevention theory and new targets for drug treatment. PMID:27563892

  11. Involvement of calcium-sensing receptors in hypoxia-induced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries.

    Science.gov (United States)

    Peng, Xue; Li, Hong-Xia; Shao, Hong-Jiang; Li, Guang-Wei; Sun, Jian; Xi, Yu-Hui; Li, Hong-Zhu; Wang, Xin-Yan; Wang, Li-Na; Bai, Shu-Zhi; Zhang, Wei-Hua; Zhang, Li; Yang, Guang-Dong; Wu, Ling-Yun; Wang, Rui; Xu, Chang-Qing

    2014-11-01

    Phenotype modulation of pulmonary artery smooth muscle cells (PASMCs) plays an important role during hypoxia-induced vascular remodeling and pulmonary hypertension (PAH). We had previously shown that calcium-sensing receptor (CaSR) is expressed in rat PASMCs. However, little is known about the role of CaSR in phenotypic modulation of PASMCs in hypoxia-induced PAH as well as the underlying mechanisms. In this study, we investigated whether CaSR induces the proliferation of PASMCs in small pulmonary arteries from both rats and human with PAH. PAH was induced by exposing rats to hypoxia for 7-21 days. The mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVI), the percentage of medial wall thickness to the external diameter (WT %), and cross-sectional total vessel wall area to the total area (WA %) of small pulmonary arteries were determined by hematoxylin and eosin (HE), masson trichrome and Weigert's staining. The protein expressions of matrix metalloproteinase (MMP)-2 and MMP-9, the tissue inhibitors of metalloproteinase (TIMP)-3, CaSR, proliferating cell nuclear antigen (PCNA), phosphorylated extracellular signal-regulated kinase (p-ERK), and smooth muscle cell (SMC) phenotype marker proteins in rat small pulmonary arteries, including calponin, SMα-actin (SMAα), and osteopontin (OPN), were analyzed by immunohistochemistry and Western blotting, respectively. In addition, immunohistochemistry was applied to paraffin-embedded human tissues from lungs of normal human and PAH patients with chronic heart failure (PAH/CHF). Compared with the control group, mPAP, RVI, WT % and WA % in PAH rats were gradually increased with the prolonged hypoxia. At the same time, the expressions of CaSR, MMP-2, MMP-9, TIMP-3, PCNA, OPN, and p-ERK were markedly increased, while the expressions of SMAα and calponin were significantly reduced in lung tissues or small pulmonary arteries of PAH rats. Neomycin (an agonist of CaSR) enhanced but NPS2390 (an

  12. Hipercalcemia hipocalciúrica debida a una mutación de novo del gen del receptor sensor de calcio Hypocalciuric hypercalcemia due to de novo mutation of the calcium sensing receptor

    Directory of Open Access Journals (Sweden)

    Marcelo Sarli

    2004-08-01

    Full Text Available El objetivo de este trabajo es presentar el inusual caso clínico de una paciente de 34 años que consultó para establecer diagnóstico de certeza y conducta terapéutica ante una hipercalcemia asintomática, detectada en un examen bioquímico de rutina. La elevación de la calcemia en ausencia de inhibición de la secreción de parathormona orientó hacia una patología paratiroidea. La persistencia de la hipercalcemia concomitante con hipocalciuria y coincidente con una relación clearance de calcio/clearance de creatinina inferior a 0.01, hicieron sospechar el diagnóstico de hipercalcemia hipocalciúrica familiar. La falta de antecedentes familiares llevó a realizar un estudio molecular de la paciente y su grupo familiar. Los resultados de los estudios nos permitieron concluir que la paciente es portadora de una mutación de novo (inactivante del gen del receptor sensor del calcio. Se incluyen los datos del estudio molecular y una breve revisión bibliográfica del tema.The aim of this paper is to refer the unusual case of a 34 years old woman who consulted because of asymptomatic hypercalcemia, detected in a biochemical routine examination. The elevated values of serum calcium without blunted parathyroid hormone secretion suggested a parathyroid pathology. The concomitance of hypocalciuria with hypercalcemia and a calcium clearance/creatinine clearance ratio less than 0.01 reverted the diagnosis of familial hypocalciuric hypercalcemia, the first option. The absence of familial background led to the molecular study of the patient and her family. The latter confirmed the diagnosis of a de novo inactivating mutation of the calcium sensing receptor. Details on the molecular study and a brief review of this subject are included.

  13. Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist.

    Science.gov (United States)

    Zhang, Chen; Zhang, Tuo; Zou, Juan; Miller, Cassandra Lynn; Gorkhali, Rakshya; Yang, Jeong-Yeh; Schilmiller, Anthony; Wang, Shuo; Huang, Kenneth; Brown, Edward M; Moremen, Kelley W; Hu, Jian; Yang, Jenny J

    2016-05-01

    Ca(2+)-sensing receptors (CaSRs) modulate calcium and magnesium homeostasis and many (patho)physiological processes by responding to extracellular stimuli, including divalent cations and amino acids. We report the first crystal structure of the extracellular domain (ECD) of human CaSR bound with Mg(2+) and a tryptophan derivative ligand at 2.1 Å. The structure reveals key determinants for cooperative activation by metal ions and aromatic amino acids. The unexpected tryptophan derivative was bound in the hinge region between two globular ECD subdomains, and represents a novel high-affinity co-agonist of CaSR. The dissection of structure-function relations by mutagenesis, biochemical, and functional studies provides insights into the molecular basis of human diseases arising from CaSR mutations. The data also provide a novel paradigm for understanding the mechanism of CaSR-mediated signaling that is likely shared by the other family C GPCR [G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor] members and can facilitate the development of novel CaSR-based therapeutics. PMID:27386547

  14. Role of Ca2+ and L-Phe in regulating functional cooperativity of disease-associated "toggle" calcium-sensing receptor mutations.

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    Full Text Available The Ca(2+-sensing receptor (CaSR regulates Ca(2+ homeostasis in the body by monitoring extracellular levels of Ca(2+ ([Ca(2+]o and amino acids. Mutations at the hinge region of the N-terminal Venus flytrap domain (VFTD produce either receptor inactivation (L173P, P221Q or activation (L173F, P221L related to hypercalcemic or hypocalcemic disorders. In this paper, we report that both L173P and P221Q markedly impair the functional positive cooperativity of the CaSR as reflected by [Ca(2+]o-induced [Ca(2+]i oscillations, inositol-1-phosphate (IP1 accumulation and extracellular signal-regulated kinases (ERK1/2 activity. In contrast, L173F and P221L show enhanced responsiveness of these three functional readouts to [Ca(2+]o. Further analysis of the dynamics of the VFTD mutants using computational simulation studies supports disruption in the correlated motions in the loss-of-function CaSR mutants, while these motions are enhanced in the gain-of-function mutants. Wild type (WT CaSR was modulated by L-Phe in a heterotropic positive cooperative way, achieving an EC50 similar to those of the two activating mutations. The response of the inactivating P221Q mutant to [Ca(2+]o was partially rescued by L-Phe, illustrating the capacity of the L-Phe binding site to enhance the positive homotropic cooperativity of CaSR. L-Phe had no effect on the other inactivating mutant. Moreover, our results carried out both in silico and in intact cells indicate that residue Leu(173, which is close to residues that are part of the L-Phe-binding pocket, exhibited impaired heterotropic cooperativity in the presence of L-Phe. Thus, Pro(221 and Leu(173 are important for the positive homo- and heterotropic cooperative regulation elicited by agonist binding.

  15. Reduced Expression of the Extracellular Calcium-Sensing Receptor (CaSR) Is Associated with Activation of the Renin-Angiotensin System (RAS) to Promote Vascular Remodeling in the Pathogenesis of Essential Hypertension

    Science.gov (United States)

    Wang, La-mei; Tang, Na; Zhong, Hua; Liu, Yong-min; Li, Zhen; Feng, Qian; He, Fang

    2016-01-01

    The proliferation of vascular smooth muscle cells (VSMCs), remodeling of the vasculature, and the renin-angiotensin system (RAS) play important roles in the development of essential hypertension (EH), which is defined as high blood pressure (BP) in which secondary causes, such as renovascular disease, are absent. The calcium-sensing receptor (CaSR) is involved in the regulation of BP. However, the underlying mechanisms by which the CaSR regulates BP are poorly understood. In the present study, the role of the CaSR in EH was investigated using male spontaneously hypertensive rats (SHRs) and rat and human plasma samples. The percentages of medial wall thickness to external diameter (WT%), total vessel wall cross-sectional area to the total area (WA%) of thoracic arteries, as well as the percentage of wall area occupied by collagen to total vessel wall area (CA%) were determined. Tissue protein expression and plasma concentrations of the CaSR, cyclic adenosine monophosphate (cAMP), renin, and angiotensin II (Ang II) were additionally assessed. WT%, WA%, and CA% were found to increase with increasing BP, whereas the plasma concentration of CaSR was found to decrease. With increasing BP, the levels of smooth muscle actin and calponin decreased, whereas those of osteopontin and proliferating cell nuclear antigen increased. The CaSR level negatively correlated with the levels of cAMP and Ang II, but positively correlated with those of renin. Our data suggest that reduced expression of the CaSR is correlated with activation of the RAS, which induces increased vascular remodeling and VSMC proliferation, and thereby associated with EH in the SHR model and in the Han Chinese population. Our findings provide new insights into the pathogenesis of EH. PMID:27391973

  16. Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: potential role in regulation of a nonselective cation channel

    Science.gov (United States)

    Yamaguchi, T.; Ye, C.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    Human promyelocytic leukemia cells (HL-60) have been used widely as a model for studying the differentiation of hematopoietic progenitor cells in vitro. After treatment with phorbol-12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], HL-60 cells differentiate into cells with the phenotype of monocytes/macrophages. We previously showed that peripheral blood monocytes and the murine J774 monocytic cell line express the CaR, and myeloid progenitors in the bone marrow and myeloid cells in peripheral blood other than monocytes express lower levels of the CaR. Therefore, we investigated whether undifferentiated HL-60 cells express a functional G protein-coupled, extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) and if the expression of the CaR increases as these cells differentiate along the monocytic lineage. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by sequencing of the amplified products, identified an authentic CaR transcript in undifferentiated HL-60 cells. Both immunocytochemistry and Western blot analysis using a CaR-specific antiserum detected low levels of CaR protein expression in undifferentiated HL-60 cells. The levels of CaR protein increased considerably following treatment of the cells with PMA (50 nM) or 1,25(OH)(2)D(3) (100 nM) for 5 days. Northern analysis using a CaR-specific riboprobe identified CaR transcripts in undifferentiated HL-60 cells, but CaR mRNA levels did not change appreciably after treatment with either agent, suggesting that upregulation of CaR protein occurs at a translational level. PMA-treated HL-60 cells expressed a nonselective cation channel (NCC), and the calcimimetic CaR activator, NPS R-467, but not its less active stereoisomer, NPS S-467, as well as the polycationic CaR agonist, neomycin, activated this NCC, demonstrating that the CaR expressed in these cells is functionally active. Therefore, HL-60 cells exhibit an increase in Ca

  17. Extracellular calcium sensing in rat aortic vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Extracellular calcium (Ca2+o) can act as a first messenger in many cell types through a G protein-coupled receptor, calcium-sensing receptor (CaR). It is still debated whether the CaR is expressed in vascular smooth muscle cells (VSMCs). Here, we report the expression of CaR mRNA and protein in rat aortic VSMCs and show that Ca2+o stimulates proliferation of the cells. The effects of Ca2+o were attenuated by pre-treatment with MAPK kinase 1 (MEK1) inhibitor, as well as an allosteric modulator, NPS 2390. Furthermore, stimulation of the VSMCs with Ca2+o-induced phosphorylation of ERK1/2, but surprisingly did not cause inositol phosphate accumulation. We were not able to conclusively state that the CaR mediates Ca2+o-induced cell proliferation. Rather, an additional calcium-sensing mechanism may exist. Our findings may be of importance with regard to atherosclerosis, an inflammatory disease characterized by abnormal proliferation of VSMCs and high local levels of calcium

  18. Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel.

    Science.gov (United States)

    Zhou, Hui-Ren; Pestka, James J

    2015-06-01

    Food refusal is a hallmark of exposure of experimental animals to the trichothecene mycotoxin deoxynivalenol (DON), a common foodborne contaminant. Although studies in the mouse suggest that DON suppresses food intake by aberrantly inducing the release of satiety hormones from enteroendocrine cells (EECs) found in the gut epithelium, the underlying mechanisms for this effect are not understood. To address this gap, we employed the murine neuroendocrine tumor STC-1 cell line, a widely used EEC model, to test the hypothesis that DON-induced hormone exocytosis is mediated by G protein-coupled receptor (GPCR)-mediated Ca(2+) signaling. The results indicate for the first time that DON elicits Ca(2)-dependent secretion of cholecystokinin (CCK) and glucagon-like peptide-1(7-36) amide (GLP-1), hormones that regulate food intake and energy homeostasis and that are products of 2 critical EEC populations--I cells of the small intestine and L cells of the large intestine, respectively. Furthermore, these effects were mediated by the GPCR Ca(2+)-sensing receptor (CaSR) and involved the following serial events: (1)PLC-mediated activation of the IP3 receptor and mobilization of intracellular Ca(2+) stores, (2) activation of transient receptor potential melastatin-5 ion channel and resultant L-type voltage-sensitive Ca(2+) channel-facilitated extracellular Ca(2+) entry, (3) amplification of extracellular Ca(2+) entry by transient receptor potential ankyrin-1 channel activation, and finally (4) Ca(2+)-driven CCK and GLP-1 excytosis. These in vitro findings provide a foundation for future investigation of mechanisms by which DON and other trichothecenes modulate EEC function in ex vivo and in vivo models. PMID:25787141

  19. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  20. Functional importance of the Ala(116)-Pro(136) region in the calcium-sensing receptor. Constitutive activity and inverse agonism in a family C G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Spalding, T A; Burstein, E S;

    2000-01-01

    the Ala(116)-Pro(136) region of CaR, indicating that this part of the receptor is particularly sensitive to mutation-induced activation. This region was subjected to random saturation mutagenesis, and 219 mutant receptor clones were isolated and screened pharmacologically in a high throughput...... screening assay. Selected mutants were characterized further in an inositol phosphate assay. The vast majority of the mutants tested displayed an increased affinity for Ca(2+). Furthermore, 21 of the mutants showed increased basal activity in the absence of agonist. This constitutive activity was not......, suppressed the elevated basal response of the constitutively activated Ca/1a mutants demonstrating inverse agonist activity of CPCCOEt. Taken together, our results demonstrate that the Ala(116)-Pro(136) region is of key importance for the maintenance of the inactive conformation of CaR....

  1. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin

    2013-05-01

    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  2. Extracellular calcium-sensing-receptor (CaR)-mediated opening of an outward K(+) channel in murine MC3T3-E1 osteoblastic cells: evidence for expression of a functional CaR

    Science.gov (United States)

    Ye, C. P.; Yamaguchi, T.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    The existence in osteoblasts of the G-protein-coupled extracellular calcium (Ca(o)(2+))-sensing receptor (CaR) that was originally cloned from parathyroid and kidney remains controversial. In our recent studies, we utilized multiple detection methods to demonstrate the expression of CaR transcripts and protein in several osteoblastic cell lines, including murine MC3T3-E1 cells. Although we and others have shown that high Ca(o)(2+) and other polycationic CaR agonists modulate the function of MC3T3-E1 cells, none of these actions has been unequivocally shown to be mediated by the CaR. Previous investigations using neurons and lens epithelial cells have shown that activation of the CaR stimulates Ca(2+)-activated K(+) channels. Because osteoblastic cells express a similar type of channel, we have examined the effects of specific "calcimimetic" CaR activators on the activity of a Ca(2+)-activated K(+) channel in MC3T3-E1 cells as a way of showing that the CaR is not only expressed in those cells but is functionally active. Patch-clamp analysis in the cell-attached mode showed that raising Ca(o)(2+) from 0.75 to 2.75 mmol/L elicited about a fourfold increase in the open state probability (P(o)) of an outward K(+) channel with a conductance of approximately 92 pS. The selective calcimimetic CaR activator, NPS R-467 (0.5 micromol/L), evoked a similar activation of the channel, while its less active stereoisomer, NPSS-467 (0.5 micromol/L), did not. Thus, the CaR is not only expressed in MC3T3-E1 cells, but is also functionally coupled to the activity of a Ca(2+)-activated K(+) channel. This receptor, therefore, could transduce local or systemic changes in Ca(o)(2+) into changes in the activity of this ion channel and related physiological processes in these and perhaps other osteoblastic cells.

  3. Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population

    DEFF Research Database (Denmark)

    Nissen, Peter H; Christensen, Signe E; Heickendorff, Lene;

    2007-01-01

    CONTEXT: The autosomal dominantly inherited condition familial hypocalciuric hypercalcemia (FHH) is characterized by elevated plasma calcium levels, relative or absolute hypocalciuria, and normal to moderately elevated plasma PTH. The condition is difficult to distinguish clinically from primary ...

  4. Evolution of the nuclear receptor gene superfamily.

    OpenAIRE

    Laudet, V; Hänni, C; Coll, J.; F. Catzeflis; Stéhelin, D

    1992-01-01

    Nuclear receptor genes represent a large family of genes encoding receptors for various hydrophobic ligands such as steroids, vitamin D, retinoic acid and thyroid hormones. This family also contains genes encoding putative receptors for unknown ligands. Nuclear receptor gene products are composed of several domains important for transcriptional activation, DNA binding (C domain), hormone binding and dimerization (E domain). It is not known whether these genes have evolved through gene duplica...

  5. The rat androgen receptor gene promoter

    NARCIS (Netherlands)

    W.M. Baarends (Willy); A.P.N. Themmen (Axel); L.J. Blok (Leen); P. Mackenbach (Petra); A.O. Brinkmann (Albert); D.N. Meijer (Dies); P.W. Faber; J. Trapman (Jan); J.A. Grootegoed (Anton)

    1990-01-01

    markdownabstractAbstract The androgen receptor (AR) is activated upon binding of testosterone or dihydrotestosterone and exerts regulatory effects on gene expression in androgen target cells. To study transcriptional regulation of the rat AR gene itself, the 5' genomic region of this gene was clon

  6. Nuclear Receptor Genes - Regulation and Evolution

    OpenAIRE

    Sharma, Yogita

    2016-01-01

    Nuclear receptors are transcription factors that typically bind ligands in order to regulate the expression level of their target genes. Members of this family work with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. Nuclear receptors are promising drug targets and have therefore attracted immense attention in recent decades in the field of pharmacology. Irregular expression of nuclear recept...

  7. Chromosomal organization of adrenergic receptor genes

    International Nuclear Information System (INIS)

    The adrenergic receptors (ARs) (subtypes α1, α2, β1, and β2) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. The authors have previously assigned the genes for β2-and α2-AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, they have now mapped the α1-AR gene to chromosome 5q32→q34, the same position as β2-AR, and the β1-AR gene to chromosome 10q24→q26, the region where α2-AR, is located. In mouse, both α2-and β1-AR genes were assigned to chromosome 19, and the α1-AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the α1-and β2-AR genes in humans are within 300 kilobases (kb) and the distance between the α2- and β1-AR genes is <225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediation the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families off receptor molecules

  8. Leptin_receptor - Wikipedia, the free encyclopedia [Gene Wiki

    Lifescience Database Archive (English)

    Full Text Available Leptin receptor - Wikipedia, the free encyclopediaLeptin receptorFrom Wikipedia, the free encycl ... nce variation at the human leptin receptor gene in lean ... and obese Pima Indians". Hum. Mol. Genet. 6 (5): 6 ...

  9. FGF receptor genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Agarwal, D; Pineda, S; Michailidou, K;

    2014-01-01

    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying......, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression.Results:Little evidence of association with breast cancer risk...... that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2....

  10. Common Promoter Elements in Odorant and Vomeronasal Receptor Genes

    OpenAIRE

    Jussara S Michaloski; Galante, Pedro A. F.; Nagai, Maíra H.; Lucia Armelin-Correa; Ming-Shan Chien; Hiroaki Matsunami; Bettina Malnic

    2011-01-01

    In mammals, odorants and pheromones are detected by hundreds of odorant receptors (ORs) and vomeronasal receptors (V1Rs and V2Rs) expressed by sensory neurons that are respectively located in the main olfactory epithelium and in the vomeronasal organ. Even though these two olfactory systems are functionally and anatomically separate, their sensory neurons show a common mechanism of receptor gene regulation: each neuron expresses a single receptor gene from a single allele. The mechanisms unde...

  11. Identification of Significant Association and Gene-Gene Interaction of GABA Receptor Subunit Genes in Autism

    OpenAIRE

    Ma, D Q; Whitehead, P. L.; Menold, M M; Martin, E. R.; Ashley-Koch, A. E.; Mei, H; Ritchie, M. D.; Delong, G R; Abramson, R.K.; Wright, H. H.; Cuccaro, M. L.; Hussman, J. P.; Gilbert, J.R.; Pericak-Vance, M A

    2005-01-01

    Autism is a common neurodevelopmental disorder with a significant genetic component. Existing research suggests that multiple genes contribute to autism and that epigenetic effects or gene-gene interactions are likely contributors to autism risk. However, these effects have not yet been identified. Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, has been implicated in autism etiology. Fourteen known autosomal GABA receptor subunit genes were studied...

  12. Calcium-sensing receptor: A new target for therapy of diarrhea

    OpenAIRE

    Cheng, Sam Xianjun

    2016-01-01

    Management of acute diarrhea remains a global challenge, particularly in resource-limiting countries. Oral rehydration solution (ORS), a passive rehydrating therapy developed approximately 40 years ago, remains the mainstay treatment. Although ORS is effective for hydration, since it does not inhibit enterotoxin-mediated excessive secretion, reduced absorption and compromised barrier function - the primary mechanisms of diarrhea, ORS does not offer a rapid relief of diarrhea symptom. There ar...

  13. Novel strategies in drug discovery of the calcium-sensing receptor based on biased signaling

    DEFF Research Database (Denmark)

    Thomsen, Alex Rojas Bie; Smajilovic, Sanela; Bräuner-Osborne, Hans

    2012-01-01

    A hallmark of chronic kidney disease is hyperphosphatemia due to renal phosphate retention. Prolonged parathyroid gland exposure to hyperphosphatemia leads to secondary hyperparathyroidism characterized by hyperplasia of the glands and excessive secretion of parathyroid hormone (PTH), which cause...... of hypocalcemia by virtue of it not affecting calcitonin secretion. The present review will focus on recent advancements in understanding signaling and biased signaling of the CaSR, and how that may be utilized to discover new and smarter drugs targeting the CaSR....

  14. Androgen receptor gene polymorphism in zebra species

    Directory of Open Access Journals (Sweden)

    Hideyuki Ito

    2015-09-01

    Full Text Available Androgen receptor genes (AR have been found to have associations with reproductive development, behavioral traits, and disorders in humans. However, the influence of similar genetic effects on the behavior of other animals is scarce. We examined the loci AR glutamine repeat (ARQ in 44 Grevy's zebras, 23 plains zebras, and three mountain zebras, and compared them with those of domesticated horses. We observed polymorphism among zebra species and between zebra and horse. As androgens such as testosterone influence aggressiveness, AR polymorphism among equid species may be associated with differences in levels of aggression and tameness. Our findings indicate that it would be useful to conduct further studies focusing on the potential association between AR and personality traits, and to understand domestication of equid species.

  15. Genetic and Functional Analysis of Androgen Receptor Gene Mutations

    OpenAIRE

    Brüggenwirth, Hennie

    1998-01-01

    textabstractNuclear hormone receptors (NHRs) are intermediary factors through which extracellular signals regulate expression of genes that are involved in homeostasis, development, and differentiation (Beato et al. '995, Mangelsdorf and Evans 1995). These receptors are characterized by a modular structure, with domains involved in transcription activation, DNA binding. hormone binding, and dimerization. The nuclear receptor super-family comprises three subfamilies of receptors, which might h...

  16. Alternative splicing of human and mouse NPFF2 receptor genes: Implications to receptor expression.

    Science.gov (United States)

    Ankö, Minna-Liisa; Ostergård, Maria; Lintunen, Minnamaija; Panula, Pertti

    2006-12-22

    Alternative splicing has an important role in the tissue-specific regulation of gene expression. Here we report that similar to the human NPFF2 receptor, the mouse NPFF2 receptor is alternatively spliced. In human the presence of three alternatively spliced receptor variants were verified, whereas two NPFF2 receptor variants were identified in mouse. The alternative splicing affected the 5' untranslated region of the mouse receptor and the variants in mouse were differently distributed. The mouse NPFF system may also have species-specific features since the NPFF2 receptor mRNA expression differs from that reported for rat. PMID:17157836

  17. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Science.gov (United States)

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  18. Update on the olfactory receptor (OR gene superfamily

    Directory of Open Access Journals (Sweden)

    Olender Tsviya

    2008-09-01

    Full Text Available Abstract The olfactory receptor gene (OR superfamily is the largest in the human genome. The superfamily contains 390 putatively functional genes and 465 pseudogenes arranged into 18 gene families and 300 subfamilies. Even members within the same subfamily are often located on different chromosomes. OR genes are located on all autosomes except chromosome 20, plus the X chromosome but not the Y chromosome. The gene:pseudogene ratio is lowest in human, higher in chimpanzee and highest in rat and mouse -- most likely reflecting the greater need of olfaction for survival in the rodent than in the human. The OR genes undergo allelic exclusion, each sensory neurone expressing usually only one odourant receptor allele; the mechanism by which this phenomenon is regulated is not yet understood. The nomenclature system (based on evolutionary divergence of genes into families and subfamilies of the OR gene superfamily has been designed similarly to that originally used for the CYP gene superfamily.

  19. Effects related to gene-gene interactions of peroxisome proliferator-activated receptor on essential hypertension

    Institute of Scientific and Technical Information of China (English)

    俞浩

    2013-01-01

    Objective To explore the impact of the gene-gene interaction among the single nucleotide polymorphisms(SNPs) of peroxisome proliferator-activated receptorα/δ/γ on essential hypertension(EH).Methods

  20. Genetic and Functional Analysis of Androgen Receptor Gene Mutations

    NARCIS (Netherlands)

    H.T. Brüggenwirth (Hennie)

    1998-01-01

    textabstractNuclear hormone receptors (NHRs) are intermediary factors through which extracellular signals regulate expression of genes that are involved in homeostasis, development, and differentiation (Beato et al. '995, Mangelsdorf and Evans 1995). These receptors are characterized by a modular st

  1. Organization and expression of canine olfactory receptor genes.

    OpenAIRE

    Issel-Tarver, L; Rine, J

    1996-01-01

    Four members of the canine olfactory receptor gene family were characterized. The predicted proteins shared 40-64% identity with previously identified olfactory receptors. The four subfamilies identified in Southern hybridization experiments had as few as 2 and as many as 20 members. All four genes were expressed exclusively in olfactory epithelium. Expression of multiple members of the larger subfamilies was detected, suggesting that most if not all of the cross-hybridizing bands in genomic ...

  2. CRDB: Database of Chemosensory Receptor Gene Families in Vertebrate

    OpenAIRE

    Dong Dong; Ke Jin; Xiaoli Wu; Yang Zhong

    2012-01-01

    Chemosensory receptors (CR) are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously u...

  3. Regulation of gonadotropin receptor gene expression

    NARCIS (Netherlands)

    A.P.N. Themmen (Axel); R. Kraaij (Robert); J.A. Grootegoed (Anton)

    1994-01-01

    textabstractThe receptors for the gonadotropins differ from the other G protein-coupled receptors by having a large extracellular hormone-binding domain, encoded by nine or ten exons. Alternative splicing of the large pre-mRNA of approximately 100 kb can result in mRNA species that encode truncated

  4. Vitamin D receptor and estrogen receptor gene polymorphisms in postmenopausal Danish women

    DEFF Research Database (Denmark)

    Bagger, Y Z; Hassager, C; Heegaard, Anne-Marie;

    2000-01-01

    To investigate the polymorphisms of the vitamin D receptor (VDR) and estrogen receptor (ER) genes in relation to biochemical markers of bone turnover (serum osteocalcin and urinary collagen type I degradation products (CrossLaps), and to study ER genotypes in relation to serum lipoproteins, blood...

  5. Association of Interleukin 23 Receptor Gene with Sarcoidosis

    Directory of Open Access Journals (Sweden)

    Hyun Soo Kim

    2011-01-01

    Full Text Available Interleukin 23 receptor (IL23R gene has been reported as a genetic factor strongly associated with inflammatory bowel disease, psoriasis, and ankylosing spondylitis. We investigated the association between IL23R gene single nucleotide polymorphisms (SNPs and susceptibility to sarcoidosis, including the clinical manifestation of uveitis.

  6. Prolactin receptor and signal transduction to milk protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Djiane, J.; Daniel, N.; Bignon, C. [Unite d`Endocrinologie Moleculaire, Jouy en Josas (France)] [and others

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  7. Epidermal growth factor (EGF) receptor gene transcription

    International Nuclear Information System (INIS)

    The authors have studied in vitro transcription of the human epidermal growth factor (EGF) receptor proto-oncogene using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce the EGF receptor. With the in vitro system we found that Sp1 and other trans-acting factors bound to the EGF receptor promoter regions and are required for maximal expression. Fractionation showed that a DEAE-Sepharose fraction (BA) contained a novel factor, which specifically stimulated EGF receptor transcription 5- to 10-fold. The molecular mass of the native form of the factor is about 270-kDa based on its migration on Sephacryl S-300. This factor may activate transcription of the proto-oncogene through a weak or indirect interaction with the DNA template

  8. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    International Nuclear Information System (INIS)

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons

  9. Androgen receptor gene mutations in 46, XY females

    Directory of Open Access Journals (Sweden)

    Mir Davood Omrani

    2006-12-01

    Full Text Available The androgen insensitivity syndrome is a heterogeneous disorder with a wide spectrum of phenotypic abnormalities, ranging from complete female to ambiguous forms that more closely resemble males. The primary abnormality is a defective androgen receptor protein due to a mutation of the androgen receptor gene. This prevents normal androgen action and thus leads to impaired virilization. A point mutation of the androgen receptor gene affecting two siblings with complete androgen insensitivity syndrome is described. On examination they both had normal external female genitalia. Genomic DNA was extracted from EDTA-preserved blood samples and isolated according to standard procedures. The androgen receptor gene was screened for mutations using an automated sequence analyzer (ABI Prism 310. Both girls possess one substitutions (G>A at position 2086 in exon 4, leading to D695N mutation. Mother was found to be a heterozygous carrier for this mutation. GTG banded karyotype of the girls showed they both have male karyotype (46, XY. In addition, the SRY gene screening showed they both have intact SRY gene. The labioscrotal folds contained palpable gonads measuring 1.5 cm in largest diameter. Ultrasound examination of the pelvis revealed absence of the uterus. Serum follicle stimulating hormone (FSH, luteinizing hormone (LH, and testosterone values were higher than normal range. To our knowledge this is the first confirmed instance of AIS due to an AR mutation occurring in familial cases in this country. Furthermore, the phenotype has complete association with this mutation. KEY WORDS: Androgen insensitivity syndrome, androgen receptor

  10. Targeted gene delivery via N-acetylglucosamine receptor mediated endocytosis.

    Science.gov (United States)

    Singh, Bijay; Maharjan, Sushila; Kim, You-Kyoung; Jiang, Tai; Islam, Mohammad Ariful; Kang, Sang-Kee; Cho, Myung-Haing; Choi, Yun-Jaie; Cho, Chong-Su

    2014-11-01

    Receptor-mediated endocytosis is a promising approach of gene delivery into the target cells via receptor-ligand interaction. Vimentins at the cell surface are recently known to bind N-acetylglucosamine (GlcNAc) residue, therefore, the cell surfaces of vimentin-expressing cells could be targeted by using the GlcNAc residue as a specific ligand for receptor-mediated gene delivery. Here, we have developed polymeric gene delivery vectors, based on poly(ethylene oxide)(PEO) and poly(aspartamide), namely poly[(aspartamide)(diethylenetriamine)]-b-[PEO-(GlcNAc)] (PADPG) and poly[(aspartamide)(diethylenetriamine)]-b-[PEO] (PADP) to elucidate the efficiency of GlcNAc ligand for gene delivery through receptor mediated endocytosis. To determine the efficiency of these polymeric vectors for specific gene delivery, the DNA condensation ability of PADPG and PADP and the subsequent formation of polymeric nanoparticles were confirmed by gel retardation assay and transmission electron microscopy respectively. Both PADPG and PADP had lower cytotoxicity than polyethylenimine 25 K (PEI 25 K). However, their transfection efficiency was comparatively lower than PEI 25 K due to hydrophilic property of PEO in the vectors. To observe the stability of polymeric nanoparticles, the transfection of PADPG and PADP was carried out in the presence of serum. Favorably, the interfering effect of serum on the transfection efficiency of PADPG and PADP was also very low. Finally, when the cell specificity of these polymeric vectors was investigated, PADPG had high gene transfection in vimentin-expressing cells than vimentin-deficiency cells. The high transfection efficiency of PADPG was attributed to the GlcNAc in the polymeric vector which interact specifically with vimentin in the cells for the receptor-mediated endocytosis. The competitive inhibition assay further proved the receptor-mediated endocytosis of PADPG. Thus, this study demonstrates that conjugation of GlcNAc is an effective and rational

  11. Variability of the Transferrin Receptor 2 Gene in AMD

    OpenAIRE

    2014-01-01

    Oxidative stress is a major factor in the pathogenesis of age-related macular degeneration (AMD). Iron may catalyze the Fenton reaction resulting in overproduction of reactive oxygen species. Transferrin receptor 2 plays a critical role in iron homeostasis and variability in its gene may influence oxidative stress and AMD occurrence. To verify this hypothesis we assessed the association between polymorphisms of the TFR2 gene and AMD. A total of 493 AMD patients and 171 matched controls were g...

  12. Expression of serotonin receptor genes in cranial ganglia.

    Science.gov (United States)

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  13. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Lenea; Bräuner-Osborne, Hans

    2015-01-01

    taste receptors (T1R1-3), one calcium-sensing (CaS) receptor, one GPCR, class C, group 6, subtype A (GPRC6) receptor, and seven orphan receptors. G protein-coupled receptors undergo a number of post-translational modifications, which regulate their structure, function and/or pharmacology. Here, we...

  14. Common promoter elements in odorant and vomeronasal receptor genes.

    Directory of Open Access Journals (Sweden)

    Jussara S Michaloski

    Full Text Available In mammals, odorants and pheromones are detected by hundreds of odorant receptors (ORs and vomeronasal receptors (V1Rs and V2Rs expressed by sensory neurons that are respectively located in the main olfactory epithelium and in the vomeronasal organ. Even though these two olfactory systems are functionally and anatomically separate, their sensory neurons show a common mechanism of receptor gene regulation: each neuron expresses a single receptor gene from a single allele. The mechanisms underlying OR and VR gene expression remain unclear. Here we investigated if OR and V1R genes share common sequences in their promoter regions.We conducted a comparative analysis of promoter regions of 39 mouse V1R genes and found motifs that are common to a large number of promoters. We then searched mouse OR promoter regions for motifs that resemble the ones found in the V1R promoters. We identified motifs that are present in both the V1R and OR promoter regions. Some of these motifs correspond to the known O/E like binding sites while others resemble binding sites for transcriptional repressors. We show that one of these motifs specifically interacts with proteins extracted from both nuclei from olfactory and vomeronasal neurons. Our study is the first to identify motifs that resemble binding sites for repressors in the promoters of OR and V1R genes. Analysis of these motifs and of the proteins that bind to these motifs should reveal important aspects of the mechanisms of OR/V1R gene regulation.

  15. Gene specific actions of thyroid hormone receptor subtypes.

    Directory of Open Access Journals (Sweden)

    Jean Z Lin

    Full Text Available There are two homologous thyroid hormone (TH receptors (TRs α and β, which are members of the nuclear hormone receptor (NR family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/- T(3 in two cell backgrounds (HepG2 and HeLa. We find that hundreds of genes respond to T(3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T(3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/- T(3, TR regulation patterns and T(3 dose response. Cycloheximide (CHX treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs.

  16. CRDB: database of chemosensory receptor gene families in vertebrate.

    Directory of Open Access Journals (Sweden)

    Dong Dong

    Full Text Available Chemosensory receptors (CR are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of 'birth-and-death' evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates.

  17. CRDB: database of chemosensory receptor gene families in vertebrate.

    Science.gov (United States)

    Dong, Dong; Jin, Ke; Wu, Xiaoli; Zhong, Yang

    2012-01-01

    Chemosensory receptors (CR) are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of 'birth-and-death' evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates. PMID:22393364

  18. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    André M. Xavier

    2016-04-01

    Full Text Available Glucocorticoids (GCs are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GCs effects on inflammation are generally mediated through GC receptors (GRs. Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors (TLRs pathway, or subject key transcription factors, such as NF-B and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins (APPs and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective glucocorticoid receptor modulators; SEGRMs, cell culture, animal treatment or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive.

  19. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    Science.gov (United States)

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC’s effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  20. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia.

    Science.gov (United States)

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder. PMID:27296644

  1. Estrogenic receptors a and p gene polymorphisms in postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    K A Maslova

    2008-01-01

    Full Text Available Objective. To assess frequency distribution of estrogenic receptor (ERa and ERfl gene polymorphisms and their influence on bone mineral density (BMD in groups of postmenopausal women with and without osteoporosis (OP. Material and methods. 200 residents of Moscow and Moscow region were divided into two groups considering BMD values according to WHO criteria; OP group and healthy control group Results. Differences of genotype and their combinations frequency distribution between OP and control groups show presence OP risk and protector genotypes. ER gene important role in pathogenesis of postmenopausal osteoporosis and possibility to use these genetic markers for assessment of risk of OP development in Russian population was confirmed.

  2. First evidence for functional vomeronasal 2 receptor genes in primates

    OpenAIRE

    Hohenbrink, Philipp; Mundy, Nicholas I.; Zimmermann, Elke; Radespiel, Ute

    2013-01-01

    Two classes of vomeronasal receptor genes, V1R and V2R, occur in vertebrates. Whereas, V1R loci are found in a wide variety of mammals, including primates, intact V2R genes have thus far only been described in rodents and marsupials. In primates, the V2R repertoire has been considered degenerate. Here, we identify for the first time two intact V2R loci in a strepsirrhine primate, the grey mouse lemur (Microcebus murinus), and demonstrate their expression in the vomeronasal organ. Putatively f...

  3. Association of Interleukin-4 Receptor Gene Polymorphism with Chronic Periodontitis

    OpenAIRE

    M. Khoshhal; J. Moradi Haghgoo; Torkzaban, P.; S.R. Arabi; F. Vafaee; M. Hajiloie; B. Pourmoradi

    2011-01-01

    Introduction & Objective: Periodontitis is a multifactorial disease in which host immune system and genetic factors have an important role in its pathogenesis. Genetic polymorphisms in cytokines and their receptors have been proposed as potential markers for periodontal diseases. The aim of the present study was to evaluate whether IL-4R gene polymorphism is associated with chronic periodontitis (CP) or not? Materials & Methods: In this cross sectional study ninety non smoker patients (61 wom...

  4. Variant in oxytocin receptor gene is associated with amygdala volume

    OpenAIRE

    Furman, Daniella J; Chen, Michael C.; Gotlib, Ian H.

    2011-01-01

    The oxytocin system plays a significant role in modulating stress responses in animals and humans; perturbations in this system may contribute to the pathogenesis of psychiatric disorder. Attempts to identify clinically relevant genetic variants in the oxytocin system have yielded associations between polymorphisms of the oxytocin receptor (OXTR) gene and both autism and major depression. To date, however, little is known about how such variants affect brain structures implicated in these dis...

  5. Structure, characterization, and expression of the rat oxytocin receptor gene.

    OpenAIRE

    1995-01-01

    The multiple hormonal and neurotransmitter functions of the nonapeptide oxytocin are mediated by specific oxytocin receptors (OTRs). In most target tissues, the number of OTRs is strongly regulated. Specifically, in the uterus, a dramatic OTR upregulation precedes the onset of parturition. To study the molecular mechanisms underlying OTR regulation, we have isolated and characterized recombinant bacteriophage lambda EMBL3 genomic clones containing the rat OTR gene, using sequence information ...

  6. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer.

    Science.gov (United States)

    Carroll, J S

    2016-07-01

    Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology. PMID:26884552

  7. Steroid/thyroid hormone receptor genes in Caenorhabditis elegans.

    OpenAIRE

    Kostrouch, Z; Kostrouchova, M; Rall, J. E.

    1995-01-01

    The large family of steroid/thyroid hormone receptor (STR) genes has been extensively studied in vertebrates and insects but little information is available on it in more primitive organisms. All members possess a DNA binding domain of zinc fingers of the C2, C2 type. We have used the polymerase chain reaction with degenerate oligonucleotide primers covering this region to clone three distinct members of this family from the nematode Caenorhabditis elegans. All three belong to the retinoic ac...

  8. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection.

    Science.gov (United States)

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-08-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP(-/-) MEF cells, and quite substantially decreased in TRIF(-/-) MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP(-/-) MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  9. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  10. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    International Nuclear Information System (INIS)

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  11. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  12. Observations on the Evolution of the Melanocortin Receptor Gene Family: Distinctive Features of the Melanocortin-2 Receptor

    OpenAIRE

    RobertMichaelDores

    2013-01-01

    The melanocortin receptors are a gene family in the rhodopsin class of G protein-coupled receptors. Based on the analysis of several metazoan genome databases it appears that the melanocortin receptors are only found in chordates. The presence of five genes in the family (i.e., MC1R, MC2R, MC3R, MC4R, MC5R) in representatives of the tetrapods indicates that the gene family is the result of two genome duplication events and one local gene duplication event during the evolution of the chordates...

  13. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression.

    NARCIS (Netherlands)

    H. Russcher (Henk); P. Smit (Pauline); E.L.T. van den Akker (Erica); E.F.C. van Rossum (Liesbeth); A.O. Brinkmann (Albert); F.H. de Jong (Frank); S.W.J. Lamberts (Steven); J.W. Koper (Jan)

    2005-01-01

    textabstractCONTEXT: Interindividual variation in glucocorticoid (GC)-sensitivity can be partly explained by polymorphisms in the GC receptor (GR) gene. The ER22/23EK and N363S polymorphisms have been described to be associated with lower and higher GC sensitivity, respectively. OBJECTIVE AND DESIGN

  14. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  15. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 40C, and internalization of insulin-receptor complexes was initiated by warming the cells to 370C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  16. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    Science.gov (United States)

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development. PMID:25986534

  17. The agonist-binding domain of the calcium-sensing receptor is located at the amino-terminal domain

    DEFF Research Database (Denmark)

    Bräuner-Osborne, H; Jensen, Anders A.; Sheppard, P O;

    1999-01-01

    inositol phosphate production when exposed to the cationic agonists Ca2+, Mg2+, and Ba2+ in transiently transfected tsA cells (a transformed HEK 293 cell line). The pharmacological profile of Ca/1a (EC50 values of 3.3, 2.6, and 3.9 mM for these cations, respectively) was very similar to that of the wild...

  18. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET)

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Hansen, Jakob L; Sheikh, Søren P;

    2002-01-01

    -induced intermolecular movements in the CaR homodimer using the new bioluminescence resonance energy transfer technique, BRET2, which is based on the transference of energy from Renilla luciferase (Rluc) to the green fluorescent protein mutant GFP2. We tagged CaR with Rluc and GFP2 at different intracellular locations...

  19. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    Science.gov (United States)

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  20. Evolution of the Sweet Taste Receptor Gene Tas1r2 in Bats

    OpenAIRE

    Zhao, Huabin; Zhou, Yingying; Pinto, C. Miguel; Charles-Dominique, Pierre; Galindo-González, Jorge; Zhang, Shuyi; Zhang, Jianzhi

    2010-01-01

    Taste perception is an important component of an animal's fitness. The identification of vertebrate taste receptor genes in the last decade has enabled molecular genetic studies of the evolution of taste perception in the context of the ecology and dietary preferences of organisms. Although such analyses have been conducted in a number of species for bitter taste receptors, a similar analysis of sweet taste receptors is lacking. Here, we survey the sole sweet taste–specific receptor gene Tas1...

  1. Evolution of dopamine receptor genes of the D1 class in vertebrates.

    Science.gov (United States)

    Yamamoto, Kei; Mirabeau, Olivier; Bureau, Charlotte; Blin, Maryline; Michon-Coudouel, Sophie; Demarque, Michaël; Vernier, Philippe

    2013-04-01

    The receptors of the dopamine neurotransmitter belong to two unrelated classes named D1 and D2. For the D1 receptor class, only two subtypes are found in mammals, the D1A and D1B, receptors, whereas additional subtypes, named D1C, D1D, and D1X, have been found in other vertebrate species. Here, we analyzed molecular phylogeny, gene synteny, and gene expression pattern of the D1 receptor subtypes in a large range of vertebrate species, which leads us to propose a new view of the evolution of D1 dopamine receptor genes. First, we show that D1C and D1D receptor sequences are encoded by orthologous genes. Second, the previously identified Cypriniform D1X sequence is a teleost-specific paralog of the D1B sequences found in all groups of jawed vertebrates. Third, zebrafish and several sauropsid species possess an additional D1-like gene, which is likely to form another orthology group of vertebrate ancestral genes, which we propose to name D1E. Ancestral jawed vertebrates are thus likely to have possessed four classes of D1 receptor genes-D1A, D1B(X), D1C(D), and D1E-which arose from large-scale gene duplications. The D1C receptor gene would have been secondarily lost in the mammalian lineage, whereas the D1E receptor gene would have been lost independently in several lineages of modern vertebrates. The D1A receptors are well conserved throughout jawed vertebrates, whereas sauropsid D1C receptors have rapidly diverged, to the point that they were misidentified as D1D. The functional significance of the D1C receptor loss is not known. It is possible that the function may have been substituted with D1A or D1B receptors in mammals, following the disappearance of D1C receptors in these species. PMID:23197594

  2. Interleukin-4 receptor alpha gene variants and allergic disease

    Directory of Open Access Journals (Sweden)

    Hall Ian P

    2000-06-01

    Full Text Available Abstract The interleukin-4 (IL-4 signalling cascade has been identified as a pathway potentially important in the development of asthma. Genetic variants within this signalling pathway might contribute to the risk of developing asthma in a given individual. A number of polymorphisms have been described within the IL-4 receptor α (IL-4Rα gene. In addition polymorphism occurs in the promoter for the IL-4 gene itself. This commentary accompanies a paper by C Ober et al describing the contribution of IL-4Rα polymorphism to susceptibility to asthma and atopy in the Hutterite population and other outbred populations collected during the collaborative studies on the genetics of asthma (CSGA programme.

  3. Interleukin 18 receptor 1 gene polymorphisms are associated with asthma

    DEFF Research Database (Denmark)

    Zhu, Guohua; Whyte, Moira K B; Vestbo, Jørgen;

    2008-01-01

    The interleukin 18 receptor (IL18R1) gene is a strong candidate gene for asthma. It has been implicated in the pathophysiology of asthma and maps to an asthma susceptibility locus on chromosome 2q12. The possibility of association between polymorphisms in IL18R1 and asthma was examined by...... genotyping seven SNPs in 294, 342 and 100 families from Denmark, United Kingdom and Norway and conducting family-based association analyses for asthma, atopic asthma and bronchial hyper-reactivity (BHR) phenotypes. Three SNPs in IL18R1 were associated with asthma (0.01131 < or = P < or = 0.01377), five with...... polymorphisms in IL18R1 and asthma....

  4. Observations on the evolution of the melanocortin receptor gene family: distinctive features of the melanocortin-2 receptor

    Directory of Open Access Journals (Sweden)

    Robert Michael Dores

    2013-04-01

    Full Text Available The melanocortin receptors are a gene family in the rhodopsin class of G protein-coupled receptors. Based on the analysis of several metazoan genome databases it appears that the melanocortin receptors are only found in chordates. The presence of five genes in the family (i.e., MC1R, MC2R, MC3R, MC4R, MC5R in representatives of the tetrapods indicates that the gene family is the result of two genome duplication events and one local gene duplication event during the evolution of the chordates. The melanocortin receptors are activated by melanocortin ligands (i.e., ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH which are all derived from the polypeptide hormone/neuropeptide precursor, POMC, and as a result the functional evolution of the melanocortin receptors is intimately associated with the co-evolution of POMC endocrine and neuronal circuits. This review will consider the origin of the melanocortin receptors, and discuss the evolutionary relationship between MC2R, MC5R, and MC4R. In addition, this review will analyze the functional evolution of the mc2r gene in light of the co-evolution of the MRAP (Melanocortin-2 Receptor Accessory Protein gene family.

  5. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas.

    OpenAIRE

    Sugawa, N; Ekstrand, A J; James, C D; Collins, V P

    1990-01-01

    The epidermal growth factor receptor gene has been found to be amplified and rearranged in human glioblastomas in vivo. Here we present the sequence across a splice junction of aberrant epidermal growth factor receptor transcripts derived from corresponding and uniquely rearranged genes that are coamplified and coexpressed with non-rearranged epidermal growth factor receptor genes in six primary human glioblastomas. Each of these six tumors contains aberrant transcripts derived from identical...

  6. Clone and expression of human transferrin receptor gene: a marker gene for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Objective: To clone human transferrin receptor (hTfR) gene and construct expression vector producing recombination protein. Methods: Human transferrin receptor gene cDNA was amplified by RT-PCR from human embryonic liver and lung tissue. Recombinant pcDNA3-hTfR and pEGFP-Cl-hTfR plasmids were constructed and confirmed by DNA sequencing. These plasmids were stably transfected into the HEK293 cells. The protein expression in vitro was confirmed by Western Blot. The efficiency of expression and the location of hTfR were also investigated by fluorescence microscopy and confocal fluorescence microscopy. Results: The full length cDNA of hTfR gene (2332 bp) was cloned and sequenced. The hTfR (190 000) was overexpressed in transfected HEK293 cells by Western blot analysis. Fluorescence micrographs displayed that the hTfR was expressed at high level and located predominantly in the cell surface. Conclusions: Human transferrin receptor (hTfR) gene has been successfully cloned and obtained high-level expression in HEK293 cells, and the recombination protein of hTfR distributed predominantly in the cell membrane. (authors)

  7. Transient receptor potential (TRP gene superfamily encoding cation channels

    Directory of Open Access Journals (Sweden)

    Pan Zan

    2011-01-01

    Full Text Available Abstract Transient receptor potential (TRP non-selective cation channels constitute a superfamily, which contains 28 different genes. In mammals, this superfamily is divided into six subfamilies based on differences in amino acid sequence homology between the different gene products. Proteins within a subfamily aggregate to form heteromeric or homomeric tetrameric configurations. These different groupings have very variable permeability ratios for calcium versus sodium ions. TRP expression is widely distributed in neuronal tissues, as well as a host of other tissues, including epithelial and endothelial cells. They are activated by environmental stresses that include tissue injury, changes in temperature, pH and osmolarity, as well as volatile chemicals, cytokines and plant compounds. Their activation induces, via intracellular calcium signalling, a host of responses, including stimulation of cell proliferation, migration, regulatory volume behaviour and the release of a host of cytokines. Their activation is greatly potentiated by phospholipase C (PLC activation mediated by coupled GTP-binding proteins and tyrosine receptors. In addition to their importance in maintaining tissue homeostasis, some of these responses may involve various underlying diseases. Given the wealth of literature describing the multiple roles of TRP in physiology in a very wide range of different mammalian tissues, this review limits itself to the literature describing the multiple roles of TRP channels in different ocular tissues. Accordingly, their importance to the corneal, trabecular meshwork, lens, ciliary muscle, retinal, microglial and retinal pigment epithelial physiology and pathology is reviewed.

  8. Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy.

    Science.gov (United States)

    Uzefovsky, F; Shalev, I; Israel, S; Edelman, S; Raz, Y; Mankuta, D; Knafo-Noam, A; Ebstein, R P

    2015-01-01

    Empathy is the ability to recognize and share in the emotions of others. It can be considered a multifaceted concept with cognitive and emotional aspects. Little is known regarding the underlying neurochemistry of empathy and in the current study we used a neurogenetic approach to explore possible brain neurotransmitter pathways contributing to cognitive and emotional empathy. Both the oxytocin receptor (OXTR) and the arginine vasopressin receptor 1a (AVPR1a) genes contribute to social cognition in both animals and humans and hence are prominent candidates for contributing to empathy. The following research examined the associations between polymorphisms in these two genes and individual differences in emotional and cognitive empathy in a sample of 367 young adults. Intriguingly, we found that emotional empathy was associated solely with OXTR, whereas cognitive empathy was associated solely with AVPR1a. Moreover, no interaction was observed between the two genes and measures of empathy. The current findings contribute to our understanding of the distinct neurogenetic pathways involved in cognitive and emotional empathy and underscore the pervasive role of both oxytocin and vasopressin in modulating human emotions. PMID:25476609

  9. Effects of the lactase 13910 C/T and calcium-sensor receptor A986S G/T gene polymorphisms on the incidence and recurrence of colorectal cancer in Hungarian population

    International Nuclear Information System (INIS)

    Epidemiological studies suggested the chemopreventive role of higher calcium intake in colorectal carcinogenesis. We examined genetic polymorphisms that might influence calcium metabolism: lactase (LCT) gene 13910 C/T polymorphism causing lactose intolerance and calcium-sensing receptor (CaSR) gene A986S polymorphism as a responsible factor for the altered cellular calcium sensation. 538 Hungarian subjects were studied: 278 patients with colorectal cancer and 260 healthy controls. Median follow-up was 17 months. After genotyping, the relationship between LCT 13910 C/T and CaSR A986S polymorphisms as well as tumor incidence/progression was investigated. in patient with colorectal cancer, a significantly higher LCT CC frequency was associated with increased distant disease recurrence (OR = 4.04; 95% CI = 1.71–9.58; p = 0.006). The disease free survival calculated from distant recurrence was reduced for those with LCT CC genotype (log rank test p = 0.008). In case of CaSR A986S polymorphism, the homozygous SS genotype was more frequent in patients than in controls (OR = 4.01; 95% CI = 1.33–12.07; p = 0.014). The number of LCT C and CaSR S risk alleles were correlated with tumor incidence (p = 0.035). The CCSS genotype combination was found only in patients with CRC (p = 0.033). LCT 13910 C/T and CaSR A986S polymorphisms may have an impact on the progression and/or incidence of CRC

  10. Effects of the lactase 13910 C/T and calcium-sensor receptor A986S G/T gene polymorphisms on the incidence and recurrence of colorectal cancer in Hungarian population

    Directory of Open Access Journals (Sweden)

    Budai Barna

    2008-11-01

    Full Text Available Abstract Background Epidemiological studies suggested the chemopreventive role of higher calcium intake in colorectal carcinogenesis. We examined genetic polymorphisms that might influence calcium metabolism: lactase (LCT gene 13910 C/T polymorphism causing lactose intolerance and calcium-sensing receptor (CaSR gene A986S polymorphism as a responsible factor for the altered cellular calcium sensation. Methods 538 Hungarian subjects were studied: 278 patients with colorectal cancer and 260 healthy controls. Median follow-up was 17 months. After genotyping, the relationship between LCT 13910 C/T and CaSR A986S polymorphisms as well as tumor incidence/progression was investigated. Results in patient with colorectal cancer, a significantly higher LCT CC frequency was associated with increased distant disease recurrence (OR = 4.04; 95% CI = 1.71–9.58; p = 0.006. The disease free survival calculated from distant recurrence was reduced for those with LCT CC genotype (log rank test p = 0.008. In case of CaSR A986S polymorphism, the homozygous SS genotype was more frequent in patients than in controls (OR = 4.01; 95% CI = 1.33–12.07; p = 0.014. The number of LCT C and CaSR S risk alleles were correlated with tumor incidence (p = 0.035. The CCSS genotype combination was found only in patients with CRC (p = 0.033. Conclusion LCT 13910 C/T and CaSR A986S polymorphisms may have an impact on the progression and/or incidence of CRC.

  11. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    Science.gov (United States)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  12. Variants in the vitamin D receptor gene and asthma

    Directory of Open Access Journals (Sweden)

    Wjst Matthias

    2005-01-01

    Full Text Available Abstract Background Early lifetime exposure to dietary or supplementary vitamin D has been predicted to be a risk factor for later allergy. Twin studies suggest that response to vitamin D exposure might be influenced by genetic factors. As these effects are primarily mediated through the vitamin D receptor (VDR, single base variants in this gene may be risk factors for asthma or allergy. Results 951 individuals from 224 pedigrees with at least 2 asthmatic children were analyzed for 13 SNPs in the VDR. There was no preferential transmission to children with asthma. In their unaffected sibs, however, one allele in the 5' region was 0.5-fold undertransmitted (p = 0.049, while two other alleles in the 3' terminal region were 2-fold over-transmitted (p = 0.013 and 0.018. An association was also seen with bronchial hyperreactivity against methacholine and with specific immunoglobulin E serum levels. Conclusion The transmission disequilibrium in unaffected sibs of otherwise multiple-affected families seem to be a powerful statistical test. A preferential transmission of vitamin D receptor variants to children with asthma could not be confirmed but raises the possibility of a protective effect for unaffected children.

  13. Identifying polymorphisms in the Rattus norvegicus D3 dopamine receptor gene and regulatory region

    NARCIS (Netherlands)

    Smits, B.M.; D'Souza, U.M.; Berezikov, E.; Cuppen, E.; Sluyter, F.

    2004-01-01

    The D(3) dopamine receptor has been implicated in several neuropsychiatric disorders, including schizophrenia, Parkinson's disease and addiction. Sequence variation in the D(3) gene can lead to subtle alteration in receptor structure or gene expression and thus to a different phenotype. In this stud

  14. An Expression Refinement Process Ensures Singular Odorant Receptor Gene Choice.

    Science.gov (United States)

    Abdus-Saboor, Ishmail; Al Nufal, Mohammed J; Agha, Maha V; Ruinart de Brimont, Marion; Fleischmann, Alexander; Shykind, Benjamin M

    2016-04-25

    Odorant receptor (OR) gene choice in mammals is a paradigmatic example of monogenic and monoallelic transcriptional selection, in which each olfactory sensory neuron (OSN) chooses to express one OR allele from over 1,000 encoded in the genome [1-3]. This process, critical for generation of the circuit from nose to brain [4-6], is thought to occur in two steps: a slow initial phase that randomly activates a single OR allele, followed by a rapid feedback that halts subsequent expression [7-14]. Inherent in this model is a finite failure rate wherein multiple OR alleles may be activated prior to feedback suppression [15, 16]. Confronted with more than one receptor, the neuron would need to activate a refinement mechanism to eliminate multigenic OR expression and resolve unique neuronal identity [16], critical to the generation of the circuit from nose to olfactory bulb. Here we used a genetic approach in mice to reveal a new facet of OR regulation that corrects adventitious activation of multiple OR alleles, restoring monogenic OR expression and unique neuronal identity. Using the tetM71tg model system, in which the M71 OR is expressed in >95% of mature OSNs and potently suppresses the expression of the endogenous OR repertoire [10], we provide clear evidence of a post-selection refinement (PSR) process that winnows down the number of ORs. We further demonstrate that PSR efficiency is linked to OR expression level, suggesting an underlying competitive process and shedding light on OR gene switching and the fundamental mechanism of singular OR choice. PMID:27040780

  15. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    OpenAIRE

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, Philippe; Economidis, I V; Belayew, A; Martial, J A; Rousseau, Guy

    1986-01-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cell...

  16. Toll-like receptor gene polymorphisms are associated with allergic rhinitis: a case control study

    OpenAIRE

    Nilsson Daniel; Andiappan Anand; Halldén Christer; Yun Wang; Säll Torbjörn; Tim Chew; Cardell Lars-Olaf

    2012-01-01

    Abstract Background The Toll-like receptor proteins are important in host defense and initiation of the innate and adaptive immune responses. A number of studies have identified associations between genetic variation in the Toll-like receptor genes and allergic disorders such as asthma and allergic rhinitis. The present study aim to search for genetic variation associated with allergic rhinitis in the Toll-like receptor genes. Methods A first association analysis genotyped 73 SNPs in 182 case...

  17. The Effect of Genetic Variation of the Retinoic Acid Receptor-Related Orphan Receptor C Gene on Fatness in Cattle

    OpenAIRE

    Barendse, W.; Bunch, R. J.; Kijas, J. W.; M. B. Thomas

    2007-01-01

    Genotypes at the retinoic acid receptor-related orphan receptor C (RORC) gene were associated with fatness in 1750 cattle. Ten SNPs were genotyped in RORC and the adjacent gene leucine-rich repeat neuronal 6D (LRRN6D) to map the QTL, 7 of which are in a 4.2-kb sequence around the ligand-binding domain of the RORC gene. Of the 29 inferred haplotypes for these SNPs, 2 have a combined frequency of 54.6% while the top 5 haplotypes have a combined frequency of 85.3%. The average D′ value of linkag...

  18. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation.

    OpenAIRE

    Macke, J. P.; Hu, N; S. Hu; Bailey, M.; King, V L; Brown, T.; Hamer, D; Nathans, J

    1993-01-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, we have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the the entire androgen receptor cod...

  19. Tales of one gene discovery of a novel candidate receptor in mammalian taste

    OpenAIRE

    Huang, Angela Lilly

    2007-01-01

    There are five basic taste modalities in mammals: bitter, sweet, sour, salty, and Umami (taste of MSG and L-amino acids). Receptors for bitter, sweet, and Umami were previously discovered. Identities of receptors for salty and sour taste modalities remained elusive. In this dissertation, I will present: 1) development of a novel bioinformatics screen to discover candidate receptors; 2) discovery of a novel gene, PKD2L1, in taste receptor cells; 3) evidence demonstrating PKD2L1-expressing tast...

  20. Differential localization and characterization of functional calcitonin gene-related peptide receptors in human subcutaneous arteries

    DEFF Research Database (Denmark)

    Edvinsson, L; Ahnstedt, H; Larsen, R;

    2014-01-01

    Calcitonin gene-related peptide (CGRP) and its receptor are widely distributed within the circulation and the mechanism behind its vasodilation not only differs from one animal species to another but is also dependent on the type and size of vessel. The present study examines the nature of CGRP......-induced vasodilation, characteristics of the CGRP receptor antagonist telcagepant and localization of the key components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) of the CGRP receptor in human subcutaneous arteries....

  1. Massive Losses of Taste Receptor Genes in Toothed and Baleen Whales

    OpenAIRE

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J.; WANG, DING; Zhao, Huabin

    2014-01-01

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared prem...

  2. Expression of androgen receptor target genes in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Kesha Rana; Nicole KL Lee; Jeffrey D Zajac; Helen E MacLean

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor(AR)‑regulated genes ininvitroandinvivomodels. The expression of the myogenic regulatory factormyogenin was signiifcantly decreased in skeletal muscle from testosterone‑treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity(ARΔZF2) versus wildtype mice, demonstrating thatmyogenin is repressed by the androgen/AR pathway. The ubiquitin ligaseFbxo32 was repressed by 12h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, andc‑Myc expression was decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, Igf2 andcalcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all butp57Kip2was also decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase‑mediated atrophy pathways to preserve muscle mass in adult muscle.

  3. Association of Interleukin-4 Receptor Gene Polymorphism with Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    M. Khoshhal

    2011-10-01

    Full Text Available Introduction & Objective: Periodontitis is a multifactorial disease in which host immune system and genetic factors have an important role in its pathogenesis. Genetic polymorphisms in cytokines and their receptors have been proposed as potential markers for periodontal diseases. The aim of the present study was to evaluate whether IL-4R gene polymorphism is associated with chronic periodontitis (CP or not? Materials & Methods: In this cross sectional study ninety non smoker patients (61 women and 29 men with chronic periodontitis were selected according to established criteria. They were categorized into three groups according to their clinical attachment level (CAL. Mutation at position 375(alanine/glutamine, 411(leucine/serine, 478(serine/proline, 406 (arginine/ cysteine in the IL-4R gene was detected by a polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP method.Results: The distribution of mutations for IL-4 polymorphism at amino acids 375 (P=0.41, 411(P=0.22, 478(P=0.17, 406(P=0.77 were not significantly different among mild, moderate and sever chronic periodontitis patients. Conclusion: This study suggests that there is no correlation between IL-4R polymorphism of chronic periodontitis.(Sci J Hamadan Univ Med Sci 2011;18(3:63-69

  4. Melanocortin-1 receptor gene variants in four Chinese ethnic populations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    There is strong relationship between melanocortin-1 receptor (MC1R) gene variants and human hair color and skin type.Based on a sequencing study of MC1R gene in 50 individuals from the Uygur,Tibetan,Wa and Dai ethnic populations,we discuss the occurrence of 7 mc1r variants consisting of 5 nonsynonymous sites (Val60Leu,Arg67Gln,Val92Met,Arg163Gln and Ala299Val) and 2 synonymous sites (C414T and A942G),among which C414T and Ala299Val were reported for the first time.Confirmation and analysis were also made of 122 individuals at three common point mutations (Val92Met,Arg163Gln,A942G) using PCR-SSCP.The frequency of Arg163Gln variant varies in the four ethnic populations,with percentage of 40%,85.0%,66.2% and 72.7%,respectively,while those of Val92Met and A942G are roughly similar in these four populations.The different environments,migration and admixture of various ethnic groups in China might have impact on the observed frequency of Arg163Gln.

  5. Activation of transforming potential of the human insulin receptor gene

    International Nuclear Information System (INIS)

    A retrovirus containing part of the human insulin receptor (hIR) gene was constructed by replacing ros sequences in the avian sarcoma virus UR2 with hIR cDNA sequences coding for 46 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains of the β subunit of hIR. The resulting virus, named UIR, contains the hIR sequence fused to the 5' portion of the UR2 gag gene coding for p19. UIR is capable of transforming chicken embryo fibroblasts and promoting formation of colonies in soft agar; however, it does not form tumors in vivo. A variant that arose from the parental UIR is capable of efficiently inducing sarcomas in vivo. UIR-transformed cells exhibit higher rates of glucose uptake and growth than normal cells. The 4-kilobase UIR genome codes for a membrane-associated, glycosylated gag-hIR fusion protein of 75 kDa designated P75/sup gag-hir/. P75/sup gag-hir/ contains a protein tyrosine kinase activity that is capable of undergoing autophosphorylation and of phosphorylating foreign substrates in vitro; it is phosphorylated at both serine and tyrosine residues in vivo

  6. Activation of transforming potential of the human insulin receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.H.; Lin, B.; Jong, S.M.J.; Dixon, D.; Ellis, L.; Roth, R.A.; Rutter, W.J.

    1987-08-01

    A retrovirus containing part of the human insulin receptor (hIR) gene was constructed by replacing ros sequences in the avian sarcoma virus UR2 with hIR cDNA sequences coding for 46 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains of the ..beta.. subunit of hIR. The resulting virus, named UIR, contains the hIR sequence fused to the 5' portion of the UR2 gag gene coding for p19. UIR is capable of transforming chicken embryo fibroblasts and promoting formation of colonies in soft agar; however, it does not form tumors in vivo. A variant that arose from the parental UIR is capable of efficiently inducing sarcomas in vivo. UIR-transformed cells exhibit higher rates of glucose uptake and growth than normal cells. The 4-kilobase UIR genome codes for a membrane-associated, glycosylated gag-hIR fusion protein of 75 kDa designated P75/sup gag-hir/. P75/sup gag-hir/ contains a protein tyrosine kinase activity that is capable of undergoing autophosphorylation and of phosphorylating foreign substrates in vitro; it is phosphorylated at both serine and tyrosine residues in vivo

  7. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  8. Leptin receptor gene polymorphisms in severely pre-eclamptic women.

    Science.gov (United States)

    Rigó, János; Szendei, György; Rosta, Klára; Fekete, Andrea; Bögi, Krisztina; Molvarec, Attila; Rónai, Zsolt; Vér, Agota

    2006-09-01

    Variants of the leptin receptor gene (LEPR) may modulate the effect of elevated serum leptin levels in pre-eclampsia. The aim of our study was to evaluate the LEPR gene polymorphisms Lys109Arg (A109G) and Gln223Arg (A223G) in severely pre-eclamptic women. In a case-control study, we analyzed blood samples from 124 severely pre-eclamptic patients and 107 healthy control women by the polymerase chain reaction-restriction fragment length polymorphism method. The Pearson chi2 test was used to estimate odds ratios (OR) and 95% confidence intervals (CI). The association was adjusted for maternal age, pre-pregnancy body mass index and primiparity with logistic regression analysis. Pregnant women with the LEPR 223G allele (223A/G or 223G/G genotype) had almost double the risk of developing severe pre-eclampsia compared with patients with the 223A/A genotype (adjusted OR = 1.92, 95% CI: 1.07-3.41). Genotype variants of LEPR A109G alone did not affect the risk of severe pre-eclampsia. Haplotype estimation of A109G and A223G polymorphisms of the LEPR gene revealed that the G-A haplotype versus other pooled haplotypes was significantly less common in the pre-eclamptic group (p < 0.01), while the G-G haplotype versus others was overrepresented among severely pre-eclamptic patients (p < 0.01), compared with controls. In conclusion, our data indicate that LEPR A223G polymorphism may individually modify the risk of severe pre-eclampsia. PMID:17071538

  9. Association of vitamin D receptor gene variants with polycystic ovary syndrome: A case control study

    OpenAIRE

    Touraj Mahmoudi; Keivan Majidzadeh-A; Hamid Farahani; Mojgan Mirakhorli; Reza Dabiri; Hossein Nobakht; Asadollah Asadi

    2015-01-01

    Background: Vitamin D and insulin play an important role in susceptibility to polycystic ovary syndrome (PCOS), and therefore vitamin D receptor (VDR), parathyroid hormone (PTH), and insulin receptor (INSR) gene variants might be involved in the pathogenesis of PCOS. Objective: The present study was designed to investigate the possible associations between polymorphisms in VDR, PTH, and INSR genes and the risk of PCOS. Materials and Methods: VDR, PTH, and INSR gene variants were genoty...

  10. Association of vitamin D receptor gene variants with polycystic ovary syndrome: A case control study

    OpenAIRE

    Mahmoudi, Touraj; Majidzadeh-A, Keivan; Farahani, Hamid; Mirakhorli, Mojgan; Dabiri, Reza; Nobakht, Hossein; Asadi, Asadollah

    2015-01-01

    Background: Vitamin D and insulin play an important role in susceptibility to polycystic ovary syndrome (PCOS), and therefore vitamin D receptor (VDR), parathyroid hormone (PTH), and insulin receptor (INSR) gene variants might be involved in the pathogenesis of PCOS. Objective: The present study was designed to investigate the possible associations between polymorphisms in VDR, PTH, and INSR genes and the risk of PCOS. Materials and Methods: VDR, PTH, and INSR gene variants were genotyped in ...

  11. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors

    Science.gov (United States)

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  12. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    International Nuclear Information System (INIS)

    Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue

  13. Evolution of Dopamine Receptor Genes of the D1 Class in Vertebrates

    OpenAIRE

    Yamamoto, Kei(Department of Physics, Niigata University, Niigata 950-2181, Japan); Mirabeau, Olivier; Bureau, Charlotte; Blin, Maryline; Michon-Coudouel, Sophie; Demarque, Michaël; Vernier, Philippe

    2012-01-01

    The receptors of the dopamine neurotransmitter belong to two unrelated classes named D1 and D2. For the D1 receptor class, only two subtypes are found in mammals, the D1A and D1B, receptors, whereas additional subtypes, named D1C, D1D, and D1X, have been found in other vertebrate species. Here, we analyzed molecular phylogeny, gene synteny, and gene expression pattern of the D1 receptor subtypes in a large range of vertebrate species, which leads us to propose a new view of the evolution of D...

  14. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    Science.gov (United States)

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  15. Genomic organization of the human thyroid hormone receptor alpha (c-erbA-1) gene.

    OpenAIRE

    Laudet, V; Begue, A; Henry-Duthoit, C; Joubel, A; P. Martin; Stehelin, D.; Saule, S.

    1991-01-01

    The thyroid hormone receptor alpha (THRA or c-erbA-1) gene belongs to a family of genes which encode nuclear receptors for various hydrophobic ligands such as steroids, vitamin D, retinoic acid and thyroid hormones. These receptors are composed of several domains important for hormone-binding, DNA-binding, dimerization and activation of transcription. We show here that the human THRA gene is organized in 10 exons distributed along 27 kbp of genomic DNA on chromosome 17. The position of the in...

  16. Differential regulation of interleukin-8 gene transcription by death receptor 3 (DR3) and type I TNF receptor (TNFRI).

    Science.gov (United States)

    Su, Wenlynn B; Chang, Ying-Hsin; Lin, Wan-Wan; Hsieh, Shie-Liang

    2006-02-01

    TL1A induces interleukin-8 (IL-8) secretion in human peripheral blood monocyte-derived macrophage in a dose- and time-dependent manner. Overexpression of its cognate receptor DR3 can induce a higher amount of IL-8 protein secretion than that induced by TNFRI even though both receptors activate IL-8 gene transcription in a similar fashion. The underlying mechanism for the regulation of the IL-8 gene transcription by DR3 has not been investigated yet. Here, we used HEK293 cells as a model system to dissect the possible signaling components that are involved in the regulation of DR3-mediated IL-8 gene expression. Although both DR3 and TNFRI activated TRAF2 and NF-kappaB to induce IL-8 gene transcription, the kinase cascades that transduce signals for DR3- and TNFRI-induced IL-8 gene transcription are different. The axis TAK1/ASK1-MKK4/MKK7-JNK2 is responsible for DR3-mediated IL-8 gene expression whereas the axis ASK1-MKK4-JNK1/JNK2/p38MAPK is the choice for TNFRI-mediated activation of IL-8 gene expression. This indicates that the downstream signaling pathways of DR3 and TNFRI for IL-8 secretion are divergent even though both receptors contain death-domain and induce IL-8 secretion via TRAF2. PMID:16324699

  17. Penguins reduced olfactory receptor genes common to other waterbirds

    Science.gov (United States)

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-01-01

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins. PMID:27527385

  18. Family structure and phylogenetic analysis of odorant receptor genes in the large yellow croaker (Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Zhu Peng

    2011-08-01

    Full Text Available Abstract Background Chemosensory receptors, which are all G-protein-coupled receptors (GPCRs, come in four types: odorant receptors (ORs, vomeronasal receptors, trace-amine associated receptors and formyl peptide receptor-like proteins. The ORs are the most important receptors for detecting a wide range of environmental chemicals in daily life. Most fish OR genes have been identified from genome databases following the completion of the genome sequencing projects of many fishes. However, it remains unclear whether these OR genes from the genome databases are actually expressed in the fish olfactory epithelium. Thus, it is necessary to clone the OR mRNAs directly from the olfactory epithelium and to examine their expression status. Results Eighty-nine full-length and 22 partial OR cDNA sequences were isolated from the olfactory epithelium of the large yellow croaker, Larimichthys crocea. Bayesian phylogenetic analysis classified the vertebrate OR genes into two types, with several clades within each type, and showed that the L. crocea OR genes of each type are more closely related to those of fugu, pufferfish and stickleback than they are to those of medaka, zebrafish and frog. The reconciled tree showed 178 duplications and 129 losses. The evolutionary relationships among OR genes in these fishes accords with their evolutionary history. The fish OR genes have experienced functional divergence, and the different clades of OR genes have evolved different functions. The result of real-time PCR shows that different clades of ORs have distinct expression levels. Conclusion We have shown about 100 OR genes to be expressed in the olfactory epithelial tissues of L. crocea. The OR genes of modern fishes duplicated from their common ancestor, and were expanded over evolutionary time. The OR genes of L. crocea are closely related to those of fugu, pufferfish and stickleback, which is consistent with its evolutionary position. The different expression

  19. A mutation in the DNA-binding domain of the androgen receptor gene causes complete testicular feminization in a patient with receptor-positive androgen resistance.

    OpenAIRE

    M. Marcelli; Zoppi, S; Grino, P B; Griffin, J E; Wilson, J. D.; McPhaul, M J

    1991-01-01

    Androgen resistance is associated with a wide range of quantitative and qualitative defects in the androgen receptor. However, fibroblast cultures from approximately 10% of patients with the clinical, endocrine, and genetic features characteristic of androgen resistance express normal quantities of apparently normal androgen receptor in cultured genital skin fibroblasts (receptor-positive androgen resistance). We have analyzed the androgen receptor gene of one patient (P321) with receptor-pos...

  20. Test of Association Between 10 SNPs in the Oxytocin Receptor Gene and Conduct Disorder

    OpenAIRE

    Sakai, Joseph T.; Crowley, Thomas J.; Stallings, Michael C.; McQueen, Matthew; Hewitt, John K.; Hopfer, Christian; Hoft, Nicole R.; Ehringer, Marissa A.

    2012-01-01

    Animal and human studies have implicated oxytocin (OXT) in affiliative and prosocial behaviors. We tested whether genetic variation in the OXT receptor (OXTR) gene is associated with conduct disorder (CD).

  1. Interaction effects between estrogen receptor α and vitamin D receptor genes on age at menarche in Chinese women

    Institute of Scientific and Technical Information of China (English)

    Hong XU; Ji-rong LONG; Miao-xin LI; Hong-wen DENG

    2005-01-01

    Aim: To evaluate whether estrogen receptor α (ER-α) and vitamin D receptor (VDR) genes are associated with the age at menarche in Chinese women.Methods:A total of 390 pre-menopausal Chinese women were genotyped at the ER-α PvuⅡ,XbaⅠ, and VDR ApaⅠ loci using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP).Results: Neither the ER-α gene nor the VDR gene individually had significant effects on the age at menarche in our subjects (P>0.10).However, evidence of interaction effects between the two genes were observed: with the aa genotype at the VDR ApaⅠ locus, subjects with haplotype PX at the ER-α gene had, on average, 6 months later onset of menarche than the non-carriers (P=0.01).Conclusion: We found that neither the ER-α gene or the VDR gene had a significant association with the age at menarche individually.However, potential interaction effects between the two genes were observed in Chinese women.

  2. Toll-like receptor 4 gene polymorphism is associated with chronic periodontitis

    OpenAIRE

    Ding, Yuan-Sheng; Zhao, Yue; Xiao,Yuan-Yuan; Zhao, Gang

    2015-01-01

    Toll-like receptors (TLRs) contribute to the immune response by recognizing patterns presented by bacteria and other pathogens. These receptors have been implicated in the inflammatory response that contributes to gingivitis and periodontitis. Conflicting reports have suggested that variations in the genes encoding TLRs, particularly TLR2 and TLR4, may influence susceptibility to periodontitis. In this study, the contribution of variations in the genes encoding TLR2 and TLR4 in the context of...

  3. Common Oxytocin Receptor Gene Polymorphisms and the Risk for Preterm Birth

    OpenAIRE

    Lorenz Kuessel; Christoph Grimm; Martin Knöfler; Peter Haslinger; Heinz Leipold; Georg Heinze; Christian Egarter; Maximilian Schmid

    2013-01-01

    Oxytocin is crucially involved in the onset and maintenance of labor. We investigated the association between oxytocin receptor gene polymorphisms and preterm birth. The presence of four common oxytocin receptor gene polymorphisms (rs2254298, rs53576, rs2228485 and rs237911) was evaluated in one hundred women with preterm birth and one hundred healthy women using restriction fragment length polymorphism genotyping. No association was found between the presence of any individual oxytocin recep...

  4. Osteoblast-Specific Transcription Factor Osterix Increases Vitamin D Receptor Gene Expression in Osteoblasts

    OpenAIRE

    Zhang, Chi; Tang, Wanjin; LI Yang; Yang, Fan; Dowd, Diane R.; MacDonald, Paul N.

    2011-01-01

    Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation from mesenchymal stem cells. In Osx knock-out mice, no bone formation occurs. The vitamin D receptor (VDR) is a member of the nuclear hormone receptor superfamily that regulates target gene transcription to ensure appropriate control of calcium homeostasis and bone development. Here, we provide several lines of evidence that show that the VDR gene is a target for transcriptional regulation by ...

  5. Computational characterization of modes of transcriptional regulation of nuclear receptor genes.

    Directory of Open Access Journals (Sweden)

    Yogita Sharma

    Full Text Available BACKGROUND: Nuclear receptors are a large structural class of transcription factors that act with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. They are activated through the binding of small ligands, which can be replaced by drug molecules, making nuclear receptors promising drug targets. Transcriptional regulation of the genes that encode them is central to gaining a deeper understanding of the diversity of their biochemical and biophysical roles and their role in disease and therapy. Even though they share evolutionary history, nuclear receptor genes have fundamentally different expression patterns, ranging from ubiquitously expressed to tissue-specific and spatiotemporally complex. However, current understanding of regulation in nuclear receptor gene family is still nascent. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigate the relationship between long-range regulation of nuclear receptor family and their known functionality. Towards this goal, we identify the nuclear receptor genes that are potential targets based on counts of highly conserved non-coding elements. We validate our results using publicly available expression (RNA-seq and histone modification (ChIP-seq data from the ENCODE project. We find that nuclear receptor genes involved in developmental roles show strong evidence of long-range mechanism of transcription regulation with distinct cis-regulatory content they feature clusters of highly conserved non-coding elements distributed in regions spanning several Megabases, long and multiple CpG islands, bivalent promoter marks and statistically significant higher enrichment of enhancer mark around their gene loci. On the other hand nuclear receptor genes that are involved in tissue-specific roles lack these features, having simple transcriptional controls and a greater variety of mechanisms for producing paralogs. We

  6. The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage

    Directory of Open Access Journals (Sweden)

    Zhang Ziping

    2009-07-01

    Full Text Available Abstract Background In gnathostomes, chemosensory receptors (CR expressed in olfactory epithelia are encoded by evolutionarily dynamic gene families encoding odorant receptors (OR, trace amine-associated receptors (TAAR, V1Rs and V2Rs. A limited number of OR-like sequences have been found in invertebrate chordate genomes. Whether these gene families arose in basal or advanced vertebrates has not been resolved because these families have not been examined systematically in agnathan genomes. Results Petromyzon is the only extant jawless vertebrate whose genome has been sequenced. Known to be exquisitely sensitive to several classes of odorants, lampreys detect fewer amino acids and steroids than teleosts. This reduced number of detectable odorants is indicative of reduced numbers of CR gene families or a reduced number of genes within CR families, or both, in the sea lamprey. In the lamprey genome we identified a repertoire of 59 intact single-exon CR genes, including 27 OR, 28 TAAR, and four V1R-like genes. These three CR families were expressed in the olfactory organ of both parasitic and adult life stages. Conclusion An extensive search in the lamprey genome failed to identify potential orthologs or pseudogenes of the multi-exon V2R family that is greatly expanded in teleost genomes, but did find intact calcium-sensing receptors (CASR and intact metabotropic glutamate receptors (MGR. We conclude that OR and V1R arose in chordates after the cephalochordate-urochordate split, but before the diversification of jawed and jawless vertebrates. The advent and diversification of V2R genes from glutamate receptor-family G protein-coupled receptors, most likely the CASR, occurred after the agnathan-gnathostome divergence.

  7. Molecular Pathways: Breaking the Epithelial Cancer Barrier for Chimeric Antigen Receptor and T-cell Receptor Gene Therapy.

    Science.gov (United States)

    Hinrichs, Christian S

    2016-04-01

    Adoptive transfer of T cells genetically engineered to express a tumor-targeting chimeric antigen receptor (CAR) or T-cell receptor (TCR) can mediate cancer regression in some patients. CARs are synthetic single-chain proteins that use antibody domains to target cell surface antigens. TCRs are natural heterodimeric proteins that can target intracellular antigens through recognition of peptides bound to human leukocyte antigens. CARs have shown promise in B-cell malignancies and TCRs in melanoma, but neither approach has achieved clear success in an epithelial cancer. Treatment of epithelial cancers may be particularly challenging because of a paucity of target antigens expressed by carcinomas and not by important healthy tissues. In addition, epithelial cancers may be protected by inhibitory ligands and soluble factors in the tumor microenvironment. One strategy to overcome these negative regulators is to modulate expression of T-cell genes to enhance intrinsic T-cell function. Programmable nucleases, which can suppress inhibitory genes, and inducible gene expression systems, which can enhance stimulatory genes, are entering clinical testing. Other work is delineating whether control of genes for immune checkpoint receptors (e.g.,PDCD1, CTLA4) and cytokine and TCR signaling regulators (e.g.,CBLB, CISH, IL12, IL15) can increase the antitumor activity of therapeutic T cells.Clin Cancer Res; 22(7); 1559-64. ©2016 AACR. PMID:27037253

  8. Evolutionary patterns and selective pressures of odorant/pheromone receptor gene families in teleost fishes.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Hashiguchi

    Full Text Available BACKGROUND: Teleost fishes do not have a vomeronasal organ (VNO, and their vomeronasal receptors (V1Rs, V2Rs are expressed in the main olfactory epithelium (MOE, as are odorant receptors (ORs and trace amine-associated receptors (TAARs. In this study, to obtain insights into the functional distinction among the four chemosensory receptor families in teleost fishes, their evolutionary patterns were examined in zebrafish, medaka, stickleback, fugu, and spotted green pufferfish. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analysis revealed that many lineage-specific gene gains and losses occurred in the teleost fish TAARs, whereas only a few gene gains and losses have taken place in the teleost fish vomeronasal receptors. In addition, synonymous and nonsynonymous nucleotide substitution rate ratios (K(A/K(S in TAARs tended to be higher than those in ORs and V2Rs. CONCLUSIONS/SIGNIFICANCE: Frequent gene gains/losses and high K(A/K(S in teleost TAARs suggest that receptors in this family are used for detecting some species-specific chemicals such as pheromones. Conversely, conserved repertoires of V1R and V2R families in teleost fishes may imply that receptors in these families perceive common odorants for teleosts, such as amino acids. Teleost ORs showed intermediate evolutionary pattern between TAARs and vomeronasal receptors. Many teleost ORs seem to be used for common odorants, but some ORs may have evolved to recognize lineage-specific odors.

  9. Functional polymorphisms in the P2X7 receptor gene are associated with osteoporosis

    DEFF Research Database (Denmark)

    Husted, L B; Harsløf, T; Stenkjær, L; Carstens, M; Jørgensen, N R; Langdahl, Bente Lomholt

    2013-01-01

    UNLABELLED: The P2X(7) receptor is an ATP-gated cation channel. We investigated the effect of both loss-of-function and gain-of-function polymorphisms in the P2X(7) receptor gene on BMD and risk of vertebral fractures and found that five polymorphisms and haplotypes containing three of these...... investigate the effect of these polymorphisms on BMD and risk of vertebral fractures in a case-control study including 798 individuals. METHODS: Genotyping was carried out using TaqMan assays. BMD was measured using dual energy X-ray absorptiometry, and vertebral fractures were assessed by lateral spinal X...... polymorphisms were associated with BMD and fracture risk. INTRODUCTION: The P2X(7) receptor is an ATP-gated cation channel. P2X(7) receptor knockout mice have reduced total bone mineral content, and because several functional polymorphisms have been identified in the human P2X(7) receptor gene, we wanted to...

  10. Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene- like receptors, which synergize to induce type I interferon production

    DEFF Research Database (Denmark)

    Rasmussen, Simon Brandtoft; Jensen, Søren B; Nielsen, C;

    2009-01-01

    The innate antiviral response is initiated by pattern recognition receptors, which recognize viral pathogen-associated molecular patterns. Here we show that retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) in cooperation with Toll-like receptor (TLR) 9 is required for expression of type I...

  11. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation

    DEFF Research Database (Denmark)

    Fontaine, Coralie; Dubois, Guillaume; Duguay, Yannick;

    2003-01-01

    Rev-Erbalpha (NR1D1) is an orphan nuclear receptor encoded on the opposite strand of the thyroid receptor alpha gene. Rev-Erbalpha mRNA is induced during adipocyte differentiation of 3T3-L1 cells, and its expression is abundant in rat adipose tissue. Peroxisome proliferator-activated receptor gamma...

  12. Expression of the transferrin receptor gene during the process of mononuclear phagocyte maturation

    International Nuclear Information System (INIS)

    The expression of transferrin receptors by blood monocytes, human alveolar macrophages, and in vitro matured macrophages was evaluated by immunofluorescence, radioligand binding, and Northern analysis, using the monoclonal anti-human transferrin receptor antibody OKT9, [125I]-labeled human transferrin and a [32P]-labeled human transferrin receptor cDNA probe, respectively. By immunofluorescence, the majority of alveolar macrophages expressed transferrin receptors (86 +/- 3%). The radioligand binding assay demonstrated the affinity constant (K/sub a/) of the alveolar macrophage transferrin receptor was 4.4 +/- 0.7 x 108 M-1, and the number of receptors per cell was 4.4 +/- 1.2 x 104. In marked contrast, transferrin receptors were not present on the surface or in the cytoplasm of blood monocytes, the precursors of the alveolar macrophages. However, when monocytes were cultured in vitro and allowed to mature, > 80% expressed transferrin receptors by day 6, and the receptors could be detected by day 3. Consistent with these observations, a transferrin receptor mRNA with a molecular size of 4.9 kb was demonstrated in alveolar macrophages and in vitro matured macrophages but not in blood monocytes. Thus, although blood monocytes do not express the transferrin receptor gene, it is expressed by mature macrophages, an event that probably occurs relatively early in the process of monocyte differentiation to macrophages

  13. The Axon Guidance Receptor Gene ROBO1 Is a Candidate Gene for Developmental Dyslexia.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  14. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia.

    Directory of Open Access Journals (Sweden)

    Katariina Hannula-Jouppi

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  15. The Drosophila gene CG9918 codes for a pyrokinin-1 receptor

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Torp, Malene; Hauser, Frank;

    2005-01-01

    The database from the Drosophila Genome Project contains a gene, CG9918, annotated to code for a G protein-coupled receptor. We cloned the cDNA of this gene and functionally expressed it in Chinese hamster ovary cells. We tested a library of about 25 Drosophila and other insect neuropeptides, and...

  16. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review

    Directory of Open Access Journals (Sweden)

    Ghalandari

    2015-07-01

    Full Text Available Context Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. Evidence Acquisition The keywords leptin, ghrelin, polymorphism, single-nucleotide polymorphism (SNP, obesity, overweight, Body Mass Index, metabolic syndrome, and type 2 diabetes mellitus (T2DM (MeSH headings were used to search in the following databases: Pubmed, Sciencedirect (Elsevier, and Google scholar. Overall, 24 case-control studies, relevant to our topic, met the criteria and were included in the review. Results The most prevalent leptin/leptin receptor genes (LEP/LEPR and ghrelin/ghrelin receptor genes (GHRL/GHSR single nucleotide polymorphisms studied were LEP G-2548A, LEPR Q223R, and Leu72Met, respectively. Nine studies of the 17 studies on LEP/LEPR, and three studies of the seven studies on GHRL/GHSR showed significant relationships. Conclusions In general, our study suggests that the association between LEP/LEPR and GHRL/GHSR with overweight/obesity and the related metabolic disturbances is inconclusive. These results may be due to unidentified gene-environment interactions. More investigations are needed to further clarify this association.

  17. Evidence for association between polymorphisms in the Cannabinoid Receptor 1 (CNR1) gene and cannabis dependence

    OpenAIRE

    Agrawal, Arpana; Wetherill, Leah; Dick, Danielle M; Xuei, Xiaoling; Hinrichs, Anthony; Hesselbrock, Victor; Kramer, John; Nurnberger, John I.; Schuckit, Marc; Laura J Bierut; Edenberg, Howard J.; Foroud, Tatiana

    2009-01-01

    Genomic studies of cannabis use disorders have been limited. The cannabinoid receptor 1 gene (CNR1) on chromosome 6q14–15 is an excellent candidate gene for cannabis dependence due to the important role of the G-protein coupled receptor encoded by this gene in the rewarding effects of Δ9-tetrahydrocannabinol. Previous studies have found equivocal evidence for an association between SNPs in CNR1 and a general vulnerability to substance use disorders. We investigate the association between 9 SN...

  18. Smallest bitter taste receptor(T2Rs)gene repertoire in carnivores%Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores

    Institute of Scientific and Technical Information of China (English)

    Ling-Ling HU; Peng SHI

    2013-01-01

    Bitter taste reception is presumably associated with dietary selection,preventing animals from ingesting potentially harmful compounds.Accordingly,carnivores,who encounter these toxic substances less often,should have fewer genes associated with bitter taste reception compared with herbivores and omnivores.To investigate the genetic basis of bitter taste reception,we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse),two omnivores (mouse and rat) and one carnivore (dog).We also identified,for the first time,the T2R repertoire from the genome of other four carnivore species (ferret,giant panda,polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes,including 12-16 intact genes,0-1 partial but putatively functional genes,and 3-8 pseudogenes.Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species,supporting earlier speculations that carnivores have fewer T2R genes,herbivores an intermediate number,and omnivores the largest T2R gene repertoire.To further explain the genetic basis for this disparity,we constructed a phylogenetic tree,which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree,suggesting that carnivore T2Rs were conserved among mammals.Similarly,the small carnivore T2R family size was likely due to rare duplication events.Collectively,these results strengthen arguments for the connection between T2R gene family size,diet and habit.

  19. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    Science.gov (United States)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-12-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans.

  20. Cloning and expression of putative ethylene receptor genes in soybean plant

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ethylene plays important roles in plant growth, development, and stress responses, and ethylene receptors have been identified and studied extensively in various plant species. Here we report the cloning of four ethylene receptor genes from soybean, i.e.GmETR1, GmERS1, GmETR2 and GmEIN4. Construction of the phylogenic tree showed that GmETR1 and GmERS1 belong to subfamily Ⅰ whereas GmETR2 and GmEIN4 belong to subfamily Ⅱ. The four ethylene receptor genes showed different tissue-specific expression patterns in roots, stems, leaves, cotyledons, flowers, pods and seeds of soybean. These genes were differentially regulated by various abiotic stresses and plant hormones. The possible roles of the four genes in soybean plant were also discussed.

  1. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhang

    2010-11-01

    Full Text Available We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computational prediction from gene sequence data, thereby establishing that these genes are indeed part of the vomeronasal system, especially the V2Rs. 168 V1Rs and 98 V2Rs were detected to be highly enriched in mouse vomeronasal organ (VNO, and 108 V1Rs and 87 V2Rs in rat VNO. We monitored the expression profile of mouse VR genes in other non-VNO tissues with the result that some VR genes were re-designated as VR-like genes based on their non-olfactory expression pattern. Temporal expression profiles for mouse VR genes were characterized and their patterns were classified, revealing the developmental dynamics of these so-called pheromone receptors. We found numerous patterns of temporal expression which indicate possible behavior-related functions. The uneven composition of VR genes in certain patterns suggests a functional differentiation between the two types of VR genes. We found the coherence between VR genes and transcription factors in terms of their temporal expression patterns. In situ hybridization experiments were performed to evaluate the cell number change over time for selected receptor genes.

  2. AT(1) receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Christensen, Gitte Lund; Knudsen, Steen; Schneider, Mikael; Aplin, Mark; Gammeltoft, Steen; Sheikh, Søren P; Hansen, Jakob L

    2011-01-01

    potentiated β2-adrenergic receptor-stimulated gene expression. These novel findings indicate that the Gαq protein-independent signalling mainly modifies the transcriptional response governed by other signalling pathways, while direct induction of gene expression by the AT(1)R is dependent on classical Gαq......-independent signalling from the AT(1)R interact with transcriptional regulators and promote phosphorylation of nuclear proteins. However, the relative contribution of Gαq protein-independent signalling in AT(1)R mediated transcriptional regulation remains elusive. We here present a comprehensive comparative analysis of...... Gαq protein-dependent and -independent regulation of AT(1)R mediated gene expression. We found angiotensin II to regulate 212 genes, whereas Gαq-independent signalling obtained with the biased agonist, SII angiotensin II only regulated few genes. Interestingly, SII angiotensin II, like Ang II vastly...

  3. Expression of recombination-activating genes and T cell receptor gene recombination in the human T cell leukemia cell line

    Institute of Scientific and Technical Information of China (English)

    ZOU Hong-yun; MA Li; MENG Min-jie; YAO Xin-sheng; LIN Ying; WU Zhen-qiang; HE Xiao-wei; WANG Ju-fang; WANG Xiao-ning

    2007-01-01

    Background Recent studies have suggested that mature T cells can change their specificity through reexpression of recombination-activating genes (RAG) and RAG-mediated V(D)J recombination. This process is named receptor revision and has been observed in mature peripheral T cells from transgenic mice and human donors. However, whether the receptor revision in mature T cells is a random or orientated process remains poorly understood. Here we used the Jurkat human T cell line, which represents a mature stage of T cell development, as a model to investigate the regulation of T cell receptor (TCR) gene recombination.Methods TCR Dβ-Jβ signal joint T cell receptor excision DNA circles (sjTRECs) were determined by nested and seminested PCR. Double-strand DNA breaks at recombination signal sequences (RSSs) in the TCRVβ chain locus were detected by ligation-mediated-PCR. Further analysis of the complementarity-determining region 3 (CDR3) size of the TCRVβ chain was examined by the TCR GeneScan technique.Results RAG1, RAG2, and three crucial components of the nonhomologous DNA end-joining (NHEJ) pathway were readily detected in Jurkat. Characteristics of junctional diversity of Dβ2-Jβ2 signal joints and ds RSS breaks associated with the Dβ25' and Dβ 23' sites were detected in DNA from Jurkat cells. CDR3 size and the gene sequences of the TCRVβ chain did not change during cell proliferation.Conclusions RAG1 and RAG2 and ongoing TCR gene recombination are coexpressed in Jurkat cells, but the ongoing recombination process may not play a role in modification of the TCR repertoire. However, the results suggest that Jurkat could be used as a model for studying the regulation of RAGs and V(D)J recombination and as a "special" model of the coexistence of TCR gene rearrangements and "negative" receptor revision.

  4. Identification of testosterone-/androgen receptor-regulated genes in mouse Sertoli cells

    OpenAIRE

    Zhang, Qiao-Xia; Zhang, Xiao-Yan; Zhang, Zhen-Ming; Lu, Wei; Liu, Ling; Li, Gang; Cai, Zhi-Ming; Gui, Yao-Ting; Chang, Chawnshang

    2011-01-01

    Androgen and androgen receptor (AR) play important roles in male spermatogenesis and fertility, yet detailed androgen/AR signals in Sertoli cells remain unclear. To identify AR target genes in Sertoli cells, we analyzed the gene expression profiles of testis between mice lacking AR in Sertoli cells (S-AR−/y) and their littermate wild-type (WT) mice. Digital gene expression analysis identified 2276 genes downregulated and 2865 genes upregulated in the S-AR−/y mice testis compared to WT ones. T...

  5. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    Science.gov (United States)

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  6. Development of gene diagnosis for diabetes and cholecystitis based on gene analysis of CCK-A receptor

    International Nuclear Information System (INIS)

    Base sequence analysis of CCKAR gene (a gene of A-type receptor for cholecystokinin) from OLETF rat, a model rat for insulin-independent diabetes was made based on the base sequence of wild CCKAR gene, which had been clarified in the previous year. From the pancreas of OLETF rat, DNA was extracted and transduced into λphage after fragmentation to construct the gene library of OLETF. Then, λphage DNA clone bound with labelled cDNA of CCKAR gene was analyzed and the gene structure was compared with that of the wild gene. It was demonstrated that CCKAR gene of OLETF had a deletion (6800 b.p.) ranging from the promoter region to the Exon 2, suggesting that CCKAR gene is not functional in OLETF rat. The whole sequence of this mutant gene was registered into Japan DNA Bank (D 50610). Then, F2 offspring rats were obtained through crossing OLETF (female) and F344 (male) and the time course-changes in the blood glucose level after glucose loading were compared among them. The blood glucose level after glucose loading was significantly higher in the homo-mutant F2 (CCKAR,-/-) as well as the parent OLETF rat than hetero-mutant F2 (CCKARm-/+) or the wild rat (CCKAR,+/+). This suggests that CCKAR gene might be involved in the control of blood glucose level and an alteration of the expression level or the functions of CCKAR gene might affect the blood glucose level. (M.N.)

  7. Lack of Association between Oxytocin Receptor (OXTR) Gene Polymorphisms and Alexithymia: Evidence from Patients with Obsessive-Compulsive Disorder

    OpenAIRE

    Koh, Min Jung; Kim, Wonji; Kang, Jee In; Namkoong, Kee; Kim, Se Joo

    2015-01-01

    Oxytocin receptor gene single nucleotide polymorphisms have been associated with structural and functional alterations in brain regions, which involve social-emotional processing. Therefore, oxytocin receptor gene polymorphisms may contribute to individual differences in alexithymia, which is considered to be a dysfunction of emotional processing. The aim of this study was to evaluate the association between oxytocin receptor gene single nucleotide polymorphisms or haplotypes and alexithymia ...

  8. Correlation between leptin receptor gene polymorphism and type 2 diabetes in Chinese population: a meta-analysis

    OpenAIRE

    He, Miao; Qian-xi FU; Li, Hui; Ya-na JIN; Tang, Xiao-Jun

    2015-01-01

    Objective To evaluate the correlation between leptin receptor gene (LEPR) polymorphism and type 2 diabetes (T2DM) in Chinese population. Methods The literature concerning the correlation between LEPR polymorphism and T2DM in Chinese population were searched from Chinese databases (CNKI, VIP, WanFang, CBM) with "leptin receptor gene" and "type 2 diabetes" as keywords, and from English databases (PubMed, Web of Knowledge, EBSCO) with "leptin receptor gene", "LEPR", "OBR", "OB-R", "type 2 diabet...

  9. Oxytocin and Vasopressin Receptor Gene Variation as a Proximate Base for Inter- and Intraspecific Behavioral Differences in Bonobos and Chimpanzees

    OpenAIRE

    Staes, Nicky; Stevens, Jeroen M. G.; Helsen, Philippe; Hillyer, Mia; Korody, Marisa; Eens, Marcel

    2014-01-01

    Recent literature has revealed the importance of variation in neuropeptide receptor gene sequences in the regulation of behavioral phenotypic variation. Here we focus on polymorphisms in the oxytocin receptor gene (OXTR) and vasopressin receptor gene 1a (Avpr1a) in chimpanzees and bonobos. In humans, a single nucleotide polymorphism (SNP) in the third intron of OXTR (rs53576 SNP (A/G)) is linked with social behavior, with the risk allele (A) carriers showing reduced levels of empathy and pros...

  10. Massive losses of taste receptor genes in toothed and baleen whales.

    Science.gov (United States)

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J; Wang, Ding; Zhao, Huabin

    2014-06-01

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. PMID:24803572

  11. Increased angiotensin II AT(1) receptor expression in paraventricular nucleus and hypothalamic-pituitary-adrenal axis stimulation in AT(2) receptor gene disrupted mice.

    Science.gov (United States)

    Armando, Inés; Terrón, José A; Falcón-Neri, Alicia; Takeshi, Ito; Häuser, Walter; Inagami, Tadashi; Saavedra, Juan M

    2002-09-01

    Angiotensin II AT(2) receptor gene-disrupted mice have increased blood pressure and response to angiotensin II, behavioral alterations, greater response to stress, and increased adrenal AT(1) receptors. We studied hypothalamic AT(1) receptor binding and mRNA by receptor autoradiography and in situ hybridization, adrenal catecholamines by HPLC, adrenal tyrosine hydroxylase mRNA by in situ hybridization and pituitary and adrenal hormones by RIA in AT(2) receptor-gene disrupted mice and wild-type controls. To confirm the role of adrenal AT(1) receptors, we treated wild-type C57 BL/6J mice with the AT(1) antagonist candesartan for 2 weeks, and measured adrenal hormones, catecholamines and tyrosine hydroxylase mRNA. In the absence of AT(2) receptor transcription, we found increased AT(1) receptor binding in brain areas involved in the regulation of the hypothalamic-pituitary-adrenal axis, the hypothalamic paraventricular nucleus and the median eminence, and increased adrenal catecholamine synthesis as shown by higher adrenomedullary tyrosine hydroxylase mRNA and higher adrenal dopamine, norepinephrine and epinephrine levels when compared to wild-type mice. In addition, in AT(2) receptor gene-disrupted mice there were higher plasma adrenocorticotropin (ACTH) and corticosterone levels and lower adrenal aldosterone content when compared to wild-type controls. Conversely, AT(1) receptor inhibition in CB57 BL/6J mice reduced adrenal tyrosine hydroxylase mRNA and catecholamine content and increased adrenal aldosterone content. These results can help to explain the enhanced response of AT(2) receptor gene-disrupted mice to exogenous angiotensin II, support the hypothesis of cross-talk between AT(1) and AT(2) receptors, indicate that the activity of the hypothalamic-pituitary-adrenal axis parallels the AT(1) receptor expression, and suggest that expression of AT(1) receptors can be dependent on AT(2) receptor expression. Our results provide an explanation for the increased

  12. A complement receptor locus: genes encoding C3b/C4b receptor and C3d/Epstein-Barr virus receptor map to 1q32.

    Science.gov (United States)

    Weis, J H; Morton, C C; Bruns, G A; Weis, J J; Klickstein, L B; Wong, W W; Fearon, D T

    1987-01-01

    The alternative or classical pathways for complement system component C3 may be triggered by microorganisms and antigen-antibody complexes. In particular, an activated fragment of C3, C3b, covalently attaches to microorganisms or antigen-antibody complexes, which in turn bind to the C3b receptor, also known as complement receptor 1. The genes encoding the proteins that constitute the C3-activating enzymes have been cloned and mapped to a "complement activation" locus in the major histocompatibility complex, and we demonstrate in this study such a locus on the long arm of chromosome 1 at band 1q32. PMID:3782802

  13. Form follows function - the three-dimensional structure of antigen receptor gene loci.

    Science.gov (United States)

    Fugmann, Sebastian D

    2014-04-01

    Antigen receptor genes are assembled during lymphocyte development from individual gene segments by a somatic gene rearrangement process named V(D)J recombination. This process is tightly regulated to ensure the generation of an unbiased broad primary repertoire of immunoglobulins and T cell receptors, and to prevent aberrant recombination products that could initiate lymphomagenesis. One important mode of regulation that has recently been discovered for the immunoglobulin heavy chain (IGH) gene locus is the adoption of distinct three-dimensional structures of the locus. Changes in the spatial conformation are thought to ensure the appropriate access of the V(D)J recombinase machinery at each developmental stage, and the formation of extensive chromosome loops has been implicated in allowing equal access to widely dispersed gene elements. PMID:24549092

  14. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency.

    Science.gov (United States)

    He, Jinshui; Fang, Yanling; Lin, Xinfu; Zhou, Huowang; Zhu, Shaobo; Zhang, Yugui; Yang, Huicong; Ye, Xiaoling

    2016-01-01

    BACKGROUND Growth hormone deficiency (GHD) is a major cause of congenital short stature. GHD patients have significantly decreased serum leptin levels, which are regulated by gene polymorphism of leptin and leptin receptor. This study thus investigated the relationship between gene polymorphism and susceptibility to GHD. MATERIAL AND METHODS A case-control study was performed using 180 GHD children in addition to 160 healthy controls. After the extraction of whole genomic DNA, the genotypes of leptin and leptin receptor gene loci were analyzed by sequencing for single-nucleotide polymorphism. RESULTS The frequency distribution of all alleles identified in leptin gene (loci rs7799039) and leptin receptor gene (loci rs1137100 and rs1137101) fit Hardy-Weinberg equilibrium. There was a significant difference in allele frequency at loci rs7799039 or rs1137101, as individuals with heterozygous GA allele had lower (rs7799039) or higher (rs1137101) GHD risk. No significant difference in allele frequency was discovered at loci rs1137100 (p>0.05), which was unrelated to GHD susceptibility. CONCLUSIONS Gene polymorphism of leptin (loci rs7799039) and leptin receptor (loci rs1137101) are correlated with GHD susceptibility. PMID:26915772

  15. Genomic strategies for the identification of dopamine receptor genes in zebrafish.

    Science.gov (United States)

    Boehmler, Wendy; Petko, Jessica; Canfield, Victor A; Levenson, Robert

    2013-01-01

    In this chapter, we describe the identification and cloning of D2-like dopamine receptor (DR) genes in zebrafish, a vertebrate model genetic organism. To identify DR genes, we performed searches of the zebrafish genomic sequence database that yielded contig segments of several D2-like DR genes. From these sequences, we amplified full-length cDNAs encoding three D2, one D3, and three D4 DR receptor subtypes via RT-PCR. The predicted proteins displayed 57-72% amino acid identity when compared to their human DR counterparts. To validate the identity of zebrafish DR genes, each of the genes was mapped by using the T51 radiation hybrid panel. With the exception of drd2b and drd4b, each of the zebrafish DR genes mapped to chromosomal positions that were syntenic with regions of human chromosomes containing orthologs of the zebrafish DR genes. To further validate the identity of the D2-like DR genes in zebrafish, we conducted phylogenetic analysis which supported the predicted identities of the cloned DR receptor cDNAs. PMID:23296785

  16. Computational Characterization of Modes of Transcriptional Regulation of Nuclear Receptor Genes

    OpenAIRE

    Sharma, Yogita; Chilamakuri, Chandra Sekhar Reddy; Bakke, Marit; Lenhard, Boris

    2014-01-01

    Background: Nuclear receptors are a large structural class of transcription factors that act with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. They are activated through the binding of small ligands, which can be replaced by drug molecules, making nuclear receptors promising drug targets. Transcriptional regulation of the genes that encode them is central to gaining a deeper understanding o...

  17. Integrative genomics of gene and metabolic regulation by estrogen receptors α and β, and their coregulators

    OpenAIRE

    Madak-Erdogan, Zeynep; Charn, Tze-Howe; Jiang, Yan; Liu, Edison T; Katzenellenbogen, John A.; Benita S Katzenellenbogen

    2013-01-01

    The closely related transcription factors (TFs), estrogen receptors ERα and ERβ, regulate divergent gene expression programs and proliferative outcomes in breast cancer. Utilizing breast cancer cells with ERα, ERβ, or both receptors as a model system to define the basis for differing response specification by related TFs, we show that these TFs and their key coregulators, SRC3 and RIP140, generate overlapping as well as unique chromatin-binding and transcription-regulating modules. Cistrome a...

  18. Sequence Diversity and Genomic Organization of Vomeronasal Receptor Genes in the Mouse

    OpenAIRE

    Del Punta, Karina; Rothman, Andrea; Rodriguez, Ivan; Mombaerts, Peter

    2000-01-01

    The vomeronasal system of mice is thought to be specialized in the detection of pheromones. Two multigene families have been identified that encode proteins with seven putative transmembrane domains and that are expressed selectively in subsets of neurons of the vomeronasal organ. The products of these vomeronasal receptor (Vr) genes are regarded as candidate pheromone receptors. Little is known about their genomic organization and sequence diversity, and only five sequences of mouse V1r codi...

  19. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species

    OpenAIRE

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana de Sousa; Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a co...

  20. Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer

    OpenAIRE

    Leygue, Etienne

    2007-01-01

    The steroid receptor RNA activator (SRA) is a unique modulator of steroid receptor transcriptional activity, as it is able to mediate its coregulatory effects as a RNA molecule. Recent findings, however, have painted a more complex picture of the SRA gene (SRA1) products. Indeed, even though SRA was initially thought to be noncoding, several RNA isoforms have now been found to encode an endogenous protein (SRAP), which is well conserved among Chordata. Although the function of SRAP remains la...

  1. MAPPING OF TOLL LIKE RECEPTOR (TLR) GENES IN RAINBOW TROUT

    Science.gov (United States)

    Toll-like receptors (TLRs) are a family of transmembrane proteins that recognize conserved pathogen structures to induce innate immune effector molecules. In vertebrates, TLRs can distinguish among classes of pathogens and serve an important role in orchestrating the appropriate adaptive immune resp...

  2. Hormone receptor and ERBB2 status in gene expression profiles of human breast tumor samples.

    Directory of Open Access Journals (Sweden)

    Anna Dvorkin-Gheva

    Full Text Available The occurrence of large publically available repositories of human breast tumor gene expression profiles provides an important resource to discover new breast cancer biomarkers and therapeutic targets. For example, knowledge of the expression of the estrogen and progesterone hormone receptors (ER and PR, and that of the ERBB2 in breast tumor samples enables choice of therapies for the breast cancer patients that express these proteins. Identifying new biomarkers and therapeutic agents affecting the activity of signaling pathways regulated by the hormone receptors or ERBB2 might be accelerated by knowledge of their expression levels in large gene expression profiling data sets. Unfortunately, the status of these receptors is not invariably reported in public databases of breast tumor gene expression profiles. Attempts have been made to employ a single probe set to identify ER, PR and ERBB2 status, but the specificity or sensitivity of their prediction is low. We enquired whether estimation of ER, PR and ERBB2 status of profiled tumor samples could be improved by using multiple probe sets representing these three genes and others with related expression.We used 8 independent datasets of human breast tumor samples to define gene expression signatures comprising 24, 51 and 14 genes predictive of ER, PR and ERBB2 status respectively. These signatures, as demonstrated by sensitivity and specificity measures, reliably identified hormone receptor and ERBB2 expression in breast tumors that had been previously determined using protein and DNA based assays. Our findings demonstrate that gene signatures can be identified which reliably predict the expression status of the estrogen and progesterone hormone receptors and that of ERBB2 in publically available gene expression profiles of breast tumor samples. Using these signatures to query transcript profiles of breast tumor specimens may enable discovery of new biomarkers and therapeutic targets for

  3. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates.

    Directory of Open Access Journals (Sweden)

    Görel Sundström

    Full Text Available BACKGROUND: The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R before the origin of jawed vertebrates formed the receptor family. METHODOLOGY/PRINCIPAL FINDINGS: Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. CONCLUSIONS/SIGNIFICANCE: The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution.

  4. Identification of liver receptor homolog-1 as a novel regulator of apolipoprotein AI gene transcription.

    Science.gov (United States)

    Delerive, Philippe; Galardi, Cristin M; Bisi, John E; Nicodeme, Edwige; Goodwin, Bryan

    2004-10-01

    The orphan nuclear receptor liver receptor homolog-1 (LRH-1) has been reported to play a role in bile acid biosynthesis and reverse cholesterol transport. In this study, we examined the role of LRH-1 in the regulation of the apolipoprotein AI (APOAI) gene. Using RNA interference and adenovirus-mediated overexpression, we show that LRH-1 directly regulates APOAI gene transcription. Transient transfection experiments and EMSAs revealed that LRH-1 directly regulates APOAI transcription by binding to an LRH-1 response element located in the proximal APOAI promoter region. Chromatin immunoprecipitation experiments revealed that LRH-1 binds to the human APO AI promoter in vivo. Finally, we show that the transcriptional repressor SHP (small heterodimer partner) suppressed APOAI gene expression by inhibiting LRH-1 transcriptional activity. Taken together, our results demonstrate that LRH-1 is a novel regulator of APOAI transcription and underscore the role of this receptor in cholesterol homeostasis. PMID:15218078

  5. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  6. Dopamine D4 receptor gene polymorphism and personality traits in healthy volunteers.

    Science.gov (United States)

    Persson, M L; Wasserman, D; Geijer, T; Frisch, A; Rockah, R; Michaelovsky, E; Apter, A; Weizman, A; Jönsson, E G; Bergman, H

    2000-01-01

    An association between long alleles of a variable number tandem repeat (VNTR) polymorphism in the dopamine receptor D4 gene and the extraversion related personality traits Excitement and Novelty Seeking has been reported in healthy subjects. In an attempt to replicate the previous findings, 256 healthy Caucasian volunteers were analysed for a potential relationship between the dopamine receptor D4 exon III VNTR polymorphism and Extraversion as assessed by the Revised Neo Personality Inventory (NEO PI-R). The present study did not yield evidence for an association between Extraversion and the dopamine receptor D4 polymorphism. PMID:11009073

  7. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    Energy Technology Data Exchange (ETDEWEB)

    Macke, J.P.; Nathans, J.; King, V.L. (Johns Hopkins Univ., Baltimore, MD (United States)); Hu, N.; Hu, S.; Hamer, D.; Bailey, M. (Northwestern Univ., Evanston, IL (United States)); Brown, T. (Johns Hopkins Univ. School of Hygiene and Public Health, Baltimore, MD (United States))

    1993-10-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser[sup 205] -to-arg and glu[sup 793]-to-asp, the biological significance of which is unknown. 32 refs., 2 figs., 2 tabs.

  8. Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum.

    Science.gov (United States)

    Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    Insects are extremely successful animals whose odor perception is very prominent due to their sophisticated olfactory system. The main chemosensory organ, antennae play a critical role in detecting odor in ambient environment before initiating appropriate behavioral responses. The antennal chemosensory receptor genes families have been suggested to be involved in olfactory signal transduction pathway as a sensory neuron response. The Macrocentrus cingulum is deployed successfully as a biological control agent for corn pest insects from the Lepidopteran genus Ostrinia. In this research, we assembled antennal transcriptomes of M. cingulum by using next generation sequencing to identify the major chemosensory receptors gene families. In total, 112 olfactory receptors candidates (79 odorant receptors, 20 gustatory receptors, and 13 ionotropic receptors) have been identified from the male and female antennal transcriptome. The sequences of all of these transcripts were confirmed by RT-PCR, and direct DNA sequencing. Expression profiles of gustatory receptors in olfactory and non-olfactory tissues were measured by RT-qPCR. The sex-specific and sex-biased chemoreceptors expression patterns suggested that they may have important functions in sense detection which behaviorally relevant to odor molecules. This reported result provides a comprehensive resource of the foundation in semiochemicals driven behaviors at molecular level in polyembryonic endoparasitoid. PMID:27090020

  9. Development of gene diagnosis for diabetes and cholecystis based on gene analysis of CCK-A receptor

    International Nuclear Information System (INIS)

    The gene structures of CCK, A type receptor in human, the rat and the mouse were investigated aiming to clarify that the aberration of the gene is involved in the incidences of diabetes and cholecystis. In this fiscal year, 1997, the normal structure of the gene and the accurate base sequence were analyzed using DNA fragments bound to 32P-labelled cDNA of human CCKAR originated from the gene library of leucocyte. This gene contained about 2.2 x 105 base pairs and the base sequence was completely determined and registered to Japan DNA data bank (D85606). In addition, the genome structures and base sequences of mouse and rat CCKAR were analyzed and registered (D 85605 and D 50608, respectively). The differences in the base sequence of CCKAR among the species were found in the promotor region and the intron regions, suggesting that there might be differences in splicing among species. (M.N.)

  10. The farnesoid X receptor induces fetuin-B gene expression in human hepatocytes

    OpenAIRE

    Murakami, Takeshi; Walczak, Robert; Caron, Sandrine; Duhem, Christian; Vidal, Vincent; Darteil, Raphaël; Staels, Bart

    2007-01-01

    Abstract Farnesoid X receptor (FXR), a nuclear receptor activated by bile acids, is a key factor in the regulation of bile acid, lipid and carbohydrate metabolism. The recent development of synthetic FXR agonists and knock-out mouse models has accelerated the discovery of FXR target genes. In this study we identify human Fetuin-B as a novel FXR target gene. Treatment with FXR agonists increased Fetuin-B expression in human primary hepatocytes and in the human hepatoma HepG2 cell li...

  11. Association of SNPs and haplotypes in GABA(A) receptor beta(2) gene with schizophrenia

    Institute of Scientific and Technical Information of China (English)

    WSLau; CFXuan; ZChan; CFFeng; GYHe; LCao; ZCLiu; HLuan; QMXue

    2005-01-01

    Disturbances in GABAergic system have been observed in schizophrenics.(1-3) In the present study, population association analysis was performed on 19 SNPs in the alpha(l), beta(2), gamma(2), epsilon and pi subunit genes of GABA(A) receptor. Five SNPs in GABRB2, namely B217G1584T, rs1816071, rs194072, rs252944 and rs187269,were found to be significantly associated, and their haplotypes in linkage disequilibrium, with schizophrenia. This represents the first report on any disease association of SNPs in the human GABA(A) receptor genes, and focuses attention on the GABAergic hypothesis of schizophrenia etiology.(3,4)

  12. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    OpenAIRE

    FlorenciaMarcucci

    2010-01-01

    We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R) repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computa...

  13. High-Throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    OpenAIRE

    Zhang, Xiaohong; Marcucci, Florencia; Firestein, Stuart

    2010-01-01

    We performed comprehensive data mining to explore the vomeronasal receptor (V1R and V2R) repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on comput...

  14. Potential of GRID2 receptor gene for preventing TNF-induced neurodegeneration in autism.

    Science.gov (United States)

    Kalkan, Zeynep; Durasi, İlknur Melis; Sezerman, Ugur; Atasever-Arslan, Belkis

    2016-05-01

    Autism is one of the most common subtypes of autism spectrum disorder (ASD). Recent studies suggested a relationship between immune-dependent coding genes and ASD, indicating that long term neuroimmunological anomalies affect brain development and synaptic transmission among neural networks. Furthermore, various studies focused on biomarker potential of TNF-α in autism. Ionotropic receptors are also studied as potential marker for autism since altered gene expression levels are observed in autistic patients. GRID2 is a candidate ionotropic receptor which is involved glutamate transfer. In this study, to propose TNF-α dependent cellular processes involved in autism aetiology in relation to GRID2 we performed a bioinformatic network analysis and identified potential pathways and genes that are involved in TNF-α induced changes at GRID2 receptor levels. As a result, we ascertained the GRID2 receptor gene as a candidate gene and further studied the association between GRID2 expression levels and TNF-induced neurodegeneration. Our bioinformatic analyses and experimental results revealed that TNF-α regulates GRID2 gene expression by activating Cdc42 and GOPC genes. Moreover, increased TNF-α levels leads to increase of caspase-3 protein levels triggering neuronal apoptosis leading to neuronal deficiency, which is one of the major symptoms of autism. The study is the first to show the role of TNF-α in regulation of GRID2 gene expression and its signalling pathway. As a result, GRID2 gene can be a suppressor in TNF-induced neurodegeneration which may help to understand the main factors leading to autism. PMID:27019035

  15. POLYMORPHISM OF PROLACTIN RECEPTOR GENE (PRLR) IN THE POLISH LANDRACE AND POLISH LARGE WHITE SWINE POPULATION AND REPRODUCTIVE TRAITS

    OpenAIRE

    ZIÓŁKOWSKA, Agata; BOGDZIŃSKA, Maria; Jan BIEGNIEWSKI

    2011-01-01

    Prolactin receptor gene was found in pig chromosome 16, and it is one of the genes with a significant effect on reproduction traits in sows. The objective of the research was to determine polymorphism of the prolactin receptor gene in pigs of two maternal breeds: Polish Landrace and Polish Large White, as well as analyse relations between particular allelomorphic variants, and reproduction traits of examined sows. Two PRLR gene alleles, A and B, were isolated, they were obtained a...

  16. Oxytocin receptor gene (OXTR) is related to psychological resources

    OpenAIRE

    Saphire-Bernstein, Shimon; Way, Baldwin M.; Kim, Heejung S.; Sherman, David K.; Taylor, Shelley E.

    2011-01-01

    Psychological resources—optimism, mastery, and self-esteem—buffer the deleterious effects of stress and are predictors of neurophysiological and psychological health-related outcomes. These resources have been shown to be highly heritable, yet the genetic basis for this heritability remains unknown. Here, we report a link between the oxytocin receptor (OXTR) SNP rs53576 and psychological resources, such that carriers of the “A” allele have lower levels of optimism, mastery, and self-esteem, r...

  17. Investigation of the vitamin D receptor gene (VDR) and its interaction with protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2) on risk of islet autoimmunity and type 1 diabetes : The Diabetes Autoimmunity Study in the Young (DAISY)

    NARCIS (Netherlands)

    Frederiksen, B.; Liu, E.; Romanos, J.; Steck, A. K.; Yin, X.; Kroehl, M.; Fingerlin, T. E.; Erlich, H.; Eisenbarth, G. S.; Rewers, M.; Norris, J. M.

    2013-01-01

    The present study investigated the association between variants in the vitamin D receptor gene (VDR) and protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2), as well as an interaction between VDR and PTPN2 and the risk of islet autoimmunity (IA) and progression to type 1 diabetes (T1D). T

  18. The Moderating Effect of Alcohol-Specific Parental Rule-Setting on the Relation between the Dopamine D2 Receptor Gene (DRD2), the Mu-Opioid Receptor Gene (OPRM1) and Alcohol Use in Young Adolescents

    NARCIS (Netherlands)

    S. Pieters; C.S. van der Zwaluw; H. van der Vorst; R.W. Wiers; H. Smeets; E. Lambrichs; W.J. Burk; R.C.M.E. Engels

    2012-01-01

    Aims: The main aim of the study was to test the moderating effect of two genetic polymorphisms, one in the dopamine D2 receptor gene (DRD2) and one in the mu-opioid receptor gene (OPRM1), on the link between parental rule-setting and adolescent alcohol use. Methods: A total of 214 adolescents (Mage

  19. Crosstalk between thyroid hormone receptor and liver X receptor in the regulation of selective Alzheimer's disease indicator-1 gene expression.

    Directory of Open Access Journals (Sweden)

    Emi Ishida

    Full Text Available Selective Alzheimer's disease (AD indicator 1 (Seladin-1 has been identified as a gene down-regulated in the degenerated lesions of AD brain. Up-regulation of Seladin-1 reduces the accumulation of β-amyloid and neuronal death. Thyroid hormone (TH exerts an important effect on the development and maintenance of central nervous systems. In the current study, we demonstrated that Seladin-1 gene and protein expression in the forebrain was increased in thyrotoxic mice compared with that of euthyroid mice. However, unexpectedly, no significant decrease in the gene and protein expression was observed in hypothyroid mice. Interestingly, an agonist of liver X receptor (LXR, TO901317 (TO administration in vivo increased Seladin-1 gene and protein expression in the mouse forebrain only in a hypothyroid state and in the presence of mutant TR-β, suggesting that LXR-α would compensate for TR-β function to maintain Seladin-1 gene expression in hypothyroidism and resistance to TH. TH activated the mouse Seladin-1 gene promoter (-1936/+21 bp and site 2 including canonical TH response element (TRE half-site in the region between -159 and -154 bp is responsible for the positive regulation. RXR-α/TR-β heterodimerization was identified on site 2 by gel-shift assay, and chromatin immunoprecipitation assay revealed the recruitment of TR-β to site 2 and the recruitment was increased upon TH administration. On the other hand, LXR-α utilizes a distinct region from site 2 (-120 to -102 bp to activate the mouse Seladin-1 gene promoter. Taking these findings together, we concluded that TH up-regulates Seladin-1 gene expression at the transcriptional level and LXR-α maintains the gene expression.

  20. Genomic organization and sequence analysis of the vomeronasal receptor V2R genes in mouse genome

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; Zhang YaPing

    2007-01-01

    Two multigene superfamilies, named V1R and V2R, encoding seven-transmembrane-domain G-protein coupled receptors (GPCRs) have been identified as pheromone receptors in mammals. Three V2R gene families have been described in mouse and rat. Here we screened the updated mouse genome sequence database and finally retrieved 63 putative functional V2R genes including three newly identified genes which formed a new additional family. We described the genomic organization of these genes and also characterized the conservation of mouse V2R protein sequences. These genomic and sequence information we described are useful as part of the evidence to speculate the functional domain of V2Rs and should give aid to the functionality study in the future.

  1. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits

    Science.gov (United States)

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2016-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  2. A comparison of reptilian and avian olfactory receptor gene repertoires: Species-specific expansion of group γ genes in birds

    Directory of Open Access Journals (Sweden)

    Kempenaers Bart

    2009-09-01

    Full Text Available Abstract Background The detection of odorants is mediated by olfactory receptors (ORs. ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis, and in two birds, the chicken (Gallus gallus and the zebra finch (Taeniopygia guttata. Results We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively. We show that the green anole has a higher fraction of intact OR genes (~72% compared with the chicken (~66% and the zebra finch (~38%. We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively. Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group α, θ and γ genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called γ-c clade. An analysis of the selective pressure on the paralogous genes of each γ-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The γ-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group γ-c OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. Conclusion We identified a surprisingly large number of potentially functional avian OR genes. Our data

  3. Nuclear receptors for retinoic acid and thyroid hormone regulate transcription of keratin genes.

    OpenAIRE

    Tomic, M; Jiang, C K; Epstein, H S; Freedberg, I M; Samuels, H H; M. Blumenberg

    1990-01-01

    In the epidermis, retinoids regulate the expression of keratins, the intermediate filament proteins of epithelial cells. We have cloned the 5' regulatory regions of four human epidermal keratin genes, K#5, K#6, K#10, and K#14, and engineered constructs in which these regions drive the expression of the CAT reporter gene. By co-transfecting the constructs into epithelial cells along with the vectors expressing nuclear receptors for retinoic acid (RA) and thyroid hormone, we have demonstrated t...

  4. Association between vitamin D receptor gene polymorphisms and chronic periodontitis among Libyans

    OpenAIRE

    El Jilani, Mouna M.; Mohamed, Abdenaser A.; Ben Zeglam, Hamza; Inas M. Alhudiri; Ramadan, Ahmad M.; Enattah, Nabil S.; Saleh, Saleh S.; Elkabir, Mohamed; Ben Amer, Ibrahim; Ashammakhi, Nureddin

    2015-01-01

    Background: Chronic periodontitis (CP) is a common oral disease characterized by inflammation in the supporting tissue of the teeth ‘the periodontium’, periodontal attachment loss, and alveolar bone loss. The disease has a microbial etiology; however, recent findings suggest that the genetic factors, such as vitamin D receptor (VDR) gene polymorphisms, have also been included.Aim: Investigation of the relationship between VDR gene polymorphisms and CP among Libyans.Materials and methods: In t...

  5. Gene Expression of Leptin and Long Leptin Receptor Isoform in Endometriosis: A Case-Control Study

    OpenAIRE

    Andrea Prestes Nácul; Sheila Bunecker Lecke; Maria Isabel Edelweiss; Débora Martinho Morsch; Poli Mara Spritzer

    2013-01-01

    In this study, leptin/BMI ratio in serum and peritoneal fluid and gene expression of leptin and long form leptin receptor (OB-RL) were assessed in eutopic and ectopic endometria of women with endometriosis and controls. Increased serum leptin/BMI ratio was found in endometriosis patients. Leptin and OB-RL gene expression was significantly higher in ectopic versus eutopic endometrium of patients and controls. A positive, significant correlation was observed between leptin and OB-RL transcripts...

  6. Identification of a bitter-taste receptor gene repertoire in different Lagomorphs species

    OpenAIRE

    Ana M Ferreira; Marques, Andreia T.; Luca eFontanesi; Carl-Gustaf eThulin; Elvira eSales-Baptista; Susana S. Araújo; Almeida, André M.

    2016-01-01

    The repertoires of bitter taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, Lepus europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi and Sylvilagus floridanus, using Oryctolagus cuniculus cuniculus as control species for PCR and D...

  7. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species

    OpenAIRE

    Ana M Ferreira; Marques, Andreia T.; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Susana S. Araújo; Almeida, André M.

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequenci...

  8. Isolation and Characterization of the Brassinosteroid Receptor Gene (GmBRI1) from Glycine max

    OpenAIRE

    Wang, Miao; Sun, Shi; Wu, Cunxiang; Han, Tianfu; Wang, Qingyu

    2014-01-01

    Brassinosteroids (BRs) constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed th...

  9. Isolation and Characterization of the Brassinosteroid Receptor Gene (GmBRI1) from Glycine max

    OpenAIRE

    Miao Wang; Shi Sun; Cunxiang Wu; Tianfu Han; Qingyu Wang

    2014-01-01

    Brassinosteroids (BRs) constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed t...

  10. Androgen receptor gene polymorphisms are associated with aggression in Japanese Akita Inu

    OpenAIRE

    Konno, Akitsugu; Inoue-Murayama, Miho; Hasegawa, Toshikazu

    2011-01-01

    We tested for an association between variable number of tandem repeats in the canine androgen receptor (AR) gene and personality differences in Japanese Akita Inu dogs. The polymorphic trinucleotide (CAG) repeat region coding for glutamine in exon 1 of the AR gene was genotyped using genomic DNA obtained from 171 dogs. Three alleles (23, 24 and 26 repeats) were detected, and the allele frequency differed with the coat colour. We assessed the personality profiles of 100 fawn-coloured dogs (54 ...

  11. No Association between Oxytocin Receptor (OXTR) Gene Polymorphisms and Experimentally Elicited Social Preferences

    OpenAIRE

    Apicella, Coren L.; Westberg, Lars

    2010-01-01

    Background: Oxytocin (OXT) has been implicated in a suite of complex social behaviors including observed choices in economic laboratory experiments. However, actual studies of associations between oxytocin receptor (OXTR) gene variants and experimentally elicited social preferences are rare. Methodology/Principal Findings: We test hypotheses of associations between social preferences, as measured by behavior in two economic games, and 9 single nucleotide polymorphisms (SNPs) of the OXTR gene ...

  12. Sexually dimorphic effects of oxytocin receptor gene (OXTR ) variants on Harm Avoidance

    OpenAIRE

    Stankova Trayana; Eichhammer Peter; Langguth Berthold; Sand Philipp G

    2012-01-01

    Abstract Background Recent research has suggested that oxytocin receptor gene (OXTR) variants may account for individual differences in social behavior, the effects of stress and parenting styles. Little is known, however, on a putative role of the gene in heritable temperamental traits. Methods We addressed effects of two common OXTR variants, rs237900 and rs237902, on personality dimensions in 99 healthy subjects using the Temperament and Character Inventory. Results When sex was controlled...

  13. Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents

    OpenAIRE

    Niimura Yoshihito

    2009-01-01

    Abstract Olfaction is essential for the survival of animals. Versatile odour molecules in the environment are received by olfactory receptors (ORs), which form the largest multigene family in vertebrates. Identification of the entire repertories of OR genes using bioinformatics methods from the whole-genome sequences of diverse organisms revealed that the numbers of OR genes vary enormously, ranging from ~1,200 in rats and ~400 in humans to ~150 in zebrafish and ~15 in pufferfish. Most specie...

  14. Complex Evolution of 7E Olfactory Receptor Genes in Segmental Duplications

    OpenAIRE

    Newman, Tera; Trask, Barbara J.

    2003-01-01

    Large segmental duplications (SDs) constitute at least 3.6% of the human genome and have increased its size, complexity, and diversity. SDs can mediate ectopic sequence exchange resulting in gross chromosomal rearrangements that could contribute to speciation and disease. We have identified and evaluated a subset of human SDs that harbor an 88-member subfamily of olfactory receptor (OR)-like genes called the 7Es. At least 92% of these genes appear to be pseudogenes when compared to other OR g...

  15. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency

    OpenAIRE

    He, Jinshui; Fang, Yanling; Lin, Xinfu; Zhou, Huowang; ZHU, SHAOBO; Zhang, Yugui; Yang, Huicong; Ye, Xiaoling

    2016-01-01

    Backgrounds Growth hormone deficiency (GHD) is a major cause of congenital short stature. GHD patients have significantly decreased serum leptin levels, which are regulated by gene polymorphism of leptin and leptin receptor. This study thus investigated the relationship between gene polymorphism and susceptibility to GHD. Material/Methods A case-control study was performed using 180 GHD children in addition to 160 healthy controls. After the extraction of whole genomic DNA, the genotypes of l...

  16. Dopamine D4 receptor gene DRD4 and its association with psychiatric disorders

    OpenAIRE

    Ptáček, Radek; Kuželová, Hana; Stefano, George B.

    2011-01-01

    Summary Dopamine receptors control neural signals that modulates behavior. Dopamine plays an important role in normal attention; that is the reason for studying the genes of the dopaminergic system, mainly in connection with disorders of attention. DRD4 influences the postsynaptic action of dopamine and is implicated in many neurological processes, exhibits polymorphism and is one of the most studied genes in connection with psychiatric disorders. Associations were found with ADHD (attention ...

  17. Curcumin induces human cathelicidin antimicrobial peptide gene expression through a vitamin D receptor-independent pathway

    OpenAIRE

    Guo, Chunxiao; Rosoha, Elena; Lowry, Malcolm B.; Borregaard, Niels; Gombart, Adrian F.

    2012-01-01

    The vitamin D receptor (VDR) mediates the pleiotropic biologic effects of 1α,25 dihydroxy-vitamin D3. Recent in vitro studies suggested that curcumin and poly-unsaturated fatty acids (PUFAs) also bind to VDR with low affinity. As potential ligands for the VDR, we hypothesized that curcumin and PUFAs would induce expression of known VDR target genes in cells. In this study, we tested whether these compounds regulated two important VDR target genes - human cathelicidin antimicrobial peptide (CA...

  18. Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2

    DEFF Research Database (Denmark)

    Rosenkilde, Carina; Cazzamali, Giuseppe; Williamson, Michael;

    2003-01-01

    diverse myotropic actions and are also initiating sex pheromone biosynthesis and embryonic diapause. Gene silencing, using the RNA-mediated interference technique, showed that CG8784 gene silencing caused lethality in embryos, whereas CG8795 gene silencing resulted in strongly reduced viability for both...... embryos and first instar larvae. In addition to the two Drosophila receptors, we also identified two probable pyrokinin receptors in the genomic database from the malaria mosquito Anopheles gambiae. The two Drosophila pyrokinin receptors are, to our knowledge, the first invertebrate pyrokinin receptors to...

  19. No association of primary Sjögren's syndrome with Fcγ receptor gene variants.

    Science.gov (United States)

    Haldorsen, K; Appel, S; Le Hellard, S; Bruland, O; Brun, J G; Omdal, R; Kristjansdottir, G; Theander, E; Fernandes, C P D; Kvarnström, M; Eriksson, P; Rönnblom, L; Herlenius, M W; Nordmark, G; Jonsson, R; Bolstad, A I

    2013-06-01

    The genetic background of primary Sjögren's syndrome (pSS) is partly shared with systemic lupus erythematosus (SLE). Immunoglobulin G Fc receptors are important for clearance of immune complexes. Fcγ receptor variants and gene deletion have been found to confer SLE risk. In this study, four Fcγ receptor single-nucleotide polymorphisms (SNPs) and one copy number variation (CNV) were studied. Swedish and Norwegian pSS patients (N=527) and controls (N=528) were genotyped for the Fcγ receptor gene variant FCGR2A H131R (rs1801274) by the Illumina GoldenGate assay. FCGR3A F158V (rs396991) was analysed in 488 patients and 485 controls, FCGR3B rs447536 was analysed in 471 patients and 467 controls, and FCGR3B rs448740 was analysed in 478 cases and 455 controls, using TaqMan SNP genotyping assays. FCGR3B CNV was analysed in 124 patients and 139 controls using a TaqMan copy number assay. None of the SNPs showed any association with pSS. Also, no FCGR3B CNV association was detected. The lack of association of pSS with Fcγ receptor gene variants indicates that defective immune complex clearance may not be as important in pSS pathogenesis as in SLE, and may point to important differences between SLE and pSS. PMID:23552400

  20. Association analysis of the cholecystokinin type A receptor gene in schizophrenia

    Institute of Scientific and Technical Information of China (English)

    吕文天; 张萱; 张铭; 龚守良; 尉军

    2004-01-01

    @@ Schizophrenia is characterized by clinical heterogeneity and genetic heterogeneity. 1 Because dopamine(DA)overactivity has been thought, over the past 40 years, to play a role in the pathophysiology of schizophrenia, its receptors and metabolic enzymes have been regarded as potentially involved in schizophrenia. 2 However,disease-causing variants among the genes coding for dopamine receptors and the enzymes related to DA have not been found. Cholecystokinin A receptor (CCK-AR)coexists with DA in the same neurons of the midbrain limbic system, as well as the access to the substantia nigra and the corpus striatum, and it acts as a mediator modulating dopaminergic activity. 3 Two CCK receptors,CCK-AR and CCK B receptor (CCK-BR) have been identified. CCK-AR in the medial posterior nucleus accumbens increases DA release, while CCK-BR in the anterior nucleus accumbens decreases DA release. 4 The former has potential effects on human neuropsychiatric diseases linked to DA, such as schizophrenia. Recently,several studies found that the Pst I polymorphic site present in the boundary between intron 1 and exon 2 of the CCK-AR gene is associated with some symptoms of schizophrenia. This finding is particularly important for uncovering the genetic etiology of schizophrenia, although the mechanism linking this polymorphic site to the disease remains unclear. The present work is an attempt to confirm the genetic association between the CCK-AR gene and schizophrenia.

  1. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    Science.gov (United States)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  2. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Anne-Christine Field

    Full Text Available Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.

  3. Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar.

    Directory of Open Access Journals (Sweden)

    Xia Li

    2005-07-01

    Full Text Available Although domestic cats (Felis silvestris catus possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3, we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer

  4. Pseudogenization of a Sweet-Receptor Gene Accounts for Cats' Indifference toward Sugar.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Although domestic cats (Felis silvestris catus possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3, we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer

  5. Endocytotic uptake, processing, and retroendocytosis of human biosynthetic proinsulin by rat fibroblasts transfected with the human insulin receptor gene.

    OpenAIRE

    Levy, J R; Ullrich, A; Olefsky, J M

    1988-01-01

    The cellular itinerary and processing of insulin and proinsulin were studied to elucidate possible mechanisms for the observed in vivo differences in the biologic half-lives of these two hormones. A rat fibroblast cell line transfected with a normal human insulin receptor gene was used. Due to gene amplification, the cells express large numbers of receptors and are ideal for studying a ligand, such as proinsulin, that has a low affinity for the insulin receptor. Competitive binding at 4 degre...

  6. Intronic deletions of tva receptor gene decrease the susceptibility to infection by avian sarcoma and leukosis virus subgroup A

    OpenAIRE

    Weiguo Chen; Yang Liu; Hongxing Li; Shuang Chang; Dingming Shu; Huanmin Zhang; Feng Chen; Qingmei Xie

    2015-01-01

    The group of avian sarcoma and leukosis virus (ASLV) in chickens contains six highly related subgroups, A to E and J. Four genetic loci, tva, tvb, tvc and tvj, encode for corresponding receptors that determine the susceptibility to the ASLV subgroups. The prevalence of ASLV in hosts may have imposed strong selection pressure toward resistance to ASLV infection, and the resistant alleles in all four receptor genes have been identified. In this study, two new alleles of the tva receptor gene, t...

  7. Association of Gamma-Aminobutyric Acid A Receptor α2 Gene (GABRA2) with Alcohol Use Disorder

    OpenAIRE

    Li, Dawei.; Sulovari, Arvis; Cheng, Chao; Zhao, Hongyu; Henry R Kranzler; Gelernter, Joel

    2013-01-01

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in mammalian brain. GABA receptor are involved in a number of complex disorders, including substance abuse. No variants of the commonly studied GABA receptor genes that have been associated with substance dependence have been determined to be functional or pathogenic. To reconcile the conflicting associations with substance dependence traits, we performed a meta-analysis of variants in the GABAA receptor genes (GABRB2, GABR...

  8. Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    OpenAIRE

    Lobaccaro, J M; Lumbroso, S.; Poujol, Nicolas; Georget, V.; Brinkmann, Albert; Malpuech, Georges; Sultan, C.

    1995-01-01

    textabstractWe studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for a predictive frameshift in the open reading frame and introduction of a premature stop codon at position 783 instead of 919. The deletion was reproduced in androgen receptor wildtype cDNA and tran...

  9. A single nucleotide substitution introduces a premature termination codon into the androgen receptor gene of a patient with receptor-negative androgen resistance.

    OpenAIRE

    M. Marcelli; Tilley, W. D.; Wilson, C.M.; Wilson, J. D.; Griffin, J E; McPhaul, M J

    1990-01-01

    Mutations of the androgen receptor that impair the action of 5 alpha-dihydrotestosterone and testosterone result in abnormal male sexual development. The definition of the organization of the androgen receptor gene has permitted us to examine its structure in nine patients with androgen resistance that exhibit absent 5 alpha-dihydrotestosterone binding in cultured fibroblasts (receptor-negative androgen resistance). Using labeled probes specific for each individual coding exon, we find no gro...

  10. Development of gene diagnosis for diabetes and cholecystitis based on gene analysis of CCK-A receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Akira [National Kyushu Cancer Center, Fukuoka (Japan)

    1999-02-01

    Base sequence analysis of CCKAR gene (a gene of A-type receptor for cholecystokinin) from OLETF rat, a model rat for insulin-independent diabetes was made based on the base sequence of wild CCKAR gene, which had been clarified in the previous year. From the pancreas of OLETF rat, DNA was extracted and transduced into {lambda}phage after fragmentation to construct the gene library of OLETF. Then, {lambda}phage DNA clone bound with labelled cDNA of CCKAR gene was analyzed and the gene structure was compared with that of the wild gene. It was demonstrated that CCKAR gene of OLETF had a deletion (6800 b.p.) ranging from the promoter region to the Exon 2, suggesting that CCKAR gene is not functional in OLETF rat. The whole sequence of this mutant gene was registered into Japan DNA Bank (D 50610). Then, F{sub 2} offspring rats were obtained through crossing OLETF (female) and F344 (male) and the time course-changes in the blood glucose level after glucose loading were compared among them. The blood glucose level after glucose loading was significantly higher in the homo-mutant F{sub 2} (CCKAR,-/-) as well as the parent OLETF rat than hetero-mutant F{sub 2} (CCKARm-/+) or the wild rat (CCKAR,+/+). This suggests that CCKAR gene might be involved in the control of blood glucose level and an alteration of the expression level or the functions of CCKAR gene might affect the blood glucose level. (M.N.)

  11. Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries

    DEFF Research Database (Denmark)

    Edvinsson, Lars; Chan, Kayi Y; Eftekhari, Sajedeh;

    2010-01-01

    INTRODUCTION: Calcitonin gene-related peptide (CGRP) is a neuronal messenger in intracranial sensory nerves and is considered to play a significant role in migraine pathophysiology. MATERIALS AND METHODS: We investigated the effect of the CGRP receptor antagonist, telcagepant, on CGRP-induced cra......INTRODUCTION: Calcitonin gene-related peptide (CGRP) is a neuronal messenger in intracranial sensory nerves and is considered to play a significant role in migraine pathophysiology. MATERIALS AND METHODS: We investigated the effect of the CGRP receptor antagonist, telcagepant, on CGRP......-induced cranial vasodilatation in human isolated cerebral and middle meningeal arteries. We also studied the expression of the CGRP receptor components in cranial arteries with immunocytochemistry. Concentration response curves to αCGRP were performed in human isolated cerebral and middle meningeal arteries in...

  12. Suicide Gene Therapy to Increase the Safety of Chimeric Antigen Receptor-Redirected T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Monica Casucci, Attilio Bondanza

    2011-01-01

    Full Text Available Chimeric antigen receptors (CARs are generated by fusing the antigen-binding motif of a monoclonal antibody (mAb with the signal transduction machinery of the T-cell receptor (TCR. The genetic modification of T lymphocytes with chimeric receptors specific for tumor-associated antigens (TAAs allows for the redirection towards tumor cells. Clinical experience with CAR-redirected T cells suggests that antitumor efficacy associates with some degree of toxicity, especially when TAA expression is shared with healthy tissues. This situation closely resembles the case of allogeneic hematopoietic stem cell transplantation (HSCT, wherein allorecognition causes both the graft-versus-leukemia (GVL effect and graft-versus-host disease (GVHD. Suicide gene therapy, i.e. the genetic induction of a conditional suicide phenotype into donor T cells, enables dissociating the GVL effect from GVHD. Applying suicide gene modification to CAR-redirected T cells may therefore greatly increase their safety profile and facilitate their clinical development.

  13. Nicotinic Acetylcholine Receptor Gene Family of the Pea Aphid, Acyrthosiphon pisum

    Institute of Scientific and Technical Information of China (English)

    LIU Yi-peng; LIN Ke-jian; LIU Yang; GUI Fu-rong; WANG Gui-rong

    2013-01-01

    The nicotinic acetylcholine receptors (nAchRs) are cholinergic receptors that form ligand-gated ion channels by ifve subunits in insect and vertebrate nervous systems. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Here, we identiifed and cloned 11 candidate nAChR subunit genes in Acyrthosiphon pisum using genome-based bioinformatics combined modern molecular techniques. Most A. pisum nAChRs including α1, α2, α3, α4, α6, α8, and β1 show highly sequence identities with the counterparts of other insects examined. Expression proifles analysis showed that all subunit genes were expressed in adult head. At least two subunits have alternative splicing that obviously increase A. pisum nicotinic receptor diversity. This study will be invaluable for exploring the molecular mechanisms of neonicotinoid-like insecticides in sucking pests, and for ultimately establishing the screening platform of novel insecticides.

  14. The human insulin receptor substrate-1 gene (IRS1) is localized on 2q36

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Masaki; Matsufuji, Senya; Hayashi, Shin-ichi; Furusaka, Akihiro; Tanaka, Teruji (Jikei Univ. School of Medicine, Tokyo (Japan)); Inazawa, J.; Nakamura, Yusuke (Cancer Institute, Tokyo (Japan)); Ariyama, Takeshi (Kyoto Prefactural Univ. of Medicine (Japan)); Wands, J.R. (Harvard Medical School, Boston, MA (United States))

    1994-03-01

    The chromosomal localization of some of the genes participating in the insulin signaling pathway is known. The insulin and insulin receptor genes have been mapped to chromosomes 11 and 19, respectively. To identify the chromosomal localization of the human IRS1 gene, the fluorescence in situ hybridization technique was employed with Genomic Clone B-10. A total of 50 metaphase cells exhibiting either single or double spots of hybridization signals were examined. Among them, 32 showed the specific signals on 2q36. Therefore, the authors assigned the human IRS1 gene to 2q36. The genes for homeobox sequence (HOX4), fibronectin 1, alkaline phosphatase (intestinal), transition protein 1, villin 1, collagen (type IV), Waardenburg syndrome (type 1), alanine-glyoxylate aminotransferase, and glucagon have been localized in the vicinity of the IRS1 gene.

  15. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species.

    Science.gov (United States)

    Ferreira, Ana M; Marques, Andreia T; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S; Almeida, André M

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  16. Identification of a bitter-taste receptor gene repertoire in different Lagomorphs species

    Directory of Open Access Journals (Sweden)

    Ana M. Ferreira

    2016-04-01

    Full Text Available The repertoires of bitter taste receptor (T2R gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, Lepus europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi and Sylvilagus floridanus, using Oryctolagus cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of Oryctolagus cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in Romerolagus diazi and Sylvilagus floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification.

  17. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species

    Science.gov (United States)

    Ferreira, Ana M.; Marques, Andreia T.; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S.; Almeida, André M.

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  18. Asialoglycoprotein receptor and liposome synergistically mediate the gene transfer into primary rat hepatocytes

    Institute of Scientific and Technical Information of China (English)

    李崇辉; 温守明; 翟海峰; 孙曼霁

    1999-01-01

    Gene transfer into primary rat hepatocytes was performed by employing cationic liposome as DNA carrier and the specific ligand of hepatic asialoglycoprotein receptor (ASGPR), asialofetuin, as liver-targeting ligand. The resuits showed that asialofetuin, when added to the gene transfer complexes, could significantly increase the hepatocyte transfeetion efficiency, and alleviate the cellular toxicity of Lipofectin. Several synthetic ligands of ASGPR (galactosyl albumin) could also increase the transfection efficiency of hepatocyte like asialofetuin. It was proved that ASGPR and cationic liposome could synergistically mediate the gene transfer into primary rat hepatoeytes. This novel gene delivery system provided a safer, more simple and efficient gene transfer method for primary hepatocytes, and showed prospecting application in hepatic gene therapy.

  19. GRIP1-associated SET-domain methyltransferase in glucocorticoid receptor target gene expression

    OpenAIRE

    Chinenov, Yurii; Sacta, Maria A.; Cruz, Anna R.; Rogatsky, Inez

    2008-01-01

    Transcriptional regulators such as the glucocorticoid receptor (GR) recruit multiple cofactors to activate or repress transcription. Although most cofactors are intrinsically bifunctional, little is known about the molecular mechanisms dictating the specific polarity of regulation. Furthermore, chromatin modifications thought to be confined to silent loci appear in actively transcribed genes suggesting that similar enzymatic activities may mediate constitutive and transient chromatin states. ...

  20. Genetic Variation in the Leptin Receptor Gene, Leptin, and Weight Gain in Young Dutch Adults

    NARCIS (Netherlands)

    Rossum, van C.T.M.; Hoebee, B.; Baak, van M.A.; Mars, M.; Saris, W.H.M.; Seidell, J.C.

    2003-01-01

    Objective: To investigate the association between leptin levels, polymorphisms in the leptin receptor (LEPR) gene, and weight gain. Research Methods and Procedures: From two large prospective cohorts in The Netherlands (n = 17, 500), we compared the baseline leptin of 259 subjects who had gained an

  1. Genetic Basis for Diagnosis of Novel Mutation of LDL Receptor Gene

    Directory of Open Access Journals (Sweden)

    Samia Perwaiz Khan

    2011-12-01

    Full Text Available Background: The low density lipoprotein (LDL receptor is a cell-surface protein that regulates plasma cholesterol by specific uptake of LDL particles from the plasma. Familial hypercholesterolemia (FH is autosomal dominant hypercholesterolemias that predispose to premature coronary artery diseases. Familial hypercholesterolemia is caused by sequence variations in LDL receptor gene.Aim & Objective: The molecular analysis of low density lipoprotein for diagnosis of familial hypercholesterolemia (FH, an autosomal dominant disease caused by a multitude of LDL receptor (LDLR gene mutations and confirmation of these mutations by DNA sequencing.Methods: Polymerase chain reaction (PCR amplification of type specific primers allowed the rapid detection of point mutations in exon 3, 4, 9, and 14 of the low density lipoprotein receptor gene in hypercholesterolemia patients. In our study we screened 120 patients with hypercholesterolemia by lipid profiles after twelve hours fasting and with family history of premature coronary heart diseases.Results: Genomic DNA was extracted from blood samples of an apparently healthy control group and hypercholesterolemia patients with LDL > 160mg/dL and clinical features of FH to detect mutations in exons 3, 4, 9, and 14 of the LDLR gene, with modification in the technique by using type-specific primers. Discussion/ Conclusions: The frequency of heterozygous FH was noted that 35% were classical and 65% probable cases were observed with mutation at exon 3 and 4. The mutations reported were further confirmed by DNA sequencing.

  2. Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay

    NARCIS (Netherlands)

    Freitas, de J.; Cano, P.; Craig-Veit, C.; Goodson, M.L.; Furlow, J.D.; Murk, A.J.

    2011-01-01

    A stable luciferase reporter gene assay was developed based on the thyroid hormone responsive rat pituitary tumor GH3 cell line that constitutively expresses both thyroid hormone receptor isoforms. Stable transfection of the pGL4CP-SV40-2xtaDR4 construct into the GH3 cells resulted in a highly sensi

  3. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    Science.gov (United States)

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  4. Antisocial behavior and polymorphisms in the oxytocin receptor gene : findings in two independent samples

    OpenAIRE

    Hovey, Daniel; Lindstedt, Måns; Zettergren, Anna; Jonsson, Lina; Johansson, Ada; Melke, Jonas; Kerekes, Nora; Anckarsäter, Henrik; Lichtenstein, Paul; Lundström, Sebastian; Westberg, Lars

    2015-01-01

    Importance: The quantitative genetic contribution to antisocial behavior is well established, but few, if any, genetic variants are established as risk factors. Emerging evidence suggests that the neuropeptide oxytocin may modulate interpersonal aggression. Objective: To investigate whether single nucleotide polymorphisms in the oxytocin receptor gene are associated with the expression of antisocial behavior. Design, setting, and participants: A discovery sample, including both se...

  5. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer

    DEFF Research Database (Denmark)

    Svensson, Charlotte; Ceder, Jens; Iglesias Gato, Diego;

    2014-01-01

    The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds...

  6. Allelic variants of melanocortin 3 receptor gene (MC3R) and weight loss in obesity

    DEFF Research Database (Denmark)

    L. Santos, José; De la Cruz, Rolando; Holst, Claus;

    2011-01-01

    The melanocortin system plays an important role in energy homeostasis. Mice genetically deficient in the melanocortin-3 receptor gene have a normal body weight with increased body fat, mild hypophagia compared to wild-type mice. In humans, Thr6Lys and Val81Ile variants of the melanocortin-3 recep...

  7. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition

    NARCIS (Netherlands)

    S.W.J. Lamberts (Steven); E.F.C. van Rossum (Liesbeth)

    2004-01-01

    textabstractMost actions of glucocorticoids (GCs) are mediated by the glucocorticoid receptor (GR). The interindividual response to GCs varies considerably, as demonstrated by a variable suppressive response to 0.25-mg dexamethasone (DEX). Several polymorphisms in the gene coding f

  8. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    Harper, Peter; El-Hariry, Iman; Powles, Thomas; Lau, Mike R; Sternberg, Cora N; Ravaud, Alain; von der Maase, Hans; Zantl, Niko; Harper, Peter Mathias; Rolland, Frédéric; Audhuy, Bruno; Barthel, Friederike; Machiels, Jean-Pascal; Patel, Pina; Kreuser, Ernst-Dietrick; Hawkins, Robert E

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2...

  9. Specific amplification of iron receptor genes in Xylella fastidiosa strains from different hosts

    Directory of Open Access Journals (Sweden)

    Flávia Teresa Hansen Pacheco

    2006-01-01

    Full Text Available Bacterial production of siderophores may involve specific genes related to nonribosomal peptide and polyketide biosynthesis, which have not been fully identified in the genome of Xylella fastidiosa strain 9a5c. However, a search for siderophore-related genes in strain 9a5c indicated five membrane receptors, including siderophore, ferrichrome-iron and hemin receptors. All these biomolecules are thought to be associated with iron transport and utilization. Eighty isolates obtained from citrus orchards containing trees that developed citrus variegated chlorosis (CVC were screened for siderophore production. The results demonstrated that only 10 of the isolates did not produce siderophores. Additional strains obtained from coffee, almond, mulberry, elm, ragweed, periwinkle and grape also infected by X. fastidiosa were also shown by the chromeazurol bioassay to produce siderophores. In order to correlate siderophore production with the presence of siderophore-related genes, a polymerase chain reaction (PCR was developed using specific primers for the catechol-type ferric enterobactin receptor (pfeA and the hydroxamate-type ferrisiderophore receptor (fiuA genes of strain 9a5c. The PCR results confirmed our hypothesis by demonstrating that amplification products were detected in all strains except for those isolates that did not produce siderophores.

  10. Expansion of microsatellite in the thyroid hormone receptor-alpha1 gene linked to increased receptor expression and less aggressive thyroid cancer

    DEFF Research Database (Denmark)

    Onda, Masamitsu; Li, Daisy; Suzuki, Shinichi;

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether the length of the THRA1 microsatellite, which resides in a noncoding portion of the thyroid hormone receptor-alpha1 gene, affects receptor expression and is linked to clinicopathological parameters in thyroid cancer. EXPERIMENTAL DESIGN:...

  11. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    International Nuclear Information System (INIS)

    Highlights: • Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. • Isoflavones have RORα/γ agonistic activities. • Isoflavones enhance the interaction of RORα/γ with co-activator. • These compounds enhance the expression of Il17a mRNA in mouse EL4 cells. • Dietary isoflavones can act as modulators of Il17a expression via RORα/γ. - Abstract: The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also

  12. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    Science.gov (United States)

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  13. The vitamin D receptor gene is associated with Alzheimer's disease.

    Science.gov (United States)

    Lehmann, Donald J; Refsum, Helga; Warden, Donald R; Medway, Christopher; Wilcock, Gordon K; Smith, A David

    2011-10-24

    Vitamin D may have a role in brain function. Low levels have been frequently associated with cognitive decline and may contribute to diseases of the nervous system. The vitamin D receptor (VDR) is widely expressed in human brain. Vitamin D appears to be neuroprotective and may regulate inflammation in the brain. We examined two VDR polymorphisms, Apa1 and Taq1. We used DNA from 255 Alzheimer's disease (AD) cases and 260 cognitively screened elderly controls from the longitudinal cohort of the Oxford Project to Investigate Memory and Ageing (OPTIMA). The presence of each of the linked alleles, Apa1 T and Taq1 G, was associated with the risk of AD, particularly in people vitamin D in AD. Nevertheless, we consider this to be a hypothesis-generating study, which needs to be replicated in a larger dataset. PMID:21911036

  14. The T cell receptor beta genes of Xenopus.

    Science.gov (United States)

    Chretien, I; Marcuz, A; Fellah, J; Charlemagne, J; Du Pasquier, L

    1997-03-01

    cDNA of the T cell receptor beta (TCRB) have been isolated from the anuran amphibian Xenopus and they show strong structural homology to TCRB sequences of other vertebrates. Ten BV families, two D segments, ten J segments, and a single C region have been defined so far. Each V family consists of one to two members per haploid genome. A unique feature of the Xenopus TCRB constant region is the lack of N-linked carbohydrate glycosylation sites. The recombination signal sequences suggest that the mechanism of rearrangements are identical to those of mammals. The locus is inherited in a diploid manner despite the pseudotetraploidy of the Xenopus laevis and X. gilli used in this study. PMID:9079820

  15. Association between colony-stimulating factor 1 receptor gene polymorphisms and asthma risk

    OpenAIRE

    Shin, Eun Kyong; Lee, Shin-Hwa; Cho, Sung-Hwan; Jung, Seok; Yoon, Sang Hyuk; Park, Sung Woo; Park, Jong Sook; Uh, Soo Taek; Kim, Yang Ki; Kim, Yong Hoon; Choi, Jae-Sung; Park, Byung-Lae; Shin, Hyoung Doo; Park, Choon-Sik

    2010-01-01

    Colony-stimulating factor 1 receptor (CSF1R) is expressed in monocytes/macrophages and dendritic cells. These cells play important roles in the innate immune response, which is regarded as an important aspect of asthma development. Genetic alterations in the CSF1R gene may contribute to the development of asthma. We investigated whether CSF1R gene polymorphisms were associated with the risk of asthma. Through direct DNA sequencing of the CSF1R gene, we identified 28 single nucleotide polymorp...

  16. Diet Shapes the Evolution of the Vertebrate Bitter Taste Receptor Gene Repertoire

    OpenAIRE

    Li, Diyan; Zhang, Jianzhi

    2013-01-01

    Vertebrate Tas2r taste receptors bind to bitter compounds, which are typically poisonous, to elicit bitter sensation to prevent the ingestion of toxins. Previous studies noted a marked variation in the number of Tas2r genes among species, but the underlying cause is unclear. To address this question, we compile the Tas2r gene repertoires from 41 mammals, 4 birds, 2 reptiles, 1 amphibian, and 6 fishes. The number of intact Tas2r genes varies from 0 in the bottlenose dolphin to 51 in the Wester...

  17. Association between interleukin 8 receptor α gene (CXCR1) and mastitis in dairy cattle

    OpenAIRE

    Pawlik, Adrianna; Sender, Grażyna; Kapera, Magdalena; KORWIN-KOSSAKOWSKA, AGNIESZKA

    2015-01-01

    The innate immune response plays an important role in the course of bacterial infections. Innate immunity effectiveness relies on the expression of many genes, connected, among others, to the activity of neutrophils. Interleukin 8 (IL-8) receptor α, coded by the CXCR1 gene, is present on the neutrophil surface and binds pro-inflammatory IL-8 with high affinity. This is why the bovine CXCR1 gene carries a potential for use as a dairy cattle mastitis marker. To date, several studies on the CXCR...

  18. Methylation Status of Vitamin D Receptor Gene Promoter in Benign and Malignant Adrenal Tumors

    OpenAIRE

    Catia Pilon; Andrea Rebellato; Riccardo Urbanet; Vincenza Guzzardo; Rocco Cappellesso; Hironobu Sasano; Ambrogio Fassina; Francesco Fallo

    2015-01-01

    We previously showed a decreased expression of vitamin D receptor (VDR) mRNA/protein in a small group of adrenocortical carcinoma (ACC) tissues, suggesting the loss of a protective role of VDR against malignant cell growth in this cancer type. Downregulation of VDR gene expression may result from epigenetics events, that is, methylation of cytosine nucleotide of CpG islands in VDR gene promoter. We analyzed methylation of CpG sites in the VDR gene promoter in normal adrenals and adrenocortica...

  19. Interleukin 17 Receptor Gene Polymorphism in Periimplantitis and Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Mahdi Kadkhodazadeh

    2013-05-01

    Full Text Available Gene polymorphism of cytokines influencing their function has been known as a contributing factor in the pathogenesis of inflammatory diseases of the tooth and implant supporting tissues. The aim of this study was to investigate the association of IL-17R gene polymorphism (rs879576 with chronic periodontitis and periimplantitis in an Iranian population. 73 patients with chronic periodontitis, 37 patients with periimplantitis and 83 periodontally healthy patients were enrolled in this study. 5cc blood was obtained from each subject’s arm vein and transferred to tubes containing EDTA. Genomic DNA was extracted using Miller's Salting Out technique. The DNA was transferred into 96 division plates, transported to Kbioscience Institute in United Kingdom and analyzed using the Kbioscience Competitive Allele Specific PCR (KASP technique. Chi-square and Kruskal Wallis tests were used to analyze differences in the expression of genotypes and frequency of alleles in disease and control groups (P-Value less than 0.05 was considered statistically significant. There were no significant differences between periodontitis, periimplantitis with AA, GG, GA genotype of IL-17R gene (P=0.8239. Also comparison of frequency of alleles in SNP rs879576 of IL-17R gene between the chronic periodontitis group and periimplantitis group did not revealed statistically significant differences (P=0.8239. The enigma of IL-17 and its polymorphism-role in periodontitis and periimplantitis is yet to be investigated more carefully throughout further research but this article demonstrates that polymorphism of IL-17R plays no significant role in incidence of chronic periodontitis and Periimplantitis.

  20. Interleukin 17 receptor gene polymorphism in periimplantitis and chronic periodontitis.

    Directory of Open Access Journals (Sweden)

    Mahdi Kadkhodazadeh

    2013-06-01

    Full Text Available Gene polymorphism of cytokines influencing their function has been known as a contributing factor in the pathogenesis of inflammatory diseases of the tooth and implant supporting tissues. The aim of this study was to investigate the association of IL-17R gene polymorphism (rs879576 with chronic periodontitis and periimplantitis in an Iranian population. 73 patients with chronic periodontitis, 37 patients with periimplantitis and 83 periodontally healthy patients were enrolled in this study. 5cc blood was obtained from each subject's arm vein and transferred to tubes containing EDTA. Genomic DNA was extracted using Miller's Salting Out technique. The DNA was transferred into 96 division plates, transported to Kbioscience Institute in United Kingdom and analyzed using the Kbioscience Competitive Allele Specific PCR (KASP technique. Chi-square and Kruskal Wallis tests were used to analyze differences in the expression of genotypes and frequency of alleles in disease and control groups (P-Value less than 0.05 was considered statistically significant. There were no significant differences between periodontitis, periimplantitis with AA, GG, GA genotype of IL-17R gene (P=0.8239. Also comparison of frequency of alleles in SNP rs879576 of IL-17R gene between the chronic periodontitis group and periimplantitis group did not revealed statistically significant differences (P=0.8239. The enigma of IL-17 and its polymorphism-role in periodontitis and periimplantitis is yet to be investigated more carefully throughout further research but this article demonstrates that polymorphism of IL-17R plays no significant role in incidence of chronic periodontitis and Periimplantitis.

  1. Polo-like kinase 2 gene expression is regulated by the orphan nuclear receptor estrogen receptor-related receptor gamma (ERRγ)

    International Nuclear Information System (INIS)

    Estrogen receptor-related receptor gamma (ERRγ) is a member of the nuclear receptor family of transcriptional activators. To date, the target genes and physiological functions of ERRγ are not well understood. In the current study, we identify that Plk2 is a novel target of ERRγ. Northern blot analysis showed that overexpression of ERRγ induced Plk2 expression in cancer cell lines. ERRγ activated the Plk2 gene promoter, and deletion and mutational analysis of the Plk2 promoter revealed that the ERRγ-response region is located between nucleotides (nt) -2327 and -2229 and -441 and -432 (relative to the transcriptional start site at +1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis demonstrated that ERRγ binds directly to the Plk2 promoter. Overexpression of ERRγ in the presence of the mitotic inhibitor nocodazole significantly decreased apoptosis, and induced S-phase cell cycle progression through the induction of Plk2 expression. Taken together, these results demonstrated that Plk2 is a novel target of ERRγ, and suggest that this interaction is crucial for cancer cell proliferation

  2. Identification and evolution of two insulin receptor genes involved in Tribolium castaneum development and reproduction.

    Science.gov (United States)

    Sang, Ming; Li, Chengjun; Wu, Wei; Li, Bin

    2016-07-10

    The insulin and insulin-like signaling (IIS) pathway exists in a wide range of organisms from mammals to invertebrates and regulates several vital physiological functions. A phylogenetic analysis have indicated that insulin receptors have been duplicated at least twice among vertebrates, whereas only one duplication occurred in insects before the differentiation of Coleoptera, Hymenoptera, and Hemiptera. Thus, we cloned two putative insulin receptor genes, T.cas-ir1 and T.cas-ir2, from T. castaneum and determined that T.cas-ir1 is most strongly expressed during the late adult and early pupal stages, whereas T.cas-ir2 is most strongly expressed during the late larval stage. We found that larval RNAi against T.cas-ir1 and T.cas-ir2 causes 100% and 42.0% insect death, respectively, and that parental RNAi against T.cas-ir1 and T.cas-ir2 leads to 100% and 33.3% reductions in beetle fecundity, respectively. The hatching rate of ds-ir2 insects was 66.2%. Moreover, RNAi against these two genes increased the expression of the pkc, foxo, jnk, cdc42, ikk, and mekk genes but decreased erk gene expression. Despite these similarities, these two genes act via distinct regulatory pathways. These results indicate that these two receptors have functionally diverged with respect to the development and reproduction of T. castaneum, even though they retain some common regulatory signaling pathways. PMID:26923187

  3. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. (Baylor College of Medicine, Houston, TX (United States))

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  4. Tyrosine Kinase Domain Gene Polymorphism of Epidermal Growth Factor Receptor in Gastric Cancer in Northern Iran

    Directory of Open Access Journals (Sweden)

    Jeivad F

    2012-01-01

    Full Text Available Background: Gastric cancer is one of the most common diseases of digestive system with a low 5-year survival rate and metastasis is the main cause of death. Multi-factors, such as changes in molecular pathways and deregulation of cells are involved in the disease development. Epidermal growth factor receptor pathway (EGFR which is associated with cell proliferation and survival can influence cancer development. EGFR function is governed by its genetic polymorphism; thus, we aimed to study the tyrosine kinase domain gene mutations of the receptor in patients with gastric cancer.Methods : In this experimental study, 123 subjects (83 patients with gastric cancer and 40 normal subjects were investigated in north of Iran for EGFR gene polymorphisms during 1 year. Genomic DNA was extracted by DNA extraction kit according to the manufacture's protocol. Polymerase chain reaction single-stranded conformation polymorphism (PCR-SSCP and silver staining were performed for investigating EGFR gene polymorphisms. Results : The participants included 72 men and 44 women. Gene polymorphism in exon 18 was present in 10% of the study population but SSCP pattern in exon 19 did not show different migrate bands neither in patients nor in normal subjects.Conclusion: It seems that screening for tyrosine kinas gene polymorphism of epidermal growth factor receptor in patients with gastric cancer and use of tyrosine kinas inhibitors could be useful in the prevention of disease progress and improvement of treatment process for a better quality of life in these patients.

  5. ANALYSIS OF INTERLEUKIN-1 RECEPTOR ANTAGONIST GENE POLYMORPHISM IN CHINESE PATIENTS WITH ALZHEIMER'S DISEASE

    Institute of Scientific and Technical Information of China (English)

    Sheng Bi; De-sheng Wang; Guo-lin Li; Shang-ha Pan

    2004-01-01

    Objective To identify an interaction between the interleukin-1 receptor antagonist gene polymorphism and risk of Alzheimer's disease.Methods The study included 117 healthy controls, 85 patients with Alzheimer's disease in a Northeastern Chinese population of Han nationality. Genotypes were determined by a polymerase chain reaction amplification of the intron 2 fragment,harbouring a variable number of short tandem nucleotide sequences. Amplification products were separated on a 2% agarose gel.Results The allele 2 frequency was 27% in healthy controls, and 21% in patients with Alzheimer's disease. Thus for allele 2 as well as for all other alleles, genotypes, or carriage rates, no significant differences compared with controls.Conclusions No association ofinterleukin-1 receptor antagonist gene polymorphism with Alzheimer's disease was identified in this population. It is also possible that the increased risk and disease modifying effects are caused by linkage disequilibrium with other genomic variants in other nearby genes.

  6. Polymorphism in the melatonin receptor gene in buffalo populations of the Brazilian Amazon.

    Science.gov (United States)

    Machado, E B; Souza, B B; Guimarães, R C; Azevedo, J S N; Gonçalves, E C; Ribeiro, H F L; Rolim Filho, S T; Silva Filho, E

    2016-01-01

    Buffalo farming in Brazil is increasing, as is the challenge of identifying molecular markers that will improve productivity. Therefore, the aim of this study was to analyze single nucleotide polymorphisms of the receptor gene for the hormone melatonin in buffaloes from northern Brazil by polymerase chain reactions (PCRs) and restriction fragment length polymorphism assays. The PCR products exhibited a cutting point for HpaI at the 318th position of the gene, indicating a transition substitution (T↔C). This substitution was synonymic, and did not alter the stability of the mRNA structure. Allelic and genotypic frequencies differed between the populations studied, and all of the populations demonstrated endogamy and were in Hardy-Weinberg equilibrium. Therefore, the HpaI restriction marker in the melatonin receptor gene cannot be used for genetic improvement, but is an excellent marker for population genetic studies. PMID:27173294

  7. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    Science.gov (United States)

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit. PMID:23776004

  8. Tumour necrosis factor receptor gene expression and shedding in human whole lung tissue and pulmonary epithelium

    International Nuclear Information System (INIS)

    This study aimed to investigate the expression of tumour necrosis factor receptor (TNF-R) at the gene and surface level, and its shedding in human lung tissue and a pulmonary epithelial cell line, A549. Levels of gene expression of TNF-R were evaluated by Northern blot analysis. Human lung issue expressed both type I and type II TNF-R gene, while A549 cells expressed only type I TNF-R gene. Phorbol ester upregulated and TNF-α down-regulated the TNF-R gene expression in A549 cells. Consistent with these modulations of TNF-R gene expression, 125I-TNF binding capacities were increased with phorbol ester stimulation and decreased with TNF stimulation after 24 h in A549 cells. The shedding of TNF-R from A549 cells was investigated using enzyme-linked immunosorbent assay (ELISA) for soluble type I TNF-R. Not only lung tissues but also A549 cells spontaneously released soluble type I TNF-R into the culture medium. Both phorbol ester and TNF stimulation accelerated the shedding of soluble TNF-R from A549 cells. These results suggest that type I TNF-R gene expression and shedding of soluble TNF-R are differentially regulated in A549 cells. We conclude that tumour necrosis factor receptor surface expression is regulated, at least in part, at the gene expression level and shedding of soluble tumour necrosis factor receptor is modulated by inflammatory mediators, such as tumour necrosis factor in A549 cells. (au) 39 refs

  9. Identification and functional analysis of pheromone and receptor genes in the B3 mating locus of Pleurotus eryngii.

    Directory of Open Access Journals (Sweden)

    Kyung-Hee Kim

    Full Text Available Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4. The transformants were mated with a tester strain (A4B4, and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency.

  10. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. PMID:25027621

  11. Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents

    Directory of Open Access Journals (Sweden)

    Niimura Yoshihito

    2009-12-01

    Full Text Available Abstract Olfaction is essential for the survival of animals. Versatile odour molecules in the environment are received by olfactory receptors (ORs, which form the largest multigene family in vertebrates. Identification of the entire repertories of OR genes using bioinformatics methods from the whole-genome sequences of diverse organisms revealed that the numbers of OR genes vary enormously, ranging from ~1,200 in rats and ~400 in humans to ~150 in zebrafish and ~15 in pufferfish. Most species have a considerable fraction of pseudogenes. Extensive phylogenetic analyses have suggested that the numbers of gene gains and losses are extremely large in the OR gene family, which is a striking example of the birth-and-death evolution. It appears that OR gene repertoires change dynamically, depending on each organism's living environment. For example, higher primates equipped with a well-developed vision system have lost a large number of OR genes. Moreover, two groups of OR genes for detecting airborne odorants greatly expanded after the time of terrestrial adaption in the tetrapod lineage, whereas fishes retain diverse repertoires of genes that were present in aquatic ancestral species. The origin of vertebrate OR genes can be traced back to the common ancestor of all chordate species, but insects, nematodes and echinoderms utilise distinctive families of chemoreceptors, suggesting that chemoreceptor genes have evolved many times independently in animal evolution.

  12. New Target Genes for the Peroxisome Proliferator-Activated Receptor-γ (PPARγ Antitumour Activity: Perspectives from the Insulin Receptor

    Directory of Open Access Journals (Sweden)

    Daniela P. Foti

    2009-01-01

    Full Text Available The insulin receptor (IR plays a crucial role in mediating the metabolic and proliferative functions triggered by the peptide hormone insulin. There is considerable evidence that abnormalities in both IR expression and function may account for malignant transformation and tumour progression in some human neoplasias, including breast cancer. PPARγ is a ligand-activated, nuclear hormone receptor implicated in many pleiotropic biological functions related to cell survival and proliferation. In the last decade, PPARγ agonists—besides their known action and clinical use as insulin sensitizers—have proved to display a wide range of antineoplastic effects in cells and tissues expressing PPARγ, leading to intensive preclinical research in oncology. PPARγ and activators affect tumours by different mechanisms, involving cell proliferation and differentiation, apoptosis, antiinflammatory, and antiangiogenic effects. We recently provided evidence that PPARγ and agonists inhibit IR by non canonical, DNA-independent mechanisms affecting IR gene transcription. We conclude that IR may be considered a new PPARγ “target” gene, supporting a potential use of PPARγ agonists as antiproliferative agents in selected neoplastic tissues that overexpress the IR.

  13. Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire.

    Science.gov (United States)

    Li, Diyan; Zhang, Jianzhi

    2014-02-01

    Vertebrate Tas2r taste receptors bind to bitter compounds, which are typically poisonous, to elicit bitter sensation to prevent the ingestion of toxins. Previous studies noted a marked variation in the number of Tas2r genes among species, but the underlying cause is unclear. To address this question, we compile the Tas2r gene repertoires from 41 mammals, 4 birds, 2 reptiles, 1 amphibian, and 6 fishes. The number of intact Tas2r genes varies from 0 in the bottlenose dolphin to 51 in the Western clawed frog, with numerous expansions and contractions of the gene family throughout vertebrates, especially among tetrapods. The Tas2r gene number in a species correlates with the fraction of plants in its diet. Because plant tissues contain more toxic compounds than animal tissues do, our observation supports the hypothesis that dietary toxins are a major selective force shaping the diversity of the Tas2r repertoire. PMID:24202612

  14. Effect of combined siRNA of HCV E2 gene and HCV receptors against HCV

    Directory of Open Access Journals (Sweden)

    Ashfaq Usman Alli A

    2011-06-01

    Full Text Available Abstract Background/Aim Hepatitis C virus (HCV is a major threat as almost 3% of the world's population (350 million individual and 10% of the Pakistani population is chronically infected with this virus. RNA interference (RNAi, a sequence-specific degradation process of RNA, has potential to be used as a powerful alternative molecular therapeutic approach in spite of the current therapy of interferon-α and ribavirin against HCV which has limited efficiency. HCV structural gene E2 is mainly involved in viral cell entry via attachment with the host cell surface receptors i.e., CD81 tetraspanin, low density lipoprotein receptor (LDLR, scavenger receptor class B type 1 (SR-B1, and Claudin1 (CLDN1. Considering the importance of HCV E2 gene and cellular receptors in virus infection and silencing effects of RNAi, the current study was designed to target the cellular and viral factors as new therapeutic options in limiting HCV infection. Results In this study the potential of siRNAs to inhibit HCV-3a replication in serum-infected Huh-7 cells was investigated by combined treatment of siRNAs against the HCV E2 gene and HCV cellular receptors (CD81 and LDLR, which resulted in a significant decrease in HCV viral copy number. Conclusion From the current study it is concluded that the combined RNAi-mediated silencing of HCV E2 and HCV receptors is important for the development of effective siRNA-based therapeutic option against HCV-3a.

  15. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    Science.gov (United States)

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. PMID:26970582

  16. Arsenic Disruption of Steroid Receptor Gene Activation: Complex Dose-Response Effects Are Shared by Several Steroid Receptors*

    Science.gov (United States)

    Bodwell, Jack E.; Gosse, Julie A.; Nomikos, Athena P.; Hamilton, Joshua W.

    2008-01-01

    Chronic intake of arsenic (As) has been associated with increased risk of cancer, diabetes, developmental and reproductive problems, and cardiovascular disease. Recent studies suggest increased health risks with drinking water levels as low as 5–10 ppb. We previously reported that As disrupts glucocorticoid receptor (GR) mediated transcription in a very complex fashion. Low As levels (0.1 to 0.7 μM) stimulated transcription whereas slightly higher levels (1 to 3 μM) were inhibitory. The DNA Binding Domain (DBD) was the minimal region of GR required for the response to As. Mutations in the DBD that alter the conformation of the dimerization domain (D-Loop) to a DNA-bound GR conformation abolished the stimulatory effect and enhanced the inhibitory response to As. Here we report that receptors for progesterone (PR) and mineralocorticoids (MR) display a similar complex As response as the GR, suggesting a common mechanism for this effect. The complex response to As is not due to altered steroid or receptor levels. Moreover, a well-characterized GR dimerization mutant displayed a wild-type biphasic response to As for several divergent reporter genes, suggesting that dimerization is not critical for the response to As. Fluorescence polarization studies with purified PR and GR demonstrated that the specific PR/GR-DNA interaction is not altered in the presence of As. These results indicate that the numerous and diverse human health effects associated with As exposure maybe mediated, at least in part, through its ability to simultaneously disrupt multiple hormone receptor systems. PMID:17173375

  17. Arsenic disruption of steroid receptor gene activation: Complex dose-response effects are shared by several steroid receptors.

    Science.gov (United States)

    Bodwell, Jack E; Gosse, Julie A; Nomikos, Athena P; Hamilton, Joshua W

    2006-12-01

    Chronic intake of arsenic (As) has been associated with increased risk of cancer, diabetes, developmental and reproductive problems, and cardiovascular disease. Recent studies suggest increased health risks with drinking water levels as low as 5-10 ppb. We previously reported that As disrupts glucocorticoid receptor (GR) mediated transcription in a very complex fashion. Low As levels (0.1-0.7 microM) stimulated transcription, whereas slightly higher levels (1-3 microM) were inhibitory. The DNA binding domain (DBD) was the minimal region of GR required for the response to As. Mutations in the DBD that alter the conformation of the dimerization domain (D-loop) to a DNA-bound GR conformation abolished the stimulatory effect and enhanced the inhibitory response to As. Here we report that receptors for progesterone (PR) and mineralocorticoids display a complex As response similar to that of the GR, suggesting a common mechanism for this effect. The complex response to As is not due to altered steroid or receptor levels. Moreover, a well-characterized GR dimerization mutant displayed a wild-type biphasic response to As for several divergent reporter genes, suggesting that dimerization is not critical for the response to As. Fluorescence polarization studies with purified PR and GR demonstrated that the specific PR/GR-DNA interaction is not altered in the presence of As. These results indicate that the numerous and diverse human health effects associated with As exposure may be mediated, at least in part, through its ability to simultaneously disrupt multiple hormone receptor systems. PMID:17173375

  18. Evolution and origin of vomeronasal-type odorant receptor gene repertoire in fishes

    OpenAIRE

    Nishida Mutsumi; Hashiguchi Yasuyuki

    2006-01-01

    Abstract Background In teleost fishes that lack a vomeronasal organ, both main odorant receptors (ORs) and vomeronasal receptors family 2 (V2Rs) are expressed in the olfactory epithelium, and used for perception of water-soluble chemicals. In zebrafish, it is known that both ORs and V2Rs formed multigene families of about a hundred copies. Whereas the contribution of V2Rs in zebrafish to olfaction has been found to be substantially large, the composition and structure of the V2R gene family i...

  19. Expression of the rat muscarinic receptor gene m3 in Dictyostelium discoideum.

    Science.gov (United States)

    Voith, G; Kramm, H; Zündorf, I; Winkler, T; Dingermann, T

    1998-10-01

    We functionally expressed the rat muscarinic m3 receptor (rm3) in the cellular slime mold Dictyostelium discoideum under the control of the homologous discoidin I gamma promoter. Cells transfected with the authentic rm3 receptor gene expressed about 100 functional receptor molecules per cell, corresponding to a Bmax for [3H]-NMS of 36 +/- 9 fmol/mg of protein in isolated membranes. Genetic fusion of the Dictyostelium contact site A (csA) leader peptide to the amino terminus of rm3 increased the receptor expression by about 17-fold. Remarkable, in [3H]-NMS ligand binding experiments performed with whole cells no characteristic saturable binding was observed and there was no significant difference in [3H]-NMS binding to whole cells of rm3 and csA/rm3 transformants. The recombinant rm3 receptor showed an about 10-fold higher affinity to the M3-selective antagonist p-F-HHSiD compared to the M2-selective antagonist AQ-RA 741, suggesting that membranes derived from transgenic D. discoideum cells may be useful for the search of new subtype-specific muscarinic receptor ligands. PMID:9812338

  20. Oxytocin Receptor Gene Polymorphisms in Patients With Diabetes

    Directory of Open Access Journals (Sweden)

    Saravani

    2015-04-01

    Full Text Available Background Type 2 Diabetes (T2D is a chronic metabolic disease associated with increased mortality and morbidity. High levels of glucose can damage organs, such as the kidneys, eyes and nerves. Oxytocin (OXT can regulate feeding behavior, energy balance, insulin sensitivity and insulin secretion. The OXT Receptor (OXTR mediates the action of OXT on cells. The role of OXTR polymorphism in carbohydrate metabolism disorders, especially in T2D, is not clear. Objectives The current study aimed to investigate the possible associations between OXTR polymorphism and the risk of developing T2D. Patients and Methods To study genetic polymorphisms, 120 patients with T2D and 120 controls were selected. Genotyping of the OXTR rs53576 and rs2254298 variants was performed using allele-specific Polymerase Chain Reaction (PCR and Restriction Fragment Length Polymorphism (RFLP PCR, respectively. Data were analyzed using Chi-square analysis and logistic regression. Results The logistic regression analysis suggested no significant associations of OXTR Single Nucleotide Polymorphism (SNP rs22542987 in genotypes (OR = 1.054, 95% CI: 0.557 - 1.995, P = 0.871 and alleles of patients with T2D in the study population (OR = 1.004, 95% CI: 0.547 - 1.845, P = 1. The rs53576 polymorphism showed the TT genotype (OR = 0.466, %95CI: 0.22 - 0.94, P = 0.035, as well as T allele (OR = 0.66, %95 CI: (0.46 - 0.95, P = 0.03 in the patients and control group with a significant difference suggesting the protective role this polymorphism plays in T2D. Conclusions Our findings showed that the genotype TT rs53576 OXTR, as well as T allele had significant differences in our population and play a protective role. Therefore, it is suggested to place more interest on these OXTR in large populations and different ethnic groups.

  1. Estrogen-related receptor α modulates the expression of adipogenesis-related genes during adipocyte differentiation

    International Nuclear Information System (INIS)

    Estrogen-related receptor α (ERRα) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERRα in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERRα and ERRα-related transcriptional coactivators, peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and PGC-1β, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERRα-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPARγ, and PGC-1α in 3T3-L1 cells in the adipogenesis medium. ERRα and PGC-1β mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERRα in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERRα may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes

  2. Gene expression changes in GABA(A receptors and cognition following chronic ketamine administration in mice.

    Directory of Open Access Journals (Sweden)

    Sijie Tan

    Full Text Available Ketamine is a well-known anesthetic agent and a drug of abuse. Despite its widespread use and abuse, little is known about its long-term effects on the central nervous system. The present study was designed to evaluate the effect of long-term (1- and 3-month ketamine administration on learning and memory and associated gene expression levels in the brain. The Morris water maze was used to assess spatial memory and gene expression changes were assayed using Affymetrix Genechips; a focus on the expression of GABA(A receptors that mediate a tonic inhibition in the brain, was confirmed by quantitative real-time PCR and western blot. Compared with saline controls, there was a decline in learning and memory performance in the ketamine-treated mice. Genechip results showed that 110 genes were up-regulated and 136 genes were down-regulated. An ontology analysis revealed the most significant effects of ketamine were on GABA(A receptors. In particular, there was a significant up-regulation of both mRNA and protein levels of the alpha 5 subunit (Gabra5 of the GABA(A receptors in the prefrontal cortex. In conclusion, chronic exposure to ketamine impairs working memory in mice, which may be explained at least partly by up-regulation of Gabra5 subunits in the prefrontal cortex.

  3. A novel polymorphism in the coding region of the vasopressin type 2 receptor gene

    Directory of Open Access Journals (Sweden)

    J.L. Rocha

    1997-04-01

    Full Text Available Nephrogenic diabetes insipidus (NDI is a rare disease characterized by renal inability to respond properly to arginine vasopressin due to mutations in the vasopressin type 2 receptor (V2(R gene in affected kindreds. In most kindreds thus far reported, the mode of inheritance follows an X chromosome-linked recessive pattern although autosomal-dominant and autosomal-recessive modes of inheritance have also been described. Studies demonstrating mutations in the V2(R gene in affected kindreds that modify the receptor structure, resulting in a dys- or nonfunctional receptor have been described, but phenotypically indistinguishable NDI patients with a structurally normal V2(R gene have also been reported. In the present study, we analyzed exon 3 of the V2(R gene in 20 unrelated individuals by direct sequencing. A C®T alteration in the third position of codon 331 (AGC®AGT, which did not alter the encoded amino acid, was found in nine individuals, including two unrelated patients with NDI. Taken together, these observations emphasize the molecular heterogeneity of a phenotypically homogeneous syndrome

  4. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3

    Energy Technology Data Exchange (ETDEWEB)

    Michelini, S.; Urbanek, M.; Goldman, D. [National Institute of Health-National Institute of Alcohol Abuse and Alcoholism, Rockville, MD (United States)] [and others

    1995-06-19

    Centrally administered oxytocin has been reported to facilitate affiliative and social behaviors, in functional harmony with its well-known peripheral effects on uterine contraction and milk ejection. The biological effects of oxytocin could be perturbed by mutations occurring in the sequence of the oxytocin receptor gene, and it would be of interest to establish the position of this gene on the human linkage map. Therefore we identified a polymorphism at the human oxytocin receptor gene. A portion of the 3{prime} untranslated region containing a 30 bp CA repeat was amplified by polymerase chain reaction (PCR), revealing a polymorphism with two alleles occurring with frequencies of 0.77 and 0.23 in a sample of Caucasian CEPH parents (n = 70). The CA repeat polymorphism we detected was used to map the human oxytocin receptor to chromosome 3p25-3p26, in a region which contains several important genes, including loci for Von Hippel-Lindau disease (VHL) and renal cell carcinoma. 53 refs., 2 figs., 1 tab.

  5. Polymorphisms at the Ligand Binding Site of the Vitamin D Receptor Gene and Osteomalacia

    Directory of Open Access Journals (Sweden)

    Duygu Gezen Ak

    2005-01-01

    Full Text Available Vitamin D receptor (VDR gene polymorphisms have been suggested as possible determinants of bone mineral density (BMD and calcium metabolism. In this study, our aim was to determine whether there is an association between VDR gene polymorphism and osteomalacia or not. We determined ApaI and TaqI polymorphisms in the vitamin D receptor gene in 24 patients with osteomalacia and 25 age-matched healthy controls. Serum calcium, phosphorus, ALP, PTH, 25OHD levels were also examined. We used PCR and RFLP methods to test for an association between osteomalacia and polymorphisms within, intron 8 and exon 9 of the VDR gene. When the control and patients were compared for their ApaI and TaqI genotypes there was no relationship between VDR gene allelic polymorphisms and osteomalacia. Whereas a nearly significant difference for A allele was found in the allellic distribution of the patients (p = 0.08. Also no association between biochemical data and VDR gene polymorphisms was observed.

  6. Effect of vitamin D receptor gene (VDR polymorphism on body height in children – own experience

    Directory of Open Access Journals (Sweden)

    Elżbieta Jakubowska-Pietkiewicz

    2013-08-01

    Full Text Available Genetic and environmental factors have an influence on the process of growth and development of the body. One of numerous genetic factors can be the vitamin D receptor gene (VDR. The study aimed at evaluating the relationship between VDR polymorphism and somatic parameters in children.Patients and methods: The study group consisted of 395 children, aged 6–18 years. All the patients underwent gene typing using the PCR-RFLP method within polymorphic loci BsmI (rs1544410, FokI (rs2228570, ApaI (rs7975232 and TaqI (rs731236 of the VDR receptor gene. 294 children made up the control group in the study on the incidence of particular genotypes; in 161 patients somatic measurements of body weight and height were made with standard methods and skeletal densitometry (total body and spine programmes examination was performed. Statistica 10.0 PL was used for statistical analysis.Results: In patients with low bone mass a relationship between body height and FokI VDR polymorphism was noted. The p-value was statistically significantly different in group I (p=0.002 and borderline significant in group III (p=0.09. None of the polymorphisms of the VDR receptor gene demonstrated any statistically significant differences in anthropometric values in the control group and in children with osteoporosis.Summary: The presence of the F allele of FokI polymorphism of the VDR receptor gene results in increased height, which is best observed in children with low bone mass. The FF genotype favours increased height in the study group of children from Łódź.

  7. Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Fuchs Angelika

    2007-03-01

    Full Text Available Abstract Background Receptor-like kinases are a prominent class of surface receptors that regulate many aspects of the plant life cycle. Despite recent advances the function of most receptor-like kinases remains elusive. Therefore, it is paramount to investigate these receptors. The task is complicated by the fact that receptor-like kinases belong to a large monophyletic family with many sub-clades. In general, functional analysis of gene family members by reverse genetics is often obscured by several issues, such as redundancy, subtle or difficult to detect phenotypes in mutants, or by decision problems regarding suitable biological and biochemical assays. Therefore, in many cases additional strategies have to be employed to allow inference of hypotheses regarding gene function. Results We approached the function of genes encoding the nine-member STRUBBELIG-RECEPTOR FAMILY (SRF class of putative leucine-rich repeat receptor-like kinases. Sequence comparisons show overall conservation but also divergence in predicted functional domains among SRF proteins. Interestingly, SRF1 undergoes differential splicing. As a result, SRF1 is predicted to exist in a standard receptor configuration and in a membrane-anchored receptor-like version that lacks most of the intracellular domain. Furthermore, SRF1 is characterised by a high degree of polymorphism between the Ler and Col accessions. Two independent T-DNA-based srf4 mutants showed smaller leaves while 35S::SRF4 plants displayed enlarged leaves. This is in addition to the strubbelig phenotype which has been described before. Additional single and several key double mutant combinations did not reveal obvious mutant phenotypes. Ectopic expression of several SRF genes, using the 35S promoter, resulted in male sterility. To gain possible insights into SRF gene function we employed a computational analysis of publicly available microarray data. We performed global expression profiling, coexpression analysis

  8. Deletion of exon 3 of the insulin receptor gene in a kindred with a familial form of insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Wertheimer, E.; Barbetti, F.; Accili, D.; Taylor, S.I. [National Institutes of Health, Bethesda, MD (United States); Litvin, Y.; Ebstein, R.P.; Bennet, E.R.

    1994-05-01

    Molecular scanning techniques, such as denaturing gradient gel electrophoresis (DGGE), greatly facilitate screening candidate genes for mutations. The authors have used DGGE to screen for mutations in the insulin receptor gene in a family in which four of five daughters were affected by type A insulin resistance in association with acanthosis nigricans and hyperandrogenism. DGGE did not detect mutations in any of the 22 exons of the insulin receptor gene. Nevertheless, Southern blot analysis suggested that there was a deletion of exon 3 in the other paternal allele of the insulin receptor gene. Analysis of the father`s cDNA confirmed that exon 3 was deleted from mRNA molecules derived from one of his two alleles of the insulin receptor gene. Furthermore, the father was found to be hemizygous for a polymorphic sequence (GAC{sup Asp} at codon 234) in exon 3 that was not inherited by any of the five daughters. Instead, all five daughters inherited the paternal allele with the deletion mutation. They did not detect mutations in the mother`s insulin receptor gene. Furthermore, the clinical syndrome did not segregate with either of the mother`s two alleles of the insulin receptor gene. Although the youngest daughter inherited the mutant allele from her father, she was not clinically affected. The explanation for the incomplete penetrance is not known. These results emphasize the importance of specifically searching for deletion mutations when screening candidate genes for mutations. Furthermore, the existence of apparently asymptomatic carriers of mutations in the insulin receptor gene, such as the father in the present study, suggests that the prevalence of mutations in the insulin receptor gene may be higher than would be predicted on the basis of the observed prevalence of patients with extreme insulin resistance. 34 refs., 6 figs., 1 tab.

  9. Use of adenovirus vector expressing the mouse full estrogen receptor alpha gene to infect mouse primary neurons

    Institute of Scientific and Technical Information of China (English)

    Xiao HU; Lei Lou; Jun Yuan; Xing Wan; Jianyi Wang; Xinyue Qin

    2010-01-01

    Estrogen plays important regulatory and protective roles in the central nervous system through estrogen receptor a mediation.Previous studies applied eukaryotic expression and lentiviral vectors carrying estrogen receptor a to clarify the undedying mechanisms,in the present study,an adenovirus vector expressing the mouse full estrogen receptor a gene was constructed to identify biological characteristics of estrogen receptor a recombinant adenovirus infecting nerve cells.Primary cultured mouse nerve cells were first infected with estrogen receptor a recombinant adenovirus at various multiplicities of infection,followed by 100 multiplicity of infection.Results showed overexpression of estrogen receptor a mRNA and protein in the infected nerve cells.Estrogen receptor a recombinant adenovirus at 100 multiplicity of infection successfully infected neurons and upregulated estrogen receptor a mRNA and protein expression.

  10. Cloning of rat thymic stromal lymphopoietin receptor (TSLPR) and characterization of genomic structure of murine Tslpr gene

    DEFF Research Database (Denmark)

    Blagoev, Blagoy; Nielsen, Mogens M; Angrist, Misha;

    2002-01-01

    , a cytokine involved in B- and T-cell function. We have cloned the TSLP receptor from rat and find that the WSXWX motif commonly found in extracellular domains of cytokine receptors is conserved as a W(T/S)XV(T/A) motif among TSLP receptors from mouse, rat and human. As in the mouse, TSLP receptor is...... is similar to the expression of several other cytokine receptors that have been characterized thus far. We have also characterized the genomic structure of the murine Tslpr gene which shows that in addition to primary sequence homology, it shares a common genomic organization of coding exons with the...

  11. Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii).

    Science.gov (United States)

    van der Kraan, Lauren E; Wong, Emily S W; Lo, Nathan; Ujvari, Beata; Belov, Katherine

    2013-01-01

    Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction. PMID:23007952

  12. Chromosomal localization of the human V3 pituitary vasopressin receptor gene (AVPR3) to 1q32

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau-Merck, M.F.; Derre, J.; Berger, R. [INSERM, Paris (France)] [and others

    1995-11-20

    Vasopressin exerts its physiological effects on liver metabolism, fluid osmolarity, and corticotrophic response to stress through a set of at least three receptors, V1a, V2, and V3 (also called V1b), respectively. These receptors constitute a distinct group of the superfamily of G-protein-coupled cell surface receptors. When bound to vasopressin, they couple to G proteins activating phospholipase C for the V1a and V3 types and adenylate cyclase for the V2. The vasopressin receptor subfamily also includes the receptor for oxytocin, a structurally related hormone that signals through the activation of phospholipase C. The chromosomal position of the V2 receptor gene has been assigned to Xq28-qter by PCR-based screening of somatic cell hybrids, whereas the oxytocin receptor gene has been mapped to chromosome 3q26.2 by fluorescence in situ hybridization (FISH). The chromosomal location of the V1a gene is currently unknown. We recently cloned the cDNA and the gene coding for the human pituitary-specific V3 receptor (HGMW-approved symbol AVPR3). We report here the chromosomal localization of this gene by two distinct in situ hybridization techniques using radioactive and fluorescent probes. 11 refs., 1 fig.

  13. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    Science.gov (United States)

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.

    2010-02-01

    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  14. Autoradiographic mapping of calcitonin gene-related peptide receptors in human and guinea pig hearts

    International Nuclear Information System (INIS)

    Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide that is a potent coronary vasodilator. Although CGRP is found in high concentrations around coronary arteries, its precise function in the control of coronary vasomotor tone remains unclear. We studied the distribution of specific receptors for CGRP in guinea pig and human hearts and found that the highest concentration of specific receptors for CGRP was in the major coronary arteries, which is consistent with the hypothesis that CGRP is implicated in control of coronary vasomotor tone. Areas of coronary artery with atheroma contained significantly decreased (158 +/- 35 grains/1,000 microns 2 tissue, n = 3) binding sites compared with binding sites in normal arteries (266 +/- 10 grains/1,000 microns 2 tissue, n = 11; p less than 0.001, t test). The decrease in receptors for CGRP around atheroma may predispose these vessels to coronary spasm

  15. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    International Nuclear Information System (INIS)

    Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH) receptor (LHR) expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE) carcinoma cells. The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours). Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are potential therapeutic targets, may reflect a positive

  16. Differential expression of genes for aromatase and estrogen receptor during the gonadal development in chicken embryos.

    Science.gov (United States)

    Nakabayashi, O; Kikuchi, H; Kikuchi, T; Mizuno, S

    1998-04-01

    In birds, differentiation of embryonic gonads is not as strictly determined by the genetic sex as it is in mammals, and can be influenced by early manipulation with a sex steroid hormone. Thus administration of an aromatase inhibitor induces testis development in the genetic female, and administration of estrogen induces a left ovotestis in the genetic male embryo. Another feature of avian gonadogenesis is that only the left ovary develops in most species. Molecular mechanisms underlying these features at the level of gene expression have not been elucidated. In this paper, we present evidence that a gene for aromatase cytochrome P-450, an enzyme required for the last step in the synthesis of estradiol-17beta, is expressed in medullae of the left and right gonads of a female chicken embryo, but not in those of a male chicken embryo, and that an estrogen receptor gene is expressed only in epithelium (and cortex later, in the female) of the left, not the right, gonad of both sexes, but the expression in the male left gonad is temporary and restricted to an early stage of development. Differential expression of these two genes serves well to explain the above features of gonadal development in birds. Furthermore, in ovo administration of estradiol-17beta from the 5th to the 14th day of incubation does not cause expression of the estrogen receptor gene in the right gonad of chicken embryos of either sex, suggesting that the absence of expression of the estrogen receptor gene in the right gonad is not the result of down-regulation, but may be regarded as an important cause of the unilateral ovarian development. PMID:9584834

  17. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available Happiness has been viewed as a temporary emotional state (e.g., pleasure and a relatively stable state of being happy (subjective happiness level. As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater

  18. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus

    Directory of Open Access Journals (Sweden)

    Patak Eva

    2009-07-01

    Full Text Available Abstract Background In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. Methods We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h and late (24 h responses to estrogen were evaluated and the participation of the estrogen receptors (ER, ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. Results All genes encoding tachykinins (Tac1, Tac2 and Tac4 and tachykinin receptors (Tacr1, Tacr2 and Tacr3 were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. Conclusion These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus.

  19. Identification of testosterone-/androgen receptor-regulated genes in mouse Sertoli cells

    Institute of Scientific and Technical Information of China (English)

    Qiao-Xia Zhang; Xiao-Yan Zhang; Zhen-Ming Zhang; Wei Lu; Ling Liu; Gang Li; Zhi-Ming Cai; Yao-Ting Gui; Chawnshang Chang

    2012-01-01

    Androgen and androgen receptor (AR) play important roles in male spermatogenesis and fertility,yet detailed androgenlAR signals in Sertoli cells remain unclear.To identify AR target genes in Sertoli cells,we analyzed the gene expression profiles of testis between mice lacking AR in Sertoli cells (S-AR-/y) and their littermate wild-type (WT) mice.Digital gene expression analysis identified 2276 genes downregulated and 2865 genes upregulated in the S-AR-/y mice testis compared to WT ones.To further nail down the difference within Sertoli cells,we first constructed Sertoli cell line TM4 with stably transfected AR (named as TM4/AR) and found androgens failed to transactivate AR in Sertoli TM4 and TM4/AR cells.Interestingly,additional transient transfection of AR-cDNA resulted in significant androgen responsiveness with TM4/AR cells showing 10 times more androgen sensitivity than TM4 cells.In the condition where maximal androgen response was demonstrated,we then analyzed gene expression and found the expression levels of 2313 genes were changed more than twofold by transient transfection of AR-cDNA in the presence of testosterone.Among these genes,603 androgen-/ AR-regulated genes,including 164 upregulated and 439 downregulated,were found in both S-AR-/y mice testis and TM4/AR cells.Using informatics analysis,the gene ontology was applied to analyze these androgen-/AR-regulated genes to predict the potential roles of androgen/AR in the process of spermatogenesis.Together,using gene analysis in both S-AR-/y mice testis and TM4/AR cells may help us to better understand the androgen/AR signals in Sertoli cells and their influences in spermatogenesis.

  20. Deletion of growth hormone receptor gene but not visceral fat removal decreases expression of apoptosis-related genes in the kidney—potential mechanism of lifespan extension

    OpenAIRE

    Gesing, Adam; Masternak, Michal M.; Wang, Feiya; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2011-01-01

    Mice homozygous for the targeted disruption of the growth hormone (GH) receptor (Ghr) gene (GH receptor knockout; GHRKO; KO) are hypoinsulinemic, highly insulin sensitive, normoglycemic, and long-lived. Visceral fat removal (VFR) is a surgical intervention which improves insulin signaling in normal (N) mice and rats and extends longevity in rats. We have previously demonstrated decreased expression level of certain pro-apoptotic genes in skeletal muscles and suggested that this may contribute...

  1. Role of recombination activating genes in the generation of antigen receptor diversity and beyond.

    Science.gov (United States)

    Nishana, Mayilaadumveettil; Raghavan, Sathees C

    2012-12-01

    V(D)J recombination is the process by which antibody and T-cell receptor diversity is attained. During this process, antigen receptor gene segments are cleaved and rejoined by non-homologous DNA end joining for the generation of combinatorial diversity. The major players of the initial process of cleavage are the proteins known as RAG1 (recombination activating gene 1) and RAG2. In this review, we discuss the physiological function of RAGs as a sequence-specific nuclease and its pathological role as a structure-specific nuclease. The first part of the review discusses the basic mechanism of V(D)J recombination, and the last part focuses on how the RAG complex functions as a sequence-specific and structure-specific nuclease. It also deals with the off-target cleavage of RAGs and its implications in genomic instability. PMID:23039142

  2. Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein

    International Nuclear Information System (INIS)

    Hepatitis B virus (HBV) X protein (HBx) is a regulatory protein that is required for efficient replication of HBV in its natural host. In this report, we demonstrate by co-immunoprecipitation experiments that HBx can physically bind to the androgen receptor (AR), which is a nuclear hormone receptor that is expressed in many different tissues including the liver. This observation is further supported by confocal microscopy, which reveals that HBx can alter the subcellular localization of the AR both in the presence and in the absence of dihydrotestosterone (DHT). Further studies indicate that HBx can enhance the gene transactivation activity of AR by enhancing its DNA binding activity in a DHT-dependent manner. However, HBx does not remain associated with AR on the DNA. As AR can regulate the expression of a number of cellular genes, our results raise the possibility that HBV pathogenesis may be mediated in part via the interaction between HBx and AR

  3. HindIII identifies a two allele DNA polymorphism of the human cannabinoid receptor gene (CNR)

    Energy Technology Data Exchange (ETDEWEB)

    Caenazzo, L.; Hoehe, M.R.; Hsieh, W.T.; Berrettini, W.H.; Bonner, T.I.; Gershon, E.S. (National Inst. of Health, Bethesda, MD (United States))

    1991-09-11

    HCNR p5, a 0.9 kb BamHI/EcoRI fragment from the human cannabinoid receptor gene inserted into pUC19, was used as probe. The fragment is located in an intron approximately 14 kb 5{prime} of the initiation codon. This fragment is a clean single copy sequence by genomic blotting. Hybridization of human genomic DNA digested with HindIII identified a two allele RFLP with bands at 5.5 (A1) and 3.3 kb (A2). The human cannabinoid receptor gene has been genetically mapped in CEPH reference pedigrees to the centromeric/q region of chromosome 6. In situ hybridization localizes it to 6q14-q15. Codominant segregation has been observed in 26 informative two- and three-generation CEPH pedigrees and in 14 medium-sized disease families.

  4. Androgen Receptor Gene Polymorphism, Aggression, and Reproduction in Tanzanian Foragers and Pastoralists

    Science.gov (United States)

    Butovskaya, Marina L.; Lazebny, Oleg E.; Vasilyev, Vasiliy A.; Dronova, Daria A.; Karelin, Dmitri V.; Mabulla, Audax Z. P.; Shibalev, Dmitri V.; Shackelford, Todd K.; Fink, Bernhard; Ryskov, Alexey P.

    2015-01-01

    The androgen receptor (AR) gene polymorphism in humans is linked to aggression and may also be linked to reproduction. Here we report associations between AR gene polymorphism and aggression and reproduction in two small-scale societies in northern Tanzania (Africa)—the Hadza (monogamous foragers) and the Datoga (polygynous pastoralists). We secured self-reports of aggression and assessed genetic polymorphism of the number of CAG repeats for the AR gene for 210 Hadza men and 229 Datoga men (aged 17–70 years). We conducted structural equation modeling to identify links between AR gene polymorphism, aggression, and number of children born, and included age and ethnicity as covariates. Fewer AR CAG repeats predicted greater aggression, and Datoga men reported more aggression than did Hadza men. In addition, aggression mediated the identified negative relationship between CAG repeats and number of children born. PMID:26291982

  5. Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii).

    Science.gov (United States)

    Cui, Jian; Cheng, Yuanyuan; Belov, Katherine

    2015-03-01

    The Tasmanian devil is an endangered marsupial species that has survived several historical bottlenecks and now has low genetic diversity. Here we characterize the Toll-like receptor (TLR) genes and their diversity in the Tasmanian devil. TLRs are a key innate immune gene family found in all animals. Ten TLR genes were identified in the Tasmanian devil genome. Unusually low levels of diversity were found in 25 devils from across Tasmania. We found two alleles at TLR2, TLR3 and TLR6. The other seven genes were monomorphic. The insurance population, which safeguards the species from extinction, has successfully managed to capture all of these TLR alleles, but concerns remain for the long-term survival of this species. PMID:25563844

  6. IL-1 receptor antagonism and muscle gene expression in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Berchtold, L. A.; Larsen, C. M.; Vaag, A.;

    2009-01-01

    Background. We have previously reported that systemic blockade of IL-1 beta in patients with type 2 diabetes with anakinra (a recombinant human interleukin-1-receptor antagonist, IL-1Ra), lowered glycated hemoglobin improved beta-cell function and reduced circulating levels of IL-6 and CRP (7). To...... investigate the effects of IL-1Ra in insulin-sensitive tissue, gene expression levels in skeletal muscle from type 2 diabetic patients treated with IL-1Ra were analysed. Methods. Gene expression profiles in vastus lateralis muscle biopsies from five obese patients (BMI>27) were determined before and after 13...... weeks of treatment with IL-1Ra (anakinra) using Affymetrix U133Plus2.0 GeneChips. Microarray data were normalized and analysed independently using four different algorithms; RMA, GCRMA, dChip and GCOS. Hypothesis tests were applied to the microarray data for each gene, and protein network analysis was...

  7. Distribution of killer cell immunoglobulin-like receptor genes in Poles.

    Science.gov (United States)

    Majorczyk, E; Łuszczek, W; Nowak, I; Pawlik, A; Wiśniewski, A; Jasek, M; Kuśnierczyk, P

    2008-08-01

    Killer cell immunoglobulin-like receptors (KIRs) present on natural killer cells and minor subpopulations of T cells recognize class I human leucocyte antigen (HLA) molecules on the surface of target cells. Humans differ by the presence or absence of some KIR genes on their chromosomes. As KIRs are important for the outcome of tissue transplantation (particularly for haematopoietic stem cell transplantation) and possibly for pregnancy and autoimmune diseases, knowledge of the KIR gene distribution in a given human population is of practical value. Therefore, we tested 363 healthy individuals from Western Poland for the presence or absence of KIR genes. Results are compared with those published for other human populations. KIR gene frequencies in Poles are close to these in other Caucasoids but different from those in Asian and African populations, and particularly distant from those in Australian Aborigines. PMID:18976447

  8. Regulation of the vitamin D receptor gene by environment, genetics and epigenetics.

    Science.gov (United States)

    Saccone, Donovan; Asani, Furaha; Bornman, Liza

    2015-05-01

    The vitamin D receptor (VDR) plays a pivotal role as a mediator of 1α,25(OH)2D signalling. Besides its role in calcium homeostasis, ligand- bound VDR supports immunity and cell cycle control. While VDR regulates numerous genes across the genome, much remains to be learned about the regulation of the VDR gene itself. Hindered VDR expression and function have a broad impact, contributing to diverse diseases, including cancer, multiple sclerosis, type 1 diabetes and tuberculosis. A better understanding of the three main factors regulating the VDR, namely environment, genetics and epigenetics, may facilitate the development of improved strategies for treatment and prevention of diseases associated with impaired VDR function. This review aims to illuminate the complex interaction and contributions of the three levels of VDR gene regulation to endorse consideration of all three regulatory factors when studying gene regulation. PMID:25682935

  9. Gene receptor polymorphism as a risk factor for BMD deterioration in adolescent girls with anorexia nervosa.

    Science.gov (United States)

    Stergioti, E; Deligeoroglou, E; Economou, E; Tsitsika, A; Dimopoulos, K D; Daponte, A; Katsioulis, A; Creatsas, G

    2013-07-01

    Anorexia nervosa is a serious eating disorder that is associated with decreased bone mineral density and greater lifetime risk for fractures. This case-controlled study, analyzed single nucleotide polymorphisms of genes encoding vitamin D receptor, estrogen receptor alpha (ESR1), collagen type I and calcitonin receptor (CTR). Relationships between genotype and body mass index, cycling status and lumbar spine bone mineral density (LBMD) were determined in 40 adolescent girls with anorexia nervosa and 10 age-matched controls. The distribution of CTR-AluI genotypes differed between groups, but this polymorphism was not associated with LBMD Z-score. Distribution of ESR1-XbaI genotypes did not differ between groups, but the AA genotype was associated with decreased LBMD Z-score (≤-1) (OR = 24.79, 95% CI, 1.01-606.08). Carriers of the A allele were more likely to have decreased LBMD Z-scores compared with carriers of the G allele (OR = 4.12, 95% CI, 1.23-13.85, p = 0.022). In conclusion, our study shows that anorexic patients with wild-type genotype ESR-XbaI receptor are in greater risk for decreased BMD in relation to those with the mutated gene. Prompt recognition of these patients is crucial because early administration of the proper therapeutic treatment may contribute to the prevention of adverse sequelae on bone metabolism. PMID:23772785

  10. Gene silencing of HIV chemokine receptors using ribozymes and single-stranded antisense RNA.

    Science.gov (United States)

    Qureshi, Amer; Zheng, Richard; Parlett, Terry; Shi, Xiaoju; Balaraman, Priyadhashini; Cheloufi, Sihem; Murphy, Brendan; Guntermann, Christine; Eagles, Peter

    2006-03-01

    The chemokine receptors CXCR4 and CCR5 are required for HIV-1 to enter cells, and the progression of HIV-1 infection to AIDS involves a switch in the co-receptor usage of the virus from CCR5 to CXCR4. These receptors therefore make attractive candidates for therapeutic intervention, and we have investigated the silencing of their genes by using ribozymes and single-stranded antisense RNAs. In the present study, we demonstrate using ribozymes that a depletion of CXCR4 and CCR5 mRNAs can be achieved simultaneously in human PBMCs (peripheral blood mononuclear cells), cells commonly used by the virus for infection and replication. Ribozyme activity leads to an inhibition of the cell-surface expression of both CCR5 and CXCR4, resulting in a significant inhibition of HIV-1 replication when PBMCs are challenged with the virus. In addition, we show that small single-stranded antisense RNAs can also be used to silence CCR5 and CXCR4 genes when delivered to PBMCs. This silencing is caused by selective degradation of receptor mRNAs. PMID:16293105

  11. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    International Nuclear Information System (INIS)

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  12. Localization of the gene for the ciliary neutrotrophic factor receptor (CNTFR) to human chromosome 9

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, D.H.; Jones, C.; Patterson, D. (Eleanor Roosevelt Institute, Denver, CO (United States) Univ. of Colorado Health Science Center, Denver, CO (United States)); Britt, D.E.; Jackson, C.L. (Brown Univ., Providence, RI (United States))

    1993-09-01

    Ciliary neurotrophic factor (CNTF) has recently been found to be important for the survival of motor neurons and has shown activity in animal models of amyotrophic lateral sclerosis (ALS). CNTF therefore holds promise as a treatment for ALS, and it and its receptor (CNTFR) are candidates for a gene involved in familial ALS. The CNTFR gene was mapped to chromosome 9 by PCR on a panel of human/CHO somatic cell hybrids and localized to 9p13 by PCR on a panel of radiation hybrids. 18 ref., 1 fig., 2 tabs.

  13. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori

    OpenAIRE

    Zhang Chuan-Xi; Dong Ke; Shao Ya-Ming

    2007-01-01

    Abstract Background Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based o...

  14. Vitamin D receptor gene polymorphisms, dietary promotion of insulin resistance, and colon and rectal cancer.

    OpenAIRE

    Maureen A Murtaugh; Sweeney, Carol; Ma, Khe-Ni; Potter, John D.; Caan, Bette J.; Wolff, Roger K.; Slattery, Martha L.

    2006-01-01

    Biomarkers of individual susceptibility: field studies. Biomarker: vitamin D receptor (VDR) gene polymorphisms Effect studied: colon and rectal cancer risk. Tissue/biological material/sample size: colon, rectum. Method of analysis: genotyping of the VDR gene Study design: case-control studyStudy size: colon cancer (1,698 cases and 1,861 controls); rectal cancer (752 cases and 960 controls) Impact on outcome (including dose-response): The lowest colon cancer risk was observed with the Ff/ff Fo...

  15. Glucocorticoid receptor gene haplotype structure and steroid therapy outcome in IBD patients

    Institute of Scientific and Technical Information of China (English)

    Jessica; Mwinyi; Christa; Wenger; Jyrki; J; Eloranta; Gerd; A; Kullak-Ublick

    2010-01-01

    AIM: To study whether the glucocorticoid receptor (GR/ NR3C1) gene haplotypes influence the steroid therapy outcome in inflammatory bowel disease (IBD). METHODS: We sequenced all coding exons and flanking intronic sequences of the NR3C1 gene in 181 IBD patients, determined the single nucleotide polymorphisms, and predicted the NR3C1 haplotypes. Furthermore, we investigated whether certain NR3C1 haplotypes are significantly associated with steroid therapy outcomes. RESULTS: We detected 13 NR3C1 variants, whi...

  16. Extensive Copy-Number Variation of the Human Olfactory Receptor Gene Family

    OpenAIRE

    Janet M Young; Endicott, RaeLynn M.; Parghi, Sean S; Walker, Megan; Kidd, Jeffrey M.; Trask, Barbara J.

    2008-01-01

    As much as a quarter of the human genome has been reported to vary in copy number between individuals, including regions containing about half of the members of the olfactory receptor (OR) gene family. We have undertaken a detailed study of copy-number variation of ORs to elucidate the selective and mechanistic forces acting on this gene family and the true impact of copy-number variation on human OR repertoires. We argue that the properties of copy-number variants (CNVs) and other sets of la...

  17. NK1 (TACR1) Receptor Gene ‘Knockout’ Mouse Phenotype Predicts Genetic Association with ADHD

    OpenAIRE

    Yan, TC; McQuillin, A.; Thapar, A; Asherson, P.; Hunt, SP; Stanford, SC; Gurling, H.

    2010-01-01

    Mice with functional genetic ablation of the Tacr1 (substance P-preferring receptor) gene (NK1R−/−) are hyperactive. Here, we investigated whether this is mimicked by NK1R antagonism and whether dopaminergic transmission is disrupted in brain regions that govern motor performance. The locomotor activity of NK1R−/− and wild-type mice was compared after treatment with an NK1R antagonist and/or psychostimulant (d-amphetamine or methylphenidate). The inactivation of NK1R (by gene mutation or rece...

  18. Positive Association of Vitamin D Receptor Gene Variations with Multiple Sclerosis in South East Iranian Population

    OpenAIRE

    Mehrnaz Narooie-Nejad; Maryam Moossavi; Adam Torkamanzehi; Ali Moghtaderi

    2015-01-01

    Among the factors postulated to play a role in MS susceptibility, the role of vitamin D is outstanding. Since the function of vitamin D receptor (VDR) represents the effect of vitamin D on the body and genetic variations in VDR gene may affect its function, we aim to highlight the association of two VDR gene polymorphisms with MS susceptibility. In current study, we recruited 113 MS patients and 122 healthy controls. TaqI (rs731236) and ApaI (rs7975232) genetic variations in these two groups ...

  19. The Vitamin D Receptor (VDR) Gene Polymorphisms in Turkish Brain Cancer Patients

    OpenAIRE

    Bahar Toptaş; Ali Metin Kafadar; Canan Cacina; Saime Turan; Leman Melis Yurdum; Nihal Yiğitbaşı; Muhammed Oğuz Gökçe; Ümit Zeybek; Ilhan Yaylım

    2013-01-01

    Objective. It has been stated that brain cancers are an increasingly serious issue in many parts of the world. The aim of our study was to determine a possible relationship between Vitamin D receptor (VDR) gene polymorphisms and the risk of glioma and meningioma. Methods. We investigated the VDR Taq-I and VDR Fok-I gene polymorphisms in 100 brain cancer patients (including 44 meningioma cases and 56 glioma cases) and 122 age-matched healthy control subjects. This study was performed by polyme...

  20. Deletion of the V2 vasopressin receptor gene in two Chinese patients with nephrogenic diabetes insipidus

    Directory of Open Access Journals (Sweden)

    Yin Jun

    2006-11-01

    Full Text Available Abstract Background Congenital nephrogenic diabetes insipidus (NDI is a rare X-linked inherited disorder characterized by the excretion of large volumes of diluted urine and caused by mutations in arginine vasopressin receptor 2 (AVPR2 gene. To investigate the mutation of AVPR2 gene in a Chinese family with congenital NDI, we screened AVPR2 gene in two NDI patients and eight family members by PCR amplification and direct sequencing. Results Five specific fragments, covering entire coding sequence and their flanking intronic sequences of AVPR2 gene, were not observed in both patients, while those fragments were all detected in the control subjects. Several different fragments around the AVPR2 locus were amplified step by step. It was revealed that a genomic fragment of 5,995-bp, which contained the entire AVPR2 gene and the last exon (exon 22 of the C1 gene, was deleted and a 3-bp (GAG was inserted. Examination of the other family members showed that the mothers and the grandmother were carriers for this deletion. Conclusion Our findings suggest that the two patients in a Chinese family suffering from congenital NDI had a 5,995-bp deletion and 3-bp (GAG insertion at Xq28. The deletion contained the entire AVPR2 gene and exon 22 of the C1 gene.

  1. Association analysis between Tourette's syndrome and dopamine D1 receptor gene in Taiwanese children

    Institute of Scientific and Technical Information of China (English)

    ICTsai; CHLee; CCKuo; HTHsu; YALi; CITsai

    2005-01-01

    Objective Recent research suggests that Tourette's syndrome (TS) may result from a defect in the dopamine system. The dopamine 1 receptor (DRD 1) gene is a candidate gene in the study of the etiology of neuropsychiatric diseases that may involve dopaminergic abnormalities. We sought to test the hypothesis that the DRD 1 gene might play a role in TS.Methods By performing an association study, we collected an independent sample of patients from the midland region of Taiwan and investigated whether DRD 1 gene polymorphisms can be used as markers of susceptibility to TS. A total of 148 children with TS and 83 normal control subjects were included in the study. A polymerase chain reaction was used to identify the A/G polymorphism of the DRD 1 gene. Genotypes and allelic frequencies for the DRD 1 gene polymorphisms in both groups were compared.Results The results showed that genotypes and allelic frequencies for the DRD 1 gene polymorphisms in both groups were not significantly different.Conclusion These data suggest that DRD 1 gene may not be a useful marker for prediction of the susceptibility of TS.

  2. Are serotonin 3A and 3B receptor genes associated with suicidal behavior in schizophrenia subjects?

    Science.gov (United States)

    Souza, Renan P; De Luca, Vincenzo; Manchia, Mirko; Kennedy, James L

    2011-02-11

    Suicide is a major contributor to the morbidity and mortality of schizophrenia, accounting for approximately 10% of deaths in these patients. Genetic factors have been reported to modulate the risk for suicide, although the precise mechanism and magnitude of the genetic contribution are unknown. Further, suicide attempters present abnormalities in the serotonergic system. We evaluated whether genetic variants in the serotonin receptors HTR3A (rs897692, rs1150226, rs1176724, rs2276302, rs3737457, rs897687 and rs1176713) and HTR3B (rs3758987, rs10502180, rs11606194, rs17116121, rs1176744, rs17116138, rs2276307, rs3782025 and rs1176761) were susceptibility components for suicidal behavior in 154 Caucasians schizophrenia subjects (20.1% of suicide attempters). In a second step, we compared haplotype and gene-gene interaction approaches because both genes are located in the chromosome 11q23 approximately 28Kbp apart. We did not observe allelic or genotypic associations. Six haplotypes were nominally significant associated with suicide. Gene-gene interaction using Helix Tree software showed two nominally significant interactions reproduced by haplotype association. Likewise, haplotypes composed by the markers included in the best multidimensional reduction three-locus model were nominally significant. Our results suggest that HTR3A and HTR3B polymorphisms may not play a major role in the susceptibility for suicidal behavior in schizophrenia subjects. Moreover, gene-gene interaction and haplotype association may have consistent results for genes located in the same chromosome. PMID:21184810

  3. Novel mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infections

    DEFF Research Database (Denmark)

    Storgaard, M; Varming, K; Herlin, Troels;

    2006-01-01

    In 1981 we presented a patient with Mycobacterium intracellulare osteomyelitis and depressed monocyte cytotoxicity. It is now demonstrated that the molecular defect was a never-before-described nucleotide deletion at position 794 (794delT) in the interferon-gamma-receptor alpha-1 gene. The genetic...... defect was passed on to his daughter who was diagnosed with non-tuberculous mycobacterial osteomyelitis at the age of 7 years....

  4. Sex bias in copy number variation of olfactory receptor gene family depends on ethnicity

    OpenAIRE

    Farideh eShadravan

    2013-01-01

    Gender plays a pivotal role in the human genetic identity and is also manifested in many genetic disorders particularly mental retardation. In this study its effect on copy number variation (CNV), known to cause genetic disorders was explored. As the olfactory receptor (OR) repertoire comprises the largest human gene family, it was selected for this study, which was carried out within and between three populations, derived from 150 individuals from the 1000 Genome Project. Analysis of 3872 CN...

  5. Critical role of calcitonin gene-related peptide receptors in cortical spreading depression

    OpenAIRE

    Tozzi, A; A. De Iure; di Filippo, M.; Costa, C.; Caproni, S.; Pisani, A.; Bonsi, P.; B. Picconi; Cupini, L. M.; Materazzi, S.; Geppetti, P.; Sarchielli, P; Calabresi, P.

    2012-01-01

    Cortical spreading depression (CSD) is a key pathogenetic step in migraine with aura. Dysfunctions of voltage-dependent and receptor-operated channels have been implicated in the generation of CSD and in the pathophysiology of migraine. Although a known correlation exists between migraine and release of the calcitonin gene-related peptide (CGRP), the possibility that CGRP is involved in CSD has not been examined in detail. We analyzed the pharmacological mechanisms underlying CSD and investig...

  6. Dopamine receptor-mediated regulation of neuronal “clock” gene expression

    OpenAIRE

    Imbesi, Marta; Yildiz, Sevim; Arslan, Ahmet Dirim; Sharma, Rajiv; Manev, Hari; Uz, Tolga

    2008-01-01

    Using transgenic mice model (i.e., “clock” knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulate the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in...

  7. Oxytocin Receptor Gene Associated with the Efficiency of Social Auditory Processing

    OpenAIRE

    Tops, Mattie; Van Ijzendoorn, Marinus H.; Riem, Madelon M E; Boksem, Maarten A. S.; Bakermans-Kranenburg, Marian J.

    2011-01-01

    Oxytocin has been shown to facilitate social aspects of sensory processing, thereby enhancing social communicative behaviors and empathy. Here we report that compared to the AA/AG genotypes, the presumably more efficient GG genotype of an oxytocin receptor gene polymorphism (OXTR rs53576) that has previously been associated with increased sensitivity of social processing is related to less self-reported difficulty in hearing and understanding people when there is background noise. The present...

  8. Association of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder

    OpenAIRE

    Campbell, Daniel B.; Datta, Dibyadeep; Jones, Shaine T.; Batey Lee, Evon; Sutcliffe, James S.; Hammock, Elizabeth A.D.; Levitt, Pat

    2011-01-01

    Autism spectrum disorder (ASD) is characterized by core deficits in social behavior, communication, and behavioral flexibility. Several lines of evidence indicate that oxytocin, signaling through its receptor (OXTR), is important in a wide range of social behaviors. In attempts to determine whether genetic variations in the oxytocin signaling system contribute to ASD susceptibility, seven recent reports indicated association of common genetic polymorphisms in the OXTR gene with ASD. Each invo...

  9. Oxytocin receptor gene associated with the efficiency of social auditory processing

    OpenAIRE

    Tops, Mattie; Van Ijzendoorn, Marinus; Riem, Madelon; Boksem, Maarten; BAKERMANS-KRANENBURG, marian

    2011-01-01

    textabstractOxytocin has been shown to facilitate social aspects of sensory processing, thereby enhancing social communicative behaviors and empathy. Here we report that compared to the AA/AG genotypes, the presumably more efficient GG genotype of an oxytocin receptor gene polymorphism (OXTR rs53576) that has previously been associated with increased sensitivity of social processing is related to less self-reported difficulty in hearing and understanding people when there is background noise....

  10. Oxytocin Receptor Gene Polymorphisms Are Associated with Human Directed Social Behavior in Dogs (Canis familiaris)

    OpenAIRE

    Kis, Anna; Bence, Melinda; Lakatos, Gabriella; Pergel, Enikő; Turcsán, Borbála; Pluijmakers, Jolanda; Vas, Judit; Elek, Zsuzsanna; Brúder, Ildikó; Földi, Levente; Sasvári-Székely, Mária; Miklósi, Ádám; Rónai, Zsolt; Kubinyi, Enikő

    2014-01-01

    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associ...

  11. Oxytocin receptor gene associated with the efficiency of social auditory processing

    OpenAIRE

    MattieTops; MarinusHVan IJzendoorn; MaartenA SBoksem

    2011-01-01

    Oxytocin has been shown to facilitate social aspects of sensory processing, thereby enhancing social communicative behaviors and empathy. Here we report that compared to the AA/AG genotypes, the presumably more efficient GG genotype of an oxytocin receptor gene polymorphism (OXTR rs53576) that has previously been associated with increased sensitivity of social processing is related to less self-reported difficulty in hearing and understanding people when there is background noise. The present...

  12. Oxytocin receptor gene variation predicts empathic concern and autonomic arousal while perceiving harm to others

    OpenAIRE

    Karen E. Smith; Porges, Eric C.; Norman, Greg J.; Connelly, Jessica J.; Decety, Jean

    2013-01-01

    Recent research indicates that the neuropeptide oxytocin and the gene for the oxytocin receptor (OXTR) have been implicated in the modulation of various social behaviors, including those related to empathy and sensitivity to others. In this study, we examine the hypothesis that genetic variation in OXTR is associated with autonomic reactions when perceiving others in distress. We also explore the possibility that individual disposition in empathic concern would differ by OXTR genotype. To add...

  13. Common oxytocin receptor gene (OXTR) polymorphism and social support interact to reduce stress in humans

    OpenAIRE

    Chen, Frances S.; Kumsta, Robert; von Dawans, Bernadette; Monakhov, Mikhail; Ebstein, Richard P.; Heinrichs, Markus

    2011-01-01

    The neuropeptide oxytocin has played an essential role in the regulation of social behavior and attachment throughout mammalian evolution. Because recent studies in humans have shown that oxytocin administration reduces stress responses and increases prosocial behavior, we investigated whether a common single nucleotide polymorphism (rs53576) in the oxytocin receptor gene (OXTR) might interact with stress-protective effects of social support. Salivary cortisol samples and subjective stress ra...

  14. Conserved repertoire of orthologous vomeronasal type 1 receptor genes in ruminant species

    OpenAIRE

    Okamura Hiroaki; Mogi Kazutaka; Date-Ito Atsuko; Nikaido Masato; Ohara Hiromi; Okada Norihiro; Takeuchi Yukari; Mori Yuji; Hagino-Yamagishi Kimiko

    2009-01-01

    Abstract Background In mammals, pheromones play an important role in social and innate reproductive behavior within species. In rodents, vomeronasal receptor type 1 (V1R), which is specifically expressed in the vomeronasal organ, is thought to detect pheromones. The V1R gene repertoire differs dramatically between mammalian species, and the presence of species-specific V1R subfamilies in mouse and rat suggests that V1R plays a profound role in species-specific recognition of pheromones. In ru...

  15. Sweet Taste Receptor Gene Variation and Aspartame Taste in Primates and Other Species

    OpenAIRE

    Xia LI; Bachmanov, Alexander A.; Maehashi, Kenji; LI, Weihua; Lim, Raymond; Brand, Joseph G.; Beauchamp, Gary K.; Reed, Danielle R.; Thai, Chloe; Floriano, Wely B.

    2011-01-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, ...

  16. Association between Oxytocin Receptor Gene Polymorphisms and Self-Rated ‘Empathic Concern’ in Schizophrenia

    OpenAIRE

    Christiane Montag; Eva-Maria Brockmann; Anja Lehmann; Müller, Daniel J.; Dan Rujescu; Jürgen Gallinat

    2012-01-01

    The nonapeptide oxytocin (OXT) and its receptor (OXTR) have been implicated in social cognition, empathy, emotion and stress regulation in humans. Previous studies reported associations between OXT and OXTR genetic polymorphisms and risk for disorders characterized by impaired socio-emotional functioning, such as schizophrenia and autism. Here we investigate the influence of two single nucleotide polymorphisms (SNPs) within the OXTR gene on a measure of socio-emotional functioning in schizoph...

  17. Oxytocin Receptor Gene Methylation: Converging Multilevel Evidence for a Role in Social Anxiety

    OpenAIRE

    Ziegler, Christiane; Dannlowski, Udo; Bräuer, David; Stevens, Stephan; Laeger, Inga; Wittmann, Hannah; Kugel, Harald; Dobel, Christian; Hurlemann, René; Reif, Andreas; Lesch, Klaus-Peter; Heindel, Walter; Kirschbaum, Clemens; Arolt, Volker; Alexander L Gerlach

    2015-01-01

    Social anxiety disorder (SAD) is a commonly occurring and highly disabling disorder. The neuropeptide oxytocin and its receptor (OXTR) have been implicated in social cognition and behavior. This study—for the first time applying a multilevel epigenetic approach—investigates the role of OXTR gene methylation in categorical, dimensional, and intermediate neuroendocrinological/neural network phenotypes of social anxiety. A total of 110 unmedicated patients with SAD and matched 110 controls were ...

  18. Genetic imaging of the association of oxytocin receptor gene (OXTR) polymorphisms with positive maternal parenting

    OpenAIRE

    Kalina J. Michalska; Decety, Jean; Liu, Chunyu; Chen, Qi; Martz, Meghan E.; Jacob, Suma; Hipwell, Alison E.; Lee, Steve S.; Chronis-Tuscano, Andrea; Waldman, Irwin D.; Lahey, Benjamin B.

    2014-01-01

    Background: Well-validated models of maternal behavior in small-brain mammals posit a central role of oxytocin in parenting, by reducing stress and enhancing the reward value of social interactions with offspring. In contrast, human studies are only beginning to gain insights into how oxytocin modulates maternal behavior and affiliation. Methods: To explore associations between oxytocin receptor genes and maternal parenting behavior in humans, we conducted a genetic imaging study of women ...

  19. Genetic Imaging of the Association of Oxytocin Receptor Gene (OXTR) Polymorphisms with Positive Maternal Parenting

    OpenAIRE

    Kalina J. Michalska; Jean Decety; Chunyu Liu; Qi Chen; Meghan Elizabeth Martz; Suma Jacob; Alison Hipwell; Lee, Steve S.; Andrea Chronis-Tuscano; Waldman, Irwin D.; Lahey, Benjamin B.

    2014-01-01

    Background: Well-validated models of maternal behavior in small-brain mammals posit a central role of oxytocin in parenting, by reducing stress and enhancing the reward value of social interactions with offspring. In contrast, human studies are only beginning to gain insights into how oxytocin modulates maternal behavior and affiliation. Methods: To explore associations between oxytocin receptor genes and maternal parenting behavior in humans, we conducted a genetic imaging study of women sel...

  20. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    Science.gov (United States)

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  1. Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri

    Science.gov (United States)

    Li, Xiao-Ming; Zhu, Xiu-Yun; He, Peng; Xu, Lu; Sun, Liang; Chen, Li; Wang, Zhi-Qiang; Deng, Dao-Gui

    2016-01-01

    Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri. PMID:27171401

  2. Selective effects of ligands on vitamin D3 receptor- and retinoid X receptor-mediated gene activation in vivo.

    OpenAIRE

    Lemon, B D; Freedman, L P

    1996-01-01

    Steroid/nuclear hormone receptors are ligand-regulated transcription f factors that play key roles in cell regulation, differentiation, and oncogenesis. Many nuclear receptors, including the human 1,25-dihydroxyvitamin D3 receptor (VDR), bind cooperatively to DNA either as homodimers or as heterodimers with the 9-cis retinoic acid (RA) receptor (retinoid X-receptor [RXR]). We have previously reported that the ligands for VDR and RXR can differentially modulate the affinity of the receptors' i...

  3. T Cell Receptor-Independent Basal Signaling via Erk and Abl Kinases Suppresses RAG Gene Expression

    Directory of Open Access Journals (Sweden)

    Roose Jeroen P

    2003-01-01

    Full Text Available Signal transduction pathways guided by cellular receptors commonly exhibit low-level constitutive signaling in a continuous, ligand-independent manner. The dynamic equilibrium of positive and negative regulators establishes such a tonic signal. Ligand-independent signaling by the precursors of mature antigen receptors regulates development of B and T lymphocytes. Here we describe a basal signal that controls gene expression profiles in the Jurkat T cell line and mouse thymocytes. Using DNA microarrays and Northern blots to analyze unstimulated cells, we demonstrate that expression of a cluster of genes, including RAG-1 and RAG-2, is repressed by constitutive signals requiring the adapter molecules LAT and SLP-76. This TCR-like pathway results in constitutive low-level activity of Erk and Abl kinases. Inhibition of Abl by the drug STI-571 or inhibition of signaling events upstream of Erk increases RAG-1 expression. Our data suggest that physiologic gene expression programs depend upon tonic activity of signaling pathways independent of receptor ligation.

  4. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    Science.gov (United States)

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects. PMID:25590685

  5. Isolation and Characterization of the Brassinosteroid Receptor Gene (GmBRI1 from Glycine max

    Directory of Open Access Journals (Sweden)

    Miao Wang

    2014-03-01

    Full Text Available Brassinosteroids (BRs constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed that GmBRI1 shares a conserved kinase domain and 25 tandem leucine-rich repeats (LRRs that are characteristic of a BR receptor for BR reception and reaction and bear a striking similarity in protein tertiary structure to AtBRI1. GmBRI1 transcripts were more abundant in soybean hypocotyls and could be upregulated in response to exogenous BR treatment. The transformation of GmBRI1 into the Arabidopsis dwarf mutant bri1-5 restored the phenotype, especially regarding pod size and plant height. Additionally, this complementation is a consequence of a restored BR signaling pathway demonstrated in the light/dark analysis, root inhibition assay and BR-response gene expression. Therefore, GmBRI1 functions as a BR receptor to alter BR-mediated signaling and is valuable for improving plant architecture and enhancing the yield of soybean.

  6. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species.

    Directory of Open Access Journals (Sweden)

    Ana Monteiro Ferreira

    Full Text Available Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy.

  7. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    International Nuclear Information System (INIS)

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  8. Taste and odorant receptors of the coelacanth--a gene repertoire in transition.

    Science.gov (United States)

    Picone, Barbara; Hesse, Uljana; Panji, Sumir; Van Heusden, Peter; Jonas, Mario; Christoffels, Alan

    2014-09-01

    G-protein coupled chemosensory receptors (GPCR-CRs) aid in the perception of odors and tastes in vertebrates. So far, six GPCR-CR families have been identified that are conserved in most vertebrate species. Phylogenetic analyses indicate differing evolutionary dynamics between teleost fish and tetrapods. The coelacanth Latimeria chalumnae belongs to the lobe-finned fishes, which represent a phylogenetic link between these two groups. We searched the genome of L. chalumnae for GPCR-CRs and found that coelacanth taste receptors are more similar to those in tetrapods than in teleost fish: two coelacanth T1R2s co-segregate with the tetrapod T1R2s that recognize sweet substances, and our phylogenetic analyses indicate that the teleost T1R2s are closer related to T1R1s (umami taste receptors) than to tetrapod T1R2s. Furthermore, coelacanths are the first fish with a large repertoire of bitter taste receptors (58 T2Rs). Considering current knowledge on feeding habits of coelacanths the question arises if perception of bitter taste is the only function of these receptors. Similar to teleost fish, coelacanths have a variety of olfactory receptors (ORs) necessary for perception of water-soluble substances. However, they also have seven genes in the two tetrapod OR subfamilies predicted to recognize airborne molecules. The two coelacanth vomeronasal receptor families are larger than those in teleost fish, and similar to tetrapods and form V1R and V2R monophyletic clades. This may point to an advanced development of the vomeronasal organ as reported for lungfish. Our results show that the intermediate position of Latimeria in the phylogeny is reflected in its GPCR-CR repertoire. PMID:24106203

  9. Regulation of oxytocin receptor gene expression in sheep: tissue specificity, multiple transcripts and mRNA editing.

    Science.gov (United States)

    Feng, H C; Bhave, M; Fairclough, R J

    2000-09-01

    The increase in uterine oxytocin receptor concentrations over the late luteal phase of the oestrous cycle in sheep is thought to play an important role in the regulation of the duration of the cycle by facilitating the effect of oxytocin on uterine prostaglandin release. Experiments indicated that oxytocin receptor mRNA expression in the endometrium was high at oestrus compared with at days 2, 7 and 12 of the oestrous cycle. The amount of oxytocin receptor mRNA expression in the pituitary gland did not show any significant differences during the oestrous cycle. Oxytocin receptor cDNA was obtained and characterized from ovine uterine endometrium on day 15 of the oestrous cycle, using RT-PCR techniques, to study the mechanisms underlying the resolution of oxytocin receptor expression. The cDNA sequence for the oxytocin receptor gene in sheep was found to be similar to that described previously, except for a difference of seven nucleotides. These nucleotide differences resulted in changes in four of the deduced amino acids in the oxytocin receptor sequence. The heterogeneity of the different sized oxytocin receptor transcripts in sheep is due, at least in part, to the alternative use of polyadenylation sites. Northern hybridization confirmed that the oxytocin receptor gene is expressed in ovine corpus luteum. The investigations on oxytocin receptor gene expression indicate that the patten of oxytocin receptor gene expression in sheep is not only tissue-specific, but also highly function-related. Evidence was obtained of mRNA editing in both the coding and the 3'-untranslated (3'UTR) regions of oxytocin receptor gene transcripts in ovine endometrium; this was the first demonstration of this phenomenon for oxytocin receptor mRNA. The present results indicate that the observed differences in oxytocin receptor mRNA sequences for the different oxytocin receptor populations in endometrium are due to mRNA editing. mRNA editing of oxytocin receptor transcripts may be

  10. Activation of tachykinin Neurokinin 3 receptors affects chromatin structure and gene expression by means of histone acetylation

    OpenAIRE

    Thakar, Amit; Sylar, Elise; Flynn, Francis W.

    2012-01-01

    The tachykinin, neurokinin 3 receptor (NK3R) is a g-protein coupled receptor that is broadly distributed in the nervous system and exerts its diverse physiological actions through multiple signaling pathways. Despite the role of the receptor system in a range of biological functions, the effects of NK3R activation on chromatin dynamics and gene expression have received limited attention. The present work determined the effects of senktide, a selective NK3R agonist, on chromatin organization, ...

  11. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Li; Zhanxiu Zhang; Lili Zhao; Hui Li; Suxia Wang; Yong Shen

    2014-01-01

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was signiifcantly enhanced in the model group. Af-ter 8 weeks, the number of horseradish peroxidase-labeled nerve ifbers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and signiifcantly higher than in the model group. The newly formed nerve ifbers and myelinated ner ve ifbers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group.

  12. Association analysis of GABA receptor subunit genes on 5q33 with heroin dependence in a Chinese male population.

    Science.gov (United States)

    Loh, E W; Tang, N L S; Lee, D T S; Liu, S I; Stadlin, Alfreda

    2007-06-01

    GABAA receptor subunit genes clustered on 5q33 play a role in the development of alcoholism and methamphetamine use disorder without psychosis. The present study explored the possible contribution of the same subunit genes to the development of heroin dependence. Single nucleotide polymorphisms (SNPs) of the GABAA receptor subunits GABRB2, GABRA6, GABRA1, and GABRG2 were examined in 178 male Han Chinese heroin-dependent and 170 male control subjects. A significant difference in allele frequency for the SNP rs211014 in the GABAAgamma2 receptor subunit gene between cases and controls was identified (P = 0.015). A possible mechanism for the involvement of the GABA receptor subunit genes on 5q33 in the development of heroin dependence is discussed. PMID:17440936

  13. Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer

    Science.gov (United States)

    Becker, Marc A.; Ibrahim, Yasir H.; Oh, Annabell S.; Fagan, Dedra H.; Byron, Sara A.; Sarver, Aaron L.; Lee, Adrian V.; Shaw, Leslie M.; Fan, Cheng; Perou, Charles M.; Yee, Douglas

    2016-01-01

    Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer. PMID:26991655

  14. Glucocorticoid receptor gene polymorphisms and potential association to chronic obstructive pulmonary disease susceptibility and severity

    Directory of Open Access Journals (Sweden)

    Schwabe K

    2009-12-01

    Full Text Available Abstract Objective As chronic obstructive pulmonary disease (COPD is known for poor glucocorticoid (GC response, we hypothesized that polymorphic variants of the glucocorticoid receptor (GR gene might predispose for COPD and/or disease severity. Materials and methods Three out of about 50 of the most abundant receptor GR gene polymorphisms were investigated in a case-control study which included 207 patients with chronic bronchitis or COPD (mean FEV1 50.5% predicted, GOLD I-IV and 106 age matched healthy subjects (mean FEV1 101.8% predicted. These were genotyped: a for the N363S (Exon 2; 1220 A > G (I; b the BCLI restriction fragment length polymorphism (Intron 2; 647 C > G (II; and c the ER2223EK (Exon 2; 198, 200 G > A (III, using RT-PCR and PCR-RFLP method on genomic DNA isolated from EDTA blood. Results Genotype distribution between COPD and healthy subjects were alike in all of these three polymorphisms. N363S was found in 0.94% of the healthy and 0% of the COPD subjects. BCLI was detected in 11.3% of the controls and 15.5% of the COPD patients whereas heterozygote frequency was less in the COPD (44.4% group (controls 60.4%. ER2223EK lacks in any of the study subjects. Further, SNPs did not correlate with COPD severity stage (GOLD, exacerbation rates, and clinical course. Conclusion COPD is not linked to gene polymorphisms N363S, BCLI-RFLP, and ER2223EK. Since we analyzed only these 3 receptor gene polymorphisms, this study cannot rule out that other GR gene variants and linkages may be of influence.

  15. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion

    DEFF Research Database (Denmark)

    Eftekhari, S; Salvatore, C A; Calamari, A;

    2010-01-01

    Calcitonin gene related peptide (CGRP) has a key role in migraine and recently CGRP receptor antagonists have demonstrated clinical efficacy in the treatment of migraine. However, it remains unclear where the CGRP receptors are located within the CGRP signaling pathway in the human trigeminal sys...

  16. Distribution of killer cell immunoglobulin-like receptors genes in the Italian Caucasian population

    Directory of Open Access Journals (Sweden)

    Mariani M

    2006-10-01

    Full Text Available Abstract Background Killer cell immunoglobulin-like receptors (KIRs are a family of inhibitory and activatory receptors that are expressed by most natural killer (NK cells. The KIR gene family is polymorphic: genomic diversity is achieved through differences in gene content and allelic polymorphism. The number of KIR loci has been reported to vary among individuals, resulting in different KIR haplotypes. In this study we report the genotypic structure of KIRs in 217 unrelated healthy Italian individuals from 22 immunogenetics laboratories, located in the northern, central and southern regions of Italy. Methods Two hundred and seventeen DNA samples were studied by a low resolution PCR-SSP kit designed to identify all KIR genes. Results All 17 KIR genes were observed in the population with different frequencies than other Caucasian and non-Caucasian populations; framework genes KIR3DL3, KIR3DP1, KIR2DL4 and KIR3DL2 were present in all individuals. Sixty-five different profiles were found in this Italian population study. Haplotype A remains the most prevalent and genotype 1, with a frequency of 28.5%, is the most commonly observed in the Italian population. Conclusion The Italian Caucasian population shows polymorphism of the KIR gene family like other Caucasian and non-Caucasian populations. Although 64 genotypes have been observed, genotype 1 remains the most frequent as already observed in other populations. Such knowledge of the KIR gene distribution in populations is very useful in the study of associations with diseases and in selection of donors for haploidentical bone marrow transplantation.

  17. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  18. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes.

    Science.gov (United States)

    Tiosano, Dov; Audi, Laura; Climer, Sharlee; Zhang, Weixiong; Templeton, Alan R; Fernández-Cancio, Monica; Gershoni-Baruch, Ruth; Sánchez-Muro, José Miguel; El Kholy, Mohamed; Hochberg, Zèev

    2016-01-01

    The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR) vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR), using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes' functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes. PMID:26921301

  19. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury

    OpenAIRE

    Li, Zhiyuan; Zhang, Zhanxiu; Zhao, Lili; LI Hui; Wang, Suxia; Shen, Yong

    2014-01-01

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance ...

  20. The emergence of the vasopressin and oxytocin hormone receptor gene family lineage: Clues from the characterization of vasotocin receptors in the sea lamprey (Petromyzon marinus).

    Science.gov (United States)

    Mayasich, Sally A; Clarke, Benjamin L

    2016-01-15

    The sea lamprey (Petromyzon marinus) is a jawless vertebrate at an evolutionary nexus between invertebrates and jawed vertebrates. Lampreys are known to possess the arginine vasotocin (AVT) hormone utilized by all non-mammalian vertebrates. We postulated that the lamprey would possess AVT receptor orthologs of predecessors to the arginine vasopressin (AVP)/oxytocin (OXT) family of G protein-coupled receptors found in mammals, providing insights into the origins of the mammalian V1A, V1B, V2 and OXT receptors. Among the earliest animals to diverge from the vertebrate lineage in which these receptors are characterized is the jawed, cartilaginous elephant shark, which has genes orthologous to all four mammalian receptor types. Therefore, our work was aimed at helping resolve the critical gap concerning the outcomes of hypothesized large-scale (whole-genome) duplication events. We sequenced one partial and four full-length putative lamprey AVT receptor genes and determined their mRNA expression patterns in 15 distinct tissues. Phylogenetically, three of the full-coding genes possess structural characteristics of the V1 clade containing the V1A, V1B and OXT receptors. Another full-length coding gene and the partial sequence are part of the V2 clade and appear to be most closely related to the newly established V2B and V2C receptor subtypes. Our synteny analysis also utilizing the Japanese lamprey (Lethenteron japonicum) genome supports the recent proposal that jawless and jawed vertebrates shared one-round (1R) of WGD as the most likely scenario. PMID:26764211

  1. Cell surface modulation of gene expression in brain cells by down regulation of glucocorticoid receptors

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, J.F.; de Vellis, J.

    1981-02-01

    The concentration of glycerol-3-phosphate dehydrogenase (GPDH; sn-glycerol-3-phosphate:NAD/sup +/ 2-oxidoreductase, EC 1.1.1.8) had previously been determined to be regulated by glucocorticoids in rat brain cells in vivo and in cell culture. We now demonstrate that concanavalin A (Con A) can inhibit the induction of GPDH in a dose-dependent manner in C6 rat glioma cells and in primary cultures of rat brain oligodendrocytes. The inhibition specifically prevents the appearance of new molecules of GPDH, although Con A does not significantly inhibit protein synthesis in these cells, nor does it affect the activity of another solube enzyme, lactate dehydrogenase. The ability to block enzyme induction is not limited to Con A, because other lectins also inhibit induction. The molecular mechanism by which Con A inhibits GPDH induction appears to be by the down regulation of the cytoplasmic glucocorticoid receptors, because exposure to Con A results in the loss of more than 90% of the receptor activity. Con A does not inhibit the receptor assay and no direct interaction between the receptor and Con A could be demonstrated. This down regulation is not tumor cell specific and appears to be a general phenomenon, because it occurs in normal oligodendrocytes and even in normal astrocytes (a cell type in which the gene for GPDH is not expressed). The down regulation of glucocorticoid receptors in normal brain cells suggests two important corollaries. First, it demonstrates the existence of a rate-limiting step controlling the glucocorticoid-dependent gene expression in brain cells and possibly represents a regulatory site common to all glucocorticoid target cells. Second, it suggests that the response to glucocorticoids of oligodendrocytes and astrocytes can be regulated in vivo by cell surface contact with endogenous lectins, neighboring cells, or both.

  2. Association between Tourette Syndrome and the Dopamine D3 Receptor Gene Rs6280

    Institute of Scientific and Technical Information of China (English)

    Fan He; Yi Zheng; Huan-Huan Huang; Yu-Hang Cheng; Chuan-Yue Wang

    2015-01-01

    Background:Tourette syndrome (TS) is a complex,heterozygous genetic disorder.The number of molecular genetic studies have investigated several candidate genes,particularly those implicated in the dopamine system.The dopamine D3 receptor (DRD3) gene has been considered as a candidate gene in TS.There was not any report about the association study of TS and DRD3 gene in Han Chinese population.We combined a case-control genetic association analysis and nuclear pedigrees transmission disequilibrium test (TDT) analysis to investigate the association between DRD3 gene rs6280 single nucleotide polymorphisms (SNPs) and TS in a Han Chinese population.Methods:A total of 160 TS patients was diagnosed by the diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders,Fourth Edition.The DRD3 gene rs6280 SNPs were genotyped by TaqMan SNP genotyping assay technique in all subjects.We used a case-control genetic association analysis to compare the difference in genotype and allele frequencies between 160 TS patients and 90 healthy controls.At the same time,we used TDT analysis to identify the DRD3 gene rs6280 transmission disequilibrium among 10l nuclear pedigrees.Results:The genotype and allele frequency of DRD3 gene rs6280 SNPs had no statistical difference between control group (90) and TS group (160) (x2 =3.647,P =0.161; x2 =0.643,P =0.423) using Chi-squared test.At the basis of the 101 nuclear pedigrees,TDT analysis showed no transmission disequilibrium ofDRD3 gene rs6280 SNPs (x2 =0; P =1).Conclusions:Our findings provide no evidence for an association between DRD3 gene rs6280 and TS in the Han Chinese population.

  3. The μ-opioid receptor gene and smoking initiation and nicotine dependence

    Directory of Open Access Journals (Sweden)

    Kendler Kenneth S

    2006-08-01

    Full Text Available Abstract The gene encoding the mu-opioid receptor (OPRM1 is reported to be associated with a range of substance dependence. Experiments in knockout mice indicate that the mu-opioid receptor may mediate reinforcing effects of nicotine. In humans, opioid antagonist naltrexone may reduce the reinforcing effects of tobacco smoking. Additionally, the OPRM1 gene is located in a region showing linkage to nicotine dependence. The OPRM1 is thus a plausible candidate gene for smoking behavior. To investigate whether OPRM1 contributes to the susceptibility of smoking initiation and nicotine dependence, we genotyped 11 SNPs in the gene for 688 Caucasian subjects of lifetime smokers and nonsmokers. Three SNPs showed nominal significance for smoking initiation and one reached significance for nicotine dependence. The global test for three-marker (rs9479757-rs2075572-rs10485057 haplotypes was significant for smoking initiation (p = 0.0022. The same three-marker haplotype test was marginal (p = 0.0514 for nicotine dependence. These results suggest that OPRM1 may be involved in smoking initiation and nicotine dependence.

  4. Mutational analysis of the thyrotropin receptor gene in sporadic and familial feline thyrotoxicosis.

    Science.gov (United States)

    Pearce, S H; Foster, D J; Imrie, H; Myerscough, N; Beckett, G J; Thoday, K L; Kendall-Taylor, P

    1997-12-01

    The characterization of a spontaneous animal model equivalent to a human form of thyrotoxicosis would provide a useful resource for the investigation of the human disorder. Feline thyrotoxicosis is the only common form of hyperthyroidism found in domestic or laboratory animals, but its etiopathogenesis remains poorly defined. We have used the polymerase chain reaction (PCR) to amplify codons 480-640 of the previously uncharacterized feline thyrotropin receptor (TSHR) gene, and have determined the DNA sequence in this transmembrane domain region. We have analyzed single stranded conformational polymorphisms in thyroid DNA from 11 sporadic cases of feline thyrotoxicosis and leukocyte DNA from two cases of familial feline thyrotoxicosis. We have also determined the DNA sequence of this region of the TSHR in five of the cases of sporadic feline thyrotoxicosis and the two familial thyrotoxic cats. The normal feline TSHR sequence between codons 480-640 is highly homologous to that of other mammalian TSHRs, with 95%, 92%, and 90% amino acid identity between the feline receptor and canine, human, and bovine TSHRs, respectively. Thyroid gland DNA from 11 cats with sporadic thyrotoxicosis did not have mutations in this region of the TSHR gene. Leukocyte DNA from two littermates with familial feline thyrotoxicosis did not harbor mutations of this region of the TSHR gene. These studies suggest that TSHR gene mutations are not a common cause of feline thyrotoxicosis. PMID:9459639

  5. Cloning and identification of measles virus receptor gene from marmoset cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The measles virus (MV) strains with mutated hemagglutinin gene (ha) lost the capacity to infect its sensitive host cells (Vero cells), but it may infect the marmoset B-lymphoblastoid cell line B95a. From above, we can presume that there is a novel cellular receptor for those measles virus strains on B95a cell s. Using the yeast two-hybrid system, we screened and cloned a novel gene--bip (B-lympho- blastoid interaction protein of marmoset) from B95a cell cDNA library, which encoded a protein interacting with measles virus hemagglutinin protein (Ha). The bip cDNA was 1540 base pairs in length and contained a unique open rea ding frame (ORF) of 1011 base pairs encoding a transmembrane protein of 337 amino acid residues. The primary structure of amino acids residue is predicted that the Bip comprised a hydrophobic transmembrane domain and a hydrophobic leader region. The researches about the deletion mutants showed that the deletion of tran smembrane domain in Bip did not affect the interaction between Bip and Ha protei ns. Expression of bip in measles virus non-permissive cell line--CHO (Chinese hamster ovary) cells was performed to prove that CHO/Bip can be infected by meas les virus and then turned to the MV permissive cells. We concluded that the bip gene is a novel measles virus receptor gene in marmoset B-lymphoblastoid cells.

  6. Structure of the gene for human β2-adrenergic receptor: expression and promoter characterization

    International Nuclear Information System (INIS)

    The genomic gene coding for the human β2-adrenergic receptor (β2AR) from A431 epidermoid cells has been isolated. Transfection of the gene into eukaryotic cells restores a fully active receptor/GTP-binding protein/adenylate cyclase complex with β2AR properties. Southern blot analyses with β2AR-specific probes show that a single β2AR gene is common to various human tissues and that its flanking sequences are highly conserved among humans and between man and rabbit, mouse, and hamster. Functional significance of these regions is supported by the presence of a promoter region (including mRNA cap sites, two TATA boxes, a CAAT box, and three G + C-rich regions that resemble binding sites for transcription factor Sp1) 200-300 base pairs 5' to the translation initiation codon. In the 3' flanking region, sequences homologous to glucocorticoid-response elements might be responsible for the increased expression of the β2AR gene observed after treatment of the transfected cells with hydrocortisone. In addition, 5' to the promoter region, an open reading frame encodes a 251-residue polypeptide that displays striking homologies with protein kinases and other nucleotide-binding proteins

  7. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese Ay mice

    International Nuclear Information System (INIS)

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. Ay mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese Ay mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in Ay mice, but did not increase plasma adiponectin levels

  8. Polymorphism of growth hormone receptor (GHR gene in Holstein Friesian dairy cattle

    Directory of Open Access Journals (Sweden)

    Restu Misrianti

    2011-12-01

    Full Text Available Growth hormone gene have a critical role in the regulation of lactation, mammary gland development and growth process through its interaction with a specific receptor. Growth hormone (GH is an anabolic hormone which is synthesized and secreted by somatotrop cell in pituitary anterior lobe, and interacts with a specific receptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested as candidate gene for traits related to milk production in Bovidae. The purpose of this study was to identify genetic polymorphism of the Growth Hormone Receptor (GHR genes in Holstein Friesian (HF cattle. Total of 353 blood samples were collected from five populations belonging to Cikole Dairy Cattle Breeding Station (BPPT-SP Cikole (88 samples, Pasir Kemis (95 samples, Cilumber (98 samples, Cipelang Livestock Embryo Center (BET Cipelang (40 samples, Singosari National Artificial Insemination Centre (BBIB Singosari (32 samples and 17 frozen semen samples from Lembang Artificial Insemination Center (BIB Lembang. Genomic DNAs were extracted by a standard phenol-chloroform protocol and amplified by a polymerase chain reaction (PCR techniques then PCR products were genotyped by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP methods. There were two allele dan three genotypes were found namely: allele A and G, Genotype AA, AG and GG repectively. Allele A frequency (0.70-0.82 relatively higher than allele G frequency (0.18-0.30. Chi square test show that on group of BET Cipelang, BIB Lembang and BBIB Singosari population were not significantly different (0.00-0.93, while on group of BET Cipelang, BIB Lembang dan BBIB Singosari population were significantly different (6.02-11.13. Degree of observed heterozygosity (Ho ranged from 0.13-0.42 and expected heterozygosity (He ranged from 0.29-0.42.

  9. Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success.

    Science.gov (United States)

    Casarini, Livio; Santi, Daniele; Marino, Marco

    2015-12-01

    Gonadotropins and their receptors' genes carry several single-nucleotide polymorphisms resulting in endocrine genotypes modulating reproductive parameters, diseases, and lifespan leading to important implications for reproductive success and potential relevance during human evolution. Here we illustrate common genotypes of the gonadotropins and gonadotropin receptors' genes and their clinical implications in phenotypes relevant for reproduction such as ovarian cycle length, age of menopause, testosterone levels, polycystic ovary syndrome, and cancer. We then discuss their possible role in human reproduction and adaptation to the environment. Gonadotropins and their receptors' variants are differently distributed among human populations. Some hints suggest that they may be the result of natural selection that occurred in ancient times, increasing the individual chance of successful mating, pregnancy, and effective post-natal parental cares. The gender-related differences in the regulation of the reproductive endocrine systems imply that many of these genotypes may lead to sex-dependent effects, increasing the chance of mating and reproductive success in one sex at the expenses of the other sex. Also, we suggest that sexual conflicts within the FSH and LH-choriogonadotropin receptor genes contributed to maintain genotypes linked to subfertility among humans. Because the distribution of polymorphic markers results in a defined geographical pattern due to human migrations rather than natural selection, these polymorphisms may have had only a weak impact on reproductive success. On the contrary, such genotypes could acquire relevant consequences in the modern, developed societies in which parenthood attempts often occur at a later age, during a short, suboptimal reproductive window, making clinical fertility treatments necessary. PMID:26370242

  10. Evolution and origin of vomeronasal-type odorant receptor gene repertoire in fishes

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2006-10-01

    Full Text Available Abstract Background In teleost fishes that lack a vomeronasal organ, both main odorant receptors (ORs and vomeronasal receptors family 2 (V2Rs are expressed in the olfactory epithelium, and used for perception of water-soluble chemicals. In zebrafish, it is known that both ORs and V2Rs formed multigene families of about a hundred copies. Whereas the contribution of V2Rs in zebrafish to olfaction has been found to be substantially large, the composition and structure of the V2R gene family in other fishes are poorly known, compared with the OR gene family. Results To understand the evolutionary dynamics of V2R genes in fishes, V2R sequences in zebrafish, medaka, fugu, and spotted green pufferfish were identified from their draft genome sequences. There were remarkable differences in the number of intact V2R genes in different species. Most V2R genes in these fishes were tightly clustered in one or two specific chromosomal regions. Phylogenetic analysis revealed that the fish V2R family could be subdivided into 16 subfamilies that had diverged before the separation of the four fishes. Genes in two subfamilies in zebrafish and another subfamily in medaka increased in their number independently, suggesting species-specific evolution in olfaction. Interestingly, the arrangements of V2R genes in the gene clusters were highly conserved among species in the subfamily level. A genomic region of tetrapods corresponding to the region in fishes that contains the V2R cluster was found to have no V2R gene in any species. Conclusion Our results have indicated that the evolutionary dynamics of fish V2Rs are characterized by rapid gene turnover and lineage-specific phylogenetic clustering. In addition, the present phylogenetic and comparative genome analyses have shown that the fish V2Rs have expanded after the divergence between teleost and tetrapod lineages. The present identification of the entire V2R repertoire in fishes would provide useful foundation to

  11. Orthologs of Human Disease Associated Genes and RNAi Analysis of Silencing Insulin Receptor Gene in Bombyx mori

    Directory of Open Access Journals (Sweden)

    Zan Zhang

    2014-10-01

    Full Text Available The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research.

  12. Lack of Association between an Interleukin-I Receptor Antagonist Gene Polymorphism and Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Victor A. Danis

    1994-01-01

    Full Text Available Non-MHC linked genes may contribute to genetic predisposition to the development of systemic lupus erythematosus. The possibility that cytokine genes may be involved was raised by the observation of increased frequency in expression of an uncommon allele of an interleukin-I receptor antagonist gene polymorphism and SLE in a recent U.K. study. We have not been able to show any significant differences in expression of this allele in SLE patients as a whole or in any patient subgroups. Our results actually show a slight decrease in the expression of this allele in SLE patients compared with healthy controls and in SLE patients with malar rash compared with SLE patients without malar rash.

  13. Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris.

    Directory of Open Access Journals (Sweden)

    Anna Kis

    Full Text Available The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG and one known (rs8679684 single nucleotide polymorphisms (SNPs in the regulatory regions (5' and 3' UTR of the oxytocin receptor gene in German Shepherd (N = 104 and Border Collie (N = 103 dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i proximity seeking towards an unfamiliar person, as well as their owner, and on (ii how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system.

  14. Toll-like receptor gene polymorphisms are associated with allergic rhinitis: a case control study

    Directory of Open Access Journals (Sweden)

    Nilsson Daniel

    2012-08-01

    Full Text Available Abstract Background The Toll-like receptor proteins are important in host defense and initiation of the innate and adaptive immune responses. A number of studies have identified associations between genetic variation in the Toll-like receptor genes and allergic disorders such as asthma and allergic rhinitis. The present study aim to search for genetic variation associated with allergic rhinitis in the Toll-like receptor genes. Methods A first association analysis genotyped 73 SNPs in 182 cases and 378 controls from a Swedish population. Based on these results an additional 24 SNPs were analyzed in one Swedish population with 352 cases and 709 controls and one Chinese population with 948 cases and 580 controls. Results The first association analysis identified 4 allergic rhinitis-associated SNPs in the TLR7-TLR8 gene region. Subsequent analysis of 24 SNPs from this region identified 7 and 5 significant SNPs from the Swedish and Chinese populations, respectively. The corresponding risk-associated haplotypes are significant after Bonferroni correction and are the most common haplotypes in both populations. The associations are primarily detected in females in the Swedish population, whereas it is seen in males in the Chinese population. Further independent support for the involvement of this region in allergic rhinitis was obtained from quantitative skin prick test data generated in both populations. Conclusions Haplotypes in the TLR7-TLR8 gene region were associated with allergic rhinitis in one Swedish and one Chinese population. Since this region has earlier been associated with asthma and allergic rhinitis in a Danish linkage study this speaks strongly in favour of this region being truly involved in the development of this disease.

  15. Polymorphisms of the low-density lipoprotein receptor gene in Brazilian individuals with heterozygous familial hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    L.A. Salazar

    2000-11-01

    Full Text Available Familial hypercholesterolemia (FH is a metabolic disorder inherited as an autosomal dominant trait characterized by an increased plasma low-density lipoprotein (LDL level. The disease is caused by several different mutations in the LDL receptor gene. Although early identification of individuals carrying the defective gene could be useful in reducing the risk of atherosclerosis and myocardial infarction, the techniques available for determining the number of the functional LDL receptor molecules are difficult to carry out and expensive. Polymorphisms associated with this gene may be used for unequivocal diagnosis of FH in several populations. The aim of our study was to evaluate the genotype distribution and relative allele frequencies of three polymorphisms of the LDL receptor gene, HincII1773 (exon 12, AvaII (exon 13 and PvuII (intron 15, in 50 unrelated Brazilian individuals with a diagnosis of heterozygous FH and in 130 normolipidemic controls. Genomic DNA was extracted from blood leukocytes by a modified salting-out method. The polymorphisms were detected by PCR-RFLP. The FH subjects showed a higher frequency of A+A+ (AvaII, H+H+ (HincII1773 and P1P1 (PvuII homozygous genotypes when compared to the control group (P<0.05. In addition, FH probands presented a high frequency of A+ (0.58, H+ (0.61 and P1 (0.78 alleles when compared to normolipidemic individuals (0.45, 0.45 and 0.64, respectively. The strong association observed between these alleles and FH suggests that AvaII, HincII1773 and PvuII polymorphisms could be useful to monitor the inheritance of FH in Brazilian families.

  16. Identification of the ancestral killer immunoglobulin-like receptor gene in primates

    Directory of Open Access Journals (Sweden)

    Coggill Penny

    2006-08-01

    Full Text Available Abstract Background Killer Immunoglobulin-like Receptors (KIR are essential immuno-surveillance molecules. They are expressed on natural killer and T cells, and interact with human leukocyte antigens. KIR genes are highly polymorphic and contribute vital variability to our immune system. Numerous KIR genes, belonging to five distinct lineages, have been identified in all primates examined thus far and shown to be rapidly evolving. Since few KIR remain orthologous between species, with only one of them, KIR2DL4, shown to be common to human, apes and monkeys, the evolution of the KIR gene family in primates remains unclear. Results Using comparative analyses, we have identified the ancestral KIR lineage (provisionally named KIR3DL0 in primates. We show KIR3DL0 to be highly conserved with the identification of orthologues in human (Homo sapiens, common chimpanzee (Pan troglodytes, gorilla (Gorilla gorilla, rhesus monkey (Macaca mulatta and common marmoset (Callithrix jacchus. We predict KIR3DL0 to encode a functional molecule in all primates by demonstrating expression in human, chimpanzee and rhesus monkey. Using the rhesus monkey as a model, we further show the expression profile to be typical of KIR by quantitative measurement of KIR3DL0 from an enriched population of natural killer cells. Conclusion One reason why KIR3DL0 may have escaped discovery for so long is that, in human, it maps in between two related leukocyte immunoglobulin-like receptor clusters outside the known KIR gene cluster on Chromosome 19. Based on genomic, cDNA, expression and phylogenetic data, we report a novel lineage of immunoglobulin receptors belonging to the KIR family, which is highly conserved throughout 50 million years of primate evolution.

  17. Genomic variation in the vomeronasal receptor gene repertoires of inbred mice

    Directory of Open Access Journals (Sweden)

    Wynn Elizabeth H

    2012-08-01

    Full Text Available Abstract Background Vomeronasal receptors (VRs, expressed in sensory neurons of the vomeronasal organ, are thought to bind pheromones and mediate innate behaviours. The mouse reference genome has over 360 functional VRs arranged in highly homologous clusters, but the vast majority are of unknown function. Differences in these receptors within and between closely related species of mice are likely to underpin a range of behavioural responses. To investigate these differences, we interrogated the VR gene repertoire from 17 inbred strains of mice using massively parallel sequencing. Results Approximately half of the 6222 VR genes that we investigated could be successfully resolved, and those that were unambiguously mapped resulted in an extremely accurate dataset. Collectively VRs have over twice the coding sequence variation of the genome average; but we identify striking non-random distribution of these variants within and between genes, clusters, clades and functional classes of VRs. We show that functional VR gene repertoires differ considerably between different Mus subspecies and species, suggesting these receptors may play a role in mediating behavioural adaptations. Finally, we provide evidence that widely-used, highly inbred laboratory-derived strains have a greatly reduced, but not entirely redundant capacity for differential pheromone-mediated behaviours. Conclusions Together our results suggest that the unusually variable VR repertoires of mice have a significant role in encoding differences in olfactory-mediated responses and behaviours. Our dataset has expanded over nine fold the known number of mouse VR alleles, and will enable mechanistic analyses into the genetics of innate behavioural differences in mice.

  18. Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris).

    Science.gov (United States)

    Kis, Anna; Bence, Melinda; Lakatos, Gabriella; Pergel, Enikő; Turcsán, Borbála; Pluijmakers, Jolanda; Vas, Judit; Elek, Zsuzsanna; Brúder, Ildikó; Földi, Levente; Sasvári-Székely, Mária; Miklósi, Adám; Rónai, Zsolt; Kubinyi, Enikő

    2014-01-01

    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5' and 3' UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system. PMID:24454713

  19. Association of vitamin D receptor gene variants with polycystic ovary syndrome: A case control study

    Science.gov (United States)

    Mahmoudi, Touraj; Majidzadeh-A, Keivan; Farahani, Hamid; Mirakhorli, Mojgan; Dabiri, Reza; Nobakht, Hossein; Asadi, Asadollah

    2015-01-01

    Background: Vitamin D and insulin play an important role in susceptibility to polycystic ovary syndrome (PCOS), and therefore vitamin D receptor (VDR), parathyroid hormone (PTH), and insulin receptor (INSR) gene variants might be involved in the pathogenesis of PCOS. Objective: The present study was designed to investigate the possible associations between polymorphisms in VDR, PTH, and INSR genes and the risk of PCOS. Materials and Methods: VDR, PTH, and INSR gene variants were genotyped in 35 women with PCOS and 35 controls using Polymerase chain reaction – Restriction fragment length polymorphism method. Furthermore, serum levels of glucose and insulin were measured in all participants. Results: No significant differences were observed for the VDR FokI, VDR Tru9I, VDR TaqI, PTH DraII, INSR NsiI, and INSR PmlI gene polymorphisms between the women with PCOS and controls. However, after adjustment for confounding factors, the VDR BsmI “Bb” genotype and the VDR ApaI "Aa" genotype were significantly under transmitted to the patients (p= 0.016; OR= 0.250; 95% CI= 0.081-0.769, and p= 0.017; OR= 0.260; 95% CI= 0.086-0.788, respectively). Furthermore, in the women with PCOS, insulin levels were lower in the participants with the INSR NsiI "NN" genotype compared with those with the "Nn + nn" genotypes (P= 0.045). Conclusion: The results showed an association between the VDR gene BsmI and ApaI polymorphisms and PCOS risk. These data also indicated that the INSR "NN" genotype was a marker of decreased insulin in women with PCOS. Our findings, however, do not lend support to the hypothesis that PTH gene DraII variant plays a role in susceptibility to PCOS. PMID:27141540

  20. Association of vitamin D receptor gene variants with polycystic ovary syndrome: A case control study

    Directory of Open Access Journals (Sweden)

    Touraj Mahmoudi

    2015-12-01

    Full Text Available Background: Vitamin D and insulin play an important role in susceptibility to polycystic ovary syndrome (PCOS, and therefore vitamin D receptor (VDR, parathyroid hormone (PTH, and insulin receptor (INSR gene variants might be involved in the pathogenesis of PCOS. Objective: The present study was designed to investigate the possible associations between polymorphisms in VDR, PTH, and INSR genes and the risk of PCOS. Materials and Methods: VDR, PTH, and INSR gene variants were genotyped in 35 women with PCOS and 35 controls using Polymerase chain reaction – Restriction fragment length polymorphism method. Furthermore, serum levels of glucose and insulin were measured in all participants. Results: No significant differences were observed for the VDR FokI, VDR Tru9I, VDR TaqI, PTH DraII, INSR NsiI, and INSR PmlI gene polymorphisms between the women with PCOS and controls. However, after adjustment for confounding factors, the VDR BsmI “Bb” genotype and the VDR ApaI "Aa" genotype were significantly under transmitted to the patients (p= 0.016; OR= 0.250; 95% CI= 0.081-0.769, and p= 0.017; OR= 0.260; 95% CI= 0.086-0.788, respectively. Furthermore, in the women with PCOS, insulin levels were lower in the participants with the INSR NsiI "NN" genotype compared with those with the "Nn + nn" genotypes (P= 0.045. Conclusion: The results showed an association between the VDR gene BsmI and ApaI polymorphisms and PCOS risk. These data also indicated that the INSR "NN" genotype was a marker of decreased insulin in women with PCOS. Our findings, however, do not lend support to the hypothesis that PTH gene DraII variant plays a role in susceptibility to PCOS.

  1. Body Mass Index is Associated with Gene Methylation in Estrogen Receptor-Positive Breast Tumors

    Science.gov (United States)

    Hair, Brionna Y.; Troester, Melissa A.; Edmiston, Sharon N.; Parrish, Eloise A.; Robinson, Whitney R.; Wu, Michael C.; Olshan, Andrew F.; Swift-Scanlan, Theresa; Conway, Kathleen

    2015-01-01

    Background Although obesity is associated with breast cancer incidence and prognosis, the underlying mechanisms are poorly understood. Identification of obesity-associated epigenetic changes in breast tissue may advance mechanistic understanding of breast cancer initiation and progression. The goal of this study, therefore, was to investigate associations between obesity and gene methylation in breast tumors. Methods Using the Illumina GoldenGate Cancer I Panel, we estimated the association between body mass index (BMI) and gene methylation in 345 breast tumor samples from Phase I of the Carolina Breast Cancer Study, a population based case-control study. Multivariable linear regression was used to identify sites that were differentially methylated by BMI. Stratification by tumor estrogen receptor status was also conducted. Results In the majority of the 935 probes analyzed (87%), the average beta value increased with obesity (BMI ≥ 30). Obesity was significantly associated with differential methylation (false discovery rate q-value < 0.05) in just 2 gene loci in breast tumor tissue overall and in 21 loci among estrogen receptor (ER)-positive tumors. Obesity was associated with methylation of genes that function in immune response, cell growth, and DNA repair. Conclusions Obesity is associated with altered methylation overall, and with hypermethylation among ER-positive tumors in particular, suggesting that obesity may influence the methylation of genes with known relevance to cancer. Some of these differences in methylation by obese status may influences levels of gene expression within breast cells. Impact If our results are validated, obesity-associated methylation sites could serve as targets for prevention and treatment research. PMID:25583948

  2. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Zhang Chuan-Xi

    2007-09-01

    Full Text Available Abstract Background Nicotinic acetylcholine receptors (nAChRs mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based on their genome sequences. The silkworm Bombyx mori is a model insect of Lepidoptera, among which are many agricultural pests. Identification and characterization of B. mori nAChR genes could provide valuable basic information for this important family of receptor genes and for the study of the molecular mechanisms of neonicotinoid action and resistance. Results We searched the genome sequence database of B. mori with the fruit fly and honeybee nAChRs by tBlastn and cloned all putative silkworm nAChR cDNAs by reverse transcriptase-polymerase chain reaction (RT-PCR and rapid amplification of cDNA ends (RACE methods. B. mori appears to have the largest known insect nAChR gene family to date, including nine α-type subunits and three β-type subunits. The silkworm possesses three genes having low identity with others, including one α and two β subunits, α9, β2 and β3. Like the fruit fly and honeybee counterparts, silkworm nAChR gene α6 has RNA-editing sites, and α4, α6 and α8 undergo alternative splicing. In particular, alternative exon 7 of Bmα8 may have arisen from a recent duplication event. Truncated transcripts were found for Bmα4 and Bmα5. Conclusion B. mori possesses a largest known insect nAChR gene family characterized to date, including nine α-type subunits and three β-type subunits. RNA-editing, alternative splicing and truncated transcripts were found in several subunit genes, which might enhance the diversity of the gene family.

  3. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro [Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603 (Japan); Imagawa, Masayoshi, E-mail: imagawa@phar.nagoya-cu.ac.jp [Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603 (Japan)

    2009-12-18

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  4. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    International Nuclear Information System (INIS)

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  5. A novel element (NIRS) participates in the regulation ofinterleukin 2 receptorαgene expression

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel element at -153/- 143 bp in the interleukin 2 receptor α(IL-2Rα) gene has been coined as NRE-inverse repeat sequence (NIRS) due to its inversely repeated to the known negative regulatory element (NRE) further upstream of the gene. In order to explore the role of NIRS in the expression of IL-2Rαgene,luciferase reporter plasmids driven by 4 individually deleted IL-2Rα genes promoter regions were constructed. Transfection of the reporter plasmids into Jurkat cells and HeLa cells respectively, we found that both NIRS and NRE were critical for repressing the constitutive expression of IL-2Rα gene and were also necessary for promoter activity induced by PHA. EMSA results showed that double-stranded NRE- and NIRS-binding proteins existed in both HeLa cells and Jurkat cells. However, single-stranded NIRS- and NRE-binding protein was only found in HeLa cells. Interestingly, the supershift band showed up in EMSA system with Jurkat cells (no matter whether activated or not) adding to the cell lysate of HeLa cells. UV-crosslinking showed a double stranded NRE- and NIRS-binding protein p83 in both Jurkat cells and HeLa cells. Our results suggest that trans-acting factors play a key role in regulating promoter activity of IL-2Rα gene by interacting with double or single stranded NRE and/or NIRS selectively in different cells.

  6. A cluster of olfactory receptor genes linked to frugivory in bats.

    Science.gov (United States)

    Hayden, Sara; Bekaert, Michaël; Goodbla, Alisha; Murphy, William J; Dávalos, Liliana M; Teeling, Emma C

    2014-04-01

    Diversity of the mammalian olfactory receptor (OR) repertoire has been globally reshaped by niche specialization. However, little is known about the variability of the OR repertoire at a shallower evolutionary timeframe. The vast bat radiation exhibits an extraordinary variety of trophic and sensory specializations. Unlike other mammals, bats possess a unique and diverse OR gene repertoire. We elucidated whether the evolution of the OR gene repertoire can be linked to ecological niche specializations, such as sensory modalities and diet. The OR gene repertoires of 27 bat species spanning the chiropteran radiation were amplified and sequenced. For each species, intact and nonfunctional genes were assessed, and the OR gene abundances in each gene family were analyzed and compared. We identified a unique OR pattern linked to the frugivorous diet of New World fruit-eating bats and a similar convergent pattern in the Old World fruit-eating bats. Our results show a strong association between niche specialization and OR repertoire diversity even at a shallow evolutionary timeframe. PMID:24441035

  7. Expression detection and par-tial cloning of porcine leptin receptor (OBR) gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The product of the obesity gene, called leptin, is an important regulator of adiposity, which mainly functions via its regulation of feed intake and energy metabolism. Both obesity gene (ob gene) and leptin receptor gene (OBR gene) are thought to play a major role in controlling of body fat mass as well as body weight. The result of RT-PCR shows that levels of pig OBR mRNA are higher in hypothalamus, lung and liver, and lower expression can be detected in other tissues. Total RNA purified from 11 different organs and tissues have been hybridized with pig OBR cDNA probes. The hybridization signals are shown in 7 organs and tissues. 4.1 and 3.8 kb bands were observed from hypothalamus, whereas 3.8 and 3.5 kb bands were observed in other tissues instead. The nearly complete sequence of the extracellular domain of pig OBR gene was obtained. The homology of sequence is 89.2% between pig and human, 80.3% between pig and mouse. Alignment of the predicted amino acid se-quence of OBR in pig, human and mouse shows that the overall identity is 86.5% between pig and human, 76.6% between pig and mouse. Two WSXWS motifs were found at aa313 and aa616.

  8. Neurotensin receptor 1 gene (NTSR1 polymorphism is associated with working memory.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available BACKGROUND: Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT, in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans. METHODS: Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable. RESULTS: ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453 were significantly associated with working memory. These results survived corrections for multiple comparisons. CONCLUSIONS: Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators.

  9. Association Study of Two Cannabinoid Receptor Genes, CNR1 and CNR2, with Methamphetamine Dependence

    Science.gov (United States)

    Okahisa, Y; Kodama, M; Takaki, M; Inada, T; Uchimura, N; Yamada, M; Iwata, N; Iyo, M; Sora, I; Ozaki, N; Ujike, H

    2011-01-01

    Several studies have suggested that the endocannabinoid system plays significant roles in the vulnerability to psychiatric disorders including drug abuse. To examine the possible association of the CNR1 and CNR2 genes, which encode cannabinoid receptors CB1 and CB2, with methamphetamine dependence, we investigated three single nucleotide polymorphisms (SNPs) (rs806379, rs1535255, rs2023239) in intron 2 of the CNR1 gene and a nonsynonymous SNP, Q63R, in the CNR2 gene. The study samples consisted of 223 patients with methamphetamine dependence and 292 age- and sex- matched controls. There were no significant differences between the patients and controls in genotypic or allelic distribution of any SNP of the CNR1 and CNR2 genes. We also analyzed the clinical features of methamphetamine dependence. Rs806379 of the CNR1 gene showed a significant association with the phenotype of latency of psychosis after the first consumption of methamphetamine. Patients with the T allele or T-positive genotypes (T/T or A/T) may develop a rapid onset of psychosis after methamphetamine abuse. The present study suggests a possibility that genetic variants of the CNR1 gene may produce a liability to the complication of psychotic state after abuse of methamphetamine; however, our findings need to be confirmed by future replications. PMID:21886587

  10. Activity-dependent modulation of odorant receptor gene expression in the mouse olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Shaohua Zhao

    Full Text Available Activity plays critical roles in development and maintenance of the olfactory system, which undergoes considerable neurogenesis throughout life. In the mouse olfactory epithelium, each olfactory sensory neuron (OSN stably expresses a single odorant receptor (OR type out of a repertoire of ∼1200 and the OSNs with the same OR identity are distributed within one of the few broadly-defined zones. However, it remains elusive whether and how activity modulates such OR expression patterns. Here we addressed this question by investigating OR gene expression via in situ hybridization when sensory experience or neuronal excitability is manipulated. We first examined the expression patterns of fifteen OR genes in mice which underwent neonatal, unilateral naris closure. After four-week occlusion, the cell density in the closed (sensory-deprived side was significantly lower (for four ORs, similar (for three ORs, or significantly higher (for eight ORs as compared to that in the open (over-stimulated side, suggesting that sensory inputs have differential effects on OSNs expressing different OR genes. We next examined the expression patterns of seven OR genes in transgenic mice in which mature OSNs had reduced neuronal excitability. Neuronal silencing led to a significant reduction in the cell density for most OR genes tested and thinner olfactory epithelium with an increased density of apoptotic cells. These results suggest that sensory experience plays important roles in shaping OR gene expression patterns and the neuronal activity is critical for survival of OSNs.

  11. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes

    Directory of Open Access Journals (Sweden)

    Dov Tiosano

    2016-05-01

    Full Text Available The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR, using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes’ functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes.

  12. The ionotropic γ-aminobutyric acid receptor gene family of the silkworm, Bombyx mori.

    Science.gov (United States)

    Yu, Lin-Lin; Cui, Ying-Jun; Lang, Guo-Jun; Zhang, Ming-Yan; Zhang, Chuan-Xi

    2010-09-01

    γ-Aminobutyric acid (GABA) is a very important inhibitory neurotransmitter in both vertebrate and invertebrate nervous systems. GABA receptors (GABARs) are known to be the molecular targets of a class of insecticides. Members of the GABAR gene family of the silkworm, Bombyx mori, a model insect of Lepidoptera, have been identified and characterized in this study. All putative silkworm GABAR cDNAs were cloned using the reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Bombyx mori appears to have the largest insect GABAR gene family known to date, including three RDL, one LCCH3, and one GRD subunit. The silkworm RDL1 gene has RNA-editing sites, and the RDL1 and RDL3 genes possess alternative splicing. These mRNA modifications enhance the diversity of the silkworm's GABAR gene family. In addition, truncated transcripts were found for the RDL1 and LCCH3 genes. In particular, the three RDL subunits may have arisen from two duplication events. PMID:20924418

  13. Association of Killer Cell Immunoglobulin- Like Receptor Genes in Iranian Patients with Rheumatoid Arthritis.

    Directory of Open Access Journals (Sweden)

    Masoumeh Nazari

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disorder characterized by persistent synovitis, ultimately leading to cartilage and bone degeneration. Natural Killer cells and CD28 null T-cells are suspected as role players in RA pathogenesis. These cells are similar in feature and function, as they both exert their cytotoxic effect via Killer Cell Immunoglobulin- Like Receptors (KIR on their surface. KIR genes have either an inhibitory or activating effect depending on their intracytoplasmic structure. Herein we genotyped 16 KIR genes, 3 pseudo genes and 6 HLA class І genes as their corresponding ligands in RA patients and control subjects.In this case-control study, KIR and HLA genes were genotyped in 400 RA patients and 372 matched healthy controls using sequence-specific primers (SSP-PCR. Differences in the frequency of genes and haplotypes were determined by χ² test.KIR2DL2, 2DL5a, 2DL5b and activating KIR: KIR2DS5 and 3DS1 were all protective against RA. KIR2DL5 removal from a full Inhibitory KIR haplotype converted the mild protection (OR = 0.56 to a powerful predisposition to RA (OR = 16.47. Inhibitory haplotype No. 7 comprising KIR2DL5 in the absence of KIR2DL1 and KIR2DL3 confers a 14-fold protective effect against RA.Individuals carrying the inhibitory KIR haplotype No. 6 have a high potential risk for developing RA.

  14. The arginine vasopressin V1b receptor gene and prosociality: Mediation role of emotional empathy.

    Science.gov (United States)

    Wu, Nan; Shang, Siyuan; Su, Yanjie

    2015-09-01

    The vasopressin V1b receptor (AVPR1B) gene has been shown to be closely associated with bipolar disorder and depression. However, whether it relates to positive social outcomes, such as empathy and prosocial behavior, remains unknown. This study explored the possible role of the AVPR1B gene rs28373064 in empathy and prosociality. A total of 256 men, who were genetically unrelated, non-clinical ethnic Han Chinese college students, participated in the study. Prosociality was tested by measuring the prosocial tendencies of cognitive and emotional empathy using the Interpersonal Reactivity Index (IRI). The single nucleotide polymorphism (SNP), rs28373064, was genotyped using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The results suggest that the AVPR1B gene rs28373064 is linked to emotional empathy and prosociality. The mediation analysis indicated that the effect of the AVPR1B gene on prosociality might be mediated by emotional empathy. This study demonstrated the link between the AVPR1B gene and prosociality and provided evidence that emotional empathy might mediate the relation between the AVPR1B gene and prosociality. PMID:26354157

  15. Homozygosity for a dominant negative thyroid hormone receptor gene responsible for generalized resistance to thyroid hormone.

    Science.gov (United States)

    Ono, S; Schwartz, I D; Mueller, O T; Root, A W; Usala, S J; Bercu, B B

    1991-11-01

    Generalized resistance to thyroid hormones (GRTH) commonly results from mutations in the T3-binding domain of the c-erbA beta thyroid hormone receptor gene. We have reported on a novel deletion mutation in c-erbA beta in a kindred, S, with GRTH. One patient from this kindred was the product of a consanguineous union from two affected members and was homozygous for the beta-receptor defect. This patient at 3.5 weeks of age had unprecedented elevations of TSH, free T4, and free T3 (TSH, 389 mU/L; free T4, 330.8 pmol/L; free T3, 82,719 fmol/L). He displayed a complex mixture of tissue-specific hyperthyroidism and hypothyroidism. He had delayed growth (height age, 1 3/12 yr at chronological age 2 9/12 yr) and skeletal maturation (bone age, 4 months), and developmental delay (developmental age, 8 months), but he was quite tachycardic. The homozygous patient of kindred S is markedly different from a recently reported patient with no c-erbA beta-receptor. This difference indicates that a dominant negative form of c-erbA beta in man can inhibit at least some thyroid hormone action mediated by the c-erbA alpha-receptors. PMID:1682340

  16. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  17. The human gene for neurotrophic tyrosine kinase receptor type 2 (NTRK2) is located on chromosome 9 but is not the familial dysautonomia gene

    Energy Technology Data Exchange (ETDEWEB)

    Slaugenhaupt, S.A. [Massachusetts General Hospital, Boston, MA (United States)]|[Harvard Medical School, Boston, MA (United States); Liebert, C.B.; Lucente, D.E. [Massachusetts General Hospital, Boston, MA (United States)] [and others

    1995-02-10

    The neurotrophic tyrosine kinase receptor type 2 (NTRK2) gene is a member of the trk family of tyrosine protein kinases, which encode receptors for the nerve growth factor-related proteins known as neurotrophins. The neurotrophins and their receptors have long been considered candidate genes for familial dysautonomia (FD), a hereditary sensory neuropathy resulting from the congenital loss of both sensory and autonomic neurons. The DYS gene has recently been mapped to human chromosome 9q31-q33, and therefore we set out to determine the chromosomal localization of the candidate gene NTRK2. A mouse trkB probe was hybridized to both somatic cell hybrids containing human chromosome 9 and a human chromosome 9 flow-sorted cosmid library. The human homologue of trkB, NTRK2, was assigned to chromosome 9. To localize the NTRK2 gene further, a dinucleotide repeat polymorphism was identified within a cosmid that contains NTRK2 exon sequences. This marker was genotyped in the CEPH reference pedigrees and places the NTRK2 gene near D9S1 on the proximal long arm of human chromosome 9. The NTRK2 gene is located approximately 22 cm proximal to DYS and shows several recombinants in disease families. Therefore, the NTRK2 gene can now be excluded as a candidate gene for familial dysautonomia. 18 refs., 1 fig.

  18. Symptoms of Attention-Deficit/Hyperactivity Disorder in Down Syndrome: Effects of the Dopamine Receptor D4 Gene

    Science.gov (United States)

    Mason, Gina Marie; Spanó, Goffredina; Edgin, Jamie

    2015-01-01

    This study examined individual differences in ADHD symptoms and executive function (EF) in children with Down syndrome (DS) in relation to the dopamine receptor D4 (DRD4) gene, a gene often linked to ADHD in people without DS. Participants included 68 individuals with DS (7-21 years), assessed through laboratory tasks, caregiver reports, and…

  19. Peripheral CD25 positive T lymphocytes with biased T cell receptorgene usage in autoimmune endogenous posterior uveitis

    OpenAIRE

    Tighe, P J; Forrester, J V; Liversidge, J.; Sewell, H F

    1995-01-01

    Aims—To determine T cell receptor (TCR) Vβ gene usage in peripheral blood T lymphocytes of patients with endogenous posterior uveitis (EPU). If biased TCR variable (V) gene usage occurs in this autoimmune disease, it should be detectable in immune activated peripheral blood T cells in vivo.

  20. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats.

    Science.gov (United States)

    Hong, Wei; Zhao, Huabin

    2014-08-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  1. Genetic Imaging of the Association of Oxytocin Receptor Gene (OXTR Polymorphisms with Positive Maternal Parenting

    Directory of Open Access Journals (Sweden)

    Kalina J. Michalska

    2014-02-01

    Full Text Available Background: Well-validated models of maternal behavior in small-brain mammals posit a central role of oxytocin in parenting, by reducing stress and enhancing the reward value of social interactions with offspring. In contrast, human studies are only beginning to gain insights into how oxytocin modulates maternal behavior and affiliation. Methods: To explore associations between oxytocin receptor genes and maternal parenting behavior in humans, we conducted a genetic imaging study of women selected to exhibit a wide range of observed parenting when their children were 4-6 years old. Results: In response to child stimuli during functional magnetic resonance imaging, hemodynamic responses in brain regions that mediate affect, reward, and social behavior were significantly correlated with observed positive parenting. Furthermore, single nucleotide polymorphisms (rs53576 and rs1042778 in the gene encoding the oxytocin receptor were significantly associated with both positive parenting and hemodynamic responses to child stimuli in orbitofrontal cortex, anterior cingulate cortex and hippocampus. Conclusions: These findings contribute to the emerging literature on the role of oxytocin in human social behavior and support the feasibility of tracing biological pathways from genes to neural regions to positive maternal parenting behaviors in humans using genetic imaging methods.

  2. Farnesoid X receptor (FXR) gene deficiency impairs urine concentration in mice.

    Science.gov (United States)

    Zhang, Xiaoyan; Huang, Shizheng; Gao, Min; Liu, Jia; Jia, Xiao; Han, Qifei; Zheng, Senfeng; Miao, Yifei; Li, Shuo; Weng, Haoyu; Xia, Xuan; Du, Shengnan; Wu, Wanfu; Gustafsson, Jan-Åke; Guan, Youfei

    2014-02-11

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily. FXR is mainly expressed in liver and small intestine, where it plays an important role in bile acid, lipid, and glucose metabolism. The kidney also has a high FXR expression level, with its physiological function unknown. Here we demonstrate that FXR is ubiquitously distributed in renal tubules. FXR agonist treatment significantly lowered urine volume and increased urine osmolality, whereas FXR knockout mice exhibited an impaired urine concentrating ability, which led to a polyuria phenotype. We further found that treatment of C57BL/6 mice with chenodeoxycholic acid, an FXR endogenous ligand, significantly up-regulated renal aquaporin 2 (AQP2) expression, whereas FXR gene deficiency markedly reduced AQP2 expression levels in the kidney. In vitro studies showed that the AQP2 gene promoter contained a putative FXR response element site, which can be bound and activated by FXR, resulting in a significant increase of AQP2 transcription in cultured primary inner medullary collecting duct cells. In conclusion, the present study demonstrates that FXR plays a critical role in the regulation of urine volume, and its activation increases urinary concentrating capacity mainly via up-regulating its target gene AQP2 expression in the collecting ducts. PMID:24464484

  3. Radiation induction of the receptor tyrosine kinase gene Ptk-3 in normal rat astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, S.; Hideyuki, S.; Akihiro, I. [Univ. of Texas, Houston, TX (United States)] [and others

    1995-07-01

    Radiation-induced gene expression was examined in rat astrocyte cultures using differential display of mRNA via reverse transcriptase-polymerase chain reaction. A 0.3-kb cDNA that was consistently observed in irradiated cultures but not in unirradiated cultures was cloned and sequenced. It was found to be identical to Ptk-3, a receptor tyrosine kinase gene identified recently. The protein encoded by Ptk-3 is a member of a novel class of receptor tyrosine kinases whose extracellular domain contains regions of homology with coagulation factors V and VIII and complement component C1. Northern blot analysis revealed that the expression of Ptk-3 was increased in rat astrocytes by 0.5 h after exposure to 10 Gy and remained at the same elevated level for at least 24 h. The maximum increase occurred after 5 Gy cloning studies indicated the presence of at least two Ptk-3 mRNA transcripts, which are probable the result of an alternative splicing mechanism. The short isoform lacks a 37 amino acid sequence in the glycine/proline-rich juxtamembrane region. The splicing pattern of the Ptk-3 gene was not altered by radiation. However, the ratios of the longer to the shorter mRNA transcripts differed between adult cortex, neonatal cortex and in vitro astrocyte cultures. 36 refs., 5 figs.

  4. Computational design of a Zn2+ receptor that controls bacterial gene expression

    Science.gov (United States)

    Dwyer, M. A.; Looger, L. L.; Hellinga, H. W.

    2003-09-01

    The control of cellular physiology and gene expression in response to extracellular signals is a basic property of living systems. We have constructed a synthetic bacterial signal transduction pathway in which gene expression is controlled by extracellular Zn2+. In this system a computationally designed Zn2+-binding periplasmic receptor senses the extracellular solute and triggers a two-component signal transduction pathway via a chimeric transmembrane protein, resulting in transcriptional up-regulation of a -galactosidase reporter gene. The Zn2+-binding site in the designed receptor is based on a four-coordinate, tetrahedral primary coordination sphere consisting of histidines and glutamates. In addition, mutations were introduced in a secondary coordination sphere to satisfy the residual hydrogen-bonding potential of the histidines coordinated to the metal. The importance of the secondary shell interactions is demonstrated by their effect on metal affinity and selectivity, as well as protein stability. Three designed protein sequences, comprising two distinct metal-binding positions, were all shown to bind Zn2+ and to function in the cell-based assay, indicating the generality of the design methodology. These experiments demonstrate that biological systems can be manipulated with computationally designed proteins that have drastically altered ligand-binding specificities, thereby extending the repertoire of genetic control by extracellular signals.

  5. Transactivation of the proximal promoter of human oxytocin gene by TR4 orphan receptor

    International Nuclear Information System (INIS)

    The human testicular receptor 4 (TR4) shares structural homology with members of the nuclear receptor superfamily. Some other members of this superfamily were able to regulate the transcriptional activity of the human oxytocin (OXT) promoter by binding to the first DR0 regulatory site. However, little investigation was conducted systematically in the study of the second dDR4 site of OXT proximal promoter, and the relationship between the first and the second sites of OXT promoter. Here, we demonstrated for the first time that TR4 could increase the proximal promoter activity of the human OXT gene via DR0, dDR4, and OXT (both DR0 and dDR4) elements, respectively. TR4 might induce OXT gene expression through the OXT element in a dose-dependent manner. However, there is no synergistic effect between DR0 and dDR4 elements during TR4 transactivation. Taken together, these results suggested that TR4 should be one of important regulators of OXT gene expression

  6. Transcriptional regulation of the human TR2 orphan receptor gene by nuclear factor 1-A

    International Nuclear Information System (INIS)

    The human testicular receptor 2 (TR2), a member of the nuclear hormone receptor superfamily, has no identified ligand yet. Previous evidence demonstrated that a 63 bp DNA fragment, named the promoter activating cis-element (PACE), has been identified as a positive regulatory region in the 5' promoter region of the human TR2 gene. In the present report, the human nuclear factor 1-A (NF1-A) was identified as a transcriptional activator to recognize the center of the PACE, called the PACE-C. NF1-A could bind to the 18 bp PACE-C region, and enhance about 13- to 17-fold of the luciferase reporter gene activity via the PACE-C in dose-dependent and orientation-independent manners. This transcriptional activation was further confirmed by real-time RT-PCR assay. In conclusion, our results indicated that NF1-A transcription factor plays an important role in the transcriptional activation of the TR2 gene expression via the PACE-C in the minimal promoter region

  7. Vitamin D receptor gene polymorphisms in multiple sclerosis patients in northwest Greece

    Directory of Open Access Journals (Sweden)

    Georgiou Ioannis

    2011-05-01

    Full Text Available Abstract Background Polymorphisms of the vitamin D receptor (VDR gene have been linked to both multiple sclerosis (MS and osteoporosis. We examined the frequency of the Taq-I and Bsm-I polymorphisms of the vitamin D receptor (VDR gene in 69 patients with MS and 81 age and sex-matched healthy individuals. Genotyping of Taq-I (rs731236 and Bsm-I (rs1544410 was performed using TaqMan® SNP Genotyping Assay. All patients and controls had determination of body mass index (BMI, bone mineral density (BMD and smoking history. Results The mean age of patients was 39 ± 10.5 years compared to 38.7 ± 10.7 years of the controls (p = 0.86, the BMI was 24.8 ± 4.2 kg/m2 compared to 25.7 ± 4.8 kg/m2 of the controls (p = 0.23, the BMD in the lumbar spine 0.981 ± 0.15 compared to 1.025 ± 013 of the controls (p = 0.06 and the total hip BMD was 0.875 ± 0.14 compared to 0.969 ± 0.12 of the controls (p Conclusions This study suggests that the Taq-I and Bsm-I polymorphisms of the VDR gene are not associated with MS risk, BMI or BMD in the Greek population studied.

  8. Radiation induction of the receptor tyrosine kinase gene Ptk-3 in normal rat astrocytes

    International Nuclear Information System (INIS)

    Radiation-induced gene expression was examined in rat astrocyte cultures using differential display of mRNA via reverse transcriptase-polymerase chain reaction. A 0.3-kb cDNA that was consistently observed in irradiated cultures but not in unirradiated cultures was cloned and sequenced. It was found to be identical to Ptk-3, a receptor tyrosine kinase gene identified recently. The protein encoded by Ptk-3 is a member of a novel class of receptor tyrosine kinases whose extracellular domain contains regions of homology with coagulation factors V and VIII and complement component C1. Northern blot analysis revealed that the expression of Ptk-3 was increased in rat astrocytes by 0.5 h after exposure to 10 Gy and remained at the same elevated level for at least 24 h. The maximum increase occurred after 5 Gy cloning studies indicated the presence of at least two Ptk-3 mRNA transcripts, which are probable the result of an alternative splicing mechanism. The short isoform lacks a 37 amino acid sequence in the glycine/proline-rich juxtamembrane region. The splicing pattern of the Ptk-3 gene was not altered by radiation. However, the ratios of the longer to the shorter mRNA transcripts differed between adult cortex, neonatal cortex and in vitro astrocyte cultures. 36 refs., 5 figs

  9. Systematic Screening of the Serotonin Receptor 1A (5-HT1A) Gene in Chronic Tinnitus

    Institute of Scientific and Technical Information of China (English)

    Kleinjung T; Langguth B; Fischer B; Hajak G; Eichhammer P; Sand PG

    2006-01-01

    Objective Chronic tinnitus is a highly prevalent condition and has been hypothesized to result from an innate disturbance in central nervous serotonergic transmission. Given the frequent comorbidity with major depression and anxiety, we argue that candidate genes for these disorders are likely to overlap. The present study addresses the gene encoding for the 5-HT1A receptor as a putative risk factor for tinnitus. Methods In 88 subjects with a diagnosis of chronic subjective tinnitus who underwent a detailed neurootological examination, the entire 5-HT1A gene was amplified using overlapping PCR products. Amplicons were custom sequenced bidirectionally and were screened for variants in multiple alignments against the human genome reference. Results We identified a synonymous C > T exchange at residue 184 (Pro) in 7/88 subjects, but detected no missense variants in the population under study. Specifically, the following residues were fully conserved: 16 (Pro), 22 (Gly), 28 (Ile), 98 (Val), 220(Arg), 267 (Val), 273 (Gly), and 418 (Asn). Discussion The present data count against the causation of chronic tinnitus by a change in the 5-HT1A receptor's amino acid sequence. However, the allele frequency for the 184Pro minor allele (0.04) reached twice the frequency reported in control cohorts from the same ethnicity.Additional investigations are invited to clarify the role of the 5-HT1A polymorphism in larger samples, and to control for comorbid affective disorders.

  10. Are Toll-like receptor gene polymorphisms associated with prostate cancer?

    International Nuclear Information System (INIS)

    The suggestion that there is a connection between chronic intraprostatic inflammation and prostate cancer was declared some years ago. As Toll-like receptors (TLRs) are the key players in the processes of chronic intraprostatic inflammation, there is a hypothesis that TLR gene polymorphisms may be associated with prostate cancer risk. Although a number of comprehensive studies have been conducted on large samples in various countries, reliable connections between these single nucleotide polymorphisms and prostate cancer risk, stage, grade, aggressiveness, ability to metastasize, and mortality have not been detected. Results have also varied slightly in different populations. The data obtained regarding the absence of connection between the polymorphisms of the genes encoding interleukin-1 receptor-associated kinases (IRAK1 and IRAK4) and prostate cancer risk might indicate a lack of association between inherited variation in the TLR signaling pathway and prostate cancer risk. It is possible to consider that polymorphisms of genes encoding TLRs and proteins of the TLR pathway also do not play a major role in the etiology and pathogenesis of prostate cancer. Feasibly, it would be better to focus research on associations between TLR single nucleotide polymorphisms and cancer risk in other infection-related cancer types

  11. Genomic organization of the mouse fibroblast growth factor receptor 3 (Fgfr3) gene

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Castro, A.V.; Wilson, J.; Altherr, M.R. [Los Alamos National Lab., NM (United States)

    1995-11-20

    The fibroblast growth factor receptor 3 (Fgfr3) protein is a tyrosine kinase receptor involved in the signal transduction of various fibroblast growth factors. Recent studies suggest its important role in normal development. In humans, mutation in Fgfr3 is responsible for growth disorders such as achondroplasia, hypoachondroplasia, and thanatophoric dysplasia. Here, we report the complete genomic organization of the mouse Fgfr3 gene. The murine gene spans approximately 15 kb and consists of 19 exons and 18 introns. One major and one minor transcription initiation site were identified. Position +1 is located 614 nucleotides upstream from the ATG initiation codon. The translation initiation and termination sites are located in exons 2 and 19, respectively. Five Sp1 sites, two AP2 sites, one Zeste site, and one Krox 24 site were observed in the 5{prime}-flanking region. The Fgfr3 promoter appears to be contained within a CpG island and, as is common in genes having multiple Sp1-binding sites, lacks a TATA box. 35 refs., 3 figs., 1 tab.

  12. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies. PMID:17855129

  13. Methylation and silencing of the retinoic acid receptor-β2 gene in cervical cancer

    International Nuclear Information System (INIS)

    Expression of the retinoic acid receptor β2 (RAR-β2), a putative tumor suppressor gene, is reduced in various human cancers, including squamous cell carcinomas (SCC) of the uterine cervix. The mechanism of the inhibition of RAR-β2 expression remains obscure. We examined whether methylation of RAR-β2 gene could be responsible for this silencing in cervical SCC. Expression of RAR-β2 mRNA and methylation status of the 5' region of RAR-β2 gene were examined in 20 matched specimens from patients with cervical SCC and in three cervical cancer cell lines by Northern blot analysis and methylation-specific PCR (MSP) assay or Southern blot analysis respectively. In 8 out 20 cervical SCC (40%) the levels of RAR-β2 mRNA were decreased or undetectable in comparison with non-neoplastic cervix tissues. All 8 tumors with reduced levels of RAR-β2 mRNA expression showed methylation of the promoter and the first exon expressed in the RAR-β2 transcript. The RAR-β2 gene from non-neoplastic cervical tissues was mostly unmethylated and expressed, but methylated alleles of the gene were found in three samples of the morphologically normal tissues adjacent to the tumors. Three cervical cancer cell lines with extremely low level of RAR-β2 mRNA expression, SiHA, HeLA and CaSki, also showed methylation of this region of the RAR-β2 gene. These findings suggest that methylation of the 5' region of RAR-β2 gene may contribute to gene silencing and that methylation of this region may be an important and early event in cervical carcinogenesis. These findings may be useful to make retinoids more effective as preventive and therapeutic agents in combination with inhibitors of DNA methylation

  14. Nebulisation of receptor-targeted nanocomplexes for gene delivery to the airway epithelium.

    Directory of Open Access Journals (Sweden)

    Maria D I Manunta

    Full Text Available BACKGROUND: Gene therapy mediated by synthetic vectors may provide opportunities for new treatments for cystic fibrosis (CF via aerosolisation. Vectors for CF must transfect the airway epithelium efficiently and not cause inflammation so they are suitable for repeated dosing. The inhaled aerosol should be deposited in the airways since the cystic fibrosis transmembrane conductance regulator gene (CFTR is expressed predominantly in the epithelium of the submucosal glands and in the surface airway epithelium. The aim of this project was to develop an optimised aerosol delivery approach applicable to treatment of CF lung disease by gene therapy. METHODOLOGY: The vector suspension investigated in this study comprises receptor-targeting peptides, cationic liposomes and plasmid DNA that self-assemble by electrostatic interactions to form a receptor-targeted nanocomplex (RTN of approximately 150 nm with a cationic surface charge of +50 mV. The aerodynamic properties of aerosolised nanocomplexes produced with three different nebulisers were compared by determining aerosol deposition in the different stages of a Next Generation Pharmaceutical Impactor (NGI. We also investigated the yield of intact plasmid DNA by agarose gel electrophoresis and densitometry, and transfection efficacies in vitro and in vivo. RESULTS: RTNs nebulised with the AeroEclipse II BAN were the most effective, compared to other nebulisers tested, for gene delivery both in vitro and in vivo. The biophysical properties of the nanocomplexes were unchanged after nebulisation while the deposition of RTNs suggested a range of aerosol aerodynamic sizes between 5.5 µm-1.4 µm cut off (NGI stages 3-6 compatible with deposition in the central and lower airways. CONCLUSIONS: RTNs showed their ability at delivering genes via nebulisation, thus suggesting their potential applications for therapeutic interventions of cystic fibrosis and other respiratory disorders.

  15. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).

    Science.gov (United States)

    Terranova, Christopher; Narla, Sridhar T; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K; Tzanakakis, Emmanuel S; Buck, Michael J; Birkaya, Barbara; Stachowiak, Michal K

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development. PMID:25923916

  16. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Directory of Open Access Journals (Sweden)

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  17. Isolation and characterization of CXC receptor genes in a range of elasmobranchs.

    Science.gov (United States)

    Goostrey, Anna; Jones, Gareth; Secombes, Christopher J

    2005-01-01

    The CXC group of chemokines exert their cellular effects via the CXCR group of G-protein coupled receptors. Six CXCR genes have been identified in humans (CXCR1-6), and homologues to some of these have been isolated from a range of vertebrate species. Here we isolate and characterize CXCR genes from a range of elasmobranch species. One CXCR1/2 gene fragment isolated from Scyliorhinus caniculus (lesser spotted catshark), and two CXCR1/2 copies from each of the elasmobranchs, Cetorhinus maximus (basking shark), Carcharodon carcharias (great white shark), and Raja naevus (cuckoo ray), exhibit high similarity to both CXCR1 and CXCR2. The two copies evident in the cuckoo ray and lamniform sharks provide strong evidence of CXCR1/2 lineage specific duplication in rays and sharks. A CXCR fragment isolated from Lamna ditropis (salmon shark) shows high similarity to a range of CXCR4 genes and strong clustering with CXCR4 gene homologues was apparent during phylogenetic reconstruction. PMID:15572071

  18. Diversity and structure of human T-cell receptor α-chain variable region genes

    International Nuclear Information System (INIS)

    The nucleotide sequences of 27 T-cell receptor α-chain variable region (V/sub α/)-containing cDNA clones isolated from a cDNA library derived from human peripheral blood lymphocytes were determined. Eighteen different V/sub α/ and 26 different joining (J/sub α/) gene segments are utilized in these clones. The V/sub α/ gene segments belong to 12 different subfamilies, each containing from one to seven members. Comparisons with the 16 different V/sub α/ and 21 different Jα sequences previously reported suggest that the germ-line repertoires for these gene segments are greater than previously estimated. Flexibility in the sites of gene segment joining and possibly N-region diversification also contribute to human α-chain diversity. Comparisons of human V/sub α/ regions indicate a high degree of variability spread uniformly across the entire V/sub α/ region without obvious hypervariable regions. However, amino acids important for the maintenance of V gene structure are conserved

  19. Association of Vitamin D Receptor Gene Polymorphisms with Calcium Oxalate Calcul us Disease

    Institute of Scientific and Technical Information of China (English)

    王少刚; 刘继红; 胡少群; 叶章群

    2003-01-01

    To study the relationship between polymorphism of vitamin D receptor (VDR) allele with formation of calcium oxalate calculus and find the predisposing genes of calcium oxalate calculus, we screened out 150 patients who suffered from calcium oxalate calculus. 36 of them had idiopathic hypercalciuria according to analysis of calculus component and assay of urine calcium. The polymorphisms of VDR gene Taq1, Apa1 and Fok1 were detected using PCR-RFLP technique and the correlation were analyzed between the polymorphism and urinary calculus or between the polymorphism and hypercalciuria. The difference in each genotypic frequency of the allele of promoter Fok1 between calculus group and healthy group or between idiopathic hypercalciuria calculus group and health group was significant. The content of 24-h urine calcium of those who had genotype ff was obviously higher than that of those who have other genotypes in the same group. There was no significant difference in the polymorphism of gene Apa1 and Taq1 between each two groups. It is concluded that hypercalciuria and calcium oxalate calculus were related to the polymorphism of VDR gene's promoter Fok1 allele, but it had nothing to do with the polymorphism of gene Apa1 and Taq1. The genotype ff was a candidate heredity marker of calcium calculus disease.

  20. Polymorphisms of genes encoding interleukin-4 and its receptor in Iranian patients with juvenile idiopathic arthritis.

    Science.gov (United States)

    Ziaee, Vahid; Rezaei, Arezou; Harsini, Sara; Maddah, Marzieh; Zoghi, Samaneh; Sadr, Maryam; Moradinejad, Mohammad Hassan; Rezaei, Nima

    2016-08-01

    As cytokines, including interleukin-4 (IL-4), seem to have a pivotal role in the pathogenesis of juvenile idiopathic arthritis (JIA), this study is aimed at investigating of association of polymorphisms in IL-4 and IL-4 receptor α (IL-4RA) genes with susceptibility to JIA. A case-control study was conducted on 53 patients with JIA and 139 healthy unrelated controls. Single nucleotide polymorphisms of IL-4 gene at positions -1098, -590, and -33, as well as IL-4RA gene at position +1902 were genotyped using polymerase chain reaction with sequence-specific primers method and compared between patients and healthy individuals. At the allelic level, C allele at IL-4 -33 was found to be more frequent in patients compared to control (P value TCC haplotype at the same positions was found to be higher in patients (P value <0.01). Polymorphic site of +1902 IL-4RA gene did not differ between cases and controls. Polymorphisms in promoter region of IL-4 but not IL-4RA genes confer susceptibility to JIA and may predispose individuals to adaptive immune responses. PMID:26951255

  1. Non random usage of T cell receptor alpha gene expression in atopy using anchored PCR.

    Science.gov (United States)

    Mansur, A H; Gelder, C M; Holland, D; Campell, D A; Griffin, A; Cunliffe, W; Markham, A F; Morrison, J F

    1996-01-01

    The T cell receptor (TCR) alpha beta heterodimer recognises antigenic peptide fragments presented by Class II MHC. This interaction initiates T cell activation and cytokine release with subsequent recruitment of inflammatory cells. Previous work from our group suggests a qualitative difference in variable alpha gene expression in atopy as compared to non atopic controls. In this study we examine TCR alpha repertoire using anchored PCR to provide a quantitative assessment of the V alpha and J alpha repertoire. One atopic (DRB1*0701,DRB1*15: DRB4*0101, DRB5*01: DQB1* 0303, DQB1*601/2) and one non-atopic (DRB1*0701,DRB1*03011/2: DRB4*01, DRB3*0x: DQB1* 0303, DQB1*0201/2) control were studied. Variable gene usage was markedly limited in the atopic individual. V alpha 1, 3, 8 accounted for 60% and J alpha 12, 31 30% of the gene usage. There was evidence of preferential V alpha-J alpha gene pairing and clonal expansion. We conclude that there is a marked non random TCR alpha gene distribution in atopy using both V alpha family and anchored PCR. This may be due in part to antigen driven clonal expansion. PMID:9095269

  2. Estrogen Receptor α(ERα) Target Gene LRP16 Interacts with ERα and Enhances Receptor's Transcriptional Activity

    Institute of Scientific and Technical Information of China (English)

    HAN Wei-dong; ZHAO Ya-li; WU Zhi-qing; MENG Yuan-guang; ZANG Li; MU Yi-ming

    2007-01-01

    Objective: It has been shown that LRP16 is an estrogen-induced gene through its receptor (Erα). Although there is evidence demonstrating that inhibition of LRP16 gene expression in MCF-7 human breast cancer cells partially attenuates its estrogen-responsiveness, the underlying molecular mechanism is still unclear. Here, the effect of LRP16 expression on the ER( signaling transduction was investigated. Methods: Cotransfection assays were used to measure the effect of LRP16 on ER(-mediated transcriptional activity. GST-pulldown and immunoprecipitation (CoIP) assays were employed to investigate the physical interaction of LRP16 and Erα. The mammalian two-hybrid method was used to map the functional interaction region. Results: the results of cotransfection assays demonstrated that the transcriptional activities of Erα were enhanced in a LRP16 dose-dependent manner in MCF-7 in the presence of estrogen, however, it was abolished in the absence of E2 in MCF-7 cells. The physical interaction of LRP16 and Erα proteins was confirmed by GST-pulldown in vitro and CoIP in vivo assays, which was enhanced by E2 but not dependent on its presence. Furthermore, the results of the mammalian two-hybrid assays indicated that the binding region of Erα to LRP16 located at the A/B AF-1 functional domain and E2 stimulated the binding of LRP16 to the full-length Erα molecule but not to the A/B region alone. Conclusion: These results support a role for estrogenically regulated LRP16 as an Erα coactivator, providing a positive feedback regulatory loop for Erα signal transduction. Based on this function of LRP16, we propose that Erα-positive breast cancer patients with high expression of LRP16 might benefit from targeting LRP16 therapy.

  3. Expression and functional characterization of platelet-derived growth factor receptor-like gene

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate the role of platelet-derived growth factor receptor-like gene(PDGFRL)in the anti-cancer therapy for colorectal cancers(CRC).METHODS:PDGFRL mRNA and protein levels were measured by reverse transcription-polymerase chain reaction(RT-PCR)and immunohistochemistry in CRC and colorectal normal tissues.PDGFRL prokaryotic expression vector was carried out in Escherichia coli(E.coli),and purified by immobilized metal affinity chromatography.The effect of PDGFRL protein on CRC HCT-116 cells was det...

  4. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats

    OpenAIRE

    Hong, Wei; Zhao, Huabin

    2014-01-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2R...

  5. Effect of reducing hypothalamic ghrelin receptor gene expression on energy balance

    OpenAIRE

    Shrestha, Yogendra B.; Wickwire, Kathie; Giraudo, Silvia

    2009-01-01

    Central and peripheral injections of Ghrelin potently stimulates food intake via its receptor, GHSR1a expressed in the brain. In this study, we explored the role of GHSR1a in the paraventricular nucleus of the hypothalamus (PVN) by reducing their gene expression using the RNA interference (RNAi). pSUPER plasmids inserted with sh (short hairpin)-GHSR1a were injected into the PVN to reduce its expression. The transfected rats were monitored daily for their food intake and body weight throughout...

  6. Multiple phenotypes in adult mice following inactivation of the Coxsackievirus and Adenovirus Receptor (Car gene.

    Directory of Open Access Journals (Sweden)

    Ahmad Pazirandeh

    Full Text Available To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR, a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhibited a complete atrio-ventricular block and abnormal thymopoiesis. These results demonstrate that CAR exerts important functions in the physiology of several organs in vivo.

  7. Gene expression of estrogen and oxytocin receptors in the uterus of pregnant and parturient bitches

    OpenAIRE

    G.A.L. Veiga; Milazzotto, M.P.; Nichi, M.; Lúcio, C.F.; L.C.G. Silva; D.S.R. Angrimani; Vannucchi, C.I.

    2015-01-01

    In the canine species, the precise mechanisms of pregnancy maintenance and the initiation of parturition are not completely understood. The expression of genes encoding the receptors for estrogen (ERα mRNA) and oxytocin (OTR mRNA) was studied in the endometrium and myometrium during pregnancy and parturition in dogs. Real-time PCR was performed to quantify the levels of ERα mRNA and OTR mRNA in the uterus of bitches during early (up to 20 days of gestation), mid (20 to 40 days) and late pregn...

  8. Extension of bacteriophage lambda host range: selection, cloning, and characterization of a constitutive lambda receptor gene.

    OpenAIRE

    de Vries, G E; Raymond, C K; Ludwig, R A

    1984-01-01

    A set of plasmids has been constructed that carry a constitutive lamB gene (LamBc phenotype) from Escherichia coli and that confer functional phage lambda receptors to bacteria other than E. coli. This E. coli LamBc strain has been selected to escape both maltose-inducible and glucose-repressible control. Constitutivity results from an IS-3 insertion, carrying a mobile promoter, proximal to lamB. The LamBc DNA has been cloned into both broad and narrow host-range plasmids, and the resulting p...

  9. Vitamin D-influenced gene expression via a ligand-independent, receptor-DNA complex intermediate.

    OpenAIRE

    Ross, T K; Darwish, H M; Moss, V E; DeLuca, H F

    1993-01-01

    A lingering question regarding the regulation of target gene expression by 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] has been the delineation of vitamin D receptor (VDR)-DNA binding and transactivation. This report confirms that initial VDR-DNA interaction occurs in a ligand-independent fashion. An electrophoretic mobility-shift analysis demonstrated that VDR, derived from extracts of the small intestines of vitamin D-deficient rats, is capable of binding a vitamin D response element (DRE). Add...

  10. Gene expression signature of estrogen receptor α status in breast cancer

    Directory of Open Access Journals (Sweden)

    Baggerly Keith

    2005-03-01

    Full Text Available Abstract Background Estrogens are known to regulate the proliferation of breast cancer cells and to modify their phenotypic properties. Identification of estrogen-regulated genes in human breast tumors is an essential step toward understanding the molecular mechanisms of estrogen action in cancer. To this end we generated and compared the Serial Analysis of Gene Expression (SAGE profiles of 26 human breast carcinomas based on their estrogen receptor α (ER status. Thus, producing a breast cancer SAGE database of almost 2.5 million tags, representing over 50,000 transcripts. Results We identified 520 transcripts differentially expressed between ERα-positive (+ and ERα-negative (- primary breast tumors (Fold change ≥ 2; p Estrogen Responsive Elements (EREs distributed on the promoter regions of 163 out of the 473 up-modulated genes in ERα (+ breast tumors. In brief, we observed predominantly up-regulation of cell growth related genes, DNA binding and transcription factor activity related genes based on Gene Ontology (GO biological functional annotation. GO terms over-representation analysis showed a statistically significant enrichment of various transcript families including: metal ion binding related transcripts (p = 0.011, calcium ion binding related transcripts (p = 0.033 and steroid hormone receptor activity related transcripts (p = 0.031. SAGE data associated with ERα status was compared with reported information from breast cancer DNA microarrays studies. A significant proportion of ERα associated gene expression changes was validated by this cross-platform comparison. However, our SAGE study also identified novel sets of genes as highly expressed in ERα (+ invasive breast tumors not previously reported. These observations were further validated in an independent set of human breast tumors by means of real time RT-PCR. Conclusion The integration of the breast cancer comparative transcriptome analysis based on ERα status coupled to

  11. Metabotropic glutamate receptor 2 and corticotrophin-releasing factor receptor-1 gene expression is differently regulated by BDNF in rat primary cortical neurons

    DEFF Research Database (Denmark)

    Jørgensen, Christinna V; Klein, Anders B; El-Sayed, Mona;

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and plasticity. Incorporation of matured receptor proteins is an integral part of synapse formation. However, whether BDNF increases synthesis and integration of receptors in functional synapses directly is unclear. We are...... after neuronal depolarization produced by high potassium. This study emphasizes the role of BDNF as an important regulator of receptor compositions in the synapse and provides further evidence that BDNF directly regulates important drug targets involved in cognition and mood. Synapse 67:794-800, 2013...... expression for all these receptors, as well as a number of immediate-early genes, was pharmacologically characterized in primary neurons from rat frontal cortex. BDNF increased CRF-R1 mRNA levels up to fivefold, whereas mGluR2 mRNA levels were proportionally downregulated. No effect on 5-HT2A R mRNA was seen...

  12. Fc receptor-mediated, antibody-dependent enhancement of bacteriophage lambda-mediated gene transfer in mammalian cells

    OpenAIRE

    Sapinoro, Ramil; Volcy, Ketna; Shanaka, W.W.; Rodrigo, I.; Schlesinger, Jacob J.; Dewhurst, Stephen

    2008-01-01

    Lambda phage vectors mediate gene transfer in cultured mammalian cells and in live mice, and in vivo phage-mediated gene expression is increased when mice are pre-immunized with bacteriophage lambda. We now show that, like eukaryotic viruses, bacteriophage vectors are subject to Fc receptor-mediated, antibody-dependent enhancement of infection in mammalian cells. Antibody-dependent enhancement of phage gene transfer required FcγRI, but not its associated γ chain, and was not supported by othe...

  13. Sequence analysis of mouse vomeronasal receptor gene clusters reveals common promoter motifs and a history of recent expansion

    OpenAIRE

    Lane, Robert P.; Cutforth, Tyler; Axel, Richard; Hood, Leroy; Trask, Barbara J.

    2001-01-01

    We have analyzed the organization and sequence of 73 V1R genes encoding putative pheromone receptors to identify regulatory features and characterize the evolutionary history of the V1R family. The 73 V1Rs arose from seven ancestral genes around the time of mouse–rat speciation through large local duplications, and this expansion may contribute to speciation events. Orthologous V1R genes appear to have been lost during primate evolution. Exceptional noncoding homol...

  14. Association study of the estrogen receptor gene ESR1 with post-partum depression – a pilot study

    OpenAIRE

    Pinsonneault, Julia K.; Sullivan, Danielle; Sadee, Wolfgang; Soares, Claudio N.; Hampson, Elizabeth; Steiner, Meir

    2013-01-01

    Perinatal mood disorders, such as postpartum depression (PPD) are costly for society, with potentially serious consequences for mother and child. While multiple genes appear to play a role in PPD susceptibility, the contributions of specific genetic variations remain unclear. Previously implicated as a candidate gene, the estrogen receptor alpha gene (ESR1) is a key player in mediating hormonal differences during pregnancy and the postpartum period. This study addresses genetic factors in per...

  15. Genomic organization and chromosomal localization of the human and mouse genes encoding the {alpha} receptor component for ciliary neurotrophic factor

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, D.M.; Rojas, E.; McClain, J. [Regeneron Pharmaceuticals, Inc., Tarrytown, NY (United States)] [and others

    1995-01-01

    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor {alpha} (CNTFR{alpha}). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR{alpha}. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain in encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4. 24 refs., 4 figs.

  16. Genetic polymorphisms at the leptin receptor gene in three beef cattle breeds

    Directory of Open Access Journals (Sweden)

    Sabrina E.M. Almeida

    2008-01-01

    Full Text Available The genetic diversity of a single nucleotide polymorphism (SNP at the exon 20 (T945M of the leptin receptor gene (LEPR and of three short tandem repeats (STRs BM7225, BMS694, and BMS2145 linked to LEPR was investigated in three beef cattle herds (Brangus Ibagé, Charolais, and Aberdeen Angus. A cheap and effective new method to analyze the T945M polymorphism in cattle populations was developed and the possible role of these polymorphisms in reproduction and weight gain of postpartum cows was evaluated. High levels of genetic diversity were observed with the average heterozygosity of STRs ranging from 0.71 to 0.81. No significant association was detected between LEPR markers and reproductive parameters or daily weight gain. These negative results suggest that the LEPR gene polymorphisms, at least those herein described, do not influence postpartum cows production.

  17. Multiple thyrotropin β-subunit and thyrotropin receptor-related genes arose during vertebrate evolution.

    Directory of Open Access Journals (Sweden)

    Gersende Maugars

    Full Text Available Thyroid-stimulating hormone (TSH is composed of a specific β subunit and an α subunit that is shared with the two pituitary gonadotropins. The three β subunits derive from a common ancestral gene through two genome duplications (1R and 2R that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tshβ subunit-related gene that was generated through 2R. This gene, named Tshβ2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr gene in these species suggests that both TSHs act through the same receptor. A novel Tshβ sister gene, named Tshβ3, was generated through the third genomic duplication (3R that occurred early in the teleost lineage. Tshβ3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tshβs and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tshβ and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tshβ3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated.

  18. Association Analysis of the Leptin and Ghrelin Receptor Gene Polymorphism in the Human with BMI

    Directory of Open Access Journals (Sweden)

    Zuzana Lieskovská

    2011-05-01

    Full Text Available The aim of this work was identification of Leptin and Ghrelin receptor gene polymorphism in the population. Leptin is a product of obese (ob gene expression that plays a role in energy metabolism and body weight. The human leptin gene is located in the 17 chromosome. The restriction site is located at the position 2549 bp (C→A. Ghrelin, a peptide hormone predominantly produced by the stomach, was isolated as the endogenous ligand for the growth hormone secretagogue receptor. Ghrelin is a potent stimulator of growth hormone (GH secretion and is the only circulatory hormone known to potently enhance feeding and weight gain and to regulate energy homeostasis following central and systemic administration. Therapeutic intervention with ghrelin in catabolic situations may induce a combination of enhanced food intake, increased gastric emptying and nutrient storage, coupled with an increase in GH thereby linking nutrient partitioning with growth and repair processes. The present study included 35 human samples. The average value of BMI was estimate on 24.45. The size of amplified PCR product is 242bp. Subsequently we used the specific restriction enzyme HhaI and length of fragments is 181+61 bp in the homozygote CC, 242+181+61 bp in the heterozygote AC and 242 bp in the homozygote AA. The restriction site is located at the position 171T/C. Examination of the polymorphism of the GHSR gene was accomplished used PCR-RFLP method. We used amplified the 593 bp product, which was subsequently digested with restriction enzyme LweI and length of fragmetnts is 593 bp in the homozygote TT, 593+567+26 bp in the heterozygote TC and 593+26 bp in the homozygote CC. We assume that this mutation has connection with human obesity level.

  19. Evolution of the C-Type Lectin-Like Receptor Genes of the DECTIN-1 Cluster in the NK Gene Complex

    Directory of Open Access Journals (Sweden)

    Susanne Sattler

    2012-01-01

    Full Text Available Pattern recognition receptors are crucial in initiating and shaping innate and adaptive immune responses and often belong to families of structurally and evolutionarily related proteins. The human C-type lectin-like receptors encoded in the DECTIN-1 cluster within the NK gene complex contain prominent receptors with pattern recognition function, such as DECTIN-1 and LOX-1. All members of this cluster share significant homology and are considered to have arisen from subsequent gene duplications. Recent developments in sequencing and the availability of comprehensive sequence data comprising many species showed that the receptors of the DECTIN-1 cluster are not only homologous to each other but also highly conserved between species. Even in Caenorhabditis elegans, genes displaying homology to the mammalian C-type lectin-like receptors have been detected. In this paper, we conduct a comprehensive phylogenetic survey and give an up-to-date overview of the currently available data on the evolutionary emergence of the DECTIN-1 cluster genes.

  20. Human interleukin 2 receptor β-chain gene: Chromosomal localization and identification of 5' regulatory sequences

    International Nuclear Information System (INIS)

    Interleukin 2 (IL-2) binds to and stimulates activated T cells through high-affinity IL-2 receptors (IL-2Rs). Such receptors represent a complex consisting of at least two proteins, the 55-kDa IL-2Rα chain and the 70-kDa IL-2Rβ chain. The low-affinity, IL-2Rα chain cannot by itself transduce a mitogenic signal, whereas IL-2 stimulates resting lymphocytes through the intermediate-affinity, IL-2Rβ receptor. The authors report here identification of the genomic locus for IL-2Rβ. The exons are contained on four EcoRI fragments of 1.1, 9.2, 7.2, and 13.7 kilobases. The 1.1-kilobase EcoRI fragment lies at the 5'-most end of the genomic locus and contains promoter sequences. The promoter contains no TATA box-like elements but does contain the d(GT)n class of middle repetitive elements, which may play an interesting regulatory role. The IL-2Rβ gene is localized to chromosome 22q11.2-q12, a region that is the locus for several lymphoid neoplasias

  1. Effects of deletion of the prolactin receptor on ovarian gene expression

    Directory of Open Access Journals (Sweden)

    Kelly Paul A

    2003-02-01

    Full Text Available Abstract Prolactin (PRL exerts pleiotropic physiological effects in various cells and tissues, and is mainly considered as a regulator of reproduction and cell growth. Null mutation of the PRL receptor (R gene leads to female sterility due to a complete failure of embryo implantation. Pre-implantatory egg development, implantation and decidualization in the mouse appear to be dependent on ovarian rather than uterine PRLR expression, since progesterone replacement permits the rescue of normal implantation and early pregnancy. To better understand PRL receptor deficiency, we analyzed in detail ovarian and corpora lutea development of PRLR-/- females. The present study demonstrates that the ovulation rate is not different between PRLR+/+ and PRLR-/- mice. The corpus luteum is formed but an elevated level of apoptosis and extensive inhibition of angiogenesis occur during the luteal transition in the absence of prolactin signaling. These modifications lead to the decrease of LH receptor expression and consequently to a loss of the enzymatic cascades necessary to produce adequate levels of progesterone which are required for the maintenance of pregnancy.

  2. Mutations of lysophosphatidic acid receptor-1 gene during progression of lung tumors in rats

    International Nuclear Information System (INIS)

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. In this study, mutations of lysophosphatidic acid receptor-1 (LPA1) gene were investigated to clarify the possible molecular mechanisms underlying the development of lung tumors induced by N-nitrosobis(2-hydroxypropyl)amine (BHP) in rats. Male Wistar rats, 6 weeks of age, were given 2000 ppm BHP in their drinking water for 12 weeks and then maintained without further treatment until sacrifice at 25 weeks. Genomic DNAs were extracted from paraffin-embedded tissues and exons 2-4 were examined for mutations, using polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis. No LPA1 mutations were detected in 15 hyperplasias, but 2 out of 12 adenomas (16.7%) and 7 out of 17 adenocarcinomas (41.2%). These results suggest that mutations of LPA1 gene may be involved in the acquisition of growth advantage from adenomas to adenocarcinomas in lung carcinogenesis induced in rats by BHP.

  3. Resequencing of the auxiliary GABAB receptor subunit gene KCTD12 in chronic tinnitus

    Directory of Open Access Journals (Sweden)

    Philipp G Sand

    2012-05-01

    Full Text Available Tinnitus is a common and often incapacitating hearing disorder marked by the perception of phantom sounds. Susceptibility factors remain largely unknown but GABAB receptor signalling has long been implicated in the response to treatment and, putatively, in the etiology of the disorder. We hypothesized that variation in KCTD12, the gene encoding an auxiliary subunit of GABAB receptors, could help to predict the risk of developing tinnitus. 95 Caucasian outpatients with a diagnosis of chronic tinnitus were systematically screened for mutations in the KCTD12 open reading frame and the adjacent 3' untranslated region by Sanger sequencing. Allele frequencies were determined for 14 known variants of which three (rs73237446, rs34544607 and rs41287030 were polymorphic. When allele frequencies were compared to data from a large reference population of European ancestry, rs34544607 was associated with tinnitus (p=.04. However, KCTD12 genotype did not predict tinnitus severity (p=.52 and the association with rs34544607 was weakened after screening 50 additional cases (p=.07. Pending replication in a larger cohort, KCTD12 may act as a risk modifier in chronic tinnitus. Issues that are yet to be addressed include the effects of neighbouring variants, e.g. in the KCTD12 gene regulatory region, plus interactions with variants of GABAB1 and GABAB2.

  4. The origin of the p.E180 growth hormone receptor gene mutation.

    Science.gov (United States)

    Ostrer, Harry

    2016-06-01

    Laron syndrome, an autosomal recessive condition of extreme short stature, is caused by the absence or dysfunction of the growth hormone receptor. A recurrent mutation in the GHR gene, p.E180, did not alter the encoded amino acid, but activated a cryptic splice acceptor resulting in a receptor protein with an 8-amino acid deletion in the extracellular domain. This mutation has been observed among Sephardic Jews and among individuals in Ecuador, Brazil and Chile, most notably in a large genetic isolate in Loja, Ecuador. A common origin has been postulated based on a shared genetic background of markers flanking this mutation, suggesting that the Lojanos (and others) may have Sephardic (Converso) Jewish ancestry. Analysis of the population structure of Lojanos based on genome-wide analysis demonstrated European, Sephardic Jewish and Native American ancestry in this group. X-autosomal comparison and monoallelic Y chromosomal and mitochondrial genetic analysis demonstrated gender-biased admixture between Native American women and European and Sephardic Jewish men. These findings are compatible with the co-occurrence of the Inquisition and the colonization of the Americas, including Converso Jews escaping the Inquisition in the Iberian Peninsula. Although not found among Lojanos, Converso Jews also brought founder mutations to contemporary Hispanic and Latino populations in the BRCA1 (c.68_69delAG) and BLM (c.2207_2212delATCTGAinsTAGATTC) genes. PMID:26277320

  5. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia.

    LENUS (Irish Health Repository)

    Vacic, Vladimir

    2011-03-24

    Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2-4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.

  6. Differential gene expression profiling of human epidermal growth factor receptor 2-overexpressing mammary tumor

    Institute of Scientific and Technical Information of China (English)

    Yan Wang; Haining Peng; Yingli Zhong; Daiqiang Li; Mi Tang; Xiaofeng Ding; Jian Zhang

    2008-01-01

    Human epidermal growth factor receptor 2 (HER2) is highly expressed in approximately 30% of breast cancer patients,and substantial evidence supports the relationship between HER2 overexpression and poor overall survival. However,the biological function of HER2 signaltransduction pathways is not entirely clear. To investigate gene activation within the pathways, we screened differentially expressed genes in HER2-positive mouse mammary tumor using two-directional suppression subtractive hybridization combined with reverse dot-blotting analysis. Forty genes and expressed sequence tags related to transduction, cell proliferation/growth/apoptosis and secreted/extracellular matrix proteins were differentially expressed in HER2-positive mammary tumor tissue. Among these, 19 were already reported to be differentially expressed in mammary tumor, 11 were first identified to be differentially expressed in mammary tumor in this study but were already reported in other tumors, and 10 correlated with other cancers. These genes can facilitate the understanding of the role of HER2 signaling in breast cancer.

  7. PLK1 Signaling in Breast Cancer Cells Cooperates with Estrogen Receptor-Dependent Gene Transcription

    Directory of Open Access Journals (Sweden)

    Michael Wierer

    2013-06-01

    Full Text Available Polo-like kinase 1 (PLK1 is a key regulator of cell division and is overexpressed in many types of human cancers. Compared to its well-characterized role in mitosis, little is known about PLK1 functions in interphase. Here, we report that PLK1 mediates estrogen receptor (ER-regulated gene transcription in human breast cancer cells. PLK1 interacts with ER and is recruited to ER cis-elements on chromatin. PLK1-coactivated genes included classical ER target genes such as Ps2, Wisp2, and Serpina3 and were enriched in developmental and tumor-suppressive functions. Performing large-scale phosphoproteomics of estradiol-treated MCF7 cells in the presence or absence of the specific PLK1 inhibitor BI2536, we identified several PLK1 end targets involved in transcription, including the histone H3K4 trimethylase MLL2, the function of which on ER target genes was impaired by PLK1 inhibition. Our results propose a mechanism for the tumor-suppressive role of PLK1 in mammals as an interphase transcriptional regulator.

  8. Epigenetic Regulation of the Oxytocin Receptor Gene: Implications for Behavioral Neuroscience

    Directory of Open Access Journals (Sweden)

    RobertKumsta

    2013-05-01

    Full Text Available Genetic approaches have improved our understanding of the neurobiological basis of social behavior and cognition. For instance, common polymorphisms of genes involved in oxytocin signaling have been associated with sociobehavioral phenotypes in healthy samples as well as in subjects with mental disorders. More recently, attention has been drawn to epigenetic mechanisms, which regulate genetic function and expression without changes to the underlying DNA sequence. We provide an overview of the functional importance of oxytocin receptor gene (OXTR promoter methylation and summarize studies that have investigated the role of OXTR methylation in behavioral phenotypes. There is first evidence that OXTR methylation is associated with autism, high callous-unemotional traits, and differential activation of brain regions involved in social perception. Furthermore, psychosocial stress exposure might dynamically regulate OXTR. Given evidence that epigenetic states of genes can be modified by experiences, especially those occurring in sensitive periods early in development, we conclude with a discussion on the effects of traumatic experience on the developing oxytocin system. Epigenetic modification of genes involved in oxytocin signaling might be involved in the mechanisms mediating the long-term influence of early adverse experiences on socio-behavioral outcomes.

  9. Polymorphisms in the Melanocortin-1 Receptor (Mc1R Gene in Vitiligo

    Directory of Open Access Journals (Sweden)

    Eylem Acar

    2012-03-01

    Full Text Available Objective: Vitiligo is a progressive skin pigmentation disorder, which may be acquired or hereditary, frequently seen, and may influence every age group. The melanocortin 1 receptor (MC1R gene is a major determinant of human pigmentation. In our study, polymorphic differences of the MC1R gene at the DNA level has been investigated in patients with vitiligo.Materials and Methods: In our study, polymorphic differences of the MC1R gene at the DNA level has been investigated in vitiligo 60 patients, whose families had resided in the Thrace region of Turkey for at least three generations. The 60 volunteer healthy individuals have no other systemic and dermatological disease.Results: Totally, five types of Single Nucleotide Polymorphism (SNP were found in each case and control groups: Val60Leu (G178T, Val92Met (G274A, Arg151Cys (C451T, Arg160Trp (C478T, and Arg163Gln (G488A. Comparing both groups in terms of genotype frequencies, no statistically meaningful difference was detected (p>0.05. However, assessing in terms of allele frequencies, a meaningful difference was found in the Arg163Gln (G488A allele statistically in favor of the control group (p<0.05.Conclusion: It has been found in our study population that the MC1R gene Arg163Gln (G488A allele may be a protective factor for vitiligo.

  10. Leptin receptor and ghrelin genes polymorphisms in relation to the metabolism of lipids

    Directory of Open Access Journals (Sweden)

    Anna Trakovická

    2015-10-01

    Full Text Available The aim of this work was to analyse genetic polymorphisms in genes encoding leptin receptor (LEPR and ghrelin (GHR as genetic markers of metabolic disorders in human nutrition. Genomic DNA was obtained from in total 84 human blood samples. Effect of analysed genetic markers was evaluated for three biochemical parameters: total cholesterol, HDL and LDL cholesterol. The PCR-RFLP method was used for identification of SNPs in LEPR (Gln223Arg and GHR (171T/C genes. In analysed population prevalence of heterozygous LEPRAG (47.62% and GHRCT (40.48% genotypes was observed. Frequency of LEPRA and LEPRB alleles were 0.55 and 0.45, respectively. Similar the GHRC allele had only slight predominance than GHRT allele (0.54/0.46. In population was found higher level of observed heterozygosity across loci (0.44. For both SNPs was found high effective allele number (1.98 which was also transferred to the median level of polymorphic information content (0.37. Association analysis of LEPR and GHR genotypes effect on selected biochemical parameters was performed using GLM procedure. Significant association was found only for levels of LDL cholesterol (P<0.01. Our study shows that both genes are involved in nutritional status and therefore can be considered as candidate genes of lipids metabolism disorders and obesity.

  11. The D4 receptor gene and mood disorders: An association study

    Energy Technology Data Exchange (ETDEWEB)

    Macciardi, F.; Cavalini, M.C. [Univ. of Milano (Italy); Petronis, A. [Clarke Institute of Psychiatry, Ontario (Canada)] [and others

    1994-09-01

    The problem of a gene-disease association is of major relevance in the current research of Psychiatric Disorders, mostly because of the lack of unequivocal results obtained with the linkage approach. However, some points of an association study must also be carefully considered, namely the statistical methodology and the strategy to select a gene to be tested. The gene coding for the D4 receptor (DRD4) might be theoretically relevant as a component of the genetic susceptibility for mood disorders. We now know that DRD4 has at least 2 functional polymorphisms in the coding regions of the gene, in exon 3 and exon 1, thus conferring etiologic relevance to a potentially positive association. In our work, we investigated the DRD4 genotypes of the 3rd and 1st exon for 93 patients with bipolar disorder and 57 patients with major depression, recurrent disorder. Patients have been diagnosed either by traditional DSMIII-R criteria or by clustering their lifetime psychopathological symptomatology. A random control group consisted of 151 subjects. A significant association has been found with DRD4 exon 3 genotypes, revealing an increase of genotypes 2-4 in Bipolar patients (chi-square=23.07, df=12, p=0.02). Even though a definitive confirmation of our finding requires an independent replication of the study, this result emphasizes the importance of DRD4 in mood disorders.

  12. Association analysis of class II cytokine and receptor genes in vitiligo patients.

    Science.gov (United States)

    Traks, Tanel; Karelson, Maire; Reimann, Ene; Rätsep, Ranno; Silm, Helgi; Vasar, Eero; Kõks, Sulev; Kingo, Külli

    2016-05-01

    The loss of melanocytes in vitiligo is mainly attributed to defective autoimmune mechanisms and lately autoinflammatory mediators have become more emphasized. Among these, a number of class II cytokines and their receptors have displayed altered expression patterns in vitiligo. Thus, we selected 30 SNPs from the regions of respective genes to be genotyped in Estonian case-control sample (109 and 328 individuals, respectively). For more precise analyses, patients were divided into subgroups based on vitiligo progression activity, age of onset, sex, occurrence of vitiligo among relatives, extent of depigmented areas, appearance of Köbner's phenomenon, existence of halo nevi, occurrence of spontaneous repigmentation, and amount of thyroid peroxidase antibodies. No associations appeared in whole vitiligo group. In subgroups, several allelic and haplotype associations were found. The strongest involved SNPs rs12301088 (near IL26 gene), that was associated with familial vitiligo and existence of halo nevi, and rs2257167 (IFNAR1 gene), that was associated with female vitiligo. Additionally, haplotypes consisting of rs12301088 and rs12321603 alleles (IL26-IL22 genes), that were associated with familial vitiligo and existence of halo nevi. In conclusion, several genetic associations with vitiligo subphenotypes were revealed and functional explanations to these remain to be determined in respective studies. PMID:26429320

  13. Screening of GABA(A)-receptor gene mutations in primary dystonia.

    Science.gov (United States)

    Shang, H; Lang, D; Burgunder, J-M; Kaelin-Lang, A

    2007-10-01

    Several lines of evidence suggest that GABA-ergic neurotransmission plays a role in the pathogenesis of primary dystonia in humans. In this study, we tested the hypothesis that mutations in the GABRA1, GABRB3, and GABRG2 genes encoding the alpha1, beta3, and gamma subunits of the GABA(A) receptor are involved in familial primary dystonia. All exons and exon-intron boundaries of the above genes were amplified by PCR from genomic DNA in 28 patients who had primary dystonia and a positive family history but had no mutation in any other genes known to be involved in primary dystonia. The PCR products were analyzed by single strand conformation polymorphism followed by sequencing of variant conformers compared with normal controls (n = 54). We found no mutations in these genes. We did, however, find a new polymorphism, 559 + 80G>A in intron 5 of GABRA1, and we also confirmed several that were previously reported, including 315C>T in exon 3 and 588C>T in exon 5 of GABRG2, but there were no significant differences between controls and patients in the allele and genotype frequencies of these polymorphisms. In conclusion, mutations of GABRA1, GABRB3, and GABRG2 appear not to play a major role in the development of familial primary dystonia. PMID:17880575

  14. Receptor-dependent regulation of the CYP3A4 gene

    International Nuclear Information System (INIS)

    A CYP3A4 promoter-reporter gene construct has been used to assess the ability of 16 known (in vivo) and putative (in vitro) inducers to transactivate a CYP3A4 reporter gene in HepG2 cells. With the exception of pravastatin, the remaining 15 compounds transactivated the CYP3A4 reporter gene with differing inductive abilities (Imax:EC50) over two orders of magnitude, ranging from 1.1 (phenytoin) to 222.9 (lovastatin) in a receptor-supplemented system and it is proposed that the lack of response to pravastatin is due to loss of the known hepatic uptake transporter in HepG2 cells. In addition, reporter gene assays were used to investigate two promoter mutants namely a T to C change at -191 bp in the hepatic nuclear factor 3 binding site (HNF-3, -187 to -194 bp) and an A to G change at -205 bp in the oestrogen response element (ERE, -202 to -212 bp), which conferred differential responsiveness to steroid and xenobiotic inducers

  15. Risk conferred by FokI polymorphism of vitamin D receptor (VDR gene for essential hypertension

    Directory of Open Access Journals (Sweden)

    N Swapna

    2011-01-01

    Full Text Available Background : The vitamin D receptor (VDR gene serves as a good candidate gene for susceptibility to several diseases. The gene has a critical role in regulating the renin-angiotensin system (RAS influencing the regulation of blood pressure. Hence determining the association of VDR polymorphisms with essential hypertension is expected to help in the evaluation of risk for the condition. Aim : The aim of this study was to evaluate association between VDR Fok I polymorphism and genetic susceptibility to essential hypertension. Materials and Methods : Two hundred and eighty clinically diagnosed hypertensive patients and 200 normotensive healthy controls were analyzed for Fok I (T/C [rs2228570] polymorphism by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP analysis. Genotype distribution and allele frequencies in patients and controls, and odds ratios (ORs were calculated to predict the risk for developing hypertension by the individuals of different genotypes. Results : The genotype distribution and allele frequencies of Fok I (T/C [rs2228570] VDR polymorphism differed significantly between patients and controls (χ2 of 18.0; 2 degrees of freedom; P = 0.000. FF genotype and allele F were at significantly greater risk for developing hypertension and the risk was elevated for both the sexes, cases with positive family history and habit of smoking. Conclusions : Our data suggest that VDR gene Fok I polymorphism is associated with the risk of developing essential hypertension

  16. The evolution of vertebrate somatostatin receptors and their gene regions involves extensive chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Ocampo Daza Daniel

    2012-11-01

    Full Text Available Abstract Background Somatostatin and its related neuroendocrine peptides have a wide variety of physiological functions that are mediated by five somatostatin receptors with gene names SSTR1-5 in mammals. To resolve their evolution in vertebrates we have investigated the SSTR genes and a large number of adjacent gene families by phylogeny and conserved synteny analyses in a broad range of vertebrate species. Results We find that the SSTRs form two families that belong to distinct paralogons. We observe not only chromosomal similarities reflecting the paralogy relationships between the SSTR-bearing chromosome regions, but also extensive rearrangements between these regions in teleost fish genomes, including fusions and translocations followed by reshuffling through intrachromosomal rearrangements. These events obscure the paralogy relationships but are still tractable thanks to the many genomes now available. We have identified a previously unrecognized SSTR subtype, SSTR6, previously misidentified as either SSTR1 or SSTR4. Conclusions Two ancestral SSTR-bearing chromosome regions were duplicated in the two basal vertebrate tetraploidizations (2R. One of these ancestral SSTR genes generated SSTR2, -3 and -5, the other gave rise to SSTR1, -4 and -6. Subsequently SSTR6 was lost in tetrapods and SSTR4 in teleosts. Our study shows that extensive chromosomal rearrangements have taken place between related chromosome regions in teleosts, but that these events can be resolved by investigating several distantly related species.

  17. Gene-environment interaction between the oxytocin receptor (OXTR) gene and parenting behaviour on children's theory of mind.

    Science.gov (United States)

    Wade, Mark; Hoffmann, Thomas J; Jenkins, Jennifer M

    2015-12-01

    Theory of mind (ToM) is the ability to interpret and understand human behaviour by representing the mental states of others. Like many human capacities, ToM is thought to develop through both complex biological and socialization mechanisms. However, no study has examined the joint effect of genetic and environmental influences on ToM. This study examined how variability in the oxytocin receptor gene (OXTR) and parenting behavior--two widely studied factors in ToM development-interacted to predict ToM in pre-school-aged children. Participants were 301 children who were part of an ongoing longitudinal birth cohort study. ToM was assessed at age 4.5 using a previously validated scale. Parenting was assessed through observations of mothers' cognitively sensitive behaviours. Using a family-based association design, it was suggestive that a particular variant (rs11131149) interacted with maternal cognitive sensitivity on children's ToM (P = 0.019). More copies of the major allele were associated with higher ToM as a function of increasing cognitive sensitivity. A sizeable 26% of the variability in ToM was accounted for by this interaction. This study provides the first empirical evidence of gene-environment interactions on ToM, supporting the notion that genetic factors may be modulated by potent environmental influences early in development. PMID:25977357

  18. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi.

    Science.gov (United States)

    Reverchon, S; Expert, D; Robert-Baudouy, J; Nasser, W

    1997-06-01

    The main virulence factors of the phytopathogenic bacterium Erwinia chrysanthemi are pectinases that cleave pectin, a major constituent of the plant cell wall. Although physiological studies suggested that pectinase production in Erwinia species is subjected to catabolite repression, the direct implication of the cyclic AMP receptor protein (CRP) in this regulation has never been demonstrated. To investigate the role of CRP in pectin catabolism, we cloned the E. chrysanthemi crp gene by complementation of an Escherichia coli crp mutation and then constructed E. chrysanthemi crp mutants by reverse genetics. The carbohydrate fermentation phenotype of the E. chrysanthemi crp mutants is similar to that of an E. coli crp mutant. Furthermore, these mutants are unable to grow on pectin or polygalacturonate as the sole carbon source. Analysis of the nucleotide sequence of the E. chrysanthemi crp gene revealed the presence of a 630-bp open reading frame (ORF) that codes for a protein highly similar to the CRP of E. coli. Using a crp::uidA transcriptional fusion, we demonstrated that the E. chrysanthemi CRP represses its own expression, probably via a mechanism similar to that described for the E. coli crp gene. Moreover, in the E. chrysanthemi crp mutants, expression of pectinase genes (pemA, pelB, pelC, pelD, and pelE) and of genes of the intracellular part of the pectin degradation pathway (ogl, kduI, and kdgT), which are important for inducer formation and transport, is dramatically reduced in induced conditions. In contrast, expression of pelA, which encodes a pectate lyase important for E. chrysanthemi pathogenicity, seems to be negatively regulated by CRP. The E. chrysanthemi crp mutants have greatly decreased maceration capacity in potato tubers, chicory leaves, and celery petioles as well as highly diminished virulence on saintpaulia plants. These findings demonstrate that CRP plays a crucial role in expression of the pectinolysis genes and in the pathogenicity of E

  19. EXPRESSION OF T CELL RECEPTORGENE FAMILIES IN INTRATHYROIDAL T CELLS OF CHINESE PATIENTS WITH GRAVES' DISEASE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. Patients with Graves' disease (GD) have marked lymphocytic infiltration in their thyroid glands. We examined the gene for the variable regions of the α-chain of the Chinese T-cell receptor( Vα gene) in intrathyroidal Tcells to determine the role of T cells in the pathogenesis of GD and offer potential for the development of immunothera-peutic remedies for GD. Methods. We used the reverse transcription and polymerase chain reaction(RT-PCR) to amplify complementary DNA(cDNA) for the 18 known families of the Vα gene in intrathyroidal T cells from 5 patients with Graves' disease.The findings were compared with the results of peripheral blood T cells in the same patients as well as those in normalsubjects. Results. We found that marked restriction in the expression of T cell receptorgenes by T cells from the thyroidtissue of Chinese patients with GD(P < 0.001). An average of only 4.6 ± 1.52 of the 18 Vα genes were expressed insuch samples, as compared with 10.4 ± 2.30Vα genes expressed in peripheral blood T cells from the same patients.The pattem of expressed Vα genes differed from patient to patient with no clear predominance. Condusions. Expression of intrathyroidal T cell receptorgenes in GD is highly restricted suggesting the prima-cy of T cells in causing the disorders.

  20. Correlations between unexplained infertility and single nucleotide polymorphism in the genes of leukemia inhibitory factor receptor and gp130

    OpenAIRE

    Malki, Marwa

    2010-01-01

    About 30 % of all infertile couples suffer from infertility of an unexplained cause. Leukemia inhibitory factor (LIF) is a glycoprotein produced by the endometrium and is an important cytokine in the implantation process. LIF exerts its biological functions through heterodimerization of its two receptors: LIF receptor (LIFR) and gp130. Point mutations in the LIF gene have been associated with female infertility. The aim of this study was to investigate whether single nucleotide polymorphisms ...

  1. Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain

    OpenAIRE

    Puglia, Meghan H.; Lillard, Travis S.; Morris, James P.; Connelly, Jessica J.

    2015-01-01

    Although understanding the precise nature of oxytocin’s influence on complex human social behavior has proven difficult, increasing evidence points to an anxiolytic effect. We use an imaging epigenetic approach to further parse oxytocin’s effects by examining a biological marker within the oxytocin system, DNA methylation of the oxytocin receptor gene (OXTR). Importantly, this epigenetic modification directly impacts the expression of oxytocin’s receptor, which is critical for the actions of ...

  2. Analyses of Sweet Receptor Gene (Tas1r2) and Preference for Sweet Stimuli in Species of Carnivora

    OpenAIRE

    Li, Xia; Glaser, Dieter; Li, WeiHua; Johnson, Warren E.; O'Brien, Stephen J; Gary K Beauchamp; Brand, Joseph G

    2009-01-01

    The extent to which taste receptor specificity correlates with, or even predicts, diet choice is not known. We recently reported that the insensitivity to sweeteners shown by species of Felidae can be explained by their lacking of a functional Tas1r2 gene. To broaden our understanding of the relationship between the structure of the sweet receptors and preference for sugars and artificial sweeteners, we measured responses to 12 sweeteners in 6 species of Carnivora and sequenced the coding reg...

  3. GABA Receptors Genes Polymorphisms and Alcohol Dependence: No Evidence of an Association in an Italian Male Population

    OpenAIRE

    Terranova, Claudio; Tucci, Marianna; Di Pietra, Laura; Ferrara, Santo Davide

    2014-01-01

    Objective The genes encoding for gamma-aminobutyric acid (GABA) A and B receptors may be considered as candidates for alcoholism; genetic alterations at this level may produce structural and functional diversity and thus play a role in the response to alcohol addiction treatment. To investigate these aspects further, we conducted a preliminary genetic association study on a population of Italian male alcohol addicts, focusing on GABA A and B receptors. Methods A total of 186 alcohol-dependent...

  4. Definition of the cattle killer cell Ig-like receptor gene family: Comparison with aurochs and human counterparts

    OpenAIRE

    Sanderson, Nicholas D; Norman, Paul J.; Guethlein, Lisbeth A; Ellis, Shirley A; Williams, Christina; Breen, Matthew; Park, Steven D E; Magee, David A; Babrzadeh, Farbod; Warry, Andrew; Watson, Mick; Bradley, Daniel G.; MacHugh, David E; Parham, Peter; Hammond, John A

    2014-01-01

    Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig-like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene fa...

  5. Possible association of β2- and β3-adrenergic receptor gene polymorphisms with susceptibility to breast cancer

    OpenAIRE

    Xin-en HUANG; Hamajima, Nobuyuki; Saito, Toshiko; Matsuo, Keitaro; Mizutani, Mitsuhiro; Iwata, Hiroji; Iwase, Takuji; Miura, Shigeto; Mizuno, Tsutomu; Tokudome, Shinkan; Tajima, Kazuo

    2001-01-01

    Background The involvement of β2-adrenergic receptor (ADRB2) and β3-adrenergic receptor (ADRB3) in both adipocyte lipolysis and thermogenic activity suggests that polymorphisms in the encoding genes might be linked with interindividual variation in obesity, an important risk factor for postmenopausal breast cancer. In order to examine the hypothesis that genetic variations in ADRB2 and ADRB3 represent interindividual susceptibility factors for obesity and breast cancer, we conducted a hospita...

  6. Enhancement of p53 gene transfer efficiency in hepatic tumor mediated by transferrin receptor through trans-arterial delivery.

    Science.gov (United States)

    Lu, Qin; Teng, Gao-Jun; Zhang, Yue; Niu, Huan-Zhang; Zhu, Guang-Yu; An, Yan-Li; Yu, Hui; Li, Guo-Zhao; Qiu, Ding-Hong; Wu, Chuan-Ging

    2008-02-01

    Transferrin-DNA complex mediated by transferrin receptor in combination with interventional trans-arterial injection into a target organ may be a duel-target-oriented delivery means to achieve an efficient gene therapy. In this study, transferrin receptor expression in normal human hepatocyte and two hepatocellular-carcinoma cells (Huh7/SK-Hep1) was determined. p53-LipofectAMINE with different amounts of transferrin was transfected into the cells and the gene transfection efficiency was evaluated. After VX2 rabbit hepatocarcinoma model was established, the transferrin-p53-LipofectAMINE complex was delivered into the hepatic artery via interventional techniques to analyze the therapeutic p53 gene transfer efficiency in vivo by Western blot, immunohistochemical/immunofluorescence staining analysis and survival time. The results were transferrin receptor expression in Huh7 and SK-Hep1 cells was higher than in normal hepatocyte. Transfection efficiency of p53 was increased in vitro in both Huh7 and SK-Hep1 cells with increasing transferrin in a dose-dependent manner. As compared to intravenous administration, interventional injection of p53-gene complex into hepatic tumor mediated by transferrin-receptor, could enhance the gene transfer efficiency in vivo as evaluated by Western blot, immunohistochemical/immunofluorenscence staining analyses and improved animal survival (H = 12.567, p = 0.0019). These findings show the transferrin-transferrin receptor system combined with interventional techniques enhanced p53-gene transfer to hepatic tumor and the duel-target-oriented gene delivery may be an effective approach for gene therapy. PMID:18347429

  7. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4)

    DEFF Research Database (Denmark)

    Kim, Jong-So; Bailey, Michael J; Weller, Joan L;

    2009-01-01

    Dopamine plays diverse and important roles in vertebrate biology, impacting behavior and physiology through actions mediated by specific G-protein-coupled receptors, one of which is the dopamine receptor D4 (Drd4). Here we present studies on the >100-fold daily rhythm in rat pineal Drd4 expression....... Our studies indicate that Drd4 is the dominant dopamine receptor gene expressed in the pineal gland. The gene is expressed in pinealocytes at levels which are approximately 100-fold greater than in other tissues, except the retina, in which transcript levels are similar. Pineal Drd4 expression is...... circadian in nature and under photoneural control. Whereas most rhythmically expressed genes in the pineal are controlled by adrenergic/cAMP signaling, Drd4 expression also requires thyroid hormone. This advance raises the questions of whether Drd4 expression is regulated by this mechanism in other systems...

  8. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Karl, M.; Lamberts, S.W.J.; Detera-Wadleigh, S.D.; Encio, I.J.; Stratakis, C.A.; Hurley, D.M.; Accili, D.; Chrousos, G.P. (National Institutes of Health, Bethesda, MD (United States) Erasmus Univ. of Rotterdam (Netherlands))

    1993-03-01

    The clinical syndrome of generalized, compensated glucocorticoid resistance is characterized by increased cortisol secretion without clinical evidence of hyper- or hypocortisolism, and manifestations of androgen and/or mineralocorticoid excess. This condition results from partial failure of the glucocorticoid receptor (GR) to modulate transcription of its target genes. The authors studied the molecular mechanisms of this syndrome in a Dutch kindred, whose affected members had hypercortisolism and approximately half of normal GRs, and whose proband was a young woman with manifestations of hyperandrogenism. Using the polymerase chain reaction to amplify and sequence each of the nine exons of the GR gene [alpha], along with their 5[prime]- and 3[prime]-flanking regions, the authors identified a 4-base deletion at the 3[prime]-boundary of exon 6 in one GR allele ([Delta][sub 4]), which removed a donor splice site in all three affected members studied. In contrast, the sequence of exon 6 in the two unaffected siblings was normal. A single nucleotide substitution causing an amino acid substitution in the amino terminal domain of the GR (asparagine to serine, codon 363) was also discovered in exon 2 of the other allele (G[sub 1220]) in the proband, in one of her affected brothers and in her unaffected sister. This deletion in the glucocorticoid receptor gene was associated with the expression of only one allele and a decrease of GR protein by 50% in affected members of this glucocorticoid resistant family. The mutation identified in exon 2 did not segregate with the disease and appears to be of no functional significance. The presence of the null allele was apparently compensated for by increased cortisol production at the expense of concurrent hyperandrogenism. 40 refs., 3 figs.

  9. The frequency of follicle stimulating hormone receptor gene polymorphisms in Iranian infertile men with azoospermia

    Directory of Open Access Journals (Sweden)

    Behrouz Gharesi-Fard

    2015-11-01

    Full Text Available Background: Azoospermia is the medical condition of a man not having any measurable level of sperm in his semen. Follicle stimulating hormone (FSH is a member of the glycoprotein hormone family that plays an important role in human reproduction because of its essential role in normal spermatogenesis. Various Single Nucleotide Polymorphisms (SNPs have been reported within FSH receptor (FSHR gene that may affect the receptor function. Objective: The present study aimed to investigate the correlation between two FSHR SNPs at positions A919G, A2039G, and susceptibility to azoospermia in a group of Iranian azoospermic men. The association between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Materials and Methods: This case control study was performed on 212 men with azoospermia (126 non-obstructive and 86 obstructive and 200 healthy Iranian men. Two FSHR gene SNPs were genotyped using PCR-RFLP method. The relationship between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Results: Statistical analysis indicated that at A919G position, AA genotype and A allele were more frequent in obstructive azoospermia cases compared to non-obstructive or normal men (p=0.001. Regarding A2039G polymorphisms, no significant difference was observed between both azoospermia groups and the controls. The mean level of serum FSH was higher in the non-obstructive men compared to the obstructive patients (23.8 versus 13.8, respectively, p= 0.04. Conclusion: The results of the present study indicated that the genetic polymorphisms in the FSHR gene might increase the susceptibility to azoospermia in Iranian men.

  10. The frequency of follicle stimulating hormone receptor gene polymorphisms in Iranian infertile men with azoospermia

    Science.gov (United States)

    Gharesi-Fard, Behrouz; Ghasemi, Zahra; Shakeri, Saeed; Behdin, Shabnam; Aghaei, Fatemeh; Malek-Hosseini, Zahra

    2015-01-01

    Background: Azoospermia is the medical condition of a man not having any measurable level of sperm in his semen. Follicle stimulating hormone (FSH) is a member of the glycoprotein hormone family that plays an important role in human reproduction because of its essential role in normal spermatogenesis. Various Single Nucleotide Polymorphisms (SNPs) have been reported within FSH receptor (FSHR) gene that may affect the receptor function. Objective: The present study aimed to investigate the correlation between two FSHR SNPs at positions A919G, A2039G, and susceptibility to azoospermia in a group of Iranian azoospermic men. The association between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Materials and Methods: This case control study was performed on 212 men with azoospermia (126 non-obstructive and 86 obstructive) and 200 healthy Iranian men. Two FSHR gene SNPs were genotyped using PCR-RFLP method. The relationship between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Results: Statistical analysis indicated that at A919G position, AA genotype and A allele were more frequent in obstructive azoospermia cases compared to non-obstructive or normal men (p=0.001). Regarding A2039G polymorphisms, no significant difference was observed between both azoospermia groups and the controls. The mean level of serum FSH was higher in the non-obstructive men compared to the obstructive patients (23.8 versus 13.8, respectively, p= 0.04). Conclusion: The results of the present study indicated that the genetic polymorphisms in the FSHR gene might increase the susceptibility to azoospermia in Iranian men. PMID:26730241

  11. Characterization of a honey bee Toll related receptor gene Am18w and its potential involvement in antimicrobial immune defense

    OpenAIRE

    Aronstein, Katherine; Saldivar, Eduardo

    2005-01-01

    International audience Toll receptors are involved in intracellular signal transduction and initiation of insect antimicrobial immune responses. Here we report the isolation and characterization of a novel gene (Am18w) from honey bee Apis mellifera, which encodes for the Toll-like receptor and shares a striking 51.4% similarity with Bombyx mori 18-wheeler, 46.6% with Drosophila Toll-7 receptor and 42.5% with Drosophila 18-wheeler. The sequence analysis of the deduced 18W protein revealed a...

  12. Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species

    OpenAIRE

    Pfister, Patrick; Rodriguez, Ivan

    2005-01-01

    Sensory neurons expressing members of the seven-transmembrane V1r receptor superfamily allow mice to perceive pheromones. These receptors, which exhibit no sequence homology to any known protein except a weak similarity to taste receptors, have only been found in mammals. In the mouse, the V1r repertoire contains >150 members, which are expressed by neurons of the vomeronasal organ, a structure present exclusively in some tetrapod species. Here, we report the existence of a single V1r gene in...

  13. Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy

    DEFF Research Database (Denmark)

    Christoffersen, Tue E.H.; Aplin, Mark; Strom, Claes C.;

    2006-01-01

    Both atrial (ANP) and brain (BNP) natriuretic peptide affect development of cardiac hypertrophy and fibrosis via binding to natriuretic peptide receptor (NPR)-A in the heart. A putative clearance receptor, NPR-C, is believed to regulate cardiac levels of ANP and BNP. The renin-angiotensin system...... also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system in...

  14. Intronic deletions of tva receptor gene decrease the susceptibility to infection by avian sarcoma and leukosis virus subgroup A.

    Science.gov (United States)

    Chen, Weiguo; Liu, Yang; Li, Hongxing; Chang, Shuang; Shu, Dingming; Zhang, Huanmin; Chen, Feng; Xie, Qingmei

    2015-01-01

    The group of avian sarcoma and leukosis virus (ASLV) in chickens contains six highly related subgroups, A to E and J. Four genetic loci, tva, tvb, tvc and tvj, encode for corresponding receptors that determine the susceptibility to the ASLV subgroups. The prevalence of ASLV in hosts may have imposed strong selection pressure toward resistance to ASLV infection, and the resistant alleles in all four receptor genes have been identified. In this study, two new alleles of the tva receptor gene, tva(r5) and tva(r6), with similar intronic deletions were identified in Chinese commercial broilers. These natural mutations delete the deduced branch point signal within the first intron, disrupting mRNA splicing of the tva receptor gene and leading to the retention of intron 1 and introduction of premature TGA stop codons in both the longer and shorter tva isoforms. As a result, decreased susceptibility to subgroup A ASLV in vitro and in vivo was observed in the subsequent analysis. In addition, we identified two groups of heterozygous allele pairs which exhibited quantitative differences in host susceptibility to ASLV-A. This study demonstrated that defective splicing of the tva receptor gene can confer genetic resistance to ASLV subgroup A in the host. PMID:25873518

  15. Development of a homogeneous calcium mobilization assay for high throughput screening of mas-related gene receptor agonists

    Institute of Scientific and Technical Information of China (English)

    Rui ZHANG; Pang-ke YAN; Cai-hong ZHOU; Jia-yu LIAO; Ming-wei WANG

    2007-01-01

    Aim: To develop homogeneous calcium mobilization assay for high-throughput screening (HTS) of mas-related gene (Mrg) receptor agonists. Methods: CHO-K1 cells stably expressing the full-length MrgD receptor and a calcium-sensitive dye were used to develop an HTS assay based on intracellular calcium influx. This method was applied to large-scale screening of a library containing 8000 synthetic compounds and natural product extracts, cAMP measurements were camed out to verify the bioactivities of the hits found by the calcium mobilization assay. Similar approaches were also employed in the identification of the MrgA1 recep-tor agonists following HTS of 16 000 samples. Results: EC50 values of the positive control compounds (β-alanine for MrgD receptor and dynorphin A for MrgA1 receptor) determined by the calcium mobilization assay were consistent with those reported in the literature, and the Z' factors were 0.65 and 0.50 for MrgD and MrgA1 receptor assay, respectively. About 31 compounds for the MrgD receptor and 48 compounds for the MrgA1 receptor showing ≥20% of the maximal agonist activities found in the controls were initially identified as hits. Secondary screen- ing confirmed that 2 compounds for each receptor possessed specific agonist activities. Intracellular cAMP level measurements indicated that the 2 confirmed hits displayed the functionality of the MrgD receptor agonists. Conclusion: A series of validation studies demonstrated that the homogeneous calcium mobili-zation assay developed was highly efficient, amenable to automation and a robust tool to screen potential MrgD and MrgA1 receptor agonists. Its application may be expanded to other G-protein coupled receptors that mobilize calcium influx upon activation.

  16. The nuclear receptor gene nhr-25 plays multiple roles in the Caenorhabditis elegans heterochronic gene network to control the larva-to-adult transition

    Czech Academy of Sciences Publication Activity Database

    Hada, K.; Asahina, Masako; Hasegawa, H.; Kanaho, Y.; Slack, F. J.; Niwa, R.

    2010-01-01

    Roč. 344, č. 2 (2010), s. 1100-1109. ISSN 0012-1606 R&D Projects: GA ČR(CZ) GA204/07/0948; GA ČR(CZ) GD204/09/H058 Institutional research plan: CEZ:AV0Z60220518 Keywords : apl -1 * Caenorhabditis elegans * heterochronic gene * heterochronic gene * let-7 * nuclear receptor * nhr-25 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.094, year: 2010

  17. The Oxytocin Receptor Gene (OXTR) in Relation to State Levels of Loneliness in Adolescence: Evidence for Micro-Level Gene-Environment Interactions

    OpenAIRE

    2013-01-01

    Previous research has shown that the rs53576 variant of the oxytocin receptor gene (OXTR) is associated with trait levels of loneliness, but results are inconsistent. The aim of the present study is to examine micro-level effects of the OXTR rs53576 variant on state levels of loneliness in early adolescents. In addition, gene-environment interactions are examined between this OXTR variant and positive and negative perceptions of company. Data were collected in 278 adolescents (58% girls), by ...

  18. Molecular Identification and Expressive Characterization of an Olfactory Co-Receptor Gene in the Asian Honeybee, Apis cerana cerana

    OpenAIRE

    Zhao, Huiting; Gao, Pengfei; Zhang, Chunxiang; Ma, Weihua; Jiang, Yusuo

    2013-01-01

    Olfaction recognition process is extraordinarily complex in insects, and the olfactory receptors play an important function in the process. In this paper, a highly conserved olfactory co-receptor gene, AcerOr2 (ortholog to the Drosophila melanogaster Or83b), cloned from the antennae of the Asian honeybee, Apis cerana cerana Fabricius (Hymenoptera: Apidae), using reverse transcriptase PCR and rapid amplification of cDNA ends. The full-length sequence of the gene was 1763 bp long, and the cDNA ...

  19. Direct and Indirect Suppression of Interleukin-6 Gene Expression in Murine Macrophages by Nuclear Orphan Receptor REV-ERBα

    OpenAIRE

    Shogo Sato; Takuya Sakurai; Junetsu Ogasawara; Ken Shirato; Yoshinaga Ishibashi; Shuji Oh-ishi; Kazuhiko Imaizumi; Shukoh Haga; Yoshiaki Hitomi; Tetsuya Izawa; Yoshinobu Ohira; Hideki Ohno; Takako Kizaki

    2014-01-01

    It is now evident that many nuclear hormone receptors can modulate target gene expression. REV-ERBα, one of the nuclear hormone receptors with the capacity to alter clock function, is critically involved in lipid metabolism, adipogenesis, and the inflammatory response. Recent studies suggest that REV-ERBα plays a key role in the mediation between clockwork and inflammation. The purpose of the current study was to investigate the role of REV-ERBα in the regulation of interleukin-6 (il6) gene e...

  20. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene.

    OpenAIRE

    Ho, I C; Vorhees, P; Marin, N; Oakley, B K; Tsai, S F; Orkin, S H; Leiden, J. M.

    1991-01-01

    In addition to its role in the recognition of foreign antigens, the T cell receptor (TCR) alpha gene serves as a model system for studies of developmentally-regulated, lineage-specific gene expression in T cells. TCR alpha gene expression is restricted to cells of the TCR alpha/beta+ lineage, and is controlled by a T cell-specific transcriptional enhancer located 4.5 kb 3' to the C alpha gene segment. The TCR alpha enhancer contains four nuclear protein binding sites called T alpha 1-T alpha ...