WorldWideScience

Sample records for calcium strongly potentiates

  1. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential

    OpenAIRE

    Gerald W Zamponi; Striessnig, Joerg; Koschak, Alexandra; Dolphin, Annette C.

    2015-01-01

    Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type ...

  2. Calcium channel as a potential anticancer agent.

    Science.gov (United States)

    Kriazhev, L

    2009-11-01

    Anticancer treatment in modern clinical practices includes chemotherapy and radiation therapy with or without surgical interventions. Efficiency of both methods varies greatly depending on cancer types and stages. Besides, chemo- and radiotherapy are toxic and damaging that causes serious side effects. This fact prompts the search for alternative methods of antitumor therapy. It is well known that prolonged or high increase of intracellular calcium concentration inevitably leads to the cell death via apoptosis or necrosis. However, stimulation of cell calcium level by chemical agents is hardly achievable because cells have very sophisticated machinery for maintaining intracellular calcium in physiological ranges. This obstacle can be overridden, nevertheless. It was found that calcium channels in so called calcium cells in land snails are directly regulated by extracellular calcium concentration. The higher the concentration the higher the calcium intake is through the channels. Bearing in mind that extracellular/intracellular calcium concentration ratio in human beings is 10,000-12,000 fold the insertion of the channel into cancer cells would lead to fast and uncontrollable by the cells calcium intake and cell death. Proteins composing the channel may be extracted from plasma membrane of calcium cells and sequenced by mass-spectrometry or N-terminal sequencing. Either proteins or corresponding genes could be used for targeted delivery into cancer cells.

  3. Functioning of catfish electroreceptors: Influence of calcium and sodium concentration on the skin potential

    OpenAIRE

    Schouten, V.J.A.; Bretschneider, F.

    1980-01-01

    1. 1. The skin potential of catfish was measured in order to test the hypothesis that it controls electroreceptor sensitivity. 2. 2. The skin potential depends on the “milieu extérieur” in the same way as reported lor goldfish (Fig. 2). 3. 3. The variation of the skin potential is very large compared with the normal stimulus range of electroreceptors. 4. 4. Calcium strongly influences the skin potential, but the latter “adapts” to calcium concentrations of 0.3-3.0 mM (Fig. 3). 5. 5. Ion-depen...

  4. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential.

    Science.gov (United States)

    Zamponi, Gerald W; Striessnig, Joerg; Koschak, Alexandra; Dolphin, Annette C

    2015-10-01

    Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep

  5. Protein intake and calcium absorption – Potential role of the calcium sensor receptor

    Science.gov (United States)

    Dietary protein induces calcium excretion but the source of this calcium is unclear. Evidence from short-term studies indicates that protein promotes bone resorption, but many epidemiologic studies do not corroborate this. Evidence is also mixed on weather protein promotes calcium absorption. Stud...

  6. Lepton wave packets produced by strong short-range potentials

    International Nuclear Information System (INIS)

    Further theoretical studies are reported of the effect of strong short-range potentials on leptons and the lepton vacuum state. In previous work, bound state and vacuum polarisations were computed for static potential strengths V approximately Vsub(c), where Vsub(c) is the critical value at which electron (or muon) levels are transferred from upper to lower continuum. The computations are here extended to time dependent effects - in particular, the redistribution of probability and level occupancy between upper and lower continuum when the potential is switched from V = O to modulus V >= modulus Vsub(c) or vice versa. Some examples of relativistic wave packets created by such potential changes are also given, and their physical interpretation is discussed. (author)

  7. ELECTROSTATIC POTENTIAL OF STRONGLY NONLINEAR COMPOSITES: HOMOTOPY CONTINUATION APPROACH

    Institute of Scientific and Technical Information of China (English)

    Wei En-bo; Gu Guo-qing

    2000-01-01

    The homotopy continuation method is used to solve the electrostaticboundary-value problems of strongly nonlinear composite media, whichobey a current-field relation of J= E+ |E|2E. With the modeexpansion, the approximate analytical solutions of electric potential inhost and inclusion regions are obtained by solving a set of nonlinearordinary different equations, which are derived from the originalequations with homotopy method. As an example in dimension two, we applythe method to deal with a nonlinear cylindrical inclusion embedded in ahost. Comparing the approximate analytical solution of the potentialobtained by homotopy method with that of numerical method, we canobverse that the homotopy method is valid for solving boundary-valueproblems of weakly and strongly nonlinear media.

  8. Potential control flotation of galena in strong alkaline media

    Institute of Scientific and Technical Information of China (English)

    顾帼华; 胡岳华; 邱冠周; 王晖; 王淀佐

    2002-01-01

    The electrochemical oxidation of galena in collectorless and collector flotation systems, particularly in strong alkaline media, was studied. The results show that, with pH value higher than 12.5 and potentials below 0.17 V, the oxidation products of galena are elemental sulfur and HPbO-2. Elemental sulfur was present on the mineral surface in excess of oxidized lead species due to dissolution of HPbO-2, which is beneficial to the flotation of galena. Under the same conditions, sphalerite and pyrite were depressed as a result of significant surface oxidation. Diethyldithiocarbamate (DDTC) was found to be the most suitable collector for galena flotation in strongly alkaline media. The very potential produced hydrophobic PbD2-the surface reaction product of DDTC with galena, is 0 to 0.2 V. Meantime DDTC can depress the surface over-oxidation of galena. Investigations also indicate that, in the range of -0.9 V to 0.6 V, hydrophobic PbD2 can be firmly adsorbed on galena.

  9. Potential genesis and implications of calcium nitrate in Antarctic snow

    Science.gov (United States)

    Mahalinganathan, Kanthanathan; Thamban, Meloth

    2016-04-01

    Among the large variety of particulates in the atmosphere, calcic mineral dust particles have highly reactive surfaces that undergo heterogeneous reactions with atmospheric acids contiguously. The association between nssCa2+, an important proxy indicator of mineral dust, and NO3-, a dominant anion in the Antarctic snowpack, was analysed. A total of 41 snow cores ( ˜ 1 m each) that represent snow deposited during 2008-2009 were studied along coastal-inland transects from two different regions in East Antarctica - the Princess Elizabeth Land (PEL) and central Dronning Maud Land (cDML). Correlation statistics showed a strong association (at 99 % significance level) between NO3- and nssCa2+ at the near-coastal sections of both PEL (r = 0.74) and cDML (r = 0.82) transects. Similarly, a strong association between these ions was also observed in snow deposits at the inland sections of PEL (r = 0.73) and cDML (r = 0.84). Such systematic associations between nssCa2+ and NO3- are attributed to the interaction between calcic mineral dust and nitric acid in the atmosphere, leading to the formation of calcium nitrate (Ca(NO3)2) aerosol. Principal component analysis revealed common transport and depositional processes for nssCa2+ and NO3- both in PEL and cDML. Forward- and back-trajectory analyses using HYSPLIT model v. 4 revealed that southern South America (SSA) was an important dust-emitting source to the study region, aided by the westerlies. Particle size distribution showed that over 90 % of the dust was in the range dust particles reached the Antarctic region via long-range transport from the SSA region. We propose that the association between nssCa2+ and NO3- occurs during the long-range transport due to the formation of Ca(NO3)2 rather than to local neutralisation processes. However, the influence of local dust sources from the nunataks in cDML and the contribution of high sea salt in coastal PEL evidently mask such association in the mountainous and coastal regions

  10. Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool

    Directory of Open Access Journals (Sweden)

    Siegel Robert S

    2008-02-01

    Full Text Available Abstract Background A common limitation in guard cell signaling research is that it is difficult to obtain consistent high expression of transgenes of interest in Arabidopsis guard cells using known guard cell promoters or the constitutive 35S cauliflower mosaic virus promoter. An additional drawback of the 35S promoter is that ectopically expressing a gene throughout the organism could cause pleiotropic effects. To improve available methods for targeted gene expression in guard cells, we isolated strong guard cell promoter candidates based on new guard cell-specific microarray analyses of 23,000 genes that are made available together with this report. Results A promoter, pGC1(At1g22690, drove strong and relatively specific reporter gene expression in guard cells including GUS (beta-glucuronidase and yellow cameleon YC3.60 (GFP-based calcium FRET reporter. Reporter gene expression was weaker in immature guard cells. The expression of YC3.60 was sufficiently strong to image intracellular Ca2+ dynamics in guard cells of intact plants and resolved spontaneous calcium transients in guard cells. The GC1 promoter also mediated strong reporter expression in clustered stomata in the stomatal development mutant too-many-mouths (tmm. Furthermore, the same promoter::reporter constructs also drove guard cell specific reporter expression in tobacco, illustrating the potential of this promoter as a method for high level expression in guard cells. A serial deletion of the promoter defined a guard cell expression promoter region. In addition, anti-sense repression using pGC1 was powerful for reducing specific GFP gene expression in guard cells while expression in leaf epidermal cells was not repressed, demonstrating strong cell-type preferential gene repression. Conclusion The pGC1 promoter described here drives strong reporter expression in guard cells of Arabidopsis and tobacco plants. It provides a potent research tool for targeted guard cell expression or

  11. Exploring the Potential of Transient Receptor Potential: Troubleshooting Troublesome Calcium Thoroughfares in Biomedicine

    Directory of Open Access Journals (Sweden)

    Ammad Ahmad Farooqi

    2010-12-01

    Full Text Available Transient Receptor Potential-Canonical (TRPC channels are the border guards residing in the supra-molecular assembly of plasma membrane. TRPCs represent a family of channels that have dual functions of store-operated and second messenger-operated channels in a diversity of cell types. Any disruption in the spatio-temporal organization drastically influences the calcium homeostasis. This review summarizes current interpretations on the infrastructure and characteristic divalent ions regulation in molecular anomalies. A specific targeting of these channels will enable us to get a step closer to personalized medicines.

  12. Facilitation of plateau potentials in turtle motoneurones by a pathway dependent on calcium and calmodulin

    DEFF Research Database (Denmark)

    Perrier, J F; Mejia-Gervacio, S; Hounsgaard, J

    2000-01-01

    1. The involvement of intracellular calcium and calmodulin in the modulation of plateau potentials in motoneurones was investigated using intracellular recordings from a spinal cord slice preparation. 2. Chelation of intracellular calcium with BAPTA-AM or inactivation of calmodulin with W-7 or tr...

  13. Differential Dendritic Integration of Synaptic Potentials and Calcium in Cerebellar Interneurons.

    Science.gov (United States)

    Tran-Van-Minh, Alexandra; Abrahamsson, Therése; Cathala, Laurence; DiGregorio, David A

    2016-08-17

    Dendritic voltage integration determines the transformation of synaptic inputs into output firing, while synaptic calcium integration drives plasticity mechanisms thought to underlie memory storage. Dendritic calcium integration has been shown to follow the same synaptic input-output relationship as dendritic voltage, but whether similar operations apply to neurons exhibiting sublinear voltage integration is unknown. We examined the properties and cellular mechanisms of these dendritic operations in cerebellar molecular layer interneurons using dendritic voltage and calcium imaging, in combination with synaptic stimulation or glutamate uncaging. We show that, while synaptic potentials summate sublinearly, concomitant dendritic calcium signals summate either linearly or supralinearly depending on the number of synapses activated. The supralinear dendritic calcium triggers a branch-specific, short-term suppression of neurotransmitter release that alters the pattern of synaptic activation. Thus, differential voltage and calcium integration permits dynamic regulation of neuronal input-output transformations without altering intrinsic nonlinear integration mechanisms.

  14. Differential Dendritic Integration of Synaptic Potentials and Calcium in Cerebellar Interneurons.

    Science.gov (United States)

    Tran-Van-Minh, Alexandra; Abrahamsson, Therése; Cathala, Laurence; DiGregorio, David A

    2016-08-17

    Dendritic voltage integration determines the transformation of synaptic inputs into output firing, while synaptic calcium integration drives plasticity mechanisms thought to underlie memory storage. Dendritic calcium integration has been shown to follow the same synaptic input-output relationship as dendritic voltage, but whether similar operations apply to neurons exhibiting sublinear voltage integration is unknown. We examined the properties and cellular mechanisms of these dendritic operations in cerebellar molecular layer interneurons using dendritic voltage and calcium imaging, in combination with synaptic stimulation or glutamate uncaging. We show that, while synaptic potentials summate sublinearly, concomitant dendritic calcium signals summate either linearly or supralinearly depending on the number of synapses activated. The supralinear dendritic calcium triggers a branch-specific, short-term suppression of neurotransmitter release that alters the pattern of synaptic activation. Thus, differential voltage and calcium integration permits dynamic regulation of neuronal input-output transformations without altering intrinsic nonlinear integration mechanisms. PMID:27537486

  15. Study of belite calcium sulfo-aluminate cement potential for zinc conditioning: From hydration to durability

    International Nuclear Information System (INIS)

    Calcium silicate cements are widely used for low- and intermediate-level radioactive waste conditioning. However, wastes produced by nuclear activities are very diverse and some of their components may chemically react with cement phases. For instance, ashes resulting from the incineration of technological wastes including neoprene and polyvinylchloride may contain substantial amounts of soluble zinc chloride. This compound is known to strongly delay or inhibit Portland cement setting. One approach to limit adverse cement-waste interactions is to select a binder showing a better compatibility with the waste while keeping cement matrix advantages (low cost, simple process, hydration with water provided by the waste...). This work thus investigates the potential of calcium sulfo-aluminate cement for zinc Zn(II) immobilization. Four aspects were considered: hydration (kinetics and products formed), properties of hydrated binders, mechanisms of zinc retention and durability of the cement pastes (based on leaching experiments and modelling). The influence of three main parameters was assessed: the gypsum content of the cement, the concentration of ZnCl2 and the thermal evolution at early age. It follows that materials based on a calcium sulfo-aluminate cement containing 20% gypsum are interesting candidates for zinc Zn(II) stabilization/solidification: there is no delay in hydration, mineralogy of the hydrated phases is slightly dependent on thermal history, mechanical strength is high, dimensional changes are limited and zinc Zn(II) is well immobilized, even if the cement paste is leached by pure water during a long period (90 d). (author)

  16. Strong eld ionization of naphthalene: angular shifts and molecular potential

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Maurer, Jochen; Christensen, Lauge;

    We analyze the photoelectron momentum distributions from strong eld ionization of xed-in-space naphthalene molecules by circularly polarized laser pulses. By direct comparison between experiment and theory, we show that the angular shifts in the photoelectron momentum distributions are very...

  17. <strong>Potential for reduction of methane emissions from dairy cowsstrong>

    DEFF Research Database (Denmark)

    Johannes, Maike; Hellwing, Anne Louise Frydendahl; Lund, Peter;

    2010-01-01

    Methane is a gas cows naturally produce in the rumen. However, it is also a potential greenhouse gas. Therefore, there is a certain interest from an environmental point of view to reduce methane emissions from dairy cows. Estimates from earlier studies indicate that there is a potential to reduce......, while fibre and sugar enhance methane emissions. Fat can be regarded as the most promising feed additive at the moment. At AU, respiration chambers have been installed to enable methane measurements from dairy cows combined with digestibility trials, and at present studies are being conducted concerning...

  18. Strong field ionization and gauge dependence of nonlocal potentials

    CERN Document Server

    Rensink, T C

    2016-01-01

    Nonlocal potential models have been used in place of the Coulomb potential in the Schrodinger equation as an efficient means of exploring high field laser-atom interaction in previous works. Al- though these models have found use in modeling phenomena including photo-ionization and ejected electron momentum spectra, they are known to break electromagnetic gauge invariance. This paper examines if there is a preferred gauge for the linear field response and photoionization characteristics of nonlocal atomic binding potentials in the length and velocity gauges. It is found that the length gauge is preferable for a wide range of parameters.

  19. Quantitative prediction of strong motion for a potential earthquake fault

    Directory of Open Access Journals (Sweden)

    Shamita Das

    2010-02-01

    Full Text Available This paper describes a new method for calculating strong motion records for a given seismic region on the basis of the laws of physics using information on the tectonics and physical properties of the earthquake fault. Our method is based on a earthquake model, called a «barrier model», which is characterized by five source parameters: fault length, width, maximum slip, rupture velocity, and barrier interval. The first three parameters may be constrained from plate tectonics, and the fourth parameter is roughly a constant. The most important parameter controlling the earthquake strong motion is the last parameter, «barrier interval». There are three methods to estimate the barrier interval for a given seismic region: 1 surface measurement of slip across fault breaks, 2 model fitting with observed near and far-field seismograms, and 3 scaling law data for small earthquakes in the region. The barrier intervals were estimated for a dozen earthquakes and four seismic regions by the above three methods. Our preliminary results for California suggest that the barrier interval may be determined if the maximum slip is given. The relation between the barrier interval and maximum slip varies from one seismic region to another. For example, the interval appears to be unusually long for Kilauea, Hawaii, which may explain why only scattered evidence of strong ground shaking was observed in the epicentral area of the Island of Hawaii earthquake of November 29, 1975. The stress drop associated with an individual fault segment estimated from the barrier interval and maximum slip lies between 100 and 1000 bars. These values are about one order of magnitude greater than those estimated earlier by the use of crack models without barriers. Thus, the barrier model can resolve, at least partially, the well known discrepancy between the stress-drops measured in the laboratory and those estimated for earthquakes.

  20. Interaction grand potential between calcium-silicate-hydrate nanoparticles at the molecular level.

    Science.gov (United States)

    Bonnaud, Patrick A; Labbez, Christophe; Miura, Ryuji; Suzuki, Ai; Miyamoto, Naoto; Hatakeyama, Nozomu; Miyamoto, Akira; Van Vliet, Krystyn J

    2016-02-21

    Calcium-silicate-hydrate (or C-S-H), an inosilicate, is the major binding phase in cement pastes and concretes and a porous hydrated material made up of a percolated and dense network of crystalline nanoparticles of a mean apparent spherical diameter of ∼5 nm that are each stacks of multiple C-S-H layers. Interaction forces between these nanoparticles are at the origin of C-S-H chemical, physical, and mechanical properties at the meso- and macroscales. These particle interactions and the resulting properties may be affected significantly by nanoparticle density and environmental conditions such as the temperature, relative humidity, or concentration of chemical species in the bulk solution. In this study, we combined grand canonical Monte Carlo simulations and an extension of the mean force integration method to derive the pair potentials. This approach enables realistic simulation of the physical environment surrounding the C-S-H particles. We thus constructed the pair potentials for C-S-H nanoparticles of defined chemical stoichiometry at 10% relative humidity (RH), varying the relative crystallographic orientations at a constant particle density of ρpart ∼ 2.21 mmol L(-1). We found that cohesion between nanoparticles is affected strongly by both the aspect ratio and the crystallographic misorientation of interacting particles. This method and the findings underscore the importance of accounting for relative dimensions and orientation among C-S-H nanoparticles in descriptions of physical and simulated multiparticle aggregates or mesoscale systems. PMID:26866999

  1. Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: preparation and characterization.

    Science.gov (United States)

    Tanase, Constantin E; Popa, Marcel I; Verestiuc, Liliana

    2012-04-01

    A novel biomimetic technique for obtaining chitosan-calcium phosphates (Cs-CP) scaffolds are presented: calcium phosphates are precipitated from its precursors, CaCl(2) and NaH(2) PO(4) on the Cs matrix, under physiological conditions (human body temperature and body fluid pH; 37°C and pH = 7.2, respectively). Materials composition and structure have been confirmed by various techniques: elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). FTIR and SEM data have shown the arrangement of the calcium phosphates-hydroxyapatite (CP-Hap) onto Cs matrix. In this case the polymer is acting as glue, bonding the calcium phosphates crystals. Behavior in biological simulated fluids (phosphate buffer solution-PBS and PBS-albumin) revealed an important contribution of the chelation between -NH3(+) and Ca(2+) on the scaffold interaction with aqueous mediums; increased quantities of chitosan in composites permit the interaction with human albumin and improve the retention of fluid. The composites are slightly degraded by the lysozyme which facilitates an in vivo degradation control of bone substitutes. Modulus of elasticity is strongly dependent of the ratio chitosan/calcium phosphates and recommends the obtained biomimetic composites as promising materials for a prospective bone application. PMID:22121073

  2. Electrophysiological localization of distinct calcium potentials at selective somatodendritic sites in the substantia nigra

    DEFF Research Database (Denmark)

    Hounsgaard, J; Nedergaard, S; Greenfield, S A

    1992-01-01

    in the rostral substantia nigra, the dendrites are shown to be the origin of classic low-threshold and high-threshold type calcium potentials: indeed the high-threshold conductance appears to be exclusively dendritic. By contrast, in a second, more caudally located cell type, which discharges rhythmically...

  3. The Electrochemical Reduction of Chromium Sesquioxide in Molten Calcium Chloride under Cathodic Potential Control

    Science.gov (United States)

    Schwandt, Carsten; Fray, Derek J.

    2007-11-01

    Electrochemical polarization and reduction experiments are reported which were performed with a three-terminal cell and a molten salt electrolyte consisting of calcium chloride with additions of calcium oxide. Employing a metal cathode, a graphite anode and a pseudo-reference electrode also made from graphite, polarization measurements were carried out with the aim to validate the performance of the pseudo-reference electrode and to assess the stability of the electrolyte. Using a chromium sesquioxide cathode in conjunction with a graphite anode and a graphite pseudo-reference electrode, electrochemical reduction experiments were conducted under potentiostatic control. The key results are: a graphite pseudo-reference electrode has been shown to be appropriate in the present type of molten salt electrochemical experiments that take place on a time scale of many hours; the conversion of chromium oxide into chromium metal has been accomplished under cathodic potential control and in the absence of calcium metal deposition; a significant amount of calcium oxide in the calcium chloride has been found necessary to preclude anodic chlorine formation throughout the entire experiment; a considerable overpotential has been identified at the anode.

  4. Non-existence of strong regular reflections in self-similar potential flow

    OpenAIRE

    Elling, Volker

    2011-01-01

    We consider shock reflection which has a well-known local non-uniqueness: the reflected shock can be either of two choices, called weak and strong. We consider cases where existence of a global solution with weak reflected shock has been proven, for compressible potential flow. If there was a global strong-shock solution as well, then potential flow would be ill-posed. However, we prove non-existence of strong-shock analogues in a natural class of candidates.

  5. Assessing potential diagenetic alteration of primary iodine-to-calcium ratios in carbonate rocks

    Science.gov (United States)

    Hardisty, D. S.; Lu, Z.; Swart, P. K.; Planavsky, N.; Gill, B. C.; Loyd, S. J.; Lyons, T. W.

    2015-12-01

    We have evaluated iodine-to-calcium (I/Ca) ratios from a series of carbonate samples with well-constrained histories of diagenetic alteration to assess the likelihood of overprints on primary water column-derived signals. Because only the oxidized iodine species, iodate, is incorporated during carbonate precipitation, I/Ca ratios have strong potential as proxies for both marine redox and carbon cycling. This utility lies with the combination of iodate's redox sensitivity as well as the close association between iodine and marine organic matter. However, despite the possibility of large pore water iodine enrichments relative to overlying seawater, carbonate alteration under reducing diagenetic conditions, and iodate-to-iodide reduction, no study has assessed the prospect of diagenetic alteration of primary I/Ca ratios. Here, we evaluated aragonite-to-calcite transformations and dolomitization within the Key Largo Limestone of South Florida and the Clino and Unda drill cores of the Bahamas Bank. Also, early burial diagenesis was studied through analysis of I/Ca ratios in short cores from a variety of shallow settings within the Exuma Bay, Bahamas. Further, we evaluated authigenic carbonates through analysis of iodine in concretions constrained to have formed during varying stages of evolving pore fluid chemistry. In all cases, I/Ca ratios show the potential for diagenetic iodine loss relative to water-column derived values, consistent with observations of quantitative reduction of dissolved iodate to iodide in pore waters before or synchronous with carbonate alteration. In no case, however, did we observe an increase in I/Ca during diagenetic transformation. Our results suggest both that primary I/Ca values and trends can be preserved but that maximum I/Ca ratios should be considered a minimum estimate of seawater iodate. We recommend that ancient carbonates with distinct I/Ca trends not indicative of diagenetic iodine loss reflect preservation of or very early

  6. Erosive potential of calcium-modified acidic candies in irradiated dry mouth patients

    DEFF Research Database (Denmark)

    Jensdottir, Thorbjörg; Buchwald, Christian; Nauntofte, Birgitte;

    2010-01-01

    candies, while their whole saliva was collected into a closed system. The erosive potential of both candies was evaluated from saliva degree of saturation with respect to hydroxyapatite and by dissolution of hydroxyapatite (HAp) directly in candy-stimulated saliva. The results were compared to normative......PURPOSE: Patients who have received irradiation therapy on the head and neck area are known to suffer from reduced saliva flow and may therefore use acidic candies to relieve symptoms of dry mouth. However, such acidic candies have erosive potential even among healthy individuals. Therefore......, the aim of the present study was to determine if calcium-modified acidic candies have reduced erosive potential in irradiated cancer patients. MATERIALS AND METHODS: Nineteen cancer patients (26 to 70 years) ipsilaterally irradiated on the head and neck area sucked control and calcium-modified acidic...

  7. A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation

    Directory of Open Access Journals (Sweden)

    Maciejewski Oliver

    2009-06-01

    Full Text Available Abstract The aim of the present study was to analyze the osteogenic potential of a biphasic calcium composite material (BCC with a negative surface charge for maxillary sinus floor augmentation. In a 61 year old patient, the BCC material was used in a bilateral sinus floor augmentation procedure. Six months postoperative, a bone sample was taken from the augmented regions before two titanium implants were inserted at each side. We analyzed bone neoformation by histology, bone density by computed tomography, and measured the activity of voltage-activated calcium currents of osteoblasts and surface charge effects. Control orthopantomograms were carried out five months after implant insertion. The BCC was biocompatible and replaced by new mineralized bone after being resorbed completely. The material demonstrated a negative surface charge (negative Zeta potential which was found to be favorable for bone regeneration and osseointegration of dental implants.

  8. Potential Pharmacologic Treatments for Cystinuria and for Calcium Stones Associated with Hyperuricosuria

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, David S. (NYUSM)

    2012-03-14

    Two new potential pharmacologic therapies for recurrent stone disease are described. The role of hyperuricosuria in promoting calcium stones is controversial with only some but not all epidemiologic studies demonstrating associations between increasing urinary uric acid excretion and calcium stone disease. The relationship is supported by the ability of uric acid to 'salt out' (or reduce the solubility of) calcium oxalate in vitro. A randomized, controlled trial of allopurinol in patients with hyperuricosuria and normocalciuria was also effective in preventing recurrent stones. Febuxostat, a nonpurine inhibitor of xanthine oxidase (also known as xanthine dehydrogenase or xanthine oxidoreductase) may have advantages over allopurinol and is being tested in a similar protocol, with the eventual goal of determining whether urate-lowering therapy prevents recurrent calcium stones. Treatments for cystinuria have advanced little in the past 30 years. Atomic force microscopy has been used recently to demonstrate that effective inhibition of cystine crystal growth is accomplished at low concentrations of L-cystine methyl ester and L-cystine dimethyl ester, structural analogs of cystine that provide steric inhibition of crystal growth. In vitro, L-cystine dimethyl ester had a significant inhibitory effect on crystal growth. The drug's safety and effectiveness will be tested in an Slc3a1 knockout mouse that serves as an animal model of cystinuria.

  9. Proteomic analysis of imatinib-resistant CML-T1 cells reveals calcium homeostasis as a potential therapeutic target

    Science.gov (United States)

    Toman, O.; Kabickova, T.; Vit, O.; Fiser, R.; Polakova, K. Machova; Zach, J.; Linhartova, J.; Vyoral, D.; Petrak, J.

    2016-01-01

    Chronic myeloid leukemia (CML) therapy has markedly improved patient prognosis after introduction of imatinib mesylate for clinical use. However, a subset of patients develops resistance to imatinib and other tyrosine kinase inhibitors (TKIs), mainly due to point mutations in the region encoding the kinase domain of the fused BCR-ABL oncogene. To identify potential therapeutic targets in imatinib-resistant CML cells, we derived imatinib-resistant CML-T1 human cell line clone (CML-T1/IR) by prolonged exposure to imatinib in growth media. Mutational analysis revealed that the Y235H mutation in BCR-ABL is probably the main cause of CML-T1/IR resistance to imatinib. To identify alternative therapeutic targets for selective elimination of imatinib-resistant cells, we compared the proteome profiles of CML-T1 and CML-T1/IR cells using 2-DE-MS. We identified eight differentially expressed proteins, with strongly upregulated Na+/H+ exchanger regulatory factor 1 (NHERF1) in the resistant cells, suggesting that this protein may influence cytosolic pH, Ca2+ concentration or signaling pathways such as Wnt in CML-T1/IR cells. We tested several compounds including drugs in clinical use that interfere with the aforementioned processes and tested their relative toxicity to CML-T1 and CML-T1/IR cells. Calcium channel blockers, calcium signaling antagonists and modulators of calcium homeostasis, namely thapsigargin, ionomycin, verapamil, carboxyamidotriazole and immunosuppressive drugs cyclosporine A and tacrolimus (FK-506) were selectively toxic to CML-T1/IR cells. The putative cellular targets of these compounds in CML-T1/IR cells are postulated in this study. We propose that Ca2+ homeostasis can be a potential therapeutic target in CML cells resistant to TKIs. We demonstrate that a proteomic approach may be used to characterize a TKI-resistant population of CML cells enabling future individualized treatment options for patients. PMID:27430982

  10. Phase transition of strongly interacting matter with a chemical potential dependent Polyakov loop potential

    Science.gov (United States)

    Shao, Guo-yun; Tang, Zhan-duo; Di Toro, Massimo; Colonna, Maria; Gao, Xue-yan; Gao, Ning

    2016-07-01

    We construct a hadron-quark two-phase model based on the Walecka-quantum hadrodynamics and the improved Polyakov-Nambu-Jona-Lasinio (PNJL) model with an explicit chemical potential dependence of Polyakov loop potential (μ PNJL model). With respect to the original PNJL model, the confined-deconfined phase transition is largely affected at low temperature and large chemical potential. Using the two-phase model, we investigate the equilibrium transition between hadronic and quark matter at finite chemical potentials and temperatures. The numerical results show that the transition boundaries from nuclear to quark matter move towards smaller chemical potential (lower density) when the μ -dependent Polyakov loop potential is taken. In particular, for charge asymmetric matter, we compute the local asymmetry of u , d quarks in the hadron-quark coexisting phase, and analyze the isospin-relevant observables possibly measurable in heavy-ion collision (HIC) experiments. In general new HIC data on the location and properties of the mixed phase would bring relevant information on the expected chemical potential dependence of the Polyakov loop contribution.

  11. The effective potential and resummation procedure to multidimensional complex cubic potentials for weak and strong-coupling

    OpenAIRE

    Yahiaoui, S. -A.; Cherroud, O.; Bentaiba*, M.

    2007-01-01

    The method for the recursive calculation of the effective potential is applied successfully in case of weak coupling limit (g tend to zero) to a multidimensional complex cubic potential. In strong-coupling limit (g tend to infinity), the result is resumed using the variational perturbation theory (VPT). It is found that the convergence of VPT-results approaches those expected.

  12. Phase transition of strongly interacting matter with a chemical potential dependent Polyakov loop potential

    CERN Document Server

    Shao, Guo-yun; Di Toro, Massimo; Colonna, Maria; Gao, Xue-yan; Gao, Ning

    2016-01-01

    We construct a hadron-quark two-phase model based on the Walecka-quantum hadrodynamics and the improved Polyakov-Nambu--Jona-Lasinio model with an explicit chemical potential dependence of Polyakov-loop potential ($\\mu$PNJL model). With respect to the original PNJL model, the confined-deconfined phase transition is largely affected at low temperature and large chemical potential. Using the two-phase model, we investigate the equilibrium transition between hadronic and quark matter at finite chemical potentials and temperatures. The numerical results show that the transition boundaries from nuclear to quark matter move towards smaller chemical potential (lower density) when the $\\mu$-dependent Polyakov loop potential is taken. In particular, for charge asymmetric matter, we compute the local asymmetry of $u, d$ quarks in the hadron-quark coexisting phase, and analyse the isospin-relevant observables possibly measurable in heavy-ion collision (HIC) experiments. In general new HIC data on the location and proper...

  13. Development of strong and bioactive calcium phosphate cement as a light-cure organic-inorganic hybrid.

    Science.gov (United States)

    Barounian, M; Hesaraki, S; Kazemzadeh, A

    2012-07-01

    In this research, light cured calcium phosphate cements (LCCPCs) were developed by mixing a powder phase (P) consisting of tetracalcium phosphate and dicalcium phosphate and a photo-curable resin phase (L), mixture of hydroxyethylmethacrylate (HEMA)/poly acrylic-maleic acid at various P/L ratios of 2.0, 2.4 and 2.8 g/mL. Mechanical strength, phase composition, chemical groups and microstructure of the cured cements were evaluated at pre-set times, i.e. before and after soaking in simulated body fluid (SBF). The proliferation of Rat-derived osteoblastic cells onto the LCCPCs as well as cytotoxicity of cement extracts were determined by cell counting and 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyl-2H-tetrazolium bromide assay after different culture times. It was estimated from Fourier transforming infrared spectra of cured cements that the setting process is ruled by polymerization of HEMA monomers as well as formation of calcium poly-carboxylate salts. Microstructure of the cured cements consisted of calcium phosphate particles surrounded by polymerized resin phase. Formation of nano-sized needlelike calcium phosphate phase on surfaces of cements with P/L ratios of 2.4 and 2.8 g/mL was confirmed by scanning electron microscope images and X-ray diffractometry (XRD) of the cured specimen soaked in SBF for 21 days. Also, XRD patterns revealed that the formed calcium phosphate layer was apatite phase in a poor crystalline form. Biodegradation of the cements was confirmed by weight loss, change in molecular weight of polymer and morphology of the samples after different soaking periods. The maximum compressive strength of LCCPCs governed by resin polymerization and calcium polycarboxylate salts formation was about 80 MPa for cement with P/L ratio of 2.8 g/mL, after incubation for 24 h. The strength of all cements decreased by decreasing P/L ratio as well as increasing soaking time. The preliminary cell studies revealed that LCCPCs could support proliferation of

  14. Approximate Potentials with Applications to Strongly Nonlinear Oscillators with Slowly Varying Parameters

    Directory of Open Access Journals (Sweden)

    Jianping Cai

    2003-01-01

    Full Text Available A method of approximate potential is presented for the study of certain kinds of strongly nonlinear oscillators. This method is to express the potential for an oscillatory system by a polynomial of degree four such that the leading approximation may be derived in terms of elliptic functions. The advantage of present method is that it is valid for relatively large oscillations. As an application, the elapsed time of periodic motion of a strongly nonlinear oscillator with slowly varying parameters is studied in detail. Comparisons are made with other methods to assess the accuracy of the present method.

  15. Potassium conductances mediate bidirectional state-dependent modulation of action potential evoked dendritic calcium signals in dentate gyrus granule cells

    Directory of Open Access Journals (Sweden)

    János Brunner

    2014-03-01

    Full Text Available Backpropagating action potentials (bAPs and local calcium signals that they trigger are fundamental for dendritic functions. Here we addressed the question what extent the changes of local dendritic membrane properties can contribute to the shaping of the coupling between dendritic action potentials and the local calcium responses. Using a combination of in vitro electrophysiological and confocal imaging techniques we found that activation of dendritic GIRK channels via mGlu2 or GABAB receptors enhanced the bAP¬-triggered calcium signals in the dendrites of dentate gyrus granule cells (GCs. The enhancement of calcium signals was significant only in those dendritic regions, where these receptors are predominantly expressed. Similarly to GIRK channel activation, somatic hyperpolarization by DC current injection (from -64 mV to -77 mV, significantly increased bAP-associated calcium signals in the proximal dendrites. The hyperpolarization was associated with a decrease in the input resistance due to the rectification of the membrane potential of GCs. The effect of hyperpolarization on the calcium signals was maintained when T-type calcium currents were blocked but it decreased when GIRK channels were inhibited. Simultaneous dual somato-dendritic recordings from GCs showed that somatic hyperpolarization accelerated the repolarization phase of dendritic bAP in the proximal region whereas the rising phase and peak amplitude was not affected. We hypothesize that the larger driving force for calcium ions during the faster repolarization can contribute to the increasing in calcium signals. Employment of previously recorded dendritic bAP waveforms from hyperpolarized membrane potential as voltage command evoked larger calcium currents in nucleated patches compared to bAP waveform from the same recording at depolarized membrane potential. Furthermore, addition of native, high-voltage activated, inactivating potassium conductance by somatic dynamic clamp

  16. Deconfinement transitions of large N QCD with chemical potential at weak and strong coupling

    NARCIS (Netherlands)

    Hollowood, Timothy J.; Myers, Joyce C.

    2012-01-01

    We calculate the deconfinement line of transitions for large N-c QCD at finite temperature and chemical potential in two different regimes: weak coupling in the continuum, and, strong coupling on the lattice, working in the limit where N-f is of order N-c. In the first regime we extend previous weak

  17. Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol.

    Science.gov (United States)

    Huang, Ming-Hsien; Shen, Yu-Fang; Hsu, Tuan-Ti; Huang, Tsui-Hsien; Shie, Ming-You

    2016-08-01

    Hinokitiol is a natural material and it has antibacterial and anti-inflammatory effects. The purpose of this study was to evaluate the material characterization, cell viability, antibacterial and anti-inflammatory abilities of the hinokitiol-modified calcium silicate (CS) cement as a root end filling material. The setting times, diametral tensile strength (DTS) values and XRD patterns of CS cements with 0-10mM hinokitiol were examined. Then, the antibacterial effect and the expression levels of cyclooxygenase 2 (COX-2) and interleukin-1 (IL-1) of the hinokitiol-modified CS cements were evaluated. Furthermore, the cytocompatibility, the expression levels of the markers of odontoblastic differentiation, mineralized nodule formation and calcium deposition of human dental pulp cells (hDPCs) cultured on hinokitiol-modified CS cements were determined. The hinokitiol-modified CS cements had better antibacterial and anti-inflammatory abilities and cytocompatibility than non-modified CS cements. Otherwise, the hinokitiol-modified CS cements had suitable setting times and better odontoblastic potential of hDPCs. Previous report pointed out that the root-end filling materials may induce inflammatory cytokines reaction. In our study, hinokitiol-modified CS cements not only inhibited the expression level of inflammatory cytokines, but also had better cytocompatibility, antimicrobial properties and active ability of odontoblastic differentiation of hDPCs. Therefore, the hinokitiol-modified CS cement may be a potential root end filling material for clinic. PMID:27157721

  18. Proteomic analysis of imatinib-resistant CML-T1 cells reveals calcium homeostasis as a potential therapeutic target.

    Science.gov (United States)

    Toman, O; Kabickova, T; Vit, O; Fiser, R; Polakova, K Machova; Zach, J; Linhartova, J; Vyoral, D; Petrak, J

    2016-09-01

    Chronic myeloid leukemia (CML) therapy has markedly improved patient prognosis after introduction of imatinib mesylate for clinical use. However, a subset of patients develops resistance to imatinib and other tyrosine kinase inhibitors (TKIs), mainly due to point mutations in the region encoding the kinase domain of the fused BCR-ABL oncogene. To identify potential therapeutic targets in imatinib‑resistant CML cells, we derived imatinib-resistant CML-T1 human cell line clone (CML-T1/IR) by prolonged exposure to imatinib in growth media. Mutational analysis revealed that the Y235H mutation in BCR-ABL is probably the main cause of CML-T1/IR resistance to imatinib. To identify alternative therapeutic targets for selective elimination of imatinib-resistant cells, we compared the proteome profiles of CML-T1 and CML-T1/IR cells using 2-DE-MS. We identified eight differentially expressed proteins, with strongly upregulated Na+/H+ exchanger regulatory factor 1 (NHERF1) in the resistant cells, suggesting that this protein may influence cytosolic pH, Ca2+ concentration or signaling pathways such as Wnt in CML-T1/IR cells. We tested several compounds including drugs in clinical use that interfere with the aforementioned processes and tested their relative toxicity to CML-T1 and CML-T1/IR cells. Calcium channel blockers, calcium signaling antagonists and modulators of calcium homeostasis, namely thapsigargin, ionomycin, verapamil, carboxyamidotriazole and immunosuppressive drugs cyclosporine A and tacrolimus (FK-506) were selectively toxic to CML-T1/IR cells. The putative cellular targets of these compounds in CML-T1/IR cells are postulated in this study. We propose that Ca2+ homeostasis can be a potential therapeutic target in CML cells resistant to TKIs. We demonstrate that a proteomic approach may be used to characterize a TKI-resistant population of CML cells enabling future individualized treatment options for patients. PMID:27430982

  19. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    Energy Technology Data Exchange (ETDEWEB)

    Pardun, Karoline [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Treccani, Laura, E-mail: treccani@uni-bremen.de [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Volkmann, Eike [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Streckbein, Philipp [University Hospital, Justus-Liebig-University Giessen, Department of Cranio-Maxillo-Facial Surgery, Klinikstrasse 33, 35385 Giessen (Germany); Heiss, Christian [University Hospital of Giessen-Marburg, Department of Trauma Surgery, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany, (Germany); Laboratory of Experimental Surgery, Kerkraderstrasse 9, 35392 Giessen (Germany); Destri, Giovanni Li; Marletta, Giovanni [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany)

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic.

  20. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    International Nuclear Information System (INIS)

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic

  1. Potential of PIXE for the elemental analysis of calcium hydroxide used in dentistry

    International Nuclear Information System (INIS)

    Calcium hydroxide is used in dentistry and generally shows a clinically acceptable biocompatibility. However various commercial assortments show differences in their clinical performances, suggesting that certain aspects of their action are not completely understood and pointing to the necessity of new investigation methods. We report a preliminary study on two types of calcium hydroxide products carried out by thick target PIXE with 3.0 MeV protons, aiming to assess the potential of this method for the analysis of such biomaterials used in endodontic dentistry. (Semi)quantitative analysis was performed by use of reference materials, and relative concentrations of elements with respect to Ca were determined with an accuracy of about 30%; tentative absolute concentrations were also estimated by using Ca as a reference element. In both formulations, a number of trace elements (Mn, Fe, Zn and Sr, and possibly Cu and Pb - probably impurities from the raw materials) were evidenced. These trace elements together with the Ba/Ca ratio are reliable fingerprints for the identification of the materials, and evidenced a different origin for the Ca(OH)2 used in the two specimens. Possible applications of PIXE in dental research may bring relevant compositional insight, and further studies of such materials are suggested. (authors)

  2. <strong>The Potentials for the Use of Single- versus Dual-Purpose Officers in Firms: strong>

    DEFF Research Database (Denmark)

    Theotokas, Ioannis; Wagtmann, Maria Anne

    2010-01-01

    In the article, we will focus on economic issues concerning the favourability of employing dual pur­pose officers, given that national dual-purpose educational programs exist; we will thus delimit us from discussing potential advantages and disadvantages of firm-specific educational investments...... in maritime schools or universities. In our treatment of economic issues, we will focus on insights from the resource-based view of the firm, labour economics, and transaction cost economics, and then make some general statements about the potential economic advantages and disadvantages to a shipowner...

  3. Analysis of Isentropic Potential Vorticity for a Strong Cold Wave During 2004/2005 Winter

    Institute of Scientific and Technical Information of China (English)

    DING Yihui; MA Xiaoqing

    2008-01-01

    Using the NCAR/NCEP daily reanalysis data from 1 December 2004 to 28 February 2005, the isentropic potential vorticity (IPV) analysis of a strong cold wave from 22 December 2004 to 1 January 2005 was made. It is found that the strong cold air of the cold wave originated from the lower stratosphere and upper troposphere of the high latitude in the Eurasian continent and the Arctic area. Before the outbreak of the cold wave, the strong cold air of high PV propagated down to the south of Lake Baikal, and was cut off by a low PV air of low latitude origin, forming a dipole-type circulation pattern with the low PV center (blocking high) in the northern Eurasian continent and the high PV one (low vortex) in the southern part. Along with decaying of the low PV center, the high PV center (strong cold air) moved towards the southeast along the northern flank of the Tibetan Plateau. When it arrived in East China, the air column of high PV rapidly stretched downward, leading to increase in its cyclonic vorticity, which made the East Asian major trough to deepen rapidly, and finally induced the outbreak of the cold wave. Further analysis indicates that in the southward and downward propagation process of the high PV center, the air flow west and north of the high PV center on isentropic surface subsided along the isentropic surface, resulting in rapid development of Siberian high, finally leading to the southward outbreak of the strong cold wave.

  4. Strong motion simulation for mega-earthquakes in northern Chile from several potential rupture scenarios

    Science.gov (United States)

    Otarola, C., Sr.; Ruiz, S.

    2015-12-01

    Large earthquakes happened recently in Northern Chile: Tocopilla 2007 (Mw 7.7) and Iquique 2014 (Mw 8.1). Both events were well recorded by strong motion networks, provided valuable information to be used for forward predictions of ground motions records. In traditional finite-fault stochastic method one generic horizontal component of the synthetic accelerograms are obtained considering only incident vertical rays of S waves. The observed strong motion records show important differences among horizontal and vertical components. Then in order to generate 3 components of strong motion we improve this method to simulate the arrive to free surface of the P, SV and SH waves. We considered the incident and azimuth angles of direct seismic rays propagating for a layered velocity model including the free surface and energy partition. We validate our strong ground motion simulation by comparing the synthetic and observed data in a wide frequency range (0.1-20 Hz) for the Tocopilla (2007) and Iquique (2014) earthquakes. Finally, we use this method to propose the synthetic accelerograms for several potential rupture scenarios for mega-earthquakes in northern Chile, these scenarios were proposed considering coupling models and the historical earthquake records. The results show large PGA values near 1 g, for station located on hard rock. An important trade - off between the PGA and the proposed slip distribution was observed. The maximum slip distribution located in deeper seismogenic contact produce the large PGA in the nearest stations.

  5. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

    Directory of Open Access Journals (Sweden)

    Brinton Roberta

    2008-12-01

    Full Text Available Abstract Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that AP

  6. Unraveling nonadiabatic ionization and Coulomb potential effects in strong-field photoelectron holography

    CERN Document Server

    Song, Xiaohong; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-01-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back to the ion where it scatters off (the signal wave). The interference hologram of the two waves may be used to retrieve the target information. However, unlike conventional optical holography, the propagations of electron wave packets are affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the nonadiabatic effect in ionization i...

  7. Generation of slow wave type action potentials in the mouse small intestine involves a non-L-type calcium channel.

    Science.gov (United States)

    Malysz, J; Richardson, D; Farraway, L; Christen, M O; Huizinga, J D

    1995-10-01

    Intrinsic electrical activities in various isolated segments of the mouse small intestine were recorded (i) to characterize action potential generation and (ii) to obtain a profile on the ion channels involved in initiating the slow wave type action potentials (slow waves). Gradients in slow wave frequency, resting membrane potential, and occurrence of spiking activity were found, with the proximal intestine exhibiting the highest frequency, the most hyperpolarized cell membrane, and the greatest occurrence of spikes. The slow waves were only partially sensitive to L-type calcium channel blockers. Nifedipine, verapamil, and pinaverium bromide abolished spikes that occurred on the plateau phase of the slow waves in all tissues. The activity that remained in the presence of L-type calcium channel blockers, the upstroke potential, retained a similar amplitude to the original slow wave and was of identical frequency. The upstroke potential was not sensitive to a reduction in extracellular chloride or to the sodium channel blockers tetrodotoxin and mexiletine. Abolishment of the Na+ gradient by removal of 120 mM extracellular Na+ reduced the upstroke potential frequency by 13 - 18% and its amplitude by 50 - 70% in the ileum. The amplitude was similarly reduced by Ni2+ (up to 5 mM), and by flufenamic acid (100 mu M), a nonspecific cation and chloride channel blocker. Gadolinium, a nonspecific blocker of cation and stretch-activated channels, had no effect. Throughout these pharmacological manipulations, a robust oscillation remained at 5 - 10 mV. This oscillation likely reflects pacemaker activity. It was rapidly abolished by removal of extracellular calcium but not affected by L-type calcium channel blockers. In summary, the mouse small intestine has been established as a model for research into slow wave generation and electrical pacemaker activity. The upstroke part of the slow wave has two components, the pacemaker component involves a non-L-type calcium channel

  8. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    Science.gov (United States)

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-06-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  9. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    Science.gov (United States)

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-01-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071

  10. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    Science.gov (United States)

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-01-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071

  11. Baryon femtoscopy considering residual correlations as a tool to extract strong interaction potentials

    Directory of Open Access Journals (Sweden)

    Szymański Maciej

    2015-01-01

    Full Text Available In this article, the analysis of baryon-antibaryon femtoscopic correlations is presented. In particular, it is shown that taking into account residual correlations is crucial for the description of pΛ¯$\\bar \\Lambda $ and p̄Λ correlation functions measured by the STAR experiment in Au–Au collisions at the centre-of-mass energy per nucleon pair √sNN = 200 GeV. This approach enables to obtain pΛ¯$\\bar \\Lambda $ (p̄Λ source size consistent with the sizes extracted from correlations in pΛ (p̄Λ¯$\\bar \\Lambda $ and lighter pair systems as well as with model predictions. Moreover, with this analysis it is possible to derive the unknown parameters of the strong interaction potential for baryon-antibaryon pairs under several assumptions.

  12. Mixed zirconia calcium phosphate coatings for dental implants: tailoring coating stability and bioactivity potential.

    Science.gov (United States)

    Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Li Destri, Giovanni; Marletta, Giovanni; Rezwan, Kurosch

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. PMID:25579931

  13. Calcium Sensing Receptor as a Novel Mediator of Adipose Tissue Dysfunction: Mechanisms and Potential Clinical Implications

    Science.gov (United States)

    Bravo-Sagua, Roberto; Mattar, Pamela; Díaz, Ximena; Lavandero, Sergio; Cifuentes, Mariana

    2016-01-01

    Obesity is currently a serious worldwide public health problem, reaching pandemic levels. For decades, dietary and behavioral approaches have failed to prevent this disease from expanding, and health authorities are challenged by the elevated prevalence of co-morbid conditions. Understanding how obesity-associated diseases develop from a basic science approach is recognized as an urgent task to face this growing problem. White adipose tissue (WAT) is an active endocrine organ, with a crucial influence on whole-body homeostasis. WAT dysfunction plays a key role linking obesity with its associated diseases such as type 2 diabetes mellitus, cardiovascular disease, and some cancers. Among the regulators of WAT physiology, the calcium-sensing receptor (CaSR) has arisen as a potential mediator of WAT dysfunction. Expression of the receptor has been described in human preadipocytes, adipocytes, and the human adipose cell lines LS14 and SW872. The evidence suggests that CaSR activation in the visceral (i.e., unhealthy) WAT is associated with an increased proliferation of adipose progenitor cells and elevated adipocyte differentiation. In addition, exposure of adipose cells to CaSR activators in vitro elevates proinflammatory cytokine expression and secretion. An increased proinflammatory environment in WAT plays a key role in the development of WAT dysfunction that leads to peripheral organ fat deposition and insulin resistance, among other consequences. We propose that CaSR may be one relevant therapeutic target in the struggle to confront the health consequences of the current worldwide obesity pandemic.

  14. Calcium/calmodulin-dependent protein kinase IV: A multifunctional enzyme and potential therapeutic target.

    Science.gov (United States)

    Naz, Huma; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-05-01

    The calcium/calmodulin-dependent protein kinase IV (CAMKIV) belongs to the serine/threonine protein kinase family, and is primarily involved in transcriptional regulation in lymphocytes, neurons and male germ cells. CAMKIV operates the signaling cascade and regulates activity of several transcription activators by phosphorylation, which in turn plays pivotal roles in immune response, inflammation and memory consolidation. In this review, we tried to focus on different aspects of CAMKIV to understand the significance of this protein in the biological system. This enzyme is associated with varieties of disorders such as cerebral hypoxia, azoospermia, endometrial and ovarian cancer, systemic lupus, etc., and hence it is considered as a potential therapeutic target. Structure of CAMKIV is comprised of five distinct domains in which kinase domain is responsible for enzyme activity. CAMKIV is involved in varieties of cellular functions such as regulation of gene expression, T-cell maturation, regulation of survival phase of dendritic cells, bone growth and metabolism, memory consolidation, sperm motility, regulation of microtubule dynamics, cell-cycle progression and apoptosis. In this review, we performed an extensive analysis on structure, function and regulation of CAMKIV and associated diseases. PMID:26773169

  15. Calcium Sensing Receptor as a Novel Mediator of Adipose Tissue Dysfunction: Mechanisms and Potential Clinical Implications.

    Science.gov (United States)

    Bravo-Sagua, Roberto; Mattar, Pamela; Díaz, Ximena; Lavandero, Sergio; Cifuentes, Mariana

    2016-01-01

    Obesity is currently a serious worldwide public health problem, reaching pandemic levels. For decades, dietary and behavioral approaches have failed to prevent this disease from expanding, and health authorities are challenged by the elevated prevalence of co-morbid conditions. Understanding how obesity-associated diseases develop from a basic science approach is recognized as an urgent task to face this growing problem. White adipose tissue (WAT) is an active endocrine organ, with a crucial influence on whole-body homeostasis. WAT dysfunction plays a key role linking obesity with its associated diseases such as type 2 diabetes mellitus, cardiovascular disease, and some cancers. Among the regulators of WAT physiology, the calcium-sensing receptor (CaSR) has arisen as a potential mediator of WAT dysfunction. Expression of the receptor has been described in human preadipocytes, adipocytes, and the human adipose cell lines LS14 and SW872. The evidence suggests that CaSR activation in the visceral (i.e., unhealthy) WAT is associated with an increased proliferation of adipose progenitor cells and elevated adipocyte differentiation. In addition, exposure of adipose cells to CaSR activators in vitro elevates proinflammatory cytokine expression and secretion. An increased proinflammatory environment in WAT plays a key role in the development of WAT dysfunction that leads to peripheral organ fat deposition and insulin resistance, among other consequences. We propose that CaSR may be one relevant therapeutic target in the struggle to confront the health consequences of the current worldwide obesity pandemic. PMID:27660614

  16. Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees.

    Science.gov (United States)

    Schüßler, Arthur; Krüger, Claudia; Urgiles, Narcisa

    2016-04-01

    In many deforested regions of the tropics, afforestation with native tree species could valorize a growing reservoir of degraded, previously overused and abandoned land. The inoculation of tropical tree seedlings with arbuscular mycorrhizal fungi (AM fungi) can improve tree growth and viability, but efficiency may depend on plant and AM fungal genotype. To study such effects, seven phylogenetically diverse AM fungi, native to Ecuador, from seven genera and a non-native AM fungus (Rhizophagus irregularis DAOM197198) were used to inoculate the tropical potential crop tree (PCT) species Handroanthus chrysanthus (synonym Tabebuia chrysantha), Cedrela montana, and Heliocarpus americanus. Twenty-four plant-fungus combinations were studied in five different fertilization and AMF inoculation treatments. Numerous plant growth parameters and mycorrhizal root colonization were assessed. The inoculation with any of the tested AM fungi improved seedling growth significantly and in most cases reduced plant mortality. Plants produced up to threefold higher biomass, when compared to the standard nursery practice. AM fungal inoculation alone or in combination with low fertilization both outperformed full fertilization in terms of plant growth promotion. Interestingly, root colonization levels for individual fungi strongly depended on the host tree species, but surprisingly the colonization strength did not correlate with plant growth promotion. The combination of AM fungal inoculation with a low dosage of slow release fertilizer improved PCT seedling performance strongest, but also AM fungal treatments without any fertilization were highly efficient. The AM fungi tested are promising candidates to improve management practices in tropical tree seedling production. PMID:26260945

  17. Effect of the triaminopyridine flupirtine on calcium uptake, membrane potential and ATP synthesis in rat heart mitochondria

    OpenAIRE

    Zimmer, Guido; Balakirev, Maxim; Zwicker, Klaus; Hofmann, Michael; Woodcock, Barry G; Pergande, Gabriela

    1998-01-01

    Flupirtine is an analgesic agent which exhibits neuronal cytoprotective activity and may have value in the treatment of conditions involving cell injury and apoptosis. Since flupirtine has no action on known receptor sites we have investigated the effect of this drug on mitochondrial membrane potential, and the changes in intramitochondrial calcium concentration in particular.The findings show that flupirtine increases Ca2+ uptake in mitochondria in vitro. At clinically relevant flupirtine co...

  18. Calcium bioavailability of vegetarian diets in rats: potential application in a bioregenerative life-support system

    Science.gov (United States)

    Nickel, K. P.; Nielsen, S. S.; Smart, D. J.; Mitchell, C. A.; Belury, M. A.

    1997-01-01

    Calcium bioavailability of vegetarian diets containing various proportions of candidate crops for a controlled ecological life-support system (CELSS) was determined by femur 45Ca uptake. Three vegetarian diets and a control diet were labeled extrinsically with 45Ca and fed to 5-wk old male rats. A fifth group of rats fed an unlabeled control diet received an intraperitoneal (IP) injection of 45Ca. There was no significant difference in mean calcium absorption of vegetarian diets (90.80 +/- 5.23%) and control diet (87.85 +/- 5.25%) when calculated as the percent of an IP dose. The amounts of phytate, oxalate, and dietary fiber in the diets did not affect calcium absorption.

  19. Overview of large N QCD with chemical potential at weak and strong coupling

    DEFF Research Database (Denmark)

    Hollowood, Timothy J.; Myers, Joyce C

    2013-01-01

    Polyakov line order parameter, and the quark number, calculated using 1-loop perturbation theory for QCD formulated on S1 × S3. The strong coupling phase diagram is obtained from the same observables calculated at leading order in the lattice strong coupling and hopping parameter expansions. We show that...

  20. Novel tea polyphenol-modified calcium phosphate nanoparticle and its remineralization potential

    NARCIS (Netherlands)

    L. He; D. Deng; X. Zhou; L. Cheng; J.M. ten Cate; J. Li; X. Li; W. Crielaard

    2015-01-01

    Tea polyphenols (TP) are not only potent antimicrobial and antioxidant agents but also effective modifiers in the formation of nanosized crystals. Since nano-hydroxyapatite (n-HA) is known to enhance remineralization of dental hard tissue, our aims were to synthesize nanosized calcium phosphate part

  1. Factors influencing the potential for strong brand relationships with consumer product brands: An overview and research agenda

    DEFF Research Database (Denmark)

    Bech-Larsen, Tino; Bergkvist, Lars; Francis, Julie

    Based on the premise that consumer product brands are different with respect to their potential to form strong long-term relationships with consumers, this paper aims to identify factors that influence brands' potential for strong long-term relationships and to suggest how these can be empirically...... investigated. The paper reviews brand-centric and consumer-centric research and identifies twelve brand variables that may influence the relationship potential of consumer product brands. A research agenda is suggested and a number of issues that needs to be resolved before empirical research can be carried...

  2. Assessing potential targets of calcium action in light-modulated gravitropism

    Science.gov (United States)

    Roux, S. J.

    1995-01-01

    Light, through the mediation of the pigment phytochrome, modulates the gravitropic response of the shoots and roots of many plants. The transduction of both light and gravity stimuli appears to involve Ca(2+)-regulated steps, one or more of which may represent points of intersection between the two transduction chains. To be confident that Ca2+ plays a critical role in stimulus-response coupling for gravitropism, it will be important to identify specific targets of Ca2+ action whose function can be clearly linked to the regulation of growth. Calcium typically exerts its influence on cell metabolism through binding to and activating key regulatory proteins. The three best characterized of these proteins in plants are the calmodulins, calcium-dependent protein kinases, and annexins. In this review we summarize what is known about the structure and function of these proteins and speculate on how their activation by Ca2+ could influence the differential growth response of gravitropism.

  3. Effect of potential renal acid load of foods on urinary citrate excretion in calcium renal stone formers.

    Science.gov (United States)

    Trinchieri, Alberto; Lizzano, Renata; Marchesotti, Federica; Zanetti, Giampaolo

    2006-02-01

    The aim of this study was to investigate the influence of the potential renal acid load (PRAL) of the diet on the urinary risk factors for renal stone formation. The present series comprises 187 consecutive renal calcium stone patients (114 males, 73 females) who were studied in our stone clinic. Each patient was subjected to an investigation including a 24-h dietary record and 24-h urine sample taken over the same period. Nutrients and calories were calculated by means of food composition tables using a computerized procedure. Daily PRAL was calculated considering the mineral and protein composition of foods, the mean intestinal absorption rate for each nutrient and the metabolism of sulfur-containing amino acids. Sodium, potassium, calcium, magnesium, phosphate, oxalate, urate, citrate, and creatinine levels were measured in the urine. The mean daily PRAL was higher in male than in female patients (24.1+/-24.0 vs 16.1+/-20.1 mEq/day, P=0.000). A significantly (P=0.01) negative correlation (R=-0.18) was found between daily PRAL and daily urinary citrate, but no correlation between PRAL and urinary calcium, oxalate, and urate was shown. Daily urinary calcium (R=0.186, P=0.011) and uric acid (R=0.157, P=0.033) were significantly related to the dietary intake of protein. Daily urinary citrate was significantly related to the intakes of copper (R=0.178, P=0.015), riboflavin (R=0.20, P=0.006), piridoxine (R=0.169, P=0.021) and biotin (R=0.196, P=0.007). The regression analysis by stepwise selection confirmed the significant negative correlation between PRAL and urinary citrate (P=0.002) and the significant positive correlation between riboflavin and urinary citrate (P=0.000). Urinary citrate excretion of renal stone formers (RSFs) is highly dependent from dietary acid load. The computation of the renal acid load is advisable to investigate the role of diet in the pathogenesis of calcium stone disease and it is also a useful tool to evaluate the lithogenic potential of

  4. Voltage-gated potassium channel Kvl.3 in rabbit ciliary epithelium regulates the membrane potential via coupling intracellular calcium

    Institute of Scientific and Technical Information of China (English)

    LI Yan-feng; ZHUO Ye-hong; BI Wei-na; BAI Yu-jing; LI Yan-na; WANG Zhi-jian

    2008-01-01

    Background The cell layer of the ciliary epithelium is responsible for aqueous humor secretion and maintenance.Ion channels play an important role in these processes.The main aim of this study was to determine whether the well-characterized members of the Kvl family (Kv1.3) contribute to the Kv currents in ciliary epithelium.Methods New Zealand White rabbits were maintained in a 12 hours light/dark cycle.Ciliary epithelium samples were isolated from the rabbits.We used Western blotting and immunocytochemistry to identify the expression and location of a voltage-gated potassium channel Kvl.3 in ciliary body epithelium.Membrane potential change after adding of Kv1.3 inhibitor margatoxin (MgTX) was observed with a fluorescence method.Results Western blotting and immunocytochemical studies showed that the Kv1.3 protein expressed in pigment ciliary epithelium and nonpigment ciliary epithelium,however it seemed to express more in the apical membrane of the nonpigmented epithelial cells.One nmol/L margatoxin,a specific inhibitor of Kv1.3 channels caused depolarization of the cultured nonpigmented epithelium (NPE) membrane potential.The cytosotic calcium increased after NPE cell depolarization,this increase of cytosolic calcium was partially blocked by 12.5 μmol/L dantrolene and 10 μmol/L nifedipine.These observations suggest that Kv1.3 channels modulate ciliary epithelium potential and effect calcium dependent mechanisms.Conclusion Kv1.3 channels contribute to K+ efflux at the membrane of rabbit ciliary epithelium.

  5. Kohn-Sham potential for a strongly correlated finite system with fractional occupancy

    CERN Document Server

    Benitez, A

    2016-01-01

    Using a simplified one-dimensional model of a diatomic molecule, the associated interacting density and corresponding Kohn-Sham potential have been obtained analytically for all fractional molecule occupancies $N$ between 0 and 2. For the homonuclear case, and in the dissociation limit, the exact Kohn-Sham potential builds a barrier at the midpoint between the two atoms, whose strength increases linearly with $N$, with $1 < N \\leq 2$. In the heteronuclear case, the disociating KS potential besides the barrier also exhibits a plateau around the atom with the higher ionization potential, whose size (but not its strength) depends on $N$. An anomalous zero-order scaling of the Kohn-Sham potential with regards to the strength of the electron-electron repulsion is clearly displayed by our model; without this property both the unusual barrier and plateau features will be absent.

  6. Abnormally large neutron polarizability or long-range strong-interaction potential at fast neutron scattering by heavy nuclei?

    International Nuclear Information System (INIS)

    It is shown that the discrepancy between the results obtained for different neutron energy ranges, when neutron polarizability is derived from the neutron scattering data, can be removed if one assumes that at the fast neutron scattering a strong-interaction long-range potential of Van der Waals (∝r-6) or Casimir-Polder (∝r-7) is observed. This strong-interaction long-range potential has possibly some experimental confirmation in the elastic p-p scattering. (orig.)

  7. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    KAUST Repository

    Hatzell, Marta C.

    2014-12-02

    © 2014 American Chemical Society. The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10-5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g-1) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g-1) had a negative rise potential (-31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to -6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  8. Effective Potential Theory: A Practical Way to Extend Plasma Transport Theory to Strong Coupling

    CERN Document Server

    Baalrud, Scott D; Daligault, Jerome

    2014-01-01

    The effective potential theory is a physically motivated method for extending traditional plasma transport theories to stronger coupling. It is practical in the sense that it is easily incorporated within the framework of the Chapman-Enskog or Grad methods that are commonly applied in plasma physics and it is computationally efficient to evaluate. The extension is to treat binary scatterers as interacting through the potential of mean force, rather than the bare Coulomb or Debye-screened Coulomb potential. This allows for aspects of many-body correlations to be included in the transport coefficients. Recent work has shown that this method accurately extends plasma theory to orders of magnitude stronger coupling when applied to the classical one-component plasma model. The present work shows that similar accuracy is realized for the Yukawa one-component plasma model and it provides a comparison with other approaches.

  9. Ultraviolet renormalization of the strongly attractive inverse square potential: Taming the singularity

    CERN Document Server

    Alhaidari, A D

    2013-01-01

    Quantum anomalies in the inverse square potential are well known and widely investigated. Most prominent is the unbounded increase in oscillations of the particle's state as it approaches the origin when the attractive coupling parameter is greater than the critical value of 1/4. Due to these extremely rapid oscillations, we are proposing that the interaction gets screened at short distances making the coupling parameter acquire an effective (renormalized) value that falls within the weak range 0 to 1/4. This prevents the oscillations form growing without limit giving a lower bound to the energy spectrum and forcing the Hamiltonian of the system to be self-adjoint. Technically, this translates into a regularization scheme whereby the inverse square potential is replaced near the origin by another that has the same singularity but with a weak coupling strength. Here, we take the Eckart as the regularizing potential and obtain the corresponding bound-state solutions (energy spectrum and associated wavefunction)...

  10. Effects of imidapril on heterogeneity of action potential and calcium current of ventriclar myocytes in infarcted rabbits

    Institute of Scientific and Technical Information of China (English)

    YangLI; QiaoXUE; JieMA; Cun-taiZHANG; PingQIU; LinWANG; WeiGAO; ReiCHENG; Zai-yinLU; Shi-wenWANG

    2004-01-01

    AIM: To investigate the effects of chronic treatment with imidapril on the electrophysiologic heterogeneous change of the noninfarcted myocardium of rabbits after myocardial infarction and the mechanism of its antiarrhythmic efficacy. METHODS: Rabbits with left coronary artery ligation were prepared and allowed to recover for 8 weeks. Myocytes were isolated from subendocardial, midmyocardial, and subepicardial regions of the noninfarcted left ventricular wall. Action potentials and calcium current were recorded using whole-cell patch clamp technique. RESULTS: The action potential duration of repolarization 90 % (APD90) was more prolonged in midmyocardium rather than in subepicardium and subendocardium with healed myocardial infarction. The transmural dispersion of repolarization (TDR) was increased in the three ventricular regions. The amplitude of/Ca-L was enhanced but its density was decreased in noninfarcted ventricular myocytes due to increased cell membrane capacitance. The increased differences of calcium currents among subepicardium, midmyocardium, and subendocardium were also discovered. Normalization of heterogeneous changes in repolarization after treatment with imidapril was observed and decrease of TDR in noninfarcted area was measured. Early after depolarization (EAD) events of noninfarcted midmyocardium were markedly decreased by imidapril. CONCLUSION: Imidapril reduced the electrophysiologic heterogeneities in noninfarcted area in rabbits after myocardial infarction. This ability of imidapril may contribute to its antiarrhythmic efficacy.

  11. Effects of imidapril on heterogeneity of action potential and calcium current of ventriclar myocytes in infarcted rabbits

    Institute of Scientific and Technical Information of China (English)

    Yang LI; Shi-wen WANG; Qiao XUE; Jie MA; Cun-tai ZHANG; Ping QIU; Lin WANG; Wei GAO; Rei CHENG; Zai-ying LU

    2004-01-01

    AIM: To investigate the effects of chronic treatment with imidapril on the electrophysiologic heterogeneous change of the noninfarcted myocardium of rabbits after myocardial infarction and the mechanism of its antiarrhythmic efficacy. METHODS: Rabbits with left coronary artery ligation were prepared and allowed to recover for 8 weeks.Myocytes were isolated from subendocardial, midmyocardial, and subepicardial regions of the noninfarcted left ventricular wall. Action potentials and calcium current were recorded using whole-cell patch clamp technique.RESULTS: The action potential duration of repolarization 90 % (APD90)was more prolonged in midmyocardium rather than in subepicardium and subendocardium with healed myocardial infarction. The transmural dispersion of repolarization (TDR) was increased in the three ventricular regions. The amplitude of ICa-L was enhanced but its density was decreased in noninfarcted ventricular myocytes due to increased cell membrane capacitance. The increased differences of calcium currents among subepicardium, midmyocardium, and subendocardium were also discovered. Normalization of heterogeneous changes in repolarization after treatment with imidapril was observed and decrease of TDR in noninfarcted area was measvred. Early after depolarization (EAD) events of noninfarcted midmyocardium were markedly decreased by imidapril. CONCLUSION: Imidapril reduced the electrophysiologic heterogeneities in noninfarcted area in rabbits after myocardial infarction. This ability of imidapril may contribute to its antiarrhythmic efficacy.

  12. Chitosan-collagen biomembrane embedded with calcium-aluminate enhances dentinogenic potential of pulp cells.

    Science.gov (United States)

    Soares, Diana Gabriela; Rosseto, Hebert Luís; Basso, Fernanda Gonçalves; Scheffel, Débora Salles; Hebling, Josimeri; Costa, Carlos Alberto de Souza

    2016-01-01

    The development of biomaterials capable of driving dental pulp stem cell differentiation into odontoblast-like cells able to secrete reparative dentin is the goal of current conservative dentistry. In the present investigation, a biomembrane (BM) composed of a chitosan/collagen matrix embedded with calcium-aluminate microparticles was tested. The BM was produced by mixing collagen gel with a chitosan solution (2:1), and then adding bioactive calcium-aluminate cement as the mineral phase. An inert material (polystyrene) was used as the negative control. Human dental pulp cells were seeded onto the surface of certain materials, and the cytocompatibility was evaluated by cell proliferation and cell morphology, assessed after 1, 7, 14 and 28 days in culture. The odontoblastic differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, total protein production, gene expression of DMP-1/DSPP and mineralized nodule deposition. The pulp cells were able to attach onto the BM surface and spread, displaying a faster proliferative rate at initial periods than that of the control cells. The BM also acted on the cells to induce more intense ALP activity, protein production at 14 days, and higher gene expression of DSPP and DMP-1 at 28 days, leading to the deposition of about five times more mineralized matrix than the cells in the control group. Therefore, the experimental biomembrane induced the differentiation of pulp cells into odontoblast-like cells featuring a highly secretory phenotype. This innovative bioactive material can drive other protocols for dental pulp exposure treatment by inducing the regeneration of dentin tissue mediated by resident cells. PMID:27119587

  13. Chitosan-collagen biomembrane embedded with calcium-aluminate enhances dentinogenic potential of pulp cells

    Directory of Open Access Journals (Sweden)

    Diana Gabriela SOARES

    2016-01-01

    Full Text Available Abstract The development of biomaterials capable of driving dental pulp stem cell differentiation into odontoblast-like cells able to secrete reparative dentin is the goal of current conservative dentistry. In the present investigation, a biomembrane (BM composed of a chitosan/collagen matrix embedded with calcium-aluminate microparticles was tested. The BM was produced by mixing collagen gel with a chitosan solution (2:1, and then adding bioactive calcium-aluminate cement as the mineral phase. An inert material (polystyrene was used as the negative control. Human dental pulp cells were seeded onto the surface of certain materials, and the cytocompatibility was evaluated by cell proliferation and cell morphology, assessed after 1, 7, 14 and 28 days in culture. The odontoblastic differentiation was evaluated by measuring alkaline phosphatase (ALP activity, total protein production, gene expression of DMP-1/DSPP and mineralized nodule deposition. The pulp cells were able to attach onto the BM surface and spread, displaying a faster proliferative rate at initial periods than that of the control cells. The BM also acted on the cells to induce more intense ALP activity, protein production at 14 days, and higher gene expression of DSPP and DMP-1 at 28 days, leading to the deposition of about five times more mineralized matrix than the cells in the control group. Therefore, the experimental biomembrane induced the differentiation of pulp cells into odontoblast-like cells featuring a highly secretory phenotype. This innovative bioactive material can drive other protocols for dental pulp exposure treatment by inducing the regeneration of dentin tissue mediated by resident cells.

  14. STIM and Orai isoform expression in pregnant human myometrium: a potential role in calcium signaling during pregnancy.

    Directory of Open Access Journals (Sweden)

    Evonne eChin-Smith

    2014-05-01

    Full Text Available Store-operated calcium (Ca2+ entry (SOCE can be mediated by two novel proteins, STIM/Orai. We have previously demonstrated that members of the TRPC family, putative basal and store operated calcium entry channels, are present in human myometrium and regulated by labor associated stimuli IL-1β and mechanical stretch. Although STIM and Orai isoforms (1-3 have been reported in other smooth muscle cell types, there is little known about the expression or gestational regulation of STIM and Orai expression in human myometrium. Total RNA was isolated from lower segment human myometrial biopsies obtained at caesarean section from women at the time of preterm no labor (PTNL, preterm labor (PTL, term non-labor (TNL and term with labor (TL; primary cultured human uterine smooth muscle cells, and a human myometrial cell line (hTERT-HM. STIM1-2, and Orai1-3 mRNA expression was assessed by quantitative real-time PCR. All five genes were expressed in myometrial tissue and cultured cells. Orai2 was the most abundant Orai isoform in human myometrium. Expression of STIM1-2/Orai1-3 did not alter with the onset of labor. Orai1 mRNA expression in cultured cells was enhanced by IL-1β treatment. This novel report of STIM1-2 and Orai1-3 mRNA expression in pregnant human myometrium and Orai1 regulation by IL-1β indicates a potential role for these proteins in calcium signaling in human myometrium during pregnancy.

  15. Functioning of catfish electroreceptors: Influence of calcium and sodium concentration on the skin potential

    NARCIS (Netherlands)

    Schouten, V.J.A.; Bretschneider, F.

    1980-01-01

    1. 1. The skin potential of catfish was measured in order to test the hypothesis that it controls electroreceptor sensitivity. 2. 2. The skin potential depends on the “milieu extérieur” in the same way as reported lor goldfish (Fig. 2). 3. 3. The variation of the skin potential is very large compa

  16. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Curry, Merril C; Peters, Amelia A; Kenny, Paraic A; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2013-05-10

    The mitochondrial calcium uniporter (MCU) transports free ionic Ca(2+) into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca(2+) levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca(2+) levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  17. Assessment of potential strong ground motions in the city of Rome

    Directory of Open Access Journals (Sweden)

    L. Malagnini

    1994-06-01

    Full Text Available A methodology is used which combines stochastic generation of random series with a finite-difference technique to estimate the expected horizontal ground motion for the city of Rome as induced by a large earthquake in the Central Apennines. In this approach, source properties and long-path propagation are modelled through observed spectra of ground motion in the region, while the effects of the near-surface geology in the city are simulated by means of a finite-difference technique applied to 2-D models including elastic and anelastic properties of geologic materials and topographic variations. The parameters commonly used for earthquake engineering purposes are estimated from the simulated time histories of horizontal ground motion. We focus our attention on peak ground acceleration and velocity, and on the integral of the squared acceleration and velocity (that are proportional to the Arias intensity and seismic energy flux, respectively. Response spectra are analyzed as well. Parameter variations along 2-D profiles visualize the effects of the small-scale geological heterogeneities and topography irregularities on ground motion in the case of a strong earthquake. Interestingly, the largest amplification of peak ground acceleration and Arias intensity does not necessarily occur at the same sites where peak ground velocity and flux of seismic energy reach their highest values, depending on the frequency band of amplification. A magnitude 7 earthquake at a distance of 100 km results in peak ground accelerations ranging from 30 to 70 gals while peak ground velocities are estimated to vary from 5 to 7 cm/s; moreover, simulated time histories of horizontal ground motion yield amplitudes of 5% damped pseudovelocity response spectra as large as 15-20 cm/s for frequencies from 1to 3 Hz. In this frequency band, the mean value is 7 cm/s for firm sites and ranges from 10 to 13 cm/s for soil sites. All these results are in good agreement with predictions

  18. Chronic stress and calcium oxalate stone disease: is it a potential recurrence risk factor?

    Science.gov (United States)

    Arzoz-Fabregas, Montserrat; Ibarz-Servio, Luis; Edo-Izquierdo, Sílvia; Doladé-Botías, María; Fernandez-Castro, Jordi; Roca-Antonio, Josep

    2013-04-01

    Chronic emotional stress is associated with increased cortisol release and metabolism disorders. However, few studies have evaluated the influence of chronic stress on calcium oxalate (CaOx) stone disease and its recurrence. A total of 128 patients were enrolled in this case-control study over a period of 20 months. All patients were CaOx stone formers with a recent stone episode (stone formers (FS) and 33 recurrent stone formers (RS). Dimensions of chronic stress were evaluated with self-reported validated questionnaires measuring stressful life events, perceived stress, anxiety, depression, burnout and satisfaction with life. An ad hoc self-reporting questionnaire was designed to evaluate stress-related specifically to stone episodes. Blood and urine samples were collected to determine cortisol levels and urinary composition. In addition, epidemiological data, socioeconomic information, diet and incidences of metabolic syndrome (MS) were reported. Overall, no significant differences were observed in the scores of cases and controls on any of the questionnaires dealing with stress. The number (p incidences of MS (p = 0.07) than FS. Although no differences were observed in cases and controls among any dimension of chronic stress, the number and intensity of stressful life events were higher in RS than in FS. These differences correlate with variations in blood and urinary levels and with metabolic disorders, indicating an association between chronic stress and risk of recurrent CaOx stone formation.

  19. Calcium-dependent expression of transient receptor potential canonical type 3 channels in patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Liu, Ying; Krueger, Katharina; Hovsepian, Anahit;

    2011-01-01

    It is unknown whether extracellular calcium may regulate the expression of transient receptor potential canonical type 3 (TRPC3) channels in patients with chronic kidney disease. Using quantitative in-cell Western assay we compared the expression of TRPC3 channel protein in monocytes from 20...... patients with chronic kidney disease and 19 age- and sex-matched healthy control subjects. TRPC3 channels were identified by immunoblotting using specific antibodies and TRPC3 protein was further confirmed by mass spectrometry. We observed a significant increase of TRPC3 channel protein expression...... in patients with chronic kidney disease compared to healthy control subjects (normalized expression, 0.42±0.06 vs. 0.19±0.03; p...

  20. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Curry, Merril C.; Peters, Amelia A. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Kenny, Paraic A. [Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461 (United States); Roberts-Thomson, Sarah J. [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia); Monteith, Gregory R., E-mail: gregm@uq.edu.au [School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072 (Australia)

    2013-05-10

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  1. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000490.htm Calcium, vitamin D, and your bones To use the sharing ... and maintain strong bones. How Much Calcium and Vitamin D Do I Need? Amounts of calcium are ...

  2. Vitamin D, Calcium, and Bone Health

    Science.gov (United States)

    ... Balance › Vitamin D, Calcium, and Bone Health Vitamin D, Calcium, and Bone Health March 2012 Download PDFs ... helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin D ...

  3. Sodium and calcium currents shape action potentials in immature mouse inner hair cells.

    Science.gov (United States)

    Marcotti, Walter; Johnson, Stuart L; Rusch, Alfons; Kros, Corne J

    2003-11-01

    Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both alpha1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at -71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency.

  4. Erosive potential of calcium-modified acidic candies in irradiated dry mouth patients

    DEFF Research Database (Denmark)

    Jensdottir, Thorbjörg; Buchwald, Christian von; Nauntofte, Brigitte;

    2010-01-01

    Patients who have received irradiation therapy on the head and neck area are known to suffer from reduced saliva flow and may therefore use acidic candies to relieve symptoms of dry mouth. However, such acidic candies have erosive potential even among healthy individuals. Therefore, the aim of the...

  5. Relativistic coupled-cluster studies of ionization potentials, lifetimes, and polarizabilities in singly ionized calcium

    NARCIS (Netherlands)

    Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2009-01-01

    Using the relativistic coupled-cluster method, we have calculated ionization potentials, electric dipole transition amplitudes, and dipole polarizabilities of many low-lying states of Ca(+). Contributions from the Breit interaction are given explicitly for these properties. Polarizabilities of the g

  6. Strong absorption model analysis of elastic K sup + scatterings on nuclei and a potential calculation by inversion

    CERN Document Server

    Kim, Y J

    1999-01-01

    We analyze the elastic scattering of 800 MeV/c positive kaons from sup 1 sup 2 C and sup 4 sup 0 Ca nuclei within the framework of the McIntyre strong absorption model. The calculated differential cross-sections are found to be in excellent agreement with the observed data. Near- and far-side decompositions of the elastic cross-section have also been performed by following Fuller's formalism. The corresponding complex potentials are predicted by using the inversion procedure of the McIntyre S-matrix.

  7. Calcium signaling in pluripotent stem cells.

    Science.gov (United States)

    Apáti, Ágota; Pászty, Katalin; Erdei, Zsuzsa; Szebényi, Kornélia; Homolya, László; Sarkadi, Balázs

    2012-04-28

    Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.

  8. Pharmacological blockade of voltage-gated calcium channels as a potential cardioprotective strategy

    OpenAIRE

    Pushparaj, Charumathi

    2014-01-01

    Voltage-gated Ca2+ channels (VGCCs) are essential for initiating and regulating cardiac function. During the cardiac action potential, Ca2+ influx through L-type channels triggers the sarcoplasmic reticulum Ca2+ release that enables the EC coupling. Ca2+ can also enter cardiac myocytes through low-voltage-activated T-type channels, which are expressed throughout cardiac development until the end of the neonatal period, and can contribute to pacemaker activity as well as EC coupling to some ex...

  9. Action Potential Morphology Influences Intracellular Calcium Handling Stability and the Occurrence of Alternans

    OpenAIRE

    Jordan, Peter N; Christini, David J

    2005-01-01

    Instability in the intracellular Ca2+ handling system leading to Ca2+ alternans is hypothesized to be an underlying cause of electrical alternans. The highly coupled nature of membrane voltage and Ca2+ regulation suggests that there should be reciprocal effects of membrane voltage on the stability of the Ca2+ handling system. We investigated such effects using a mathematical model of the cardiac intracellular Ca2+ handling system. We found that the morphology of the action potential has a sig...

  10. Effects of rapid and slow potassium repolarization currents and calcium dynamics on hysteresis in restitution of action potential duration.

    Science.gov (United States)

    Wu, Runze; Patwardhan, Abhijit

    2007-04-01

    We used a mathematical model to investigate effects of repolarizing currents I(kr) and I(ks), calcium (Ca) current I(CaL), and Ca dynamics in network sarcoplasmic reticulum and junctional sarcoplasmic reticulum (JSR) on hysteresis in restitution of action potential duration. Enhanced I(kr) increased slope of restitution, hysteresis loop thickness, and delay between peaks of diastolic intervals and action potential duration. Increase in I(ks) decreased loop thickness and peak delay. Decrease in I(CaL) had effects similar to increasing I(kr), except slope of restitution decreased markedly. Uptake of Ca into the network sarcoplasmic reticulum had less effect on hysteresis than transfer of Ca into JSR. Faster transfer of Ca into JSR markedly decreased loop thickness and peak delay. Our results provide insight into mechanisms responsible for this newly identified property of restitution. Such information will be valuable in studies where modification of hysteresis is used to investigate its role in arrhythmogenesis. PMID:16895773

  11. Combining casein phosphopeptide-amorphous calcium phosphate with fluoride: synergistic remineralization potential of artificially demineralized enamel or not?

    Science.gov (United States)

    Elsayad, Iman; Sakr, Amal; Badr, Yahia

    2009-07-01

    Recaldent is a product of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). The remineralizing potential of CPP-ACP per se, or when combined with 0.22% Fl gel on artificially demineralized enamel using laser florescence, is investigated. Mesial surfaces of 15 sound human molars are tested using a He-Cd laser beam at 441.5 nm with 18-mW power as an excitation source on a suitable setup based on a Spex 750-M monochromator provided with a photomultiplier tube (PMT) for detection of collected autofluorescence from sound enamel. Mesial surfaces are subjected to demineralization for ten days. The spectra from demineralized enamel are measured. Teeth are divided into three groups according to the remineralizing regimen: group 1 Recaldent per se, group 2 Recaldent combined with fluoride gel and ACP, and group 3 artificial saliva as a positive control. After following these protocols for three weeks, the spectra from the remineralized enamel are measured. The spectra of enamel autofluorescence are recorded and normalized to peak intensity at about 540 nm to compare spectra from sound, demineralized, and remineralized enamel surfaces. A slight red shift occurred in spectra from demineralized enamel, while a blue shift may occur in remineralized enamel. Group 2 shows the highest remineralizing potential. Combining fluoride and ACP with CPP-ACP can give a synergistic effect on enamel remineralization.

  12. Strong stabilization of liquid amorphous calcium carbonate by ovalbumin: gaining insight into the mechanism of ‘polymer-induced liquid precursor’ processes

    Science.gov (United States)

    Leiterer, Jork; Pipich, Vitaliy; Barrea, Raul; Tremel, Wolfgang

    2011-01-01

    The impact of the ovo-proteins ovalbumin and lysozyme—present in the first stage of egg shell formation—on the homogeneous formation of the liquid-amorphous calcium carbonate (LACC) precursor, was studied by a combination of complementing methods: in situ WAXS, SANS, XANES, TEM, and immunogold labeling. Lysozyme (pI = 9.3) destabilizes the LACC emulsion whereas the glycoprotein ovalbumin (pI = 4.7) extends the lifespan of the emulsified state remarkably. In the light of the presented data: (a) Ovalbumin is shown to behave commensurable to the ‘polymer-induced liquid precursor’ (PILP) process proposed by Gower et al. Ovalbumin can be assumed to take a key role during eggshell formation where it serves as an effective stabilization agent for transient precursors and prevents undirected mineralization of the eggshell. (b) It is further shown that the emulsified LACC carries a negative surface charge and is electrostatically stabilized. (c) We propose that the liquid amorphous calcium carbonate is affected by polymers by depletion stabilization and de-emulsification rather than ‘induced’ by acidic proteins and polymers during a polymer-induced liquid-precursor process. The original PILP coating effect, first reported by Gower et al., appears to be a result of a de-emulsification process of a stabilized LACC phase. The behavior of the liquid amorphous carbonate phase and the polymer-induced liquid-precursor phase itself can be well described by colloid chemical terms: electrostatic and depletion stabilization and de-emulsification by depletion destabilization. PMID:21736300

  13. Strong stabilization of amorphous calcium carbonate emulsion by ovalbumin: gaining insight into the mechanism of 'polymer-induced liquid precursor' processes.

    Science.gov (United States)

    Wolf, Stephan E; Leiterer, Jork; Pipich, Vitaliy; Barrea, Raul; Emmerling, Franziska; Tremel, Wolfgang

    2011-08-17

    The impact of the ovo proteins ovalbumin and lysozyme--present in the first stage of egg shell formation--on the homogeneous formation of the liquid amorphous calcium carbonate (LACC) precursor, was studied by a combination of complementing methods: in situ WAXS, SANS, XANES, TEM, and immunogold labeling. Lysozyme (pI = 9.3) destabilizes the LACC emulsion whereas the glycoprotein ovalbumin (pI = 4.7) extends the lifespan of the emulsified state remarkably. In the light of the presented data: (a) Ovalbumin is shown to behave commensurable to the 'polymer-induced liquid precursor' (PILP) process proposed by Gower et al. Ovalbumin can be assumed to take a key role during eggshell formation where it serves as an effective stabilization agent for transient precursors and prevents undirected mineralization of the eggshell. (b) It is further shown that the emulsified LACC carries a negative surface charge and is electrostatically stabilized. (c) We propose that the liquid amorphous calcium carbonate is affected by polymers by depletion stabilization and de-emulsification rather than 'induced' by acidic proteins and polymers during a so-called polymer-induced liquid-precursor process. The original PILP coating effect, first reported by Gower et al., appears to be a result of a de-emulsification process of a stabilized LACC phase. The behavior of the liquid amorphous carbonate phase and the polymer-induced liquid-precursor phase itself can be well described by colloid chemical terms: electrostatic and depletion stabilization and de-emulsification by depletion destabilization. PMID:21736300

  14. Determination of Ionization Potential of Calcium by High-Resolution Resonance Ionization Spectroscopy

    Science.gov (United States)

    Miyabe, Masabumi; Geppert, Christopher; Kato, Masaaki; Oba, Masaki; Wakaida, Ikuo; Watanabe, Kazuo; Wendt, Klaus D. A.

    2006-03-01

    High-resolution resonance ionization spectroscopy has been utilized to determine a precise ionization potential of Ca. Three-step resonance excitation with single-mode extended-cavity diode lasers populates long and unperturbed Rydberg series of 4snp (1P1) and 4snf (1F3) states in the range of n=20--150. Using an extended Ritz formula for quantum defects, the series convergence limit has been determined to be 49305.9240(20) cm-1 with the accuracy improved one order of magnitude higher than previously reported ones.

  15. Determination of ionization potential of calcium by high-resolution resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    High-resolution resonance ionization spectroscopy has been utilized to determine a precise ionization potential of Ca. Three-step resonance with single-mode extended-cavity diode lasers populates long and unperturbed Rydberg series of 4snp (1P1) and 4snf (1F3) states in the range of n=20-150. Using an extended Ritz formula for quantum defects, the series convergence limit has been determined to be 49305.9240(20)cm-1 with the accuracy improved one order of magnitude higher than previously reported ones. (author)

  16. High glucose enhances transient receptor potential channel canonical type 6-dependent calcium influx in human platelets via phosphatidylinositol 3-kinase-dependent pathway

    DEFF Research Database (Denmark)

    Liu, Daoyan; Maier, Alexandra; Scholze, Alexandra;

    2008-01-01

    Transient receptor potential canonical type 6 (TRPC6) channels mediating 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced calcium entry have been identified on human platelets. In the present study we tested the hypothesis that hyperglycemia increases the expression of TRPC6 channels....

  17. Enhanced biomethane potential from wheat straw by low temperature alkaline calcium hydroxide pre-treatment.

    Science.gov (United States)

    Reilly, Matthew; Dinsdale, Richard; Guwy, Alan

    2015-08-01

    A factorially designed experiment to examine the effectiveness of Ca(OH)2 pre-treatment, enzyme addition and particle size, on the mesophilic (35 °C) anaerobic digestion of wheat straw was conducted. Experiments used a 48 h pre-treatment with Ca(OH)2 7.4% (w/w), addition of Accellerase®-1500, with four particle sizes of wheat straw (1.25, 2, 3 and 10mm) and three digestion time periods (5, 15 and 30 days). By combining particle size reduction and Ca(OH)2 pre-treatment, the average methane potential was increased by 315% (from 48 NmL-CH4 g-VS(-1) to 202 NmL-CH4 g-VS(-1)) after 5 days of anaerobic digestion compared to the control. Enzyme addition or Ca(OH)2 pre-treatment with 3, 2 and 1.25 mm particle sizes had 30-day batch yields of between 301 and 335 NmL-CH4 g-VS(-1). Alkali pre-treatment of 3mm straw was shown to have the most potential as a cost effective pre-treatment and achieved 290 NmL-CH4 g-VS(-1), after only 15 days of digestion. PMID:25898087

  18. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  19. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Achim, E-mail: achim.salamon@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Jonitz-Heincke, Anika, E-mail: anika.jonitz@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Adam, Stefanie, E-mail: stefanie.adam@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Rychly, Joachim, E-mail: joachim.rychly@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Müller-Hilke, Brigitte, E-mail: brigitte.mueller-hilke@med.uni-rostock.de [Institute of Immunology, Rostock University Medical Center, Schillingallee 68, D-18057 Rostock (Germany); Bader, Rainer, E-mail: rainer.bader@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Lochner, Katrin, E-mail: katrin.lochner@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  20. Potential of calcium isotopes to identify fractionations in vegetation: experimental approach

    Science.gov (United States)

    Cobert, F.; Schmitt, A.; Bourgade, P.; Stille, P.; Chabaux, F. J.; Badot, P.; Jaegler, T.

    2010-12-01

    -exchange reactions with the pectins in the cell walls of the conducting xylem. However, we also observe that bean organs from L4 experiment growing in nutrient solutions with lower Ca concentrations and low pH behave slightly differently and show reduced Ca isotopic fractionations compared with beans from the other experiments. All these results indicate that there is no simple correlation between Ca isotopic variations, Ca content and pH of the nutrient solution, and that also biological effects have to be involved. The data confirm the potential of the Ca isotopic system for tracing biological fractionations in natural ecosystems. Wiegand et al., (2005). Geophys. Res. Lett., 32, L11404 Page et al., (2008). Biogeochemistry, 88, 1-13 Cenki-Tok et al,. (2009). Geochim. Cosmochim. Acta, 73, 2215-2228 Holmden and Bélanger(2010). Geochim. Cosmochim. Acta, 74, 995-1015

  1. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    International Nuclear Information System (INIS)

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 1014 W/cm2 to 3.5 × 1014 W/cm2. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length

  2. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels

    Science.gov (United States)

    2016-01-01

    For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites.

  3. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels

    Science.gov (United States)

    2016-01-01

    For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites. PMID:27547223

  4. Effects of Ginkgolide B on action potential and calcium,potassium current in guinea pig ventricular myocytes

    Institute of Scientific and Technical Information of China (English)

    Xiao-yan QI; Zhi-xiong ZHANG; You-qiu XU

    2004-01-01

    AIM: To investigate the effect of Ginkgolide B (GB) on action potential (AP), delayed rectifier potassium current (IK), and L-type calcium current (ICa-L) in guinea pig ventricular myocytes. METHODS: Single ventricular myocytes were isolated by an enzymatic dissociation method. AP, IK, ICa-L were recorded by whole-cell patch-clamp technique in either current or voltage clamp mode. RESULTS: GB shortened APD in a concentration-dependent manner. GB 0.1, 1, and 10 μmol/L shortened APD50 by 7.9 % (n=5, P>0.05), 18.4 % (n=5, P<0.01), and 28.9 % (n=6, P<0.01), respectively; APD90 by 12.4 % (n=5, P>0.05), 17.6 % (n=5, P<0.01), 26.4 % (n=5, P<0.01),respectively. GB increased IK in a concentration-dependent manner. GB 0.1, 1, and l0 μmol/L increased IK by 20.1% (n=6, P<0.05), 43.1% (n=6, P<0.01), 55.6 % (n=6, P<0.05); increased IKtail by 10.7 % (n=6, P<0.05),25.1% (n=6, P<0.05), and 37.7 % (n=6, P<0.05), respectively at testing potential of +50 mV and shift the I-V curve of Ik upward. But GB had no significant effect on ICa-L at above concentrations. CONCLUSION: GB significantly shortened APD in a concentration-dependent manner which mainly due to increase of IK.

  5. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels.

    Science.gov (United States)

    van Esterik, Fransisca A S; Zandieh-Doulabi, Behrouz; Kleverlaan, Cornelis J; Klein-Nulend, Jenneke

    2016-01-01

    For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites. PMID:27547223

  6. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria.

    Science.gov (United States)

    Kavanagh, N I; Ainscow, E K; Brand, M D

    2000-02-24

    Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.

  7. Calcium - urine

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003603.htm Calcium - urine To use the sharing features on this ... enable JavaScript. This test measures the amount of calcium in urine. All cells need calcium in order ...

  8. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  9. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    KAUST Repository

    Sawall, Yvonne

    2015-03-10

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  10. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    Science.gov (United States)

    Sawall, Yvonne; Al-Sofyani, Abdulmoshin; Hohn, Sönke; Banguera-Hinestroza, Eulalia; Voolstra, Christian R.; Wahl, Martin

    2015-03-01

    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12° latitudes featuring a steep temperature gradient between the northern (28.5°N, 21-27°C) and southern (16.5°N, 28-33°C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29°C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for corals.

  11. Reduced calcium-dependent mitochondrial damage underlies the reduced vulnerability of excitotoxicity-tolerant hippocampal neurons.

    Science.gov (United States)

    Pivovarova, Natalia B; Stanika, Ruslan I; Watts, Charlotte A; Brantner, Christine A; Smith, Carolyn L; Andrews, S Brian

    2008-03-01

    In central neurons, over-stimulation of NMDA receptors leads to excessive mitochondrial calcium accumulation and damage, which is a critical step in excitotoxic death. This raises the possibility that low susceptibility to calcium overload-induced mitochondrial damage might characterize excitotoxicity-resistant neurons. In this study, we have exploited two complementary models of preconditioning-induced excitotoxicity resistance to demonstrate reduced calcium-dependent mitochondrial damage in NMDA-tolerant hippocampal neurons. We have further identified adaptations in mitochondrial calcium handling that account for enhanced mitochondrial integrity. In both models, enhanced tolerance was associated with improved preservation of mitochondrial membrane potential and structure. In the first model, which exhibited modest neuroprotection, mitochondria-dependent calcium deregulation was delayed, even though cytosolic and mitochondrial calcium loads were quantitatively unchanged, indicating that enhanced mitochondrial calcium capacity accounts for reduced injury. In contrast, the second model, which exhibited strong neuroprotection, displayed further delayed calcium deregulation and reduced mitochondrial damage because downregulation of NMDA receptor surface expression depressed calcium loading. Reducing calcium entry also modified the chemical composition of the calcium-buffering precipitates that form in calcium-loaded mitochondria. It thus appears that reduced mitochondrial calcium loading is a major factor underlying the robust neuroprotection seen in highly tolerant cells. PMID:18036152

  12. Clinical evaluation of remineralization potential of casein phosphopeptide amorphous calcium phosphate nanocomplexes for enamel decalcification in orthodontics

    Institute of Scientific and Technical Information of China (English)

    WANG Jun-xiang; YAN Yan; WANG Xiu-jing

    2012-01-01

    Background Enamel decalcification in orthodontics is a concern for dentists and methods to remineralize these lesions are the focus of intense research.The aim of this study was to evaluate the remineralizing effect of casein phosphopeptide amorphous calcium phosphate(CPP-ACP)nanocomplexes on enamel decalcification in orthodontics.Methods Twenty orthodontic patients with decalcified enamel lesions during fixed orthodontic therapy were recruited to this study as test group and twenty orthodontic patients with the similar condition as control group.GC Tooth Mousse,the main component of which is CPP-ACP,was used by each patient of test group every night after tooth-brushing for six months.For control group,each patient was asked to brush teeth with toothpaste containing 1100 parts per million(ppm)of fluoride twice a day.Standardized intraoral images were taken for all patients and the extent of enamel decalcification was evaluated before and after treatment over this study period.Measurements were statistically compared by t test.Results After using CPP-ACP for six months,the enamel decalcification index(EDI)of all patients had decreased;the mean EDI before using CPP-ACP was 0.191±0.025 and that after using CPP-ACP was 0.183±0.023,the difference was significant(t=5.169,P<0.01).For control group,the mean EDI before treatment was 0.188±0.037 and that after treatment was 0.187±0.046,the difference was not significant(t=1.711,P>0.05).Conclusion CPP-ACP can effectively improve the demineralized enamel lesions during orthodontic treatment,so it has some remineralization potential for enamel decalcification in orthodontics.

  13. Action potential-evoked calcium release is impaired in single skeletal muscle fibers from heart failure patients.

    Directory of Open Access Journals (Sweden)

    Marino DiFranco

    Full Text Available BACKGROUND: Exercise intolerance in chronic heart failure (HF has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC, but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+ release, mandating investigations in skeletal muscle from HF patients. The purpose of this study was to test the hypothesis that Ca2+ release is significantly impaired in the skeletal muscle of HF patients in whom exercise capacity is severely diminished compared to age-matched healthy volunteers. METHODS AND FINDINGS: Using state-of-the-art electrophysiological and optical techniques in single muscle fibers from biopsies of the locomotive vastus lateralis muscle, we measured the action potential (AP-evoked Ca2+ release in 4 HF patients and 4 age-matched healthy controls. The mean peak Ca2+ release flux in fibers obtained from HF patients (10±1.2 µM/ms was markedly (2.6-fold and significantly (p<0.05 smaller than in fibers from healthy volunteers (28±3.3 µM/ms. This impairment in AP-evoked Ca2+ release was ubiquitous and was not explained by differences in the excitability mechanisms since single APs were indistinguishable between HF patients and healthy volunteers. CONCLUSIONS: These findings prove the feasibility of performing electrophysiological experiments in single fibers from human skeletal muscle, and offer a new approach for investigations of myopathies due to HF and other diseases. Importantly, we have demonstrated that one step in the ECC process, AP-evoked Ca2+ release, is impaired in single muscle fibers in HF patients.

  14. Calcium sulfoaluminate cement blended with OPC: A potential binder to encapsulate low-level radioactive slurries of complex chemistry

    International Nuclear Information System (INIS)

    Investigations were carried out in order to solidify in cement a low-level radioactive waste of complex chemistry obtained by mixing two process streams, a slurry produced by ultra-filtration and an evaporator concentrate with a salinity of 600 gxL-1. Direct cementation with Portland cement (OPC) was not possible due to a very long setting time of cement resulting from borates and phosphates contained in the waste. According to a classical approach, this difficulty could be solved by pre-treating the waste to reduce adverse cement-waste interactions. A two-stage process was defined, including precipitation of phosphates and sulfates at 60 deg. C by adding calcium and barium hydroxide to the waste stream, and encapsulation with a blend of OPC and calcium aluminate cement (CAC) to convert borates into calcium quadriboroaluminate. The material obtained with a 30% waste loading complied with specifications. However, the pre-treatment step made the process complex and costly. A new alternative was then developed: the direct encapsulation of the waste with a blend of OPC and calcium sulfoaluminate cement (CSA) at room temperature. Setting inhibition was suppressed, which probably resulted from the fact that, when hydrating, CSA cement formed significant amounts of ettringite and calcium monosulfoaluminate hydrate which incorporated borates into their structure. As a consequence, the waste loading could be increased to 56% while keeping acceptable properties at the laboratory scale.

  15. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Pascal; Schlegel, H. Bernhard [Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489 (United States)

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  16. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential.

    Science.gov (United States)

    Krause, Pascal; Schlegel, H Bernhard

    2014-11-01

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10(14) W/cm(2) to 3.5 × 10(14) W/cm(2). Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length. PMID:25381499

  17. Comment on ''Mean force potential for the calcium--chloride ion pair in water'' [J. Chem. Phys. 99, 4229 (1993)

    International Nuclear Information System (INIS)

    The interionic potential of mean force (pmf) for the Ca++--Cl- ion pair in water is computed using the molecular dynamics computer simulation technique. The calculated pmf indicates a stable contact pair (CIP) and a solvent-separated pair (SSIP) centered at 2.9 and 5.0 A with a 2.8 kcal/mol barrier to dissociation. The SSIP well is about 2.0 kcal/mol deeper than the CIP suggesting that water molecules in the first hydration shell are strongly coordinated to the Ca++ ion. Our results do not agree with the pmf reported recently by Guardia, Robinson, Padro [J. Chem. Phys. 99, 4229 (1993)]. Possible reasons for the discrepancy are discussed

  18. CALCIUM-INDUCED SUPRAMOLECULAR STRUCTURES IN THE CALCIUM CASEINATE SYSTEM

    Science.gov (United States)

    The molecular details deciphering the spontaneous calcium-induced protein aggregation process in the calcium caseinate system remain obscure. Understanding this complex process could lead to potential new applications of this important food ingredient. In this work, we studied calcium-induced supra...

  19. Simultaneous measurements of magnesium, calcium and sodium influxes in perfused squid giant axons under membrane potential control.

    Science.gov (United States)

    Rojas, E; Taylor, R E

    1975-10-01

    1. Giant axons from the squids Dosidicus gigas, Loligo forbesi and Loligo vulgaris were internally perfused with 550 or 275 mM KF plus sucrose and bathed in artificial sea water containing 45Ca, 28Mg or mixtures of 45Ca-28Mg or 45Ca-22Na. Resting influxes and extra influxes during voltage-clamp pulses were measured by collecting and counting the internal perfusate. 2. For Dosidicus axons in 10 mM-CaCl2 the resting influx of calcium was 0-016 +/- 0-007 p-mole/cm2 sec and a linear function of external concentration. For two experiments in 10 and 84-7 mM-CaCl2, 100 nM tetrodotoxin had no effect. Resting calcium influx in 10 mM-CaCl2 was 0-017 +/- 0-013 p-mole/cm2 sec for Loligo axons. 3. With 55 mM-MgCl2 outside the average resting magnesium influx was 0-124 +/- 0-080 p-mole/cm2 sec for Loligo axons. Discarding one aberrant point the value is 0-105 +/- 0-046 which is not significantly different from the resting calcium influx for Dosidicus fibres in 55 mM-CaCl2, given as 0-094 p-mole/cm2 sec by the regression line shown in Fig. 1. In two experiments 150 nM tetrodotoxin had no effect. 4. With 430 mM-NaCl outside 100 nM tetrodotoxin reduced the average resting influx of sodium in Dosidicus axon from 27-7 +/- 4-5 to 25-1 +/- 6-2 p-mole/cm2 sec and for Loligo fibres in 460 mM-NaCl from 50-5 +/- 4 to 20 +/- 8 p-mole/cm2 sec. 5. Using depolarizing pulses of various durations, the extra calcium influx occurred in two phases. The early phase was eliminated by external application of tetrodotoxin. The results of analysis are consistent with, but do not rigorously demonstrate, the conclusion that the tetrodotoxin sensitive calcium entry is flowing through the normal sodium channels (cf. Baker, Hodgkin & Ridgway, 1971). 6. Measurements of extra influxes using 22Na and 45Ca simultaneously indicate that the time courses of tetrodotoxin sensitive calcium and sodium entry are similar but not necessarily identical. It is very doubtful that any significant calcium entry occurs before

  20. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use

    Directory of Open Access Journals (Sweden)

    Galati Gaspare

    2009-07-01

    Full Text Available Abstract Background Resveratrol is a non flavonoid polyphenol compound present in many plants and fruits and, at especially high concentrations, in the grape berries of Vitis vinifera. This compound has a strong bioactivity and its cytoprotective action has been demonstrated, however at high concentrations the drug exhibits also an effective anti-proliferative action. We recently showed its ability to abolish the effects of oxidative stress in cultured cells. In this work we assayed the bioactivity of resveratrol as antiproliferative and antiviral drug in cultured fibroblasts. Studies by other Authors showed that this natural compound inhibits the proliferation of different viruses such as herpes simplex, varicella-zoster and influenza A. The results presented here show an evident toxic activity of the drug at high concentrations, on the other hand at sub-cytotoxic concentrations, resveratrol can effectively inhibit the synthesis of polyomavirus DNA. A possible interpretation is that, due to the damage caused by resveratrol to the plasma membrane, the transfer of the virus from the endoplasmic reticulum to the nucleus, may be hindered thus inhibiting the production of viral DNA. Methods The mouse fibroblast line 3T6 and the human tumor line HL60 were used throughout the work. Cell viability and vital cell count were assessed respectively, by the MTT assay and Trypan Blue staining. Cytotoxic properties and evaluation of viral DNA production by agarose gel electrophoresis were performed according to standard protocols. Results Our results show a clear dose dependent both cytotoxic and antiviral effect of resveratrol respectively at high and low concentrations. The cytotoxic action is exerted towards a stabilized cell-line (3T6 as well as a tumor-line (HL60. Furthermore the antiviral action is evident after the phase of virion entry, therefore data suggest that the drug acts during the synthesis of the viral progeny DNA. Conclusion Resveratrol is

  1. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  2. Calcium-binding proteins in skeletal muscles of the mdx mice: potential role in the pathogenesis of Duchenne muscular dystrophy.

    Science.gov (United States)

    Pertille, Adriana; de Carvalho, Candida Luiza Tonizza; Matsumura, Cintia Yuri; Neto, Humberto Santo; Marques, Maria Julia

    2010-02-01

    Duchenne muscular dystrophy is one of the most common hereditary diseases. Abnormal ion handling renders dystrophic muscle fibers more susceptible to necrosis and a rise in intracellular calcium is an important initiating event in dystrophic muscle pathogenesis. In the mdx mice, muscles are affected with different intensities and some muscles are spared. We investigated the levels of the calcium-binding proteins calsequestrin and calmodulin in the non-spared axial (sternomastoid and diaphragm), limb (tibialis anterior and soleus), cardiac and in the spared extraocular muscles (EOM) of control and mdx mice. Immunoblotting analysis showed a significant increase of the proteins in the spared mdx EOM and a significant decrease in the most affected diaphragm. Both proteins were comparable to the cardiac muscle controls. In limb and sternomastoid muscles, calmodulin and calsequestrin were affected differently. These results suggest that differential levels of the calcium-handling proteins may be involved in the pathogenesis of myonecrosis in mdx muscles. Understanding the signaling mechanisms involving Ca(2+)-calmodulin activation and calsequestrin expression may be a valuable way to develop new therapeutic approaches to the dystrophinopaties.

  3. Fluctuating vs. continuous exposure to H₂O₂: the effects on mitochondrial membrane potential, intracellular calcium, and NF-κB in astroglia.

    Directory of Open Access Journals (Sweden)

    Aleksandar Bajić

    Full Text Available The effects of H2O2 are widely studied in cell cultures and other in vitro systems. However, such investigations are performed with the assumption that H2O2 concentration is constant, which may not properly reflect in vivo settings, particularly in redox-turbulent microenvironments such as mitochondria. Here we introduced and tested a novel concept of fluctuating oxidative stress. We treated C6 astroglial cells and primary astrocytes with H2O2, using three regimes of exposure - continuous, as well as fluctuating at low or high rate, and evaluated mitochondrial membrane potential and other parameters of mitochondrial activity - respiration, reducing capacity, and superoxide production, as well as intracellular ATP, intracellular calcium, and NF-κB activation. When compared to continuous exposure, fluctuating H2O2 induced a pronounced hyperpolarization in mitochondria, whereas the activity of electron transport chain appears not to be significantly affected. H2O2 provoked a decrease of ATP level and an increase of intracellular calcium concentration, independently of the regime of treatment. However, fluctuating H2O2 induced a specific pattern of large-amplitude fluctuations of calcium concentration. An impact on NF-κB activation was observed for high rate fluctuations, whereas continuous and low rate fluctuating oxidative stress did not provoke significant effects. Presented results outline the (pathophysiological relevance of redox fluctuations.

  4. Surface remineralization potential of casein phosphopeptide-amorphous calcium phosphate on enamel eroded by cola-drinks: An in-situ model study

    Directory of Open Access Journals (Sweden)

    Navneet Grewal

    2013-01-01

    Full Text Available Aim: The aim of this study was to investigate the remineralization potential of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP on enamel eroded by cola drinks. Subjects and Methods: A total of 30 healthy subjects were selected from a random sample of 1200 children and divided into two groups of 15 each wherein calcium and phosphorus analyses and scanning electron microscope (SEM analysis was carried out to investigate the remineralization of enamel surface. A total of 30 non-carious premolar teeth were selected from the human tooth bank (HTB to prepare the in-situ appliance. Three enamel slabs were prepared from the same. One enamel slab was used to obtain baseline values and the other two were embedded into the upper palatal appliances prepared on the subjects′ maxillary working model. The subjects wore the appliance after which 30 ml cola drink exposure was given. After 15 days, the slabs were removed and subjected to respective analysis. Statistical Analysis Used: Means of all the readings of soluble calcium and phosphorous levels at baseline,post cola-drink exposure and post cpp-acp application were subjected to statistical analysis SPSS11.5 version.Comparison within groups and between groups was carried out using ANOVA and F-values at 1% level of significance. Results: Decrease in calcium solubility of enamel in the CPP-ACP application group as compared to post-cola drink exposure group (P < 0.05 was seen. Distinctive change in surface topography of enamel in the post-CPP-ACP application group as compared to post-cola drink exposure group was observed. Conclusion: CPP-ACP significantly promoted remineralization of enamel eroded by cola drinks as revealed by significant morphological changes seen in SEM magnification and spectrophotometric analyses.

  5. <strong>Pervasive strong>technology> in the strong>classroom>

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel; Majgaard, Gunver

    2010-01-01

    learning not only from the individual pupils point of view, but also as to how the Octopus can focus or align the entire classroom towards learning – exploring this observation we will touch on the value of social micro domains as places of articulation and on the importance of a close connection between......This paper discusses learning potentials of pervasive technology when used in the classroom setting. Explicitly this paper uses the research and development project “Octopus” as its point of departure and as the foundation for reflections on how learning takes place in intelligent contexts. We...... points toward the crucial topic which many pupils’ are faced with – meaning and making sense of the presented learning content. The pervasive and tangible design of the Octopus seems to offer a solution to or a learning design that can create a close or perhaps simultaneous connection between abstract...

  6. Potentiation of Opioid-Induced Analgesia by L-Type Calcium Channel Blockers: Need for Clinical Trial in Cancer Pain

    Directory of Open Access Journals (Sweden)

    S Basu Ray

    2008-01-01

    Full Text Available Previous reports indicate that the analgesic effect of opioids is due to both closure of specific voltage-gated calcium channels (N- and P/Q-types and opening of G protein-coupled inwardly rectifying potassium channels (GIRKs in neurons concerned with transmission of pain. However, administration of opioids leads to unacceptable levels of side effects, particularly at high doses. Thus, current research is directed towards simultaneously targeting other voltage-gated calcium channels (VGCCs like the L-type VGCCs or even other cell signaling mechanisms, which would aug-ment opioid-mediated analgesic effect without a concurrent increase in the side effects. Unfortunately, the results of these studies are often conflicting considering the different experimental paradigms (variable drug selection and their doses and also the specific pain test used for studying analgesia adopted by researchers. The present review focuses on some of the interesting findings regarding the analgesic effect of Opioids + L-VGCC blockers and suggests that time has come for a clinical trial of this combination of drugs in the treatment of cancer pain.

  7. Comparison of Four Strong Acids on the Precipitation Potential of Gypsum in Brines During Distillation of Pretreated, Augmented Urine

    Science.gov (United States)

    Muirhead, Dean; Carrier, Christopher

    2012-01-01

    In this study, three different mineral acids were substituted for sulfuric acid (H2SO4) in the urine stabilizer solution to eliminate the excess of sulfate ions in pretreated urine and assess the impact on maximum water recovery to avoid precipitation of minerals during distillation. The study evaluated replacing 98% sulfuric acid with 85% phosphoric acid (H3PO4), 37% hydrochloric acid (HCl), or 70% nitric acid (HNO3). The effect of lowering the oxidizer concentration in the pretreatment formulation also was studied. This paper summarizes the test results, defines candidate formulations for further study, and specifies the injection masses required to stabilize urine and minimize the risk of mineral precipitation during distillation. In the first test with a brine ersatz acidified with different acids, the solubility of calcium in gypsum saturated solutions was measured. The solubility of gypsum was doubled in the brines acidified with the alternative acids compared to sulfuric acid. In a second series of tests, the alternative acid pretreatment concentrations were effective at preventing precipitation of gypsum and other minerals up to 85% water recovery from 95th-percentile pretreated, augmented urine. Based on test results, phosphoric acid is recommended as the safest alternative to sulfuric acid. It also is recommended that the injected mass concentration of chromium trioxide solution be reduced by 75% to minimize liquid resupply mass by about 50%, reduce toxicity of brines, and reduce the concentration of organic acids in distillate. The new stabilizer solution formulations and required doses to stabilize urine and prevent precipitation of minerals up to 85% water recovery are given. The formulations in this study were tested on a limited number of artificially augmented urine batches collected from employees at the Johnson Space Center (JSC). This study successfully demonstrated that the desired physical and chemical stability of pretreated urine and brines

  8. Calcium-dependence of Donnan potentials in glycerinated rabbit psoas muscle in rigor, at and beyond filament overlap; a role for titin in the contractile process

    DEFF Research Database (Denmark)

    Coomber, S J; Bartels, E M; Elliott, G F

    2011-01-01

    contracts and breaks the microelectrode. Therefore the rigor state was studied. There is no reason to suppose a priori that a similar voltage switch does not occur during contraction, however. Calcium dependence is still apparent in muscles stretched beyond overlap (sarcomere length>3.8 μm) and is also seen...... mediated by the titin kinase in the M-line region and may involve the extensible PEVK region of titin. There is great interest in the electric charge on proteins in muscle within the structural system. We suggest how changes in these charges may control the calcium activation process. We also suggest some......In glycerinated rabbit psoas muscle, Donnan potential measurements demonstrated that the net electric charge on the actin-myosin matrix undergoes a sharp switch-like transition at pCa(50) = 6.8. The potentials are 2 mV less negative at the lower pCa(2+) (P <0.001). If ATP is present, the muscle...

  9. In vitro and in vivo evidence for an inflammatory role of the calcium channel TRPV4 in lung epithelium: Potential involvement in cystic fibrosis.

    Science.gov (United States)

    Henry, Clémence O; Dalloneau, Emilie; Pérez-Berezo, Maria-Teresa; Plata, Cristina; Wu, Yongzheng; Guillon, Antoine; Morello, Eric; Aimar, Rose-France; Potier-Cartereau, Marie; Esnard, Frédéric; Coraux, Christelle; Börnchen, Christian; Kiefmann, Rainer; Vandier, Christophe; Touqui, Lhousseine; Valverde, Miguel A; Cenac, Nicolas; Si-Tahar, Mustapha

    2016-09-01

    Cystic fibrosis (CF) is an inherited disease associated with chronic severe lung inflammation, leading to premature death. To develop innovative anti-inflammatory treatments, we need to characterize new cellular and molecular components contributing to the mechanisms of lung inflammation. Here, we focused on the potential role of "transient receptor potential vanilloid-4" (TRPV4), a nonselective calcium channel. We used both in vitro and in vivo approaches to demonstrate that TRPV4 expressed in airway epithelial cells triggers the secretion of major proinflammatory mediators such as chemokines and biologically active lipids, as well as a neutrophil recruitment in lung tissues. We characterized the contribution of cytosolic phospholipase A2, MAPKs, and NF-κB in TRPV4-dependent signaling. We also showed that 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids, i.e., four natural lipid-based TRPV4 agonists, are present in expectorations of CF patients. Also, TRPV4-induced calcium mobilization and inflammatory responses were enhanced in cystic fibrosis transmembrane conductance regulator-deficient cellular and animal models, suggesting that TRPV4 is a promising target for the development of new anti-inflammatory treatments for diseases such as CF. PMID:27496898

  10. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  11. In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering.

    Science.gov (United States)

    Tanase, C E; Sartoris, A; Popa, M I; Verestiuc, L; Unger, R E; Kirkpatrick, C J

    2013-04-01

    This work reports on the physicochemical properties and in vitro cytotoxicity assessment of chitosan-calcium phosphate (Cs-CP) scaffolds for bone tissue engineering, which were synthesized by a novel biomimetic co-precipitation method. X-ray diffraction (XRD) along with scanning electron microscopy (SEM) analysis confirmed the porous morphology of the scaffolds and the amorphous nature of the inorganic phase with different crystallite sizes and the formation of various forms of calcium phosphate. Compressive mechanical testing revealed that the Young's modulus of the biomaterials is in the range of human trabecular bone. In vitro tests were performed on the biomaterials for up to 14 days to study the behavior of the osteoblast-like human cell line (MG63), primary human osteoblasts (HOS) and human dermal microvascular endothelial cells (HDMEC). The cytotoxicity was evaluated by the MTS assay for cell metabolism and the detection of membrane integrity (lactate dehydrogenase-LDH release). An expression of the vascular endothelial growth factor (VEGF) in the cell supernatants was quantified by ELISA. Cell viability gave values close to untreated controls for MG63 and HOS, while in the case of HDMEC the viability after 2 weeks in the cell culture was between 80-90%. The cytotoxicity induced by the Cs-CP scaffolds on MG63, HOS and HDMEC in vitro was evaluated by the amount of LDH released, which is a sensitive and accurate marker for cellular toxicity. The increased levels of VEGF obtained in the osteoblast culture highlights its important role in the regulation of vascularization and bone remodeling. The biological responses of the Cs-CP scaffolds demonstrate a similar proliferation and differentiation characteristics of the cells comparable to the controls. These results reveal that biomimetic Cs-CP composite scaffolds are promising biomaterials for bone tissue engineering; their in vivo response remains to be tested. PMID:23343569

  12. In vitro evaluation of biomimetic chitosan–calcium phosphate scaffolds with potential application in bone tissue engineering

    International Nuclear Information System (INIS)

    This work reports on the physicochemical properties and in vitro cytotoxicity assessment of chitosan–calcium phosphate (Cs–CP) scaffolds for bone tissue engineering, which were synthesized by a novel biomimetic co-precipitation method. X-ray diffraction (XRD) along with scanning electron microscopy (SEM) analysis confirmed the porous morphology of the scaffolds and the amorphous nature of the inorganic phase with different crystallite sizes and the formation of various forms of calcium phosphate. Compressive mechanical testing revealed that the Young's modulus of the biomaterials is in the range of human trabecular bone. In vitro tests were performed on the biomaterials for up to 14 days to study the behavior of the osteoblast-like human cell line (MG63), primary human osteoblasts (HOS) and human dermal microvascular endothelial cells (HDMEC). The cytotoxicity was evaluated by the MTS assay for cell metabolism and the detection of membrane integrity (lactate dehydrogenase-LDH release). An expression of the vascular endothelial growth factor (VEGF) in the cell supernatants was quantified by ELISA. Cell viability gave values close to untreated controls for MG63 and HOS, while in the case of HDMEC the viability after 2 weeks in the cell culture was between 80–90%. The cytotoxicity induced by the Cs–CP scaffolds on MG63, HOS and HDMEC in vitro was evaluated by the amount of LDH released, which is a sensitive and accurate marker for cellular toxicity. The increased levels of VEGF obtained in the osteoblast culture highlights its important role in the regulation of vascularization and bone remodeling. The biological responses of the Cs–CP scaffolds demonstrate a similar proliferation and differentiation characteristics of the cells comparable to the controls. These results reveal that biomimetic Cs–CP composite scaffolds are promising biomaterials for bone tissue engineering; their in vivo response remains to be tested. (paper)

  13. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  14. Detectability of lupine seeds by ELISA and PCR may be strongly influenced by potential differences between cultivars.

    Science.gov (United States)

    Röder, Martin; Kleiner, Kornelia; Sachs, Andrea; Keil, Nicole; Holzhauser, Thomas

    2013-06-26

    Accurate methods for allergen detection are needed for the verification of allergen labeling and the avoidance of hidden allergens. But systematic data on the influence of different cultivars of allergenic crop species on their detectability in enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are lacking. As one example, seeds of 14 different cultivars of lupine (Lupinus albus, Lupinus angustifolius, Lupinus luteus) were investigated for total protein according to a Kjeldahl method, and for their relative quantitative detectability in three commercial lupine-specific ELISA tests and four lupine-specific PCR methods. Total Kjeldahl nitrogen allowed an accurate quantification of total protein. Relative differences in quantitative response between cultivars of 390-5050% and 480-13,600% were observed between ELISA kits and PCR methods, respectively. Hence, quantitative results of selected ELISA and PCR methods may be strongly influenced by the examined lupine cultivar.

  15. Nuclear magnetic resonance Knight shifts in the presence of strong spin-orbit and crystal-field potentials

    Science.gov (United States)

    Nisson, D. M.; Curro, N. J.

    2016-07-01

    In recent years there has been increasing interest in materials with strong spin-orbit coupling (SOC). Nuclear magnetic resonance is a valuable microscopic probe of such systems because of the hyperfine interactions between the nuclear spins and the electron degrees of freedom. In materials with weak SOC the NMR Knight shift contains two contributions: one from the electron orbital susceptibility and the other from the electron spin susceptibility. These contributions can be separated by plotting the Knight shift versus the bulk susceptibility and extracting the slope and intercept. Here we examine the case where the SOC is non-negligible, in which case the slope and intercept are no longer simply related to these two contributions. These results have important implications for NMR studies of heavy fermions, as well as 4d and 5d systems.

  16. Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro

    DEFF Research Database (Denmark)

    Rekling, J C; Feldman, J L

    1997-01-01

    or long-lasting plateau potentials (>1 min) with a constant firing pattern. Depolarizing or hyperpolarizing current pulses elicited voltage-dependent afterdepolarizations or plateau potentials lasting a few seconds to several minutes. Constant spike activity accompanied the long-lasting plateau potentials...

  17. Microscopic models for proton transfer in water and strongly hydrogen-bonded complexes with a single-well proton potential

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2004-01-01

    of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a "gated" shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor......A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. "Structural diffusion" of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation...

  18. Evaluation of the toxic potential of calcium carbide in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9).

    Science.gov (United States)

    Danish, Mohd; Fatima, Ambreen; Khanam, Saba; Jyoti, Smita; Rahul; Ali, Fahad; Naz, Falaq; Siddique, Yasir Hasan

    2015-11-01

    In the present study the toxic potential of calcium carbide (CaC2) was studied on the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9). The third instar larvae were exposed to 2, 4, 8, 16 and 32×10(-3)g/ml of CaC2 in diet for 24h. The results reveal that the dose 2×10(-3)g/ml was not toxic but the remaining doses showed a dose dependent significant increase in the hsp70 expression, β-galactosidase activity, tissue damage, oxidative stress markers (lipid peroxidation and protein carbonyl content), glutathione-S-transferase activity, expression of Caspase 3 and 9, apoptotic index and DNA damage (midgut cells). A significant reduction as compared to control group in total protein, glutathione content and acetylcholinesterase activity was also observed. The Inductively Coupled Plasma Atomic Emission Spectroscopy analysis (ICPAES) reveals the presence of copper, iron, sodium, aluminium, manganese, calcium, nickel and mercury. The toxic effects of CaC2 in the present study may be attributed to the impurities present in it.

  19. Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature

    KAUST Repository

    Bargiela, Rafael

    2015-06-29

    Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.

  20. Calcium signaling in taste cells.

    Science.gov (United States)

    Medler, Kathryn F

    2015-09-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  1. Teaching Calcium-Induced Calcium Release in Cardiomyocytes Using a Classic Paper by Fabiato

    Science.gov (United States)

    Liang, Willmann

    2008-01-01

    This teaching paper utilizes the materials presented by Dr. Fabiato in his review article entitled "Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum." In the review, supporting evidence of calcium-induced calcium release (CICR) is presented. Data concerning potential objections to the CICR theory are discussed as well. In…

  2. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Poulet, Claire; Diness, Jonas Goldin;

    2014-01-01

    (+) currents by ∼15% and prolonged action potential duration (APD), but no effect was observed in myocytes from AF patients. In trabeculae muscle strips from right atrial appendages of SR patients, both compounds increased APD and effective refractory period, and depolarized the resting membrane potential...

  3. Aram Chaos: a Long Lived Subsurface Aqueous Environment with Strong Water Resources Potential for Human Missions on Mars

    Science.gov (United States)

    Sibille, L.; Mueller, R.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.

    2015-01-01

    Aram Chaos, Mars is a crater 280 kilometers in diameter with elevations circa. minus 2 to minus 3 kilometers below datum that provides a compelling landing site for future human explorers as it features multiple scientific regions of interest (ROI) paired with a rich extensible Resource ROI that features poly-hydrated sulfates [1]. The geologic history of Aram Chaos suggests several past episodes of groundwater recharge and infilling by liquid water, ice, and other materials [1-3]. The creation of the fractured region with no known terrestrial equivalent may have been caused by melting of deep ice reservoirs that triggered the collapse of terrain followed by catastrophic water outflows over the region. Aram Chaos is of particular scientific interest because it is hypothesized that the chaotic terrain may be the source of water that contributed to the creation of nearby valleys such as Ares Vallis flowing toward Chryse Planitia. The liquid water was likely sourced as groundwater and therefore represents water derived from a protected subsurface environment making it a compelling astrobiological site [2]. The past history of water is also represented by high concentrations of hematite, Fe-oxyhydroxides, mono-hydrated and poly-hydrated sulfates [1, 2]. Poly-hydrated sulfates are likely to contain abundant water that evolves at temperatures below 500 degrees Centigrade thus conferring Aram Chaos a potentially high value for early in-situ resource utilization (ISRU) [4]. The geologic history also calls for future prospecting of deep ice deposits and possibly liquid water via deep drilling. The most recent stratigraphic units in the central part of Aram Chaos are not fractured, and are part of a dome-shaped formation that features bright, poorly-consolidated material that contains both hydrated sulfates and ferric oxides according to OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) data [5]. These surface material characteristics are

  4. Broad-Spectrum Antimicrobial Effects of Photocatalysis Using Titanium Dioxide Nanoparticles Are Strongly Potentiated by Addition of Potassium Iodide.

    Science.gov (United States)

    Huang, Ying-Ying; Choi, Hwanjun; Kushida, Yu; Bhayana, Brijesh; Wang, Yuguang; Hamblin, Michael R

    2016-09-01

    Photocatalysis describes the excitation of titanium dioxide nanoparticles (a wide-band gap semiconductor) by UVA light to produce reactive oxygen species (ROS) that can destroy many organic molecules. This photocatalysis process is used for environmental remediation, while antimicrobial photocatalysis can kill many classes of microorganisms and can be used to sterilize water and surfaces and possibly to treat infections. Here we show that addition of the nontoxic inorganic salt potassium iodide to TiO2 (P25) excited by UVA potentiated the killing of Gram-positive bacteria, Gram-negative bacteria, and fungi by up to 6 logs. The microbial killing depended on the concentration of TiO2, the fluence of UVA light, and the concentration of KI (the best effect was at 100 mM). There was formation of long-lived antimicrobial species (probably hypoiodite and iodine) in the reaction mixture (detected by adding bacteria after light), but short-lived antibacterial reactive species (bacteria present during light) produced more killing. Fluorescent probes for ROS (hydroxyl radical and singlet oxygen) were quenched by iodide. Tri-iodide (which has a peak at 350 nm and a blue product with starch) was produced by TiO2-UVA-KI but was much reduced when methicillin-resistant Staphylococcus aureus (MRSA) cells were also present. The model tyrosine substrate N-acetyl tyrosine ethyl ester was iodinated in a light dose-dependent manner. We conclude that UVA-excited TiO2 in the presence of iodide produces reactive iodine intermediates during illumination that kill microbial cells and long-lived oxidized iodine products that kill after light has ended. PMID:27381399

  5. Broad-Spectrum Antimicrobial Effects of Photocatalysis Using Titanium Dioxide Nanoparticles Are Strongly Potentiated by Addition of Potassium Iodide.

    Science.gov (United States)

    Huang, Ying-Ying; Choi, Hwanjun; Kushida, Yu; Bhayana, Brijesh; Wang, Yuguang; Hamblin, Michael R

    2016-09-01

    Photocatalysis describes the excitation of titanium dioxide nanoparticles (a wide-band gap semiconductor) by UVA light to produce reactive oxygen species (ROS) that can destroy many organic molecules. This photocatalysis process is used for environmental remediation, while antimicrobial photocatalysis can kill many classes of microorganisms and can be used to sterilize water and surfaces and possibly to treat infections. Here we show that addition of the nontoxic inorganic salt potassium iodide to TiO2 (P25) excited by UVA potentiated the killing of Gram-positive bacteria, Gram-negative bacteria, and fungi by up to 6 logs. The microbial killing depended on the concentration of TiO2, the fluence of UVA light, and the concentration of KI (the best effect was at 100 mM). There was formation of long-lived antimicrobial species (probably hypoiodite and iodine) in the reaction mixture (detected by adding bacteria after light), but short-lived antibacterial reactive species (bacteria present during light) produced more killing. Fluorescent probes for ROS (hydroxyl radical and singlet oxygen) were quenched by iodide. Tri-iodide (which has a peak at 350 nm and a blue product with starch) was produced by TiO2-UVA-KI but was much reduced when methicillin-resistant Staphylococcus aureus (MRSA) cells were also present. The model tyrosine substrate N-acetyl tyrosine ethyl ester was iodinated in a light dose-dependent manner. We conclude that UVA-excited TiO2 in the presence of iodide produces reactive iodine intermediates during illumination that kill microbial cells and long-lived oxidized iodine products that kill after light has ended.

  6. Calcium/calmodulin-dependent kinase IV contributes to translation-dependent early synaptic potentiation in the anterior cingulate cortex of adult mice

    Directory of Open Access Journals (Sweden)

    Toyoda Hiroki

    2010-09-01

    Full Text Available Abstract Calcium/calmodulin-dependent kinase IV (CaMKIV phosphorylates the major transcription factor, cyclic AMP-responsive element binding protein (CREB, which plays key roles in synaptic plasticity and memory consolidation. Our previous study showed that long-term potentiation (LTP in the anterior cingulate cortex (ACC was significantly enhanced in transgenic mice overexpressing CaMKIV. Considering that the CaMKIV-CREB pathway plays a central role in the protein synthesis-dependent LTP, it is possible that upregulation of CaMKIV contributes to enhancement of LTP by promoting protein synthesis. To test this possibility, we examined the effects of transcription and translation inhibitors on synaptic potentiation induced by pairing of synaptic activity with postsynaptic depolarization (paired training in ACC pyramidal neurons of wild-type and CaMKIV transgenic mice. We found that synaptic potentiation induced by paired training was partially inhibited by transcription or translation inhibitors both in wild-type and CaMKIV transgenic mice; the extent of inhibition was markedly larger in the CaMKIV transgenic mice than in the wild-type mice. Biochemical and immunohistochemical studies revealed that CaMKIV was distributed in the membrane, cytosol and nucleus of ACC neurons. Our results reveal in the first time a transcription- and translation-dependent component of early synaptic LTP in adult ACC synapses, and demonstrate that CaMKIV enhances early synaptic potentiation by activating new protein synthesis.

  7. Scattering lengths of calcium and barium isotopes

    OpenAIRE

    Dammalapati, U.; Willmann, L.; Knoop, S.

    2011-01-01

    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba), in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed 40Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that ...

  8. Manipulation of dietary calcium concentration to potentiate changes in tenderness of beef from heifers supplemented with zilpaterol hydrochloride.

    Science.gov (United States)

    Van Bibber-Krueger, C L; Miller, K A; Drouillard, J S

    2015-04-01

    Dietary Ca concentrations were manipulated during supplementation of zilpaterol hydrochloride (ZH) to evaluate impact on feedlot performance, carcass characteristics, and beef tenderness using 96 heifers (BW 392 kg ± 3.2). We hypothesized that temporary depletion followed by repletion of dietary Ca before harvest would increase intracellular Ca concentrations, thus stimulating postmortem activity of Ca-dependent proteases to effect changes in tenderness. Heifers were stratified by initial BW and randomly assigned, within strata (block), to treatments consisting of a finishing diet in which Ca was added in the form of limestone (+Ca) or removed (-Ca) during ZH supplementation. Cattle were fed a common diet, including limestone, before ZH supplementation, and 28 d before slaughter, ZH was added to the diet with and without supplemental Ca. Calcium content of the diets during ZH supplementation was 0.74% or 0.19% (diet DM) for +Ca and -Ca, respectively. Zilpaterol hydrochloride was fed for 25 d then removed from the diet 3 d before harvest. The final 3 d before harvest, all cattle were fed Ca at 0.74% of diet DM. Heifers were housed in concrete-surfaced pens with 8 animals/pen (6 pens/treatment). At the end of the finishing phase, animals were weighed and transported to an abattoir in Holcomb, KS. Severity of liver abscesses and HCW were collected the day of harvest, and after 48 h of refrigeration, USDA yield and quality grades, KPH, LM area, and 12th-rib subcutaneous fat thickness were determined. Boneless loin sections were also collected for Warner-Bratzler shear force determination. Removal of Ca did not affect Warner-Bratzler shear force values (P = 0.64). In addition, ADG, DMI, final BW, and feed efficiency were unaffected by treatment (P > 0.05). Carcass measurements also were unaffected by the temporary decrease in dietary Ca (P > 0.05). In conclusion, temporary depletion of dietary Ca during ZH supplementation did not alter beef tenderness, live animal

  9. Tsunami potential assessment based on rupture zones, focal mechanisms and repeat times of strong earthquakes in the major Atlantic-Mediterranean seismic fracture zone

    Science.gov (United States)

    Agalos, Apostolos; Papadopoulos, Gerassimos A.; Kijko, Andrzej; Papageorgiou, Antonia; Smit, Ansie; Triantafyllou, Ioanna

    2016-04-01

    In the major Atlantic-Mediterranean seismic fracture zone, extended from Azores islands in the west to the easternmost Mediterranean Sea in the east, including the Marmara and Black Seas, a number of 22 tsunamigenic zones have been determined from historical and instrumental tsunami documentation. Although some tsunamis were produced by volcanic activity or landslides, the majority of them was generated by strong earthquakes. Since the generation of seismic tsunamis depends on several factors, like the earthquake size, focal depth and focal mechanism, the study of such parameters is of particular importance for the assessment of the potential for the generation of future tsunamis. However, one may not rule out the possibility for tsunami generation in areas outside of the 22 zones determined so far. For the Atlantic-Mediterranean seismic fracture zone we have compiled a catalogue of strong, potentially tsunamigenic (focal depth less than 100 km) historical earthquakes from various data bases and other sources. The lateral areas of rupture zones of these earthquakes were determined. Rupture zone is the area where the strain after the earthquake has dropped substantially with respect the strain before the earthquake. Aftershock areas were assumed to determine areas of rupture zones for instrumental earthquakes. For historical earthquakes macroseismic criteria were used such as spots of higher-degree seismic intensity and of important ground failures. For the period of instrumental seismicity, focal mechanism solutions from CMT, EMMA and other data bases were selected for strong earthquakes. From the geographical distribution of seismic rupture zones and the corresponding focal mechanisms in the entire Atlantic-Mediterranean seismic fracture zone we determined potentially tsunamigenic zones regardless they are known to have produced seismic tsunamis in the past or not. An attempt has been made to calculate in each one of such zones the repeat times of strong

  10. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    Science.gov (United States)

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  11. Electronic structure of UO2.12 calculated in the coherent potential approximation taking into account strong electron correlations and spin-orbit coupling

    Science.gov (United States)

    Korotin, M. A.; Pchelkina, Z. V.; Skorikov, N. A.; Efremov, A. V.; Anisimov, V. I.

    2016-07-01

    Based on the coherent potential approximation, the method of calculating the electronic structure of nonstoichiometric and hyperstoichiometric compounds with strong electron correlations and spin-orbit coupling has been developed. This method can be used to study both substitutional and interstitial impurities, which is demonstrated based on the example of the hyperstoichiometric UO2.12 compound. The influence of the coherent potential on the electronic structure of compounds has been shown for the nonstoichiometric UO1.87 containing vacancies in the oxygen sublattice as substitutional impurities, for stoichiometric UO2 containing vacancies in the oxygen sublattice and oxygen as an interstitial impurity, and for hyperstoichiometric UO2.12 with excess oxygen also as interstitial impurity. In the model of the uniform distribution of impurities, which forms the basis of the coherent potential approximation, the energy spectrum of UO2.12 has a metal-like character.

  12. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  13. Calcium Calculator

    Science.gov (United States)

    ... Latvia - Lebanon - Libya - Lithuania - Luxembourg - Macedonia, Republic of - Malaysia - Malta - Mexico - Moldova - Morocco - Netherlands - New Zealand - Nigeria - ... and Statistics Popular content Calcium content of common foods What is Osteoporosis? The Board Introduction to Bone ...

  14. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  15. Remineralization potential of fluoride and amorphous calcium phosphate-casein phospho peptide on enamel lesions: An in vitro comparative evaluation

    Directory of Open Access Journals (Sweden)

    Lata S

    2010-01-01

    Full Text Available Aim: This in vitro study was conducted on enamel blocks of human premolars with the aim of evaluating the remineralization potential of fluoride and ACP-CPP and the combination of ACP-CPP and fluoride on early enamel lesions. Materials and Methods: Fifteen intact carious free human premolars were selected. The coronal part of each tooth was sectioned into four parts to make 4 enamel blocks. The baseline SMH (surface microhardness was measured for all the enamel specimens using Vickers microhardness (VHN testing machine. Artificial enamel carious lesions were created by inserting the specimens in demineralization solution for 3 consecutive days. The SMH of the demineralised specimens was evaluated. Then the four enamel sections of each tooth were subjected to various surface treatments , i.e. Group 1- Fluoride varnish, Group 2- ACP-CPP cream, Group 3- Fluoride + ACP-CPP & Group 4- Control (No surface treatment. A caries progression test (pH cycling was carried out, which consisted of alternative demineralization (3hours and remineralization with artificial saliva (21 hours for five consecutive days. After pH cycling again SMH of each specimen was assessed to evaluate the remineralization potential of each surface treatment agent. Then, to asses the remineralization potential of various surface treatments at the subsurface level, each enamel specimen was longitudinally sectioned through the centre to expose the subsurface enamel area. Cross-sectional microhardness (CSMH was evaluated to assess any subsurface remineralization Results: Statistical analysis using one-way ANOVA followed by multiple comparisons test was applied to detect significant differences at P ≤ 0.05 levels between various surface treatments at different phases. Conclusions: With in the limits, the present study concludes that; ACP-CPP cream is effective, but to a lesser extent than fluoride in remineralizing early enamel caries at surface level. Combination of fluoride and ACP

  16. Strong decoherence

    CERN Document Server

    Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James B

    1997-01-01

    We introduce a condition for the strong decoherence of a set of alternative histories of a closed quantum-mechanical system such as the universe. The condition applies, for a pure initial state, to sets of homogeneous histories that are chains of projections, generally branch-dependent. Strong decoherence implies the consistency of probability sum rules but not every set of consistent or even medium decoherent histories is strongly decoherent. Two conditions characterize a strongly decoherent set of histories: (1) At any time the operators that effectively commute with generalized records of history up to that moment provide the pool from which --- with suitable adjustment for elapsed time --- the chains of projections extending history to the future may be drawn. (2) Under the adjustment process, generalized record operators acting on the initial state of the universe are approximately unchanged. This expresses the permanence of generalized records. The strong decoherence conditions (1) and (2) guarantee wha...

  17. Calcium-phosphate biomineralization induced by alkaline phosphatase activity in Escherichia coli: localization, kinetics and potential signatures in the fossil record

    Science.gov (United States)

    Cosmidis, Julie; Benzerara, Karim; Guyot, François; Skouri-Panet, Fériel; Duprat, Elodie; Férard, Céline; Guigner, Jean-Michel; Babonneau, Florence; Coelho, Cristina

    2015-12-01

    Bacteria are thought to play an important role in the formation of calcium-phosphate minerals composing marine phosphorites, as supported by the common occurrence of fossil microbes in these rocks. Phosphatase enzymes may play a key role in this process. Indeed, they may increase the supersaturation with respect to Ca-phosphates by releasing orthophosphate ions following hydrolysis of organic phosphorus. However, several questions remain unanswered about the cellular-level mechanisms involved in this model, and its potential signatures in the mineral products. We studied Ca-phosphate precipitation by different strains of Escherichia coli which were genetically modified to differ in the abundance and cellular localization of the alkaline phosphatase (PHO A) produced. The mineral precipitated by either E. coli or purified PHO A was invariably identified as a carbonate-free non-stoichiometric hydroxyapatite. However, the bacterial precipitates could be discriminated from the ones formed by purified PHO A at the nano-scale. PHO A localization was shown to influence the pattern of Ca-phosphate nucleation and growth. Finally, the rate of calcification was proved to be consistent with the PHO A enzyme kinetics. Overall, this study provides mechanistic keys to better understand phosphogenesis in the environment, and experimental references to better interpret the microbial fossil record in phosphorites.

  18. T-Type Calcium Channel: A Privileged Gate for Calcium Entry and Control of Adrenal Steroidogenesis.

    Science.gov (United States)

    Rossier, Michel F

    2016-01-01

    Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression, or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains, and different calcium channels are associated with different functions, as shown by various channelopathies. Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but also reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal, and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis. Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T-type channels

  19. T-type calcium channel: a privileged gate for calcium entry and control of adrenal steroidogenesis

    Directory of Open Access Journals (Sweden)

    Michel Florian Rossier

    2016-05-01

    Full Text Available Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains and different calcium channels are associated with different functions, as shown by various channelopathies.Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis.Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T

  20. Strong Force

    CERN Multimedia

    Without the strong force, there could be no life. The carbon in living matter is synthesised in stars via the strong force. Lighter atomic nuclei become bound together in a process called nuclear fusion. A minor change in this interaction would make life impossible. As its name suggests, the strong force is the most powerful of the 4 forces, yet its sphere of influence is limited to within the atomic nucleus. Indeed it is the strong force that holds together the quarks inside the positively charged protons. Without this glue, the quarks would fly apart repulsed by electromagnetism. In fact, it is impossible to separate 2 quarks : so much energy is needed, that a second pair of quarks is produced. Text for the interactive: Can you pull apart the quarks inside a proton?

  1. Fast kinetics of calcium signaling and sensor design.

    Science.gov (United States)

    Tang, Shen; Reddish, Florence; Zhuo, You; Yang, Jenny J

    2015-08-01

    Fast calcium signaling is regulated by numerous calcium channels exhibiting high spatiotemporal profiles which are currently measured by fluorescent calcium sensors. There is still a strong need to improve the kinetics of genetically encoded calcium indicators (sensors) to capture calcium dynamics in the millisecond time frame. In this review, we summarize several major fast calcium signaling pathways and discuss the recent developments and application of genetically encoded calcium indicators to detect these pathways. A new class of genetically encoded calcium indicators designed with site-directed mutagenesis on the surface of beta-barrel fluorescent proteins to form a pentagonal bipyramidal-like calcium binding domain dramatically accelerates calcium binding kinetics. Furthermore, novel genetically encoded calcium indicators with significantly increased fluorescent lifetime change are advantageous in deep-field imaging with high light-scattering and notable morphology change.

  2. Extracellular calcium (Ca2+(o))-sensing receptor in a murine bone marrow-derived stromal cell line (ST2): potential mediator of the actions of Ca2+(o) on the function of ST2 cells

    Science.gov (United States)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+(o)) homeostasis by mediating the actions of Ca2+(o) on parathyroid gland and kidney. Bone marrow stromal cells support the formation of osteoclasts from their progenitors as well as the growth of hematopoietic stem cells by secreting humoral factors and through cell to cell contact. Stromal cells also have the capacity to differentiate into bone-forming osteoblasts. Bone resorption by osteoclasts probably produces substantial local increases in Ca2+(o) that could provide a signal for stromal cells in the immediate vicinity, leading us to determine whether such stromal cells express the CaR. In this study, we used the murine bone marrow-derived, stromal cell line, ST2. Both immunocytochemistry and Western blot analysis, using an antiserum specific for the CaR, detected CaR protein in ST2 cells. We also identified CaR transcripts in ST2 cells by Northern analysis using a CaR-specific probe and by RT-PCR with CaR-specific primers, followed by nucleotide sequencing of the amplified products. Exposure of ST2 cells to high Ca2+(o) (4.8 mM) or to the polycationic CaR agonists, neomycin (300 microM) or gadolinium (100 microM), stimulated both chemotaxis and DNA synthesis in ST2 cells. Therefore, taken together, our data strongly suggest that the bone marrow-derived stromal cell line, ST2, possesses both CaR protein and messenger RNA that are very similar if not identical to those in parathyroid and kidney. Furthermore, as ST2 cells have the potential to differentiate into osteoblasts, the CaR in stromal cells could participate in bone turnover by stimulating the proliferation and migration of such cells to sites of bone resorption as a result of local, osteoclast-mediated release of Ca2+(o) and, thereafter, initiating bone formation after their differentiation into osteoblasts.

  3. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  4. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  5. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  6. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields

    Science.gov (United States)

    Tanaka, T.

    1994-04-01

    A three-dimensional (3D) high-resolution magnetohydrodynamic (MHD) simulation scheme on an unstructured grid system is developed for inhomogeneous systems, including strong background potential fields. The scheme is based on the finite volume method (FVM) with an upwinding numerical flux by the linearized Riemann solver. Upwindings on an unstructured grid system are realized from the fact that the MHD equations are symmetric with the rotation of the space. The equation system is modified to avoid direct inclusions of the background potential field as a dependent variable, through the use of changed dependent variables. Despite such a change of the equation system, the eigenvectors in the mode-synthesis matrix that are necessary for the evaluation of the upwinding numerical flux vectors can still be written analytically. The eigenvalues of the MHD flux Jacobian matrix that are also necessary for the upwinding calculations are derived from the well-known Alfven, fast and slow, velocities. The calculations of the eigenvectors is done with special care when the wave propagations become parallel or perpendicular to the ambient magnetic field, because degeneration of the eigenvalues occurs in these cases. To obtain a higher order of accuracy, the upwinding flux is extended to the second-order TVD numerical flux in the calculation of FVM, through the MUSCL approach and Van Leer's differentiable limiter. In order to show the efficiency of the above scheme, a numerical example is given for the interaction process of high-beta supersonic plasma flow with the region of a strong dipole field, including magnetized low-beta plasma.

  7. Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. (Communication Research Lab., Tokyo (Japan))

    1994-04-01

    A three-dimensional (3D) high-resolution MHD simulation scheme on an unstructured grid system is developed for inhomogeneous systems, including strong background potential fields. The scheme is based on the finite volume method (FVM) with an upwinding numerical flux by the linearized Riemann solver. Upwinding on an unstructured grid system are realized from the fact that the MHD equations are symmetric with the rotation of the space. The equation system is modified to avoid direct inclusions of the background potential field as a dependent variable, through the use of changed dependent variables. Despite such a change of the equation system, the eigenvectors in the mode-synthesis matrix that are necessary for the evaluation of the upwinding numerical flux vectors can still be written analytically. The eigenvalues of the MHD flux Jacobian matrix that are also necessary for the upwinding calculations are derived from the well-known Alfven, fast and slow, velocities. The calculations of the eigen vectors is done with special care when the wave propagations become parallel or perpendicular to the ambient magnetic field, because degeneration of the eigenvalues occurs in these cases. To obtain a higher order of accuracy, the upwinding flux is extended to the second-order TVD numerical flux in the calculation of FVM, through the MUSCL approach and Van Leer's differential limiter. In order to show the efficiency of the above scheme, a numerical example is given for the interaction process of high-[beta] supersonic plasma flow with the region of a strong dipole field, including magnetized low-[beta] plasma. 16 refs., 5 figs.

  8. Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.

    Science.gov (United States)

    Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang

    2016-01-01

    Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. PMID:26372940

  9. Potential Regions of Strong Land-atmosphere Coupling Based on the S2S Project Database: Implications for the Indian Summer Monsoon Rainfall Variability

    Science.gov (United States)

    Halder, S.; Dirmeyer, P.; Cash, B. A.; Adams, J. A.

    2015-12-01

    Advancing the understanding of land-ocean-atmosphere coupled processes and improving the prediction on the sub-seasonal to seasonal (S2S) time scale is important for several sectors such as agriculture, health, disaster management etc. The multi-model S2S database provides an ideal test bed for inter-comparison of model performance in this time scale and improving the understanding of coupled processes. Soil moisture and snow cover have been recognized as potential sources of predictability for temperature and precipitation on this time scale. They can play a crucial role through better initialization and improved representation of land surface processes. In this study, we focus on the identification of potential regions of strong land-atmosphere coupling during March-April-May (MAM) and June-July-August (JJA). A quantification of the land-atmosphere coupling strength in the models is also made on the basis of several coupling indices. Comparison with earlier studies helps us identify the regions where biases in the terrestrial and/or atmospheric segments may affect the overall land-atmosphere coupling strength in individual models. Better representation of land surface processes and accurate initialization of the land surface states during MAM has important implications for variability of Indian summer monsoon rainfall on sub-seasonal time scales, which is also addressed in this study.

  10. Sevoflurane postconditioning alleviates action potential duration shortening and L-type calcium current suppression induced by ischemia/reperfusion injury in rat epicardial myocytes

    Institute of Scientific and Technical Information of China (English)

    GONG Jun-song; YAO Yun-tai; FANG Neng-xin; HUANG Jian; LI Li-huan

    2012-01-01

    Background It has been proved that sevoflurane postconditioning (SpostC) could protect the heart against myocardial ischemia/reperfusion injury,however,there has been few research focused on the electrophysiological effects of SpostC.The objective of the study was to investigate the effects of SpostC on action potential duration (APD) and L-type calcium current (ICa,L) in isolated cardiomyocytes.Methods Langendorff perfused SD rat hearts were randomly assigned to one of the time control (TC),ischemia/reperfusion (I/R,25 minutes of ischemia followed by 30 minutes of reperfusion),and SpostC (postconditioned with 3% sevoflurane) groups.At the end of reperfusion,epicardial myocytes were dissociated enzymatically for patch clamp studies.Results Sevoflurane directly prolonged APD and decreased peak Ica,L densities in epicardial myocytes of the TC group (P<0.05).I/R injury shortened APD and decreased peak Ica,L densities in epicardial myocytes of the I/R group (P<0.05).SpostC prolonged APD and increased peak Ica,L densities in epicardial myocytes exposed to I/R injury (P<0.05).SpostC decreased intracellular reactive oxygen species (ROS) levels,reduced the incidence of ventricular tachycardia and ventricular fibrillation,and decreased reperfusion arrhythmia scores compared with the I/R group (all P<0.05).Conclusions SpostC attenuates APDshortening and ICa,L suppression induced by I/R injury.The regulation of APD and Ica,L by SpostC might be related with intracellular ROS modulation,which contributes to the alleviation of reperfusion ventricular arrhythmia.Chin Med J 2012;125(19):3485-3491

  11. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture, exhausti

  12. In vivo experimental stroke and in vitro organ culture induce similar changes in vasoconstrictor receptors and intracellular calcium handling in rat cerebral arteries

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Waldsee, Roya; Ahnstedt, Hilda;

    2012-01-01

    after stroke. Here, we evaluate changes of ET(B) and 5-HT(1B) receptors, intracellular calcium levels, and calcium channel expression in rat middle cerebral artery (MCA) after focal cerebral ischemia and in vitro organ culture, a proposed model of vasoconstrictor receptor changes after stroke. Rats were....... Intracellular calcium was measured by FURA-2. Expression and contractile functions of ET(B) and 5-HT(1B) receptors were strongly upregulated and slightly downregulated, respectively, 24 h after experimental stroke or organ culture. ET(B) receptor-mediated contraction was mediated by calcium from intracellular...... and extracellular sources, whereas 5-HT(1B) receptor-mediated contraction was solely dependent on extracellular calcium. Organ culture and stroke increased basal intracellular calcium levels in MCA smooth muscle cells and decreased the expression of inositol triphosphate receptor and transient receptor potential...

  13. Evacetrapib: in vitro and clinical disposition, metabolism, excretion, and assessment of drug interaction potential with strong CYP3A and CYP2C8 inhibitors.

    Science.gov (United States)

    Cannady, Ellen A; Wang, Ming-Dauh; Friedrich, Stuart; Rehmel, Jessica L F; Yi, Ping; Small, David S; Zhang, Wei; Suico, Jeffrey G

    2015-10-01

    Evacetrapib is an investigational cholesteryl ester transfer protein inhibitor (CETPi) for reduction of risk of major adverse cardiovascular events in patients with high-risk vascular disease. Understanding evacetrapib disposition, metabolism, and the potential for drug-drug interactions (DDI) may help guide prescribing recommendations. In vitro, evacetrapib metabolism was investigated with a panel of human recombinant cytochromes P450 (CYP). The disposition, metabolism, and excretion of evacetrapib following a single 100-mg oral dose of (14)C-evacetrapib were determined in healthy subjects, and the pharmacokinetics of evacetrapib were evaluated in the presence of strong CYP3A or CYP2C8 inhibitors. In vitro, CYP3A was responsible for about 90% of evacetrapib's CYP-associated clearance, while CYP2C8 accounted for about 10%. In the clinical disposition study, only evacetrapib and two minor metabolites circulated in plasma. Evacetrapib metabolism was extensive. A mean of 93.1% and 2.30% of the dose was excreted in feces and urine, respectively. In clinical DDI studies, the ratios of geometric least squares means for evacetrapib with/without the CYP3A inhibitor ketoconazole were 2.37 for area under the curve (AUC)(0-∞) and 1.94 for C max. There was no significant difference in evacetrapib AUC(0-τ) or C max with/without the CYP2C8 inhibitor gemfibrozil, with ratios of 0.996 and 1.02, respectively. Although in vitro results indicated that both CYP3A and CYP2C8 metabolized evacetrapib, clinical studies confirmed that evacetrapib is primarily metabolized by CYP3A. However, given the modest increase in evacetrapib exposure and robust clinical safety profile to date, there is a low likelihood of clinically relevant DDI with concomitant use of strong CYP3A or CYP2C8 inhibitors. PMID:26516590

  14. Influence of calcium oxalate crystal accumulation on the calcium content of seeds from Medicago truncatula.

    Science.gov (United States)

    Nakata, Paul A

    2012-04-01

    Crystals of calcium oxalate often form in cells adjacent to the vascular bundles in the tissues along the xylem stream. This spatial crystal pattern suggests a role for calcium oxalate formation in regulating calcium transport and partitioning to edible organs such as seeds. To investigate this potential role, microscopic and biochemical comparisons were conducted on the different tissues of Medicago truncatula wild-type and the calcium oxalate defective (cod) 5 which lacks the ability to accumulate prismatic crystals in the cells adjacent to the vascular bundles. Calcium measurements showed that cod5 seeds had more calcium and cod5 pods contained less calcium than the corresponding wild-type tissues. Roots, stems, and leaves from cod5 and wild-type had similar calcium content. Although cod5 was devoid of prismatic crystals, cod5 pods were observed to form druse crystals of calcium oxalate not found in wild-type pods. Taken together these findings suggest a functional role for calcium oxalate formation in regulating calcium transport to the seeds. Regulating calcium uptake at the roots also appeared to be another point of control in determining seed calcium content. Overall, regulating the long distance transport and partitioning of calcium to the seeds appears to be a complex process with multiple points of control. PMID:22325887

  15. Enhancement of the Regenerative Potential of Anorganic Bovine Bone Graft Utilizing a Polyglutamate-Modified BMP2 Peptide with Improved Binding to Calcium-Containing Materials.

    Science.gov (United States)

    Bain, Jennifer L; Bonvallet, Paul P; Abou-Arraj, Ramzi V; Schupbach, Peter; Reddy, Michael S; Bellis, Susan L

    2015-09-01

    Autogenous bone is the gold standard material for bone grafting in craniofacial and orthopedic regenerative medicine. However, due to complications associated with harvesting donor bone, clinicians often use commercial graft materials that may lose their osteoinductivity due to processing. This study was aimed to functionalize one of these materials, anorganic bovine bone (ABB), with osteoinductive peptides to enhance regenerative capacity. Two peptides known to induce osteoblastic differentiation of mesenchymal stem cells were evaluated: (1) DGEA, an amino acid motif within collagen I and (2) a biomimetic peptide derived from bone morphogenic protein 2 (BMP2pep). To achieve directed coupling of the peptides to the graft surface, the peptides were engineered with a heptaglutamate domain (E7), which confers specific binding to calcium moieties within bone mineral. Peptides with the E7 domain exhibited greater anchoring to ABB than unmodified peptides, and E7 peptides were retained on ABB for at least 8 weeks in vivo. To assess the osteoinductive potential of the peptide-conjugated ABB, ectopic bone formation was evaluated utilizing a rat subcutaneous pouch model. ABB conjugated with full-length recombinant BMP2 (rBMP2) was also implanted as a model for current clinical treatments utilizing rBMP2 passively adsorbed to carriers. These studies showed that E7BMP2pep/ABB samples induced more new bone formation than all other peptides, and an equivalent amount of new bone as compared with rBMP2/ABB. A mandibular defect model was also used to examine intrabony healing of peptide-conjugated ABB. Bone healing was monitored at varying time points by positron emission tomography imaging with (18)F-NaF, and it was found that the E7BMP2pep/ABB group had greater bone metabolic activity than all other groups, including rBMP2/ABB. Importantly, animals implanted with rBMP2/ABB exhibited complications, including inflammation and formation of cataract-like lesions in the eye, whereas

  16. Average recurrence intervals of strong earthquakes and potential risky segments along the Taiyuan-Linfen portion of the Shanxi graben system

    Institute of Scientific and Technical Information of China (English)

    易桂喜; 闻学泽; 徐锡伟

    2004-01-01

    Since the great 1303 Hongtong, Shanxi, earthquake of magnitude 8, 700 years have elapsed. To analyze the long-term seismic potential, this paper divides the Taiyuan-Linfen portion of the Shanxi graben system into 5 seismogenic segments. Based on data of historical earthquakes and GPS observation, the authors estimate mean seismic-moment rates and average recurrence intervals of strong earthquakes for the individual segments, and further analyze relative levels of current stress cumulation on the segments based on mapping b-values along the graben system by using the network seismic data for the recent over 30 years. The main result shows that the Linfen basin segment has an estimated mean seismic-moment rate of 2.21×1016 N·m/a to 3.03×1016 N·m/a, and its average recurrence interval for M=7.5 earthquake is estimated to be between 1 560 and 2 140 years. For the Lingshi-Hongtong segment, the estimated average recurrence interval for M=8 earthquakes is between 4 300 and 5 100 years, equivalent to having a mean moment-rate of 2.58×1016 N·m/a to 3.10×1016 N·m/a. The contour map of b-values shows that the two segments of Lingshi-Hongtong and Linfen basin have been being at low or relatively low stress levels, reflecting that since the 1303 M=8 and the 1695 M=7.5 earthquake ruptures, the fault-plane's strengths of the both segments have not been resumed yet. And the other two segments, the Houma and the Jiexiu-Fenyang, have relatively high stress levels, and have been already identified as potential risky segments for the coming earthquakes from the analysis combining with the estimated average recurrence intervals of earthquakes on the both segments.

  17. Calcium measurement methods

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-09-01

    Full Text Available Rightly stressed by prof. Wolfgang Walz in the Preface to the series Neuromethods series, the “careful application of methods is probably the most important step in the process of scientific inquiry”. Thus, I strongly suggest to all those interested in calcium signaling and especially to the new-comers in the hot topic of neuroscience (which has so much space even in science-society debate for its implications in legal issues and in the judge-decision process to take profit from this so well edited book. I am saying this since prof. Verkhratsky and prof. Petersen......

  18. Urinary calcium to creatinine ratio: a potential marker of secondary hyperparathyroidism in patients with vitamin D-dependent rickets type 1A.

    Science.gov (United States)

    Miyai, Kentaro; Onishi, Toshikazu; Kashimada, Kenichi; Hasegawa, Yukihiro

    2015-01-01

    Patients with vitamin D-dependent rickets type 1A (VDDR1A) are usually treated with alfacalcidol, an analog of vitamin D. Around puberty, an increased dose of alfacalcidol is recommended for these patients to avoid hypocalcemia and secondary hyperparathyroidism. However, no indicators of secondary hyperparathyroidism except for PTH are presently known. The aim of this study is to evaluate whether urinary calcium to creatinine ratio (U-Ca/Cr) is useful as a biomarker of secondary hyperparathyroidism in VDDR1A patients in order to determine the proper dose of alfacalcidol. Two brothers with VDDR1A were recruited who had null mutations of CYP27B1 which encodes 1-alpha-hydroxylase of vitamin D. We investigated the relationship between U-Ca/Cr and intact-PTH around puberty when the brothers showed hypocalcemia with secondary hyperparathyroidism. The results were compared to those of five patients with vitamin D deficiency (VDD). As a result, high intact-PTH levels were observed when U-Ca/Cr decreased to less than 0.1 (mg/mg) in both VDDR1A brothers. This relationship was also observed in the VDD patients. However, it is necessary to take into account body calcium status, either in depletion or in excess, to accurately evaluate the relationship between U-Ca/Cr and secondary hyperparathyroidism. First, low U-Ca/Cr was detected in situations with calcium depletion without hyperparathyroidism in the VDDR1A patients. Second, high U-Ca/Cr with hyperparathyroidism could be detected theoretically in a condition of excess calcium supply. In conclusion, a U-Ca/Cr ratio of less than 0.1 (mg/mg) in VDDR1A patients is useful to accurately evaluate calcium depletion and secondary hyperparathyroidism.

  19. Dental erosion potential of orange juice modified by calcium ion%低浓度钙离子对抗橙汁牙釉质酸蚀作用初探

    Institute of Scientific and Technical Information of China (English)

    蔡晨星; 朱玲

    2013-01-01

    目的:探讨添加低浓度钙离子对橙汁酸蚀牙釉质的影响。方法:45颗离体前磨牙随机分为无添加组、钙离子加强组,空白对照组3组,每组15颗,分别浸泡于橙汁、加钙橙汁(0.4 g/L乳酸钙)和去离子水中25 h,每5 h换液;使用电子酸度计测定每组液体pH,使用激光荧光诊断仪对釉质脱矿程度进行定量分析。结果:无添加组和钙离子加强组离体牙实验后荧光值均显著高于空白对照组(P<0.05),钙离子加强组离体牙实验后荧光值显著低于无添加组(P<0.05)。结论:添加钙离子可显著对抗橙汁对牙釉质的酸蚀作用。%Objective:To evaluate the erosive potential of orange juice modified by calcium .Methods:45 permanent teeth were ran-domly divided into there groups ,and were immersed in orange juice ,orange juice modified by calcium (0.4 g/L,calcium lactate penta-hydrate),and deionized water respectively for 25 hours.A laser fluorescence system was used to make a quantitative record .Results:The experiment showed that the group of orange juice and orange juice modified by calcium showed significant higher laser fluorescence value than the group of deionized water (P<0.05).Orange juice modified by calcium showed significant lower laser fluorescence value than orange juice group (P<0.05).Conclusions:Calcium ion could significantly reduce the erosion potential of orange juice .

  20. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  1. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  2. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  3. Coronary Calcium Scan

    Science.gov (United States)

    ... the NHLBI on Twitter. What Is a Coronary Calcium Scan? A coronary calcium scan is a test ... you have calcifications in your coronary arteries. Coronary Calcium Scan Figure A shows the position of the ...

  4. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  5. Biphasic calcium phosphate in periapical surgery

    OpenAIRE

    Suneelkumar, Chinni; Datta, Krithika; Manali R Srinivasan; Kumar, Sampath T

    2008-01-01

    Calcium phosphate ceramics like hydroxyapatite and β -tricalcium phosphate (β -TCP) possess mineral composition that closely resembles that of the bone. They can be good bone substitutes due to their excellent biocompatibility. Biphasic calcium phosphate is a bone substitute which is a mixture of hydroxyapatite and β -tricalcium phosphate in fixed ratios. Studies have demonstrated the osteoconductive potential of this composition. This paper highlights the clinical use of biphasic calcium pho...

  6. Strong relationship between oral dose and tenofovir hair levels in a randomized trial: hair as a potential adherence measure for pre-exposure prophylaxis (PrEP.

    Directory of Open Access Journals (Sweden)

    Albert Y Liu

    Full Text Available Pre-exposure prophylaxis (PrEP trials using tenofovir-based regimens have demonstrated that high levels of adherence are required to evaluate efficacy; the incorporation of objective biomarkers of adherence in trial design has been essential to interpretation, given the inaccuracy of self-report. Antiretroviral measurements in scalp hair have been useful as a marker of long-term exposure in the HIV treatment setting, and hair samples are relatively easy and inexpensive to collect, transport, and store for analysis. To evaluate the relationship between dose and tenofovir concentrations in hair, we examined the dose proportionality of tenofovir in hair in healthy, HIV-uninfected adults.A phase I, crossover pharmacokinetic study was performed in 24 HIV-negative adults receiving directly-observed oral tenofovir tablets administered 2, 4, and 7 doses/week for 6 weeks, with a ≥3-week break between periods. Small samples of hair were collected after each six-week period and analyzed for tenofovir concentrations. Geometric-mean-ratios compared levels between each pair of dosing conditions. Intensive plasma pharmacokinetic studies were performed during the daily-dosing period to calculate areas-under-the-time-concentration curves (AUCs.Over 90% of doses were observed per protocol. Median tenofovir concentrations in hair increased monotonically with dose. A log-linear relationship was seen between dose and hair levels, with an estimated 76% (95% CI 60-93% increase in hair level per 2-fold dose increase. Tenofovir plasma AUCs modestly predicted drug concentrations in hair.This study found a strong linear relationship between frequency of dosing and tenofovir levels in scalp hair. The analysis of quantitative drug levels in hair has the potential to improve adherence measurement in the PrEP field and may be helpful in determining exposure thresholds for protection and explaining failures in PrEP trials. Hair measures for adherence monitoring may also

  7. Analysis of Strong Tropical Storm Bilis' Rainstorm and Moist Potential Vorticity%强热带风暴"碧利斯"暴雨与湿位涡分析

    Institute of Scientific and Technical Information of China (English)

    沈晓玲; 朱健

    2011-01-01

    Numerical simulation is made on strong tropical storm Bilis by model MM5 and then the model data are used to analyse the moist potential vorticity. It is found that the center of negative MPV 1 on low level can indicate the severe rainfall area,and the absolute value of MPV1 has a positive correlation with rainstorm,and that the decrease of stability results in the increase of vorticity. The fact that the faces of θe tilt and rise steeply about the increase of wet baroclinicity.Thereafter, the remarkable development of the cyclonic vorticity of lower tropospheric touches off the release of instability energy and latent heat release. It plays a huge role in the development and maintenance of heavy rain. Under the influence of southwest monsoon,Bilis gets a lot of humid warm vapor supplementary,and bring serious floods to Southern China. Otherwise,it is also found that the low-level positive MPV2 center corresponds to the area of severe precipitation.%通过MM5模式对0604号强热带风暴"碧利斯"进行数值模拟,利用模式资料进行湿位涡分析,结果表明低层等压面上MPV1负值中心可以指示强降水落区,且MPV1绝对值与降水强度成正相关,θe面倾斜和陡立使得大气湿斜压性增加,对流层低层气旋性涡度的显著发展,触发不稳定能量及潜热能释放,对暴雨的维持发展起了巨大作用,"碧利斯"后期在西南季风的影响下,得到了大量湿热水汽的补充,给我国南方带来严重的洪涝灾害,低层的MPV2正值区域与强降水落区也有一定的对应关系.

  8. Effective Potential and Phase Diagram in the Strong-Coupling Lattice QCD with Next-to-Next-to-Leading Order and Polyakov Loop Effects

    OpenAIRE

    Nakano, Takashi Z.; Miura, Kohtaroh; Ohnishi, Akira

    2010-01-01

    We investigate chiral and deconfinement transitions in the strong coupling lattice QCD for color SU(3). We combine the leading order Polyakov loop effective action of the strong coupling expansion and the next-to-next-to-leading order (1/g^4) fermionic effective action with one species of unrooted staggered fermion. Two approximation schemes are adopted to evaluate the Polyakov loop effects; a Haar measure method (no fluctuation from the mean field) and a Weiss mean-field method (with fluctua...

  9. Combination of low calcium with Y-27632 rock inhibitor increases the proliferative capacity, expansion potential and lifespan of primary human keratinocytes while retaining their capacity to differentiate into stratified epidermis in a 3D skin model.

    Directory of Open Access Journals (Sweden)

    Xanthe L Strudwick

    Full Text Available Human keratinocytes are difficult to isolate and have a limited lifespan. Traditionally, immortalised keratinocyte cell lines are used in vitro due to their ability to bypass senescence and survive indefinitely. However these cells do not fully retain their ability to differentiate in vitro and they are unable to form a normal stratum corneum in organotypic culture. Here we aimed to generate a pool of phenotypically similar keratinocytes from human donors that could be used in monolayer culture, without a fibroblast feeder layer, and in 3D human skin equivalent models. Primary human neonatal epidermal keratinocytes (HEKn were cultured in low calcium, (0.07 mM media, +/-10 μM Y-27632 ROCK inhibitor (HEKn-CaY. mRNA and protein was extracted and expression of differentiation markers Keratin 14 (K14, Keratin 10 (K10 and Involucrin (Inv assessed by qRT-PCR and Western blotting. The differentiation potential of the HEKn-CaY cultures was assessed by increasing calcium levels and removing the Y-27632 for 72 hrs prior to assessment of K14, K10 and Inv. The ability of the HEKn-CaY, to form a stratified epithelium was assessed using a human skin equivalent (HSE model in the absence of Y-27632. Increased proliferative capacity, expansion potential and lifespan of HEKn was observed with the combination of low calcium and 10 μM ROCK inhibitor Y-27632. The removal of Y-27632 and the addition of high calcium to induce differentiation allowed the cells to behave as primary keratinocytes even after extended serial passaging. Prolonged lifespan HEK-CaYs were capable of forming an organised stratified epidermis in 3D HSE cultures, demonstrating their ability to fully stratify and retain their original, primary characteristics. In conclusion, the use of 0.07 mM Calcium and 10 μM Y-27632 in HEKn monocultures provides the opportunity to culture primary human keratinocytes without a cell feeder layer for extended periods of culture whilst retaining their ability to

  10. Osteoblasts detect pericellular calcium concentration increase via neomycin-sensitive voltage gated calcium channels.

    Science.gov (United States)

    Sun, Xuanhao; Kishore, Vipuil; Fites, Kateri; Akkus, Ozan

    2012-11-01

    intracellular calcium occurs by the entry of extracellular calcium ions through VGCCs which are sensitive to neomycin. N-type and P-type VGCCs are potential candidates because they are observed in osteoblasts and they are sensitive to neomycin. The calcium channels identified in this study provide new insight into mechanisms underlying the targeted repair process which is essential to bone adaptation.

  11. Calcium and Vitamin D

    Science.gov (United States)

    ... Home › Patients › Treatment › Calcium/Vitamin D Calcium/Vitamin D Getting enough calcium and vitamin D is essential ... counter medications and calcium supplements. What is Vitamin D and What Does it Do? Vitamin D plays ...

  12. Potential bias in estimates of abundance and distribution of North Sea cod (Gadus morhua) due to strong winds prevailing prior or during a survey

    DEFF Research Database (Denmark)

    Wieland, Kai; Olesen, Hans Jakob; Pedersen, Eva Maria;

    2011-01-01

    The impact of strong winds on catches of cod (Gadus morhua) was studied using different fishing methods during small-scale surveys with commercial fishing vessels in the north-eastern central North Sea. Catch per unit effort of a flyshooter and a trawler were considerably lower in the shallower...... survey had significant effects on the catch rates in particular for the trawler. These results supports fishermen's opinion that strong winds may cause an underestimation of biomass of cod in shallow waters and a bias in the resulting spatial distribution derived from bottom trawl surveys....

  13. Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs

    OpenAIRE

    ZHANG, LIHUA; Zhu, Wufu; Lin, Qisi; Han, Jin; Jiang, Liqun; Zhang, Yanzhuo

    2015-01-01

    The objective of the present study was to demonstrate that a novel hydroxypropyl-β-cyclodextrin functionalized calcium carbonate (HP-β-CD/CC) based amorphous solid dispersion (ASD) can be used to increase the solubility and oral bioavailability of water-insoluble drugs. Irbesartan (IRB) was selected as a model compound and loaded into the nanoporous HP-β-CD/CC matrix using an immersion method. The IRB-loaded HP-β-CD/CC formulation was characterized by various analytical techniques, such as sp...

  14. Influence of Combined Therapeutic Potential of Meso 2, 3-dimercaptosuccinic Acid and Calcium Disodium Edetate on Lead-induced Testicular Alterations in Rats

    Institute of Scientific and Technical Information of China (English)

    GOVINDER J.S. FLORA; USHA ARORA; ARD PRAHLAD K. SETH

    1999-01-01

    The therapeutic efficacy of a combination of meso 2,3-dimercaptosuccinic acid (DMSA) and calcium disodium EDTA in protecting testicular disorders in chronic lead intoxication was investigated. The results indicate that two five-days courses of the combined therapy produced a more effective recovery in the lead induced biochemical and histopathological disorders compared to conventional single 5 days therapy. No adverse effect of the chelators, when administered individually or in combination, was noticed in the testes of control (without lead exposure) animals.

  15. Relating a calcium indicator signal to the unperturbed calcium concentration time-course

    Directory of Open Access Journals (Sweden)

    Abarbanel Henry DI

    2007-02-01

    Full Text Available Abstract Background Optical indicators of cytosolic calcium levels have become important experimental tools in systems and cellular neuroscience. Indicators are known to interfere with intracellular calcium levels by acting as additional buffers, and this may strongly alter the time-course of various dynamical variables to be measured. Results By investigating the underlying reaction kinetics, we show that in some ranges of kinetic parameters one can explicitly link the time dependent indicator signal to the time-course of the calcium influx, and thus, to the unperturbed calcium level had there been no indicator in the cell.

  16. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  17. High-frequency stimulation-induced synaptic potentiation in dorsal and ventral CA1 hippocampal synapses: the involvement of NMDA receptors, mGluR5, and (L-type) voltage-gated calcium channels.

    Science.gov (United States)

    Papatheodoropoulos, Costas; Kouvaros, Stylianos

    2016-09-01

    The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for short-lasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that 200-Hz stimulation induced nondecremental LTP that was maintained for at least 7 h and was greater in the DH than in the VH. The interaction of NMDA receptors with L-type voltage-dependent calcium channels appeared to be more effective in the DH than in the VH. Furthermore, the LTP was significantly enhanced in the DH only, between 2 and 5 h post-tetanus. Furthermore, the mGluR5 contributed to the post-tetanic potentiation more in the VH than in the DH. PMID:27531836

  18. Strong larvicidal potential of Artemisia annua leaf extract against malaria (Anopheles stephensi Liston) and dengue (Aedes aegypti L.) vectors and bioassay-driven isolation of the marker compounds.

    Science.gov (United States)

    Sharma, Gaurav; Kapoor, Himanshi; Chopra, Madhu; Kumar, Kaushal; Agrawal, Veena

    2014-01-01

    Malaria and dengue are the two most important vector-borne human diseases caused by mosquito vectors Anopheles stephensi and Aedes aegypti, respectively. Of the various strategies adopted for eliminating these diseases, controlling of vectors through herbs has been reckoned as one of the important measures for preventing their resurgence. Artemisia annua leaf chloroform extract when tried against larvae of A. stephensi and A. aegypti has shown a strong larvicidal activity against both of these vectors, their respective LC50 and LC90 values being 0.84 and 4.91 ppm for A. stephensi and 0.67 and 5.84 ppm for A. aegypti. The crude extract when separated through column chromatography using petroleum ether-ethyl acetate gradient (0-100%) yielded 76 fractions which were pooled into three different active fractions A, B and C on the basis of same or nearly similar R f values. The aforesaid pooled fractions when assayed against the larvae of A. stephensi too reported a strong larvicidal activity. The respective marker compound purified from the individual fractions A, B and C, were Artemisinin, Arteannuin B and Artemisinic acid, as confirmed and characterized through FT-IR and NMR. This is our first report of strong mortality of A. annua leaf chloroform extract against vectors of two deadly diseases. This technology can be scaled up for commercial exploitation. PMID:24158647

  19. In vitro photoacoustic sensing of calcium dynamics with arsenazo III

    Science.gov (United States)

    Dana, N.; Fowler, R. A.; Allen, A.; Zoldan, J.; Suggs, L.; Emelianov, S.

    2016-07-01

    Imaging of cellular electric potential via calcium-ion sensitive contrast agents is a useful tool, but current techniques lack sufficient depth penetration. We explore contrast-enhanced photoacoustic (PA) imaging, using Arsenazo III dye, to visualize cardiac myocyte depolarization in vitro. Phantom results show strong linearity of PA signal with dye concentration (R 2  >  0.95), and agree spectrally with extinction measurements with varying calcium concentration. Cell studies indicate a significant (>100-fold) increase in PA signal for dye-treated cells, as well as a 10-fold increase in peak-to-peak variation during a 30 s window. This suggests contrast-enhanced PA imaging may have sufficient sensitivity and specificity for depth-resolved visualization of tissue depolarization in real-time.

  20. A New Model Potential Acting on the Excited Electron Within Molecules:Application to Calculate the Recurrence Spectra of Excited H2 Molecules in Strong External Fields

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; DING Shi-Liang

    2004-01-01

    By using the molecular orbit theory, we give a new model potential acting on the excited electron within a molecule. The potential is the total interaction energy of this electron with all the nuclei and other electrons.We find that the introduction of a new model potential results in an extreme increase of the number of closed orbits as compared to the hydrogen atom. Making use of the molecular closed-orbit theory (MCOT) and the new model potential, we calculate the recurrence spectra of H2 molecules in parallel electric and magnetic fields for different quantum defects. The modulations in the spectra can be analysed in terms of the scattering of the excited electron on the molecular core. Our results are in good agreement with the quantum results.

  1. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  2. Potential impact of renin-angiotensin system inhibitors and calcium channel blockers on plasma high-molecular-weight adiponectin levels in hemodialysis patients

    International Nuclear Information System (INIS)

    Although metabolic syndrome confers an increased risk of cardiovascular disease in the general population, little is known about the alteration of abdominal adiposity and its association with adipocytokines in hemodialysis patients. We investigated the plasma high-molecular-weight (HMW) adiponectin level and its relationship to visceral fat area (VFA) and various markers of atherosclerosis in hemodialysis patients. In a cross-sectional study, conventional cardiovascular risk factors, plasma total and HMW adiponectin, the number of components of the metabolic syndrome and, using computed tomography, the distribution of abdominal adiposity were assessed in 144 hemodialysis patients (90 men and 54 women; mean age, 60.7 years) and 30 age- and sex-matched patients with chronic kidney disease (CKD). Plasma HMW adiponectin levels in hemodialysis patients were significantly higher than those in patients with CKD, negatively associated with VFA and serum triglycerides and positively associated with plasma total adiponectin, as well as the HMW-to-total adiponectin ratio in men and women (all P<0.05) in a simple regression analysis. In a multiple regression analysis, VFA was a significant determinant of HMW adiponectin in hemodialysis patients. Furthermore, after adjustment for classical risk factors, HMW adiponectin levels were significantly higher in patients undergoing treatment with renin-angiotensin system inhibitors or calcium channel blockers compared with patients not undergoing such treatment. This study shows that plasma HMW adiponectin levels were negatively associated with VFA and positively associated with treatment with blockade of the renin-angiotensin system and of the calcium channel. Therefore, these drugs might be effective for improving adipocytokine-related metabolic abnormalities in hemodialysis patients. (author)

  3. The construction of an oxalate-degrading intestinal stem cell population in mice: a potential new treatment option for patients with calcium oxalate calculus.

    Science.gov (United States)

    Chen, Zhiqiang; Liu, Guanlin; Ye, Zhangqun; Kong, Debo; Yao, Lingfang; Guo, Hui; Yang, Weimin; Yu, Xiao

    2012-04-01

    About 80% of all urological stones are calcium oxalate, mainly caused by idiopathic hyperoxaluria (IH). The increased absorption of oxalate from the intestine is the major factor underlying IH. The continuous self-renewal of the intestinal epithelium is due to the vigorous proliferation and differentiation of intestinal stem cells. If the intestinal stem cell population can acquire the ability to metabolize calcium oxalate by means of oxc and frc transgenes, this will prove a promising new therapy option for IH. In our research, the oxalate-degrading genes of Oxalobacter formigenes (Oxf)-the frc gene and oxc gene-were cloned and transfected into a cultured mouse-derived intestinal SC population to give the latter an oxalate-degrading function. Oxf was isolated and cultivated and the oxalate-degrading genes-frc and oxc-were cloned. The dicistronic eukaryotic expression vector pIRES-oxc-frc was constructed and transferred into the mouse stem cell population. After selection with G418, the expression of the genes was identified. The oxalate-degrading function of transfected cells was determined by transfection into the intestinal stem cell population of the mouse. The change in oxalate concentration was determined with an ion chromatograph. The recombinant plasmid containing oxc and frc genes was transfected into the stem cell population of the mouse and the expression of the genes found normal. The cell population had acquired an oxalate-degrading function. The oxc and frc genes could be transfected into the intestinal stem cell population of the mouse and the cells acquired an oxalate-degrading function. PMID:21892601

  4. Presynaptic calcium signalling in cerebellar mossy fibres

    Directory of Open Access Journals (Sweden)

    Louiza B Thomsen

    2010-02-01

    Full Text Available Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A TTX-sensitive fast Na+ spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers. Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none tetrodotoxin (TTX -sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon appeared to be isolated from one another in terms of calcium signalling. CGP55845 application showed that GABA B receptors mediated presynaptic inhibition of the calcium signal over the entire firing frequency range of mossy fibres. A paired-pulse depression of the calcium signal lasting more than one second affected burst firing in mossy fibres; this paired-pulse depression was reduced by GABA B antagonists. While our results indicated that a presynaptic rosette electrophysiologically functioned as a unit, topical GABA application showed that calcium signals in the branches of complex rosettes could be modulated locally, suggesting that cerebellar glomeruli may be dynamically sub-compartmentalized due to ongoing inhibition mediated by Golgi cells. This could provide a fine-grained control of mossy fibre-granule cell information transfer and synaptic plasticity within a mossy fibre rosette.

  5. Strong Inhibition of Celastrol Towards UDP-Glucuronosyl Transferase (UGT 1A6 and 2B7 Indicating Potential Risk of UGT-Based Herb-Drug Interaction

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2012-06-01

    Full Text Available Celastrol, a quinone methide triterpene isolated from Tripterygium wilfordii Hook F., has various biochemical and pharmacological activities, and is now being developed as a promising anti-tumor agent. Inhibitory activity of compounds towards UDP-glucuronosyltransferase (UGT is an important cause of clinical drug-drug interactions and herb-drug interactions. The aim of the present study is to investigate the inhibition of celastrol towards two important UDP-glucuronosyltransferase (UGT isoforms UGT1A6 and UGT2B7. Recombinant UGT isoforms and non-specific substrate 4-methylumbelliferone (4-MU were used. The results showed that celastrol strongly inhibited the UGT1A6 and 2B7-mediated 4-MU glucuronidation reaction, with 0.9 ± 0.1% and 1.8 ± 0.2% residual 4-MU glucuronidation activity at 100 μM of celastrol, respectively. Furthermore, inhibition kinetic study (Dixon plot and Lineweaver-Burk plot demonstrated that celastrol noncompetitively inhibited the UGT1A1-mediated 4-MU glucuronidation, and competitively inhibited UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameters (Ki were calculated to be 0.49 μM and 0.045 μM for UGT1A6 and UGT2B7, respectively. At the therapeutic concentration of celastrol for anti-tumor utilization, the possibility of celastrol-drug interaction and celastrol-containing herbs-drug interaction were strongly indicated. However, given the complicated nature of herbs, these results should be viewed with more caution.

  6. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium channel blockers are a type of medicine used ...

  7. Fenoprofen calcium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  8. Reduced myocardial 18F-FDG uptake after calcium channel blocker administration. Initial observation for a potential new method to improve plaque detection

    International Nuclear Information System (INIS)

    Physiological glucose uptake by the myocardium may hamper visualization of coronary atherosclerotic plaques in 18F-FDG PET studies. Intracellular myocardial calcium relates to glucose influx. We assessed whether administration of a calcium channel blocker such as verapamil could decrease myocardial 18F-FDG uptake in mice. Experiments were conducted on ten male C57BL/6JOlaHsd mice. The mice were studied by 18F-FDG PET/CT under basal conditions and after a single administration of verapamil injected 1 h prior to 18F-FDG administration at doses of 1 mg/kg (group A, n = 5) and 20 mg/kg (group B, n = 5). PET scanning was started 60 min after injection of 18F-FDG employing a dedicated small-animal PET/CT system (ARGUS-CT). In each mouse, post-verapamil PET images were coregistered with the basal PET images. Volumetric regions of interest (VOI) were drawn on the basal study containing the myocardium of the whole left ventricle and quantitatively compared with the same VOI applied to the post-verapamil scan. The SUVmean was used to express the mean myocardial 18F-FDG uptake. The relative coefficient of variation (RV) between the basal and post-verapamil conditions was calculated. Verapamil administration decreased myocardial 18F-FDG uptake in all animals. The median (range) SUVmean values in group A were 2.6 (1.6-4.1) under basal conditions and 1.7 (1.1-2.9) after verapamil administration (p = 0.043), and in group B were 1.6 (1.3-2.0) under basal conditions and 1.0 (0.9-1.4) after verapamil administration (p = 0.043). The median (range) RV values were -31% (-5%, -50%) in group A, and -37% (-10%, -51%) in group B (p = 0.6). In this animal model there was a significant reduction in 18F-FDG uptake in the myocardium following verapamil administration. This type of intervention could facilitate the definition of coronary atherosclerotic plaque inflammation on 18F-FDG PET scans. (orig.)

  9. Reduced myocardial {sup 18}F-FDG uptake after calcium channel blocker administration. Initial observation for a potential new method to improve plaque detection

    Energy Technology Data Exchange (ETDEWEB)

    Gaeta, Chiara; Flotats, Albert; Artigas, Carles; Deportos, Jordi; Geraldo, Llanos; Carrio, Ignasi [Sant Pau Hospital, PET Unit, Department of Nuclear Medicine, Barcelona (Spain); Fernandez, Yolanda [Center for Experimental Molecular Imaging (CIME), CETIR-ERESA, Barcelona (Spain); Pavia, Javier [Center for Experimental Molecular Imaging (CIME), CETIR-ERESA, Barcelona (Spain); Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona (Spain)

    2011-11-15

    Physiological glucose uptake by the myocardium may hamper visualization of coronary atherosclerotic plaques in {sup 18}F-FDG PET studies. Intracellular myocardial calcium relates to glucose influx. We assessed whether administration of a calcium channel blocker such as verapamil could decrease myocardial {sup 18}F-FDG uptake in mice. Experiments were conducted on ten male C57BL/6JOlaHsd mice. The mice were studied by {sup 18}F-FDG PET/CT under basal conditions and after a single administration of verapamil injected 1 h prior to {sup 18}F-FDG administration at doses of 1 mg/kg (group A, n = 5) and 20 mg/kg (group B, n = 5). PET scanning was started 60 min after injection of {sup 18}F-FDG employing a dedicated small-animal PET/CT system (ARGUS-CT). In each mouse, post-verapamil PET images were coregistered with the basal PET images. Volumetric regions of interest (VOI) were drawn on the basal study containing the myocardium of the whole left ventricle and quantitatively compared with the same VOI applied to the post-verapamil scan. The SUV{sub mean} was used to express the mean myocardial {sup 18}F-FDG uptake. The relative coefficient of variation (RV) between the basal and post-verapamil conditions was calculated. Verapamil administration decreased myocardial {sup 18}F-FDG uptake in all animals. The median (range) SUV{sub mean} values in group A were 2.6 (1.6-4.1) under basal conditions and 1.7 (1.1-2.9) after verapamil administration (p = 0.043), and in group B were 1.6 (1.3-2.0) under basal conditions and 1.0 (0.9-1.4) after verapamil administration (p = 0.043). The median (range) RV values were -31% (-5%, -50%) in group A, and -37% (-10%, -51%) in group B (p = 0.6). In this animal model there was a significant reduction in {sup 18}F-FDG uptake in the myocardium following verapamil administration. This type of intervention could facilitate the definition of coronary atherosclerotic plaque inflammation on {sup 18}F-FDG PET scans. (orig.)

  10. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  11. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.

    1985-01-01

    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of cardiop

  12. Spatiotemporal dynamics of calcium-driven cardiac alternans.

    Science.gov (United States)

    Skardal, Per Sebastian; Karma, Alain; Restrepo, Juan G

    2014-05-01

    We investigate the dynamics of spatially discordant alternans (SDA) driven by an instability of intracellular calcium cycling using both amplitude equations [P. S. Skardal, A. Karma, and J. G. Restrepo, Phys. Rev. Lett. 108, 108103 (2012)] and ionic model simulations. We focus on the common case where the bidirectional coupling of intracellular calcium concentration and membrane voltage dynamics produces calcium and voltage alternans that are temporally in phase. We find that, close to the alternans bifurcation, SDA is manifested as a smooth wavy modulation of the amplitudes of both repolarization and calcium transient (CaT) alternans, similarly to the well-studied case of voltage-driven alternans. In contrast, further away from the bifurcation, the amplitude of CaT alternans jumps discontinuously at the nodes separating out-of-phase regions, while the amplitude of repolarization alternans remains smooth. We identify universal dynamical features of SDA pattern formation and evolution in the presence of those jumps. We show that node motion of discontinuous SDA patterns is strongly hysteretic even in homogeneous tissue due to the novel phenomenon of "unidirectional pinning": node movement can only be induced towards, but not away from, the pacing site in response to a change of pacing rate or physiological parameter. In addition, we show that the wavelength of discontinuous SDA patterns scales linearly with the conduction velocity restitution length scale, in contrast to the wavelength of smooth patterns that scales sublinearly with this length scale. Those results are also shown to be robust against cell-to-cell fluctuations due to the property that unidirectional node motion collapses multiple jumps accumulating in nodal regions into a single jump. Amplitude equation predictions are in good overall agreement with ionic model simulations. Finally, we briefly discuss physiological implications of our findings. In particular, we suggest that due to the tendency of

  13. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs. fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed.

  14. Study of the gluon propagator in the large-N_f limit at finite temperature and chemical potential for weak and strong couplings

    CERN Document Server

    Blaizot, J P; Rebhan, Anton K; Blaizot, Jean-Paul; Ipp, Andreas; Rebhan, Anton

    2006-01-01

    At finite temperature and chemical potential, the leading-order (hard-thermal-loop) contributions to the gauge-boson propagator lead to momentum-dependent thermal masses for propagating quasiparticles as well as dynamical screening and Landau damping effects. We compare the hard-thermal-loop propagator with the complete large-N_f gluon propagator, for which the usually subleading contributions, such as a finite width of quasiparticles, can be studied at nonperturbatively large effective coupling. We also study quantitatively the effect of Friedel oscillations in low-temperature electrostatic screening.

  15. Physiological mechanisms drive differing foliar calcium content in ferns and angiosperms.

    Science.gov (United States)

    Funk, Jennifer L; Amatangelo, Kathryn L

    2013-09-01

    Recent evidence points to ferns containing significantly lower contents of foliar calcium and other cations than angiosperms. This is especially true of more ancient 'non-polypod' fern lineages, which predate the diversification of angiosperms. Calcium is an important plant nutrient, the lack of which can potentially slow plant growth and litter decomposition, and alter soil invertebrate communities. The physiological mechanisms limiting foliar calcium (Ca) content in ferns are unknown. While there is a lot we do not know about Ca uptake and transport in plants, three physiological processes are likely to be important. We measured transpiration rate, cation exchange capacity, and leaching loss to determine which process most strongly regulates foliar Ca content in a range of fern and co-occurring understory angiosperm species from a montane Hawaiian rainforest. We found higher instantaneous and lifetime (corrected for leaf lifespan) transpiration rates in angiosperms relative to ferns. Ferns preferentially incorporated Ca into leaves relative to strontium, which suggests that root or stem cation exchange capacity differs between ferns and angiosperms, potentially affecting calcium transport in plants. There were no differences in foliar Ca leaching loss between groups. Among the physiological mechanisms measured, foliar Ca was most strongly correlated with leaf-level transpiration rate and leaf lifespan. This suggests that inter-specific differences in a leaf's lifetime transpiration may play a significant role in determining plant nutrition.

  16. Extracellular calcium (Ca2+o)-sensing receptor in a mouse monocyte-macrophage cell line (J774): potential mediator of the actions of Ca2+o on the function of J774 cells

    Science.gov (United States)

    Yamaguchi, T.; Kifor, O.; Chattopadhyay, N.; Bai, M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Macrophage-like mononuclear cells appear at sites of osteoclastic bone resorption during bone remodeling and may play a role in the "reversal" phase following osteoclastic resorption and preceding bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for bone marrow mononuclear cells in the vicinity, leading us to investigate whether such mononuclear cells express the CaR. In this study, we used the mouse J774 cell line, which exhibits a pure monocyte-macrophage phenotype. Both immunocytochemistry and Western blot analysis, using polyclonal antisera specific for the CaR, detected CaR protein in J774 cells. The use of reverse transcriptase-polymerase chain reaction with CaR-specific primers, including a set of intron-spanning primers, followed by nucleotide sequencing of the amplified products, also identified CaR transcripts in J774 cells. Exposure of J774 cells to high Ca2+o (2.8 mM or more) or the polycationic CaR agonist, neomycin (100 microM), stimulated both chemotaxis and DNA synthesis in J774 cells. Therefore, taken together, our data strongly suggest that the monocyte-macrophage cell line, J774, possesses both CaR protein and mRNA very similar, if not identical, to those in parathyroid and kidney.

  17. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair.

    Science.gov (United States)

    Fan, Xiaoxia; Ren, Haohao; Luo, Xiaoman; Wang, Peng; Lv, Guoyu; Yuan, Huipin; Li, Hong; Yan, Yonggang

    2016-03-01

    A ternary composite of poly(amino acid), hydroxyapatite, and calcium sulfate (PAA/HA/CS) was prepared using in situ melting polycondensation method and evaluated in terms of mechanical strengths, in vitro degradability, bioactivity, as well as in vitro and in vivo biocompatibility. The results showed that the ternary composite exhibited a compressive strength of 147 MPa, a bending strength of 121 MPa, a tensile strength of 122 MPa, and a tensile modulus of 4.6 GPa. After immersion in simulated body fluid, the compressive strength of the composite decreased from 147 to 98 MPa for six weeks and the bending strength decreased from 121 to 75 MPa for eight weeks, and both of them kept stable in the following soaking period. The composite could be slowly degraded with 7.27 wt% loss of initial weight after soaking in phosphate buffered solution for three weeks when started to keep stable weight in the following days. The composite was soaked in simulated body fluid solution and the hydroxyapatite layer, as flower-like granules, formed on the surface of the composite samples, showing good bioactivity. Moreover, it was found that the composite could promote proliferation of MG-63 cells, and the cells with normal phenotype extended and spread well on the composite surface. The implantation of the composite into the ulna of sheep confirmed that the composite was biocompatible and osteoconductive in vivo, and offered the PAA/HA/CS composite promising material for load-bearing bone substitutes for clinical application.

  18. Regulation of Calcium-Independent Phospholipase A2 Expression by Adrenoceptors and Sterol Regulatory Element Binding Protein-Potential Crosstalk Between Sterol and Glycerophospholipid Mediators.

    Science.gov (United States)

    Chew, Wee-Siong; Ong, Wei-Yi

    2016-01-01

    Calcium-independent phospholipase A2 (iPLA2) is an 85-kDa enzyme that releases docosahexaenoic acid (DHA) from glycerophospholipids. DHA can be metabolized to resolvins and neuroprotectins that have anti-inflammatory properties and effects on neural plasticity. Recent studies show an important role of prefrontal cortical iPLA2 in hippocampo-prefrontal cortical LTP and antidepressant-like effect of the norepinephrine reuptake inhibitor (NRI) antidepressant, maprotiline. In this study, we elucidated the cellular mechanisms through which stimulation of adrenergic receptors could lead to increased iPLA2 expression. Treatment of SH-SY5Y neuroblastoma cells with maprotiline, another tricyclic antidepressant with noradrenaline reuptake inhibiting properties, nortriptyline, and the adrenergic receptor agonist, phenylephrine, resulted in increased iPLA2β mRNA expression. This increase was blocked by inhibitors to alpha-1 adrenergic receptor, mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK) 1/2, and sterol regulatory element-binding protein (SREBP). Maprotiline and phenylephrine induced binding of SREBP-2 to sterol regulatory element (SRE) region on the iPLA2 promoter, as determined by electrophoretic mobility shift assay (EMSA). Together, results indicate that stimulation of adrenoreceptors causes increased iPLA2 expression via MAP kinase/ERK 1/2 and SREBP, and suggest a possible mechanism for effect of CNS noradrenaline on neural plasticity and crosstalk between sterol and glycerophospholipid mediators, that may play a role in physiological or pathophysiological processes in the brain and other organs.

  19. Calcium signaling and epilepsy.

    Science.gov (United States)

    Steinlein, Ortrud K

    2014-08-01

    Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.

  20. Antitranspirant-induced increases in leaf water potential increase tuber calcium and decrease tuber necrosis in water-stressed potato plants.

    Science.gov (United States)

    Win, K; Berkowitz, G A; Henninger, M

    1991-05-01

    Experiments were undertaken with field-grown potato (Solanum tuberosum L.) plants to test the hypothesis that altering leaf:tuber water potential gradients within a plant subjected to low soil moisture will allow greater Ca accumulation in tubers and reverse Ca deficiency-related tuber necrosis. Antitranspirant formulations containing a wax emulsion and a spreader/sticker surfactant increased leaf water potential during a drought episode, significantly reducing the potential gradient that develops between leaf and tuber during a period of stress. Increased leaf water potential in treated plants was associated with decreased leaf Ca and increased tuber Ca. Tuber necrosis was found to be reduced in treated plants, thus increasing tuber quality.

  1. Hydroxypropyl-β-cyclodextrin functionalized calcium carbonate microparticles as a potential carrier for enhancing oral delivery of water-insoluble drugs

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-04-01

    Full Text Available Lihua Zhang,1 Wufu Zhu,2 Qisi Lin,1 Jin Han,1 Liqun Jiang,1 Yanzhuo Zhang1,3 1Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, People’s Republic of China; 2School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People’s Republic of China; 3Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical College, Xuzhou, People’s Republic of China Abstract: The objective of the present study was to demonstrate that a novel hydroxypropyl-β-cyclodextrin functionalized calcium carbonate (HP-β-CD/CC based amorphous solid dispersion (ASD can be used to increase the solubility and oral bioavailability of water-insoluble drugs. Irbesartan (IRB was selected as a model compound and loaded into the nanoporous HP-β-CD/CC matrix using an immersion method. The IRB-loaded HP-β-CD/CC formulation was characterized by various analytical techniques, such as specific surface area analysis, scanning electron microscopy (SEM, dynamic light scattering (DLS, powder X-ray diffraction (PXRD, and differential scanning calorimetry (DSC. Analyses with PXRD and DSC confirmed that IRB was fully converted into the amorphous form in the nanopores of HP-β-CD/CC. From the solubility and dissolution tests, it was observed that the aqueous solubility and dissolution rate of IRB-loaded HP-β-CD/CC were increased significantly compared with those of pure IRB and IRB-loaded mesoporous silica. Likewise, the IRB-loaded HP-β-CD/CC formulation exhibited better absorption compared with that of the commercially available IRB capsules in beagle dogs. The mean peak plasma concentration (Cmax and the area under the mean plasma concentration–time curve (AUC[0→48] of IRB-loaded HP-β-CD/CC were 1.56- and 1.52-fold higher than that of the commercial product, respectively. Furthermore, the IRB-loaded HP-β-CD/CC formulation exhibited excellent stability against re-crystallization. These results clearly

  2. Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: potential role in regulation of a nonselective cation channel

    Science.gov (United States)

    Yamaguchi, T.; Ye, C.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    Human promyelocytic leukemia cells (HL-60) have been used widely as a model for studying the differentiation of hematopoietic progenitor cells in vitro. After treatment with phorbol-12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], HL-60 cells differentiate into cells with the phenotype of monocytes/macrophages. We previously showed that peripheral blood monocytes and the murine J774 monocytic cell line express the CaR, and myeloid progenitors in the bone marrow and myeloid cells in peripheral blood other than monocytes express lower levels of the CaR. Therefore, we investigated whether undifferentiated HL-60 cells express a functional G protein-coupled, extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) and if the expression of the CaR increases as these cells differentiate along the monocytic lineage. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by sequencing of the amplified products, identified an authentic CaR transcript in undifferentiated HL-60 cells. Both immunocytochemistry and Western blot analysis using a CaR-specific antiserum detected low levels of CaR protein expression in undifferentiated HL-60 cells. The levels of CaR protein increased considerably following treatment of the cells with PMA (50 nM) or 1,25(OH)(2)D(3) (100 nM) for 5 days. Northern analysis using a CaR-specific riboprobe identified CaR transcripts in undifferentiated HL-60 cells, but CaR mRNA levels did not change appreciably after treatment with either agent, suggesting that upregulation of CaR protein occurs at a translational level. PMA-treated HL-60 cells expressed a nonselective cation channel (NCC), and the calcimimetic CaR activator, NPS R-467, but not its less active stereoisomer, NPS S-467, as well as the polycationic CaR agonist, neomycin, activated this NCC, demonstrating that the CaR expressed in these cells is functionally active. Therefore, HL-60 cells exhibit an increase in Ca

  3. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  4. Continuous Modeling of Calcium Transport Through Biological Membranes

    Science.gov (United States)

    Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.

    2016-08-01

    In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

  5. Smoking, calcium, calcium antagonists, and aging.

    Science.gov (United States)

    Nicita-Mauro, V

    1990-01-01

    Aging is characterized, besides other changes, by a progressive increase in calcium content in the arterial wall, which is enhanced by diabetes mellitus, osteoporosis, arterial hypertension, and tabagism. As to tabagism, experiments in animals have shown that nicotine can increase calcium content of the arterial wall, and clinical studies have demonstrated that cigarette smoking induces peripheral vasoconstriction, with consequent increase in blood pressure levels. In order to study the role of calcium ions in the pathogenesis of the vasoconstrictive lesions caused by "acute" smoking, the author has studied the peripheral vascular effects of the calcium-channel antagonist nifedipine, a dihydropyridine derivative, and calcitonin, a hypocalcemizing hormone which possess vasoactive actions on 12 elderly regular smokers (mean age 65.8 years). The results demonstrated that both nifedipine (10 mg sublingually 20 min before smoking) and salmon calcitonin (100 MRC U/daily intramuscularly for three days) are able to prevent peripheral vasoconstriction evaluated by Doppler velocimetry, as well as the increase of blood pressure induced by smoking. On the basis of our results, the author proposes that cigarette smoking-induced vasoconstriction is a calcium-mediated process, which can be hindered by drugs with calcium antagonist action. PMID:2226675

  6. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  7. Elemental Content of Calcium Oxalate Stones from a Canine Model of Urinary Stone Disease.

    Directory of Open Access Journals (Sweden)

    David W Killilea

    Full Text Available One of the most common types of urinary stones formed in humans and some other mammals is composed of calcium oxalate in ordered hydrated crystals. Many studies have reported a range of metals other than calcium in human stones, but few have looked at stones from animal models such as the dog. Therefore, we determined the elemental profile of canine calcium oxalate urinary stones and compared it to reported values from human stones. The content of 19 elements spanning 7-orders of magnitude was quantified in calcium oxalate stones from 53 dogs. The elemental profile of the canine stones was highly overlapping with human stones, indicating similar inorganic composition. Correlation and cluster analysis was then performed on the elemental profile from canine stones to evaluate associations between the elements and test for potential subgrouping based on elemental content. No correlations were observed with the most abundant metal calcium. However, magnesium and sulfur content correlated with the mineral hydration form, while phosphorous and zinc content correlated with the neuter status of the dog. Inter-elemental correlation analysis indicated strong associations between barium, phosphorous, and zinc content. Additionally, cluster analysis revealed subgroups within the stones that were also based primarily on barium, phosphorous, and zinc. These data support the use of the dog as a model to study the effects of trace metal homeostasis in urinary stone disease.

  8. CO2 sequestration using calcium-silicate concrete

    International Nuclear Information System (INIS)

    This study examined the feasibility of sequestering carbon dioxide (CO2) using calcium silicate while developing a strong and durable concrete building product. In addition to offering a solution for a safe, environmentally sound manner to sequester carbon dioxide, the carbonation curing of concrete has the potential to provide a permanent storage for exhaust CO2. The calcium compounds in cement react with CO2 through the early-age carbonation curing, forming geologically stable calcium carbonates. In this study, both type 10 and type 30 Portland cements were used as CO2 binders in concretes with 0, 25, 50, and 75 per cent quartz aggregates and lightweight aggregates. The sequestration took place in a chamber under 0.5 MPa pressure at ambient temperature for a duration of 2 hours. The recovered CO2 from flue gas was simulated using a 100 per cent concentration of CO2. The CO2 uptake was quantified by direct mass gain and by an infrared-based carbon analyzer. The performance of the carbonated concrete was evaluated by its strength. In 2 hours, a CO2 uptake of 9 to 16 per cent by binder mass was achieved. The carbonation curing of concrete was found to provide better strength, stability, permeability and abrasion resistance in concrete products without steel reinforcement. 10 refs., 4 tabs., 10 figs

  9. How strong is the strong interaction?

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Bergenwall, B.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Nilsson, L.; Pomp, S.; Oesterlund, M. [Dept. of Neutron Research, Uppsala Univ., Uppsala (Sweden); Tippawan, U. [Dept. of Neutron Research, Uppsala Univ., Uppsala (Sweden)]|[Fast Neutron Research Facility, Dept. of Physics, Chiang Mai Univ. (Thailand); Jonsson, O.; Prokofiev, A.V. [The Svedberg Lab., Uppsala Univ., Uppsala (Sweden); Nadel-Turonski, P. [Dept. of Radiation Sciences, Uppsala Univ., Uppsala (Sweden); Olsson, N. [Dept. of Neutron Research, Uppsala Univ., Uppsala (Sweden)]|[Swedish Defence Research Agency, Stockholm (Sweden); Dangtip, S. [Fast Neutron Research Facility, Dept. of Physics, Chiang Mai Univ. (Thailand)

    2003-07-01

    Elastic neutron scattering plays a key role in establishing the neutron-nucleus potential, i.e., the interaction strength between a neutron and a nucleus. In ADS applications, this information is useful in many different ways. Elastic scattering data are needed when determining the neutron intensity profile in and ADS system. In addition, the optical potentials derived from elastic neutron scattering data are used as input in every model calculation with a neutron in the incident or exit channel. Recently, there has been intense international debate on the neutron-proton scattering cross section. In the global data base, the backward cross section differs by 10% or even more at energies above 100 MeV. It is difficult to overemphasize the importance of this issue. The np scattering cross section is used as cross section reference in essentially all measurements of neutron-induced cross sections. Thus, for many applied cross sections the absolute scale is uncertain by the same amount. Moreover, the np scattering cross section has been used to derive the pion-nucleon coupling constant, i.e., the absolute strength of the strong interaction. It is annoying to have such a large uncertainty for such a fundamental parameter. We are presenting new data on elastic neutron scattering at 96 MeV from {sup 12}C and {sup 208}Pb, where the latter is part of the HINDAS project. In addition, new data on np scattering at 190 MeV will be presented. The impact on ADS and fundamental physics will be discussed. (orig.)

  10. Measurements of intracellular calcium

    International Nuclear Information System (INIS)

    Intracellular calcium concentration ([Ca2+]i) has been measured in cultured cells by using Fura-2 load cells and a computer-controlled Perkin Elmer LS-5B spectrofluorometer. Increased [Ca2+]i in cells exposed to extracellular bilirubin was observed both with and without extracellular calcium. However, the increase was considerable larger with extracellular calcium. The enhancement of [Ca2+]i became smaller with decreasing bilirubin/BSA (bovine serum albumine) ratio. 5 refs., 5 figs

  11. Consumption of calcium-fortified cereal bars to improve dietary calcium intake of healthy women: randomized controlled feasibility study.

    Directory of Open Access Journals (Sweden)

    Jennifer T Lee

    Full Text Available Calcium is an important structural component of the skeletal system. Although an adequate intake of calcium helps to maintain bone health and reduce the risk of osteoporosis, many women do not meet recommended daily intakes of calcium. Previous interventions studies designed to increase dietary intake of women have utilized primarily dairy sources of calcium or supplements. However, lactose intolerance, milk protein allergies, or food preferences may lead many women to exclude important dairy sources of dietary calcium. Therefore, we undertook a 9 week randomized crossover design trial to examine the potential benefit of including a non-dairy source of calcium in the diet of women. Following a 3 week run-in baseline period, 35 healthy women > 18 years were randomized by crossover design into either Group I or Group II. Group I added 2 calcium-fortified cereal bars daily (total of 400 mg calcium/day (intervention to their usual diet and Group II continued their usual diet (control. At the end of 3 weeks, diets were switched for another 3 weeks. Intakes of calcium and energy were estimated from 3-day diet and supplemental diaries. Wilcoxon signed-rank tests were used for within group comparisons and Mann Whitney U tests were used for between group comparisons of calcium and energy intake. Dietary calcium was significantly higher during intervention (1071 mg/d when participants consumed 2 calcium-fortified cereal bars daily than during the baseline (720 mg/d, P <0.0001 or control diets (775 mg/d, P = 0.0001 periods. Furthermore, the addition of 2 calcium-fortified cereal bars daily for the 3 week intervention did not significantly increase total energy intake or result in weight gain. In conclusion, consumption of calcium-fortified cereal bars significantly increased calcium intake of women. Further research examining the potential ability of fortified cereal bars to help maintain and improve bone health of women is warranted.ClinicalTrials.gov NCT

  12. Computational study of a calcium release-activated calcium channel

    Science.gov (United States)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  13. NS5806 partially restores action potential duration but fails to ameliorate calcium transient dysfunction in a computational model of canine heart failure

    DEFF Research Database (Denmark)

    Maleckar, Mary M; Lines, Glenn T; Koivumäki, Jussi T;

    2014-01-01

    AIMS: The study investigates how increased Ito, as mediated by the activator NS5806, affects excitation-contraction coupling in chronic heart failure (HF). We hypothesized that restoring spike-and-dome morphology of the action potential (AP) to a healthy phenotype would be insufficient to restore...... activation. CONCLUSIONS: Downstream effects of a compound acting exclusively on sarcolemmal ion channels are difficult to predict. Remediation of APD to pre-failing state does not ameliorate dysfunction in CaT; however, restoration of notch depth appears to impart modest benefit and a likelihood...

  14. Presynaptic calcium signalling in cerebellar mossy fibres

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Jörntell, Henrik; Midtgaard, Jens

    2010-01-01

    )-sensitive fast Na(+) spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers...

  15. Protein kinase C interaction with calcium: a phospholipid-dependent process.

    LENUS (Irish Health Repository)

    Bazzi, M D

    1990-08-21

    The calcium-binding properties of calcium- and phospholipid-dependent protein kinase C (PKC) were investigated by equilibrium dialysis in the presence and the absence of phospholipids. Calcium binding to PKC displayed striking and unexpected behavior; the free proteins bound virtually no calcium at intracellular calcium concentrations and bound limited calcium (about 1 mol\\/mol of PKC) at 200 microM calcium. However, in the presence of membranes containing acidic phospholipids, PKC bound at least eight calcium ions per protein. The presence of 1 microM phorbol dibutyrate (PDBu) in the dialysis buffer had little effect on these calcium-binding properties. Analysis of PKC-calcium binding by gel filtration under equilibrium conditions gave similar results; only membrane-associated PKC bound significant amounts of calcium. Consequently, PKC is a member of what may be a large group of proteins that bind calcium in a phospholipid-dependent manner. The calcium concentrations needed to induce PKC-membrane binding were similar to those needed for calcium binding (about 40 microM calcium at the midpoint). However, the calcium concentration required for PKC-membrane binding was strongly influenced by the phosphatidylserine composition of the membranes. Membranes with higher percentages of phosphatidylserine required lower concentrations of calcium. These properties suggested that the calcium sites may be generated at the interface between PKC and the membrane. Calcium may function as a bridge between PKC and phospholipids. These studies also suggested that calcium-dependent PKC-membrane binding and PKC function could be regulated by a number of factors in addition to calcium levels and diacylglycerol content of the membrane.

  16. Analysis of the effects of calcium or magnesium on voltage-clamp currents in perfused squid axons bathed in solutions of high potassium.

    Science.gov (United States)

    Rojas, E; Taylor, R E; Atwater, I; Bezanilla, F

    1969-10-01

    Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15-30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system. PMID:5823216

  17. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    DEFF Research Database (Denmark)

    Persson, Karin; Rekling, Jens C

    2011-01-01

    and in the facial nucleus. In Fluo-8AM loaded brainstem-spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial...... synchrony with respiratory nerve bursts. In brainstem-spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity...... in lateral and medial subnuclei. Whole-cell recordings from facial motoneurons showed weak respiratory drives, and electrical field potential recordings confirmed respiratory drive to particularly the dorsal and lateral subnuclei. Putative facial premotoneurons showed respiratory-related calcium signals...

  18. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free calciu

  19. The calcium-modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments

    Directory of Open Access Journals (Sweden)

    M. Garbuglia

    1999-10-01

    Full Text Available The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix type, S100A1 and S100B, that have been shown to inhibit microtubule (MT protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF subunits, desmin and glial fibrillary acidic protein (GFAP, with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 µM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.

  20. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins

    DEFF Research Database (Denmark)

    Hsu, Yu-Juei; Dimke, Henrik Anthony; Schoeber, Joost P H;

    2010-01-01

    Although gender differences in the renal handling of calcium have been reported, the overall contribution of androgens to these differences remains uncertain. We determined here whether testosterone affects active renal calcium reabsorption by regulating calcium transport proteins. Male mice had....... Androgen deficiency increased the abundance of the renal mRNA and protein of both the luminal transient receptor potential vanilloid-subtype 5 (TRPV5) and intracellular calbindin-D(28K) transporters, which in turn were suppressed by testosterone treatment. There were no significant differences in serum...

  1. CCN3 and calcium signaling

    Directory of Open Access Journals (Sweden)

    Li Chang Long

    2003-08-01

    Full Text Available Abstract The CCN family of genes consists presently of six members in human (CCN1-6 also known as Cyr61 (Cystein rich 61, CTGF (Connective Tissue Growth Factor, NOV (Nephroblastoma Overexpressed gene, WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins. Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling. CCN3 was reported to physically interact with fibulin-1C, integrins, Notch and S100A4. Considering that, the conformation and biological activity of these proteins are dependent upon calcium binding, we hypothesized that CCN3 might be involved in signaling pathways mediated by calcium ions. In this article, we review the data showing that CCN3 regulates the levels of intracellular calcium and discuss potential models that may account for the biological effects of CCN3.

  2. Stationary digital chest tomosynthesis for coronary artery calcium scoring

    Science.gov (United States)

    Wu, Gongting; Wang, Jiong; Potuzko, Marci; Harman, Allison; Pearce, Caleb; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2016-03-01

    The coronary artery calcium score (CACS) measures the buildup of calcium on the coronary artery wall and has been shown to be an important predictor of the risk of coronary artery diseases (CAD). Currently CACS is measured using CT, though the relatively high cost and high radiation dose has limited its adoption as a routine screening procedure. Digital Chest Tomosynthesis (DCT), a low dose and low cost alternative to CT, and has been shown to achieve 90% of sensitivity of CT in lung disease screening. However commercial DCT requires long scanning time and cannot be adapted for high resolution gated cardiac imaging, necessary for CACS. The stationary DCT system (s- DCT), developed in our lab, has the potential to significantly shorten the scanning time and enables high resolution cardiac gated imaging. Here we report the preliminary results of using s-DCT to estimate the CACS. A phantom heart model was developed and scanned by the s-DCT system and a clinical CT in a phantom model with realistic coronary calcifications. The adapted fan-beam volume reconstruction (AFVR) method, developed specifically for stationary tomosynthesis systems, is used to obtain high resolution tomosynthesis images. A trained cardiologist segmented out the calcifications and the CACS was obtained. We observed a strong correlation between the tomosynthesis derived CACS and CT CACS (r2 = 0.88). Our results shows s-DCT imaging has the potential to estimate CACS, thus providing a possible low cost and low dose imaging protocol for screening and monitoring CAD.

  3. Role of calcium conductance in firing behavior of retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    Dan Wang; Qingli Qiao; Nan Xie

    2011-01-01

    Fohlmeister-Coleman-Miller model of retinal ganglion cells consists of five ion channels; these are sodium channels, calcium channels, and 3 types of potassium channels. An increasing number of studies have investigated sodium channels, voltage-gated potassium channels, and delayed rectifier potassium channels. However, little is known about calcium channels, and in particular the dynamics and computational models of calcium ions. Retinal prostheses have been designed to assist with sight recovery for the blind, and in the present study, the effects of calcium ions in retinal ganglion cell models were analyzed with regard to calcium channel potential and calcium-activated potassium potential. Using MATLAB software, calcium conductance and calcium current from the Fohlmeister-Coleman-Miller model, under clamped voltages, were numerically computed using backward Euler methods. Subsequently, the Fohlmeister-Coleman-Miller model was simulated with the absence of calcium-current (lc,) or calcium-activated potassium current (IK, ca). The model was also analyzed according to the phase plane method.The relationship curve between peak calcium current and clamped potentials revealed an inverted bell shape, and the calcium-activated potassium current increased the frequency of firing and the peak of membrane potential. Results suggested that calcium ion concentrations play an important role in controlling the peak and the magnitude of peak membrane voltage in retinal ganglion cells.

  4. Intracellular calcium ions as regulators of renal tubular sodium transport.

    Science.gov (United States)

    Windhager, E; Frindt, G; Yang, J M; Lee, C O

    1986-09-15

    This review addresses the putative role of intracellular calcium ions in the regulation of sodium transport by renal tubules. Cytoplasmic calcium-ion activities in proximal tubules of Necturus are less than 10(-7) M and can be increased by lowering the electrochemical potential gradient for sodium ions across the peritubular cell membrane, or by addition of quinidine or ionomycin to peritubular fluid. Whereas lowering of the peritubular Na concentration increases cytosolic [Ca++] and [H+], ionomycin, a calcium ionophore, raises intracellular [Ca++] without decreasing pHi. The intracellular calcium-ion level is maintained by transport processes in the plasma membrane and membranes of intracellular organelles, as well as by calcium-binding proteins. Calcium ions inhibit net transport of sodium by reducing the rate of sodium entry across the luminal cell membrane. In the collecting tubule this inhibition is caused, at least in part, by an indirect reduction in the activity of the amiloride-sensitive sodium channel. PMID:2430134

  5. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian

    Science.gov (United States)

    Komar, Nemanja; Zeebe, Richard

    2016-04-01

    Negative carbon and calcium isotope excursions, as well as climate shifts, took place during the most severe mass extinction event in Earth's history, the end-Permian (˜252 Ma). Investigating the connection between carbon and calcium cycles during transient carbon cycle perturbation events, such as the end-Permian, may help resolve the intricacies between the coupled calcium-carbon cycles, as well as provide a tool for constraining the causes of mass extinction. Here, we identify the deficiencies of a simplified calcium model employed in several previous studies and we demonstrate the importance of a fully coupled carbon-cycle model when investigating the dynamics of carbon and calcium cycling. Simulations with a modified version of the LOSCAR model, which includes a fully coupled carbon-calcium cycle, indicate that increased weathering rates and ocean acidification (potentially caused by Siberian Trap volcanism) are not capable of producing trends observed in the record, as previously claimed. Our model results suggest that combined effects of carbon input via Siberian Trap volcanism (12,000 Pg C), the cessation of biological carbon export, and variable calcium isotope fractionation (due to a change in the seawater carbonate ion concentration) represents a more plausible scenario. This scenario successfully reconciles δ13C and δ44Ca trends observed in the sediment record, as well as the proposed warming of >6oC.

  6. Calcium binding by dietary fibre

    International Nuclear Information System (INIS)

    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  7. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine;

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone...... and inhibition of calcium transport processes within the renal tubule. The mechanisms whereby acid alters the integrity and stability of bone have been examined extensively in the published literature. Here, after briefly reviewing this literature, we consider the effects of acid on calcium transport...

  8. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  9. Homer regulates calcium signalling in growth cone turning

    Directory of Open Access Journals (Sweden)

    Thompson Michael JW

    2009-08-01

    Full Text Available Abstract Background Homer proteins are post-synaptic density proteins with known functions in receptor trafficking and calcium homeostasis. While they are key mediators of synaptic plasticity, they are also known to function in axon guidance, albeit by mechanisms that are yet to be elucidated. Homer proteins couple extracellular receptors – such as metabotropic glutamate receptors and the transient receptor potential canonical family of cation channels – to intracellular receptors such as inositol triphosphate and ryanodine receptors on intracellular calcium stores and, therefore, are well placed to regulate calcium dynamics within the neural growth cone. Here we used growth cones from dorsal root ganglia, a well established model in the field of axon guidance, and a growth cone turning assay to examine Homer1 function in axon guidance. Results Homer1 knockdown reversed growth cone turning from attraction to repulsion in response to the calcium-dependent guidance cues brain derived neurotrophic factor and netrin-1. Conversely, Homer1 knockdown had no effect on repulsion to the calcium-independent guidance cue Semaphorin-3A. This reversal of attractive turning suggested a requirement for Homer1 in a molecular switch. Pharmacological experiments confirmed that the operational state of a calcium-calmodulin dependent protein kinase II/calcineurin phosphatase molecular switch was dependent on Homer1 expression. Calcium imaging of motile growth cones revealed that Homer1 is required for guidance-cue-induced rise of cytosolic calcium and the attenuation of spontaneous cytosolic calcium transients. Homer1 knockdown-induced calcium transients and turning were inhibited by antagonists of store-operated channels. In addition, immunocytochemistry revealed the close association of Homer1 with the store-operated proteins TRPC1 and STIM1 within dorsal root ganglia growth cones. Conclusion These experiments provide evidence that Homer1 is an essential

  10. Strong vector valued integrals

    CERN Document Server

    Beckmann, Ralf

    2011-01-01

    Strong Bochner type integrals with values in locally convex spaces are introduced. It is shown that the strong integral exists in the same cases as the weak (Gelfand-Pettis) integral is known to exist. The strong integral has better continuity properties that the weak integral.

  11. Mitochondrial calcium uptake.

    Science.gov (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  12. ALG-2, a multifunctional calcium binding protein?

    DEFF Research Database (Denmark)

    Tarabykina, Svetlana; Mollerup, Jens; Winding Gojkovic, P.;

    2004-01-01

    ALG-2 was originally discovered as a pro-apoptotic protein in a genetic screen. Due to its ability to bind calcium with high affinity it was postulated to provide a link between the known effect of calcium in programmed cell death and the molecular death execution machinery. This review article...... discusses the current knowledge on the structure and potential function of this protein. Several putative binding partners of ALG-2 have been identified hinting to functions of ALG-2 in apoptosis and possibly also in proliferation, endocytosis and transcriptional regulation during development. Gene deletion...

  13. TRPM8 and Nav1.8 sodium channels are required for transthyretin-induced calcium influx in growth cones of small-diameter TrkA-positive sensory neurons

    Directory of Open Access Journals (Sweden)

    Vincent Adele J

    2011-03-01

    Full Text Available Abstract Background Familial amyloidotic polyneuropathy (FAP is a peripheral neuropathy caused by the extracellular accumulation and deposition of insoluble transthyretin (TTR aggregates. However the molecular mechanism that underlies TTR toxicity in peripheral nerves is unclear. Previous studies have suggested that amyloidogenic proteins can aggregate into oligomers which disrupt intracellular calcium homeostasis by increasing the permeability of the plasma membrane to extracellular calcium. The aim of the present study was to examine the effect of TTR on calcium influx in dorsal root ganglion neurons. Results Levels of intracellular cytosolic calcium were monitored in dorsal root ganglion (DRG neurons isolated from embryonic rats using the calcium-sensitive fluorescent indicator Fluo4. An amyloidogenic mutant form of TTR, L55P, induced calcium influx into the growth cones of DRG neurons, whereas wild-type TTR had no significant effect. Atomic force microscopy and dynamic light scattering studies confirmed that the L55P TTR contained oligomeric species of TTR. The effect of L55P TTR was decreased by blockers of voltage-gated calcium channels (VGCC, as well as by blockers of Nav1.8 voltage-gated sodium channels and transient receptor potential M8 (TRPM8 channels. siRNA knockdown of TRPM8 channels using three different TRPM8 siRNAs strongly inhibited calcium influx in DRG growth cones. Conclusions These data suggest that activation of TRPM8 channels triggers the activation of Nav1.8 channels which leads to calcium influx through VGCC. We suggest that TTR-induced calcium influx into DRG neurons may contribute to the pathophysiology of FAP. Furthermore, we speculate that similar mechanisms may mediate the toxic effects of other amyloidogenic proteins such as the β-amyloid protein of Alzheimer's disease.

  14. Idiopathic Calcium Nephrolithiasis And Hypercalciuria: The Role Of Genes

    Science.gov (United States)

    Gambaro, Giovanni; Abaterusso, Cataldo

    2007-04-01

    Idiopathic calcium nephrolithiasis and hypercalciuria are multifactorial disease conditions, the pathogenesis of which involves the interaction of environmental and individual factors. Data support a strong role of genes in the pathogenesis of these two conditions. Findings obtained in monogenic disorders characterized by renal calcium stones, and/or hypercalciuria, and/or nephrocalcinosis have proposed a number of genes as candidate genes in the pathogenesis of the common idiopathic calcium nephrolithiasis and hypercalciuria. The physiological role of these genes, and findings in monogenic disorders and idiopathic, multifactorial disorders will be presented.

  15. Another look at the deterioration of calcium aluminate cement concrete

    Directory of Open Access Journals (Sweden)

    Jambor, Jaromir

    1996-03-01

    Full Text Available Potential degradation of concrete structures made of calcium aluminate cement (CAC is well known and is caused by transformation (conversion of the thermodynamically metastable into stable calcium aluminate hydrate phases. This recrystallization is influenced by temperature and humidity; the structural degradation of the concrete itself thus its loss of strength, is strongly related to the pore structure of the hydrated cement paste, the critical parameters being the total volume of pores below 15-20 nm and the median micropore radius. This constitutes a novel procedure for evaluation of existing CAC concrete structure.

    La degradación potencial de estructuras de hormigón elaboradas con cemento aluminoso (CA es bien conocida. Este deterioro está causado por la recristalización (conversión de las fases del aluminato cálcico que son termodinámicamente metastables, en fases estables. En esta recristalización influye la temperatura y la humedad. Tanto la degradación del propio hormigón, como su pérdida de resistencias están relacionadas estrechamente con la estructura porosa de la pasta del cemento hidratado, siendo parámetros críticos el volumen total de los poros inferiores a 15-20 nm y el tamaño medio de los radios de los microporos. Esto constituye un nuevo procedimiento para evaluar las estructuras existentes de hormigón de cemento aluminoso (CA.

  16. Strongly Gorenstein Flat Dimensions

    Institute of Scientific and Technical Information of China (English)

    Chun Xia ZHANG; Li Min WANG

    2011-01-01

    This article is concerned with the strongly Gorenstein flat dimensions of modules and rings.We show this dimension has nice properties when the ring is coherent,and extend the well-known Hilbert's syzygy theorem to the strongly Gorenstein flat dimensions of rings.Also,we investigate the strongly Gorenstein flat dimensions of direct products of rings and (almost)excellent extensions of rings.

  17. Partially strong WW scattering

    International Nuclear Information System (INIS)

    What if only a light Higgs boson is discovered at the CERN LHC? Conventional wisdom tells us that the scattering of longitudinal weak gauge bosons would not grow strong at high energies. However, this is generally not true. In some composite models or general two-Higgs-doublet models, the presence of a light Higgs boson does not guarantee complete unitarization of the WW scattering. After partial unitarization by the light Higgs boson, the WW scattering becomes strongly interacting until it hits one or more heavier Higgs bosons or other strong dynamics. We analyze how LHC experiments can reveal this interesting possibility of partially strong WW scattering.

  18. Is ionized calcium a reliable predictor of hypocalcemia after total thyroidectomy? A before and after study.

    Science.gov (United States)

    Tartaglia, F; Giuliani, A; Sgueglia, M; Patrizi, G; Di Rocco, G; Blasi, S; Russo, G; Tortorelli, G; Giannotti, D; Redler, A

    2014-01-01

    Wanting to find a way of identifying patients suitable for early discharge after thyroidectomy, we set out to establish whether ionized calcium concentration is a better predictor of post-surgical hypocalcemia than total serum calcium. Data were analyzed to establish whether serum ionized calcium concentrations are correlated with total serum calcium levels and symptomatic hypocalcemia after thyroidectomy. Sixty-two patients undergoing total thyroidectomy at the Department of Surgical Sciences of the "Sapienza" University of Rome, Italy, in 2010. Ionized calcium was measured before (day 0) and after surgery (days 1, 2 and 60) in all the patients. These measurements were compared with preoperative (day 0) and postoperative total serum calcium levels (days 1, 2 and 60). The preoperative ionized calcium levels differed from the ionized calcium levels recorded on days 1 and 2; this pattern was not observed for the total calcium concentrations. Conversely, total calcium on days I and II correlated significantly with the various ionized calcium measurements. The presence of parathyroid glands in the surgical specimen did not seem to affect suitability for discharge. The statistical analysis showed that ionized calcium measurements are more reliable than total calcium measurements in the immediate and long-term follow-up of total thyroidectomy patients. Applying a 95% confidence interval we established reference values for both total serum calcium and ionized calcium, below which all patients develop postoperative symptomatic hypocalcemia. In conclusion, measurement of ionized calcium, as opposed to total calcium, should be strongly recommended in the immediate and longterm follow-up of total thyroidectomy patients. PMID:24690338

  19. New insights into calcium, dairy and colon cancer

    Institute of Scientific and Technical Information of China (English)

    Peter R Holt

    2008-01-01

    This paper is to review recent information about the relationship of calcium and dairy foods to colon cancer.The review focuses on primary prevention, discusses the potential components in dairy foods that might be anti-neoplastic, reviews the epidemiologic information and describes intervention studies demonstrating efficacy of calcium and vitamin D in reducing colorectal polyp recurrence. Since vitamin D is important in cancer prevention, pertinent data is discussed and potential mechanisms of actions presented. Calcium and vitamin D are important agents for the primary prevention of colorectal neoplasia.

  20. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Aalkjær, Christian; Nilsson, Holger;

    2007-01-01

    waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium...

  1. A sensor for calcium uptake

    OpenAIRE

    Collins, Sean; Meyer, Tobias

    2010-01-01

    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified.

  2. Children's Bone Health and Calcium

    Science.gov (United States)

    ... Trials Resources and Publications Children's Bone Health and Calcium: Condition Information Skip sharing on social media links ... straight, walk, run, and lead an active life. Calcium is one of the key dietary building blocks ...

  3. Calcium homeostasis modulator (CALHM) ion channels.

    Science.gov (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology. PMID:26603282

  4. Strongly irreducible surface automorphisms

    OpenAIRE

    Schleimer, Saul

    2002-01-01

    A surface automorphism is strongly irreducible if every essential simple closed curve in the surface has nontrivial geometric intersection with its image. We show that a three-manifold admits only finitely many inequivalent surface bundle structures with strongly irreducible monodromy.

  5. Solar Imagery - Chromosphere - Calcium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about...

  6. Calcium aluminate in alumina

    Science.gov (United States)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to

  7. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    Energy Technology Data Exchange (ETDEWEB)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore)

    2012-06-15

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  8. Pharmacokinetic interactions with calcium channel antagonists (Part I).

    Science.gov (United States)

    Schlanz, K D; Myre, S A; Bottorff, M B

    1991-11-01

    Calcium channel antagonists are a diverse class of drugs widely used in combination with other therapeutic agents. The potential exists for many clinically significant pharmacokinetic interactions between these and other concurrently administered drugs. The mechanisms of calcium channel antagonist-induced changes in drug metabolism include altered hepatic blood flow and impaired hepatic enzyme metabolising activity. Increases in serum concentrations and/or reductions in clearance have been reported for several drugs used with a number of calcium channel antagonists. A number of reports and studies of calcium channel antagonist interactions have yielded contradictory results and the clinical significance of pharmacokinetic changes seen with these agents is ill-defined. The first part of this article deals with interactions between calcium antagonists and marker compounds, theophylline, midazolam, lithium, doxorubicin, oral hypoglycaemics and cardiac drugs. PMID:1773549

  9. Studies on calcium oxalate monohydrate crystallization: influence of inhibitors.

    Science.gov (United States)

    Grases, F; Kroupa, M; Costa-Bauzá, A

    1994-01-01

    A simple model to study calcium oxalate monohydrate (COM) crystallization on different substrates is presented and the action of different potential inhibitors is evaluated and discussed. COM heterogeneous nucleation was assayed on solid surfaces as calcium phosphate, mixtures of mucin with calcium phosphate, and wax. In the presence of a non-protected non-renewed solid surface in contact with normal urine, COM crystal formation could be detected at short intervals (3 h). The most active heterogeneous nucleation capacity corresponded to calcium phosphate. In the presence of 10% mucin, owing to the renewal of the surface layer no COM crystal were detected on the pellet's surface. The study of citrate and pentosan polysulphate (a semisynthetic polysaccharide) on COM heterogeneous nucleation demonstrated some important inhibitory effects when concentration increased and time decreased. Maximum effects were selectively manifested on calcium phosphate surfaces. Only phytic acid at adequate concentration exhibited a total inhibitory capacity of COM formation, even during longer intervals (15 h). PMID:7521089

  10. Hamiltonian Strongly Regular Graphs

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.

    2008-01-01

    We give a sufficient condition for a distance-regular graph to be Hamiltonian. In particular, the Petersen graph is the only connected non-Hamiltonian strongly regular graph on fewer than 99 vertices.

  11. Complexity of Strong Implementability

    CERN Document Server

    Thielen, Clemens

    2009-01-01

    We consider the question of implementability of a social choice function in a classical setting where the preferences of finitely many selfish individuals with private information have to be aggregated towards a social choice. This is one of the central questions in mechanism design. If the concept of weak implementation is considered, the Revelation Principle states that one can restrict attention to truthful implementations and direct revelation mechanisms, which implies that implementability of a social choice function is easy to check. For the concept of strong implementation, however, the Revelation Principle becomes invalid, and the complexity of deciding whether a given social choice function is strongly implementable has been open so far. In this paper, we show by using methods from polyhedral theory that strong implementability of a social choice function can be decided in polynomial space and that each of the payments needed for strong implementation can always be chosen to be of polynomial encoding...

  12. Strong intrinsic motivation

    OpenAIRE

    Dessi, Roberta; Rustichini, Aldo

    2015-01-01

    A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...

  13. Bitcoin Meets Strong Consistency

    OpenAIRE

    Decker, Christian; Seidel, Jochen; Wattenhofer, Roger

    2014-01-01

    The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...

  14. <strong>PRAYER INDUCED ANALGESIAstrong>

    DEFF Research Database (Denmark)

    Jegindø, Else-Marie Elmholdt

    participants, but not for non-religious participants, this would be the case; both in subjective ratings of pain intensity and pain unpleasantness as well as physiologically, in terms of decreased sympathetic activation during prayer to God compared to the secular prayer. METHODS: In a clinical effect study...... moderators (personality, absorption and coping) and mediators (expectations, desire for pain relief and anxiety) were included in the study design in order to explore the influence of psychological mechanisms involved in the potential analgesic effect of prayer as a coping strategy. RESULTS: TBA (it......, respiration, cardiac baroreceptor sensitivity) and a Biopack system (skin conductance) to assess the correlation between the subjective ratings of pain intensity and pain unpleasantness on mechanical visual analogy scales (M-VAS) and the autonomic, physiological response to pain. Furthermore, psychological...

  15. Differential mitochondrial calcium responses in different cell types detected with a mitochondrial calcium fluorescent indicator, mito-GCaMP2

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Yanru Wang; Tingting Hou; Huiliang Zhang; Aijuan Qu; Xianhua Wang

    2011-01-01

    Mitochondrial calcium plays a crucial role in mitochondriai metabolism,cell calcium handling,and cell death.However,some mechanisms concerning mitochondrial calcium regulation are still unknown,especially how mitochondrial calcium couples with cytosolic calcium.In this work,we constructed a novel mitochondrial calcium fluorescent indicator (mito-GCaMP2) by genetic manipulation.Mito-GCaMP2 was imported into mitochondria with high efficiency and the fluorescent signals co-localized with that of tetramethyl rhodamine methyl ester,a mitochondrial membrane potential indicator.The mitochondrial inhibitors specifically decreased the signals of mito-GCaMP2.The apparent Kd of mito-GCaMP2 was 195.0 nmol/L at pH 8.0 in adult rat cardiomyocytes.Furthermore,we observed that mito-GCaMP2 preferred the alkaline pH surrounding of mitochondria.In HeLa cells,we found that mitochondrial calcium ([Ca2+]mito)responded to the changes of cytosolic calcium ([Ca2+]cyto)induced by histamine or thapasigargin.Moreover,external Ca2+ (100 μmol/L) directly induced an increase of [Ca2+]mito in permeabilized HeLa cells.However,in rat cardiomyocytes [Ca2+]mito did not respond to cytosolic calcium transients stimulated by electric pacing or caffeine.In permeabilized cardiomyocytes,600 nmol/L free Ca2+ repeatedly increased the fluorescent signals of mito-GCaMP2,which excluded the possibility that mito-GCaMP2 lost its function in cardiomyocytes mitochondria.These results showed that the response of mitochondrial calcium is diverse in different cell lineages and suggested that mitochondria in cardiomyocytes may have a special defense mechanism to control calcium flux.

  16. Fruit Calcium: Transport and Physiology

    Directory of Open Access Journals (Sweden)

    Bradleigh eHocking

    2016-04-01

    Full Text Available Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact fruit development, physical traits and disease susceptibility through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to ripening and the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g. blossom end rot in tomatoes or bitter pit in apples. This review works towards an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved

  17. DISTILLATION OF CALCIUM

    Science.gov (United States)

    Barton, J.

    1954-07-27

    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  18. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation

    Science.gov (United States)

    Chua, Yansong; Morrison, Abigail

    2016-01-01

    The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be

  19. Complexity of Strong Implementability

    Directory of Open Access Journals (Sweden)

    Clemens Thielen

    2009-09-01

    Full Text Available We consider the question of implementability of a social choice function in a classical setting where the preferences of finitely many selfish individuals with private information have to be aggregated towards a social choice. This is one of the central questions in mechanism design. If the concept of weak implementation is considered, the Revelation Principle states that one can restrict attention to truthful implementations and direct revelation mechanisms, which implies that implementability of a social choice function is easy to check. For the concept of strong implementation, however, the Revelation Principle becomes invalid, and the complexity of deciding whether a given social choice function is strongly implementable has been open so far. In this paper, we show by using methods from polyhedral theory that strong implementability of a social choice function can be decided in polynomial space and that each of the payments needed for strong implementation can always be chosen to be of polynomial encoding length. Moreover, we show that strong implementability of a social choice function involving only a single selfish individual can be decided in polynomial time via linear programming.

  20. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  1. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally...... wrong even though that human being is not being deprived of a "valuable future". So Marquis would be wrong in thinking that what is essential about the wrongness of killing an adult human being is that they are being deprived of a valuable future. This paper shows that whichever way the concept...... of "valuable future" is interpreted, the proposed counterexamples fail: if it is interpreted as "future like ours", the proposed counterexamples have no bearing on Marquis's argument. If the concept is interpreted as referring to the patient's preferences, it must be either conceded that the patients in Strong...

  2. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus.

    Science.gov (United States)

    Chameau, Pascal; Qin, Yongjun; Spijker, Sabine; Smit, August Benjamin; Smit, Guus; Joëls, Marian

    2007-01-01

    Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover, we addressed the putative gene targets that eventually lead to the enhanced calcium currents. Electrophysiological recordings were performed in nucleated patches that allow excellent voltage control. Calcium currents in these patches almost exclusively involve N- and L-type channels. We found that L- but not N-type calcium currents were largely enhanced after treatment with a high dose of corticosterone sufficient to activate glucocorticoid receptors. Voltage dependency and kinetic properties of the currents were unaffected by the hormone. Nonstationary noise analysis suggests that the increased current is not caused by a larger unitary conductance, but rather to a doubling of the number of functional channels. Quantitative real-time PCR revealed that transcripts of the Ca(v)1 subunits encoding for the N- or L-type calcium channels are not upregulated in the mouse CA1 area; instead, a strong, direct, and consistent upregulation of the beta4 subunit was observed. This indicates that the corticosteroid-induced increase in number of L-type calcium channels is not caused by a simple transcriptional regulation of the pore-forming subunit of the channels.

  3. Strongly correlated Bose gases

    Science.gov (United States)

    Chevy, F.; Salomon, C.

    2016-10-01

    The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.

  4. Strong acoustic wave action

    Science.gov (United States)

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  5. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger;

    2007-01-01

    waves sweeping through the cytoplasm when the SR is stimulated to release calcium. A rise in cyclic guanosine monophosphate (cGMP) leads to the experimentally observed transition from waves to whole-cell calcium oscillations. At the same time membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes uniform opening of L-type calcium...... onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion. Key words: Vasomotion, Chloride channel, cGMP, Mathematical model, Calcium waves....

  6. Synthesis of Calcium Silicate (Casio3 Using Calcium Fluoride, Quartz and Microbes

    Directory of Open Access Journals (Sweden)

    B. Gopal Krishna

    2015-09-01

    Full Text Available Microbes like bacteria, algae, fungi and virus play an important role to catalyst chemical reactions. In Nature, ores or minerals of different compounds are formed due to microbial environment and other factors like weathering. Microbial environment is also instrumental in forming calcium containing silicate minerals. Chemical reactions occur under microbial environment because microbes have the ability to control or modify different factors like pH, chemical potential and temperature during reactions. In this paper, synthesis of calcium silicate (CaSiO3 using calcium fluoride (CaF2 and quartz (SiO2 under microbial environment in a laboratory is being adopted to produce the required material. XRD technique is used to confirm the formation of CaSiO3.

  7. Physicochemical and Microstructural Characterization of Injectable Load-Bearing Calcium Phosphate Scaffold

    Directory of Open Access Journals (Sweden)

    Mazen Alshaaer

    2013-01-01

    Full Text Available Injectable load-bearing calcium phosphate scaffolds are synthesized using rod-like mannitol grains as porogen. These degradable injectable strong porous scaffolds, prepared by calcium phosphate cement, could represent a valid solution to achieve adequate porosity requirements while providing adequate support in load-bearing applications. The proposed process for preparing porous injectable scaffolds is as quick and versatile as conventional technologies. Using this method, porous CDHA-based calcium phosphate scaffolds with macropores sizes ranging from 70 to 300 μm, micropores ranging from 5 to 30 μm, and 30% open macroporosity were prepared. The setting time of the prepared scaffolds was 15 minutes. Also their compressive strength and e-modulus, 4.9 MPa and 400 MPa, respectively, were comparable with those of the cancellous bone. Finally, the bioactivity of the scaffolds was confirmed by cell growth with cytoplasmic extensions in the scaffolds in culture, demonstrating that the scaffold has a potential for MSC seeding and growth architecture. This combination of an interconnected macroporous structure with pore size suitable for the promotion of cell seeding and proliferation, plus adequate mechanical features, represents a porous scaffold which is a promising candidate for bone tissue engineering.

  8. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate

    Science.gov (United States)

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-05-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c–axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and “low k di-electric” systems.

  9. A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate.

    Science.gov (United States)

    Rianasari, Ina; Benyettou, Farah; Sharma, Sudhir Kumar; Blanton, Thomas; Kirmizialtin, Serdal; Jagannathan, Ramesh

    2016-01-01

    Inspired by the discovery of graphene and its unique properties, we focused our research to develop a scheme to create nacre like lamellar structures of molecular sheets of CaCO3 interleaved with an organic material, namely carbon. We developed a facile, chemical template technique, using a formulation of poly(acrylic) acid (PAA) and calcium acetate to create lamellar stacks of single crystal sheets of CaCO3, with a nominal thickness of 17 Å, the same as a unit-cell dimension for calcite (c-axis = 17.062 Å), interleaved with amorphous carbon with a nominal thickness of 8 Å. The strong binding affinity between carboxylate anions and calcium cations in the formulation was used as a molecular template to guide CaCO3 crystallization. Computational modeling of the FTIR spectra showed good agreement with experimental data and confirmed that calcium ions are bridged between polymer chains, resulting in a net-like polymer structure. The process readily lends itself to explore the feasibility of creating molecular sheets of other important inorganic materials and potentially find applications in many fields such as super capacitors and "low k di-electric" systems. PMID:27145699

  10. Automatic coronary calcium scoring in low-dose chest computed tomography

    NARCIS (Netherlands)

    Isgum, I.; Prokop, M.; Niemeijer, M.; Viergever, M.; Ginneken, B. van

    2012-01-01

    The calcium burden as estimated from non-ECGsynchronized CT exams acquired in screening of heavy smokers has been shown to be a strong predictor of cardiovascular events. We present a method for automatic coronary calcium scoring with low-dose, non-contrast-enhanced, non-ECG-synchronized chest CT. F

  11. MICROWAVE-ASSISTED SURFACE MODIFICATION OF CALCIUM BICARBONATE

    Institute of Scientific and Technical Information of China (English)

    Jing Ye; Xiaofei Zhang

    2004-01-01

    Surface modification of calcium bicarbonate powder with isopropyl triisostearoyl titanate (TTS) by microwave-assisted heating was studied in the present work. The features of microwave treated powder show obvious superiority to those of powder samples treated by traditional surface modification method and of untreated calcium bicarbonate - in suspension turbidity, suction potential, contact angle with water, and mechanical properties of their composites with PVC resin.

  12. Zolpidem reduces hippocampal neuronal activity in freely behaving mice: a large scale calcium imaging study with miniaturized fluorescence microscope.

    Directory of Open Access Journals (Sweden)

    Tamara Berdyyeva

    Full Text Available Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action. Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal's state. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (∼ 65% significantly decreasing the rate of calcium transients, and a small subset (3% showing an unexpected and significant increase. By linking molecular mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute substantially to the development of new therapeutics for the treatment of CNS disorders.

  13. Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Daniel X Keller

    Full Text Available The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways.

  14. Antilithiatic Activity of phlorotannin rich extract of Sarghassum Wightii on Calcium Oxalate Urolithiais – In Vitro and In VivoEvaluation

    Directory of Open Access Journals (Sweden)

    D. Sujatha

    2015-06-01

    Full Text Available ABSTRACTPurpose:Urolithiasis is a common urological disorder responsible for serious human affliction and cost to the society with a high recurrence rate. The aim of the present study was to systematically evaluate the phlorotannin rich extract of Sargassum wightii using suitable in vitro and in vivo models to provide scientific evidence for its antilithiatic activity.Materials and Methods:To explore the effect of Sargassum wightii on calcium oxalate crystallization, in vitro assays like crystal nucleation, aggregation and crystal growth were performed. Calcium oxalate urolithiasis was induced in male Sprague dawley rats using a combination of gentamicin and calculi producing diet (5% ammonium oxalate and rat pellet feed. The biochemical parameters like calcium, oxalate, magnesium, phosphate, sodium and potassium were evaluated in urine, serum and kidney homogenates. Histopathological studies were also done to confirm the biochemical findings.Results:The yield of Sargassum wightii extract was found to be 74.5 gm/kg and confirmed by quantitative analysis. In vitro experiments with Sargassum wightii showed concentration dependent inhibition of calcium oxalate nucleation, aggregation and growth supported by SEM analysis. In the in vivo model, Sargassum wightiireduced both calcium and oxalate supersaturation in urine, serum and deposition in the kidney. The biochemical results were supported by histopathological studies.Conclusion:The findings of the present study suggest that Sargassum wightii has the ability to prevent nucleation, aggregation and growth of calcium oxalate crystals. Sargassum wightii has better preventive effect on calcium oxalate stone formation indicating its strong potential to develop as a therapeutic option to prevent recurrence of urolithiasis.

  15. Non-equilibrium calcium ionisation in the solar atmosphere

    CERN Document Server

    Wedemeyer-Böhm, Sven

    2011-01-01

    Our aim is to determine the dominant processes and timescales for the ionisation equilibrium of calcium under solar chromospheric conditions. The study is based on numerical simulations with the RADYN code, which includes hydrodynamics, radiative transfer, and a detailed non-equilibrium treatment of hydrogen, calcium, and helium. The simulations are characterised by upwards propagating shock waves, which cause strong temperature fluctuations and variations of the ionisation degree of calcium. The passage of a hot shock front leads to a strong net ionisation of Ca II, rapidly followed by net recombination. The relaxation timescale of the Ca ionisation state is found to be of the order of a few seconds at the top of the photosphere and 10 to 30 s in the upper chromosphere. Generally, the timescales are significantly reduced in the wakes of hot shock fronts. The timescales can be reliably determined from a simple analysis of the eigenvalues of the transition rate matrix. The timescales are dominated by the radia...

  16. Strong Field Spherical Dynamos

    CERN Document Server

    Dormy, Emmanuel

    2014-01-01

    Numerical models of the geodynamo are usually classified in two categories: those denominated dipolar modes, observed when the inertial term is small enough, and multipolar fluctuating dynamos, for stronger forcing. I show that a third dynamo branch corresponding to a dominant force balance between the Coriolis force and the Lorentz force can be produced numerically. This force balance is usually referred to as the strong field limit. This solution co-exists with the often described viscous branch. Direct numerical simulations exhibit a transition from a weak-field dynamo branch, in which viscous effects set the dominant length scale, and the strong field branch in which viscous and inertial effects are largely negligible. These results indicate that a distinguished limit needs to be sought to produce numerical models relevant to the geodynamo and that the usual approach of minimizing the magnetic Prandtl number (ratio of the fluid kinematic viscosity to its magnetic diffusivity) at a given Ekman number is mi...

  17. Open Flavor Strong Decays

    Science.gov (United States)

    García-Tecocoatzi, H.; Bijker, R.; Ferretti, J.; Galatà, G.; Santopinto, E.

    2016-10-01

    In this contribution, we discuss the results of a QM calculation of the open-flavor strong decays of **** light nucleon resonances. These are the results of a recent calculation, where we used a modified ^3P_0 model for the amplitudes and the U(7) algebraic model and the hypercentral quark model to predict the baryon spectrum. The decay amplitudes are compared with the existing experimental data.

  18. About Goldbach strong conjecture

    OpenAIRE

    Funes, G.; Gulich, D.; Garvaglia, L.; Garvaglia, M.

    2007-01-01

    In this work we use the number classification in families of the form 6n+1, and 6n+5 with n integer (Such families contain all odd prime numbers greater than 3 and other compound numbers related with primes). We will use this kind of classification in order to attempt an approach to Goldbach strong conjecture. By means of a geometric method of binary bands of numbers we conceive a new form of study of the stated problem.

  19. About Goldbach strong conjecture

    CERN Document Server

    Funes, G; Garvaglia, L; Garvaglia, M

    2007-01-01

    In this work we use the number classification in families of the form 6n+1, and 6n+5 with n integer (Such families contain all odd prime numbers greater than 3 and other compound numbers related with primes). We will use this kind of classification in order to find a possible solution to Goldbach strong conjecture. By means of a geometric method of binary bands of numbers we conceive a new form of study of the stated problem.

  20. Open flavor strong decays

    CERN Document Server

    García-Tecocoatzi, H; Ferretti, J; Galatà, G; Santopinto, E

    2016-01-01

    In this contribution, we discuss the results of a QM calculation of the open-flavor strong decays of **** light nucleon resonances. These are the results of a recent calculation, where we used a modified $^3P_0$ model for the amplitudes and the U(7) algebraic model and the Hypercentral Quark Model to predict the baryon spectrum. The decay amplitudes are compared with the existing experimental data.

  1. Strongly interacting new physics

    International Nuclear Information System (INIS)

    In this talk. I will describe two aspects of the breaking of electroweak symmetry by new, strong interactions. First I will review the model independent approach to the low energy form of such new interactions emdash the electroweak chiral Lagrangian. Next I will summarize some of the phenomenological challenges facing technicolor theories, in particular those associated with the generation of the top and bottom masses. copyright 1997 American Institute of Physics

  2. Calcium – how and why?

    Indian Academy of Sciences (India)

    J K Jaiswal

    2001-09-01

    Calcium is among the most commonly used ions, in a multitude of biological functions, so much so that it is impossible to imagine life without calcium. In this article I have attempted to address the question as to how calcium has achieved this status with a brief mention of the history of calcium research in biology. It appears that during the origin and early evolution of life the Ca2+ ion was given a unique opportunity to be used in several biological processes because of its unusual physical and chemical properties.

  3. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  4. Cardiovascular Effects of Calcium Supplements

    Directory of Open Access Journals (Sweden)

    Ian R. Reid

    2013-07-01

    Full Text Available Calcium supplements reduce bone turnover and slow the rate of bone loss. However, few studies have demonstrated reduced fracture incidence with calcium supplements, and meta-analyses show only a 10% decrease in fractures, which is of borderline statistical and clinical significance. Trials in normal older women and in patients with renal impairment suggest that calcium supplements increase the risk of cardiovascular disease. To further assess their safety, we recently conducted a meta-analysis of trials of calcium supplements, and found a 27%–31% increase in risk of myocardial infarction, and a 12%–20% increase in risk of stroke. These findings are robust because they are based on pre-specified analyses of randomized, placebo-controlled trials and are consistent across the trials. Co-administration of vitamin D with calcium does not lessen these adverse effects. The increased cardiovascular risk with calcium supplements is consistent with epidemiological data relating higher circulating calcium concentrations to cardiovascular disease in normal populations. There are several possible pathophysiological mechanisms for these effects, including effects on vascular calcification, vascular cells, blood coagulation and calcium-sensing receptors. Thus, the non-skeletal risks of calcium supplements appear to outweigh any skeletal benefits, and are they appear to be unnecessary for the efficacy of other osteoporosis treatments.

  5. Strong Coupling and Classicalization

    CERN Document Server

    Dvali, Gia

    2016-01-01

    Classicalization is a phenomenon in which a theory prevents itself from entering into a strong-coupling regime, by redistributing the energy among many weakly-interacting soft quanta. In this way, the scattering process of some initial hard quanta splits into a large number of soft elementary processes. In short, the theory trades the strong coupling for a high-multiplicity of quanta. At very high energies, the outcome of such a scattering experiment is a production of soft states of high occupation number that are approximately classical. It is evident that black hole creation in particle collision at super-Planckian energies is a result of classicalization, but there is no a priory reason why this phenomenon must be limited to gravity. If the hierarchy problem is solved by classicalization, the LHC has a chance of detecting a tower of new resonances. The lowest-lying resonances must appear right at the strong coupling scale in form of short-lived elementary particles. The heavier members of the tower must b...

  6. 21 CFR 573.240 - Calcium periodate.

    Science.gov (United States)

    2010-04-01

    ... with calcium hydroxide or calcium oxide to form a substance consisting of not less than 60 percent by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium periodate. 573.240 Section 573.240 Food... Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used...

  7. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  8. Preparation and Characterization of Calcium Carbonate Nanoparticles

    Science.gov (United States)

    Hassim, Aqilah; Rachmawati, Heni

    2010-10-01

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In this study, we prepared and characterized calcium carbonate nanoparticle to improve the solubility by using bottom-up method. The experiment was done by titrating calcium chloride with sodium carbonate with the addition of polyvinylpyrrolidone (PVP) as stabilizer, using ultra-turrax. Various concentrations of calcium chloride and sodium carbonate as well as various speed of stirring were used to prepare the calcium carbonate nanoparticles. Evaluations studied were including particle size, polydispersity index (PI) and zeta potential with particle analyzer, surface morphology with scanning electron microscope, and saturated solubility. In addition, to test the ability of PVP to prevent particles growth, short stability study was performed by storing nano CaCO3 suspension at room temperature for 2 weeks. Results show that using 8000 rpm speed of stirring, the particle size tends to be bigger with the range of 500-600 nm (PI between 0.2-0.4) whereas with stirring speed of 4000 rpm, the particle size tends to be smaller with 300-400 nm (PI between 0.2-0.4). Stirring speed of 6000 rpm produced particle size within the range of 400-500 nm (PI between 0.2-0.4). SEM photograph shows that particles are monodisperse confirming that particles were physically stable without any agglomeration within 2 weeks storage. Taken together, nano CaCO3 is successfully prepared by bottom-up method and PVP is a good stabilizer to prevent the particle growth.

  9. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  10. Precipitation of calcium carbonate from a calcium acetate and ammonium carbamate batch system

    Science.gov (United States)

    Prah, J.; Maček, J.; Dražič, G.

    2011-06-01

    In this paper, we report a novel approach for preparing precipitated calcium carbonate using solutions of ammonium carbamate and calcium acetate as the sources of calcium and carbon dioxide, respectively. Two different concentrations of the starting solutions at three different temperatures (15, 25 and 50 °C) were used for the reaction. The influence of temperature and concentration on the polymorphism and the resulting morphology of calcium carbonate are discussed. The most important parameter for controlling a particular crystal structure and precipitate morphology were the concentrations of the initial solutions. When initial solutions with lower concentrations were used, the crystal form of the precipitate changed with time. Regardless the different polymorphism at different temperatures, after one day only the calcite form was detected in all samples, regardless of at which temperature the samples were prepared. At higher concentrations, pure vaterite or a mixture of vaterite and calcite were present at the beginning of the experiment. After one day, pure vaterite was found in the samples that were prepared at 15 and 25 °C. If calcium carbonate precipitated at 50 °C, the XRD results showed a mixture of calcite and vaterite regardless of the time at which the sample was taken. The morphology of calcium carbonate particles prepared at various conditions changed from calcite cubes to spherical particles of vaterite and aragonite needles. When a low starting concentration was used, the morphology at the initial stage was strongly affected by the temperature at which the experiments were conducted. However, after one day only, cubes were present in all cases at low initial concentrations. In contrast, at high concentrations spherical particles precipitated at all three temperatures at the beginning of the reaction. Spherical particles were made up from smaller particles. Over time, the size of the particles was diminishing due to their disintegration into

  11. Calcium--a central regulator of keratinocyte differentiation in health and disease.

    Science.gov (United States)

    Elsholz, Floriana; Harteneck, Christian; Muller, Walter; Friedland, Kristina

    2014-01-01

    Regular keratinocyte differentiation is crucial for the formation of an intact epidermal barrier and is triggered by extracellular calcium. Disturbances of epidermal barrier formation and aberrant keratinocyte differentiation are involved in the pathophysiology of several skin diseases, such as psoriasis, atopic dermatitis, basal and squamous skin cancer, and genetic skin diseases such as Darier's disease and Olmstedt syndrome. In this review, we summarize current knowledge about the underlying molecular mechanisms of calcium-induced differentiation in keratinocytes. We provide an overview of calcium's genomic and non-genomic mechanisms to induce differentiation and discuss the calcium gradient in the epidermis, giving rise to cornified skin and lipid envelope formation. We focus on the calcium-sensing receptor, transient receptor potential channels, and STIM/Orai as the major constituents of calcium sensing and calcium entry in the keratinocytes. Finally, skin diseases linked to impaired differentiation will be discussed, paying special attention to disturbed TRP channel expression and TRP channel mutations.

  12. Note: Inhibiting bottleneck corrosion in electrical calcium tests for ultra-barrier measurements

    Science.gov (United States)

    Nehm, F.; Müller-Meskamp, L.; Klumbies, H.; Leo, K.

    2015-12-01

    A major failure mechanism is identified in electrical calcium corrosion tests for quality assessment of high-end application moisture barriers. Accelerated calcium corrosion is found at the calcium/electrode junction, leading to an electrical bottleneck. This causes test failure not related to overall calcium loss. The likely cause is a difference in electrochemical potential between the aluminum electrodes and the calcium sensor, resulting in a corrosion element. As a solution, a thin, full-area copper layer is introduced below the calcium, shifting the corrosion element to the calcium/copper junction and inhibiting bottleneck degradation. Using the copper layer improves the level of sensitivity for the water vapor transmission rate (WVTR) by over one order of magnitude. Thin-film encapsulated samples with 20 nm of atomic layer deposited alumina barriers this way exhibit WVTRs of 6 × 10-5 g(H2O)/m2/d at 38 °C, 90% relative humidity.

  13. Interaction of H2S with Calcium Permeable Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2015-01-01

    Full Text Available A growing amount of evidence has suggested that hydrogen sulfide (H2S, as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC, T-type calcium channels (TTCC, sodium/calcium exchangers (NCX, transient receptor potential (TRP channels, β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms.

  14. Prospective study of association of uterine atonicity and serum calcium levels

    Directory of Open Access Journals (Sweden)

    Premalahta HL

    2016-07-01

    Conclusions: Our result revealed that low calcium level is strongly associated with uterine atony, hence is a risk factor for uterine atony. [Int J Reprod Contracept Obstet Gynecol 2016; 5(7.000: 2221-2223

  15. A STRONG LINK

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Trade frictions should not affect the mainstream of Sino-U.S. mutually beneficial economic and trade cooperation China and the United States have a complicated relationship, one that can be called a competitive partnership. The U.S. trade deficit with China, its third largest trading partner, hit a staggering $201.6 billion last year, an imbalance that is a major bone of contention. Yet, while frictions over trade, intellectual property rights and other issues grab the headlines, there is strong-and grow...

  16. Strong coupling in Horava gravity

    CERN Document Server

    Charmousis, Christos; Padilla, Antonio; Saffin, Paul M

    2009-01-01

    By studying perturbations about the vacuum, we show that Horava gravity suffers from two different strong coupling problems, extending all the way into the deep infra-red. The first of these is associated with the principle of detailed balance and explains why solutions to General Relativity are typically not recovered in models that preserve this structure. The second of these occurs even without detailed balance and is associated with the breaking of diffeomorphism invariance, required for anisotropic scaling in the UV. Since there is a reduced symmetry group there are additional degrees of freedom, which need not decouple in the infra-red. Indeed, we use the Stuckelberg trick to show that one of these extra modes become strongly coupled as the parameters approach their desired infra-red fixed point. Whilst we can evade the first strong coupling problem by breaking detailed balance, we cannot avoid the second, whatever the form of the potential. Therefore the original Horava model, and its "phenomenological...

  17. Calcium and ROS: A mutual interplay.

    Science.gov (United States)

    Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga

    2015-12-01

    Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca(2+) signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072

  18. Modulating calcium phosphate formation using CO2 laser engineering of a polymeric material

    International Nuclear Information System (INIS)

    The use of simulated body fluid (SBF) is widely used as a screening technique to assess the ability of materials to promote calcium phosphate formation. This paper details the use of CO2 laser surface treatment of nylon® 6,6 to modulate calcium phosphate formation following immersion in SBF for 14 days. Through white light interferometry (WLI) it was determined that the laser surface processing gave rise to maximum Ra and Sa parameters of 1.3 and 4.4 μm, respectively. The use of X-ray photoelectron spectroscopy (XPS) enabled a maximum increase in surface oxygen content of 5.6%at. to be identified. The laser-induced surface modifications gave rise to a modulation in the wettability characteristics such that the contact angle, θ, decreased for the whole area processed samples, as expected, and increased for the patterned samples. The increase in θ can be attributed to a transition in wetting nature to a mixed-state wetting regime. It was seen for all samples that calcium phosphate formed on each surface following 14 days. The largest increase in mass, Δg, owed to calcium phosphate formation, was brought about by the whole area processed sample irradiated with a fluence of 51 J cm−2. No correlation between the calcium phosphate formation and the laser patterned surface properties was determined due to the likely affect of the mixed-state wetting regime. Strong correlations between θ, the surface energy parameters and the calcium phosphate formation for the whole area processed samples allow one to realize the potential for this surface treatment technique in predicting the bone forming ability of laser processed materials. - Highlights: ► Surface modifications brought about a modulation in the wetting of nylon 6,6. ► An increase in θ can be attributed to a mixed-state wetting regime. ► Laser surface treatment modulated the ability to promote apatite formation. ► Mixed-state wetting regime affected the promotion of uniform apatite formation. ► Method

  19. CALCIUM ENHANCES ANTIINFLAMMATORY ACTIVITY OF ASPIRIN

    OpenAIRE

    Choksi Krishna; Shenoy Ashoka M; A. R. Shabharaya; Lala Minaxi

    2011-01-01

    The objective of present study is to evaluate the effects of calcium carbonate and calcium gluconate on acute and subacute inflammation and to study their possible interactions with Aspirin. Calcium carbonate (10 mg/kg) and calcium gluconate (5 mg/kg) were administered individually and also co-administered along with sub therapeutic dose Aspirin (50mg/kg) to study their interaction. The inflammation was induced by carrageenan or a foreign body. Both calcium carbonate and calcium gluconate cou...

  20. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk;

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...... in the char conversion process. Comprehensive global equilibrium calculations predicted important characteristics of the inorganic ash residue. Equilibrium calculations predict the formation of liquid salt if sufficient amounts of Ca are added and according to experiments as well as calculations calcium binds...

  1. Calcium signalling in human neutrophil cell lines is not affected by low-frequency electromagnetic fields.

    Science.gov (United States)

    Golbach, Lieke A; Philippi, John G M; Cuppen, Jan J M; Savelkoul, Huub F J; Verburg-van Kemenade, B M Lidy

    2015-09-01

    We are increasingly exposed to low-frequency electromagnetic fields (LF EMFs) by electrical devices and power lines, but if and how these fields interact with living cells remains a matter of debate. This study aimed to investigate the potential effect of LF EMF exposure on calcium signalling in neutrophils. In neutrophilic granulocytes, activation of G-protein coupled receptors leads to efflux of calcium from calcium stores and influx of extracellular calcium via specialised calcium channels. The cytoplasmic rise of calcium induces cytoskeleton rearrangements, modified gene expression patterns, and cell migration. If LF EMF modulates intracellular calcium signalling, this will influence cellular behaviour and may eventually lead to health problems. We found that calcium mobilisation upon chemotactic stimulation was not altered after a short 30 min or long-term LF EMF exposure in human neutrophil-like cell lines HL-60 or PLB-985. Neither of the two investigated wave forms (Immunent and 50 Hz sine wave) at three magnetic flux densities (5 μT, 300 μT, and 500 μT) altered calcium signalling in vitro. Gene-expression patterns of calcium-signalling related genes also did not show any significant changes after exposure. Furthermore, analysis of the phenotypical appearance of microvilli by scanning electron microscopy revealed no alterations induced by LF EMF exposure. The findings above indicate that exposure to 50 Hz sinusoidal or Immunent LF EMF will not affect calcium signalling in neutrophils in vitro.

  2. Strong, Lightweight, Porous Materials

    Science.gov (United States)

    Leventis, Nicholas; Meador, Mary Ann B.; Johnston, James C.; Fabrizio, Eve F.; Ilhan, Ulvi

    2007-01-01

    A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

  3. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  4. On Strong Cosmic Censorship

    CERN Document Server

    Isenberg, James

    2015-01-01

    For almost half of the one hundred year history of Einstein's theory of general relativity, Strong Cosmic Censorship has been one of its most intriguing conjectures. The SCC conjecture addresses the issue of the nature of the singularities found in most solutions of Einstein's gravitational field equations: Are such singularities generically characterized by unbounded curvature? Is the existence of a Cauchy horizon (and the accompanying extensions into spacetime regions in which determinism fails) an unstable feature of solutions of Einstein's equations? In this short review article, after briefly commenting on the history of the SCC conjecture, we survey some of the progress made in research directed either toward supporting SCC or toward uncovering some of its weaknesses. We focus in particular on model versions of SCC which have been proven for restricted families of spacetimes (e.g., the Gowdy spacetimes), and the role played by the generic presence of Asymptotically Velocity Term Dominated behavior in th...

  5. Effects of DPPC/Cholesterol liposomes on the properties of freshly precipitated calcium carbonate.

    Science.gov (United States)

    Szcześ, A

    2013-01-01

    DPPC/Cholesterol liposomes of average diameter below 100nm were used as a matrix for calcium carbonate precipitation. Adsorption of calcium ions on the vesicles was determined via zeta potential measurement. It was found that with increasing calcium ions concentration the electrokinetic potential of the vesicles varied toward more positive values. The changes became smaller with the cholesterol content increase. Accumulation of calcium ions close to the vesicles membranes lead to attraction of CO(3)(2-) ions and enhances nucleation and growth of small calcium carbonate crystals that aggregates within lipid vesicles forming porous balls aggregates. However, dipalmitoylphosphatidylcholine (DPPC) does not change the CaCO(3) crystal forms and calcite is the only form obtained during precipitation. Moreover, the influence of the phospholipid on the calcium carbonate precipitation is enhanced by the induction of cholesterol to the lipid membranes. PMID:22796770

  6. Finding Strong Bridges and Strong Articulation Points in Linear Time

    Science.gov (United States)

    Italiano, Giuseppe F.; Laura, Luigi; Santaroni, Federico

    Given a directed graph G, an edge is a strong bridge if its removal increases the number of strongly connected components of G. Similarly, we say that a vertex is a strong articulation point if its removal increases the number of strongly connected components of G. In this paper, we present linear-time algorithms for computing all the strong bridges and all the strong articulation points of directed graphs, solving an open problem posed in [2].

  7. Evolution of the Calcium Paradigm: The Relation between Vitamin D, Serum Calcium and Calcium Absorption

    Directory of Open Access Journals (Sweden)

    Borje E. Christopher Nordin

    2010-09-01

    Full Text Available Osteoporosis is the index disease for calcium deficiency, just as rickets/osteomalacia is the index disease for vitamin D deficiency, but there is considerable overlap between them. The common explanation for this overlap is that hypovitaminosis D causes malabsorption of calcium which then causes secondary hyperparathyroidism and is effectively the same thing as calcium deficiency. This paradigm is incorrect. Hypovitaminosis D causes secondary hyperparathyroidism at serum calcidiol levels lower than 60 nmol/L long before it causes malabsorption of calcium because serum calcitriol (which controls calcium absorption is maintained until serum calcidiol falls below 20 nmol/L. This secondary hyperparathyroidism, probably due to loss of a “calcaemic” action of vitamin D on bone first described in 1957, destroys bone and explains why vitamin D insufficiency is a risk factor for osteoporosis. Vitamin D thus plays a central role in the maintenance of the serum (ionised calcium, which is more important to the organism than the preservation of the skeleton. Bone is sacrificed when absorbed dietary calcium does not match excretion through the skin, kidneys and bowel which is why calcium deficiency causes osteoporosis in experimental animals and, by implication, in humans.

  8. Sensitivity to calcium intake in calcium stone forming patients.

    Science.gov (United States)

    Heilberg, I P; Martini, L A; Draibe, S A; Ajzen, H; Ramos, O L; Schor, N

    1996-01-01

    The absorptive or renal origin of hypercalciuria can be discriminated using an acute oral calcium load test (ACLT). Of 86 patients with calcium oxalate kidney stones, 28 (23%) were found to be hypercalciuric (HCa) and 58 (67%) normocalciuric (NCa) on their customary free diet, containing 542 +/- 29 mg/day (mean +/- SE) of calcium. Since the apparently normal 24-hour calcium excretion of many calcium stone formers (CSF) may be due to a combination of high calcium absorption with moderately low calcium intake, all patients were investigated by ACLT. Of 28 HCa patients, 13 (46%) were classified as absorptive (AH) and 15 (54%) as renal hypercalciuria (RH). Of the 58 NCa patients, 38 (65%) presented features of intestinal hyperabsorption and were therefore designated as AH-like, and 20 (35%) as RH-like. To further elucidate the role of dietary calcium in these CSF, a chronic calcium load test (CCLT), consisting of 1 g/day of oral Ca for 7 days, was designed. A positive response to the CCLT was considered to occur when urinary calcium (uCa) was > or = 4 mg/ kg/24 h on the 7th day. Among NCa patients, 29% of AH-like subjects responded to the CCLT and 71% did not; 50% of RH-like subjects also responded and 50% did not. In HCa patients, 85% of AH and 67% of RH subjects maintained uCa > or = 4 mg/kg/24 h after the CCLT and 15% of AH and 23% of RH subjects did not. However, a significant additional increase in mean uCa was not observed among HCa patients. All patients were submitted to a second evaluation of fasting calciuria (Ca/Cr). A modification of this parameter was noticed in 89% of RH-like and 78% of RH patients. In conclusion, these data suggest the presence of subpopulations of patients sensitive or not to calcium intake, regardless of whether the acute response to a calcium overload test suggested AH or RH. The CCLT disclosed dietary hypercalciuria in 21/58 (36%) of previously NCa patients. In these NCa patients, the ACLT may be replaced by the CCLT. The distinction

  9. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    Energy Technology Data Exchange (ETDEWEB)

    Bizzozero, Julien, E-mail: julien.bizzozero@gmail.com; Scrivener, Karen L.

    2015-10-15

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction.

  10. Prophylactic and therapeutic functions of T-type calcium blockers against noise-induced hearing loss

    OpenAIRE

    Shen, Haiyan; Zhang, BaoPing; Shin, June-Ho; Lei, Debin; Du, Yafei; Gao, Xiang; Wang, Qiuju; Ohlemiller, Kevin K.; Piccirillo, Jay; Bao, Jianxin

    2006-01-01

    Cochlear noise injury is the second most frequent cause of sensorineural hearing loss, after aging. Because calcium dysregulation is a widely recognized contributor to noise injury, we examined the potential of calcium channel blockers to reduce noise-induced hearing loss (NIHL) in mice. We focused on two T-type calcium blockers, trimethadione and ethosuximide, which are anti-epileptics approved by the Food and Drug Administration. Young C57BL/6 mice of either gender were divided into three g...

  11. Conjugated linoleic acid and calcium co-supplementation improves bone health in ovariectomised mice

    OpenAIRE

    Park, Yooheon; Kim, Jonggun; Scrimgeour, Angus G.; Condlin, Michelle L.; Kim, Daeyoung; Park, Yeonhwa

    2013-01-01

    Osteoporosis is a significant health concern for the elderly; conjugated linoleic acid (CLA) has been shown to improve overall bone mass when calcium is included as a co-supplement. However, potential effects of CLA and calcium on bone mass during a period of bone loss have not been reported. The purpose of this study was to determine how dietary calcium modulates the effects of conjugated linoleic acid (CLA) in preventing bone loss, using an ovariectomised mouse model. CLA supplementation si...

  12. Strongly correlated surface states

    Science.gov (United States)

    Alexandrov, Victor A.

    Everything has an edge. However trivial, this phrase has dominated theoretical condensed matter in the past half a decade. Prior to that, questions involving the edge considered to be more of an engineering problem rather than a one of fundamental science: it seemed self-evident that every edge is different. However, recent advances proved that many surface properties enjoy a certain universality, and moreover, are 'topologically' protected. In this thesis I discuss a selected range of problems that bring together topological properties of surface states and strong interactions. Strong interactions alone can lead to a wide spectrum of emergent phenomena: from high temperature superconductivity to unconventional magnetic ordering; interactions can change the properties of particles, from heavy electrons to fractional charges. It is a unique challenge to bring these two topics together. The thesis begins by describing a family of methods and models with interactions so high that electrons effectively disappear as particles and new bound states arise. By invoking the AdS/CFT correspondence we can mimic the physical systems of interest as living on the surface of a higher dimensional universe with a black hole. In a specific example we investigate the properties of the surface states and find helical spin structure of emerged particles. The thesis proceeds from helical particles on the surface of black hole to a surface of samarium hexaboride: an f-electron material with localized magnetic moments at every site. Interactions between electrons in the bulk lead to insulating behavior, but the surfaces found to be conducting. This observation motivated an extensive research: weather the origin of conduction is of a topological nature. Among our main results, we confirm theoretically the topological properties of SmB6; introduce a new framework to address similar questions for this type of insulators, called Kondo insulators. Most notably we introduce the idea of Kondo

  13. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  14. Kinematics of Strong Discontinuities

    Science.gov (United States)

    Peterson, K.; Nguyen, G.; Sulsky, D.

    2006-01-01

    Synthetic Aperture Radar (SAR) provides a detailed view of the Arctic ice cover. When processed with the RADARSAT Geophysical Processor System (RGPS), it provides estimates of sea ice motion and deformation over large regions of the Arctic for extended periods of time. The deformation is dominated by the appearance of linear kinematic features that have been associated with the presence of leads. The RGPS deformation products are based on the assumption that the displacement and velocity are smooth functions of the spatial coordinates. However, if the dominant deformation of multiyear ice results from the opening, closing and shearing of leads, then the displacement and velocity can be discontinuous. This presentation discusses the kinematics associated with strong discontinuities that describe possible jumps in displacement or velocity. Ice motion from SAR data are analyzed using this framework. It is assumed that RGPS cells deform due to the presence of a lead. The lead orientation is calculated to optimally account for the observed deformation. It is shown that almost all observed deformation can be represented by lead opening and shearing. The procedure used to reprocess motion data to account for leads will be described and applied to regions of the Beaufort Sea. The procedure not only provides a new view of ice deformation, it can be used to obtain information about the presence of leads for initialization and/or validation of numerical simulations.

  15. Foreshocks of strong earthquakes

    Science.gov (United States)

    Guglielmi, A. V.; Sobisevich, L. E.; Sobisevich, A. L.; Lavrov, I. P.

    2014-07-01

    The specific enhancement of ultra-low-frequency (ULF) electromagnetic oscillations a few hours prior to the strong earthquakes, which was previously mentioned in the literature, motivated us to search for the distinctive features of the mechanical (foreshock) activity of the Earth's crust in the epicentral zones of the future earthquakes. Activation of the foreshocks three hours before the main shock is revealed, which is roughly similar to the enhancement of the specific electromagnetic ULF emission. It is hypothesized that the round-the-world seismic echo signals from the earthquakes, which form the peak of energy release 2 h 50 min before the main events, act as the triggers of the main shocks due to the cumulative action of the surface waves converging to the epicenter. It is established that the frequency of the fluctuations in the foreshock activity decreases at the final stages of the preparation of the main shocks, which probably testifies to the so-called mode softening at the approach of the failure point according to the catastrophe theory.

  16. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  17. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    Science.gov (United States)

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.

  18. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    OpenAIRE

    Bekyarova, T. I.; Reedy, M C; Baumann, B. A. J.; Tregear, R T; Ward, A; Krzic, U.; Prince, K.M.; Perz-Edwards, R. J.; Reconditi, M.; Gore, D.; Irving, T C; Reedy, M K

    2008-01-01

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the “steric blocking” mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca2+ with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence...

  19. Arterial Stiffness and Dialysis Calcium Concentration

    Directory of Open Access Journals (Sweden)

    Fabrice Mac-Way

    2011-01-01

    Full Text Available Arterial stiffness is the major determinant of isolated systolic hypertension and increased pulse pressure. Aortic stiffness is also associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, hypertension, and general population. Hemodynamically, arterial stiffness results in earlier aortic pulse wave reflection leading to increased cardiac workload and decreased myocardial perfusion. Although the clinical consequence of aortic stiffness has been clearly established, its pathophysiology in various clinical conditions still remains poorly understood. The aim of the present paper is to review the studies that have looked at the impact of dialysis calcium concentration on arterial stiffness. Overall, the results of small short-term studies suggest that higher dialysis calcium is associated with a transient but significant increase in arterial stiffness. This calcium dependant increase in arterial stiffness is potentially explained by increased vascular smooth muscle tone of the conduit arteries and is not solely explained by changes in mean blood pressure. However, the optimal DCa remains to be determined, and long term studies are required to evaluate its impact on the progression of arterial stiffness.

  20. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-01

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness. PMID:7488645

  1. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-01

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  2. Synthesis of Calcium Silicate (Casio3) Using Calcium Fluoride, Quartz and Microbes

    OpenAIRE

    B. Gopal Krishna; M. Jagannadha Rao

    2015-01-01

    Microbes like bacteria, algae, fungi and virus play an important role to catalyst chemical reactions. In Nature, ores or minerals of different compounds are formed due to microbial environment and other factors like weathering. Microbial environment is also instrumental in forming calcium containing silicate minerals. Chemical reactions occur under microbial environment because microbes have the ability to control or modify different factors like pH, chemical potential and tempera...

  3. Breathers in strongly anharmonic lattices.

    Science.gov (United States)

    Rosenau, Philip; Pikovsky, Arkady

    2014-02-01

    We present and study a family of finite amplitude breathers on a genuinely anharmonic Klein-Gordon lattice embedded in a nonlinear site potential. The direct numerical simulations are supported by a quasilinear Schrodinger equation (QLS) derived by averaging out the fast oscillations assuming small, albeit finite, amplitude vibrations. The genuinely anharmonic interlattice forces induce breathers which are strongly localized with tails evanescing at a doubly exponential rate and are either close to a continuum, with discrete effects being suppressed, or close to an anticontinuum state, with discrete effects being enhanced. Whereas the D-QLS breathers appear to be always stable, in general there is a stability threshold which improves with spareness of the lattice.

  4. Reconstitution of the mitochondrial calcium uniporter in yeast.

    Science.gov (United States)

    Kovács-Bogdán, Erika; Sancak, Yasemin; Kamer, Kimberli J; Plovanich, Molly; Jambhekar, Ashwini; Huber, Robert J; Myre, Michael A; Blower, Michael D; Mootha, Vamsi K

    2014-06-17

    The mitochondrial calcium uniporter is a highly selective calcium channel distributed broadly across eukaryotes but absent in the yeast Saccharomyces cerevisiae. The molecular components of the human uniporter holocomplex (uniplex) have been identified recently. The uniplex consists of three membrane-spanning subunits--mitochondrial calcium uniporter (MCU), its paralog MCUb, and essential MCU regulator (EMRE)--and two soluble regulatory components--MICU1 and its paralog MICU2. The minimal components sufficient for in vivo uniporter activity are unknown. Here we consider Dictyostelium discoideum (Dd), a member of the Amoebazoa outgroup of Metazoa and Fungi, and show that it has a highly simplified uniporter machinery. We show that D. discoideum mitochondria exhibit membrane potential-dependent calcium uptake compatible with uniporter activity, and also that expression of DdMCU complements the mitochondrial calcium uptake defect in human cells lacking MCU or EMRE. Moreover, expression of DdMCU in yeast alone is sufficient to reconstitute mitochondrial calcium uniporter activity. Having established yeast as an in vivo reconstitution system, we then reconstituted the human uniporter. We show that coexpression of MCU and EMRE is sufficient for uniporter activity, whereas expression of MCU alone is insufficient. Our work establishes yeast as a powerful in vivo reconstitution system for the uniporter. Using this system, we confirm that MCU is the pore-forming subunit, define the minimal genetic elements sufficient for metazoan and nonmetazoan uniporter activity, and provide valuable insight into the evolution of the uniporter machinery. PMID:24889638

  5. Fibroblast-Like Synoviocytes Induce Calcium Mineral Formation and Deposition

    Directory of Open Access Journals (Sweden)

    Yubo Sun

    2014-01-01

    Full Text Available Calcium crystals are present in the synovial fluid of 65%–100% patients with osteoarthritis (OA and 20%–39% patients with rheumatoid arthritis (RA. This study sought to investigate the role of fibroblast-like synoviocytes (FLSs in calcium mineral formation. We found that numerous genes classified in the biomineral formation process, including bone gamma-carboxyglutamate (gla protein/osteocalcin, runt-related transcription factor 2, ankylosis progressive homolog, and parathyroid hormone-like hormone, were differentially expressed in the OA and RA FLSs. Calcium deposits were detected in FLSs cultured in regular medium in the presence of ATP and FLSs cultured in chondrogenesis medium in the absence of ATP. More calcium minerals were deposited in the cultures of OA FLSs than in the cultures of RA FLSs. Examination of the micromass stained with nonaqueous alcoholic eosin indicated the presence of birefringent crystals. Phosphocitrate inhibited the OA FLSs-mediated calcium mineral deposition. These findings together suggest that OA FLSs are not passive bystanders but are active players in the pathological calcification process occurring in OA and that potential calcification stimuli for OA FLSs-mediated calcium deposition include ATP and certain unidentified differentiation-inducing factor(s. The OA FLSs-mediated pathological calcification process is a valid target for the development of disease-modifying drug for OA therapy.

  6. Reconstitution of the mitochondrial calcium uniporter in yeast.

    Science.gov (United States)

    Kovács-Bogdán, Erika; Sancak, Yasemin; Kamer, Kimberli J; Plovanich, Molly; Jambhekar, Ashwini; Huber, Robert J; Myre, Michael A; Blower, Michael D; Mootha, Vamsi K

    2014-06-17

    The mitochondrial calcium uniporter is a highly selective calcium channel distributed broadly across eukaryotes but absent in the yeast Saccharomyces cerevisiae. The molecular components of the human uniporter holocomplex (uniplex) have been identified recently. The uniplex consists of three membrane-spanning subunits--mitochondrial calcium uniporter (MCU), its paralog MCUb, and essential MCU regulator (EMRE)--and two soluble regulatory components--MICU1 and its paralog MICU2. The minimal components sufficient for in vivo uniporter activity are unknown. Here we consider Dictyostelium discoideum (Dd), a member of the Amoebazoa outgroup of Metazoa and Fungi, and show that it has a highly simplified uniporter machinery. We show that D. discoideum mitochondria exhibit membrane potential-dependent calcium uptake compatible with uniporter activity, and also that expression of DdMCU complements the mitochondrial calcium uptake defect in human cells lacking MCU or EMRE. Moreover, expression of DdMCU in yeast alone is sufficient to reconstitute mitochondrial calcium uniporter activity. Having established yeast as an in vivo reconstitution system, we then reconstituted the human uniporter. We show that coexpression of MCU and EMRE is sufficient for uniporter activity, whereas expression of MCU alone is insufficient. Our work establishes yeast as a powerful in vivo reconstitution system for the uniporter. Using this system, we confirm that MCU is the pore-forming subunit, define the minimal genetic elements sufficient for metazoan and nonmetazoan uniporter activity, and provide valuable insight into the evolution of the uniporter machinery.

  7. Molecular mechanisms of crystallization impacting calcium phosphate cements

    Science.gov (United States)

    Giocondi, Jennifer L.; El-Dasher, Bassem S.; Nancollas, George H.; Orme, Christine A.

    2010-01-01

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. PMID:20308110

  8. Hydration of Portland cement with additions of calcium sulfoaluminates

    Energy Technology Data Exchange (ETDEWEB)

    Le Saout, Gwenn, E-mail: gwenn.le-saout@mines-ales.fr [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Lothenbach, Barbara [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Hori, Akihiro [DENKA Chemicals GmbH, Wehrhahn-Center, Cantadorstr. 3, D-40211 Duesseldorf (Germany); Higuchi, Takayuki [Denki Kagaku Kogyo Kabushiki Kaisha (DENKA), Omi, Itoigawa, Niigata, 949-0393 (Japan); Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  9. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  10. A Quantitative Measurement of Antiviral Activity of Anti-Human Immunodeficiency Virus Type 1 Drugs against Simian Immunodeficiency Virus Infection: Dose-Response Curve Slope Strongly Influences Class-Specific Inhibitory Potential

    OpenAIRE

    Deng, Kai; Zink, M. Christine; Clements, Janice E; Siliciano, Robert F.

    2012-01-01

    Simian immunodeficiency virus (SIV) infection in macaques is so far the best animal model for human immunodeficiency virus type 1 (HIV-1) studies, but suppressing viral replication in infected animals remains challenging. Using a novel single-round infectivity assay, we quantitated the antiviral activities of antiretroviral drugs against SIV. Our results emphasize the importance of the dose-response curve slope in determining the inhibitory potential of antiretroviral drugs and provide useful...

  11. Genome-wide meta-analysis for serum calcium identifies significantly associated SNPs near the calcium-sensing receptor (CASR gene.

    Directory of Open Access Journals (Sweden)

    Karen Kapur

    2010-07-01

    Full Text Available Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR gene on 3q13. The top hit with a p-value of 6.3 x 10(-37 is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1 x 10(-21, a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02 x 10(-4. This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation.

  12. Variability of calcium absorption

    International Nuclear Information System (INIS)

    Variability in calcium absorption was estimated in three groups of normal subjects in whom Ca absorption was measured by standard isotopic-tracer methods at interstudy intervals ranging from 1 to 4 mo. Fifty absorption tests were performed in 22 subjects. Each was done in the morning after an overnight fast with an identical standard breakfast containing a Ca load of approximately 250 mg. Individual fractional absorption values were normalized to permit pooling of the data. The coefficient of variation (CVs) for absorption for the three groups ranged from 10.57 to 12.79% with the size of the CV increasing with interstudy duration. One other published study presenting replicate absorption values was analyzed in a similar fashion and was found to have a CV of absorption of 9.78%. From these data we estimate that when the standard double-isotope method is used to measure Ca absorption there is approximately 10% variability around any given absorption value within an individual human subject and that roughly two-thirds of this represents real biological variability in absorption

  13. Mitochondrial Calcium Uptake Modulates Synaptic Vesicle Endocytosis in Central Nerve Terminals.

    Science.gov (United States)

    Marland, Jamie Roslin Keynes; Hasel, Philip; Bonnycastle, Katherine; Cousin, Michael Alan

    2016-01-29

    Presynaptic calcium influx triggers synaptic vesicle (SV) exocytosis and modulates subsequent SV endocytosis. A number of calcium clearance mechanisms are present in central nerve terminals that regulate intracellular free calcium levels both during and after stimulation. During action potential stimulation, mitochondria rapidly accumulate presynaptic calcium via the mitochondrial calcium uniporter (MCU). The role of mitochondrial calcium uptake in modulating SV recycling has been debated extensively, but a definitive conclusion has not been achieved. To directly address this question, we manipulated the expression of the MCU channel subunit in primary cultures of neurons expressing a genetically encoded reporter of SV turnover. Knockdown of MCU resulted in ablation of activity-dependent mitochondrial calcium uptake but had no effect on the rate or extent of SV exocytosis. In contrast, the rate of SV endocytosis was increased in the absence of mitochondrial calcium uptake and slowed when MCU was overexpressed. MCU knockdown did not perturb activity-dependent increases in presynaptic free calcium, suggesting that SV endocytosis may be controlled by calcium accumulation and efflux from mitochondria in their immediate vicinity.

  14. Blended Calcium Aluminate-Calcium Sulfate Cement-Based Grout For P-Reactor Vessel In-Situ Decommissioning

    International Nuclear Information System (INIS)

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH ≤ 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts (Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010). Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere (Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively). Radiolysis calculations are also provided in a separate document (Reyes-Jimenez, 2010).

  15. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  16. Synthesis of pure zeolite P2 from calcium silicate hydrate; tobermorite

    OpenAIRE

    Nasser Y. Mostafa; Rasha A. Garib; Z. K. Heiba; Abd-Elkader, Omar H.; M. M. Al-Majthoub

    2015-01-01

    Calcium silicate hydrate phases offer the possibility to become potential zeolites precursors due to its high silica contents. Pure calcium silicate hydrate phase; tobermorite (Ca5Si6O16(OH)2·4H2O), was prepared by hydrothermal method at 175°C. Tobermorite was sucssefully converted to Zeolite P2 for the first time via refluxing in 3 M NaOH solution and in the presence of Al source. Sodium hydroxide removed calcium ions from the interlayers of calcium silicate phase and form mesoporous zeolite...

  17. Experimental modelling of Calcium carbonate precipitation in the presence of phototrophic anaerobic bacteria Rhodovulum sp.

    Science.gov (United States)

    Bundeleva, Irina; Shirokova, Liudmila; Benezeth, Pascale; Pokrovsky, Oleg; Kompantseva, Elena

    2010-05-01

    Carbonate biomineralization is considered as one of the main natural processes controlling CO2 levels in the atmosphere both in the past and at present time. Haloalcaliphilic Rhodovulum sp. A-20s isolated from soda lake in southern Siberia and halophilic neutrophilic Rhodovulum sp. S-1765 isolated from hypersaline water body in Crimea steppe represent a large group of phototrophic bacteria likely to be involved in CaCO3 formation in soda and saline lakes. These bacteria use organic substrates for non-oxygenic photosynthesis and thus may mediate CaCO3 precipitation without CO2 consumption in highly-saline, highly-alkaline, NaHCO3-rich solutions. In order to provide the link between surface properties of bacteria and their ability to precipitate Ca carbonate, we used a combination of electrophoretic mobility measurements, surface titration and Ca ion adsorption using dead (autoclaved), inactivated (NaN3 - treated) and live cells at 25 °C as a unction of pH (3-11) and NaCl concentrations (0.01, 0.1, 0.5 M). Zeta potential of both bacteria is identical for active, NaN3-inactivated and dead cells at high ionic strength (0.5 M NaCl). The pH of isoelectric point is below 3 and zeta-potential decreases or remain negative up to pH 11. However, at lower ionic strength (0.1 M and 0.01 M NaCl) for live cells the potential increases towards positive values in the alkaline solutions (pH of 9 to 10). Similar to previous results on cyanobacteria (Martinez et al., 2009) there is a net increase in zeta-potential towards more positive values at pH = 10.4 for active cells. In order to better understand this phenomenon, experiments with different concentration of Ca2+ and HCO3- ions as well as experiments with live cultures in the darkness have been carried out. The presence in solution of Ca2+ (0.01 and 0.001 M) and the absence of light in experiment do not change significantly the potential of the cells. However, the presence in solution of HCO3- strongly reduces the zeta-potential

  18. Synthesis and characterization of zirconium-doped calcium phosphate biomaterial

    International Nuclear Information System (INIS)

    A new synthesis route for the production of calcium phosphate biomaterial was developed by using organic di-(2-ethylhexyl) phosphoric acid (DEHPA) mixed with calcium hydroxide slurry. Unlike the conventional involving chemical precipitation process this new method involves a sol-gel process. Another advantage of this method is the starting material DEHPA can form strong bonding with many elements including zirconium and rare earths. This makes it suitable to be used as drug delivery material especially those involving bone related disease. It also improves the biomaterial strength with the presence of zirconium oxide phase. From XRD analysis, the result shows the present of HA, α-TCP and β-TCP. The addition of different rare elements on to the calcium phosphate will varies the amount of these three phases. SEM analysis was also performed to study the morphology of the calcium phosphate material. The presence of the rare earths on to the calcium phosphate was established by using the EDS technique. (Author)

  19. Structure and function of the mitochondrial calcium uniporter complex.

    Science.gov (United States)

    De Stefani, Diego; Patron, Maria; Rizzuto, Rosario

    2015-09-01

    The mitochondrial calcium uniporter (MCU) is the critical protein of the inner mitochondrial membrane mediating the electrophoretic Ca²⁺ uptake into the matrix. It plays a fundamental role in the shaping of global calcium signaling and in the control of aerobic metabolism as well as apoptosis. Two features of mitochondrial calcium signaling have been known for a long time: i) mitochondrial Ca²⁺ uptake widely varies among cells and tissues, and ii) channel opening strongly relies on the extramitochondrial Ca²⁺ concentration, with low activity at resting [Ca²⁺] and high capacity as soon as calcium signaling is activated. Such complexity requires a specialized molecular machinery, with several primary components can be variably gathered together in order to match energy demands and protect from toxic stimuli. In line with this, MCU is now recognized to be part of a macromolecular complex known as the MCU complex. Our understanding of the structure and function of the MCU complex is now growing promptly, revealing an unexpected complexity that highlights the pleiotropic role of mitochondrial Ca²⁺ signals. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  20. Preparation and fluorescence property of red-emitting Eu3+-activated amorphous calcium silicate phosphor

    International Nuclear Information System (INIS)

    This paper describes the energy efficient synthesis of a red-emitting Eu3+-activated amorphous calcium silicate phosphor produced by heating a Eu3+-activated calcium silicate hydrate phosphor. Concentration quenching of the Eu3+-activated calcium silicate hydrate phosphor was not observed and the emission intensity did not decrease up to a Eu/(Ca+Eu) atomic ratio of 0.46. Heating of the Eu3+-activated calcium silicate hydrate (Eu/(Ca+Eu) atomic ratio = 0.32) phosphor produced an amorphous Eu3+-activated calcium silicate phosphor, which had a maximum emission intensity at 870 oC and emitted in the red under near-ultraviolet irradiation (395 nm). The emission intensity of the Eu3+-activated amorphous calcium silicate phosphor was about half that of a commercial BaMgAl10O17:Eu2+ phosphor, and shows great potential for application in white light-emitting diodes.

  1. Effect of Cationic and Anionic Surfactants on the Application of Calcium Carbonate Nanoparticles in Paper Coating

    CERN Document Server

    Barhoum, Ahmed; Abou-Zaied, Ragab Esmail; Rehan, Mohamed; Dufour, Thierry; Hill, Gavin; Dufresne, Alain

    2016-01-01

    Modification of calcium carbonate particles with surfactant significantly improves the properties of the calcium carbonate coating on paper. Unmodified and CTAB and oleate-modified calcium carbonate nanoparticles were prepared using the wet carbonation technique for paper coating. CTAB (cationic surfactant) and sodium oleate (anionic surfactant) were used to modify the size, morphology, and surface properties of the precipitated nanoparticles. The obtained particles were characterized by XRD, FT-IR spectroscopy, zeta potential measurements, TGA and TEM. Coating colors were formulated from the prepared unmodified and modified calcium carbonates and examined by creating a thin coating layer on reference paper. The effect of calcium carbonate particle size and surface modification on paper properties, such as coating thickness, coating weight, surface roughness, air permeability, brightness, whiteness, opacity, and hydrophobicity, were investigated and compared with GCC calcium carbonate-coated papers. The obtai...

  2. Mucoadhesion on pig vesical mucosa: influence of polycarbophil/calcium interactions.

    Science.gov (United States)

    Kerec, M; Bogataj, M; Mugerle, B; Gasperlin, M; Mrhar, A

    2002-07-01

    The influence of polycarbophil/calcium interactions on the mucoadhesive properties of polycarbophil has been examined. Polycarbophil dispersions and films with different concentrations of calcium or sodium ions were prepared and the following parameters were measured: detachment force on pig vesical mucosa, zeta potential, pH and viscosity. Polycarbophil detachment force decreased significantly in the presence of calcium but not sodium. Both ions decrease the pH of polycarbophil dispersions. On the other hand, altering the pH of hydrated polycarbophil films in the absence of added ions had an insignificant effect on detachment force. Both ions reduce the absolute values of polycarbophil zeta potential, calcium more efficiently than sodium. We could conclude that decreased mucoadhesion strength of polycarbophil in the presence of calcium is due to the chelation of polycarbophil carboxylic groups by calcium and crosslinking of polymer. The crosslinked polymer chains would be expected to be less flexible, and therefore, interpenetrate to a lesser extent with the glycosaminoglycans of mucus. Additionally, the interactions between functional groups of polycarbophil and mucus glycosaminoglycans are lowered due to the calcium, blocking the carboxylic groups. The mechanism of calcium influence on viscosity of polycarbophil dispersions appears to be different: repulsion between ionised carboxylic groups of polycarbophil prevails over the crosslinking of polycarbophil by calcium.

  3. Analytical models of calcium binding in a calcium channel

    International Nuclear Information System (INIS)

    The anomalous mole fraction effect of L-type calcium channels is analyzed using a Fermi like distribution with the experimental data of Almers and McCleskey [J. Physiol. 353, 585 (1984)] and the atomic resolution model of Lipkind and Fozzard [Biochemistry 40, 6786 (2001)] of the selectivity filter of the channel. Much of the analysis is algebraic, independent of differential equations. The Fermi distribution is derived from the configuration entropy of ions and water molecules with different sizes, different valences, and interstitial voids between particles. It allows us to calculate potentials and distances (between the binding ion and the oxygen ions of the glutamate side chains) directly from the experimental data using algebraic formulas. The spatial resolution of these results is comparable with those of molecular models, but of course the accuracy is no better than that implied by the experimental data. The glutamate side chains in our model are flexible enough to accommodate different types of binding ions in different bath conditions. The binding curves of Na+ and Ca2+ for [CaCl2] ranging from 10−8 to 10−2 M with a fixed 32 mM background [NaCl] are shown to agree with published Monte Carlo simulations. The Poisson-Fermi differential equation—that includes both steric and correlation effects—is then used to obtain the spatial profiles of energy, concentration, and dielectric coefficient from the solvent region to the filter. The energy profiles of ions are shown to depend sensitively on the steric energy that is not taken into account in the classical rate theory. We improve the rate theory by introducing a steric energy that lumps the effects of excluded volumes of all ions and water molecules and empty spaces between particles created by Lennard-Jones type and electrostatic forces. We show that the energy landscape varies significantly with bath concentrations. The energy landscape is not constant

  4. Contribution of calcium oxalate to soil-exchangeable calcium

    Science.gov (United States)

    Dauer, Jenny M.; Perakis, Steven S.

    2013-01-01

    Acid deposition and repeated biomass harvest have decreased soil calcium (Ca) availability in many temperate forests worldwide, yet existing methods for assessing available soil Ca do not fully characterize soil Ca forms. To account for discrepancies in ecosystem Ca budgets, it has been hypothesized that the highly insoluble biomineral Ca oxalate might represent an additional soil Ca pool that is not detected in standard measures of soil-exchangeable Ca. We asked whether several standard method extractants for soil-exchangeable Ca could also access Ca held in Ca oxalate crystals using spike recovery tests in both pure solutions and soil extractions. In solutions of the extractants ammonium chloride, ammonium acetate, and barium chloride, we observed 2% to 104% dissolution of Ca oxalate crystals, with dissolution increasing with both solution molarity and ionic potential of cation extractant. In spike recovery tests using a low-Ca soil, we estimate that 1 M ammonium acetate extraction dissolved sufficient Ca oxalate to contribute an additional 52% to standard measurements of soil-exchangeable Ca. However, in a high-Ca soil, the amount of Ca oxalate spike that would dissolve in 1 M ammonium acetate extraction was difficult to detect against the large pool of exchangeable Ca. We conclude that Ca oxalate can contribute substantially to standard estimates of soil-exchangeable Ca in acid forest soils with low soil-exchangeable Ca. Consequently, measures of exchangeable Ca are unlikely to fully resolve discrepancies in ecosystem Ca mass balance unless the contribution of Ca oxalate to exchangeable Ca is also assessed.

  5. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    Directory of Open Access Journals (Sweden)

    Widyasri Prananingrum

    2012-06-01

    Full Text Available Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP is a paste material containing milk protein (casein, that actually contains minerals, such as calcium and phosphate. The casein ability to stabilize calcium phosphate and enhance mineral solubility and bioavailability confers upon CPP potential to be biological delivery vehicles for calcium and phosphate. Purpose: The aim of this study was to determine the calcium levels in tooth enamel after being covered with CPP-ACP 2 times a day for 3, 14 and 28 days. Methods: Sample were bovine incisors of 3 year old cows divided into 4 groups, namely group I as control group, group II, III and IV as treatment groups covered with CPP-ACP 2 times a day. All of those teeth were then immersed in artificial saliva. Group II was immersed for 3 days, while group III was immersed for 14 days, and group IV was immersed for 28 days. One drop of CPP-ACP was used to cover the entire labial surface of teeth. The measurement of the calcium levels was then conducted by using titration method. All data were analyzed by One- Way ANOVA test with 5% degree of confidence. Results: The results showed significant difference of the calcium levels in tooth enamel of those groups after covered with CPP-ACP 2 times a day for 3, 14 and 28 days (p = 0.001. There is also significant difference of the calcium levels in tooth enamel of those treatment groups and the control group (p = 0.001. Conclusion: The calcium levels of tooth enamel are increased after covered with CPP-ACP 2 times a day for 3, 14 and 28 days.Latar belakang: Proses terjadinya karies gigi ditandai oleh adanya demineralisasi

  6. Eikonal Scattering at Strong Coupling

    Science.gov (United States)

    Irizarry-Gelpi, Melvin Eloy

    The scattering of subatomic particles is a source of important physical phenomena. Decades of work have yielded many techniques for the computation of scattering amplitudes. Most of these techniques involve perturbative quantum field theory and thus apply only at weak coupling. Complementary to scattering is the formation of bound states, which are intrinsically nonperturbative. Regge theory arose in the late 1950s as an attempt to describe, with a single framework, both scattering and the formation of bound states. In Regge theory one obtains an amplitude with bound state poles after analytic continuation of a nonperturbative scattering amplitude, corresponding to a sum of an infinite number of Feynman diagrams at large energy and fixed momentum transfer (but with crossed kinematics). Thus, in order to obtain bound states at fixed energy, one computes an amplitude at large momentum transfer. In this dissertation we calculate amplitudes with bound states in the regime of fixed energy and small momentum transfer. We formulate the elastic scattering problem in terms of many-body path integrals, familiar from quantum mechanics. Then we invoke the semiclassical JWKB approximation, where the path integral is dominated by classical paths. The dynamics in the semiclassical regime are strongly coupled, as found by Halpern and Siegel. When the momentum transfer is small, the classical paths are simple straight lines and the resulting semiclassical amplitudes display a spectrum of bound states that agrees with the spectrum found by solving wave equations with potentials. In this work we study the bound states of matter particles with various types of interactions, including electromagnetic and gravitational interactions. Our work has many analogies with the work started by Alday and Maldacena, who computed scattering amplitudes of gluons at strong coupling with semiclassical quantum mechanics of strings in anti de-Sitter spacetime. We hope that in the future we can apply our

  7. Strong Interactions in Strange Exotic Atoms

    Science.gov (United States)

    Mareš, J.

    2003-08-01

    Strong interaction level shifts and widths in - and K- atoms have been analyzed. The phenomenological density dependent approach as well as the relativistic mean field (RMF) model yield nucleus optical potentials with a repulsive real part in the nuclear interior. This has important consequences for the spectroscopy of hypernuclei. The study of K- atoms cannot resolve the depth of the K- nucleus potential. The fits to the kaonic atom data are satisfactory for both the relatively shallow potentials derived from chiral models and for the deep potentials based on the phenomenological and RMF analyses.

  8. Radiotracer studies on calcium ion-selective electrode membranes based on poly(vinyl chloride) matrices.

    Science.gov (United States)

    Craggs, A; Moody, G J; Thomas, J D; Willcox, A

    Radiotracer studies with (45)Ca and (36)Cl demonstrate that PVC matrix membranes containing Orion 92-20-02 liquid calcium ion-exchanger are permselective to counter-cations. Diffusion coefficients are quoted for the migration of (45)Ca between pairs of calcium solutions and are discussed in terms of solution concentration, membrane thickness and concentration level of sensor in the membrane. Migration of calcium ions from calcium chloride solution to a Group (II) metal chloride solution through a PVC membrane containing calcium liquid ion-exchanger is discussed in terms of solvent extraction and electrode selectivity coefficient parameters. Thus, magnesium, strontium and barium ions appear to inhibit migration through the membrane by their low affinity for the membrane liquid ion-exchanger sites, while the inhibition by beryllium ions is attributed to site blockage by the strong affinity of dialkylphosphate sites for beryllium.

  9. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    Science.gov (United States)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  10. The Role of Calcium Scoring in Coronary CTA

    Directory of Open Access Journals (Sweden)

    N Shirvandehi

    2009-01-01

    Full Text Available "nCoronary artery disease is the single largest cause of mortality, and is implicated in one of every five deaths. Conventional risk factors fail to identify one third of deaths caused by CAD. The currently available screening tools for coronary artery disease include Framingham risk assessment, clinical examination, and stress testing. "nIt is of interest that most coronary events occur in the territory of coronary arteries that do not demonstrate prior high grade stenosis. "nComplications of atherosclerotic plaque such as rupture or erosion with subsequent thrombus formation are important events leading to acute coronary syndrome. "nMany different factors including plaque composition, hemodynamic, endothelial function, and blood thrombogenicity may influence which plaques lead to hemodynamically significant events. "nNonetheless, there is a strong relation between the extent of coronary plaque burden and the risk of coronary event. "nSince atherosclerosis is the only disease process associated with calcification of coronary arteries, the degree of coronary calcification as demonstrated by CT is predictive of the overall burden of atherosclerotic plaque. "nThe role of coronary calcium scoring in assessing the risk for future coronary events has been a subject of considerable controversy. It is most important to understand that an elevated burden of coronary calcium may not indicate the presence of significant coronary stenosis, but is associated with a higher risk of a coronary event. "nCalcium scoring is based on the identification of high density material within the coronary circulation on a noncontrast CTscan. Both the EBCT and MDCT have been used for the evaluation of coronary calcium. "nThe current literature suggests that MDCT is comparable to EBCT for coronary calcium screening. "nCalcium scoring is a simple test that should take no more than 5 minutes. A prospective ECG gated scan with 3 mm slice thickness is obtained from the level of

  11. Aging and calcium as an environmental factor.

    Science.gov (United States)

    Fujita, T

    1985-12-01

    Calcium deficiency is a constant menace to land-abiding animals, including mammals. Humans enjoying exceptional longevity on earth are especially susceptible to calcium deficiency in old age. Low calcium and vitamin D intake, short solar exposure, decreased intestinal absorption, and falling renal function with insufficient 1,25(OH)2 vitamin D biosynthesis all contribute to calcium deficiency, secondary hyperparathyroidism, bone loss and possibly calcium shift from the bone to soft tissue, and from the extracellular to the intracellular compartment, blunting the sharp concentration gap between these compartments. The consequences of calcium deficiency might thus include not only osteoporosis, but also arteriosclerosis and hypertension due to the increase of calcium in the vascular wall, amyotrophic lateral sclerosis and senile dementia due to calcium deposition in the central nervous system, and a decrease in cellular function, because of blunting of the difference in extracellular-intracellular calcium, leading to diabetes mellitus, immune deficiency and others (Fig. 6). PMID:2943880

  12. Optimizing calcium selective fluorimetric nanospheres.

    Science.gov (United States)

    Kisiel, Anna; Kłucińska, Katarzyna; Gniadek, Marianna; Maksymiuk, Krzysztof; Michalska, Agata

    2015-11-01

    Recently it was shown that optical nanosensors based on alternating polymers e.g. poly(maleic anhydride-alt-1-octadecene) were characterized by a linear dependence of emission intensity on logarithm of concentration over a few of orders of magnitude range. In this work we focus on the material used to prepare calcium selective nanosensors. It is shown that alternating polymer nanosensors offer competitive performance in the absence of calcium ionophore, due to interaction of the nanospheres building blocks with analyte ions. The emission increase corresponds to increase of calcium ions contents in the sample within the range from 10(-4) to 10(-1) M. Further improvement in sensitivity (from 10(-6) to 10(-1) M) and selectivity can be achieved by incorporating calcium ionophore in the nanospheres. The optimal results were obtained for core-shell nanospheres, where the core was prepared from poly(styrene-co-maleic anhydride) and the outer layer from poly(maleic anhydride-alt-1-octadecene). Thus obtained chemosensors were showing linear dependence of emission on logarithm of calcium ions concentration within the range from 10(-7) to 10(-1) M. PMID:26452839

  13. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules

    DEFF Research Database (Denmark)

    Bacher, Charlotte; Olsen, P.M.; Bertelsen, P.;

    2008-01-01

    The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10...... size fractions between 0 and 2000 µm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate......, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential....

  14. Application of functional multineuron calcium imaging technology in observing action potentials of hippocampal neurons%功能性多神经元钙成像技术在海马神经元动作电位观察中的应用

    Institute of Scientific and Technical Information of China (English)

    孙懿; 松木则夫; 池谷裕二; 蒲小平

    2013-01-01

    Objective-. To observe the electric activity of large neuron populations in acutely cultured hippocampal slices. Methods; Sprague Dawley rats at postnatal 7 days were deeply anesthetized by hypothermia and decapitated. The brains were removed and horizontally cut into slices which were cultured on 6-well plates. Male C57-BL/6J mice at postnatal 3-5 weeks were decapitated with deep ether anesthesia. The brains were quickly isolated and horizontally cut into slices which were transferred to oxygenated modified artificial cerebrospinal fluid ( pre-warmed at 37 °C ) and stored for more than 60 min. The hippocampal slices were loaded with calcium-sensitive fluorescence indicator and monitored by functional multineuron calcium imaging (fMCI). Results: Action potentials-evoked calcium transients were simultaneously imaged from large neuron populations. Conclusion; fMCI provides a kind of powerful tool to morphologically and functionally reveal hippocampal network activity and evaluate new central nervous system drugs.%目的:观察海马脑片中锥体细胞层群体神经元的电活动.方法:取出生后7d的Sprague Dawley大鼠全脑,无菌条件下水平方向切片,转至6孔板中培养;另取出生后3~5周的C57-BL/6J小鼠全脑,无菌条件下水平方向切片,转至37℃氧饱和的人工脑脊液中稳定至少60 min备用.大鼠培养脑片及小鼠急性脑片负载钙离子荧光指示剂,采用功能性多神经元钙成像技术检测海马锥体细胞层中大规模神经元与动作电位相关的钙瞬变.结果:大鼠培养脑片及小鼠急性脑片中记录到大量单个神经元的与动作电位相关的钙瞬变.结论:功能性多神经元钙成像技术是揭示海马神经网络活动及中枢神经系统有关创新药物评价的全新且有效的研究方法.

  15. The effect of zeolite A supplementation in the dry period on periparturient calcium, phosphorus, and magnesium homeostasis

    DEFF Research Database (Denmark)

    Thilsing-Hansen, T; Jørgensen, R J; Enemark, J M D;

    2002-01-01

    One potential way of preventing parturient hypocalcemia in the dairy cow is to feed dry cow rations very low in calcium (......One potential way of preventing parturient hypocalcemia in the dairy cow is to feed dry cow rations very low in calcium (...

  16. Crescimento, trocas gasosas e potencial osmótico da bananeira-'Prata', submetida a diferentes doses de sódio e cálcio em solução nutritiva Growth, gaseous exchange and osmotic potential of banana 'Prata' plants, exposed to different concentrations of sodium and calcium in nutritive solution

    Directory of Open Access Journals (Sweden)

    LUDMILA LAFETÁ DE MELO NEVES

    2002-08-01

    Full Text Available O cálcio vem sendo utilizado com o intuito de incrementar tolerância a sais nas plantas, pois sabe-se que a salinidade restringe o crescimento e a produtividade de muitas culturas. Este estudo teve por objetivo avaliar os efeitos da aplicação de sódio e cálcio sobre o crescimento inicial, trocas gasosas e potencial osmótico da bananeira (Musa spp. 'Prata' (AAB. Foi utilizado o delineamento experimental em blocos casualizados, com arranjo fatorial 4 x 4 [ 4 doses de sódio ( 0; 5; 10; 15 mmol L-1 e 4 de cálcio ( 2; 4; 8; 12 mmol L-1] e 3 repetições. A emissão total de folhas e o potencial osmótico das plantas não foram influenciados pelos tratamentos. O aumento dos níveis de sódio na solução promoveu redução significativa na massa fresca da parte aérea, altura, área foliar, diâmetro do pseudocaule e massa seca das plantas. A presença de 5 mmol L-1 de Na na solução favoreceu as trocas gasosas. O aumento dos níveis de cálcio na solução promoveu a redução da massa fresca da parte aérea, altura e área foliar da bananeira-'Prata'.The Calcium has been used to increase salt tolerance in plants since salinity restricts growth and productivity in many crops. This study was conducted with the objective of evaluating the effects of sodium and calcium application on the initial growth, gaseous exchange and osmotic potential of banana (Musa spp. 'Prata' plants (AAB. The experimental layout was a 4 x 4 factorial with three replicates in a randomized complete block design. The factors tested were concentrations of sodium (0; 5; 10; 15 mmol L-1 and calcium (2; 4; 8; 12 mmol L-1. The total emition of leaves and the osmotic potential of the plants were not influenced by the treatments. However, the increase in concentrations of sodium in the nutritive solution resulted in significant reduction of the fresh weight of aerial plant parts, height and leaf area of the plants, diameter of the pseudostem, and dry weight of the plants. The

  17. Pharmacokinetic interactions with calcium channel antagonists (Part II).

    Science.gov (United States)

    Schlanz, K D; Myre, S A; Bottorff, M B

    1991-12-01

    Since calcium channel antagonists are a diverse class of drugs frequently administered in combination with other agents, the potential for clinically significant pharmacokinetic drug interactions exists. These interactions occur most frequently via altered hepatic blood flow and impaired hepatic enzyme activity. Part I of the article, which appeared in the previous issue of the Journal, dealt with interactions between calcium antagonists and marker compounds, theophylline, midazolam, lithium, doxorubicin, oral hypoglycaemics and cardiac drugs. Part II examines interactions with cyclosporin, anaesthetics, carbamazepine and cardiovascular agents. PMID:1782739

  18. Acid gelation of colloidal calcium phosphate-depleted preheated milk

    OpenAIRE

    Famelart, Marie-Hélène; Gauvin, Géraldine; Paquet, Denis; Brulé, Gérard

    2009-01-01

    Abstract – This study aimed at understanding the role of colloidal calcium phosphate (CCP) in acid gelation of milk. Milks were depleted in Calcium (Ca) by dialysis against milk permeate containing a cation-exchange resin. Dialysed milks were then heated (90 °C-10 min) and acidgelled at 42 °C with a yoghurt culture. Minerals, total and soluble protein contents, pH and optical density were measured in unheated and heated dialysed milk, together with diameters and ζ-potentials of particles. Dia...

  19. Dietary calcium and 1,25-dihydroxyvitamin D3 regulate transcription of calcium transporter genes in calbindin-D9k knockout mice.

    Science.gov (United States)

    Ko, Sang-Hwan; Lee, Geun-Shik; Vo, Thuy T B; Jung, Eui-Man; Choi, Kyung-Chul; Cheung, Ki-Wha; Kim, Jae Wha; Park, Jong-Gil; Oh, Goo Taeg; Jeung, Eui-Bae

    2009-04-01

    The effect(s) of oral calcium and vitamin D(3) were examined on the expression of duodenal and renal active calcium transport genes, i.e., calbindin-D9k (CaBP-9k) and calbindin-D28k (CaBP-28k), transient receptor potential cation channels (TRPV5 and TRPV6), Na(+)/Ca(2+) exchanger 1 (NCX1) and plasma membrane calcium ATPase 1b (PMCA1b), in CaBP-9k KO mice. Wild-type (WT) and KO mice were provided with calcium and vitamin D(3)-deficient diets for 10 weeks. The deficient diet significantly decreased body weights compared with the normal diet groups. The serum calcium concentration of the WT mice was decreased by the deficient diet but was unchanged in the KO mice. The deficient diet significantly increased duodenal transcription of CaBP-9k and TRPV6 in the WT mice, but no alteration was observed in the KO mice. In the kidney, the deficient diet significantly increased renal transcripts of CaBP-9k, TRPV6, PMCA1b, CaBP-28k and TRPV5 in the WT mice but did not alter calcium-relating genes in the KO mice. Two potential mediators of calcium-processing genes, vitamin D receptor (VDR) and parathyroid hormone receptor (PTHR), have been suggested to be useful for elucidating these differential regulations in the calcium-related genes of the KO mice. Expression of VDR was not significantly affected by diet or the KO mutation. Renal PTHR mRNA levels were reduced by the diet, and reduced expression was also seen in the KO mice given the normal diet. Taken together, these results suggest that the active calcium transporting genes in KO mice may have resistance to the deficiency diet of calcium and vitamin D(3).

  20. Calcium inhibits bap-dependent multicellular behavior in Staphylococcus aureus.

    Science.gov (United States)

    Arrizubieta, María Jesús; Toledo-Arana, Alejandro; Amorena, Beatriz; Penadés, José R; Lasa, Iñigo

    2004-11-01

    Bap (biofilm-associated protein) is a 254-kDa staphylococcal surface protein implicated in formation of biofilms by staphylococci isolated from chronic mastitis infections. The presence of potential EF-hand motifs in the amino acid sequence of Bap prompted us to investigate the effect of calcium on the multicellular behavior of Bap-expressing staphylococci. We found that addition of millimolar amounts of calcium to the growth media inhibited intercellular adhesion of and biofilm formation by Bap-positive strain V329. Addition of manganese, but not addition of magnesium, also inhibited biofilm formation, whereas bacterial aggregation in liquid media was greatly enhanced by metal-chelating agents. In contrast, calcium or chelating agents had virtually no effect on the aggregation of Bap-deficient strain M556. The biofilm elicited by insertion of bap into the chromosome of a biofilm-negative strain exhibited a similar dependence on the calcium concentration, indicating that the observed calcium inhibition was an inherent property of the Bap-mediated biofilms. Site-directed mutagenesis of two of the putative EF-hand domains resulted in a mutant strain that was capable of forming a biofilm but whose biofilm was not inhibited by calcium. Our results indicate that Bap binds Ca2+ with low affinity and that Ca2+ binding renders the protein noncompetent for biofilm formation and for intercellular adhesion. The fact that calcium inhibition of Bap-mediated multicellular behavior takes place in vitro at concentrations similar to those found in milk serum supports the possibility that this inhibition is relevant to the pathogenesis and/or epidemiology of the bacteria in the mastitis process.

  1. Calcium phosphate cements properties with polymers addition

    International Nuclear Information System (INIS)

    Calcium phosphate cements (CPC) have attracted great interest to use in orthopedics and dentistry as replacements for damaged parts of the skeletal system, showing good biocompatibility and osseointegration, allowing its use as bone graft. Several studies have shown that the addition of polymer additives have a strong influence on the cement properties. The low mechanical strength is the main obstacle to greater use of CPC as an implant material. The objective of this study was to evaluate properties of a cement based on α-tricalcium phosphate (α-TCP), added polymers. PVA (10%, 8%, 6%), sodium alginate (2%) and polyacrylate ammonia (3%), all in weight, were added to the synthesized α-TCP powder. The samples were molded and evaluated for density, porosity in vitro test (Simulated Body Fluid), crystalline phases and mechanical strength. The results show increased the mechanical properties of the cement when added these polymers

  2. Calcium release-activated calcium current in rat mast cells.

    Science.gov (United States)

    Hoth, M; Penner, R

    1993-06-01

    1. Whole-cell patch clamp recordings of membrane currents and fura-2 measurements of free intracellular calcium concentration ([Ca2+]i) were used to study the biophysical properties of a calcium current activated by depletion of intracellular calcium stores in rat peritoneal mast cells. 2. Calcium influx through an inward calcium release-activated calcium current (ICRAC) was induced by three independent mechanisms that result in store depletion: intracellular infusion of inositol 1,4,5-trisphosphate (InsP3) or extracellular application of ionomycin (active depletion), and intracellular infusion of calcium chelators (ethylene glycol bis-N,N,N',N'-tetraacetic acid (EGTA) or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)) to prevent reuptake of leaked-out calcium into the stores (passive depletion). 3. The activation of ICRAC induced by active store depletion has a short delay (4-14 s) following intracellular infusion of InsP3 or extracellular application of ionomycin. It has a monoexponential time course with a time constant of 20-30 s and, depending on the complementary Ca2+ buffer, a mean normalized amplitude (at 0 mV) of 0.6 pA pF-1 (with EGTA) and 1.1 pA pF-1 (with BAPTA). 4. After full activation of ICRAC by InsP3 in the presence of EGTA (10 mM), hyperpolarizing pulses to -100 mV induced an instantaneous inward current that decayed by 64% within 50 ms. This inactivation is probably mediated by [Ca2+]i, since the decrease of inward current in the presence of the fast Ca2+ buffer BAPTA (10 mM) was only 30%. 5. The amplitude of ICRAC was dependent on the extracellular Ca2+ concentration with an apparent dissociation constant (KD) of 3.3 mM. Inward currents were nonsaturating up to -200 mV. 6. The selectivity of ICRAC for Ca2+ was assessed by using fura-2 as the dominant intracellular buffer (at a concentration of 2 mM) and relating the absolute changes in the calcium-sensitive fluorescence (390 nm excitation) with the calcium current integral

  3. High-calcium diet modulates effects of long-term prolactin exposure on the cortical bone calcium content in ovariectomized rats.

    Science.gov (United States)

    Charoenphandhu, Narattaphol; Tudpor, Kukiat; Thongchote, Kanogwun; Saengamnart, Wasana; Puntheeranurak, Supaporn; Krishnamra, Nateetip

    2007-02-01

    diet. The present results thus indicated that the adult cortical bones were potentially direct targets of prolactin. Moreover, the effects of high physiological prolactin on cortical bones were age dependent and were observed only under the modulation of high-calcium diet condition.

  4. Strongly correlated perovskite fuel cells.

    Science.gov (United States)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D; Ramanathan, Shriram

    2016-05-16

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  5. Strongly correlated perovskite fuel cells

    Science.gov (United States)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  6. Effect of calcium and phosphorus ion implantation on the corrosion resistance and biocompatibility of titanium.

    Science.gov (United States)

    Krupa, D; Baszkiewicz, J; Kozubowski, J A; Lewandowska-Szumieł, M; Barcz, A; Sobczak, J W; Biliński, A; Rajchel, A

    2004-01-01

    This paper is concerned with the corrosion resistance and biocompatibility of titanium after surface modification by the ion implantation of calcium or phosphorus or calcium + phosphorus. Calcium and phosphorus ions were implanted in a dose of 10(17) ions/cm(2). The ion beam energy was 25 keV. The microstructure of the implanted layers was examined by TEM. The chemical composition of the surface layers was determined by XPS and SIMS. The corrosion resistance was examined by electrochemical methods in a simulated body fluid (SBF) at a temperature of 37 degrees C. The biocompatibility was evaluated in vitro. As shown by TEM results, the surface layers formed during calcium, phosphorus and calcium + phosphorus implantation were amorphous. The results of the electrochemical examinations (Stern's method) indicate that the calcium, phosphorus and calcium + phosphorus implantation into the surface of titanium increases its corrosion resistance in stationary conditions after short- and long-term exposures in SBF. Potentiodynamic tests show that the calcium-implanted samples undergo pitting corrosion during anodic polarisation. The breakdown potentials measured are high (2.5 to 3 V). The good biocompatibility of all the investigated materials was confirmed under the specific conditions of the applied examination, although, in the case of calcium implanted titanium it was not as good as that of non-implanted titanium.

  7. Synthesis, Characterization and Biological Activities of a New Fluorescent Indicator for the Intracellular Calcium Ions

    Institute of Scientific and Technical Information of China (English)

    HE Huaizhen; LEI Lei; LI Jianli; SHI Zhen

    2009-01-01

    A novel calcium-selective fluorescent indicator Fluo-3M AM was synthesized by introduction of a methyl group into the Ca2+-chelating moiety and adequately characterized by spectral methods (1H NMR, GC-MS, IR and MALDI-TOF MS). Meanwhile, its fluorescence spectra and some biological activities have been also studied. The results indicate that the new fluorescent indicator has relatively high affinity to calcium and a strong fluorescence signal, which should be useful for biomedical researchers to investigate the effects of calcium ions in biosystems.

  8. In situ fiber-optical monitoring of cytosolic calcium in tissue explant cultures

    CERN Document Server

    Ryser, Manuel; Geiser, Marianne; Frenz, Martin; Rička, Jaro

    2014-01-01

    We present a fluorescence-lifetime based method for monitoring cell and tissue activity in situ, during cell culturing and in the presence of a strong autofluorescence background. The miniature fiber-optic probes are easily incorporated in the tight space of a cell culture chamber or in an endoscope. As a first application we monitored the cytosolic calcium levels in porcine tracheal explant cultures using the Calcium Green-5N (CG5N) indicator. Despite the simplicity of the optical setup we are able to detect changes of calcium concentration as small as 2.5 nM, with a monitoring time resolution of less than 1 s.

  9. The nature of Earth's building blocks as revealed by calcium isotopes

    Science.gov (United States)

    Valdes, Maria C.; Moreira, Manuel; Foriel, Julien; Moynier, Frédéric

    2014-05-01

    Calcium is the fifth most abundant element in the Earth and in chondrites and is a pure lithophile element which does not partition into planetary cores. Therefore, the calcium isotopic composition of the mantle represents the bulk Earth and calcium isotopes have the potential to reveal genetic links between Earth and meteorites. However, whether calcium exhibits significant mass-dependent variations among Earth and the various chondrite groups, and the magnitude of these variations, is still contentious. Here we have developed a new method to analyze calcium isotope ratios with high precision using multiple-collector inductively-coupled-plasma mass-spectrometry. The method has been applied to a range of terrestrial and meteoritic samples. We find that the Earth, the Moon, and the aubrite parent body are indistinguishable from enstatite, ordinary, and CO chondritic meteorites. Therefore, enstatite chondrites cannot be excluded as components of Earth's building blocks based on calcium isotopes, as has been proposed previously. In contrast, CI, CV, CM and CR carbonaceous chondrites are largely enriched in lighter calcium isotopes compared to Earth, and, overall, exhibit a wide range in calcium isotopic composition. Calcium is the only major element, along with oxygen, for which isotopic variations are observed among carbonaceous chondrite groups. These calcium isotope variations cannot be attributed to volatility effects, and it is difficult to ascribe them to the abundance of isotopically light refractory inclusions. The calcium isotope data presented in this study suggest that both ordinary and enstatite chondrites are representative of the bulk of the refractory materials that formed Earth. On the basis of calcium isotopes, carbonaceous chondrites (with the exception of CO) are not representative of the fraction of condensable material that accreted to form the terrestrial planets and can be excluded as unique contenders for the building blocks of Earth; however

  10. The effect of variable calcium and very low calcium diets on human calcium metabolism. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Chu, J.

    1971-01-01

    The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.

  11. Membrane binding of Neuronal Calcium Sensor-1 (NCS1).

    Science.gov (United States)

    Lemire, Samuel; Jeromin, Andreas; Boisselier, Élodie

    2016-03-01

    Neuronal Calcium Sensor-1 (NCS1) belongs to the family of Neuronal Calcium Sensor (NCS) proteins. NCS1 is composed of four EF-hand motifs and an N-terminal myristoylation. However, the presence of a calcium-myristoyl switch in NCS1 and its role in the membrane binding are controversial. The model of Langmuir lipid monolayers is thus used to mimic the cell membrane in order to characterize the membrane interactions of NCS1. Two binding parameters are calculated from monolayer measurements: the maximum insertion pressure, up to which protein binding is energetically favorable, and the synergy, reporting attractive or repulsive interactions with the lipid monolayers. Binding membrane measurements performed in the presence of myristoylated NCS1 reveal better binding interactions for phospholipids composed of phosphoethanolamine polar head groups and unsaturated fatty acyl chains. In the absence of calcium, the membrane binding measurements are drastically modified and suggest that the protein is more strongly bound to the membrane. Indeed, the binding of calcium by three EF-hand motifs of NCS1 leads to a conformation change. NCS1 arrangement at the membrane could thus be reshuffled for better interactions with its substrates. The N-terminal peptide of NCS1 is composed of two amphiphilic helices involved in the membrane interactions of NCS1. Moreover, the presence of the myristoyl group has a weak influence on the membrane binding of NCS1 suggesting the absence of a calcium-myristoyl switch mechanism in this protein. The myristoylation could thus have a structural role required in the folding/unfolding of NCS1 which is essential to its multiple biological functions.

  12. Colorectal Chemoprevention with Calcium and Vitamin D | Division of Cancer Prevention

    Science.gov (United States)

    DESCRIPTION: In this application we propose to complete CA098286, a double-blind, randomized, controlled trial of supplementation with vitamin D and/or calcium for the prevention of colorectal adenomas. The study builds on extensive epidemiological and experimental data indicating that both vitamin D and calcium have anti-neoplastic effects in the large bowel and that these agents interact, each requiring the other for full effect. Despite the strong supporting |

  13. Calcium channel blocking activity of fruits of callistemon citrinus

    International Nuclear Information System (INIS)

    Callistemon citrinus is a plant of family myrtaceae that has a great medicinal importance. Traditional uses of the aerial parts of Callistemon citrinus in ethnic tribal communities are in practice, and very little are known about its importance on scientific grounds. Therefore, the crude methanolic extract of fruits of Callistemon citrinus (C.c) was screened for possible spasmolytic activity on isolated rabbit's jejunum preparations. The extract produced a relaxing effect on spontaneous contraction of rabbit's jejunum. Explaining the mode of action, the extract produced a dose dependent relaxant effect and shifted the calcium response curves to the rightward (EC50 +- SEM = -2.05 +- 0.05 vs. control EC50 +- SEM = -2.5 +- 0.05). The effect of extract was comparable with the effect of verapamil, a standard calcium channel blocker and therefore, the plant specie could be a potential target for isolation of calcium antagonist(s). (author)

  14. Differential calcium signaling mediated by voltage-gated calcium channels in rat retinal ganglion cells and their unmyelinated axons.

    Directory of Open Access Journals (Sweden)

    Allison Sargoy

    Full Text Available Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury.

  15. Effects of calcium hydroxide addition on the physical and chemical properties of a calcium silicate-based sealer

    Directory of Open Access Journals (Sweden)

    Milton Carlos KUGA

    2014-06-01

    Full Text Available Recently, various calcium silicate-based sealers have been introduced for use in root canal filling. The MTA Fillapex is one of these sealers, but some of its physicochemical properties are not in accordance with the ISO requirements. Objective: The aim of this study was to evaluate the flowability, pH level and calcium release of pure MTA Fillapex (MTAF or containing 5% (MTAF5 or 10% (MTAF10 calcium hydroxide (CH, in weight, in comparison with AH Plus sealer. Material and Methods: The flowability test was performed according to the ISO 6876:2001 requirements. For the pH level and calcium ion release analyses, the sealers were placed individually (n=10 in plastic tubes and immersed in deionized water. After 24 hours, 7 and 14 days, the water in which each specimen had been immersed was evaluated to determine the pH level changes and calcium released. Flowability, pH level and calcium release data were analyzed statistically by the ANOVA test (α=5%. Results: In relation to flowability: MTAF>AH Plus>MTAF5>MTAF10. In relation to the pH level, for 24 h: MTAF5=MTAF10=MTAF>AH Plus; for 7 and 14 days: MTAF5=MTAF10>MTAF>AH Plus. For the calcium release, for all periods: MTAF>MTAF5=MTAF10>AH Plus. Conclusions: The addition of 5% CH to the MTA Fillapex (in weight is an alternative to reduce the high flowability presented by the sealer, without interfering in its alkalization potential.

  16. Calcium Orthophosphates as Bioceramics: State of the Art

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2010-11-01

    Full Text Available In the late 1960s, much interest was raised in regard to biomedical applications of various ceramic materials. A little bit later, such materials were named bioceramics. This review is limited to bioceramics prepared from calcium orthophosphates only, which belong to the categories of bioactive and bioresorbable compounds. There have been a number of important advances in this field during the past 30–40 years. Namely, by structural and compositional control, it became possible to choose whether calcium orthophosphate bioceramics were biologically stable once incorporated within the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of calcium orthophosphate bioceramics—which is able to promote regeneration of bones—was developed. Presently, calcium orthophosphate bioceramics are available in the form of particulates, blocks, cements, coatings, customized designs for specific applications and as injectable composites in a polymer carrier. Current biomedical applications include artificial replacements for hips, knees, teeth, tendons and ligaments, as well as repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jawbone, spinal fusion and bone fillers after tumor surgery. Exploratory studies demonstrate potential applications of calcium orthophosphate bioceramics as scaffolds, drug delivery systems, as well as carriers of growth factors, bioactive peptides and/or various types of cells for tissue engineering purposes.

  17. Effect of Calcium Oxide Additive on the Performance of Iron Oxide Sorbent for High-Temperature Coal Gas Desulfurization

    Institute of Scientific and Technical Information of China (English)

    Huiling Fan; Kechang Xie; Ju Shangguan; Fang Shen; Chunhu Li

    2007-01-01

    The effect of calcium oxide additive in iron oxide sorbent for hot gas desulfurization was investigated by XRD and TPR techniques. XRD characterization showed that CaO was highly dispersed after the calcination of sorbents. Calcium sulfate formed in the desulfurization was decomposed and regenerated to CaO by reacting with CO before the next sulfidation process. Calcium participated in every sulfidation/regeneration cycle and contributed to the enhancement of sulfur capacity. The TPR results showed that the reduction temperature of the sorbent increased with the increase of the content of calcium. Calcium played a role of retarding reduction. Therefore, the addition of calcium oxide additive will benefit the utilization of iron oxide sorbent in strongly reducing atmospheres.

  18. Calcium isotope analysis by mass spectrometry.

    Science.gov (United States)

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  19. The effect of calcium gluconate and other calcium supplements as a dietary calcium source on magnesium absorption in rats.

    Science.gov (United States)

    Chonan, O; Takahashi, R; Yasui, H; Watanuki, M

    1997-01-01

    The effects of commercially available calcium supplements (calcium carbonate, calcium gluconate, oyster shell preparation and bovine bone preparation) and gluconic acid on the absorption of calcium and magnesium were evaluated for 30 days in male Wistar rats. There were no differences in the apparent absorption ratio of calcium among rats fed each calcium supplement; however, the rats fed the calcium gluconate diet had a higher apparent absorption ratio of magnesium than the rats fed the other calcium supplements. Dietary gluconic acid also more markedly stimulated magnesium absorption than the calcium carbonate diet, and the bone (femur and tibia) magnesium contents of rats fed the gluconic acid diet were significantly higher than those of the rats fed the calcium carbonate diet. Furthermore, the weight of cecal tissue and the concentrations of acetic acid and butyric acid in cecal digesta of rats fed the calcium gluconate diet or the gluconic acid diet were significantly increased. We speculate that the stimulation of magnesium absorption in rats fed the calcium gluconate diet is a result of the gluconic acid component and the effect of gluconic acid on magnesium absorption probably results from cecal hypertrophy, magnesium solubility in the large intestine and the effects of volatile fatty acids on magnesium absorption.

  20. A Novel Synthesis Method of Porous Calcium Silicate Hydrate Based on the Calcium Oxide/Polyethylene Glycol Composites

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2013-01-01

    Full Text Available This paper proposed a novel method to prepare porous calcium silicate hydrate (CSH based on the calcium oxide/polyethylene glycol (CaO/PEG2000 composites as the calcium materials. The porosity formation mechanism was revealed via X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM, Brunauer-Emmett-Teller (BET, and Fourier transformed infrared spectroscopy (FT-IR. The reactivity of silica materials (SiO2 enhanced by increasing pH value. Ca2+ could not sustain release from CaO/PEG2000 and reacted with caused by silica to form CSH until the hydrothermal temperature reached to 170°C, avoiding the hardly dissolved intermediates formation efficiently. The as-prepared CSH, due to the large specific surface areas, exhibited excellent release capability of Ca2+ and OH−. This porous CSH has potential application in reducing the negative environmental effects of continual natural phosphate resource depletion.

  1. Decalcification of calcium polycarbophil in rats.

    Science.gov (United States)

    Yamada, T; Saito, T; Takahara, E; Nagata, O; Tamai, I; Tsuji, A

    1997-03-01

    The in vivo decalcification of calcium polycarbophil was examined. The decalcification ratio of [45Ca]calcium polycarbophil in the stomach after oral dosing to rats was more than 70% at each designated time and quite closely followed in the in vitro decalcification curve, indicating that the greater part of the calcium ion is released from calcium polycarbophil under normal gastric acidic conditions. The residual radioactivity in rat gastrointestine was nearly equal to that after oral administration of either [45Ca]calcium chloride + polycarbophil. The serum level of radioactivity was nearly equal to that after oral dosing of [45Ca]calcium lactate. These results indicate that the greater part of orally administered calcium polycarbophil released calcium ions to produce polycarbophil in vivo.

  2. Familial hypocalciuric hypercalcemia and calcium sensing receptor

    DEFF Research Database (Denmark)

    Mrgan, Monija; Nielsen, Sanne; Brixen, Kim

    2014-01-01

    Familial hypocalciuric hypercalcemia (FHH) is a lifelong, benign autosomal dominant disease characterized by hypercalcemia, normal to increased parathyroid hormone level, and a relatively low renal calcium excretion. Inactivation of the calcium-sensing receptor in heterozygous patients results in...

  3. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... can break easily, even without an obvious injury. Vitamin D helps your body absorb calcium. Eat foods that provide the right amounts of calcium, vitamin D, and protein. This kind of diet will give ...

  4. Dairy Dilemma: Are You Getting Enough Calcium?

    Science.gov (United States)

    ... Dairy Dilemma Dairy Dilemma Are You Getting Enough Calcium? You may be avoiding dairy products because of ... But dairy products are a major source of calcium, vitamin D and other nutrients that are important ...

  5. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Devkanya Dutta

    2000-12-01

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.

  6. Neuronal Calcium Sensor 1 Has Two Variants with Distinct Calcium Binding Characteristics

    Science.gov (United States)

    Wang, Baisheng; Boeckel, Göran R.; Huynh, Larry; Nguyen, Lien; Cao, Wenxiang; De La Cruz, Enrique M.; Kaftan, Edward J.

    2016-01-01

    Neuronal calcium sensor-1 (NCS-1 Var1) is a calcium-binding protein expressed in most tissues. We examined a poorly characterized variant of NCS-1 (Var2), identified only in humans where the N-terminal 22 amino acid residues of native NCS-1(MGKSNSKLKPEVVEELTRKTY) were replaced with 4 different residues (MATI). Because alterations in the level of expression of NCS-1 Var1 and the expression of NCS-1 variants have been correlated with several neurological diseases, the relative expression and functional role of NCS-1 Var2 was examined. We found that NCS-1 Var2 mRNA levels are not found in mouse tissues and are expressed at levels ~1000-fold lower than NCS-1 Var1 in three different human cell lines (SHSY5Y, HEK293, MB231). Protein expression of both variants was only identified in cell lines overexpressing exogenous NCS-1 Var2. The calcium binding affinity is ~100 times weaker in purified NCS-1 Var2 than NCS-1 Var1. Because truncation of NCS-1 Var1 has been linked to functional changes in neurons, we determined whether the differing properties of the NCS-1 variants could potentially contribute to the altered cell function. In contrast to previous reports showing that overexpression of NCS-1 Var1 increases calcium-dependent processes, functional differences in cells overexpressing NCS-1 Var2 were undetectable in assays for cell growth, cell death and drug (paclitaxel) potency. Our results suggest that NCS-1 Var1 is the primary functional version of NCS-1. PMID:27575489

  7. Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status

    Science.gov (United States)

    Dauer, Jenny M.; Perakis, Steven S.

    2014-01-01

    Calcium oxalate (Ca oxalate) is an insoluble biomineral that forms in plants and fungi, and occurs in soils across many types of ecosystems. Assessing how Ca oxalate may shape ecosystem Ca cycling requires information on the distribution of Ca oxalate among plant biomass, detritus, and mineral soil, and how it varies with ecosystem Ca status. We compared two Douglas-fir forests of contrasting ecosystem Ca availability, and found that Ca oxalate was partitioned similarly among plant biomass, detritus and mineral soil major ecosystem compartments at both sites, and total pools of Ca oxalate were greater in the high-Ca forest. However, the proportional importance of Ca oxalate was greater in the low-Ca than high-Ca forest (18% versus 4% of actively cycling ecosystem Ca, respectively). And calcium oxalate in mineral soil, which is of particular interest as a potential long-term Ca reservoir, was a larger portion of total available Ca (exchangeable Ca plus Ca oxalate Ca) in the low-Ca site than the high-Ca site (9% versus 1% of available soil Ca, respectively). Calcium oxalate was the dominant form of Ca returned from plants to soil as leaf litterfall at the high-Ca site, yet calcium oxalate disappeared rapidly from decomposing litter (0.28 yr−1 or faster) at both sites. We conclude that accumulation of Ca oxalate in forest ecosystems appears most closely related to overall Ca supply for live biomass pools, and that the accumulation of Ca oxalate in forest floor and mineral soil is limited by rapid microbial degradation of putatively unavailable Ca oxalate.

  8. Neuronal Calcium Sensor 1 Has Two Variants with Distinct Calcium Binding Characteristics.

    Science.gov (United States)

    Wang, Baisheng; Boeckel, Göran R; Huynh, Larry; Nguyen, Lien; Cao, Wenxiang; De La Cruz, Enrique M; Kaftan, Edward J; Ehrlich, Barbara E

    2016-01-01

    Neuronal calcium sensor-1 (NCS-1 Var1) is a calcium-binding protein expressed in most tissues. We examined a poorly characterized variant of NCS-1 (Var2), identified only in humans where the N-terminal 22 amino acid residues of native NCS-1(MGKSNSKLKPEVVEELTRKTY) were replaced with 4 different residues (MATI). Because alterations in the level of expression of NCS-1 Var1 and the expression of NCS-1 variants have been correlated with several neurological diseases, the relative expression and functional role of NCS-1 Var2 was examined. We found that NCS-1 Var2 mRNA levels are not found in mouse tissues and are expressed at levels ~1000-fold lower than NCS-1 Var1 in three different human cell lines (SHSY5Y, HEK293, MB231). Protein expression of both variants was only identified in cell lines overexpressing exogenous NCS-1 Var2. The calcium binding affinity is ~100 times weaker in purified NCS-1 Var2 than NCS-1 Var1. Because truncation of NCS-1 Var1 has been linked to functional changes in neurons, we determined whether the differing properties of the NCS-1 variants could potentially contribute to the altered cell function. In contrast to previous reports showing that overexpression of NCS-1 Var1 increases calcium-dependent processes, functional differences in cells overexpressing NCS-1 Var2 were undetectable in assays for cell growth, cell death and drug (paclitaxel) potency. Our results suggest that NCS-1 Var1 is the primary functional version of NCS-1. PMID:27575489

  9. A Calcium-Dependent Protein Kinase Interactswith and Activates A Calcium Channel toRequlate Pollen Tube Growth

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    ABSTRACT Calcium, as a ubiquitous second messenger, plays essential roles in tip-growing cells, such as animal neu-rons, plant pollen tubes, and root hairs. However, little is known concerning the regulatory mechanisms that code anddecode Ca2+ signals in plants. The evidence presented here indicates that a calcium-dependent protein kinase, CPK32,controls polar growth of pollen tubes. Overexpression of CPK32 disrupted the polar growth along with excessive Ca2+accumulation in the tip. A search of downstream effector molecules for CPK32 led to identification of a cyclic nucleotide-gated channel, CNGC18, as an interacting partner for CPK32. Co-expression of CPK32 and CNGC18 resulted in activationof CNGC18 in Xenopus oocytes where expression of CNGC18 alone did not exhibit significant calcium channel activity.Overexpression of CNGC18 produced a growth arrest phenotype coupled with accumulation of calcium in the tip, simi-lar to that induced by CPK32 overexpression. Co-expression of CPK32 and CNGC18 had a synergistic effect leading tomore severe depolarization of pollen tube growth. These results provide a potential feed-forward mechanism in whichcalcium-activated CPK32 activates CNGC18, further promoting calcium entry during the elevation phase of Ca2+ oscilla-tions in the polar growth of pollen tubes.

  10. Voltage-dependent calcium channels in skeletal muscle transverse tubules. Measurements of calcium efflux in membrane vesicles

    International Nuclear Information System (INIS)

    Transverse tubule membranes isolated from rabbit skeletal muscle consist mainly of sealed vesicles that are oriented primarily inside out. These membranes contain a high density of binding sites for 1,4-dihydropyridine calcium channel antagonists. The presence of functional voltage-dependent calcium channels in these membranes has been demonstrated by their ability to mediate 45Ca2+ efflux in response to changes in membrane potential. Fluorescence changes of the voltage-sensitive dye, 3,3'-dipropyl-2,2'-thiadicarbocyanine, have shown that transverse tubule vesicles may generate and maintain membrane potentials in response to establishing potassium gradients across the membrane in the presence of valinomycin. A two-step procedure has been developed to measure voltage-dependent calcium fluxes. Vesicles loaded with 45Ca2+ are first diluted into a buffer designed to generate a membrane potential mimicking the resting state of the cell and to reduce the extravesicular Ca2+ to sub-micromolar levels. 45Ca2+ efflux is then measured upon subsequent depolarization. Flux responses are modulated with appropriate pharmacological specificity by 1,4-dihydropyridines and are inhibited by other calcium channel antagonists such as lanthanum and verapamil

  11. Calcium channel blockers and Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Yi Tan; Yulin Deng; Hong Qing

    2012-01-01

    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofi-brillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers in-volved in Alzheimer's disease therapy.

  12. 21 CFR 184.1210 - Calcium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium oxide. 184.1210 Section 184.1210 Food and... Substances Affirmed as GRAS § 184.1210 Calcium oxide. (a) Calcium oxide (CaO, CAS Reg. No. 1305-78-8) is also known as lime, quick lime, burnt lime, or calx. It is produced from calcium carbonate, limestone,...

  13. 21 CFR 184.1185 - Calcium acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium acetate. 184.1185 Section 184.1185 Food and... Substances Affirmed as GRAS § 184.1185 Calcium acetate. (a) Calcium acetate (Ca (C2H3O2)2, CAS Reg. No. 62-54-4), also known as acetate of lime or vinegar salts, is the calcium salt of acetic acid. It may...

  14. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels.

    Science.gov (United States)

    Zemkova, Hana; Tomić, Melanija; Kucka, Marek; Aguilera, Greti; Stojilkovic, Stanko S

    2016-04-01

    Transgenic mice expressing the tdimer2(12) form of Discosoma red fluorescent protein under control of the proopiomelanocortin gene's regulatory elements are a useful model for studying corticotrophs. Using these mice, we studied the ion channels and mechanisms controlling corticotroph excitability. Corticotrophs were either quiescent or electrically active, with a 22-mV difference in the resting membrane potential (RMP) between the 2 groups. In quiescent cells, CRH depolarized the membrane, leading to initial single spiking and sustained bursting; in active cells, CRH further facilitated or inhibited electrical activity and calcium spiking, depending on the initial activity pattern and CRH concentration. The stimulatory but not inhibitory action of CRH on electrical activity was mimicked by cAMP independently of the presence or absence of arachidonic acid. Removal of bath sodium silenced spiking and hyperpolarized the majority of cells; in contrast, the removal of bath calcium did not affect RMP but reduced CRH-induced depolarization, which abolished bursting electrical activity and decreased the spiking frequency but not the amplitude of single spikes. Corticotrophs with inhibited voltage-gated sodium channels fired calcium-dependent action potentials, whereas cells with inhibited L-type calcium channels fired sodium-dependent spikes; blockade of both channels abolished spiking without affecting the RMP. These results indicate that the background voltage-insensitive sodium conductance influences RMP, the CRH-depolarization current is driven by a cationic conductance, and the interplay between voltage-gated sodium and calcium channels plays a critical role in determining the status and pattern of electrical activity and calcium signaling.

  15. The Electronic Structure of Calcium

    DEFF Research Database (Denmark)

    Jan, J.-P.; Skriver, Hans Lomholt

    1981-01-01

    The electronic structure of calcium under pressure is re-examined by means of self-consistent energy band calculations based on the local density approximation and using the linear muffin-tin orbitals (LMTO) method with corrections to the atomic sphere approximation included. At zero pressure...

  16. 21 CFR 582.1205 - Calcium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium hydroxide. 582.1205 Section 582.1205 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1205 Calcium hydroxide. (a) Product. Calcium hydroxide. (b) Conditions of use....

  17. 21 CFR 182.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2227 Calcium silicate. (a) Product. Calcium silicate....

  18. 21 CFR 582.2227 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  19. 21 CFR 582.5210 - Calcium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium oxide. 582.5210 Section 582.5210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance...

  20. Lactulose stimulates calcium absorption in postmenopausal women

    NARCIS (Netherlands)

    Heuvel, E.G.H.M. van den; Muijs, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Animal studies have indicated that calcium absorption is increased by lactulose, a synthetic disaccharide. Therefore, the influence of lactulose on calcium absorption was measured in postmenopausal women who may benefit from the possible enhancing effect of lactulose on calcium absorption. Twelve po

  1. 21 CFR 582.1210 - Calcium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium oxide. 582.1210 Section 582.1210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1210 Calcium oxide. (a) Product. Calcium oxide. (b) Conditions of use. This substance is...

  2. 21 CFR 582.6185 - Calcium acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium acetate. 582.6185 Section 582.6185 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium acetate. (a) Product. Calcium acetate. (b) Conditions of use. This substance is...

  3. 21 CFR 582.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  4. 21 CFR 182.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  5. 21 CFR 582.5217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  6. The female condom: The international denial of a strong potential

    NARCIS (Netherlands)

    Peters, A.J.T.P.; Jansen, W.H.M.; Driel, F.T.M. van

    2010-01-01

    The female condom has received surprisingly little serious attention since its introduction in 1984. Given the numbers of women with HIV globally, international support for women's reproductive and sexual health and rights and the empowerment of women, and, not least, due to the demand expressed by

  7. The female condom: the international denial of a strong potential.

    Science.gov (United States)

    Peters, Anny; Jansen, Willy; van Driel, Francien

    2010-05-01

    The female condom has received surprisingly little serious attention since its introduction in 1984. Given the numbers of women with HIV globally, international support for women's reproductive and sexual health and rights and the empowerment of women, and, not least, due to the demand expressed by users, one would have expected the female condom to be widely accessible 16 years after it first appeared. This expectation has not materialised; instead, the female condom has been marginalised in the international response to HIV and AIDS. This paper asks why and analyses the views and actions of users, providers, national governments and international public policymakers, using an analytical framework specifically designed to evaluate access to new health technologies in poor countries. We argue that universal access to female condoms is not primarily hampered by obstacles on the users' side, as is often alleged, nor by unwilling governments in developing countries, but that acceptability of the female condom is problematic mainly at the international policy level. This view is based on an extensive review of the literature, interviews with representatives of UNAIDS, UNFPA and other organisations, and a series of observations made during the International AIDS Conference in Mexico in August 2008. PMID:20541090

  8. Calcium requirements for Chinese adults by cross-sectional statistical analyses of calcium balance studies: an individual participant data and aggregate data meta-regression

    Institute of Scientific and Technical Information of China (English)

    Fang Aiping; Li Keji; Shi Haoyu; He Jingjing; Li He

    2014-01-01

    Background Chinese dietary reference intakes for calcium are largely based on foreign studies.We undertook metaregression to estimate calcium requirements for Chinese adults derived from calcium balance data in Chinese adults.Methods We searched PubMed,Cochrane CENTRAL,and SinoMed from inception to March 5,2014,by using a structured search strategy.The bibliographies of any relevant papers and journals were also screened for potentially eligible studies.We extracted a standardized data set from studies in Chinese adults that reported calcium balance data.The relationship between calcium intake and output was examined by an individual participant data (IPD) and aggregate data (AD) meta-regression.Results We identified 11 metabolic studies in Chinese adults within 18-60 years of age.One hundred and forty-one IPD (n=35) expressed as mg/d,127 IPD (n=32) expressed as mg·kg body wt-1·d-1,and 44 AD (n=132) expressed as mg/d were collected.The models predicted a neutral calcium balance (defined as calcium output (Y) equal to calcium intake (C)) at intakes of 460 mg/d (Y=0.60C+183.98) and 8.27 mg·kg body wt-1·d-1 (Y=0.60C+3.33)for IPD,or 409 mg/d (Y=0.66C+139.00) for AD.Calcium requirements at upper intakes were higher than that at lower intakes in all these models.Conclusion Calcium requirement for Chinese adults 18-60 years of age approximately ranges between 400 mg/d and 500 mg/d when consuming traditional plant-based Chinese diets.

  9. Functional properties of the CaV1.2 calcium channel activated by calmodulin in the absence of alpha2delta subunits.

    Science.gov (United States)

    Ravindran, Arippa; Kobrinsky, Evgeny; Lao, Qi Zong; Soldatov, Nikolai M

    2009-01-01

    Voltage-activated CaV1.2 calcium channels require association of the pore-forming alpha1C subunit with accessory CaVbeta and alpha2delta subunits. Binding of a single calmodulin (CaM) to alpha1C supports Ca2+-dependent inactivation (CDI). The human CaV1.2 channel is silent in the absence of CaVbeta and/or alpha2delta. Recently, we found that coexpression of exogenous CaM (CaMex) supports plasma membrane targeting, gating facilitation and CDI of the channel in the absence of CaVbeta. Here we discovered that CaMex and its Ca2+-insensitive mutant (CaM1234) rendered active alpha1C/CaVbeta channel in the absence of alpha2delta. Coexpression of CaMex with alpha1C and beta2d in calcium-channel-free COS-1 cells recovered gating of the channel and supported CDI. Voltage-dependence of activation was shifted by approximately +40 mV to depolarization potentials. The calcium current reached maximum at +40 mV (20 mM Ca2+) and exhibited approximately 3 times slower activation and 5 times slower inactivation kinetics compared to the wild-type channel. Furthermore, both CaMex and CaM1234 accelerated recovery from inactivation and induced facilitation of the calcium current by strong depolarization prepulse, the properties absent from the human vascular/neuronal CaV1.2 channel. The data suggest a previously unknown action of CaM that in the presence of CaVbeta; translates into activation of the alpha2delta-deficient calcium channel and alteration of its properties. PMID:19106618

  10. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    Energy Technology Data Exchange (ETDEWEB)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A [Department of Tissue Regeneration, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Hedhammar, My; Johansson, Jan [Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, Box 575, 751 23 Uppsala (Sweden); Blom, Tobias; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden)

    2010-08-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  11. Calcium silicate hydrates: Solid and liquid phase composition

    International Nuclear Information System (INIS)

    This paper presents a review on the relationship between the composition, the structure and the solution in which calcium silicate hydrate (C–S–H) is equilibrated. The silica chain length in C–S–H increases with the silicon concentration and the calcium content in the interlayer space with the calcium concentrations. Sodium and potassium are taken up in the interlayer space, preferentially at low calcium concentrations and thus by low Ca/Si C–S–H. Aluminium uptake in C–S–H increases strongly at higher aluminium concentrations in the solution. At low Ca/Si, aluminium substitutes silica in the bridging position, at Ca/Si > 1 aluminium is bound in TAH. Recently developed thermodynamic models are closely related to the structure of C–S–H and tobermorite, and able to model not only the solubility and the chemical composition of the C–S–H, but also to predict the mean silica chain length and the uptake of aluminium

  12. Calcium silicate hydrates: Solid and liquid phase composition

    Energy Technology Data Exchange (ETDEWEB)

    Lothenbach, Barbara, E-mail: Barbara.lothenbach@empa.ch [Laboratory Concrete & Construction Chemistry, Empa (Switzerland); Nonat, André [ICB, UMR CNRS 6303 CNRS-Université de Bourgogne, Faculté des Sciences et Techniques, BP47870, 21078 Dijon Cedex (France)

    2015-12-15

    This paper presents a review on the relationship between the composition, the structure and the solution in which calcium silicate hydrate (C–S–H) is equilibrated. The silica chain length in C–S–H increases with the silicon concentration and the calcium content in the interlayer space with the calcium concentrations. Sodium and potassium are taken up in the interlayer space, preferentially at low calcium concentrations and thus by low Ca/Si C–S–H. Aluminium uptake in C–S–H increases strongly at higher aluminium concentrations in the solution. At low Ca/Si, aluminium substitutes silica in the bridging position, at Ca/Si > 1 aluminium is bound in TAH. Recently developed thermodynamic models are closely related to the structure of C–S–H and tobermorite, and able to model not only the solubility and the chemical composition of the C–S–H, but also to predict the mean silica chain length and the uptake of aluminium.

  13. Earthquake, strong tide and global low temperature

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    "La Madre" is a kind of upper atmospheric air current, and occurs as "warm phase" and "cold phase" in the sky of Pacific Ocean alternately. There exists this phenomenon, called "Oscillation Decade in the Pacific" (ODP), for 20~30years. It is concerned with 60 year cycle of the tides. Lunar oscillations explain an intriguing 60-year cycle in the world's temperature. Strong tides increase the vertical mixing of water in the oceans, drawing cold ocean water from the depths to surface, where it cools the atmosphere above. The first strong seismic episode in China was from 1897 to 1912; the second to the fifth was the in1920-1937, 1946-1957, 1966-1980, 1991-2002, tsrectruely. The alternative boundaries of"La Madre" warm phase and cold phase were in 1890, 1924, 1946 and 2000, which were near the boundaries of four strong earthquakes. It indicated the strong earthquakes closedly related with the substances' motion of atmosphere, hydrosphere and lithosphere, the change of gravity potential, and the exchange of angular momentum. The strong earthquakes in the ocean bottom can bring the cool waters at the deep ocean up to the ocean surface and make the global climate cold. the earthquake, strong tide and global low temperature are close inrelntion for each othen.

  14. Inhibition of the Crystal Growth and Aggregation of Calcium Oxalate by Algae Sulfated Polysaccharide In-vitro

    Institute of Scientific and Technical Information of China (English)

    Xiu Mei WU; Jian Ming OUYANG; Sui Ping DENG; Ying Zhou CEN

    2006-01-01

    The influence of sulfated polysaccharide (SPS) isolated from marine algae Sargassum fusiforme on the morphology and phase compositions of urinary crystal calcium oxalate was investigated in vitro by means of scanning electron microscopy and X-ray diffraction. SPS maybe is a potential inhibitor to CaOxa urinary stones by inhibiting the growth of calcium oxalate monohydrate (COM), preventing the aggregation of COM, and inducing the formation of calcium oxalate dihydrate (COD) crystals.

  15. About Strongly Universal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Maurice Margenstern

    2013-09-01

    Full Text Available In this paper, we construct a strongly universal cellular automaton on the line with 11 states and the standard neighbourhood. We embed this construction into several tilings of the hyperbolic plane and of the hyperbolic 3D space giving rise to strongly universal cellular automata with 10 states.

  16. Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel.

    Science.gov (United States)

    Zhou, Hui-Ren; Pestka, James J

    2015-06-01

    Food refusal is a hallmark of exposure of experimental animals to the trichothecene mycotoxin deoxynivalenol (DON), a common foodborne contaminant. Although studies in the mouse suggest that DON suppresses food intake by aberrantly inducing the release of satiety hormones from enteroendocrine cells (EECs) found in the gut epithelium, the underlying mechanisms for this effect are not understood. To address this gap, we employed the murine neuroendocrine tumor STC-1 cell line, a widely used EEC model, to test the hypothesis that DON-induced hormone exocytosis is mediated by G protein-coupled receptor (GPCR)-mediated Ca(2+) signaling. The results indicate for the first time that DON elicits Ca(2)-dependent secretion of cholecystokinin (CCK) and glucagon-like peptide-1(7-36) amide (GLP-1), hormones that regulate food intake and energy homeostasis and that are products of 2 critical EEC populations--I cells of the small intestine and L cells of the large intestine, respectively. Furthermore, these effects were mediated by the GPCR Ca(2+)-sensing receptor (CaSR) and involved the following serial events: (1)PLC-mediated activation of the IP3 receptor and mobilization of intracellular Ca(2+) stores, (2) activation of transient receptor potential melastatin-5 ion channel and resultant L-type voltage-sensitive Ca(2+) channel-facilitated extracellular Ca(2+) entry, (3) amplification of extracellular Ca(2+) entry by transient receptor potential ankyrin-1 channel activation, and finally (4) Ca(2+)-driven CCK and GLP-1 excytosis. These in vitro findings provide a foundation for future investigation of mechanisms by which DON and other trichothecenes modulate EEC function in ex vivo and in vivo models. PMID:25787141

  17. Maximum Genus of Strong Embeddings

    Institute of Scientific and Technical Information of China (English)

    Er-ling Wei; Yan-pei Liu; Han Ren

    2003-01-01

    The strong embedding conjecture states that any 2-connected graph has a strong embedding on some surface. It implies the circuit double cover conjecture: Any 2-connected graph has a circuit double cover.Conversely, it is not true. But for a 3-regular graph, the two conjectures are equivalent. In this paper, a characterization of graphs having a strong embedding with exactly 3 faces, which is the strong embedding of maximum genus, is given. In addition, some graphs with the property are provided. More generally, an upper bound of the maximum genus of strong embeddings of a graph is presented too. Lastly, it is shown that the interpolation theorem is true to planar Halin graph.

  18. Calcium electroporation in three cell lines; a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille;

    2013-01-01

    BACKGROUND: Electroporation with calcium (calcium electroporation) can induce ATP depletion-associated cellular death. In the clinical setting, the cytotoxic drug bleomycin is currently used with electroporation (electrochemotherapy) for palliative treatment of tumors. Calcium electroporation...... offers several advantages over standard treatment options: calcium is inexpensive and may readily be applied without special precautions, as is the case with cytostatic drugs. Therefore, details on the use of calcium electroporation are essential for carrying out clinical trials comparing calcium...... electroporation and electrochemotherapy. METHODS: The effects of calcium electroporation and bleomycin electroporation (alone or in combination) were compared in three different cell lines (DC-3F, transformed Chinese hamster lung fibroblast; K-562, human leukemia; and murine Lewis Lung Carcinoma). Furthermore...

  19. The calcium sensor synaptotagmin 7 is required for synaptic facilitation.

    Science.gov (United States)

    Jackman, Skyler L; Turecek, Josef; Belinsky, Justine E; Regehr, Wade G

    2016-01-01

    It has been known for more than 70 years that synaptic strength is dynamically regulated in a use-dependent manner. At synapses with a low initial release probability, closely spaced presynaptic action potentials can result in facilitation, a short-term form of enhancement in which each subsequent action potential evokes greater neurotransmitter release. Facilitation can enhance neurotransmitter release considerably and can profoundly influence information transfer across synapses, but the underlying mechanism remains a mystery. One proposed mechanism is that a specialized calcium sensor for facilitation transiently increases the probability of release, and this sensor is distinct from the fast sensors that mediate rapid neurotransmitter release. Yet such a sensor has never been identified, and its very existence has been disputed. Here we show that synaptotagmin 7 (Syt7) is a calcium sensor that is required for facilitation at several central synapses. In Syt7-knockout mice, facilitation is eliminated even though the initial probability of release and the presynaptic residual calcium signals are unaltered. Expression of wild-type Syt7 in presynaptic neurons restored facilitation, whereas expression of a mutated Syt7 with a calcium-insensitive C2A domain did not. By revealing the role of Syt7 in synaptic facilitation, these results resolve a longstanding debate about a widespread form of short-term plasticity, and will enable future studies that may lead to a deeper understanding of the functional importance of facilitation.

  20. Calcium signals and calcium channels in osteoblastic cells

    Science.gov (United States)

    Duncan, R. L.; Akanbi, K. A.; Farach-Carson, M. C.

    1998-01-01

    Calcium (Ca2+) channels are present in non-excitable as well as in excitable cells. In bone cells of the osteoblast lineage, Ca2+ channels play fundamental roles in cellular responses to external stimuli including both mechanical forces and hormonal signals. They are also proposed to modulate paracrine signaling between bone-forming osteoblasts and bone-resorbing osteoclasts at local sites of bone remodeling. Calcium signals are characterized by transient increases in intracellular Ca2+ levels that are associated with activation of intracellular signaling pathways that control cell behavior and phenotype, including patterns of gene expression. Development of Ca2+ signals is a tightly regulated cellular process that involves the concerted actions of plasma membrane and intracellular Ca2+ channels, along with Ca2+ pumps and exchangers. This review summarizes the current state of knowledge concerning the structure, function, and role of Ca2+ channels and Ca2+ signals in bone cells, focusing on the osteoblast.

  1. Impairment of mycophenolate mofetil absorption by calcium polycarbophil.

    Science.gov (United States)

    Kato, Ryuji; Ooi, Kazuya; Ikura-Mori, Megumi; Tsuchishita, Yoshimasa; Hashimoto, Hiroshi; Yoshimura, Hironori; Uenishi, Kohji; Kawai, Masayuki; Tanaka, Kazuhiko; Ueno, Kazuyuki

    2002-11-01

    The effect of calcium polycarbophil on the absorption of mycophenolate mofetil, an immunosuppressive agent, was evaluated in healthy subjects. In vitro studies were performed to further evaluate the mechanism of the potential interaction. In the in vitro study, the release of mycophenolate mofetil from a cellulose membrane in the presence or absence of metal cations was measured using the dissolution test procedure. In the in vivo study, a randomized crossover design with two phases was used. In one phase, 6 male healthy volunteers received 1000 mg of mycophenolate mofetil alone (treatment 1); in the other phase, they received 1000 mg of mycophenolate mofetil and 2400 mg of calcium polycarbophil fine granules concomitantly (treatment 2). They received 30 mg of lansoprazole for 5 days and, on the 6th day, received mycophenolate mofetil and 2400 mg of calcium polycarbophil fine granules concomitantly (treatment 3). The serum concentration of mycophenolic acid was measured by high-performance liquid chromatography. In the in vitro study, the release from a cellulose membrane in the presence of calcium or iron ions was slower than that in the absence of these metal ions. In the in vivo study, the AUC0-12 and C(max) in treatment 2 were less than those in treatment 1. About 50% and 25% decreases in AUC0-12 in treatment 2 and treatment 3 were observed compared with those in treatment 1, respectively. These findings suggest that when mycophenolate mofetil and calcium polycarbophil were coadministered concomitantly, a decrease in mycophenolate mofetil absorption was observed. Therefore, it appears clear that the concomitant administration of mycophenolate mofetil and calcium polycarbophil should be avoided.

  2. Titanium: light, strong, and white

    Science.gov (United States)

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  3. Store-operated calcium signaling in neutrophils.

    Science.gov (United States)

    Clemens, Regina A; Lowell, Clifford A

    2015-10-01

    Calcium signals in neutrophils are initiated by a variety of cell-surface receptors, including formyl peptide and other GPCRs, FcRs, and integrins. The predominant pathway by which calcium enters immune cells is termed SOCE, whereby plasma membrane CRAC channels allow influx of extracellular calcium into the cytoplasm when intracellular ER stores are depleted. The identification of 2 key families of SOCE regulators, STIM calcium "sensors" and ORAI calcium channels, has allowed for genetic manipulation of SOCE pathways and provided valuable insight into the molecular mechanism of calcium signaling in immune cells, including neutrophils. This review focuses on our current knowledge of the molecules involved in neutrophil SOCE and how study of these molecules has further informed our understanding of the role of calcium signaling in neutrophil activation.

  4. CALCIUM ENHANCES ANTIINFLAMMATORY ACTIVITY OF ASPIRIN

    Directory of Open Access Journals (Sweden)

    Choksi Krishna

    2011-03-01

    Full Text Available The objective of present study is to evaluate the effects of calcium carbonate and calcium gluconate on acute and subacute inflammation and to study their possible interactions with Aspirin. Calcium carbonate (10 mg/kg and calcium gluconate (5 mg/kg were administered individually and also co-administered along with sub therapeutic dose Aspirin (50mg/kg to study their interaction. The inflammation was induced by carrageenan or a foreign body. Both calcium carbonate and calcium gluconate could not show significant anti-inflammatory activity on their own in acute as well as subacute inflammation models. Aspirin at sub-anti-inflammatory dose (50mg/Kg when co-administered along with calcium salts produced the significant anti-inflammatory response which was comparable to anti-inflammatory response of aspirin at therapeutic dose (200mg/Kg. Also co-adminostration minimized the gastro-toxicity of aspirin.

  5. Calcium in Mercury's Exosphere: Modeling MESSENGER Data

    Science.gov (United States)

    Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Merkel, Aimee; Vervack, Ronald J.; Sarantos, Menelaos; Sprague, Ann L.

    2011-01-01

    Mercury is surrounded by a surface-bounded exosphere comprised of atomic species including hydrogen, sodium, potassium, calcium, magnesium, and likely oxygen. Because it is collisionless. the exosphere's composition represents a balance of the active source and loss processes. The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface. Space ENvironment. GEochemistry. and Ranging (MESSENGER) spacecraft has made high spatial-resolution observations of sodium, calcium, and magnesium near Mercury's surface and in the extended, anti-sunward direction. The most striking feature of these data has been the substantial differences in the spatial distribution of each species, Our modeling demonstrates that these differences cannot be due to post-ejection dynamics such as differences in photo-ionization rate and radiation pressure. but instead point to differences in the source mechanisms and regions on the surface from which each is ejected. The observations of calcium have revealed a strong dawn/dusk asymmetry. with the abundance over the dawn hemisphere significantly greater than over the dusk. To understand this asymmetry, we use a Monte Carlo model of Mercury's exosphere that we developed to track the motions of exospheric neutrals under the influence of gravity and radiation pressure. Ca atoms can be ejected directly from the surface or produced in a molecular exosphere (e.g., one consisting of CaO). Particles are removed from the system if they stick to the surface or escape from the model region of interest (within 15 Mercury radii). Photoionization reduces the final weighting given to each particle when simulating the Ca radiance. Preliminary results suggest a high temperature ( I-2x 10(exp 4) K) source of atomic Ca concentrated over the dawn hemisphere. The high temperature is consistent with the dissociation of CaO in a near-surface exosphere with scale height <= 100 km, which imparts 2 eV to the freshly produced Ca atom. This

  6. Calcium in Mercury's Exosphere: Modeling MESSENGER Data

    Science.gov (United States)

    Burger, M. H.; Killen, R. M.; McClintock, W. E.; Merkel, A. W.; Vervack, R. J.; Sarantos, M.; Sprague, A. L.

    2011-12-01

    Mercury is surrounded by a surface-bounded exosphere known to contain hydrogen, sodium, potassium, calcium, and magnesium. Because the exosphere is collisionless, its composition represents a balance of active source and loss processes. The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has made high-spatial-resolution observations of sodium, calcium, and magnesium near Mercury's surface and in the extended, anti-sunward direction. The most striking feature of these data is the substantial differences among species, which was detected during three close flybys of the planet and has been persistantly present during MESSENGER's orbital phase. Our modeling demonstrates that these differences are not because of post-ejection dynamics such as differences in photo-ionization rate and radiation pressure, but rather result from differences in the source mechanisms and regions on the surface from which each species is ejected. The observations of calcium have revealed a strong dawn/dusk asymmetry, with the abundance over the dawn hemisphere substantially greater than that on the dusk side. To understand this asymmetry, we use a Monte Carlo model of Mercury's exosphere that we developed to track the motions of exospheric neutrals under the influence of gravity and radiation pressure. In this model, Ca atoms can be ejected directly from the surface or produced by ejection of CaO followed by dissociation to produce Ca and O. Particles are removed from the system if they stick to the surface or escape from the model region of interest (within 15 Mercury radii). Photoionization reduces the final weighting given to each particle when simulating the Ca radiance. Data from the flybys are consistent with a high temperature (~1-2 x 104 K) source of atomic Ca concentrated over the dawn hemisphere. Such a high temperature resutls from dissociation of CaO in a near

  7. A minimalist model of calcium-voltage coupling in GnRH cells

    Energy Technology Data Exchange (ETDEWEB)

    Rennie, Martin; Chan, Rossanna; Duan Wen; Sneyd, James [Department of Mathematics, University of Auckland, Auckland 1142 (New Zealand); Schneider, David, E-mail: schneide@tandar.cnea.gov.ar [Departamento de Fisica, Comision Nacional de Energia Atomica. Av. del Libertador 8250, 1429 Buenos Aires (Argentina)

    2011-03-01

    We present a minimalist model to describe the interplay between burst firing and calcium dynamics in Gonadotropin-releasing hormone (GnRH) cells. This model attempts to give a qualitative representation of Duan's model [3], and it comprises two FithzHugh-Nagumo (FHN) coupled systems describing the dynamics of the membrane potential and calcium concentration in the GnRH cells. Within the framework of our minimalist model, we find that the calcium subsystem drives burst firing by making the voltage subsystem to undergo a Hopf bifurcation. Specifically, fast relaxation oscillations occur in a specific region of the c-z plane (c being the calcium concentration, and z a calcium-dependent gating variable). Slow calcium oscillations, instead, are carried by the voltage subsystem by successive shifts of the calcium steady state, and have the net effect of an external perturbation. The full comprehension of the phase-plane of the voltage subsystem and the 3-dimensional phase-space of the calcium subsystem ultimately allows us to study the behaviours of the entire model under the change of certain parameters. Those special parameters do not necessarily follow realistic assumptions, but merely intend to mimic some pharmacological tests which have been performed experimentally and also simulated by Duan's model under the corresponding physiological considerations.

  8. Mitochondrial response and calcium ion change in apoptotic insect cells induced by SfaMNPV

    Institute of Scientific and Technical Information of China (English)

    XIU Meihong; PENG Jianxin; HONG Huazhu

    2005-01-01

    Mitochondrial responses and changes of calcium ions in apoptotic insect SL-1 cells induced by Syngrapha falcifera multiple nuclear polyhedrosis virus (SfaMNPV) are reported in this paper. By using Rhodamine 123 as a fluorescent labeling probe, flow cytometry analysis and confocal laser scanning microscope observation we observed that the mitochondrial transmembrane potential (△Ψm) began to decrease in SL-1 cells at 4 h post infection and △Ψm reduced continuously with the extension of virus infection. Western blotting indicated that the Bcl-2 level in the mitochondria gradually declined and was down- regulated. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria, which indicated that cytochrome c was released from mitochondria into cytosol. These results suggest that mitochondrion-mediated apoptotic signal transduction pathway exists in apoptotic insect cell induced by SfaMNPV. Cytosolic free calcium ([Ca2+]i) concentration rapidly increased after SfaMNPV infection and the elevated calcium was tested to come partly from extracelllular calcium ion influx. Flow cytometry analysis indicated that the apoptosis in SL-1 cells was not influenced by established cytosolic calcium clamped conditions and the EGTA inhibiting calcium influx. Therefore, neither the elevation of cytosolic calcium ion nor extracellular calcium entry was the inducing factor of apoptosis, which hinted that the depletion of ER Ca2+ store contributed to SL-1 cell apoptosis induced by SfaMNPV.

  9. Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum.

    Science.gov (United States)

    Hutchins, B Ian; Li, Li; Kalil, Katherine

    2012-01-10

    Wnt5a gradients guide callosal axons by repulsion through Ryk receptors in vivo. We recently found that Wnt5a repels cortical axons and promotes axon outgrowth through calcium signaling in vitro. Here, using cortical slices, we show that Wnt5a signals through Ryk to guide and promote outgrowth of callosal axons after they cross the midline. Calcium transient frequencies in callosal growth cones positively correlate with axon outgrowth rates in vitro. In cortical slices, calcium release through inositol 1,4,5-trisphosphate (IP(3)) receptors and calcium entry through transient receptor potential channels modulate axon growth and guidance. Knocking down Ryk inhibits calcium signaling in cortical axons, reduces rates of axon outgrowth subsequent to midline crossing, and causes axon guidance defects. Calcium- and calmodulin-dependent protein kinase II (CaMKII) is required downstream of Wnt-induced calcium signaling for postcrossing callosal axon growth and guidance. Taken together, these results suggest that growth and guidance of postcrossing callosal axons by Wnt-Ryk-calcium signaling involves axon repulsion through CaMKII.

  10. Abnormal Calcium "Sparks" in Cardiomyocytes of Post-myocardial Infarction Heart

    Institute of Scientific and Technical Information of China (English)

    Kai HUANG; Dan HUANG; Shengquan FU; Chongzhe YANG; Yuhua LIAO

    2008-01-01

    In ischemic hypertrophic myocardium, contractile dysfunction can be attributed to the decreased calcium induced calcium release (CICR) in cytoplasm. This study aimed to investigate the electrophysiological properties and the expression of L calcium channel subunits in post-MI myocardium. The ischemic heart remodeling model was established in SD rats. The expressions of calcium channel subunits were determined by realtime RT-PCR. Whole cell patch clamp was used to record the electrophysiological properties of L calcium channel. The results showed that the L calcium channel agonist Bayk 8644 induced the significantly decreased CICR in the rat cardiomyocyte 6weeks after myocardial infarction (MI). In the post-MI cardiomyocytes, the amplitude of ICaL decreased dramatically and the inactivation curve of the current shifted to more negative potential. At mRNA level, the expression of the calcium channel alphalc, beta2c subunits decreased dramatically in the ventricle of post-MI rats. The expression of alpha2/delta subunit, however, remained constant.It is concluded that the abnormal expression of the L calcium channel subunits in post-MI cardiomyocytes contributes to the ICaL decrease at early stage of the ischemic remodeling in cardiomyocytes,which leads to the decreased CICR in the cell and contractile dysfunction of myocardium.

  11. New quarks: exotic versus strong

    OpenAIRE

    Holdom, B.

    2011-01-01

    The new quarks of a fourth family are being pushed into the strongly interacting regime due to the lower limits on their masses. The theoretical basis and experimental implications of such quarks are compared with exotic quarks.

  12. Calcium Phosphate Coating on Al2 O3 Ceramics by a Biomimetic Method Using Electric Pulse Technique

    Institute of Scientific and Technical Information of China (English)

    JIN Zhengguo; SHI Yong; GUO Wenli; WANG Ying; QIU Jijun

    2005-01-01

    The preparation of calcium phosphate (CP) coating on alumina ceramics using electric pulse stimulating method has been investigated. The cup-shaped alumina ceramics were soaked in a simulated body fluid (SBF), and a square pulse potential with frequency of 1 Hz and voltage of 110 V was applied between the inner and outer surfaces of the alumina cup. Surface morphology of CP coatings during different deposition periods was observed by a Philips XL-30 scanning electron microscope (SEM). Compositional analysis was examined by EDAX. The mechanism of nucleation and growth of CP coating was discussed. SEM result indicates that the coating comprises of a large number of tiny needle-like grains and has a porous microstructure. There is a strong bond between the deposited layer and Al2O3 substrate, which may be due to the gentle growth of the biomimetic method. The EDAX analysis indicates that main composition of the coating is calcium and phosphor. The formation of CP coating may be contributed to the stimulation of electric pulse and the high ions concentration which is 1.5 times of the concentration of SBF solution (1.5SBF solution). Such surface functionalization method by electric pulse potential can be used to prepare CP coating on various electric-insulating bioinert materials for improving their bioactive character.

  13. QCD vacuum structure in strong magnetic fields

    CERN Document Server

    Kabat, D; Weinberg, Erick J; Kabat, Daniel; Lee, Kimyeong; Weinberg, Erick

    2002-01-01

    We study the response of the QCD vacuum to strong magnetic fields, using a potential model for the quark-antiquark interaction. We find that production of spin-polarized u-ubar pairs is energetically favorable for fields B > B_crit \\sim 10 GeV^2. We contrast the resulting u-ubar condensate with the quark condensate which is present at zero magnetic field, and we estimate the corresponding magnetization as a function of B.

  14. Driven classical diffusion with strong correlated disorder

    OpenAIRE

    Pryadko, Leonid P.; Lin, Jing-Xian

    2004-01-01

    We analyze one-dimensional motion of an overdamped classical particle in the presence of external disorder potential and an arbitrary driving force F. In thermodynamical limit the effective force-dependent mobility mu(F) is self-averaging, although the required system size may be exponentially large for strong disorder. We calculate the mobility mu(F) exactly, generalizing the known results in linear response (weak driving force) and the perturbation theory in powers of the disorder amplitude...

  15. [Calcium pyrophosphate dihydrate deposition disease].

    Science.gov (United States)

    Koitschev, C; Kaiserling, E; Koitschev, A

    2003-08-01

    Calcium pyrophosphate dihydrate deposition disease (CPPD) of the temporomandibular joint is rare. The disorder is characterized by the presence of crystal deposits within the affected joint. The deposition of crystals in adjacent soft tissue may lead to the formation of pseudotumors. This form of the disease is called tophaceous pseudogout and typically affects the temporomandibular joint. It is difficult to differentiate the disease, particularly from malignant tumors, on the clinical and radiographic findings alone. The diagnosis is based on histological identification of the calcium pyrophosphate crystals. We present an unusually advanced case of tophaceous pseudogout of the temporomandibular joint. The etiology, clinical and diagnostic criteria as well as treatment options are discussed on the basis of our own experience and a review of the literature. PMID:12942180

  16. Strong coupling effective theory with heavy fermions

    CERN Document Server

    Fromm, Michael; Lottini, Stefano; Philipsen, Owe

    2011-01-01

    We extend the recently developed strong coupling, dimensionally reduced Polyakov-loop effective theory from finite-temperature pure Yang-Mills to include heavy fermions and nonzero chemical potential by means of a hopping parameter expansion. Numerical simulation is employed to investigate the weakening of the deconfinement transition as a function of the quark mass. The tractability of the sign problem in this model is exploited to locate the critical surface in the (M/T, mu/T, T) space over the whole range of chemical potentials from zero up to infinity.

  17. Serum calcium in pulmonary tuberculosis

    OpenAIRE

    Subhash C. Sharma

    1981-01-01

    Serum calcium was studied serially in 94 patients with active pulmonary tuberculosis. An equal number of age- and sex-matched patients with chronic obstructive pulmonary disease were controls. Seventy patients in the study group were normocalcaemic and 10 were hypercalcaemic. These 10 were on a higher supplement of vitamin D than the 70 normocalcaemic patients. There was a positive correlation between the daily vitamin intake and the degree and duration of hypercalcaemia. None of the controls...

  18. Calcium channel activity of purified human synexin and structure of the human synexin gene

    International Nuclear Information System (INIS)

    Synexin is a calcium-dependent membrane binding protein that not only fuses membranes but also acts as a voltage-dependent calcium channel. The authors have isolated and sequenced a set of overlapping cDNA clones for human synexin. The derived amino acid sequence of synexin reveals strong homology in the C-terminal domain with a previously identified class of calcium-dependent membrane binding proteins. These include endonexin II, lipocortin I, calpactin I heavy chain (p36), protein II, and calelectrin 67K. The Mr 51,000 synexin molecule can be divided into a unique, highly hydrophobic N-terminal domain of 167 amino acids and a conserved C-terminal region of 299 amino acids. The latter domain is composed of alternating hydrophobic and hydrophilic segments. Analysis of the entire structure reveals possible insights into such diverse properties as voltage-sensitive calcium channel activity, ion selectivity, affinity for phospholipids, and membrane fusion

  19. Fifty years of human space travel: implications for bone and calcium research.

    Science.gov (United States)

    Smith, S M; Abrams, S A; Davis-Street, J E; Heer, M; O'Brien, K O; Wastney, M E; Zwart, S R

    2014-01-01

    Calcium and bone metabolism remain key concerns for space travelers, and ground-based models of space flight have provided a vast literature to complement the smaller set of reports from flight studies. Increased bone resorption and largely unchanged bone formation result in the loss of calcium and bone mineral during space flight, which alters the endocrine regulation of calcium metabolism. Physical, pharmacologic, and nutritional means have been used to counteract these changes. In 2012, heavy resistance exercise plus good nutritional and vitamin D status were demonstrated to reduce loss of bone mineral density on long-duration International Space Station missions. Uncertainty continues to exist, however, as to whether the bone is as strong after flight as it was before flight and whether nutritional and exercise prescriptions can be optimized during space flight. Findings from these studies not only will help future space explorers but also will broaden our understanding of the regulation of bone and calcium homeostasis on Earth.

  20. Supporting aboriginal knowledge and practice in health care: lessons from a qualitative evaluation of the strong women, strong babies, strong culture program

    OpenAIRE

    Lowell, Anne; Kildea, Sue; Liddle, Marlene; Cox, Barbara; Paterson, Barbara

    2015-01-01

    Background The Strong Women, Strong Babies, Strong Culture Program (the Program) evolved from a recognition of the value of Aboriginal knowledge and practice in promoting maternal and child health (MCH) in remote communities of the Northern Territory (NT) of Australia. Commencing in 1993 it continues to operate today. In 2008, the NT Department of Health commissioned an evaluation to identify enabling factors and barriers to successful implementation of the Program, and to identify potential ...

  1. Effect of dietary calcium and 1,25-(OH)2D3 on the expression of calcium transport genes in calbindin-D9k and -D28k double knockout mice.

    Science.gov (United States)

    Ko, Sang-Hwan; Choi, Kyung-Chul; Oh, Goo Taeg; Jeung, Eui-Bae

    2009-02-01

    The phenotypes of calbindin-D9k (CaBP-9k) and -28k (CaBP-28k) single knockout (KO) mice are similar to wild-type (WT) mice due to the compensatory action of other calcium transport proteins. In this study, we generated CaBP-9k/CaBP-28k double knockout (DKO) mice in order to investigate the importance of CaBP-9k and CaBP-28k in active calcium processing. Under normal dietary conditions, DKO mice did not exhibit any changes in phenotype or the expression of active calcium transport genes as compared to WT or CaBP-28k KO mice. Under calcium-deficient dietary conditions, the phenotype and expression of calcium transport genes in CaBP-28k KO mice were similar to WT, whereas in DKO mice, serum calcium levels and bone length were decreased. The intestinal and renal expression of transient receptor potential vanilloid member 6 (TRPV6) mRNA was significantly decreased in DKO mice fed a calcium-deficient diet as compared to CaBP-28k KO or WT mice, and DKO mice died after 4 weeks on a calcium-deficient diet. Body weight, bone mineral density (BMD) and bone length were significantly reduced in all mice fed a calcium and 1,25-(OH)(2)D(3)-deficient diet, as compared to a normal diet, and none of the mice survived more than 4 weeks. These results indicate that deletion of CaBP-28k alone does not affect body calcium homeostasis, but that deletion of CaBP-9k and CaBP-28k has a significant effect on calcium processing under calcium-deficient conditions, confirming the importance of dietary calcium and 1,25-(OH)(2)D(3) during growth and development.

  2. Effects of particle size, slice thickness, and reconstruction algorithm on coronary calcium quantitation using ultrafast computed tomography

    Science.gov (United States)

    Tang, Weiyi; Detrano, Robert; Kang, Xingping; Garner, D.; Nickerson, Sharon; Desimone, P.; Mahaisavariya, Paiboon; Brundage, B.

    1994-05-01

    The recent emphasis on early diagnosis of coronary artery disease has stimulated research for a reliable and non-invasive screening method. Radiographically detectable coronary calcium has been shown to predict both pathologic and angiographic findings. Ultrafast computed tomography (UFCT), in quantifying coronary calcium, may become an accurate non-invasive method to evaluate the severity of coronary disease. The currently applied index of UFCT coronary calcium amount is the coronary calcium score of Agatston et al. This score has not been thoroughly evaluated as to its accuracy and dependence on scanning parameters. A potential drawback of the score is its dependence on predetermined CT number thresholds. In this investigation we used a chest phantom to determine the effects of particle size, slice thickness, and reconstruction algorithm on the coronary calcium score, and on the calcium mass estimated with a new method which is not dependent on thresholds.

  3. On the origin of rhythmic calcium transients in the ICC-MP of the mouse small intestine.

    Science.gov (United States)

    Lowie, Bobbi-Jo; Wang, Xuan-Yu; White, Elizabeth J; Huizinga, Jan D

    2011-11-01

    Interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are pacemaker cells of the small intestine, producing the characteristic omnipresent electrical slow waves, which orchestrate peristaltic motor activity and are associated with rhythmic intracellular calcium oscillations. Our objective was to elucidate the origins of the calcium transients. We hypothesized that calcium oscillations in the ICC-MP are primarily regulated by the sarcoplasmic reticulum (SR) calcium release system. With the use of calcium imaging, study of the effect of T-type calcium channel blocker mibefradil revealed that T-type channels did not play a major role in generating the calcium transients. 2-Aminoethoxydiphenyl borate, an inositol 1,4,5 trisphosphate receptor (IP(3)R) inhibitor, and U73122, a phospholipase C inhibitor, both drastically decreased the frequency of calcium oscillations, suggesting a major role of IP(3) and IP(3)-induced calcium release from the SR. Immunohistochemistry proved the expression of IP(3)R type I (IP(3)R-I), but not type II (IP(3)R-II) and type III (IP(3)R-III) in ICC-MP, indicating the involvement of the IP(3)R-I subtype in calcium release from the SR. Cyclopiazonic acid, a SR/endoplasmic reticulum calcium ATPase pump inhibitor, strongly reduced or abolished calcium oscillations. The Na-Ca exchanger (NCX) in reverse mode is likely involved in refilling the SR because the NCX inhibitor KB-R7943 markedly reduced the frequency of calcium oscillations. Immunohistochemistry revealed 100% colocalization of NCX and c-Kit in ICC-MP. Testing a mitochondrial NCX inhibitor, we were unable to show an essential role for mitochondria in regulating calcium oscillations in the ICC-MP. In summary, ongoing IP(3) synthesis and IP(3)-induced calcium release from the SR, via the IP(3)R-I, are the major drivers of the calcium transients associated with ICC pacemaker activity. This suggests that a biochemical clock intrinsic to ICC determines the pacemaker

  4. Asante Calcium Green and Asante Calcium Red--novel calcium indicators for two-photon fluorescence lifetime imaging.

    Directory of Open Access Journals (Sweden)

    Karolina Jahn

    Full Text Available For a comprehensive understanding of cellular processes and potential dysfunctions therein, an analysis of the ubiquitous intracellular second messenger calcium is of particular interest. This study examined the suitability of the novel Ca2+-sensitive fluorescent dyes Asante Calcium Red (ACR and Asante Calcium Green (ACG for two-photon (2P-excited time-resolved fluorescence measurements. Both dyes displayed sufficient 2P fluorescence excitation in a range of 720-900 nm. In vitro, ACR and ACG exhibited a biexponential fluorescence decay behavior and the two decay time components in the ns-range could be attributed to the Ca(2+-free and Ca(2+-bound dye species. The amplitude-weighted average fluorescence decay time changed in a Ca(2+-dependent way, unraveling in vitro dissociation constants K(D of 114 nM and 15 nM for ACR and ACG, respectively. In the presence of bovine serum albumin, the absorption and steady-state fluorescence behavior of ACR was altered and its biexponential fluorescence decay showed about 5-times longer decay time components indicating dye-protein interactions. Since no ester derivative of ACG was commercially available, only ACR was evaluated for 2P-excited fluorescence lifetime imaging microscopy (2P-FLIM in living cells of American cockroach salivary glands. In living cells, ACR also exhibited a biexponential fluorescence decay with clearly resolvable short (0.56 ns and long (2.44 ns decay time components attributable to the Ca(2+-free and Ca(2+-bound ACR species. From the amplitude-weighted average fluorescence decay times, an in situ K(D of 180 nM was determined. Thus, quantitative [Ca(2+]i recordings were realized, unraveling a reversible dopamine-induced [Ca(2+]i elevation from 21 nM to 590 nM in salivary duct cells. It was concluded that ACR is a promising new Ca(2+ indicator dye for 2P-FLIM recordings applicable in diverse biological systems.

  5. Matter in Strong Magnetic Fields

    CERN Document Server

    Lai, D

    2001-01-01

    The properties of matter are significantly modified by strong magnetic fields, $B>>2.35\\times 10^9$ Gauss ($1 G =10^{-4} Tesla$), as are typically found on the surfaces of neutron stars. In such strong magnetic fields, the Coulomb force on an electron acts as a small perturbation compared to the magnetic force. The strong field condition can also be mimicked in laboratory semiconductors. Because of the strong magnetic confinement of electrons perpendicular to the field, atoms attain a much greater binding energy compared to the zero-field case, and various other bound states become possible, including molecular chains and three-dimensional condensed matter. This article reviews the electronic structure of atoms, molecules and bulk matter, as well as the thermodynamic properties of dense plasma, in strong magnetic fields, with $10^9G << B < 10^{16}G$. The focus is on the basic physical pictures and approximate scaling relations, although various theoretical approaches and numerical results are also di...

  6. Zeolite A effect on calcium homeostasis in growing goats.

    Science.gov (United States)

    Schwaller, D; Wilkens, M R; Liesegang, A

    2016-04-01

    The purpose of this study was to investigate the influence of 2 different concentrations of zeolite A on calcium homeostasis. Seventeen growing goats were divided into 3 groups. Whereas the control group (5 animals) received no supplementation, 2 treatment groups were supplemented with zeolite A at either 1.2 (6 animals) or 1.6 g/kg BW (6 animals), respectively. Blood and urine samples were continually drawn and bone mineral density was measured weekly by peripheral quantitative computed tomography. After 3 wks, the animals were slaughtered and samples were taken from the rumen, duodenum, and kidneys. Plasma concentrations of phosphate ( Ussing chamber technique and quantification of RNA and protein expression of genes known to be involved in active calcium absorption did not reveal any stimulating effect of zeolite. Plasma calcium concentrations were not altered, probably because of the sufficient dietary calcium supply. However due to the effects of zeolite on 1,25 dihydroxycholecalciferol, bone metabolism and serum concentrations of phosphate and magenesium shown in the present study, potential negative long-termin effects on the animals should be considered whenever rations with zeolite are designed. PMID:27136016

  7. Impact Vaporization as a Possible Source of Mercury's Calcium Exosphere

    Science.gov (United States)

    Killen, Rosemary M.; Hahn, Joseph M.

    2015-01-01

    Mercury's calcium exosphere varies in a periodic way with that planet's true anomaly. We show that this pattern can be explained by impact vaporization from interplanetary dust with variations being due to Mercury's radial and vertical excursions through an interplanetary dust disk having an inclination within 5 degrees of the plane of Mercury's orbit. Both a highly inclined dust disk and a two-disk model (where the two disks have a mutual inclination) fail to reproduce the observed variation in calcium exospheric abundance with Mercury true anomaly angle. However, an additional source of impacting dust beyond the nominal dust disk is required near Mercury's true anomaly (?) 25deg +/-5deg. This is close to but not coincident with Mercury's true anomaly (?=45deg) when it crosses comet 2P/Encke's present day orbital plane. Interestingly, the Taurid meteor storms at Earth, which are also due to Comet Encke, are observed to occur when Earth's true anomaly is +/-20 or so degrees before and after the position where Earth and Encke orbital planes cross. The lack of exact correspondence with the present day orbit of Encke may indicate the width of the potential stream along Mercury's orbit or a previous cometary orbit. The extreme energy of the escaping calcium, estimated to have a temperature greater than 50000 K if the source is thermal, cannot be due to the impact process itself but must be imparted by an additional mechanism such as dissociation of a calcium-bearing molecule or ionization followed by recombination.

  8. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  9. Strongly interacting ultracold polar molecules

    Science.gov (United States)

    Gadway, Bryce; Yan, Bo

    2016-08-01

    This paper reviews recent advances in the study of strongly interacting systems of dipolar molecules. Heteronuclear molecules feature large and tunable electric dipole moments, which give rise to long-range and anisotropic dipole–dipole interactions. Ultracold samples of dipolar molecules with long-range interactions offer a unique platform for quantum simulations and the study of correlated many-body physics. We provide an introduction to the physics of dipolar quantum gases, both electric and magnetic, and summarize the multipronged efforts to bring dipolar molecules into the quantum regime. We discuss in detail the recent experimental progress in realizing and studying strongly interacting systems of polar molecules trapped in optical lattices, with particular emphasis on the study of interacting spin systems and non-equilibrium quantum magnetism. Finally, we conclude with a brief discussion of the future prospects for studies of strongly interacting dipolar molecules.

  10. Strongly interacting ultracold polar molecules

    CERN Document Server

    Gadway, Bryce

    2016-01-01

    This paper reviews recent advances in the study of strongly interacting systems of dipolar molecules. Heteronuclear molecules feature large and tunable electric dipole moments, which give rise to long-range and anisotropic dipole-dipole interactions. Ultracold samples of dipolar molecules with long-range interactions offer a unique platform for quantum simulations and the study of correlated many-body physics. We provide an introduction to the physics of dipolar quantum gases, both electric and magnetic, and summarize the multipronged efforts to bring dipolar molecules into the quantum regime. We discuss in detail the recent experimental progress in realizing and studying strongly interacting systems of polar molecules trapped in optical lattices, with particular emphasis on the study of interacting spin systems and non-equilibrium quantum magnetism. Finally, we conclude with a brief discussion of the future prospects for studies of strongly interacting dipolar molecules.

  11. Strong Completeness for Markovian Logics

    DEFF Research Database (Denmark)

    Kozen, Dexter; Mardare, Radu Iulian; Panangaden, Prakash

    2013-01-01

    In this paper we present Hilbert-style axiomatizations for three logics for reasoning about continuous-space Markov processes (MPs): (i) a logic for MPs defined for probability distributions on measurable state spaces, (ii) a logic for MPs defined for sub-probability distributions and (iii) a logic...... defined for arbitrary distributions. These logics are not compact so one needs infinitary rules in order to obtain strong completeness results. We propose a new infinitary rule that replaces the so-called Countable Additivity Rule (CAR) currently used in the literature to address the problem of proving...... strong completeness for these and similar logics. Unlike the CAR, our rule has a countable set of instances; consequently it allows us to apply the Rasiowa-Sikorski lemma for establishing strong completeness. Our proof method is novel and it can be used for other logics as well....

  12. Calcium dependence of Eugenol tolerance and toxicity in Saccharomyces cerevisiae

    OpenAIRE

    Roberts, Stephen K.; Martin McAinsh; Hanna Cantopher; Sean Sandison

    2014-01-01

    Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. ...

  13. Calcium Sulfoaluminate Eco-Cement from Industrial Waste

    OpenAIRE

    Ukrainczyk, N.; Frankoviæ Mihelj, N.; Šipušić, J.

    2013-01-01

    In this paper, the potential benefits offered by calcium sulfoaluminate cement (CSA) production from industrial wastes or by-products already present in Republic of Croatia have been addressed. A variety of industrial wastes, namely phosphogypsum (PG), coal bottom ash (BA) and electric arc furnace slag (EAFS) were used as raw materials to provide additional environmental advantages in production of CSA. Mass fraction of Ye’elimite, the principal hydraulic mineral in the prepared CSA was de...

  14. Impaired Cellular Bioenergetics Causes Mitochondrial Calcium Handling Defects in MT-ND5 Mutant Cybrids

    Science.gov (United States)

    Duchen, Michael R.

    2016-01-01

    Mutations in mitochondrial DNA (mtDNA) can cause mitochondrial disease, a group of metabolic disorders that affect both children and adults. Interestingly, individual mtDNA mutations can cause very different clinical symptoms, however the factors that determine these phenotypes remain obscure. Defects in mitochondrial oxidative phosphorylation can disrupt cell signaling pathways, which may shape these disease phenotypes. In particular, mitochondria participate closely in cellular calcium signaling, with profound impact on cell function. Here, we examined the effects of a homoplasmic m.13565C>T mutation in MT-ND5 on cellular calcium handling using transmitochondrial cybrids (ND5 mutant cybrids). We found that the oxidation of NADH and mitochondrial membrane potential (Δψm) were significantly reduced in ND5 mutant cybrids. These metabolic defects were associated with a significant decrease in calcium uptake by ND5 mutant mitochondria in response to a calcium transient. Inhibition of glycolysis with 2-deoxy-D-glucose did not affect cytosolic calcium levels in control cybrids, but caused an increase in cytosolic calcium in ND5 mutant cybrids. This suggests that glycolytically-generated ATP is required not only to maintain Δψm in ND5 mutant mitochondria but is also critical for regulating cellular calcium homeostasis. We conclude that the m.13565C>T mutation in MT-ND5 causes defects in both mitochondrial oxidative metabolism and mitochondrial calcium sequestration. This disruption of mitochondrial calcium handling, which leads to defects in cellular calcium homeostasis, may be an important contributor to mitochondrial disease pathogenesis. PMID:27110715

  15. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  16. Strong Photoassociation in Ultracold Fermions

    Science.gov (United States)

    Jing, Li; Jamison, Alan; Rvachov, Timur; Ebadi, Sepher; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    Despite many studies there are still open questions about strong photoassociation in ultracold gases. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system and to engineer Hamiltonians using dissipation. We propose the possibility to slow down decoherence by photoassociation through the quantum Zeno effect. This can realized by shining strong photoassociation light on the superposition of the lowest two hyperfine states of Lithium 6. NSF, ARO-MURI, Samsung, NSERC.

  17. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    Energy Technology Data Exchange (ETDEWEB)

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K. (IIT); (EMBL); (Scripps); (Duke); (Prince); (FSU); (MRC); (U. Florence)

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  18. Calcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons

    OpenAIRE

    Dibattista, Michele; Amjad, Asma; Maurya, Devendra Kumar; Sagheddu, Claudia; Montani, Giorgia; Tirindelli, Roberto; Menini, Anna

    2012-01-01

    The rodent vomeronasal organ plays a crucial role in several social behaviors. Detection of pheromones or other emitted signaling molecules occurs in the dendritic microvilli of vomeronasal sensory neurons, where the binding of molecules to vomeronasal receptors leads to the influx of sodium and calcium ions mainly through the transient receptor potential canonical 2 (TRPC2) channel. To investigate the physiological role played by the increase in intracellular calcium concentration in the api...

  19. Calcium in the initiation, progression and as an effector of Alzheimer’s disease pathology

    OpenAIRE

    Green, Kim N.

    2009-01-01

    The cause(s) of sporadic Alzheimer’s disease (sAD) are complex and currently poorly understood. They likely result from a combination of genetic, environmental, proteomic and lipidomic factors that crucially occur only in the aged brain. Age-related changes in calcium levels and dynamics have the potential to increase the production and accumulation of both amyloid-β peptide (Aβ) and τ pathologies in the AD brain, although these two pathologies themselves can induce calcium dyshomeostasis, pa...

  20. Rejection and Critical Flux of Calcium Sulphate in a Ceramic Titanium Dioxide Nanofiltration Membrane

    OpenAIRE

    Ahmed, Amer Naji

    2013-01-01

    ABSTRACTThis thesis describes the rejection efficiency and the fouling behaviour of calcium sulphate solutes in a 1 nm tubular ceramic titanium dioxide nanofiltration membrane.Calcium sulphate is considered as one of the greatest scaling potential inorganic salts that responsible for membrane fouling which represents a main challenge in the expansion of membrane processes for desalination of brackish and saline water. The surface charge type and magnitude for the composite amphoteric TiO_2 me...

  1. Binding of calcium and carbonate to polyacrylates.

    Science.gov (United States)

    Tribello, Gareth A; Liew, CheeChin; Parrinello, Michele

    2009-05-21

    Polyacrylate molecules can be used to slow the growth of calcium carbonate. However, little is known about the mechanism by which the molecules impede the growth rate. A recent computational study (Bulo et al. Macromolecules 2007, 40, 3437) used metadynamics to investigate the binding of calcium to polyacrylate chains and has thrown some light on the coiling and precipitation of these polymers. We extend these simulations to examine the binding of calcium and carbonate to polyacrylate chains. We show that calcium complexed with both carbonate and polyacrylate is a very stable species. The free energies of calcium-carbonate-polyacrylate complexes, with different polymer configurations, are calculated, and differences in the free energy of the binding of carbonate are shown to be due to differences in the amount of steric hindrance about the calcium, which prevents the approach of the carbonate ion. PMID:19400592

  2. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    Science.gov (United States)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas

  3. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  4. Strong decays of qqq baryons

    CERN Document Server

    Bijker, R; Leviatan, A

    1997-01-01

    We study strong decays of nonstrange baryons by making use of the algebraic approach to hadron structure. Within this framework we derive closed expressions for decay widths in an elementary-meson emission model and use these to analyze the experimental data for $N^* \\rightarrow N + \\pi$, $N^* + \\pi$, $\\Delta^* \\rightarrow \\Delta + \\pi$ and $\\Delta^* \\rightarrow \\Delta +

  5. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.;

    2007-01-01

    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...... of a discrete random variable....

  6. Overbased Calcium sulfonate Detergent Technology Overview

    Institute of Scientific and Technical Information of China (English)

    MA Qing-gao; MUIR Ronald J.

    2009-01-01

    Overbased calcium sulfonate is used widely as detergent in automotive and marine lubricants, as well as various industrial oil applications. In this paper, the process to produce overbased calcium sulfonate is overviewed. The sulfonate structure and molecular weight and its molecular weight distribution, the enclosed calcium carbonate nanoparticle size and crystalline structure, properties of the carrier oil, all influence its properties, such as stability, viscosity, and detergency of the system.

  7. [Calcium carbide of different crystal formation synthesized by calcium carbide residue].

    Science.gov (United States)

    Lu, Zhong-yuan; Kang, Ming; Jiang, Cai-rong; Tu, Ming-jing

    2006-04-01

    To recycle calcium carbide residue effectively, calcium carbide of different crystal form, including global aragonite, calcite and acicular calcium carbide was synthesized. Both the influence of pretreatment in the purity of calcium carbide, and the influence of temperatures of carbonization reaction, release velocity of carbon dioxide in the apparition of calcium carbide of different crystal form were studied with DTA-TG and SEM. The result shows that calcium carbide residue can take place chemistry reaction with ammonia chlorinate straight. Under the condition that pH was above 7, the purity of calcium carbide was above 97%, and the whiteness was above 98. Once provided the different temperatures of carbonization reaction and the proper release velocity of carbon dioxide, global aragonite, calcite and acicular calcium carbide were obtained.

  8. Calcium binding proteins and calcium signaling in prokaryotes.

    Science.gov (United States)

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna

    2015-03-01

    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  9. Sintering of calcium phosphate bioceramics.

    Science.gov (United States)

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful. PMID:23212081

  10. Altered calcium signaling following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    John Thomas Weber

    2012-04-01

    Full Text Available Cell death and dysfunction after traumatic brain injury (TBI is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.

  11. Calcium supplements: do they help or harm?

    Science.gov (United States)

    Manson, Joann E; Bassuk, Shari S

    2014-01-01

    Current recommendations for calcium intake call for 1,000 mg per day for women ages 19-50 and 1,200 mg per day for women over age 50 to ensure bone health. Given recent concerns that calcium supplements may raise risk for cardiovascular disease and kidney stones, women should aim to meet this recommendation primarily by eating a calcium-rich diet and taking calcium supplements only if needed to reach the RDA goal (often only approximately 500 mg per day in supplements is required). PMID:23880796

  12. Peroxisome is a reservoir of intracellular calcium.

    Science.gov (United States)

    Raychaudhury, Bikramjit; Gupta, Shreedhara; Banerjee, Shouvik; Datta, Salil C

    2006-07-01

    We have examined fura 2-loaded purified peroxisomes under confocal microscope to prove that this mammalian organelle is a store of intracellular calcium pool. Presence of calcium channel and vanadate sensitive Ca(2+)-ATPase in the purified peroxisomal membrane has been demonstrated. We have further observed that machineries to maintain calcium pool in this mammalian organelle are impaired during infection caused by Leishmania donovani. Results reveal that peroxisomes have a merit to play a significant role in the metabolism of intracellular calcium. PMID:16713100

  13. Serotonin and calcium homeostasis during the transition period.

    Science.gov (United States)

    Weaver, S R; Laporta, J; Moore, S A E; Hernandez, L L

    2016-07-01

    The transition from pregnancy to lactation puts significant, sudden demands on maternal energy and calcium reserves. Although most mammals are able to effectively manage these metabolic adaptations, the lactating dairy cow is acutely susceptible to transition-related disorders because of the high amounts of milk being produced. Hypocalcemia is a common metabolic disorder that occurs at the onset of lactation. Hypocalcemia is also known to result in poor animal welfare conditions. In addition, cows that develop hypocalcemia are more susceptible to a host of other negative health outcomes. Different feeding tactics, including manipulating the dietary cation-anion difference and administering low-calcium diets, are commonly used preventative strategies. Despite these interventions, the incidence of hypocalcemia in the subclinical form is still as high as 25% to 30% in the United States dairy cow population, with a 5% to 10% incidence of clinical hypocalcemia. In addition, although there are various effective treatments in place, they are administered only after the cow has become noticeably ill, at which point there is already significant metabolic damage. This emphasizes the need for developing alternative prevention strategies, with the monoamine serotonin implicated as a potential therapeutic target. Our research in rodents has shown that serotonin is critical for the induction of mammary parathyroid hormone-related protein, which is necessary for the mobilization of bone tissue and subsequent restoration of maternal calcium stores during lactation. We have shown that circulating serotonin concentrations are positively correlated with serum total calcium on the first day of lactation in dairy cattle. Administration of serotonin's immediate precursor through feeding, injection, or infusion to various mammalian species has been shown to increase circulating serotonin concentrations, with positive effects on other components of maternal metabolism. Most recently

  14. Calcium Imaging Perspectives in Plants

    Directory of Open Access Journals (Sweden)

    Chidananda Nagamangala Kanchiswamy

    2014-03-01

    Full Text Available The calcium ion (Ca2+ is a versatile intracellular messenger. It provides dynamic regulation of a vast array of gene transcriptions, protein kinases, transcription factors and other complex downstream signaling cascades. For the past six decades, intracellular Ca2+ concentration has been significantly studied and still many studies are under way. Our understanding of Ca2+ signaling and the corresponding physiological phenomenon is growing exponentially. Here we focus on the improvements made in the development of probes used for Ca2+ imaging and expanding the application of Ca2+ imaging in plant science research.

  15. Calcium Absorption from Fortified Ice Cream Formulations Compared with Calcium Absorption from Milk

    OpenAIRE

    van der Hee, Regine M.; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S.M.J.E.; Rietveld, Anton G.; Wilkinson, Joy E.; Quail, Patricia J.; Berry, Mark J.; Dainty, Jack R.; Teucher, Birgit; Fairweather-Tait, Susan J

    2009-01-01

    Objective Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fort...

  16. Association of Urinary Calcium Excretion with Serum Calcium and Vitamin D Levels

    OpenAIRE

    A Rathod; Bonny, O; Guessous, I; Suter, P M; Conen, D; Erne, P; Binet, I; Gabutti, L; Gallino, A; Muggli, F; Hayoz, D; Pechere-Bertschi, A; Paccaud, F.; Burnier, M.; Bochud, M

    2015-01-01

    BACKGROUND AND OBJECTIVES: Population-based data on urinary calcium excretion are scarce. The association of serum calcium and circulating levels of vitamin D [25(OH)D2 or D3] with urinary calcium excretion in men and women from a population-based study was explored. DESIGN, SETTINGS, PARTICIPANTS, & MEASUREMENTS: Multivariable linear regression was used to explore factors associated with square root-transformed 24-hour urinary calcium excretion (milligrams per 24 hours) taken as the dep...

  17. Calcium

    Science.gov (United States)

    ... for lunch; and beans, salsa, taco sauce, and cheese for dinner. Create mini-pizzas by topping whole-wheat English muffins or bagels with pizza sauce and low-fat mozzarella or soy cheese. Try whole-grain crackers with low-fat cheese ...

  18. Calcium

    Science.gov (United States)

    ... tingling in the fingers, convulsions, and abnormal heart rhythms that can lead to death if not corrected. ... that includes weight-bearing physical activity (such as walking and running). Osteoporosis is a disease of the ...

  19. In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

    International Nuclear Information System (INIS)

    A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to 60 µm, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation

  20. In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

    Energy Technology Data Exchange (ETDEWEB)

    Song, YoungShin; Lee, Chang-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-15

    A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to 60 µm, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.