WorldWideScience

Sample records for calcium signaling controls

  1. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts.

    Science.gov (United States)

    Peoples, Jessica N; Taylor, David G; Katchman, Alexander N; Ebert, Steven N

    2018-01-22

    Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh -/- ) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca 2+ ] i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca 2+ ] i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, I Ca,L , in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through I Ca,L and that aberrant calcium signaling does not likely contribute

  2. Calcium as a signal integrator in developing epithelial tissues.

    Science.gov (United States)

    Brodskiy, Pavel A; Zartman, Jeremiah J

    2018-05-16

    Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.

  3. Calcium Signaling in Taste Cells

    Science.gov (United States)

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  4. The interplay between HIF-1 and calcium signalling in cancer.

    Science.gov (United States)

    Azimi, Iman

    2018-04-01

    The interplay between hypoxia-inducible factor-1 (HIF-1) and calcium in cancer has begun to be unravelled with recent findings demonstrating the relationships between the two in different cancer types. This is an area of significance considering the crucial roles of both HIF-1 and calcium signalling in cancer progression and metastasis. This review summarises the experimental evidence of the crosstalk between HIF-1 and specific calcium channels, pumps and regulators in the context of cancer. HIF-1 as a master regulator of hypoxic transcriptional responses, mediates transcription of several calcium modulators. On the other hand, specific calcium channels and pumps regulate HIF-1 activity through controlling its transcription, translation, stabilisation, or nuclear translocation. Identifying the interplay between HIF-1 and components of the calcium signal will give new insights into mechanisms underlying cellular responses to physiological and pathophysiological cues, and may provide novel and more efficient therapeutic strategies for the control of cancer progression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Calcium and Nuclear Signaling in Prostate Cancer

    OpenAIRE

    Ivan V. Maly; Wilma A. Hofmann

    2018-01-01

    Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR) and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the un...

  6. Calcium signalling silencing in atrial fibrillation.

    Science.gov (United States)

    Greiser, Maura

    2017-06-15

    Subcellular calcium signalling silencing is a novel and distinct cellular and molecular adaptive response to rapid cardiac activation. Calcium signalling silencing develops during short-term sustained rapid atrial activation as seen clinically during paroxysmal atrial fibrillation (AF). It is the first 'anti-arrhythmic' adaptive response in the setting of AF and appears to counteract the maladaptive changes that lead to intracellular Ca 2+ signalling instability and Ca 2+ -based arrhythmogenicity. Calcium signalling silencing results in a failed propagation of the [Ca 2+ ] i signal to the myocyte centre both in patients with AF and in a rabbit model. This adaptive mechanism leads to a substantial reduction in the expression levels of calcium release channels (ryanodine receptors, RyR2) in the sarcoplasmic reticulum, and the frequency of Ca 2+ sparks and arrhythmogenic Ca 2+ waves remains low. Less Ca 2+ release per [Ca 2+ ] i transient, increased fast Ca 2+ buffering strength, shortened action potentials and reduced L-type Ca 2+ current contribute to a substantial reduction of intracellular [Na + ]. These features of Ca 2+ signalling silencing are distinct and in contrast to the changes attributed to Ca 2+ -based arrhythmogenicity. Some features of Ca 2+ signalling silencing prevail in human AF suggesting that the Ca 2+ signalling 'phenotype' in AF is a sum of Ca 2+ stabilizing (Ca 2+ signalling silencing) and Ca 2+ destabilizing (arrhythmogenic unstable Ca 2+ signalling) factors. Calcium signalling silencing is a part of the mechanisms that contribute to the natural progression of AF and may limit the role of Ca 2+ -based arrhythmogenicity after the onset of AF. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  7. Calcium signal communication in the central nervous system.

    Science.gov (United States)

    Braet, Katleen; Cabooter, Liesbet; Paemeleire, Koen; Leybaert, Luc

    2004-02-01

    The communication of calcium signals between cells is known to be operative between neurons where these signals integrate intimately with electrical and chemical signal communication at synapses. Recently, it has become clear that glial cells also exchange calcium signals between each other in cultures and in brain slices. This communication pathway has received utmost attention since it is known that astrocytic calcium signals can be induced by neuronal stimulation and can be communicated back to the neurons to modulate synaptic transmission. In addition to this, cells that are generally not considered as brain cells become progressively incorporated in the picture, as astrocytic calcium signals are reported to be communicated to endothelial cells of the vessel wall and can affect smooth muscle cell tone to influence the vessel diameter and thus blood flow. We review the available evidence for calcium signal communication in the central nervous system, taking into account a basic functional unit -the brain cell tripartite- consisting of neurons, glial cells and vascular cells and with emphasis on glial-vascular calcium signaling aspects.

  8. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  9. Presynaptic calcium signalling in cerebellar mossy fibres

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Jörntell, Henrik; Midtgaard, Jens

    2010-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX......)-sensitive fast Na(+) spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers....... Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon...

  10. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R

    2005-01-01

    The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated...... into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...

  11. Resveratrol and Calcium Signaling: Molecular Mechanisms and Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Audrey E. McCalley

    2014-06-01

    Full Text Available Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol’s mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol’s actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.

  12. Calcium microdomains near R-type calcium channels control the induction of presynaptic LTP at parallel fiber to Purkinje cell synapses

    Science.gov (United States)

    Myoga, Michael H.; Regehr, Wade G.

    2011-01-01

    R-type calcium channels in postsynaptic spines signal through functional calcium microdomains to regulate a calcium-calmodulin sensitive potassium channel that in turn regulates postsynaptic hippocampal LTP. Here we ask whether R-type calcium channels in presynaptic terminals also signal through calcium microdomains to control presynaptic LTP. We focus on presynaptic LTP at parallel fiber to Purkinje cell synapses in the cerebellum (PF-LTP), which is mediated by calcium/calmodulin-stimulated adenylyl cyclases. Although most presynaptic calcium influx is through N-type and P/Q-type calcium channels, blocking these channels does not disrupt PF-LTP, but blocking R-type calcium channels does. Moreover, global calcium signaling cannot account for the calcium dependence of PF-LTP because R-type channels contribute modestly to overall calcium entry. These findings indicate that within presynaptic terminals, R-type calcium channels produce calcium microdomains that evoke presynaptic LTP at moderate frequencies that do not greatly increase global calcium levels,. PMID:21471358

  13. Requirement for nuclear calcium signaling in Drosophila long-term memory.

    Science.gov (United States)

    Weislogel, Jan-Marek; Bengtson, C Peter; Müller, Michaela K; Hörtzsch, Jan N; Bujard, Martina; Schuster, Christoph M; Bading, Hilmar

    2013-05-07

    Calcium is used throughout evolution as an intracellular signal transducer. In the mammalian central nervous system, calcium mediates the dialogue between the synapse and the nucleus that is required for transcription-dependent persistent neuronal adaptations. A role for nuclear calcium signaling in similar processes in the invertebrate brain has yet to be investigated. Here, we show by in vivo calcium imaging of adult brain neurons of the fruit fly Drosophila melanogaster, that electrical foot shocks used in olfactory avoidance conditioning evoked transient increases in cytosolic and nuclear calcium concentrations in neurons. These calcium signals were detected in Kenyon cells of the flies' mushroom bodies, which are sites of learning and memory related to smell. Acute blockade of nuclear calcium signaling during conditioning selectively and reversibly abolished the formation of long-term olfactory avoidance memory, whereas short-term, middle-term, or anesthesia-resistant olfactory memory remained unaffected. Thus, nuclear calcium signaling is required in flies for the progression of memories from labile to transcription-dependent long-lasting forms. These results identify nuclear calcium as an evolutionarily conserved signal needed in both invertebrate and vertebrate brains for transcription-dependent memory consolidation.

  14. The Hepatitis B Virus X Protein Elevates Cytosolic Calcium Signals by Modulating Mitochondrial Calcium Uptake

    Science.gov (United States)

    Yang, Bei

    2012-01-01

    Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication. PMID:22031934

  15. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2005-01-01

    into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...... different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other...

  16. Probabilistic encoding of stimulus strength in astrocyte global calcium signals.

    Science.gov (United States)

    Croft, Wayne; Reusch, Katharina; Tilunaite, Agne; Russell, Noah A; Thul, Rüdiger; Bellamy, Tomas C

    2016-04-01

    Astrocyte calcium signals can range in size from subcellular microdomains to waves that spread through the whole cell (and into connected cells). The differential roles of such local or global calcium signaling are under intense investigation, but the mechanisms by which local signals evolve into global signals in astrocytes are not well understood, nor are the computational rules by which physiological stimuli are transduced into a global signal. To investigate these questions, we transiently applied receptor agonists linked to calcium signaling to primary cultures of cerebellar astrocytes. Astrocytes repetitively tested with the same stimulus responded with global signals intermittently, indicating that each stimulus had a defined probability for triggering a response. The response probability varied between agonists, increased with agonist concentration, and could be positively and negatively modulated by crosstalk with other signaling pathways. To better understand the processes determining the evolution of a global signal, we recorded subcellular calcium "puffs" throughout the whole cell during stimulation. The key requirement for puffs to trigger a global calcium wave following receptor activation appeared to be the synchronous release of calcium from three or more sites, rather than an increasing calcium load accumulating in the cytosol due to increased puff size, amplitude, or frequency. These results suggest that the concentration of transient stimuli will be encoded into a probability of generating a global calcium response, determined by the likelihood of synchronous release from multiple subcellular sites. © 2015 Wiley Periodicals, Inc.

  17. Calcium and Nuclear Signaling in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Ivan V. Maly

    2018-04-01

    Full Text Available Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the unifying themes that hold out promise in the context of the problems presented by prostate cancer. Genomic perturbations, kinase cascades, developmental pathways, and channels and transporters are covered, with an emphasis on nuclear transport and functions. Special attention is paid to the molecular mechanisms behind prostate cancer progression to the malignant forms and the unfavorable response to anti-androgen treatment. The survey leads to some new hypotheses that connect heretofore disparate results and may present a translational interest.

  18. Cellular Architecture Regulates Collective Calcium Signaling and Cell Contractility.

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2016-05-01

    Full Text Available A key feature of multicellular systems is the ability of cells to function collectively in response to external stimuli. However, the mechanisms of intercellular cell signaling and their functional implications in diverse vascular structures are poorly understood. Using a combination of computational modeling and plasma lithography micropatterning, we investigate the roles of structural arrangement of endothelial cells in collective calcium signaling and cell contractility. Under histamine stimulation, endothelial cells in self-assembled and microengineered networks, but not individual cells and monolayers, exhibit calcium oscillations. Micropatterning, pharmacological inhibition, and computational modeling reveal that the calcium oscillation depends on the number of neighboring cells coupled via gap junctional intercellular communication, providing a mechanistic basis of the architecture-dependent calcium signaling. Furthermore, the calcium oscillation attenuates the histamine-induced cytoskeletal reorganization and cell contraction, resulting in differential cell responses in an architecture-dependent manner. Taken together, our results suggest that endothelial cells can sense and respond to chemical stimuli according to the vascular architecture via collective calcium signaling.

  19. CBL-CIPK network for calcium signaling in higher plants

    Science.gov (United States)

    Luan, Sheng

    Plants sense their environment by signaling mechanisms involving calcium. Calcium signals are encoded by a complex set of parameters and decoded by a large number of proteins including the more recently discovered CBL-CIPK network. The calcium-binding CBL proteins specifi-cally interact with a family of protein kinases CIPKs and regulate the activity and subcellular localization of these kinases, leading to the modification of kinase substrates. This represents a paradigm shift as compared to a calcium signaling mechanism from yeast and animals. One example of CBL-CIPK signaling pathways is the low-potassium response of Arabidopsis roots. When grown in low-K medium, plants develop stronger K-uptake capacity adapting to the low-K condition. Recent studies show that the increased K-uptake is caused by activation of a specific K-channel by the CBL-CIPK network. A working model for this regulatory pathway will be discussed in the context of calcium coding and decoding processes.

  20. Nuclear calcium signaling induces expression of the synaptic organizers Lrrtm1 and Lrrtm2.

    Science.gov (United States)

    Hayer, Stefanie N; Bading, Hilmar

    2015-02-27

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2-4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca(2+)/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Nuclear Calcium Signaling Induces Expression of the Synaptic Organizers Lrrtm1 and Lrrtm2*

    Science.gov (United States)

    Hayer, Stefanie N.; Bading, Hilmar

    2015-01-01

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2–4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca2+/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. PMID:25527504

  2. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways.

    Science.gov (United States)

    Conigrave, Arthur D; Ward, Donald T

    2013-06-01

    In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes.

    Science.gov (United States)

    Bartlett, Paula J; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L; Combettes, Laurent; Hoek, Jan B; Gaspers, Lawrence D

    2017-05-15

    Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca 2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca 2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca 2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) production and does not involve changes in the sensitivity of the IP 3 receptor or size of internal Ca 2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca 2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca 2+ ] i ) increases, which can adversely affect mitochondrial Ca 2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca 2+ -mobilizing hormones resulting in more sustained and prolonged [Ca 2+ ] i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca 2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) accumulation and phospholipase C

  4. A study on MR signal intensity of calcifications according to calcium concentration and compound

    International Nuclear Information System (INIS)

    Chang, Sun Ae; Kim, Jae Hyoung; Chung, Sung Hoon

    1996-01-01

    The signal of intracranial calcification on magnetic resonance (MR) imaging has been known to be variable. The purpose of this study was to evaluate the MR signal of calcifications according to calcium concentration and compound. T1-weighted, proton density and T2-weighted images were obtained in phantoms with various conposition of calcium carbonate and calcium phosphate. The signal intensities and T1/T2 relaxation times were measured and analyzed according to calcium concentration and compound. The configurations of calcium particles were evaluated by scanning electron microscopy. The signal intensity of calcium carbonate on T1-weighted images gradually decreased as the concentration increased, while that of calcium phosphate showed a biphasic curve with a peak intensity at 0.2g/ml. The signal intensity of both calcium phosphate decreased up to 0.2g/ml and then remained constant. The T2 relaxation time of both calcium compounds decreased in a similar fashion with increasing concentration, Calcium phosphate showed larger surface area on scanning electron microscope. Calcifications show variable MR signal due to difference of T1 and T2 relaxation times according to calcium concentration and compound. Large surface area of calcium particle might cause shortening of T1 relaxation time leading to high signal on T1-weighted image. Understanding of these findings will help interpretation of MR images more precisely

  5. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    Science.gov (United States)

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  6. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  7. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    Science.gov (United States)

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner. Published by Elsevier Ltd.

  8. Potassium conductances mediate bidirectional state-dependent modulation of action potential evoked dendritic calcium signals in dentate gyrus granule cells

    Directory of Open Access Journals (Sweden)

    János Brunner

    2014-03-01

    resulted in faster repolarization and increased AP related calcium signals relative to the control (i. e. in the absence of the extra conductance at the same membrane potential. In conclusion, our results revealed that activation of potassium currents can profoundly enhance dendritic bAP-evoked calcium signals in GC dendrites, thus providing a previously unknown state-dependent modulatory mechanism in dendritic signalization.

  9. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling.

    Science.gov (United States)

    Kumari, Neema; Gaur, Himanshu; Bhargava, Anamika

    2018-02-01

    Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2005-01-01

    different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other...... to osteoclasts as well. We demonstrated that paracrine action of ATP was responsible for the wave propagation, but now the purinergic P2X7 receptor was involved. Thus, the studies demonstrate that calcium signals can be propagated not only among osteoblasts, but also between osteoblasts and osteoclasts...

  11. Crosslink between calcium and sodium signalling.

    Science.gov (United States)

    Verkhratsky, Alexei; Trebak, Mohamed; Perocchi, Fabiana; Khananshvili, Daniel; Sekler, Israel

    2018-02-01

    What is the topic of this review? This paper overviews the links between Ca 2+ and Na + signalling in various types of cells. What advances does it highlight? This paper highlights the general importance of ionic signalling and overviews the molecular mechanisms linking Na + and Ca 2+ dynamics. In particular, the narrative focuses on the molecular physiology of plasmalemmal and mitochondrial Na + -Ca 2+ exchangers and plasmalemmal transient receptor potential channels. Functional consequences of Ca 2+ and Na + signalling for co-ordination of neuronal activity with astroglial homeostatic pathways fundamental for synaptic transmission are discussed. Transmembrane ionic gradients, which are an indispensable feature of life, are used for generation of cytosolic ionic signals that regulate a host of cellular functions. Intracellular signalling mediated by Ca 2+ and Na + is tightly linked through several molecular pathways that generate Ca 2+ and Na + fluxes and are in turn regulated by both ions. Transient receptor potential (TRP) channels bridge endoplasmic reticulum Ca 2+ release with generation of Na + and Ca 2+ currents. The plasmalemmal Na + -Ca 2+ exchanger (NCX) flickers between forward and reverse mode to co-ordinate the influx and efflux of both ions with membrane polarization and cytosolic ion concentrations. The mitochondrial calcium uniporter channel (MCU) and mitochondrial Na + -Ca 2+ exchanger (NCLX) mediate Ca 2+ entry into and release from this organelle and couple cytosolic Ca 2+ and Na + fluctuations with cellular energetics. Cellular Ca 2+ and Na + signalling controls numerous functional responses and, in the CNS, provides for fast regulation of astroglial homeostatic cascades that are crucial for maintenance of synaptic transmission. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  12. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    Science.gov (United States)

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Calcium signaling in liver.

    Science.gov (United States)

    Gaspers, Lawrence D; Thomas, Andrew P

    2005-01-01

    In hepatocytes, hormones linked to the formation of the second messenger inositol 1,4,5-trisphosphate (InsP3) evoke transient increases or spikes in cytosolic free calcium ([Ca2+]i), that increase in frequency with the agonist concentration. These oscillatory Ca2+ signals are thought to transmit the information encoded in the extracellular stimulus to down-stream Ca2+-sensitive metabolic processes. We have utilized both confocal and wide field fluorescence microscopy techniques to study the InsP3-dependent signaling pathway at the cellular and subcellular levels in the intact perfused liver. Typically InsP3-dependent [Ca2+]i spikes manifest as Ca2+ waves that propagate throughout the entire cytoplasm and nucleus, and in the intact liver these [Ca2+]i increases are conveyed through gap junctions to encompass entire lobular units. The translobular movement of Ca2+ provides a means to coordinate the function of metabolic zones of the lobule and thus, liver function. In this article, we describe the characteristics of agonist-evoked [Ca2+]i signals in the liver and discuss possible mechanisms to explain the propagation of intercellular Ca2+ waves in the intact organ.

  14. Smad signaling pathway in pathogenesis of kidney injury induced by calcium oxalate stone in rats

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2016-10-01

    Full Text Available Objective: To investigate the involvement of Smad signaling pathway in the pathogenesis of kidney injury induced by calcium oxalate stone in rats to provide a reference for clinical treatment. Methods: Clean SD rats were randomly divided into 3 group, namely the control group, model group and pirfenidone group. Ethylene glycol + αhydroxy vitamin D3 was used as a stone-inducing agent to replicate the renal calcium oxalate stone model. Rats in the pirfenidone group were treated with pirfenidone intragastric administration. The serum Cr, BUN and 24-hour oxalate and calcium in renal tissues were assayed. The expressions of Bax/ Bcl2 protein, Caspase3 protein, TGFβ, Smad1, Smad2 and Smad3 proteins were detected by the fluorescent quantitation PCR method. Results: Compared with the rats of the control group, the results showed that the levels of serum BUN, Cr and 24-hour oxalate in rats of the model group were increased greatly, Bax and Caspase3 mRNA also increased while the level of Bcl2 decreased significantly, and the expressions of TGFβ, Smad1, Smad2 and Smad3 proteins increased distinctly as well (P<0.01. These abnormal parameters could be normalized effectively by pirfenidone. Conclusions: Activated TGFβ/Smad signaling pathway is involved in the pathogenesis of kidney injury induced by calcium oxalate stone in rats.

  15. Characterization of calcium signals in human induced pluripotent stem cell-derived dentate gyrus neuronal progenitors and mature neurons, stably expressing an advanced calcium indicator protein.

    Science.gov (United States)

    Vőfély, Gergő; Berecz, Tünde; Szabó, Eszter; Szebényi, Kornélia; Hathy, Edit; Orbán, Tamás I; Sarkadi, Balázs; Homolya, László; Marchetto, Maria C; Réthelyi, János M; Apáti, Ágota

    2018-04-01

    Pluripotent stem cell derived human neuronal progenitor cells (hPSC-NPCs) and their mature neuronal cell culture derivatives may efficiently be used for central nervous system (CNS) drug screening, including the investigation of ligand-induced calcium signalization. We have established hippocampal NPC cultures derived from human induced PSCs, which were previously generated by non-integrating Sendai virus reprogramming. Using established protocols these NPCs were differentiated into hippocampal dentate gyrus neurons. In order to study calcium signaling without the need of dye loading, we have stably expressed an advanced calcium indicator protein (GCaMP6fast) in the NPCs using the Sleeping Beauty transposon system. We observed no significant effects of the long-term GCaMP6 expression on NPC morphology, gene expression pattern or neural differentiation capacity. In order to compare the functional properties of GCaMP6-expressing neural cells and the corresponding parental cells loaded with calcium indicator dye Fluo-4, a detailed characterization of calcium signals was performed. We found that the calcium signals induced by ATP, glutamate, LPA, or proteases - were similar in these two systems. Moreover, the presence of the calcium indicator protein allowed for a sensitive, repeatable detection of changes in calcium signaling during the process of neurogenesis and neuronal maturation. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling.

    Directory of Open Access Journals (Sweden)

    Michael P Grant

    Full Text Available Calcium sensing receptors (CaSR interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium.

  17. Cross-talk between signaling pathways can generate robust oscillations in calcium and cAMP.

    Directory of Open Access Journals (Sweden)

    Fernando Siso-Nadal

    Full Text Available BACKGROUND: To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate 'bursting' oscillations of calcium and may enable better filtering of noise. CONCLUSION: We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists.

  18. The use of flow cytometry to examine calcium signalling by TRPV1 in mixed cell populations.

    Science.gov (United States)

    Assas, Bakri M; Abdulaal, Wesam H; Wakid, Majed H; Zakai, Haytham A; Miyan, J; Pennock, J L

    2017-06-15

    Flow cytometric analysis of calcium mobilisation has been in use for many years in the study of specific receptor engagement or isolated cell:cell communication. However, calcium mobilisation/signaling is key to many cell functions including apoptosis, mobility and immune responses. Here we combine multiplex surface staining of whole spleen with Indo-1 AM to visualise calcium mobilisation and examine calcium signaling in a mixed immune cell culture over time. We demonstrate responses to a TRPV1 agonist in distinct cell subtypes without the need for cell separation. Multi parameter staining alongside Indo-1 AM to demonstrate calcium mobilization allows the study of real time calcium signaling in a complex environment. Copyright © 2017. Published by Elsevier Inc.

  19. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  20. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  1. A novel interaction between calcium-modulating cyclophilin ligand and Basigin regulates calcium signaling and matrix metalloproteinase activities in human melanoma cells.

    Science.gov (United States)

    Long, Tingting; Su, Juan; Tang, Wen; Luo, Zhongling; Liu, Shuang; Liu, Zhaoqian; Zhou, Honghao; Qi, Min; Zeng, Weiqi; Zhang, Jianglin; Chen, Xiang

    2013-10-01

    Intracellular free calcium is a ubiquitous second messenger regulating a multitude of normal and pathogenic cellular responses, including the development of melanoma. Upstream signaling pathways regulating the intracellular free calcium concentration ([Ca2+]i) may therefore have a significant impact on melanoma growth and metastasis. In this study, we demonstrate that the endoplasmic reticulum (ER)-associated protein calcium-modulating cyclophilin ligand (CAML) is bound to Basigin, a widely expressed integral plasma membrane glycoprotein and extracellular matrix metalloproteinase inducer (EMMPRIN, or CD147) implicated in melanoma proliferation, invasiveness, and metastasis. This interaction between CAML and Basigin was first identified using yeast two-hybrid screening and further confirmed by co-immunoprecipitation. In human A375 melanoma cells, CAML and Basigin were co-localized to the ER. Knockdown of Basigin in melanoma cells by siRNA significantly decreased resting [Ca2+]i and the [Ca2+]i increase induced by the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin (TG), indicating that the interaction between CAML and Basigin regulates ER-dependent [Ca2+]i signaling. Meanwhile upregulating the [Ca2+]i either by TG or phorbol myristate acetate (PMA) could stimulate the production of MMP-9 in A375 cells with the expression of Basigin. Our study has revealed a previously uncharacterized [Ca2+]i signaling pathway that may control melanoma invasion, and metastasis. Disruption of this pathway may be a novel therapeutic strategy for melanoma treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Angiotensin II induces calcium/calcineurin signaling and podocyte injury by downregulating microRNA-30 family members.

    Science.gov (United States)

    Zhao, Yue; Wu, Junnan; Zhang, Mingchao; Zhou, Minlin; Xu, Feng; Zhu, Xiaodong; Zhou, Xianguang; Lang, Yue; Yang, Fan; Yun, Shifeng; Shi, Shaolin; Liu, Zhihong

    2017-08-01

    Angiotensin II (AngII) is capable of inducing calcium/calcineurin signaling and podocyte injury; however, the precise underlying mechanism is not well understood. Because we have previously demonstrated that microRNA-30s (miR-30s) inhibit calcium/calcineurin signaling in podocytes, we hypothesize that AngII may induce podocyte injury by downregulating miR-30s and thereby activating calcium/calcineurin signaling. To test this hypothesis, we used an AngII-induced podocyte injury mouse model. The mice were treated with AngII via infusion for 28 days, which resulted in hypertension, albuminuria, and glomerular damage. AngII treatment also resulted in a significant reduction of miR-30s and upregulation of calcium/calcineurin signaling components, including TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3, which are the known targets of miR-30s in podocytes. The delivery of miR-30a-expressing lentivirus to the podocytes on day 14 of the infusion ameliorated the AngII-induced podocyte and glomerular injury and attenuated the upregulation of the calcium/calcineurin signaling components. Similarly, treatment with losartan, which is an AngII receptor blocker, also prevented AngII-induced podocyte injury and calcium/calcineurin signaling activation. Notably, losartan was found to sustain miR-30 levels during AngII treatment both in vivo and in vitro. In conclusion, the effect of AngII on podocytes is in part mediated by miR-30s through calcium/calcineurin signaling, a novel mechanism underlying AngII-induced podocyte injury. • AngII infusion resulted in downregulation of miR-30s in podocytes. • Exogenous miR-30a delivery mitigated the glomerular and podocyte injuries induced by AngII. • Both miR-30a and losartan prevented AngII-induced activation of calcium-calcineurin signaling.

  3. Divergent calcium signaling in RBCs from Tropidurus torquatus (Squamata – Tropiduridae strengthen classification in lizard evolution

    Directory of Open Access Journals (Sweden)

    Garcia Célia RS

    2007-08-01

    Full Text Available Abstract Background We have previously reported that a Teiid lizard red blood cells (RBCs such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Results Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. Conclusion T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs, for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracelullar medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.

  4. Intercellular calcium signaling is regulated by morphogens during Drosophila wing development

    OpenAIRE

    Chen, Danny; Levis, Megan; Arredondo-Walsh, Ninfamaria; Zartman, Jeremiah; Brodskiy, Pavel; Wu, Qinfeng; Huizar, Francisco; Soundarrajan, Dharsan; Narciso, Cody; Chen, Jianxu; Liang, Peixian

    2017-01-01

    Organ development is driven by a set of patterned inductive signals. However, how these signals are integrated to coordinate tissue patterning is still poorly understood. Calcium ions (Ca2+) are critical signaling components involved in signal integration and are regulated by a core Ca2+ signaling toolkit. Ca2+ signaling encodes a significant fraction of information in cells through both amplitude and frequency-dependent regulation of transcription factors and key regulatory enzymes. A range ...

  5. Composite mathematical modeling of calcium signaling behind neuronal cell death in Alzheimer's disease.

    Science.gov (United States)

    Ranjan, Bobby; Chong, Ket Hing; Zheng, Jie

    2018-04-11

    Alzheimer's disease (AD) is a progressive neurological disorder, recognized as the most common cause of dementia affecting people aged 65 and above. AD is characterized by an increase in amyloid metabolism, and by the misfolding and deposition of β-amyloid oligomers in and around neurons in the brain. These processes remodel the calcium signaling mechanism in neurons, leading to cell death via apoptosis. Despite accumulating knowledge about the biological processes underlying AD, mathematical models to date are restricted to depicting only a small portion of the pathology. Here, we integrated multiple mathematical models to analyze and understand the relationship among amyloid depositions, calcium signaling and mitochondrial permeability transition pore (PTP) related cell apoptosis in AD. The model was used to simulate calcium dynamics in the absence and presence of AD. In the absence of AD, i.e. without β-amyloid deposition, mitochondrial and cytosolic calcium level remains in the low resting concentration. However, our in silico simulation of the presence of AD with the β-amyloid deposition, shows an increase in the entry of calcium ions into the cell and dysregulation of Ca 2+ channel receptors on the Endoplasmic Reticulum. This composite model enabled us to make simulation that is not possible to measure experimentally. Our mathematical model depicting the mechanisms affecting calcium signaling in neurons can help understand AD at the systems level and has potential for diagnostic and therapeutic applications.

  6. The control of calcium signaling in the heart

    African Journals Online (AJOL)

    Dr Olaleye Samuel

    130 years later one can still admire the mind that, having discovered that the previous year's result was not reproducible, realized that the problem was due to a contaminant and then correctly identified calcium as the culprit. Several other things are worth noting in this anecdote. (1) Ringer's exhaustive work provided the.

  7. The Acid Test: Calcium Signaling in the Skeletogenic Layer of Reef-Building Coral

    Science.gov (United States)

    Florn, A. M.

    2016-02-01

    Since the Industrial Revolution, carbon dioxide (CO2) emissions have increased more than 40%. This increased atmospheric CO2 drives ocean acidification and has potentially serious consequences for all marine life, especially calcifying organisms. The specific goal of this study was to examine calcium homeostasis and signaling dynamics within the skeletogenic tissue layers (calicodermal cells) of two coral species (Pavona maldivensis and Porites rus) at three pH treatments corresponding to present-future ocean acidification levels. Confocal microscopy techniques were used to analyze in vivo calcium dynamics of the calicodermal cells in Pavona maldivensis and Porites rus. The results show biological variation between the two reef-building coral species and their response to ocean acidification. Pavona maldivensis showed a significant difference (p < 0.01) in the ionomycin-induced calcium response among the pH treatments, but not among the microcolonies. Porites rus did not show a significant difference (p < 0.01) in the ionomycin-induced calcium response among the pH treatments or the microcolonies. Upon comparing the calcium response curves, the ionomycin-induced calcium response exhibited by Pavona maldivensis is phenomenologically similar to a calcium response that is commonly found in vertebrates. This well-studied phenomenon in vertebrate biology is known as store-operated calcium entry (SOCE) and is closely associated with the endoplasmic reticulum (ER) and mitochondria-associated endoplasmic reticulum (MAM) calcium stores. This study provides insight into the preliminary steps needed to understand in vivo calcium signaling in the calicodermis of reef-building coral and the associated consequences of ocean acidification.

  8. Calcium efflux systems in stress signalling and adaptation in plants

    Directory of Open Access Journals (Sweden)

    Jayakumar eBose

    2011-12-01

    Full Text Available Transient cytosolic calcium ([Ca2+]cyt elevation is an ubiquitous denominator of the signalling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium signature that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms in shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signalling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analysed in detail. The spatial and temporal organisation of calcium signalling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarised. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modelled by using a four-component model (plasma- and endo- membrane-based Ca2+-permeable channels and efflux systems taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasising the crucial role these active efflux systems play in plant adaptive responses to environment.

  9. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    Science.gov (United States)

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  10. Filamin and phospholipase C-ε are required for calcium signaling in the Caenorhabditis elegans spermatheca.

    Directory of Open Access Journals (Sweden)

    Ismar Kovacevic

    2013-05-01

    Full Text Available The Caenorhabditis elegans spermatheca is a myoepithelial tube that stores sperm and undergoes cycles of stretching and constriction as oocytes enter, are fertilized, and exit into the uterus. FLN-1/filamin, a stretch-sensitive structural and signaling scaffold, and PLC-1/phospholipase C-ε, an enzyme that generates the second messenger IP3, are required for embryos to exit normally after fertilization. Using GCaMP, a genetically encoded calcium indicator, we show that entry of an oocyte into the spermatheca initiates a distinctive series of IP3-dependent calcium oscillations that propagate across the tissue via gap junctions and lead to constriction of the spermatheca. PLC-1 is required for the calcium release mechanism triggered by oocyte entry, and FLN-1 is required for timely initiation of the calcium oscillations. INX-12, a gap junction subunit, coordinates propagation of the calcium transients across the spermatheca. Gain-of-function mutations in ITR-1/IP3R, an IP3-dependent calcium channel, and loss-of-function mutations in LFE-2, a negative regulator of IP3 signaling, increase calcium release and suppress the exit defect in filamin-deficient animals. We further demonstrate that a regulatory cassette consisting of MEL-11/myosin phosphatase and NMY-1/non-muscle myosin is required for coordinated contraction of the spermatheca. In summary, this study answers long-standing questions concerning calcium signaling dynamics in the C. elegans spermatheca and suggests FLN-1 is needed in response to oocyte entry to trigger calcium release and coordinated contraction of the spermathecal tissue.

  11. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting...... in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal...... of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx...

  12. The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans.

    Directory of Open Access Journals (Sweden)

    Yi-Wen Hsieh

    Full Text Available The Caenorhabditis elegans left and right AWC olfactory neurons communicate to establish stochastic asymmetric identities, AWC(ON and AWC(OFF, by inhibiting a calcium-mediated signaling pathway in the future AWC(ON cell. NSY-4/claudin-like protein and NSY-5/innexin gap junction protein are the two parallel signals that antagonize the calcium signaling pathway to induce the AWC(ON fate. However, it is not known how the calcium signaling pathway is downregulated by nsy-4 and nsy-5 in the AWC(ON cell. Here we identify a microRNA, mir-71, that represses the TIR-1/Sarm1 adaptor protein in the calcium signaling pathway to promote the AWC(ON identity. Similar to tir-1 loss-of-function mutants, overexpression of mir-71 generates two AWC(ON neurons. tir-1 expression is downregulated through its 3' UTR in AWC(ON, in which mir-71 is expressed at a higher level than in AWC(OFF. In addition, mir-71 is sufficient to inhibit tir-1 expression in AWC through the mir-71 complementary site in the tir-1 3' UTR. Our genetic studies suggest that mir-71 acts downstream of nsy-4 and nsy-5 to promote the AWC(ON identity in a cell autonomous manner. Furthermore, the stability of mature mir-71 is dependent on nsy-4 and nsy-5. Together, these results provide insight into the mechanism by which nsy-4 and nsy-5 inhibit calcium signaling to establish stochastic asymmetric AWC differentiation.

  13. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR are associated with increased ER to cytosol calcium gradient.

    Directory of Open Access Journals (Sweden)

    Marianna Ranieri

    Full Text Available In humans, gain-of-function mutations of the calcium-sensing receptor (CASR gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA and reducing expression of Plasma Membrane Calcium-ATPase (PMCA. Wild-type CaSR (hCaSR-wt and its gain-of-function (hCaSR-R990G; hCaSR-N124K variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate receptor inputs to cell function.

  14. Regulation of cardiomyocyte autophagy by calcium.

    Science.gov (United States)

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio

    2016-04-15

    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy. Copyright © 2016 the American Physiological Society.

  15. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells

    International Nuclear Information System (INIS)

    Chubinskiy-Nadezhdin, Vladislav I.; Vasileva, Valeria Y.; Pugovkina, Natalia A.; Vassilieva, Irina O.; Morachevskaya, Elena A.; Nikolsky, Nikolay N.; Negulyaev, Yuri A.

    2017-01-01

    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca 2+ entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca 2+ -sensitive BK and SK channels was shown. • Local Ca 2+ influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca 2+ ] i . • Functional clustering of SACs and BK channels in stem cell membrane is proposed.

  16. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    Science.gov (United States)

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  17. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora

    2012-01-01

    calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration......, and this effect was inhibited in GPRC6A(-/-) mice. Our results demonstrate that G-protein-coupled receptors can activate the inflammasome, and indicate that increased extracellular calcium has a role as a danger signal and amplifier of inflammation....

  18. Calcium homeostasis and signaling in fungi and their relevance for pathogenicity of yeasts and filamentous fungi

    Directory of Open Access Journals (Sweden)

    Renata Tisi

    2016-09-01

    Full Text Available Though fungi show peculiarities in the purposes and specific traits of calcium signaling pathways, the general scheme and the most important players are well conserved if compared to higher eukaryotes. This provides a powerful opportunity either to investigate shared features using yeast as a model or to exploit fungal specificities as potential targets for antifungal therapies. The sequenced genomes from yeast Saccharomyces cerevisiae, Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa were already published more than ten years ago. More recently the genome sequences of filamentous fungi of Aspergillus genus, some of which threatening pathogens, and dimorphic fungi Ustilago maydis were published, giving the chance to identify several proteins involved in calcium signaling based on their homology to yeast or mammalian counterparts. Nonetheless, unidentified calcium transporters are still present in these organisms which await to be molecularly characterized. Despite the relative simplicity in yeast calcium machinery and the availability of sophisticated molecular tools, in the last years, a number of new actors have been identified, albeit not yet fully characterized. This review will try to describe the state of the art in calcium channels and calcium signaling knowledge in yeast, with particular attention to the relevance of this knowledge with respect to pathological fungi.

  19. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells

    Science.gov (United States)

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-01-01

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 PMID:26192964

  20. The impact of mitochondrial endosymbiosis on the evolution of calcium signaling.

    Science.gov (United States)

    Blackstone, Neil W

    2015-03-01

    At high concentrations, calcium has detrimental effects on biological systems. Life likely arose in a low calcium environment, and the first cells evolved mechanisms to maintain this environment internally. Bursts of calcium influx followed by efflux or sequestration thus developed in a functional context. For example, in proto-cells with exterior energy-converting membranes, such bursts could be used to depolarize the membrane. In this way, proto-cells could maintain maximal phosphorylation (metabolic state 3) and moderate levels of reactive oxygen species (ROS), while avoiding the resting state (metabolic state 4) and high levels of ROS. This trait is likely a shared primitive characteristic of prokaryotes. When eukaryotes evolved, the α-proteobacteria that gave rise to proto-mitochondria inhabited a novel environment, the interior of the proto-eukaryote that had a low calcium concentration. In this environment, metabolic homeostasis was difficult to maintain, and there were inherent risks from ROS, yet depolarizing the proto-mitochondrial membrane by calcium influx was challenging. To maintain metabolic state 3, proto-mitochondria were required to congregate near calcium influx points in the proto-eukaryotic membrane. This behavior, resulting in embryonic forms of calcium signaling, may have occurred immediately after the initiation of the endosymbiosis. Along with ROS, calcium may have served as one of the key forms of crosstalk among the community of prokaryotes that led to the eukaryotic cell. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    Energy Technology Data Exchange (ETDEWEB)

    Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l' Exercice en conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171 Aubière cedex (France); Fabre, O.; Bordenave, S. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Hillaire-Buys, D. [CHRU Montpellier, 34295 Montpellier (France); Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France)

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  2. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    International Nuclear Information System (INIS)

    Sirvent, P.; Fabre, O.; Bordenave, S.; Hillaire-Buys, D.; Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J.

    2012-01-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  3. Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling.

    Science.gov (United States)

    Dickson, Eamonn J; Falkenburger, Björn H; Hille, Bertil

    2013-05-01

    Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5'-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition.

  4. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser

    Science.gov (United States)

    Zhao, Yuan; Zhang, Yuan; Zhou, Wei; Liu, Xiuli; Zeng, Shaoqun; Luo, Qingming

    2010-05-01

    Astrocytes have been identified to actively contribute to brain functions through Ca2+ signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca2+) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca2+ signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca2+ wave throughout the network with reduced speed is induced, and intracellular Ca2+ oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P2Y receptors. Different patterns of Ca2+ elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca2+ signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca2+ signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.

  5. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    Science.gov (United States)

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  6. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    Science.gov (United States)

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  7. Calcium: the molecular basis of calcium action in biology and medicine

    National Research Council Canada - National Science Library

    Pochet, Roland; Donato, Rosario

    2000-01-01

    ... of Calcium Calcium Signalling in Excitable Cells Ca2+ Release in Muscle Cells by N. Macrez and J. Mironneau Calcium Signalling in Neurons Exemplified by Rat Sympathetic Ganglion Cells by S.J. M...

  8. Association of CD147 and Calcium Exporter PMCA4 Uncouples IL-2 Expression from Early TCR Signaling.

    Science.gov (United States)

    Supper, Verena; Schiller, Herbert B; Paster, Wolfgang; Forster, Florian; Boulègue, Cyril; Mitulovic, Goran; Leksa, Vladimir; Ohradanova-Repic, Anna; Machacek, Christian; Schatzlmaier, Philipp; Zlabinger, Gerhard J; Stockinger, Hannes

    2016-02-01

    The Ig superfamily member CD147 is upregulated following T cell activation and was shown to serve as a negative regulator of T cell proliferation. Thus, Abs targeting CD147 are being tested as new treatment strategies for cancer and autoimmune diseases. How CD147 mediates immunosuppression and whether association with other coreceptor complexes is needed have remained unknown. In the current study, we show that silencing of CD147 in human T cells increases IL-2 production without affecting the TCR proximal signaling components. We mapped the immunosuppressive moieties of CD147 to its transmembrane domain and Ig-like domain II. Using affinity purification combined with mass spectrometry, we determined the domain specificity of CD147 interaction partners and identified the calcium exporter plasma membrane calcium ATPase isoform 4 (PMCA4) as the interaction partner of the immunosuppressive moieties of CD147. CD147 does not control the proper membrane localization of PMCA4, but PMCA4 is essential for the CD147-dependent inhibition of IL-2 expression via a calcium-independent mechanism. In summary, our data show that CD147 interacts via its immunomodulatory domains with PMCA4 to bypass TCR proximal signaling and inhibit IL-2 expression. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  10. Moringa oleifera-rich diet and T cell calcium signaling in spontaneously hypertensive rats.

    Science.gov (United States)

    Attakpa, E S; Bertin, G A; Chabi, N W; Ategbo, J-M; Seri, B; Khan, N A

    2017-11-24

    Moringa oleifera is a plant whose fruits, roots and leaves have been advocated for traditional medicinal uses. The physicochemical analysis shows that Moringa oleifera contains more dietary polyunsaturated fatty acids (PUFA) than saturated fatty acids (SFA). The consumption of an experimental diet enriched with Moringa oleifera extracts lowered blood pressure in spontaneously hypertensive rats (SHR), but not in normotensive Wistar-Kyoto (WKY) rats as compared to rats fed an unsupplemented control diet. Anti-CD3-stimulated T cell proliferation was diminished in both strains of rats fed the Moringa oleifera. The experimental diet lowered secretion of interleukin-2 in SHR, but not in WKY rats compared with rats fed the control diet. Studies of platelets from patients with primary hypertension and from SHR support the notion that the concentration of intracellular free calcium [Ca(2+)](i) is modified in both clinical and experimental hypertension. We observed that the basal, [Ca(2+)](i) was lower in T cells of SHR than in those of WKY rats fed the control diet. Feeding the diet with Moringa oleifera extracts to WKY rats did not alter basal [Ca(2+)](i) in T cells but increased basal [Ca(2+)](i) in SHR. Our study clearly demonstrated that Moringa oleifera exerts antihypertensive effects by inhibiting the secretion of IL-2 and modulates T cell calcium signaling in hypertensive rats.

  11. Calcium Signalling in Plant Biotic Interactions

    Directory of Open Access Journals (Sweden)

    Didier Aldon

    2018-02-01

    Full Text Available Calcium (Ca2+ is a universal second messenger involved in various cellular processes, leading to plant development and to biotic and abiotic stress responses. Intracellular variation in free Ca2+ concentration is among the earliest events following the plant perception of environmental change. These Ca2+ variations differ in their spatio-temporal properties according to the nature, strength and duration of the stimulus. However, their conversion into biological responses requires Ca2+ sensors for decoding and relaying. The occurrence in plants of calmodulin (CaM but also of other sets of plant-specific Ca2+ sensors such as calmodulin-like proteins (CMLs, Ca2+-dependent protein kinases (CDPKs and calcineurin B-like proteins (CBLs indicate that plants possess specific tools and machineries to convert Ca2+ signals into appropriate responses. Here, we focus on recent progress made in monitoring the generation of Ca2+ signals at the whole plant or cell level and their long distance propagation during biotic interactions. The contribution of CaM/CMLs and CDPKs in plant immune responses mounted against bacteria, fungi, viruses and insects are also presented.

  12. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R; Henriksen, Zanne; Sørensen, Ole

    2002-01-01

    that human osteoclasts expressed functional P2Y1 receptors, but, unexpectedly, desensitization of P2Y1 did not block calcium signaling to osteoclasts. We also found that osteoclasts expressed functional P2X7 receptors and showed that pharmacological inhibition of these receptors blocked calcium signaling...

  13. Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Vázquez-Chávez, Elena; Lasserre, Rémi; Agüera-González, Sonia; Cuche, Céline; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2017-04-01

    The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  15. Store-Operated Calcium Entries Control Neural Stem Cell Self-Renewal in the Adult Brain Subventricular Zone.

    Science.gov (United States)

    Domenichini, Florence; Terrié, Elodie; Arnault, Patricia; Harnois, Thomas; Magaud, Christophe; Bois, Patrick; Constantin, Bruno; Coronas, Valérie

    2018-05-01

    The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774. © AlphaMed Press 2018.

  16. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling.

    Science.gov (United States)

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I

    2015-08-03

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na(+)/Ca(2+) exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.

  17. Why Calcium? How Calcium Became the Best Communicator*

    Science.gov (United States)

    Carafoli, Ernesto; Krebs, Joachim

    2016-01-01

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these “calcium sensors” are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. PMID:27462077

  18. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Wuwu Xu

    2017-11-01

    Full Text Available Calcium-dependent protein kinases (CPKs/CDPKs are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner in which CDPKs participate in phytohormone signaling pathways, regulating nearly all aspects of plant growth, has not yet been undertaken. In this article, we reviewed the structure of CDPKs and the mechanism of their subcellular localization. Some CDPKs were elucidated to influence the intracellular localization of their substrates. Since little work has been done on the interaction between CDPKs and cytokinin signaling pathways, or on newly defined phytohormones such as brassinosteroids, strigolactones and salicylic acid, this paper mainly focused on discussing the integral associations between CDPKs and five plant hormones: auxins, gibberellins, ethylene, jasmonates, and abscisic acid. A perspective on future work is provided at the end.

  19. Control of local intracellular calcium concentration with dynamic-clamp controlled 2-photon uncaging.

    Directory of Open Access Journals (Sweden)

    Erwin Idoux

    Full Text Available The variations of the intracellular concentration of calcium ion ([Ca(2+](i are at the heart of intracellular signaling, and their imaging is therefore of enormous interest. However, passive [Ca(2+](i imaging provides no control over these variations, meaning that a full exploration of the functional consequences of [Ca(2+](i changes is difficult to attain. The tools designed so far to modify [Ca(2+](i, even qualitatively, suffer drawbacks that undermine their widespread use. Here, we describe an electro-optical technique to quantitatively set [Ca(2+](i, in real time and with sub-cellular resolution, using two-photon Ca(2+ uncaging and dynamic-clamp. We experimentally demonstrate, on neurons from acute olfactory bulb slices of Long Evans rats, various capabilities of this technique previously difficult to achieve, such as the independent control of the membrane potential and [Ca(2+](i variations, the functional knocking-in of user-defined virtual voltage-dependent Ca(2+ channels, and the standardization of [Ca(2+](i patterns across different cells. Our goal is to lay the groundwork for this technique and establish it as a new and versatile tool for the study of cell signaling.

  20. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Yajin Liao

    2017-02-01

    Full Text Available The mitochondrial calcium uniporter (MCU—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP; however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders.

  1. Why Calcium? How Calcium Became the Best Communicator.

    Science.gov (United States)

    Carafoli, Ernesto; Krebs, Joachim

    2016-09-30

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Cytoplasmic organelles determine complexity and specificity of calcium signalling in adrenal chromaffin cells

    Czech Academy of Sciences Publication Activity Database

    Garsia-Sancho, J.; Verkhratsky, Alexei

    2008-01-01

    Roč. 192, č. 2 (2008), s. 263-271 ISSN 1748-1708 Institutional research plan: CEZ:AV0Z50390512 Keywords : Ca2+ signalling * calcium microdomains * chromaffin cells Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 2.455, year: 2008

  3. Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)

    Science.gov (United States)

    Sergé, Arnauld; Bernard, Anne-Marie; Phélipot, Marie-Claire; Bertaux, Nicolas; Fallet, Mathieu; Grenot, Pierre; Marguet, Didier; He, Hai-Tao; Hamon, Yannick

    2013-01-01

    We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. PMID:24086124

  4. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    Energy Technology Data Exchange (ETDEWEB)

    Schaal, Courtney [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States); Padmanabhan, Jaya [Department of Molecular Medicine and USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave., Tampa, FL 33612 (United States); Chellappan, Srikumar, E-mail: Srikumar.Chellappan@moffitt.org [Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 (United States)

    2015-07-31

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer.

  5. The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression

    International Nuclear Information System (INIS)

    Schaal, Courtney; Padmanabhan, Jaya; Chellappan, Srikumar

    2015-01-01

    Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer

  6. Bruton's tyrosine kinase is essential for hydrogen peroxide-induced calcium signaling.

    Science.gov (United States)

    Qin, S; Chock, P B

    2001-07-10

    Using Btk-deficient DT40 cells and the transfectants expressing wild-type Btk or Btk mutants in either kinase (Arg(525) to Gln), Src homology 2 (SH2, Arg(307) to Ala), or pleckstrin homology (PH, Arg(28) to Cys) domains, we investigated the roles and structure-function relationships of Btk in hydrogen peroxide-induced calcium mobilization. Our genetic evidence showed that Btk deficiency resulted in a significant reduction in hydrogen peroxide-induced calcium response. This impaired calcium signaling is correlated with the complete elimination of IP3 production and the significantly reduced tyrosine phosphorylation of PLCgamma2 in Btk-deficient DT40 cells. All of these defects were fully restored by the expression of wild-type Btk in Btk-deficient DT40 cells. The data from the point mutation study revealed that a defect at any one of the three functional domains would prevent a full recovery of Btk-mediated hydrogen peroxide-induced intracellular calcium mobilization. However, mutation at either the SH2 or PH domain did not affect the hydrogen peroxide-induced activation of Btk. Mutation at the SH2 domain abrogates both IP3 generation and calcium release, while the mutant with the nonfunctional PH domain can partially activate PLCgamma2 and catalyze IP3 production but fails to produce significant calcium mobilization. Thus, these observations suggest that Btk-dependent tyrosine phosphorylation of PLCgamma2 is required but not sufficient for hydrogen peroxide-induced calcium mobilization. Furthermore, hydrogen peroxide stimulates a Syk-, but not Btk-, dependent tyrosine phosphorylation of B cell linker protein BLNK. The overall results, together with those reported earlier [Qin et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 7118], are consistent with the notion that functional SH2 and PH domains are required for Btk to form a complex with PLCgamma2 through BLNK in order to position the Btk, PLCgamma2, and phosphatidylinositol 4,5-bisphosphate in close proximity for

  7. Calcium-phosphate-osteopontin particles for caries control

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Birkedal, Henrik; Olsen, Jakob

    2016-01-01

    Caries is caused by acid production in biofilms on dental surfaces. Preventing caries therefore involves control of microorganisms and/or the acid produced. Here, calcium-phosphate-osteopontin particles are presented as a new approach to caries control. The particles are made by co......-precipitation and designed to bind to bacteria in biofilms, impede biofilm build-up without killing the microflora, and release phosphate ions to buffer bacterial acid production if the pH decreases below 6. Analysis of biofilm formation and pH in a five-species biofilm model for dental caries showed that treatment......H always remained above 5.5. Hence, calcium-phosphate-osteopontin particles show potential for applications in caries control....

  8. The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects.

    LENUS (Irish Health Repository)

    Lyng, F M

    2006-04-01

    Much evidence now exists regarding radiation-induced bystander effects, but the mechanisms involved in the transduction of the signal are still unclear. The mitogen-activated protein kinase (MAPK) pathways have been linked to growth factor-mediated regulation of cellular events such as proliferation, senescence, differentiation and apoptosis. Activation of multiple MAPK pathways such as the ERK, JNK and p38 pathways have been shown to occur after exposure of cells to radiation and a variety of other toxic stresses. Previous studies have shown oxidative stress and calcium signaling to be important in radiation-induced bystander effects. The aim of the present study was to investigate MAPK signaling pathways in bystander cells exposed to irradiated cell conditioned medium (ICCM) and the role of oxidative metabolism and calcium signaling in the induction of bystander responses. Human keratinocytes (HPV-G cell line) were irradiated (0.005-5 Gy) using a cobalt-60 teletherapy unit. The medium was harvested 1 h postirradiation and transferred to recipient HPV-G cells. Phosphorylated forms of p38, JNK and ERK were studied by immunofluorescence 30 min-24 h after exposure to ICCM. Inhibitors of the ERK pathway (PD98059 and U0126), the JNK pathway (SP600125), and the p38 pathway (SB203580) were used to investigate whether bystander-induced cell death could be blocked. Cells were also incubated with ICCM in the presence of superoxide dismutase, catalase, EGTA, verapamil, nifedipine and thapsigargin to investigate whether bystander effects could be inhibited because of the known effects on calcium homeostasis. Activated forms of JNK and ERK proteins were observed after exposure to ICCM. Inhibition of the ERK pathway appeared to increase bystander-induced apoptosis, while inhibition of the JNK pathway appeared to decrease apoptosis. In addition, reactive oxygen species, such as superoxide and hydrogen peroxide, and calcium signaling were found to be important modulators of

  9. Atorvastatin calcium inhibits phenotypic modulation of PDGF-BB-induced VSMCs via down-regulation the Akt signaling pathway.

    Science.gov (United States)

    Chen, Shuang; Liu, Baoqin; Kong, Dehui; Li, Si; Li, Chao; Wang, Huaqin; Sun, Yingxian

    2015-01-01

    Plasticity of vascular smooth muscle cells (VSMCs) plays a central role in the onset and progression of proliferative vascular diseases. In adult tissue, VSMCs exist in a physiological contractile-quiescent phenotype, which is defined by lack of the ability of proliferation and migration, while high expression of contractile marker proteins. After injury to the vessel, VSMC shifts from a contractile phenotype to a pathological synthetic phenotype, associated with increased proliferation, migration and matrix secretion. It has been demonstrated that PDGF-BB is a critical mediator of VSMCs phenotypic switch. Atorvastatin calcium, a selective inhibitor of 3-hydroxy-3-methyl-glutaryl l coenzyme A (HMG-CoA) reductase, exhibits various protective effects against VSMCs. In this study, we investigated the effects of atorvastatin calcium on phenotype modulation of PDGF-BB-induced VSMCs and the related intracellular signal transduction pathways. Treatment of VSMCs with atorvastatin calcium showed dose-dependent inhibition of PDGF-BB-induced proliferation. Atorvastatin calcium co-treatment inhibited the phenotype modulation and cytoskeleton rearrangements and improved the expression of contractile phenotype marker proteins such as α-SM actin, SM22α and calponin in comparison with PDGF-BB alone stimulated VSMCs. Although Akt phosphorylation was strongly elicited by PDGF-BB, Akt activation was attenuated when PDGF-BB was co-administrated with atorvastatin calcium. In conclusion, atorvastatin calcium inhibits phenotype modulation of PDGF-BB-induced VSMCs and activation of the Akt signaling pathway, indicating that Akt might play a vital role in the modulation of phenotype.

  10. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks

    DEFF Research Database (Denmark)

    Postnov, D.E.; Koreshkov, R.N.; Brazhe, N.A.

    2009-01-01

    We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission...... in astrocytic-neuronal networks. We reproduce local and global dynamical patterns observed experimentally....

  11. Bcl-2 overexpression: effects on transmembrane calcium movement

    International Nuclear Information System (INIS)

    Rangaswami, Arun A.; Premack, Brett; Walleczek, Jan; Killoran, Pamela; Gardner, Phyllis; Knox, Susan J.

    1996-01-01

    Purpose/Objective: High levels of expression of the proto-oncogene bcl-2 and its 26 kD protein product Bcl-2 have been correlated with the inhibition of apoptosis and the increased resistance of tumor cells to cytotoxic drugs and ionizing radiation. Unfortunately, the specific mechanism of action of Bcl-2 remains poorly understood. In the studies described here, the role of intracellular calcium fluxes and plasma membrane calcium cycling in the induction of apoptosis, and the effect of Bcl-2 expression on the modulation of transmembrane calcium fluxes following treatment of cells with cytotoxic agents were studied. The relationship between intracellular calcium release, capacitive calcium entry, and the plasma membrane potential were also investigated. Materials and Methods: Human B-cell lymphoma (PW) and human promyelocytic leukemia (HL60) cell lines were transfected with Bcl-2 and a control vector. The Bcl-2 transfectants over expressed the Bcl-2 onco-protein and were more resistant to irradiation than the control cells. Cells were loaded with fluorescent indicators indo-1 and fura-2 AM to quantify the cytosolic calcium concentration and subsequent calcium responses to a variety of cytotoxic stimuli, including the microsomal ATPase inhibitor, thapsigargin, using fluorometric measurements. Comparisons of resting and stimulated cytosolic calcium concentrations were made between the parental, neomycin control, and bcl-2 transfected cells. In order to determine the actual calcium influx rate, cells were loaded with either indo-1 or fura-2 and then exposed to 0.1 mM extracellular manganese, which enters the cells through calcium influx channels and quenches the fluorescent signal in proportion to the calcium influx rate. In order to determine the role of the membrane potential in driving calcium influx, cells were treated with either 0.1 μM Valinomycin or isotonic potassium chloride to either hyper polarize or depolarize the resting membrane potential, and the

  12. Calcium-phosphate-osteopontin particles for caries control

    DEFF Research Database (Denmark)

    Schlafer, Sebastian

    Oftentimes caries lesions develop in protected sites that are difficult to access by self-performed mechanical tooth cleaning. At present, there is a growing interest in chemical adjuncts to mechanical procedures of oral hygiene that aim at biofilm control rather than biofilm eradication. Calcium......-phosphate-osteopontin particles are a new promising therapeutic approach to caries control. They are designed to bind to dental biofilms and interfere with biofilm build-up, lowering the bacterial burden on the tooth surface without affecting bacterial viability in the oral cavity. Moreover, they dissolve when pH in the biofilm...... drops to 6 or below and release buffering phosphate ions that stabilize biofilm pH above the critical level for enamel dissolution. With that twofold approach, calcium-phosphate-osteopontin particles may make a relevant contribution to clinical caries control....

  13. Signaling domain of Sonic Hedgehog as cannibalistic calcium-regulated zinc-peptidase.

    Directory of Open Access Journals (Sweden)

    Rocio Rebollido-Rios

    2014-07-01

    Full Text Available Sonic Hedgehog (Shh is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog, of which all members harbor a structurally well-defined Zn2+ center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double-Ca2+ center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1 a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2 a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on pH.

  14. Movement of calcium signals and calcium-binding proteins: firewalls, traps and tunnels.

    Science.gov (United States)

    Barrow, S L; Sherwood, M W; Dolman, N J; Gerasimenko, O V; Voronina, S G; Tepikin, A V

    2006-06-01

    In the board game 'Snakes and Ladders', placed on the image of a pancreatic acinar cell, calcium ions have to move from release sites in the secretory region to the nucleus. There is another important contraflow - from calcium entry channels in the basal part of the cell to ER (endoplasmic reticulum) terminals in the secretory granule region. Both transport routes are perilous as the messenger can disappear in any place on the game board. It can be grabbed by calcium ATPases of the ER (masquerading as a snake but functioning like a ladder) and tunnelled through its low buffering environment, it can be lured into the whirlpools of mitochondria uniporters and forced to regulate the tricarboxylic acid cycle, and it can be permanently placed inside the matrix of secretory granules and released only outside the cell. The organelles could trade calcium (e.g. from the ER to mitochondria and vice versa) almost depriving this ion the light of the cytosol and noble company of cytosolic calcium buffers. Altogether it is a rich and colourful story.

  15. Multiparameter imaging of calcium and abscisic acid and high-resolution quantitative calcium measurements using R-GECO1-mTurquoise in Arabidopsis.

    Science.gov (United States)

    Waadt, Rainer; Krebs, Melanie; Kudla, Jörg; Schumacher, Karin

    2017-10-01

    Calcium signals occur in specific spatio-temporal patterns in response to various stimuli and are coordinated with, for example, hormonal signals, for physiological and developmental adaptations. Quantification of calcium together with other signalling molecules is required for correlative analyses and to decipher downstream calcium-decoding mechanisms. Simultaneous in vivo imaging of calcium and abscisic acid has been performed here to investigate the interdependence of the respective signalling processes in Arabidopsis thaliana roots. Advanced ratiometric genetically encoded calcium indicators have been generated and in vivo calcium calibration protocols were established to determine absolute calcium concentration changes in response to auxin and ATP. In roots, abscisic acid induced long-term basal calcium concentration increases, while auxin triggered rapid signals in the elongation zone. The advanced ratiometric calcium indicator R-GECO1-mTurquoise exhibited an increased calcium signal resolution compared to commonly used Förster resonance energy transfer-based indicators. Quantitative calcium measurements in Arabidopsis root tips using R-GECO1-mTurquoise revealed detailed maps of absolute calcium concentration changes in response to auxin and ATP. Calcium calibration protocols using R-GECO1-mTurquoise enabled high-resolution quantitative imaging of resting cytosolic calcium concentrations and their dynamic changes that revealed distinct hormonal and ATP responses in roots. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Consumption of calcium-fortified cereal bars to improve dietary calcium intake of healthy women: randomized controlled feasibility study.

    Directory of Open Access Journals (Sweden)

    Jennifer T Lee

    Full Text Available Calcium is an important structural component of the skeletal system. Although an adequate intake of calcium helps to maintain bone health and reduce the risk of osteoporosis, many women do not meet recommended daily intakes of calcium. Previous interventions studies designed to increase dietary intake of women have utilized primarily dairy sources of calcium or supplements. However, lactose intolerance, milk protein allergies, or food preferences may lead many women to exclude important dairy sources of dietary calcium. Therefore, we undertook a 9 week randomized crossover design trial to examine the potential benefit of including a non-dairy source of calcium in the diet of women. Following a 3 week run-in baseline period, 35 healthy women > 18 years were randomized by crossover design into either Group I or Group II. Group I added 2 calcium-fortified cereal bars daily (total of 400 mg calcium/day (intervention to their usual diet and Group II continued their usual diet (control. At the end of 3 weeks, diets were switched for another 3 weeks. Intakes of calcium and energy were estimated from 3-day diet and supplemental diaries. Wilcoxon signed-rank tests were used for within group comparisons and Mann Whitney U tests were used for between group comparisons of calcium and energy intake. Dietary calcium was significantly higher during intervention (1071 mg/d when participants consumed 2 calcium-fortified cereal bars daily than during the baseline (720 mg/d, P <0.0001 or control diets (775 mg/d, P = 0.0001 periods. Furthermore, the addition of 2 calcium-fortified cereal bars daily for the 3 week intervention did not significantly increase total energy intake or result in weight gain. In conclusion, consumption of calcium-fortified cereal bars significantly increased calcium intake of women. Further research examining the potential ability of fortified cereal bars to help maintain and improve bone health of women is warranted.ClinicalTrials.gov NCT

  17. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2016-09-01

    Full Text Available Ca2+-sensing receptors (CaSRs play a central role in regulating extracellular calcium concentration ([Ca2+]o homeostasis and many (pathophysiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR’s cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.

  18. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre?

    Science.gov (United States)

    Pickard, B. G.; Ding, J. P.

    1993-01-01

    Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.

  19. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    Science.gov (United States)

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  20. Calcium signals and caspase-12 participated in paraoxon-induced apoptosis in EL4 cells.

    Science.gov (United States)

    Li, Lan; Cao, Zhiheng; Jia, Pengfei; Wang, Ziren

    2010-04-01

    In order to investigate whether calcium signals participate in paraoxon (POX)-induced apoptosis in EL4 cells, real-time laser scanning confocal microscopy (LSCM) was used to detect Ca(2+) changes during the POX application. Apoptotic rates of EL4 cells and caspase-12 expression were also evaluated. POX (1-10nM) increased intracellular calcium concentration ([Ca(2+)]i) in EL4 cells in a dose-dependent manner at early stage (0-2h) of POX application, and apoptotic rates of EL4 cells after treatment with POX for 16h were also increased in a dose-dependent manner. Pre-treatment with EGTA, heparin or procaine attenuated POX-induced [Ca(2+)]i elevation and apoptosis. Additionally, POX up-regulated caspase-12 expression in a dose-dependent manner, and pre-treatment with EGTA, heparin or procaine significantly inhibited POX-induced increase of caspase-12 expression. Our results suggested that POX induced [Ca(2+)]i elevation in EL4 cells at the early stage of POX-induced apoptosis, which might involve Ca(2+) efflux from the endoplasmic reticulum (ER) and Ca(2+) influx from extracellular medium. Calcium signals and caspase-12 were important upstream messengers in POX-induced apoptosis in EL4 cells. The ER-associated pathway possibly operated in this apoptosis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress.

    Science.gov (United States)

    Jayakumar, Siddharth; Hasan, Gaiti

    2018-01-01

    All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.

  2. Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour.

    Science.gov (United States)

    Vogel, David; Nicolis, Stamatios C; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J T; Dussutour, Audrey

    2015-11-22

    Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: 'slow-regular-social', 'fast-regular-social' and 'fast-irregular-asocial'. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms. © 2015 The Author(s).

  3. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-01-01

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  4. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    Science.gov (United States)

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  5. Two Dimensional Finite Element Model to Study Calcium Distribution in Oocytes

    Science.gov (United States)

    Naik, Parvaiz Ahmad; Pardasani, Kamal Raj

    2015-06-01

    Cytosolic free calcium concentration is a key regulatory factor and perhaps the most widely used means of controlling cellular function. Calcium can enter cells through different pathways which are activated by specific stimuli including membrane depolarization, chemical signals and calcium depletion of intracellular stores. One of the important components of oocyte maturation is differentiation of the Ca2+ signaling machinery which is essential for egg activation after fertilization. Eggs acquire the ability to produce the fertilization-specific calcium signal during oocyte maturation. The calcium concentration patterns required during different stages of oocyte maturation are still not completely known. Also the mechanisms involved in calcium dynamics in oocyte cell are still not well understood. In view of above a two dimensional FEM model has been proposed to study calcium distribution in an oocyte cell. The parameters such as buffers, ryanodine receptor, SERCA pump and voltage gated calcium channel are incorporated in the model. Based on the biophysical conditions the initial and boundary conditions have been framed. The model is transformed into variational form and Ritz finite element method has been employed to obtain the solution. A program has been developed in MATLAB 7.10 for the entire problem and executed to obtain numerical results. The numerical results have been used to study the effect of buffers, RyR, SERCA pump and VGCC on calcium distribution in an oocyte cell.

  6. Induced effect of Ca2+ on dalesconols A and B biosynthesis in the culture of Daldinia eschscholzii via calcium/calmodulin signaling.

    Science.gov (United States)

    Lu, Yanhua; Pan, Zhenghua; Tao, Jun; An, Faliang

    2018-02-01

    Dalesconols (dalesconols A and B) were isolated from Daldinia eschscholzii and have remarkable immunosuppressive activity. In this study, the response of fungal growth, intra- and extracellular Ca 2+ , and dalesconols production after CaCl 2 addition were reported for the first time. After supplementation with 5 mM Ca 2+ at 24 h, dalesconols production reached 84.33 mg/L, which resulted in a 1.57-fold enhancement compared to the control. The key role of calcium/calmodulin signaling in dalesconols biosynthesis was confirmed by treatment with Ca 2+ channel and calmodulin inhibitors. The transcriptional levels of dalesconols biosynthetic genes were up-regulated after CaCl 2 addition and down-regulated after inhibitors were added. The results demonstrated that Ca 2+ addition induces dalesconols biosynthesis through up-regulation of dalesconols biosynthesis genes via regulation of calcium/calmodulin signaling. This study provided an efficient strategy for improving dalesconols production and would facilitate further research on the biosynthesis and regulation of dalesconols. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    KAUST Repository

    Flegg, Mark B.; Rüdiger, Sten; Erban, Radek

    2013-01-01

    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While

  8. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes.

    Science.gov (United States)

    Samigullin, Dmitry; Fatikhov, Nijaz; Khaziev, Eduard; Skorinkin, Andrey; Nikolsky, Eugeny; Bukharaeva, Ellya

    2014-01-01

    At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers-which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal-has hitherto been technically impossible. With the aim of quantifying both Ca(2+) currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 pA and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 μM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  9. Herpes simplex virus triggers activation of calcium-signaling pathways

    Science.gov (United States)

    Cheshenko, Natalia; Del Rosario, Brian; Woda, Craig; Marcellino, Daniel; Satlin, Lisa M.; Herold, Betsy C.

    2003-01-01

    The cellular pathways required for herpes simplex virus (HSV) invasion have not been defined. To test the hypothesis that HSV entry triggers activation of Ca2+-signaling pathways, the effects on intracellular calcium concentration ([Ca2+]i) after exposure of cells to HSV were examined. Exposure to virus results in a rapid and transient increase in [Ca2+]i. Pretreatment of cells with pharmacological agents that block release of inositol 1,4,5-triphosphate (IP3)–sensitive endoplasmic reticulum stores abrogates the response. Moreover, treatment of cells with these pharmacological agents inhibits HSV infection and prevents focal adhesion kinase (FAK) phosphorylation, which occurs within 5 min after viral infection. Viruses deleted in glycoprotein L or glycoprotein D, which bind but do not penetrate, fail to induce a [Ca2+]i response or trigger FAK phosphorylation. Together, these results support a model for HSV infection that requires activation of IP3-responsive Ca2+-signaling pathways and that is associated with FAK phosphorylation. Defining the pathway of viral invasion may lead to new targets for anti-viral therapy. PMID:14568989

  10. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity.

    Science.gov (United States)

    Ozcan, Lale; Wong, Catherine C L; Li, Gang; Xu, Tao; Pajvani, Utpal; Park, Sung Kyu Robin; Wronska, Anetta; Chen, Bi-Xing; Marks, Andrew R; Fukamizu, Akiyoshi; Backs, Johannes; Singer, Harold A; Yates, John R; Accili, Domenico; Tabas, Ira

    2012-05-02

    Hepatic glucose production (HGP) is crucial for glucose homeostasis, but the underlying mechanisms have not been fully elucidated. Here, we show that a calcium-sensing enzyme, CaMKII, is activated in a calcium- and IP3R-dependent manner by cAMP and glucagon in primary hepatocytes and by glucagon and fasting in vivo. Genetic deficiency or inhibition of CaMKII blocks nuclear translocation of FoxO1 by affecting its phosphorylation, impairs fasting- and glucagon/cAMP-induced glycogenolysis and gluconeogenesis, and lowers blood glucose levels, while constitutively active CaMKII has the opposite effects. Importantly, the suppressive effect of CaMKII deficiency on glucose metabolism is abrogated by transduction with constitutively nuclear FoxO1, indicating that the effect of CaMKII deficiency requires nuclear exclusion of FoxO1. This same pathway is also involved in excessive HGP in the setting of obesity. These results reveal a calcium-mediated signaling pathway involved in FoxO1 nuclear localization and hepatic glucose homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*

    Science.gov (United States)

    Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-01-01

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212

  12. Intracellular calcium homeostasis and signaling.

    Science.gov (United States)

    Brini, Marisa; Calì, Tito; Ottolini, Denis; Carafoli, Ernesto

    2013-01-01

    Ca(2+) is a universal carrier of biological information: it controls cell life from its origin at fertilization to its end in the process of programmed cell death. Ca(2+) is a conventional diffusible second messenger released inside cells by the interaction of first messengers with plasma membrane receptors. However, it can also penetrate directly into cells to deliver information without the intermediation of first or second messengers. Even more distinctively, Ca(2+) can act as a first messenger, by interacting with a plasma membrane receptor to set in motion intracellular signaling pathways that involve Ca(2+) itself. Perhaps the most distinctive property of the Ca(2+) signal is its ambivalence: while essential to the correct functioning of cells, Ca(2+) becomes an agent that mediates cell distress, or even (toxic) cell death, if its concentration and movements inside cells are not carefully tuned. Ca(2+) is controlled by reversible complexation to specific proteins, which could be pure Ca(2+) buffers, or which, in addition to buffering Ca(2+), also decode its signal to pass it on to targets. The most important actors in the buffering of cell Ca(2+) are proteins that transport it across the plasma membrane and the membrane of the organelles: some have high Ca(2+) affinity and low transport capacity (e.g., Ca(2+) pumps), others have opposite properties (e.g., the Ca(2+) uptake system of mitochondria). Between the initial event of fertilization, and the terminal event of programmed cell death, the Ca(2+) signal regulates the most important activities of the cell, from the expression of genes, to heart and muscle contraction and other motility processes, to diverse metabolic pathways involved in the generation of cell fuels.

  13. Calcium signals in planetary embryos

    Science.gov (United States)

    Morbidelli, Alessandro

    2018-03-01

    The calcium-isotope composition of planetary bodies in the inner Solar System correlates with the masses of such objects. This finding could have implications for our understanding of how the Solar System formed.

  14. Calcium modified edible Canna (Canna edulis L) starch for controlled released matrix

    Science.gov (United States)

    Putri, A. P.; Ridwan, M.; Darmawan, T. A.; Darusman, F.; Gadri, A.

    2017-07-01

    Canna edulis L starch was modified with calcium chloride in order to form controlled released matrix. Present study aim to analyze modified starch characteristic. Four different formulation of ondansetron granules was used to provide dissolution profile of controlled released, two formula consisted of 15% and 30% modified starch, one formula utilized matrix reference standards and the last granules was negative control. Methocel-hydroxypropyl methyl cellulose was used as controlled released matrix reference standards in the third formula. Calcium starch was synthesized in the presence of sodium hydroxide to form gelatinized mass and calcium chloride as the cross linking agent. Physicochemical and dissolution properties of modified starch for controlled released application were investigated. Modified starch has higher swelling index, water solubility and compressibility index. Three of four different formulation of granules provide dissolution profile of controlled released. The profiles indicate granules which employed calcium Canna edulis L starch as matrix are able to resemble controlled drug released profile of matrix reference, however their bigger detain ability lead to lower bioavailability.

  15. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  16. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    Directory of Open Access Journals (Sweden)

    Dmitry eSamigullin

    2015-01-01

    Full Text Available At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 рА and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 µM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  17. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.

    Science.gov (United States)

    Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland

    2018-01-01

    Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

  18. Detection and quantification of coronary calcium from dual energy chest x-rays: Phantom feasibility study.

    Science.gov (United States)

    Zhou, Bo; Wen, Di; Nye, Katelyn; Gilkeson, Robert C; Eck, Brendan; Jordan, David; Wilson, David L

    2017-10-01

    We have demonstrated the ability to identify coronary calcium, a reliable biomarker of coronary artery disease, using nongated, 2-shot, dual energy (DE) chest x-ray imaging. Here we will use digital simulations, backed up by measurements, to characterize DE calcium signals and the role of potential confounds such as beam hardening, x-ray scatter, cardiac motion, and pulmonary artery pulsation. For the DE calcium signal, we will consider quantification, as compared to CT calcium score, and visualization. We created stylized and anatomical digital 3D phantoms including heart, lung, coronary calcium, spine, ribs, pulmonary artery, and adipose. We simulated high and low kVp x-ray acquisitions with x-ray spectra, energy dependent attenuation, scatter, ideal detector, and automatic exposure control (AEC). Phantoms allowed us to vary adipose thickness, cardiac motion, etc. We used specialized dual energy coronary calcium (DECC) processing that includes corrections for scatter and beam hardening. Beam hardening over a wide range of adipose thickness (0-30 cm) reduced the change in intensity of a coronary artery calcification (ΔI CAC ) by calcium signal (ΔI CAC ) in DECC images ±9%. If a simulated pulmonary artery fills with blood between exposures, it can give rise to a residual signal in DECC images, explaining pulmonary artery visibility in some clinical images. Residual misregistration can be mostly compensated by integrating signals in an enlarged region encompassing registration artifacts. DECC calcium score compared favorably to CT mass and volume scores over a number of phantom perturbations. Simulations indicate that proper DECC processing can faithfully recover coronary calcium signals. Beam hardening, errors in scatter estimation, cardiac motion, calcium residual misregistration etc., are all manageable. Simulations are valuable as we continue to optimize DE coronary calcium image processing and quantitative analysis. © 2017 American Association of Physicists

  19. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture.

    Science.gov (United States)

    Mauceri, Daniela; Hagenston, Anna M; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-09-18

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  1. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  2. Dietary calcium intake and the risk of colorectal cancer: a case control study.

    Science.gov (United States)

    Han, Changwoo; Shin, Aesun; Lee, Jeonghee; Lee, Jeeyoo; Park, Ji Won; Oh, Jae Hwan; Kim, Jeongseon

    2015-12-16

    High intake of dietary calcium has been thought to be a protective factor against colorectal cancer. To explore the dose-response relationship in the associations between dietary calcium intake and colorectal cancer risk by cancer location, we conducted a case-control study among Korean population, whose dietary calcium intake levels are relatively low. The colorectal cancer cases and controls were recruited from the National Cancer Center in Korea between August 2010 and August 2013. Information on dietary calcium intake was assessed using a semi-quantitative food frequency questionnaire and locations of the colorectal cancers were classified as proximal colon cancer, distal colon cancer, and rectal cancer. Binary and polytomous logistic regression models were used to evaluate the association between dietary calcium intake and risk of colorectal cancer. A total of 922 colorectal cancer cases and 2766 controls were included in the final analysis. Compared with the lowest calcium intake quartile, the highest quartile group showed a significantly reduced risk of colorectal cancer in both men and women. (Odds ratio (OR): 0.16, 95% confidence interval (CI): 0.11-0.24 for men; OR: 0.16, 95% CI: 0.09-0.29 for women). Among the highest calcium intake groups, decrease in cancer risk was observed across all sub-sites of colorectum in both men and women. In conclusion, calcium consumption was inversely related to colorectal cancer risk in Korean population where national average calcium intake level is relatively lower than Western countries. A decreased risk of colorectal cancer by calcium intake was observed in all sub-sites in men and women.

  3. Mucin 4 Gene Silencing Reduces Oxidative Stress and Calcium Oxalate Crystal Formation in Renal Tubular Epithelial Cells Through the Extracellular Signal-Regulated Kinase Signaling Pathway in Nephrolithiasis Rat Model

    Directory of Open Access Journals (Sweden)

    Ling Sun

    2018-05-01

    Full Text Available Background/Aims: Nephrolithiasis plagues a great number of patients all over the world. Increasing evidence shows that the extracellular signal-regulated kinase (ERK signaling pathway and renal tubular epithelial cell (RTEC dysfunction and attrition are central to the pathogenesis of kidney diseases. Mucin 4 (MUC4 is reported as an activator of ERK signaling pathway in epithelial cells. In this study, using rat models of calcium oxalate (CaOx nephrolithiasis, the present study aims to define the roles of MUC4 and ERK signaling pathway as contributors to oxidative stress and CaOx crystal formation in RTEC. Methods: Data sets of nephrolithiasis were searched using GEO database and a heat flow map was drawn. Then MUC4 function was predicted. Wistar rats were prepared for the purpose of model establishment of ethylene glycol and ammonium chloride induced CaOx nephrolithiasis. In order to assess the detailed regulatory mechanism of MUC4 silencing on the ERK signaling pathway and RTEC, we used recombinant plasmid to downregulate MUC4 expression in Wistar rat-based models. Samples from rat urine, serum and kidney tissues were reviewed to identify oxalic acid and calcium contents, BUN, Cr, Ca2+ and P3+ levels, calcium crystal formation in renal tubules and MUC4 positive expression rate. Finally, RT-qPCR, Western blot analysis, and ELISA were employed to access oxidative stress state and CaOx crystal formation in RTEC. Results: Initially, MUC4 was found to have an influence on the process of nephrolithiasis. MUC4 was upregulated in the CaOx nephrolithiasis model rats. We proved that the silencing of MUC4 triggered the inactivation of ERK signaling pathway. Following the silencing of MUC4 or the inhibition of ERK signaling pathway, the oxalic acid and calcium contents in rat urine, BUN, Cr, Ca2+ and P3+ levels in rat serum, p-ERK1/2, MCP-1 and OPN expressions in RTEC and H2O2 and MDA levels in the cultured supernatant were downregulated, but the GSH

  4. Calcium signaling during reproduction and biotrophic fungal interactions in plants.

    Science.gov (United States)

    Chen, Junyi; Gutjahr, Caroline; Bleckmann, Andrea; Dresselhaus, Thomas

    2015-04-01

    Many recent studies have indicated that cellular communications during plant reproduction, fungal invasion, and defense involve identical or similar molecular players and mechanisms. Indeed, pollen tube invasion and sperm release shares many common features with infection of plant tissue by fungi and oomycetes, as a tip-growing intruder needs to communicate with the receptive cells to gain access into a cell and tissue. Depending on the compatibility between cells, interactions may result in defense, invasion, growth support, or cell death. Plant cells stimulated by both pollen tubes and fungal hyphae secrete, for example, small cysteine-rich proteins and receptor-like kinases are activated leading to intracellular signaling events such as the production of reactive oxygen species (ROS) and the generation of calcium (Ca(2+)) transients. The ubiquitous and versatile second messenger Ca(2+) thereafter plays a central and crucial role in modulating numerous downstream signaling processes. In stimulated cells, it elicits both fast and slow cellular responses depending on the shape, frequency, amplitude, and duration of the Ca(2+) transients. The various Ca(2+) signatures are transduced into cellular information via a battery of Ca(2+)-binding proteins. In this review, we focus on Ca(2+) signaling and discuss its occurrence during plant reproduction and interactions of plant cells with biotrophic filamentous microbes. The participation of Ca(2+) in ROS signaling pathways is also discussed. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  5. Intracellular calcium signals display an avalanche-like behavior over multiple lengthscales.

    Directory of Open Access Journals (Sweden)

    Lucía eLopez

    2012-09-01

    Full Text Available Many natural phenomena display "self-organized criticality'' (SOC. This refers to spatially extended systems for which patterns of activity characterized by different lengthscales can occur with a probability density that follows a power law with pattern size. Differently from power laws at phase transitions, systems displaying SOC do not need the tuning of an external parameter. Here we analyze intracellular calcium Ca2+ signals, a key component of the signaling toolkit of almost any cell type. Ca2+ signals can either be spatially restricted (local or propagate throughout the cell (global. Different models have suggested that the transition from local to global signals is similar to that of directed percolation. Directed percolation has been associated, in turn, to the appearance of self-organized criticality. In this paper we discuss these issues within the framework of simple models of Ca2+ signal propagation. We also analyze the size distribution of local signals ("puffs'' observed in immature Xenopus Laevis oocytes. The puff amplitude distribution obtained from observed local signals is not Gaussian with a noticeable fraction of large size events. The experimental distribution of puff areas in the spatio-temporal record of the image has a long tail that is approximately log-normal. The distribution can also be fitted with a power law relationship albeit with a smaller goodness of fit. The power law behavior is encountered within a simple model that includes some coupling among individual signals for a wide range of parameter values. An analysis of the model shows that a global elevation of the Ca2+ concentration plays a major role in determining whether the puff size distribution is long-tailed or not. This suggests that Ca2+-clearing from the cytosol is key to determine whether IP3-mediated Ca2+ signals can display a SOC-like behavior or not.

  6. Dietary calcium intake and the risk of colorectal cancer: a case control study

    OpenAIRE

    Han, Changwoo; Shin, Aesun; Lee, Jeonghee; Lee, Jeeyoo; Park, Ji Won; Oh, Jae Hwan; Kim, Jeongseon

    2015-01-01

    Background High intake of dietary calcium has been thought to be a protective factor against colorectal cancer. To explore the dose-response relationship in the associations between dietary calcium intake and colorectal cancer risk by cancer location, we conducted a case-control study among Korean population, whose dietary calcium intake levels are relatively low. Methods The colorectal cancer cases and controls were recruited from the National Cancer Center in Korea between August 2010 and A...

  7. Calcium as a cardiovascular toxin in CKD-MBD.

    Science.gov (United States)

    Moe, Sharon M

    2017-07-01

    Disordered calcium balance and homeostasis are common in patients with chronic kidney disease. Such alterations are commonly associated with abnormal bone remodeling, directly and indirectly. Similarly, positive calcium balance may also be a factor in the pathogenesis of extra skeletal soft tissue and arterial calcification. Calcium may directly affect cardiac structure and function through direct effects to alter cell signaling due to abnormal intracellular calcium homeostasis 2) extra-skeletal deposition of calcium and phosphate in the myocardium and small cardiac arterioles, 3) inducing cardiomyocyte hypertrophy through calcium and hormone activation of NFAT signaling mechanisms, and 4) increased aorta calcification resulting in chronic increased afterload leading to hypertrophy. Similarly, calcium may alter vascular smooth muscle cell function and affect cell signaling which may predispose to a proliferative phenotype important in arteriosclerosis and arterial calcification. Thus, disorders of calcium balance and homeostasis due to CKD-MBD may play a role in the high cardiovascular burden observed in patients with CKD. Published by Elsevier Inc.

  8. Voltage-gated calcium flux mediates Escherichia coli mechanosensation.

    Science.gov (United States)

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  9. An algorithm for modularization of MAPK and calcium signaling pathways: comparative analysis among different species.

    Science.gov (United States)

    Nayak, Losiana; De, Rajat K

    2007-12-01

    Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.

  10. Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes), Modulates Purinoceptor-Coupled Calcium Signaling and Murine Nociceptive Behavior.

    Science.gov (United States)

    Liu, Pei-Shan; Chueh, Sheau-Huei; Chen, Chin-Chu; Lee, Li-Ya; Shiu, Li-Yen

    2017-01-01

    Hericium erinaceus is well known for the neurotrophic effect it confers by promoting nerve growth factor biosynthesis. We discovered a novel bioactivity of H. erinaceus in its ability to suppress adenosine triphosphate (ATP)-induced calcium signaling in neuronal PC12 cells. ATP, known primarily as a neurotransmitter, also acts on purinoceptors (P2 purinergic receptor [P2R]) to generate the cellular calcium signaling and secretion that mediate P2R physiological manifestations, including pain. Chronic pain reduces quality of life. However, constant analgesic administration can cause liver and kidney injury, as well as loss of the analgesic effect because of desensitization. In this study we investigated the analgesic potential of H. erinaceus through measurements of ATP-induced Ca2+ signaling in cell lines and observation of pain behaviors in mice. In P2R-coupled Ca2+ signaling measurements, extracts of H. erinaceus mycelia (HEEs) blocked ATP-induced Ca2+ signaling in both rat PC12 cells and human HOS cells. HEEs completely blocked ATP-induced Ca2+ signaling in human HOS cells, suggesting that this effect of HEEs is exerted through the P2R subtypes present in HOS cells, which include the P2X4, P2X7, P2Y2, and P2Y4 subtypes. In observations of animal behavior during pain, HEEs significantly reduced heat-induced pain, including postponing both the tail-flick response to heat stimulation and the paw-lifting response to a hot plate. This study demonstrates novel characteristics of H. erinaceus in reducing nociceptive behavior and blocking the functional activity of P2R. Further studies are required to verify this linkage and its molecular mechanisms.

  11. Genome-wide analysis of wheat calcium ATPases and potential role of selected ACAs and ECAs in calcium stress.

    Science.gov (United States)

    Aslam, Roohi; Williams, Lorraine E; Bhatti, Muhammad Faraz; Virk, Nasar

    2017-10-27

    P 2 - type calcium ATPases (ACAs-auto inhibited calcium ATPases and ECAs-endoplasmic reticulum calcium ATPases) belong to the P- type ATPase family of active membrane transporters and are significantly involved in maintaining accurate levels of Ca 2+ , Mn 2+ and Zn 2+ in the cytosol as well as playing a very important role in stress signaling, stomatal opening and closing and pollen tube growth. Here we report the identification and possible role of some of these ATPases from wheat. In this study, ACA and ECA sequences of six species (belonging to Poaceae) were retrieved from different databases and a phylogenetic tree was constructed. A high degree of evolutionary relatedness was observed among P 2 sequences characterized in this study. Members of the respective groups from different plant species were observed to fall under the same clade. This pattern highlights the common ancestry of P 2- type calcium ATPases. Furthermore, qRT-PCR was used to analyse the expression of selected ACAs and ECAs from Triticum aestivum (wheat) under calcium toxicity and calcium deficiency. The data indicated that expression of ECAs is enhanced under calcium stress, suggesting possible roles of these ATPases in calcium homeostasis in wheat. Similarly, the expression of ACAs was significantly different in plants grown under calcium stress as compared to plants grown under control conditions. This gives clues to the role of ACAs in signal transduction during calcium stress in wheat. Here we concluded that wheat genome consists of nine P 2B and three P 2A -type calcium ATPases. Moreover, gene loss events in wheat ancestors lead to the loss of a particular homoeolog of a gene in wheat. To elaborate the role of these wheat ATPases, qRT-PCR was performed. The results indicated that when plants are exposed to calcium stress, both P 2A and P 2B gene expression get enhanced. This further gives clues about the possible role of these ATPases in wheat in calcium management. These findings can be

  12. Calcium signaling during the plant-plant interaction of parasitic Cuscuta reflexa with its hosts.

    Science.gov (United States)

    Albert, Markus; Kaiser, Bettina; van der Krol, Sander; Kaldenhoff, Ralf

    2010-09-01

    The plant parasite Cuscuta reflexa induces various responses in compatible and incompatible host plants. The visual reactions of both types of host plants including obvious morphological changes require the recognition of Cuscuta ssp. A consequently initiated signaling cascade is triggered which leads to a tolerance of the infection or, in the case of some incompatible host plants, to resistance. Calcium (Ca(2+)) release is the major second messenger during signal transduction. Therefore, we have studied Ca(2+) spiking in tomato and tobacco during infection with C. reflexa. In our recently published study Ca(2+) signals were monitored as bioluminescence in aequorin-expressing tomato plants after the onset of C. reflexa infestation. Signals at the attachment sites were observed from 30 to 48 h after infection. In an assay with leaf disks of aequorin-expressing tomato which were treated with different C. reflexa plant extracts it turned out that the substance that induced Ca(2+) release in the host plant was closely linked to the parasite's haustoria.

  13. L-Type Calcium Channels Modulation by Estradiol.

    Science.gov (United States)

    Vega-Vela, Nelson E; Osorio, Daniel; Avila-Rodriguez, Marco; Gonzalez, Janneth; García-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E

    2017-09-01

    Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.

  14. Discrete-State Stochastic Models of Calcium-Regulated Calcium Influx and Subspace Dynamics Are Not Well-Approximated by ODEs That Neglect Concentration Fluctuations

    Science.gov (United States)

    Weinberg, Seth H.; Smith, Gregory D.

    2012-01-01

    Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs) and mass-action kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10−17 liters) that local signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume) with the corresponding deterministic model (an approximation that assumes large system size). When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers. PMID:23509597

  15. Fasting urinary calcium-to-creatinine and oxalate-to-creatinine ratios in dogs with calcium oxalate urolithiasis and breed-matched controls.

    Science.gov (United States)

    Furrow, E; Patterson, E E; Armstrong, P J; Osborne, C A; Lulich, J P

    2015-01-01

    Hypercalciuria and hyperoxaluria are risk factors for calcium oxalate (CaOx) urolithiasis, but breed-specific reports of urinary metabolites and their relationship with stone status are lacking. To compare urinary metabolites (calcium and oxalate) and blood ionized calcium (iCa) concentrations between CaOx stone formers and breed-matched stone-free controls for the Miniature Schnauzer, Bichon Frise, and Shih Tzu breeds. Forty-seven Miniature Schnauzers (23 cases and 24 controls), 27 Bichons Frise (14 cases and 13 controls), and 15 Shih Tzus (7 cases and 8 controls). Prospective study. Fasting spot urinary calcium-to-creatinine and oxalate-to-creatinine ratios (UCa/Cr and UOx/Cr, respectively) and blood iCa concentrations were measured and compared between cases and controls within and across breeds. Regression models were used to test the effect of patient and environmental factors on these variables. UCa/Cr was higher in cases than controls for each of the 3 breeds. In addition to stone status, being on a therapeutic food designed to prevent CaOx stone recurrence was associated with higher UCa/Cr. UOx/Cr did not differ between cases and controls for any of the breeds. Blood iCa was higher in cases than controls in the Miniature Schnauzer and Bichon Frise breeds and had a moderate correlation with UCa/Cr. Hypercalciuria is associated with CaOx stone status in the Miniature Schnauzer, Bichon Frise, and Shih Tzu breeds. UOx/Cr did not correlate with stone status in these 3 breeds. These findings may influence breed-specific stone prevention recommendations. Copyright © 2015 by the American College of Veterinary Internal Medicine.

  16. Controlled release studies of calcium alginate hydrogels

    International Nuclear Information System (INIS)

    Rendevski, S.; Andonovski, A.; Mahmudi, N.

    2012-01-01

    Controlled release of substances in many cases may be achieved from calcium alginate hydrogels. In this research, the time dependence of the mass of released model substance bovine serum albumin (BSA) from calcium alginate spherical hydrogels of three different types (G/M ratio) have been investigated. The hydrogels were prepared with the drop-wise method of sodium alginate aqueous solutions with concentration of 0.02 g/cm 3 with 0.01 g/cm 3 BSA and a gelling water bath of chitosan in 0.2 M CH 3 COOH/0.4 M CH 3 COONa with added 0.2 M CaCl 2 .The hydrogel structures were characterized by dynamic light scattering and scanning electron microscopy. The controlled release studies were conducted by UV-Vis spectrophotometry of the released medium with p H=7 at 37 °C. The results showed that the model of osmotic pumping is the dominant mechanism of the release. Also, large dependences of the release profile on the homogeneity of the hydrogels were found. (Author)

  17. Process for controlling calcium in a leach operation

    International Nuclear Information System (INIS)

    Habib, E.J.

    1982-01-01

    A method for controlling calcium, e.g. calcite, build-up in the leach solution of a uranium and/or related values recovery operation wherein the leach solution is flowed through a value bearing ore to dissolve the desired values. A soluble fluoride, e.g. sodium fluoride, is added to the leach solution after it has passed through the ore to thereby precipitate calcium fluoride from the leach solution and lower the calcium content of the leach solution. The soluble fluoride may be added to the leach solution before the leach solution passes through the process equipment which is used to remove the values from the leach solution or the soluble fluoride may be added after the leach solution passes through the process equipment. If added before, it is preferable to also add a carbonate/bicarbonate solution along with the soluble fluoride to prevent coprecipitation of uranyl/desired value fluoride or to redissolve coprecipitated fluoride back into the leach solution

  18. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    OpenAIRE

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and met...

  19. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle.

    Science.gov (United States)

    Fusi, L; Brunello, E; Yan, Z; Irving, M

    2016-10-31

    Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway.

  20. Calcium and ROS: A mutual interplay

    Science.gov (United States)

    Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga

    2015-01-01

    Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072

  1. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.

    Directory of Open Access Journals (Sweden)

    Kyle T Beggs

    Full Text Available BACKGROUND: Three dopamine receptor genes have been identified that are highly conserved among arthropod species. One of these genes, referred to in honey bees as Amdop2, shows a close phylogenetic relationship to the a-adrenergic-like octopamine receptor family. In this study we examined in parallel the functional and pharmacological properties of AmDOP2 and the honey bee octopamine receptor, AmOA1. For comparison, pharmacological properties of the honey bee dopamine receptors AmDOP1 and AmDOP3, and the tyramine receptor AmTYR1, were also examined. METHODOLOGY/PRINCIPAL FINDINGS: Using HEK293 cells heterologously expressing honey bee biogenic amine receptors, we found that activation of AmDOP2 receptors, like AmOA1 receptors, initiates a rapid increase in intracellular calcium levels. We found no evidence of calcium signaling via AmDOP1, AmDOP3 or AmTYR1 receptors. AmDOP2- and AmOA1-mediated increases in intracellular calcium were inhibited by 10 µM edelfosine indicating a requirement for phospholipase C-β activity in this signaling pathway. Edelfosine treatment had no effect on AmDOP2- or AmOA1-mediated increases in intracellular cAMP. The synthetic compounds mianserin and epinastine, like cis-(Z-flupentixol and spiperone, were found to have significant antagonist activity on AmDOP2 receptors. All 4 compounds were effective antagonists also on AmOA1 receptors. Analysis of putative ligand binding sites offers a possible explanation for why epinastine acts as an antagonist at AmDOP2 receptors, but fails to block responses mediated via AmDOP1. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AmDOP2, like AmOA1, is coupled not only to cAMP, but also to calcium-signalling and moreover, that the two signalling pathways are independent upstream of phospholipase C-β activity. The striking similarity between the pharmacological properties of these 2 receptors suggests an underlying conservation of structural properties related to receptor

  2. A sensor for calcium uptake

    Science.gov (United States)

    Collins, Sean; Meyer, Tobias

    2011-01-01

    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified. PMID:20844529

  3. Shape control synthesis of low-dimensional calcium sulfate

    Indian Academy of Sciences (India)

    Shape control synthesis of low-dimensional calcium sulfate .... C in mixed solvents of 50 mL ethanol and 30 mL water for different reaction times was characterized by .... Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature 409 66.

  4. Calcium and Bone Turnover Markers in Acromegaly: A Prospective, Controlled Study.

    Science.gov (United States)

    Constantin, Tina; Tangpricha, Vin; Shah, Reshma; Oyesiku, Nelson M; Ioachimescu, Octavian C; Ritchie, James; Ioachimescu, Adriana G

    2017-07-01

    Acromegaly has been associated with calcium-phosphate and bone turnover alterations. Controlled studies of these interactions are sparse. To evaluate calcium and bone metabolism in active and treated acromegaly. We conducted a controlled, prospective study at a tertiary referral center. We studied 22 patients with acromegaly referred for surgical or medical therapy (ACM) and 22 with nonfunctioning pituitary adenomas referred for surgery (control). Calcium (serum and urine), phosphorus, parathyroid hormone (PTH), 25-hydroxy- and 1,25-dihydroxy-vitamin D, bone turnover markers [serum C-terminal telopeptide of type 1 collagen (CTX) and procollagen type 1 N-terminal propeptide (P1NP)], and cytokines [receptor activator of nuclear factor κB ligand (RANK-L) and osteoprotegerin (OPG)] at baseline and 3 to 6 months after treatment. At baseline, the ACM group had lower PTH levels than controls (36.3 ± 13.9 pg/mL vs 56.0 ± 19.9 pg/mL) and higher phosphorus (4.34 ± 0.71 mg/dL vs 3.55 ± 0.50 mg/dL) (P acromegaly, serum calcium (9.52 ± 0.43 mg/dL to 9.26 ± 0.28 mg/dL), phosphorus (4.34 ± 0.71 mg/dL to 3.90 ± 0.80 mg/dL), and CTX (0.91 ± 0.75 ng/mL to 0.63 ± 0.68 ng/mL) decreased, while PTH increased (36.3 ± 13.9 pg/mL to 48.9 ± 16.7 pg/mL) (P Acromegaly patients exhibited PTH-independent calcium-phosphate alterations and enhanced coupled bone formation and resorption. Within 6 months of treatment, bone resorption decreased, whereas RANK-L/OPG changes were inconsistent. Copyright © 2017 Endocrine Society

  5. Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton.

    Science.gov (United States)

    Pritchard, Scott; Erickson, Geoffrey R; Guilak, Farshid

    2002-11-01

    Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.

  6. Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals

    KAUST Repository

    Martinez, Josue G.

    2009-12-01

    We compare calcium ion signaling (Ca(2+)) between two exposures; the data are present as movies, or, more prosaically, time series of images. This paper describes novel uses of singular value decompositions (SVD) and weighted versions of them (WSVD) to extract the signals from such movies, in a way that is semi-automatic and tuned closely to the actual data and their many complexities. These complexities include the following. First, the images themselves are of no interest: all interest focuses on the behavior of individual cells across time, and thus, the cells need to be segmented in an automated manner. Second, the cells themselves have 100+ pixels, so that they form 100+ curves measured over time, so that data compression is required to extract the features of these curves. Third, some of the pixels in some of the cells are subject to image saturation due to bit depth limits, and this saturation needs to be accounted for if one is to normalize the images in a reasonably un-biased manner. Finally, the Ca(2+) signals have oscillations or waves that vary with time and these signals need to be extracted. Thus, our aim is to show how to use multiple weighted and standard singular value decompositions to detect, extract and clarify the Ca(2+) signals. Our signal extraction methods then lead to simple although finely focused statistical methods to compare Ca(2+) signals across experimental conditions.

  7. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the ...

  8. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor.

    Science.gov (United States)

    Joeckel, Elke; Haber, Tobias; Prawitt, Dirk; Junker, Kerstin; Hampel, Christian; Thüroff, Joachim W; Roos, Frederik C; Brenner, Walburgis

    2014-02-28

    The prognosis for renal cell carcinoma (RCC) is related to a high rate of metastasis, including 30% of bone metastasis. Characteristic for bone tissue is a high concentration of calcium ions. In this study, we show a promoting effect of an enhanced extracellular calcium concentration on mechanisms of bone metastasis via the calcium-sensing receptor (CaSR) and its downstream signaling molecules. Our analyses were performed using 33 (11/category) matched specimens of normal and tumor tissue and 9 (3/category) primary cells derived from RCC patients of the 3 categories: non-metastasized, metastasized into the lung and metastasized into bones during a five-year period after nephrectomy. Expression of CaSR was determined by RT-PCR, Western blot analyses and flow cytometry, respectively. Cells were treated by calcium and the CaSR inhibitor NPS 2143. Cell migration was measured in a Boyden chamber with calcium (10 μM) as chemotaxin and proliferation by BrdU incorporation. The activity of intracellular signaling mediators was quantified by a phospho-kinase array and Western blot. The expression of CaSR was highest in specimens and cells of patients with bone metastases. Calcium treatment induced an increased migration (19-fold) and proliferation (2.3-fold) exclusively in RCC cells from patients with bone metastases. The CaSR inhibitor NPS 2143 elucidated the role of CaSR on the calcium-dependent effects. After treatment with calcium, the activity of AKT, PLCγ-1, p38α and JNK was clearly enhanced and PTEN expression was almost completely abolished in bone metastasizing RCC cells. Our results indicate a promoting effect of extracellular calcium on cell migration and proliferation of bone metastasizing RCC cells via highly expressed CaSR and its downstream signaling pathways. Consequently, CaSR may be regarded as a new prognostic marker predicting RCC bone metastasis.

  9. Calcium Nutrition and Extracellular Calcium Sensing: Relevance for the Pathogenesis of Osteoporosis, Cancer and Cardiovascular Diseases

    Science.gov (United States)

    Peterlik, Meinrad; Kállay, Enikoe; Cross, Heide S.

    2013-01-01

    Through a systematic search in Pubmed for literature, on links between calcium malnutrition and risk of chronic diseases, we found the highest degree of evidence for osteoporosis, colorectal and breast cancer, as well as for hypertension, as the only major cardiovascular risk factor. Low calcium intake apparently has some impact also on cardiovascular events and disease outcome. Calcium malnutrition can causally be related to low activity of the extracellular calcium-sensing receptor (CaSR). This member of the family of 7-TM G-protein coupled receptors allows extracellular Ca2+ to function as a “first messenger” for various intracellular signaling cascades. Evidence demonstrates that Ca2+/CaSR signaling in functional linkage with vitamin D receptor (VDR)-activated pathways (i) promotes osteoblast differentiation and formation of mineralized bone; (ii) targets downstream effectors of the canonical and non-canonical Wnt pathway to inhibit proliferation and induce differentiation of colorectal cancer cells; (iii) evokes Ca2+ influx into breast cancer cells, thereby activating pro-apoptotic intracellular signaling. Furthermore, Ca2+/CaSR signaling opens Ca2+-sensitive K+ conductance channels in vascular endothelial cells, and also participates in IP3-dependent regulation of cytoplasmic Ca2+, the key intermediate of cardiomyocyte functions. Consequently, impairment of Ca2+/CaSR signaling may contribute to inadequate bone formation, tumor progression, hypertension, vascular calcification and, probably, cardiovascular disease. PMID:23340319

  10. Endoplasmic reticulum calcium transport ATPase expression during differentiation of colon cancer and leukaemia cells

    International Nuclear Information System (INIS)

    Papp, Bela; Brouland, Jean-Philippe; Gelebart, Pascal; Kovacs, Tuende; Chomienne, Christine

    2004-01-01

    The calcium homeostasis of the endoplasmic reticulum (ER) is connected to a multitude of cell functions involved in intracellular signal transduction, control of proliferation, programmed cell death, or the synthesis of mature proteins. Calcium is accumulated in the ER by various biochemically distinct sarco/endoplasmic reticulum calcium transport ATPase isoenzymes (SERCA isoforms). Experimental data indicate that the SERCA composition of some carcinoma and leukaemia cell types undergoes significant changes during differentiation, and that this is accompanied by modifications of SERCA-dependent calcium accumulation in the ER. Because ER calcium homeostasis can also influence cell differentiation, we propose that the modulation of the expression of various SERCA isoforms, and in particular, the induction of the expression of SERCA3-type proteins, is an integral part of the differentiation program of some cancer and leukaemia cell types. The SERCA content of the ER may constitute a new parameter by which the calcium homeostatic characteristics of the organelle are adjusted. The cross-talk between ER calcium homeostasis and cell differentiation may have some implications for the better understanding of the signalling defects involved in the acquisition and maintenance of the malignant phenotype

  11. Calcium regulates caveolin-1 expression at the transcriptional level

    International Nuclear Information System (INIS)

    Yang, Xiao-Yan; Huang, Cheng-Cheng; Kan, Qi-Ming; Li, Yan; Liu, Dan; Zhang, Xue-Cheng; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2012-01-01

    Highlights: ► Caveolin-1 expression is regulated by calcium signaling at the transcriptional level. ► An inhibitor of or siRNA to L-type calcium channel suppressed caveolin-1 expression. ► Cyclosporine A or an NFAT inhibitor markedly reduced caveolin-1 expression. ► Caveolin-1 regulation by calcium signaling is observed in several mouse cell lines. -- Abstract: Caveolin-1, an indispensable component of caveolae serving as a transformation suppressor protein, is highly expressed in poorly metastatic mouse osteosarcoma FBJ-S1 cells while highly metastatic FBJ-LL cells express low levels of caveolin-1. Calcium concentration is higher in FBJ-S1 cells than in FBJ-LL cells; therefore, we investigated the possibility that calcium signaling positively regulates caveolin-1 in mouse FBJ-S1 cells. When cells were treated with the calcium channel blocker nifedipine, cyclosporin A (a calcineurin inhibitor), or INCA-6 (a nuclear factor of activated T-cells [NFAT] inhibitor), caveolin-1 expression at the mRNA and protein levels decreased. RNA silencing of voltage-dependent L-type calcium channel subunit alpha-1C resulted in suppression of caveolin-1 expression. This novel caveolin-1 regulation pathway was also identified in mouse NIH 3T3 cells and Lewis lung carcinoma cells. These results indicate that caveolin-1 is positively regulated at the transcriptional level through a novel calcium signaling pathway mediated by L-type calcium channel/Ca 2+ /calcineurin/NFAT.

  12. Unilateral vestibular deafferentation-induced changes in calcium signaling-related molecules in the rat vestibular nuclear complex.

    Science.gov (United States)

    Masumura, Chisako; Horii, Arata; Mitani, Kenji; Kitahara, Tadashi; Uno, Atsuhiko; Kubo, Takeshi

    2007-03-23

    Inquiries into the neurochemical mechanisms of vestibular compensation, a model of lesion-induced neuronal plasticity, reveal the involvement of both voltage-gated Ca(2+) channels (VGCC) and intracellular Ca(2+) signaling. Indeed, our previous microarray analysis showed an up-regulation of some calcium signaling-related genes such as the alpha2 subunit of L-type calcium channels, calcineurin, and plasma membrane Ca(2+) ATPase 1 (PMCA1) in the ipsilateral vestibular nuclear complex (VNC) following unilateral vestibular deafferentation (UVD). To further elucidate the role of calcium signaling-related molecules in vestibular compensation, we used a quantitative real-time polymerase chain reaction (PCR) method to confirm the microarray results and investigated changes in expression of these molecules at various stages of compensation (6 h to 2 weeks after UVD). We also investigated the changes in gene expression during Bechterew's phenomenon and the effects of a calcineurin inhibitor on vestibular compensation. Real-time PCR showed that genes for the alpha2 subunit of VGCC, PMCA2, and calcineurin were transiently up-regulated 6 h after UVD in ipsilateral VNC. A subsequent UVD, which induced Bechterew's phenomenon, reproduced a complete mirror image of the changes in gene expressions of PMCA2 and calcineurin seen in the initial UVD, while the alpha2 subunit of VGCC gene had a trend to increase in VNC ipsilateral to the second lesion. Pre-treatment by FK506, a calcineurin inhibitor, decelerated the vestibular compensation in a dose-dependent manner. Although it is still uncertain whether these changes in gene expression are causally related to the molecular mechanisms of vestibular compensation, this observation suggests that after increasing the Ca(2+) influx into the ipsilateral VNC neurons via up-regulated VGCC, calcineurin may be involved in their synaptic plasticity. Conversely, an up-regulation of PMCA2, a brain-specific Ca(2+) pump, would increase an efflux of Ca

  13. Calcium Imaging of Nerve-Mast Cell Signaling in the Human Intestine

    Directory of Open Access Journals (Sweden)

    Sabine Buhner

    2017-11-01

    Full Text Available Introduction: It is suggested that an altered microenvironment in the gut wall alters communication along a mast cell nerve axis. We aimed to record for the first time signaling between mast cells and neurons in intact human submucous preparations.Methods: We used the Ca2+ sensitive dye Fluo-4 AM to simultaneously image changes in intracellular calcium [Ca+2]i (%ΔF/F in neurons and mast cells. Data are presented as median with interquartile ranges (25/75%.Results: We recorded nerve responses in 29 samples upon selective activation of 223 mast cells by IgE receptor cross linking with the antibody mAb22E7. Mast cells responded to mAb22E7 with a median [Ca+2]i increase of 20% (11/39 peaking 90 s (64/144 after the application. Only very few neurons responded and the median percentage of responding neuronal area was 0% (0/5.9. Mast cell activation remained in the presence of the fast sodium channel blocker tetrodotoxin. Specific neuronal activation by transmural electrical field stimulation (EFS in 34 samples evoked instantaneously [Ca+2]i signals in submucous neurons. This was followed by a [Ca+2]i peak response of 8%ΔF/F (4/15 in 33% of 168 mast cells in the field of view. The mast cell response was abolished by the nerve blocker tetrododoxin, reduced by the Calcitonin Gene-Related Peptide receptor 1 antagonist BIBN-4096 and the Vasoactive Intestinal Peptide receptor antagonist PG97-269, but not by blockade of the neurokinin receptors 1–3.Conclusion: The findings revealed bidirectional signaling between mast cells and submucous neurons in human gut. In our macroscopically normal preparations a nerve to mast cell signaling was very prominent whereas a mast cell to nerve signaling was rather rare.

  14. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jorgensen, N R; Geist, S T; Civitelli, R

    1997-01-01

    mechanically induced calcium waves in two rat osteosarcoma cell lines that differ in the gap junction proteins they express, in their ability to pass microinjected dye from cell to cell, and in their expression of P2Y2 (P2U) purinergic receptors. ROS 17/2.8 cells, which express the gap junction protein......Many cells coordinate their activities by transmitting rises in intracellular calcium from cell to cell. In nonexcitable cells, there are currently two models for intercellular calcium wave propagation, both of which involve release of inositol trisphosphate (IP3)- sensitive intracellular calcium...... stores. In one model, IP3 traverses gap junctions and initiates the release of intracellular calcium stores in neighboring cells. Alternatively, calcium waves may be mediated not by gap junctional communication, but rather by autocrine activity of secreted ATP on P2 purinergic receptors. We studied...

  15. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Directory of Open Access Journals (Sweden)

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  16. ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation.

    Science.gov (United States)

    Zhang, Xinxin; Tang, Xuexi; Wang, Ming; Zhang, Wei; Zhou, Bin; Wang, You

    2017-08-01

    UV-B ray has been addressed to trigger common metabolic responses on marine microalgae, however, the upstream events responsible for these changes in marine microalgae are poorly understood. In the present study, a species of marine green microalgae Dunaliella salina was exposed to a series of enhanced UV-B radiation ranging from 0.25 to 1.00 KJ·m -2 per day. The role of ROS and calcium signaling in the D. salina responses to UV-B was discussed. Results showed that enhanced UV-B radiation markedly decreased the cell density in a dose-dependent manner, but the contents of protein and glycerol that were essential for cell growth increased. It suggested that it was cell division instead of cell growth that UV-B exerted negative effects on. The subcellular damages on nuclei and plasmalemma further evidenced the hypothesis. The nutrient absorption was affected with UV-B exposure, and the inhibition on PO 4 3- uptake was more serious compared to NO 3 - uptake. UV-B radiation promoted reactive oxygen species (ROS) formation and thiobarbituric acid reactive substances (TBARS) contents, decreased the redox status and altered the antioxidant enzyme activities. The addition of the ROS scavenger and the glutathione biosynthesis precursor N-acetyl-l-cysteine (NAC) alleviated the stress degree, implying ROS-mediated pathway was involved in the stress response to UV-B radiation. Transient increase in Ca 2+ -ATPase was triggered simultaneously with UV-B exposure. Meanwhile, the addition of an intracellular free calcium chelator aggravated the damage of cell division, but exogenous calcium and ion channel blocker applications did not, inferring that endogenously initiated calcium signaling played roles in response to UV-B. Cross-talk analysis showed a relatively clear relationship between ROS inhibition and Ca 2+ -ATPase suppression, and a relation between Ca 2+ inhibition and GPx activity change was also observed. It was thus presumed that ROS-coupled calcium signaling via the

  17. Calcium channel blockers and Alzheimer's disease★

    Science.gov (United States)

    Tan, Yi; Deng, Yulin; Qing, Hong

    2012-01-01

    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofibrillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers involved in Alzheimer's disease therapy. PMID:25767489

  18. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling.

    Science.gov (United States)

    Weckwerth, Philipp; Ehlert, Britta; Romeis, Tina

    2015-03-01

    Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize. © 2014 John Wiley & Sons Ltd.

  19. Vitamin D treatment in calcium-deficiency rickets: a randomised controlled trial.

    Science.gov (United States)

    Thacher, Tom D; Fischer, Philip R; Pettifor, John M

    2014-09-01

    To determine whether children with calcium-deficiency rickets have a better response to treatment with vitamin D and calcium than with calcium alone. Randomised controlled trial. Jos University Teaching Hospital, Jos, Nigeria. Nigerian children with active rickets treated with calcium carbonate as limestone (approximately 938 mg elemental calcium twice daily) were, in addition, randomised to receive either oral vitamin D2 50,000 IU (Ca+D, n=44) or placebo (Ca, n=28) monthly for 24 weeks. Achievement of a 10-point radiographic severity score ≤1.5 and serum alkaline phosphatase ≤350 U/L. The median (range) age of enrolled children was 46 (15-102) months, and baseline characteristics were similar in the two groups. Mean (±SD) 25-hydroxyvitamin D (25(OH)D) was 30.2±13.2 nmol/L at baseline, and 29 (43%) had values rickets, there is a trend for vitamin D to improve the response to treatment with calcium carbonate as limestone, independent of baseline 25(OH)D concentrations. ClinicalTrials.gov NCT00949832. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts.

    Science.gov (United States)

    Mazars, C; Thion, L; Thuleau, P; Graziana, A; Knight, M R; Moreau, M; Ranjeva, R

    1997-11-01

    Using Nicotiana plumbaginifolia constitutively expressing the recombinant bioluminescent calcium indicator, aequorin, it has been previously demonstrated that plant cells react to cold-shock by an immediate rise in cytosolic calcium. Such an opportune system has been exploited to address the regulatory pathway involved in the calcium response. For this purpose, we have used protoplasts derived from N. plumbaginifolia leaves that behave as the whole plant but with a better reproducibility. By both immunodetecting cytoskeletal components on membrane ghosts and measuring the relative change in cytosolic calcium, we demonstrate that the organization of the cytoskeleton has profound influences on the calcium response. The disruption of the microtubule meshwork by various active drugs, such as colchicin, oryzalin and vinblastin, leads to an important increase in the cytosolic calcium (up to 400 nM) in cold-shocked protoplasts over control. beta-Lumicolchicin, an inactive analogue of colchicin, is ineffective either on cytoplasmic calcium increase or on microtubule organization. A microfilament disrupting drug, cytochalasin D, exerts a slight stimulatory effect, whereas the simultaneous disruption of microtubule and microfilament meshworks results in a dramatic increase in the calcium response to cold-shock. The results described in the present paper illustrate the role of the intracellular organization and, more specifically, the role of cytoskeleton in controlling the intensity of calcium response to an extracellular stimulus.

  1. One nuclear calcium transient induced by a single burst of action potentials represents the minimum signal strength in activity-dependent transcription in hippocampal neurons.

    Science.gov (United States)

    Yu, Yan; Oberlaender, Kristin; Bengtson, C Peter; Bading, Hilmar

    2017-07-01

    Neurons undergo dramatic changes in their gene expression profiles in response to synaptic stimulation. The coupling of neuronal excitation to gene transcription is well studied and is mediated by signaling pathways activated by cytoplasmic and nuclear calcium transients. Despite this, the minimum synaptic activity required to induce gene expression remains unknown. To address this, we used cultured hippocampal neurons and cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) that allows detection of nascent transcripts in the cell nucleus. We found that a single burst of action potentials, consisting of 24.4±5.1 action potentials during a 6.7±1.9s depolarization of 19.5±2.0mV causing a 9.3±0.9s somatic calcium transient, is sufficient to activate transcription of the immediate early gene arc (also known as Arg3.1). The total arc mRNA yield produced after a single burst-induced nuclear calcium transient was very small and, compared to unstimulated control neurons, did not lead to a significant increase in arc mRNA levels measured using quantitative reverse transcriptase PCR (qRT-PCR) of cell lysates. Significantly increased arc mRNA levels became detectable in hippocampal neurons that had undergone 5-8 consecutive burst-induced nuclear calcium transients at 0.05-0.15Hz. These results indicate that a single burst-induced nuclear calcium transient can activate gene expression and that transcription is rapidly shut off after synaptic stimulation has ceased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Calcium dynamics in vascular smooth muscle

    OpenAIRE

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  3. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines.

    Science.gov (United States)

    Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd

    2015-10-01

    Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    Science.gov (United States)

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  5. Multiple, disparate roles for calcium signaling in apoptosis of human prostate and cervical cancer cells exposed to diindolylmethane.

    Science.gov (United States)

    Savino, John A; Evans, Jodi F; Rabinowitz, Dorianne; Auborn, Karen J; Carter, Timothy H

    2006-03-01

    Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, causes growth arrest and apoptosis of cancer cells in vitro. DIM also induces endoplasmic reticulum (ER) stress, and thapsigargin, a specific inhibitor of the sarcoplasmic reticulum/ER calcium-dependent ATPase, enhances this effect. We asked whether elevated cytosolic free calcium [Ca2+]i is required for cytotoxicity of DIM and thapsigargin in two cancer cells lines (C33A, from cervix, and DU145, from prostate). [Ca2+]i was measured in real-time by FURA-2 fluorescence. We tested whether DIM, thapsigargin, and DIM + thapsigargin cause apoptosis, measured by nucleosome release, under conditions that prevented elevation of [Ca2+]i, using both cell-permeable and cell-impermeable forms of the specific calcium chelator BAPTA. DIM, like thapsigargin, rapidly mobilized ER calcium. C33A and DU145 responded differently to perturbations in Ca2+ homeostasis, suggesting that DIM induces apoptosis by different mechanisms in these two cell lines and/or that calcium mobilization also activates different survival pathways in C33A and DU145. Apoptosis in C33A was independent of increased [Ca2+]i, suggesting that depletion of ER Ca2+ stores may be sufficient for cell killing, whereas apoptosis in DU145 required elevated [Ca2+]i for full response. Inhibitor studies using cyclosporin A and KN93 showed that Ca2+ signaling is important for cell survival but the characteristics of this response also differed in the two cell lines. Our results underscore the complex and variable nature of cellular responses to disrupted Ca2+ homeostasis and suggest that alteration Ca2+ homeostasis in the ER can induce cellular apoptosis by both calcium-dependent and calcium-independent mechanisms.

  6. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    KAUST Repository

    Flegg, Mark B.

    2013-01-01

    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many models, the distribution of calcium is usually described by deterministic reaction-diffusion equations. Here we test the validity of the latter modeling approach by using two different models to calculate the frequency of localized calcium signals (calcium puffs) from clustered IP3 receptor channels. The complexity of the full calcium system is here limited to the basic opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated stochastically, while calcium concentration is deterministic and (ii) a fully stochastic model with noisy channel gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime method [M. B. Flegg, S. J. Chapman, and R. Erban, "The two-regime method for optimizing stochastic reaction-diffusion simulations," J. R. Soc., Interface 9, 859-868 (2012)] in order to simulate a large domain with precision required only near the Ca2+ absorbing channels. The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model (i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive noise in local concentrations of intracellular Ca2+ ions can substantially influence the occurrence of calcium signals. The presented approach and results may also be relevant for other cell-physiological first-passage time problems with small ligand concentration

  7. Estimation of ionized calcium, total calcium and albumin corrected calcium for the diagnosis of hypocalcaemia of malignancy

    International Nuclear Information System (INIS)

    Ijaz, A.; Mehmood, T.; Qureshi, A.H.; Anwar, M.; Dilawar, M.; Hussain, I.; Khan, F.A.; Khan, D.A.; Hussain, S.; Khan, I.A.

    2006-01-01

    Objective: To measure levels of ionized calcium, total calcium and albumin corrected calcium in patients with different malignant disorders for the diagnosis of hypercalcaemia of malignancy. Design: A case control comparative study. Place and Duration of Study: The study was carried out in the Department of Pathology, Army Medical College Rawalpindi, Armed Forces Institute of Pathology and Department of Oncology CMH, Rawalpindi from March 2003 to December 2003. Subjects and Methods: Ninety-seven patients of various malignant disorders, admitted in the Department of Oncology, CMH, Rawalpindi, and 39 age and gender-matched disease-free persons (as control) were included in the study. Blood ionized calcium (Ca/sup ++/), pH, sodium (Na/sup +/) and potassium (K/sup +/) were analysed by Ion selective electrode (ISE) on Easylyte> auto analyser. Other related parameters were measured by colorimetric methods. Results: Blood Ca/sup ++/ levels in patients suffering from malignant disorders were found significantly high (mean +- j 1.30+017 mmoV/L) as compared to control subjects (mean +- 1.23+0.03 mmoV/L) (p<0.001). The number of patients with hypercalcaemia of malignancy detected by Ca/sup ++/ estimation was significantly higher (38%) as compared to total calcium (8.4%) and albumin corrected calcium ACC (10.6%) (p<0.001). There was no statistically significant difference in other parameters e.g. phosphate, urea, creatinine, pH, Na/sup +/ and K/sup +/ levels in study subjects and controls. Conclusion: Detection of hypercalcaemia can be markedly improved if ionized calcium estimation is used in patients with malignant disorders. (author)

  8. Predictive model identifies key network regulators of cardiomyocyte mechano-signaling.

    Directory of Open Access Journals (Sweden)

    Philip M Tan

    2017-11-01

    Full Text Available Mechanical strain is a potent stimulus for growth and remodeling in cells. Although many pathways have been implicated in stretch-induced remodeling, the control structures by which signals from distinct mechano-sensors are integrated to modulate hypertrophy and gene expression in cardiomyocytes remain unclear. Here, we constructed and validated a predictive computational model of the cardiac mechano-signaling network in order to elucidate the mechanisms underlying signal integration. The model identifies calcium, actin, Ras, Raf1, PI3K, and JAK as key regulators of cardiac mechano-signaling and characterizes crosstalk logic imparting differential control of transcription by AT1R, integrins, and calcium channels. We find that while these regulators maintain mostly independent control over distinct groups of transcription factors, synergy between multiple pathways is necessary to activate all the transcription factors necessary for gene transcription and hypertrophy. We also identify a PKG-dependent mechanism by which valsartan/sacubitril, a combination drug recently approved for treating heart failure, inhibits stretch-induced hypertrophy, and predict further efficacious pairs of drug targets in the network through a network-wide combinatorial search.

  9. Effect of insulin resistance on intracellular signal transduction of vessels in diabetic

    International Nuclear Information System (INIS)

    Cen Rongguang; Wei Shaoying; Mo Xingju

    2003-01-01

    To investigate the relationship between the insulin resistance (IR) and the intracellular signal transduction of vessels, changes in fasting blood glucose (FBG), fasting insulin (FINS), triglyceride (TG), total cholesterol (TC), inositol triphosphate (IP 3 ), protein kinase C(PKC) and intracellular total calcium concentration in 31 diabetic patients were compared with those of 39 normal controls. The levels of FBG, FINS, TG and TC in diabetic patients were significantly higher than those of normal controls (P 3 and PKC in diabetic patients were significantly lower than those of normal controls (P<0.01). The results suggest that there is a causal relation between insulin resistance and abnormalities of cellular calcium metabolism and intracellular signal transduction of vessels

  10. Effect of sepsis on calcium uptake and content in skeletal muscle and regulation in vitro by calcium of total and myofibrillar protein breakdown in control and septic muscle: Results from a preliminary study

    International Nuclear Information System (INIS)

    Benson, D.W.; Hasselgren, P.O.; Hiyama, D.T.; James, J.H.; Li, S.; Rigel, D.F.; Fischer, J.E.

    1989-01-01

    Because high calcium concentration in vitro stimulates muscle proteolysis, calcium has been implicated in the pathogenesis of increased muscle breakdown in different catabolic conditions. Protein breakdown in skeletal muscle is increased during sepsis, but the effect of sepsis on muscle calcium uptake and content is not known. In this study the influence of sepsis, induced in rats by cecal ligation and puncture, on muscle calcium uptake and content was studied. Sixteen hours after cecal ligation and puncture or sham operation, calcium content of the extensor digitorum longus (EDL) and soleus (SOL) muscles was determined with an atomic absorption spectrometer. Calcium uptake was measured in intact SOL muscles incubated in the presence of calcium 45 (45Ca) for between 1 and 120 minutes. Total and myofibrillar protein breakdown was determined in SOL muscles, incubated in the presence of different calcium concentrations (0; 2.5; 5.0 mmol/L), and measured as release into the incubation medium of tyrosine and 3-methylhistidine (3-MH), respectively. Calcium content was increased by 51% (p less than 0.001) during sepsis in SOL and by 10% (p less than 0.05) in EDL muscle. There was no difference in 45Ca uptake between control and septic muscles during the early phase (1 to 5 minutes) of incubation. During more extended incubation (30 to 120 minutes), muscles from septic rats took up significantly more 45Ca than control muscles (p less than 0.05). Tyrosine release by incubated SOL muscles from control and septic rats was increased when calcium was added to the incubation medium, and at a calcium concentration of 2.5 mmol/L, the increase in tyrosine release was greater in septic than in control muscle. Addition of calcium to the incubation medium did not affect 3-MH release in control or septic muscle

  11. Fast-Spiking Interneurons Supply Feedforward Control of Bursting, Calcium, and Plasticity for Efficient Learning.

    Science.gov (United States)

    Owen, Scott F; Berke, Joshua D; Kreitzer, Anatol C

    2018-02-08

    Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs). In vivo silencing of FSIs increased bursting, calcium transients, and AMPA/NMDA ratios in MSNs. In a motor sequence task, FSI silencing increased the frequency of calcium transients but reduced the specificity with which transients aligned to individual task events. Consistent with this, ablation of FSIs disrupted the acquisition of striatum-dependent egocentric learning strategies. Together, our data support a model in which feedforward inhibition from FSIs temporally restricts MSN bursting and calcium-dependent synaptic plasticity to facilitate striatum-dependent sequence learning. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Role of calcium deficiency in development of nutritional rickets in Indian children: a case control study.

    Science.gov (United States)

    Aggarwal, Varun; Seth, Anju; Aneja, Satinder; Sharma, Bhawna; Sonkar, Pitamber; Singh, Satveer; Marwaha, Raman K

    2012-10-01

    Nutritional rickets is usually attributed to vitamin D deficiency. Studies from some tropical countries have postulated low dietary intake of calcium as the cause of nutritional rickets. Both vitamin D and dietary calcium deficiency are highly prevalent in India. Information on their relative contribution in the development of rickets in Indian children is limited. The aim was to study the role of calcium and vitamin D deficiency in causation of nutritional rickets in young Indian children. In a case-control study, 67 children with nutritional rickets and 68 age- and sex-matched healthy controls were compared for demographic factors, nutritional status, sun exposure (UV score), dietary calcium and phytate intake (for subjects not breast-fed at presentation), and biochemical parameters [serum calcium, inorganic phosphate, alkaline phosphatase, 25-hydroxyvitamin D (25OHD), and PTH]. Mean intake of calcium (204±129 vs. 453±234 mg/d; Prickets, significant negative correlations were seen between dietary calcium intake and radiological score (r=-0.28; P=0.03) and PTH (r=-0.26; P=0.02). No correlation was found between serum 25OHD level and radiological score or biochemical parameters of rickets. Rickets develops when low dietary calcium intake coexists with a low or borderline vitamin D nutrition status.

  13. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  14. Calcium Channel Genes Associated with Bipolar Disorder Modulate Lithium's Amplification of Circadian Rhythms

    Science.gov (United States)

    McCarthy, Michael J.; LeRoux, Melissa; Wei, Heather; Beesley, Stephen; Kelsoe, John R.; Welsh, David K.

    2015-01-01

    Bipolar disorder (BD) is associated with mood episodes and low amplitude circadian rhythms. Previously, we demonstrated that fibroblasts grown from BD patients show weaker amplification of circadian rhythms by lithium compared to control cells. Since calcium signals impact upon the circadian clock, and L-type calcium channels (LTCC) have emerged as genetic risk factors for BD, we examined whether loss of function in LTCCs accounts for the attenuated response to lithium in BD cells. We used fluorescent dyes to measure Ca2+ changes in BD and control fibroblasts after lithium treatment, and bioluminescent reporters to measure Per2∷luc rhythms in fibroblasts from BD patients, human controls, and mice while pharmacologically or genetically manipulating calcium channels. Longitudinal expression of LTCC genes (CACNA1C, CACNA1D and CACNB3) was then measured over 12-24 hr in BD and control cells. Our results indicate that independently of LTCCs, lithium stimulated intracellular Ca2+ less effectively in BD vs. control fibroblasts. In longitudinal studies, pharmacological inhibition of LTCCs or knockdown of CACNA1A, CACNA1C, CACNA1D and CACNB3 altered circadian rhythm amplitude. Diltiazem and knockdown of CACNA1C or CACNA1D eliminated lithium's ability to amplify rhythms. Knockdown of CACNA1A or CACNB3 altered baseline rhythms, but did not affect rhythm amplification by lithium. In human fibroblasts, CACNA1C genotype predicted the amplitude response to lithium, and the expression profiles of CACNA1C, CACNA1D and CACNB3 were altered in BD vs. controls. We conclude that in cells from BD patients, calcium signaling is abnormal, and that LTCCs underlie the failure of lithium to amplify circadian rhythms. PMID:26476274

  15. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling

    Directory of Open Access Journals (Sweden)

    Bendik C. Brinchmann

    2018-05-01

    Full Text Available Exposure to diesel exhaust particles (DEPs affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca2+]i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM on [Ca2+]i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n-hexane (n-Hex-EOM, dichloromethane (DCM-EOM, methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n-Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n-Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1 using micro-spectrofluorometry. The lipophilic n-Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca2+]i increases in HMEC-1. n-Hex-EOM triggered [Ca2+]i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE. By contrast, the less lipophilic DCM-EOM triggered [Ca2+]i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE. Both extracts increased [Ca2+]i via aryl hydrocarbon receptor (AhR non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca2+]i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n-hexane and DCM seem to induce rapid AhR-dependent [Ca2+]i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction

  16. Signal percolation through plants and the shape of the calcium signature.

    Science.gov (United States)

    Plieth, Christoph

    2010-04-01

    Plants respond to almost any kind of external stimulus with transients in their cytoplasmic free calcium concentration ([Ca(2+)](c)). A huge variety of kinetics recorded by optical techniques has been reported in the past. This variety has been credited the specificity needed to explain how information about incoming stimuli is evaluated by the organism and turned into the right physiological responses which provide advantages for survival and reproduction. A physiological response often takes place away from the site of stimulation. This requires cell-to-cell communication. Hence, responding cells are not necessarily directly stimulated but rather receive an indirect stimulus via cell-to-cell communication. It appears unlikely that the '[Ca(2+)](c) signature' in the primarily stimulated cell is conveyed over long distances via cell-to-cell communication from the 'receptor cells' to the 'effector cells'. Here, a novel aspect is highlighted to explain the variety of [Ca(2+)] kinetics seen by integrating methods of [Ca(2+)](c) recording. Plants can generally be seen as cellular automata with specific morphology and capable for cell-to-cell communication. Just a few rules are needed to demonstrate how waves of [Ca(2+)](c)-increases percolate through the organism and thereby deliver a broad variety of 'signatures'. Modelling intercellular signalling may be a possible way to find explanations for different kinds of signal transmission, signal amplification, wave formation, oscillations and stimulus-response coupling. The basic examples presented here show that care has to be taken when interpreting cellular '[Ca(2+)](c) signatures' recorded by optical techniques which integrate over a big number of cells or even whole plants.

  17. Amino alcohol- (NPS-2143 and quinazolinone-derived calcilytics (ATF936 and AXT914 differentially mitigate excessive signalling of calcium-sensing receptor mutants causing Bartter syndrome Type 5 and autosomal dominant hypocalcemia.

    Directory of Open Access Journals (Sweden)

    Saskia Letz

    Full Text Available Activating calcium sensing receptor (CaSR mutations cause autosomal dominant hypocalcemia (ADH characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics on activating CaSR mutants.All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o. To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914.All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants.The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations.

  18. Long-term In Vivo Calcium Imaging of Astrocytes Reveals Distinct Cellular Compartment Responses to Sensory Stimulation.

    Science.gov (United States)

    Stobart, Jillian L; Ferrari, Kim David; Barrett, Matthew J P; Stobart, Michael J; Looser, Zoe J; Saab, Aiman S; Weber, Bruno

    2018-01-01

    Localized, heterogeneous calcium transients occur throughout astrocytes, but the characteristics and long-term stability of these signals, particularly in response to sensory stimulation, remain unknown. Here, we used a genetically encoded calcium indicator and an activity-based image analysis scheme to monitor astrocyte calcium activity in vivo. We found that different subcellular compartments (processes, somata, and endfeet) displayed distinct signaling characteristics. Closer examination of individual signals showed that sensory stimulation elevated the number of specific types of calcium peaks within astrocyte processes and somata, in a cortical layer-dependent manner, and that the signals became more synchronous upon sensory stimulation. Although mice genetically lacking astrocytic IP3R-dependent calcium signaling (Ip3r2-/-) had fewer signal peaks, the response to sensory stimulation was sustained, suggesting other calcium pathways are also involved. Long-term imaging of astrocyte populations revealed that all compartments reliably responded to stimulation over several months, but that the location of the response within processes may vary. These previously unknown characteristics of subcellular astrocyte calcium signals provide new insights into how astrocytes may encode local neuronal circuit activity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. The functions of store-operated calcium channels.

    Science.gov (United States)

    Putney, James W; Steinckwich-Besançon, Natacha; Numaga-Tomita, Takuro; Davis, Felicity M; Desai, Pooja N; D'Agostin, Diane M; Wu, Shilan; Bird, Gary S

    2017-06-01

    Store-operated calcium channels provide calcium signals to the cytoplasm of a wide variety of cell types. The basic components of this signaling mechanism include a mechanism for discharging Ca 2+ stores (commonly but not exclusively phospholipase C and inositol 1,4,5-trisphosphate), a sensor in the endoplasmic reticulum that also serves as an activator of the plasma membrane channel (STIM1 and STIM2), and the store-operated channel (Orai1, 2 or 3). The advent of mice genetically altered to reduce store-operated calcium entry globally or in specific cell types has provided important tools to understand the functions of these widely encountered channels in specific and clinically important physiological systems. This review briefly discusses the history and cellular properties of store-operated calcium channels, and summarizes selected studies of their physiological functions in specific physiological or pathological contexts. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Published by Elsevier B.V.

  20. Evolution of the Calcium Paradigm: The Relation between Vitamin D, Serum Calcium and Calcium Absorption

    Directory of Open Access Journals (Sweden)

    Borje E. Christopher Nordin

    2010-09-01

    Full Text Available Osteoporosis is the index disease for calcium deficiency, just as rickets/osteomalacia is the index disease for vitamin D deficiency, but there is considerable overlap between them. The common explanation for this overlap is that hypovitaminosis D causes malabsorption of calcium which then causes secondary hyperparathyroidism and is effectively the same thing as calcium deficiency. This paradigm is incorrect. Hypovitaminosis D causes secondary hyperparathyroidism at serum calcidiol levels lower than 60 nmol/L long before it causes malabsorption of calcium because serum calcitriol (which controls calcium absorption is maintained until serum calcidiol falls below 20 nmol/L. This secondary hyperparathyroidism, probably due to loss of a “calcaemic” action of vitamin D on bone first described in 1957, destroys bone and explains why vitamin D insufficiency is a risk factor for osteoporosis. Vitamin D thus plays a central role in the maintenance of the serum (ionised calcium, which is more important to the organism than the preservation of the skeleton. Bone is sacrificed when absorbed dietary calcium does not match excretion through the skin, kidneys and bowel which is why calcium deficiency causes osteoporosis in experimental animals and, by implication, in humans.

  1. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows.

    Science.gov (United States)

    Hernandez, L L

    2017-12-01

    The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium

  2. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6.

    Science.gov (United States)

    van Goor, Mark K C; Hoenderop, Joost G J; van der Wijst, Jenny

    2017-06-01

    Maintaining plasma calcium levels within a narrow range is of vital importance for many physiological functions. Therefore, calcium transport processes in the intestine, bone and kidney are tightly regulated to fine-tune the rate of absorption, storage and excretion. The TRPV5 and TRPV6 calcium channels are viewed as the gatekeepers of epithelial calcium transport. Several calciotropic hormones control the channels at the level of transcription, membrane expression, and function. Recent technological advances have provided the first near-atomic resolution structural models of several TRPV channels, allowing insight into their architecture. While this field is still in its infancy, it has increased our understanding of molecular channel regulation and holds great promise for future structure-function studies of these ion channels. This review will summarize the mechanisms that control the systemic calcium balance, as well as extrapolate structural views to the molecular functioning of TRPV5/6 channels in epithelial calcium transport. Copyright © 2016. Published by Elsevier B.V.

  3. Intracellular sphingosine releases calcium from lysosomes.

    Science.gov (United States)

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-11-27

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.

  4. Experimental study of MRI signal changes of calcification

    International Nuclear Information System (INIS)

    Gong Xiangyang; Li Senhua; Li Rongfen; Hong Xiang; Gong Xiaoya; Xu Fengfeng

    1999-01-01

    Objective: To evaluate MRI signal changes according to different calcium compound, concentration and proportion, and try to give an reasonable explanation. Methods: Sixty samples composed of different calcium powders, various concentration and proportion of calcium were examined with CT and MRI. Five different calcium particles were evaluated with scanning electron microscopy. Results: (1) CT value of calcium gradually increased as the concentration increased; (2) CaSO 4 ·H 2 O was similar to CaCO 3 in terms of MRI T 1 WI signal intensity (P > 0.05); (3) Ca 3 (PO 4 ) 2 and Ca(OH) 2 showed hyperintensity in T 1 WI and was higher than other calcium salts (P 1 WI signal intensity of Ca 3 (PO 4 ) 2 / and Ca(OH) 2 showed biphasic curves with their peaks at 0.3 g/ml; (5) T 2 WI signal intensity of all series of calcium decreased as the concentration increased; (6) Signal intensity of mixed Ca 3 (PO 4 ) 2 /CaCO 3 was higher than CaHPO 4 ·2H 2 O/CaCO 3 on T 1 WI and lower on T 2 WI (P 3 , CaHPO 4 ·2H 2 O and CaSO 4 ·2H 2 O showed regular crystal shapes and smooth surface under scanning electron microscopy, but Ca 3 (PO 4 ) 2 and Ca(OH) 2 displayed their irregular figures and rough surface. Conclusions: Calcifications show variable MR signal due to difference of calcium compounds, various concentration and proportion of calcium. Understanding of these finding will help interpretation of MR images more precisely

  5. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    KAUST Repository

    Kim, Tae-Houn

    2010-05-04

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.

  6. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    KAUST Repository

    Kim, Tae-Houn; Bö hmer, Maik; Hu, Honghong; Nishimura, Noriyuki; Schroeder, Julian I.

    2010-01-01

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.

  7. Association of calcium sensing receptor polymorphisms at rs1801725 with circulating calcium in breast cancer patients.

    Science.gov (United States)

    Wang, Li; Widatalla, Sarrah E; Whalen, Diva S; Ochieng, Josiah; Sakwe, Amos M

    2017-08-02

    Breast cancer (BC) patients with late-stage and/or rapidly growing tumors are prone to develop high serum calcium levels which have been shown to be associated with larger and aggressive breast tumors in post and premenopausal women respectively. Given the pivotal role of the calcium sensing receptor (CaSR) in calcium homeostasis, we evaluated whether polymorphisms of the CASR gene at rs1801725 and rs1801726 SNPs in exon 7, are associated with circulating calcium levels in African American and Caucasian control subjects and BC cases. In this retrospective case-control study, we assessed the mean circulating calcium levels, the distribution of two inactivating CaSR SNPs at rs1801725 and rs1801726 in 199 cases and 384 age-matched controls, and used multivariable regression analysis to determine whether these SNPs are associated with circulating calcium in control subjects and BC cases. We found that the mean circulating calcium levels in African American subjects were higher than those in Caucasian subjects (p calcium levels were higher in BC cases compared to control subjects (p calcium levels in BC patients were independent of race. We also show that in BC cases and control subjects, the major alleles at rs1801725 (G/T, A986S) and at rs1801726 (C/G, Q1011E) were common among Caucasians and African Americans respectively. Compared to the wild type alleles, polymorphisms at the rs1801725 SNP were associated with higher calcium levels (p = 0.006) while those at rs1801726 were not. Using multivariable linear mixed-effects models and adjusting for age and race, we show that circulating calcium levels in BC cases were associated with tumor grade (p = 0.009), clinical stage (p = 0.003) and more importantly, with inactivating mutations of the CASR at the rs1801725 SNP (p = 0.038). These data suggest that decreased sensitivity of the CaSR to calcium due to inactivating polymorphisms at rs1801725, may predispose up to 20% of BC cases to high circulating calcium

  8. Calcium regulation and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Deepthi Rapaka

    2014-09-01

    Full Text Available Activation of the neuron induces transient fluctuations in [Ca2+]i. This transient rise in [Ca2+]i is dependent on calcium entry via calcium channels and release of calcium from intracellular stores, finally resulting in increase in calcium levels, which activates calcium regulatory proteins to restore the resting calcium levels by binding to the calcium-binding proteins, sequestration into the endoplasmic reticulum and the mitochondria, and finally extrusion of calcium spike potential from the cell by adenosine triphosphate-driven Ca2+ pumps and the Na+/Ca2+ exchanger. Improper regulation of calcium signaling, sequentially, likely contributes to synaptic dysfunction and excitotoxic and/or apoptotic death of the vulnerable neuronal populations. The cognitive decline associated with normal aging is not only due to neuronal loss, but is fairly the result of synaptic connectivity. Many evidences support that Ca2+ dyshomeostasis is implicated in normal brain aging. Thus the chief factor associated with Alzheimer’s disease was found to be increase in the levels of free intracellular calcium, demonstrating that the excessive levels might lead to cell death, which provides a key target for the calcium channel blockers might be used as the neuroprotective agents in Alzheimer’s disease.

  9. Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor.

    Directory of Open Access Journals (Sweden)

    Nasser B Alsaleh

    Full Text Available Engineered nanomaterial (ENM-mediated toxicity often involves triggering immune responses. Mast cells can regulate both innate and adaptive immune responses and are key effectors in allergic diseases and inflammation. Silver nanoparticles (AgNPs are one of the most prevalent nanomaterials used in consumer products due to their antimicrobial properties. We have previously shown that AgNPs induce mast cell degranulation that was dependent on nanoparticle physicochemical properties. Furthermore, we identified a role for scavenger receptor B1 (SR-B1 in AgNP-mediated mast cell degranulation. However, it is completely unknown how SR-B1 mediates mast cell degranulation and the intracellular signaling pathways involved. In the current study, we hypothesized that SR-B1 interaction with AgNPs directs mast cell degranulation through activation of signal transduction pathways that culminate in an increase in intracellular calcium signal leading to mast cell degranulation. For these studies, we utilized bone marrow-derived mast cells (BMMC isolated from C57Bl/6 mice and RBL-2H3 cells (rat basophilic leukemia cell line. Our data support our hypothesis and show that AgNP-directed mast cell degranulation involves activation of PI3K, PLCγ and an increase in intracellular calcium levels. Moreover, we found that influx of extracellular calcium is required for the cells to degranulate in response to AgNP exposure and is mediated at least partially via the CRAC channels. Taken together, our results provide new insights into AgNP-induced mast cell activation that are key for designing novel ENMs that are devoid of immune system activation.

  10. Differential effects of the steaming time and frequency for manufactured red Liriope platyphylla on nerve growth factor secretion ability, nerve growth factor receptor signaling pathway and regulation of calcium concentration.

    Science.gov (United States)

    Choi, Sun Il; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Hye Ryun; Lee, Young Ju; Son, Hong Joo; Lee, Hee Seob; Lee, Jong Sup; Kim, Hak Jin; Hwang, Dae Youn

    2012-11-01

    The herb Liriope platyphylla (LP) has been considered to have curative properties for diabetes, asthma and neurodegenerative disorders. To examine the effects of steaming time and frequency of manufactured red LP (RLP) on the nerve growth factor (NGF) secretion ability and NGF receptor signaling pathway, the NGF concentration, cell differentiation, NGF signaling pathway and calcium concentration were analyzed in neuronal cells treated with several types of LPs manufactured under different conditions. The maximum NGF secretion was observed in B35 cells treated with 50 µg/ml LP extract steamed for 9 h (9-SLP) and with two repeated steps (3 h steaming and 24 h air-dried) carried out 7 times (7-SALP). No significant changes in viability were detected in any of the cells treated with the various LPs, with the exception of 0-SLP and 0-SALP. In addition, PC12 cell differentiation was induced by treatment with the NGF-containing conditional medium (CM) collected from the RLP-treated cells. The levels of TrkA and extracellular signal-regulated kinase (ERK) phosphorylation in the high affinity NGF receptor signaling pathway were significantly higher in the cells treated with 3-SLP or 1-SALP/3-SALP CM compared with those treated with the vehicle CM. In the low affinity NGF receptor pathway, the expression levels of most components were higher in the 9-, 15- and 24-SALP CM-treated cells compared with the vehicle CM-treated cells. However, this level was significantly altered in cells treated with 3-SALP CM. Furthermore, an examination of the RLP function on calcium regulation revealed that only the LP- or RLP-treated cells exhibited changes in intracellular and extracellular calcium levels. RLP induced a significant decrease in the intracellular calcium levels and an increase in the extracellular calcium levels. These results suggest the possibility that steaming-processed LP may aid in the relief of neurodegenerative diseases through the NGF secretion ability and NGF

  11. Controlling the selective formation of calcium sulfate polymorphs at room temperature.

    Science.gov (United States)

    Tritschler, Ulrich; Van Driessche, Alexander E S; Kempter, Andreas; Kellermeier, Matthias; Cölfen, Helmut

    2015-03-23

    Calcium sulfate is a naturally abundant and technologically important mineral with a broad scope of applications. However, controlling CaSO4 polymorphism and, with it, its final material properties still represents a major challenge, and to date there is no universal method for the selective production of the different hydrated and anhydrous forms under mild conditions. Herein we report the first successful synthesis of pure anhydrite from solution at room temperature. We precipitated calcium sulfate in alcoholic media at low water contents. Moreover, by adjusting the amount of water in the syntheses, we can switch between the distinct polymorphs and fine-tune the outcome of the reaction, yielding either any desired CaSO4 phase in pure state or binary mixtures with predefined compositions. This concept provides full control over phase selection in CaSO4 mineralization and may allow for the targeted fabrication of corresponding materials for use in various areas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dietary influence on MAPK-signaling pathways and risk of colon and rectal cancer.

    Science.gov (United States)

    Slattery, Martha L; Lundgreen, Abbie; Wolff, Roger K

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways regulate cellular functions including cell proliferation, differentiation, migration, and apoptosis. Associations between genes in the DUSP, ERK1/2, JNK, and p38 MAPK-signaling pathways and dietary factors associated with growth factors, inflammation, and oxidative stress and risk of colon and rectal cancer were evaluated. Data include colon cases (n = 1555) and controls (n = 1956) and rectal cases (n = 754) and controls (n = 959). Statistically significant interactions were observed for the MAPK-signaling pathways after adjustment for multiple comparisons. DUSP genes interacted with carbohydrates, mutagen index, calories, calcium, vitamin D, lycopene, dietary fats, folic acid, and selenium. MAPK1, MAPK3, MAPK1, and RAF1 within the ERK1/2 MAPK-signaling pathway interacted with dietary fats and cruciferous vegetables. Within the JNK MAPK-signaling pathway, interactions between MAP3K7 and protein, vitamin C, iron, folic acid, carbohydrates, and cruciferous vegetables; MAP3K10 and folic acid; MAP3K9 and lutein/zeaxanthin; MAPK8 and calcium; MAP3K3 and calcium and lutein; MAP3K1 and cruciferous vegetables. Interaction within the p38-signaling pathway included MAPK14 with calories, carbohydrates saturated fat, selenium, vitamin C; MAP3K2 and carbohydrates, and folic acid. These data suggest that dietary factors involved in inflammation and oxidative stress interact with MAPK-signaling genes to alter risk of colorectal cancer.

  13. Use of seeds to control precipitation of calcium carbonate and determination of seed nature.

    Science.gov (United States)

    Donnet, Marcel; Bowen, Paul; Jongen, Nathalie; Lemaître, Jacques; Hofmann, Heinrich

    2005-01-04

    Understanding and controlling precipitation reactions is a major challenge for industrial crystallization. Calcium carbonate is a widely studied system: more than 3000 papers have been devoted to the subject over the past 10 years. The first step of the precipitation of calcium carbonate, from relatively concentrated solutions (0.01 mol/L), involves the formation of an initial gel phase which later transforms into calcite, vaterite, or a mixture of both phases. Our work aimed at controlling this first step. Nanosized seeds (8 nm), formed in situ, were used in order to control the often chaotic nucleation step which normally leads to poor phase selection and broad particle size distributions. Seeding has often been used to avoid spontaneous nucleation in metastable solutions for growth mechanism investigations of single-crystal calcium carbonate. Here the ability of a seeding method to control the precipitation reaction evolution even in the case of high supersaturation is demonstrated. The seeds and the presence of a polymeric additive (poly(acrylic acid)) allow the control of the precipitated polymorph and the specific surface area, while maintaining a narrow particle size distribution in the submicron range. Direct characterization methods did not succeed in identifying these nanoseeds; indirect methods using solubility calculations are used to demonstrate their existence and quantify size and number density of the nanosized seeds.

  14. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease

    Science.gov (United States)

    Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro

    2014-01-01

    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder. PMID:23254903

  15. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels

    DEFF Research Database (Denmark)

    Gopal, Sandeep; Søgaard, Pernille; Multhaupt, Hinke A B

    2015-01-01

    show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7...... with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan-TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement...

  16. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    Science.gov (United States)

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-01-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714

  17. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom.

    Science.gov (United States)

    Kashir, Junaid; Deguchi, Ryusaku; Jones, Celine; Coward, Kevin; Stricker, Stephen A

    2013-10-01

    Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca²⁺) in all animals that have been examined, and such Ca²⁺ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca²⁺ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca²⁺ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLCζ, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca²⁺ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca²⁺ signals are typically propagated as global waves that depend on Ca²⁺ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP₃). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca²⁺ transients are also examined. In addition, the importance of fertilization-induced Ca²⁺ signals for activating development is underscored by noting some major downstream effects of these signals in various animals. © 2013 Wiley Periodicals, Inc.

  18. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  19. Plant Genes Involved in Symbiotic Sinal Perception/Signal Transduction

    DEFF Research Database (Denmark)

    Binder, A; Soyano, T; Hayashi, H

    2014-01-01

    to nodule primordia formation, and the infection thread initiation in the root hairs guiding bacteria towards dividing cortical cells. This chapter focuses on the plant genes involved in the recognition of the symbiotic signal produced by rhizobia, and the downstream genes, which are part of a complex...... symbiotic signalling pathway that leads to the generation of calcium spiking in the nuclear regions and activation of transcription factors controlling symbiotic genes induction...

  20. NT2 derived neuronal and astrocytic network signalling.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality.

  1. Dietary calcium intake and Renin Angiotensin System polymorphisms alter the blood pressure response to aerobic exercise: a randomized control design

    Directory of Open Access Journals (Sweden)

    Tsongalis Gregory J

    2007-01-01

    Full Text Available Abstract Background Dietary calcium intake and the renin angiotensin system (RAS regulate blood pressure (BP by modulating calcium homeostasis. Despite similar BP regulatory effects, the influence of dietary calcium intake alone and combined with RAS polymorphisms on the BP response following acute aerobic exercise (i.e., postexercise hypotension has not been studied. Thus, we examined the effect of dietary calcium intake and selected RAS polymorphisms on postexercise hypotension. Methods Subjects were men (n = 50, 43.8 ± 1.3 yr with high BP (145.3 ± 1.5/85.9 ± 1.1 mm Hg. They completed three experiments: non-exercise control and two cycle bouts at 40% and 60% of maximal oxygen consumption (VO2max. Subjects provided 3 d food records on five protocol-specific occasions. Dietary calcium intake was averaged and categorized as low (1R A/C were analyzed with molecular methods. Genotypes were reduced from three to two: ACE II/ID and ACE DD; or AT1R AA and AT1R CC/AC. Repeated measure ANCOVA tested if BP differed among experiments, dietary calcium intake level and RAS polymorphisms. Results Systolic BP (SBP decreased 6 mm Hg after 40% and 60% VO2max compared to non-exercise control for 10 h with LowCa (p 2max versus non-exercise control for 10 h among ACE II/ID (6 mm Hg and AT1R AA (8 mm Hg; and by 8 mm Hg after 40% VO2max among ACE DD and AT1R CC/CA (p 2max compared to non-exercise control for 10 h (p 2max (p ≥ 0.05. Conclusion SBP decreased after exercise compared to non-exercise control among men with low but not high dietary calcium intake. Dietary calcium intake interacted with the ACE I/D and AT1R A/C polymorphisms to further modulate postexercise hypotension. Interactions among dietary calcium intake, exercise intensity and RAS polymorphisms account for some of the variability in the BP response to exercise.

  2. Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways.

    Science.gov (United States)

    Contreras, Laura; Satrústegui, Jorgina

    2009-03-13

    Ca2+ signaling in mitochondria has been mainly attributed to Ca2+ entry to the matrix through the Ca2+ uniporter and activation of mitochondrial matrix dehydrogenases. However, mitochondria can also sense increases in cytosolic Ca2+ through a mechanism that involves the aspartate-glutamate carriers, extramitochondrial Ca2+ activation of the NADH malate-aspartate shuttle (MAS). Both pathways are linked through the shared substrate alpha-ketoglutarate (alphaKG). Here we have studied the interplay between the two pathways under conditions of Ca2+ activation. We show that alphaKG becomes limiting when Ca2+ enters in brain or heart mitochondria, but not liver mitochondria, resulting in a drop in alphaKG efflux through the oxoglutarate carrier and in a drop in MAS activity. Inhibition of alphaKG efflux and MAS activity by matrix Ca2+ in brain mitochondria was fully reversible upon Ca2+ efflux. Because of their differences in cytosolic calcium concentration requirements, the MAS and Ca2+ uniporter-mitochondrial dehydrogenase pathways are probably sequentially activated during a Ca2+ transient, and the inhibition of MAS at the center of the transient may provide an explanation for part of the increase in lactate observed in the stimulated brain in vivo.

  3. Control of calcium carbonate precipitation in anaerobic reactors

    NARCIS (Netherlands)

    Langerak, van E.P.A.

    1998-01-01

    Anaerobic treatment of waste waters with a high calcium content may lead to excessive precipitation of calcium carbonate. So far, no proper methods were available to predict or reduce the extent of precipitation in an anaerobic treatment system. Moreover, it also was not clear to what

  4. Membrane mechanisms and intracellular signalling in cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Dunham, Philip B.

    1995-01-01

    Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation.......Volume regulation, Signal transduction, Calcium-calmodulin, Stretch-activated channels, Eicosanoids, Macromolecular crowding, Cytoskeleton, Protein phosphorylation, dephosphorylation....

  5. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway

    International Nuclear Information System (INIS)

    Liu, Chao-Hsin; Hung, Chi-Jr; Huang, Tsui-Hsien; Lin, Chi-Chang; Kao, Chia-Tze; Shie, Ming-You

    2014-01-01

    Bone healing needs a complex interaction of growth factors that establishes an environment for efficient bone formation. We examine how calcium silicate (CS) and tricalcium phosphate (β-TCP) cements influence the behavior of human dental pulp cells (hDPCs) through fibroblast growth factor receptor (FGFR) and active MAPK pathways, in particular ERK. The hDPCs are cultured with β-TCP and CS, after which the cells' viability and odontogenic differentiation markers are determined by using PrestoBlue® assay and western blot, respectively. The effect of small interfering RNA (siRNA) transfection targeting FGFR was also evaluated. The results showed that CS promoted cell proliferation and enhances FGFR expression. It was also found that CS increases ERK and p38 activity in hDPCs, and furthermore, raises the expression and secretion of DSP, and DMP-1. Additionally, statistically significant differences (p < 0.05) have been found in the calcium deposition in si-FGFR transfection and ERK inhibitor between CS and β-TCP; these variations indicated that ERK/MAPK signaling is involved in the silicon-induced odontogenic differentiation of hDPCs. The current study shows that CS substrates play a key role in odontoblastic differentiation of hDPCs through FGFR and modulate ERK/MAPK activation. - Highlights: • CS influences the behavior of hDPCs through fibroblast growth factor receptor. • CS increases ERK and p38 activity in hDPCs. • ERK/MAPK signaling is involved in the Si-induced odontogenic differentiation of hDPCs. • Ca staining shows that FGFR regulates hDPC differentiation on CS, but not on β-TCP

  6. Calcium Input Frequency, Duration and Amplitude Differentially Modulate the Relative Activation of Calcineurin and CaMKII

    Science.gov (United States)

    Li, Lu; Stefan, Melanie I.; Le Novère, Nicolas

    2012-01-01

    NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors. PMID:22962589

  7. Calcium/Calmodulin-dependent Protein Kinase II is a Ubiquitous Molecule in Human Long-term Memory Synaptic Plasticity: A Systematic Review

    Science.gov (United States)

    Ataei, Negar; Sabzghabaee, Ali Mohammad; Movahedian, Ahmad

    2015-01-01

    Background: Long-term memory is based on synaptic plasticity, a series of biochemical mechanisms include changes in structure and proteins of brain's neurons. In this article, we systematically reviewed the studies that indicate calcium/calmodulin kinase II (CaMKII) is a ubiquitous molecule among different enzymes involved in human long-term memory and the main downstream signaling pathway of long-term memory. Methods: All of the observational, case–control and review studies were considered and evaluated by the search engines PubMed, Cochrane Central Register of Controlled Trials and ScienceDirect Scopus between 1990 and February 2015. We did not carry out meta-analysis. Results: At the first search, it was fined 1015 articles which included “synaptic plasticity” OR “neuronal plasticity” OR “synaptic density” AND memory AND “molecular mechanism” AND “calcium/calmodulin-dependent protein kinase II” OR CaMKII as the keywords. A total of 335 articles were duplicates in the databases and eliminated. A total of 680 title articles were evaluated. Finally, 40 articles were selected as reference. Conclusions: The studies have shown the most important intracellular signal of long-term memory is calcium-dependent signals. Calcium linked calmodulin can activate CaMKII. After receiving information for learning and memory, CaMKII is activated by Glutamate, the most important neurotransmitter for memory-related plasticity. Glutamate activates CaMKII and it plays some important roles in synaptic plasticity modification and long-term memory. PMID:26445635

  8. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica.

    Science.gov (United States)

    Fang, Huihui; Jing, Tao; Liu, Zhiqiang; Zhang, Liping; Jin, Zhuping; Pei, Yanxi

    2014-12-01

    The oscillation of intracellular calcium (Ca(2+)) concentration is a primary event in numerous biological processes in plants, including stress response. Hydrogen sulfide (H2S), an emerging gasotransmitter, was found to have positive effects in plants responding to chromium (Cr(6+)) stress through interacting with Ca(2+) signaling. While Ca(2+) resemblances H2S in mediating biotic and abiotic stresses, crosstalk between the two pathways remains unclear. In this study, Ca(2+) signaling interacted with H2S to produce a complex physiological response, which enhanced the Cr(6+) tolerance in foxtail millet (Setaria italica). Results indicate that Cr(6+) stress activated endogenous H2S synthesis as well as Ca(2+) signaling. Moreover, toxic symptoms caused by Cr(6+) stress were strongly moderated by 50μM H2S and 20mM Ca(2+). Conversely, treatments with H2S synthesis inhibitor and Ca(2+) chelators prior to Cr(6+)-exposure aggravated these toxic symptoms. Interestingly, Ca(2+) upregulated expression of two important factors in metal metabolism, MT3A and PCS, which participated in the biosynthesis of heavy metal chelators, in a H2S-dependent manner to cope with Cr(6+) stress. These findings also suggest that the H2S dependent pathway is a component of the Ca(2+) activating antioxidant system and H2S partially contributes Ca(2+)-activating antioxidant system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Parallel Stochastic discrete event simulation of calcium dynamics in neuron.

    Science.gov (United States)

    Ishlam Patoary, Mohammad Nazrul; Tropper, Carl; McDougal, Robert A; Zhongwei, Lin; Lytton, William W

    2017-09-26

    The intra-cellular calcium signaling pathways of a neuron depends on both biochemical reactions and diffusions. Some quasi-isolated compartments (e.g. spines) are so small and calcium concentrations are so low that one extra molecule diffusing in by chance can make a nontrivial difference in its concentration (percentage-wise). These rare events can affect dynamics discretely in such way that they cannot be evaluated by a deterministic simulation. Stochastic models of such a system provide a more detailed understanding of these systems than existing deterministic models because they capture their behavior at a molecular level. Our research focuses on the development of a high performance parallel discrete event simulation environment, Neuron Time Warp (NTW), which is intended for use in the parallel simulation of stochastic reaction-diffusion systems such as intra-calcium signaling. NTW is integrated with NEURON, a simulator which is widely used within the neuroscience community. We simulate two models, a calcium buffer and a calcium wave model. The calcium buffer model is employed in order to verify the correctness and performance of NTW by comparing it to a serial deterministic simulation in NEURON. We also derived a discrete event calcium wave model from a deterministic model using the stochastic IP3R structure.

  10. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy.

    Science.gov (United States)

    Lauterbach, Marcel A; Ronzitti, Emiliano; Sternberg, Jenna R; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes.

  11. Calcium Signals from the Vacuole

    Directory of Open Access Journals (Sweden)

    Gerald Schönknecht

    2013-10-01

    Full Text Available The vacuole is by far the largest intracellular Ca2+ store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca2+ release and Ca2+ uptake is summarized, and how different vacuolar Ca2+ channels and Ca2+ pumps may contribute to Ca2+ signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vacuolar Ca2+ transporters is compared for different clades of photosynthetic eukaryotes. There are several candidates for vacuolar Ca2+ channels that could elicit cytosolic [Ca2+] transients. Typical second messengers, such as InsP3 and cADPR, seem to trigger vacuolar Ca2+ release, but the molecular mechanism of this Ca2+ release still awaits elucidation. Some vacuolar Ca2+ channels have been identified on a molecular level, the voltage-dependent SV/TPC1 channel, and recently two cyclic-nucleotide-gated cation channels. However, their function in Ca2+ signaling still has to be demonstrated. Ca2+ pumps in addition to establishing long-term Ca2+ homeostasis can shape cytosolic [Ca2+] transients by limiting their amplitude and duration, and may thus affect Ca2+ signaling.

  12. Corrosion control of galvanized steel using a phosphate/calcium ion inhibitor mixture

    International Nuclear Information System (INIS)

    Zin, I.M.; Lyon, S.B.; Pokhmurskii, V.I.

    2003-01-01

    The corrosion inhibition of galvanized steel was studied in artificial acid rain solution using extracts of pigments normally used in organic coatings for corrosion control. It was established that a combination of zinc phosphate/molybdate and calcium ion exchange silica has a significant synergetic anticorrosion effect in the acid rain solution compared to the pigments used alone. Further, the charge transfer resistance of galvanized steel in acid rain solution saturated by the above pigment blend approaches that of strontium chromate in artificial acid rain solution. Use of the pigment blend was found to lead to development of a protective film, which is thought to be a complex mixture of calcium phosphates and zinc phosphate

  13. Ryanodine receptor gating controls generation of diastolic calcium waves in cardiac myocytes

    Science.gov (United States)

    Petrovič, Pavol; Valent, Ivan; Cocherová, Elena; Pavelková, Jana

    2015-01-01

    The role of cardiac ryanodine receptor (RyR) gating in the initiation and propagation of calcium waves was investigated using a mathematical model comprising a stochastic description of RyR gating and a deterministic description of calcium diffusion and sequestration. We used a one-dimensional array of equidistantly spaced RyR clusters, representing the confocal scanning line, to simulate the formation of calcium sparks. Our model provided an excellent description of the calcium dependence of the frequency of diastolic calcium sparks and of the increased tendency for the production of calcium waves after a decrease in cytosolic calcium buffering. We developed a hypothesis relating changes in the propensity to form calcium waves to changes of RyR gating and tested it by simulation. With a realistic RyR gating model, increased ability of RyR to be activated by Ca2+ strongly increased the propensity for generation of calcium waves at low (0.05–0.1-µM) calcium concentrations but only slightly at high (0.2–0.4-µM) calcium concentrations. Changes in RyR gating altered calcium wave formation by changing the calcium sensitivity of spontaneous calcium spark activation and/or the average number of open RyRs in spontaneous calcium sparks. Gating changes that did not affect RyR activation by Ca2+ had only a weak effect on the propensity to form calcium waves, even if they strongly increased calcium spark frequency. Calcium waves induced by modulating the properties of the RyR activation site could be suppressed by inhibiting the spontaneous opening of the RyR. These data can explain the increased tendency for production of calcium waves under conditions when RyR gating is altered in cardiac diseases. PMID:26009544

  14. Diabetes: Models, Signals and control

    Science.gov (United States)

    Cobelli, C.

    2010-07-01

    Diabetes and its complications impose significant economic consequences on individuals, families, health systems, and countries. The control of diabetes is an interdisciplinary endeavor, which includes significant components of modeling, signal processing and control. Models: first, I will discuss the minimal (coarse) models which describe the key components of the system functionality and are capable of measuring crucial processes of glucose metabolism and insulin control in health and diabetes; then, the maximal (fine-grain) models which include comprehensively all available knowledge about system functionality and are capable to simulate the glucose-insulin system in diabetes, thus making it possible to create simulation scenarios whereby cost effective experiments can be conducted in silico to assess the efficacy of various treatment strategies - in particular I will focus on the first in silico simulation model accepted by FDA as a substitute to animal trials in the quest for optimal diabetes control. Signals: I will review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the crucial role of models to enhance the interpretation of their time-series signals, and on the opportunities that they present for automation of diabetes control. Control: I will review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, I will discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers.

  15. Calcium oxalate stone and gout.

    Science.gov (United States)

    Marickar, Y M Fazil

    2009-12-01

    Gout is well known to be produced by increased uric acid level in blood. The objective of this paper is to assess the relationship between gout and calcium oxalate stone formation in the humans. 48 patients with combination of gout and calcium oxalate stone problem were included. The biochemical values of this group were compared with 38 randomly selected uric acid stone patients with gout, 43 stone patients with gout alone, 100 calcium oxalate stone patients without gout and 30 controls, making a total of 259 patients. Various biochemical parameters, namely serum calcium, phosphorus and uric acid and 24-h urine calcium, phosphorus, uric acid, oxalate, citrate and magnesium were analysed. ANOVA and Duncan's multiple-range tests were performed to assess statistical significance of the variations. The promoters of stone formation, namely serum calcium (P stone patients and gouty calcium oxalate stone patients compared to the non-gouty patients and controls. Urine oxalate (P stones patients. The inhibitor urine citrate (P stone gouty patients, followed by the gouty uric acid stone formers and gouty calcium oxalate stone patients. The high values of promoters, namely uric acid and calcium in the gouty stone patients indicate the tendency for urinary stone formation in the gouty stone patients. There is probably a correlation between gout and calcium oxalate urinary stone. We presume this mechanism is achieved through the uric acid metabolism. The findings point to the summation effect of metabolic changes in development of stone disease.

  16. Phytoplankton calcification as an effective mechanism to prevent cellular calcium poisoning

    Science.gov (United States)

    Müller, M. N.; Ramos, J. Barcelos e.; Schulz, K. G.; Riebesell, U.; Kaźmierczak, J.; Gallo, F.; Mackinder, L.; Li, Y.; Nesterenko, P. N.; Trull, T. W.; Hallegraeff, G. M.

    2015-08-01

    Marine phytoplankton has developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 μmol L-1 in the presence of seawater Ca2+ concentrations of 10 mmol L-1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological time scales. For example, the Cretaceous (145 to 66 Ma ago), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to four times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium-sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to prevent cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations.

  17. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    Science.gov (United States)

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Non-rigid estimation of cell motion in calcium time-lapse images

    Science.gov (United States)

    Hachi, Siham; Lucumi Moreno, Edinson; Desmet, An-Sofie; Vanden Berghe, Pieter; Fleming, Ronan M. T.

    2016-03-01

    Calcium imaging is a widely used technique in neuroscience permitting the simultaneous monitoring of electro- physiological activity of hundreds of neurons at single cell resolution. Identification of neuronal activity requires rapid and reliable image analysis techniques, especially when neurons fire and move simultaneously over time. Traditionally, image segmentation is performed to extract individual neurons in the first frame of a calcium sequence. Thereafter, the mean intensity is calculated from the same region of interest in each frame to infer calcium signals. However, when cells move, deform and fire, this segmentation on its own generates artefacts and therefore biased neuronal activity. Therefore, there is a pressing need to develop a more efficient cell tracking technique. We hereby present a novel vision-based cell tracking scheme using a thin-plate spline deformable model. The thin-plate spline warping is based on control points detected using the Fast from Accelerated Segment Test descriptor and tracked using the Lucas-Kanade optical flow. Our method is able to track neurons in calcium time-series, even when there are large changes in intensity, such as during a firing event. The robustness and efficiency of the proposed approach is validated on real calcium time-lapse images of a neuronal population.

  19. Dividing traffic cluster into parts by signal control

    Science.gov (United States)

    Nagatani, Takashi

    2018-02-01

    When a cluster of vehicles with various speeds moves through the series of signals, the cluster breaks down by stopping at signals and results in smaller groups of vehicles. We present the nonlinear-map model of the motion of vehicles controlled by the signals. We study the breakup of a cluster of vehicles through the series of signals. The cluster of vehicles is divided into various groups by controlling the cycle time of signals. The vehicles within each group move with the same mean velocity. The breakup of the traffic cluster depends highly on the signal control. The dependence of dividing on both cycle time and vehicular speed is clarified. Also, we investigate the effect of the irregular interval between signals on dividing.

  20. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology

    OpenAIRE

    Gryshchenko, Oleksiy; Gerasimenko, Julia V.; Peng, Shuang; Gerasimenko, Oleg V.; Petersen, Ole Holger

    2018-01-01

    Physiological Ca2+ signals in pancreatic acinar cells control fluid and\\ud enzyme secretion, whereas excessive Ca2+ signals induced by pathological agents\\ud induce destructive processes leading to acute pancreatitis. Ca2+ signals in the periacinar\\ud stellate cells may also play a role in the development of acute pancreatitis. In\\ud this study, we have explored Ca2+ signalling in the different cell types to be found in\\ud the acinar environment of the pancreatic tissue. We have, for the firs...

  1. Effect of calcium from dairy and dietary supplements on faecal fat excretion: a meta-analysis of randomized controlled trials

    DEFF Research Database (Denmark)

    Christensen, R.; Lorenzen, Janne Kunchel; Svith, Carina Roholm

    2009-01-01

    Observational studies have found that dietary calcium intake is inversely related to body weight and body fat mass. One explanatory mechanism is that dietary calcium increases faecal fat excretion. To examine the effect of calcium from dietary supplements or dairy products on quantitative faecal...... fat excretion, we performed a systematic review with meta-analysis. We included randomized, controlled trials of calcium (supplements or dairy) in healthy subjects, where faecal fat excretion was measured. Meta-analyses used random-effects models with changes in faecal fat excreted expressed...

  2. Calcium measurements in living filamentous fungi expressing codon-optimized aequorin

    NARCIS (Netherlands)

    Nelson, G.; Kozlova-Zwinderman, O.; Collis, A.J.; Knight, M.R.; Fincham, J.R.S.; Stanger, C.P.; Renwick, A.; Hessing, J.G.M.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Read, N.D.

    2004-01-01

    Calcium signalling is little understood in filamentous fungi largely because easy and routine methods for calcium measurement in living hyphae have previously been unavailable. We have developed the recombinant aequorin method for this purpose. High levels of aequorin expression were obtained in

  3. STIM and Orai isoform expression in pregnant human myometrium: a potential role in calcium signaling during pregnancy.

    Directory of Open Access Journals (Sweden)

    Evonne eChin-Smith

    2014-05-01

    Full Text Available Store-operated calcium (Ca2+ entry (SOCE can be mediated by two novel proteins, STIM/Orai. We have previously demonstrated that members of the TRPC family, putative basal and store operated calcium entry channels, are present in human myometrium and regulated by labor associated stimuli IL-1β and mechanical stretch. Although STIM and Orai isoforms (1-3 have been reported in other smooth muscle cell types, there is little known about the expression or gestational regulation of STIM and Orai expression in human myometrium. Total RNA was isolated from lower segment human myometrial biopsies obtained at caesarean section from women at the time of preterm no labor (PTNL, preterm labor (PTL, term non-labor (TNL and term with labor (TL; primary cultured human uterine smooth muscle cells, and a human myometrial cell line (hTERT-HM. STIM1-2, and Orai1-3 mRNA expression was assessed by quantitative real-time PCR. All five genes were expressed in myometrial tissue and cultured cells. Orai2 was the most abundant Orai isoform in human myometrium. Expression of STIM1-2/Orai1-3 did not alter with the onset of labor. Orai1 mRNA expression in cultured cells was enhanced by IL-1β treatment. This novel report of STIM1-2 and Orai1-3 mRNA expression in pregnant human myometrium and Orai1 regulation by IL-1β indicates a potential role for these proteins in calcium signaling in human myometrium during pregnancy.

  4. Calcium metabolism in birds.

    Science.gov (United States)

    de Matos, Ricardo

    2008-01-01

    Calcium is one of the most important plasma constituents in mammals and birds. It provides structural strength and support (bones and eggshell) and plays vital roles in many of the biochemical reactions in the body. The control of calcium metabolism in birds is highly efficient and closely regulated in a number of tissues, primarily parathyroid gland, intestine, kidney, and bone. The hormones with the greatest involvement in calcium regulation in birds are parathyroid hormone, 1,25-dihydroxyvitamin D(3) (calcitriol), and estrogen, with calcitonin playing a minor and uncertain role. The special characteristics of calcium metabolism in birds, mainly associated with egg production, are discussed, along with common clinical disorders secondary to derangements in calcium homeostasis.

  5. Acrolein induces Hsp72 via both PKCdelta/JNK and calcium signaling pathways in human umbilical vein endothelial cells.

    Science.gov (United States)

    Misonou, Yoshiko; Takahashi, Motoko; Park, Yong Seek; Asahi, Michio; Miyamoto, Yasuhide; Sakiyama, Haruhiko; Cheng, Xinyao; Taniguchi, Naoyuki

    2005-05-01

    Acrolein is a highly electrophilic alpha,beta-unsaturated aldehydes to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. A number of studies have reported that acrolein evokes downstream signaling via an elevation in cellular oxidative stress. Here, we report that low concentrations of acrolein induce Hsp72 in human umbilical vein endothelial cells (HUVEC) and that both the PKCdelta/JNK pathway and calcium pathway were involved in the induction. The findings confirm that the production of reactive oxygen species (ROS) is not directly involved in the pathway. The induction of Hsp72 was not observed in other cells such as smooth muscle cells (SMC) or COS-1 cells. The results suggest that HUVEC have a unique defense system against cell damage by acrolein in which Hsp72 is induced via activation of both the PKCd/JNK and the calcium pathway.

  6. Rare variants in calcium homeostasis modulator 1 (CALHM1 found in early onset Alzheimer's disease patients alter calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Fanny Rubio-Moscardo

    Full Text Available Calcium signaling in the brain is fundamental to the learning and memory process and there is evidence to suggest that its dysfunction is involved in the pathological pathways underlying Alzheimer's disease (AD. Recently, the calcium hypothesis of AD has received support with the identification of the non-selective Ca(2+-permeable channel CALHM1. A genetic polymorphism (p. P86L in CALHM1 reduces plasma membrane Ca(2+ permeability and is associated with an earlier age-at-onset of AD. To investigate the role of CALHM1 variants in early-onset AD (EOAD, we sequenced all CALHM1 coding regions in three independent series comprising 284 EOAD patients and 326 controls. Two missense mutations in patients (p.G330D and p.R154H and one (p.A213T in a control individual were identified. Calcium imaging analyses revealed that while the mutation found in a control (p.A213T behaved as wild-type CALHM1 (CALHM1-WT, a complete abolishment of the Ca(2+ influx was associated with the mutations found in EOAD patients (p.G330D and p.R154H. Notably, the previously reported p. P86L mutation was associated with an intermediate Ca(2+ influx between the CALHM1-WT and the p.G330D and p.R154H mutations. Since neither expression of wild-type nor mutant CALHM1 affected amyloid ß-peptide (Aß production or Aß-mediated cellular toxicity, we conclude that rare genetic variants in CALHM1 lead to Ca(2+ dysregulation and may contribute to the risk of EOAD through a mechanism independent from the classical Aß cascade.

  7. An Exploration of the Calcium-Binding Mode of Egg White Peptide, Asp-His-Thr-Lys-Glu, and In Vitro Calcium Absorption Studies of Peptide-Calcium Complex.

    Science.gov (United States)

    Sun, Na; Jin, Ziqi; Li, Dongmei; Yin, Hongjie; Lin, Songyi

    2017-11-08

    The binding mode between the pentapeptide (DHTKE) from egg white hydrolysates and calcium ions was elucidated upon its structural and thermodynamics characteristics. The present study demonstrated that the DHTKE peptide could spontaneously bind calcium with a 1:1 stoichiometry, and that the calcium-binding site corresponded to the carboxyl oxygen, amino nitrogen, and imidazole nitrogen atoms of the DHTKE peptide. Moreover, the effect of the DHTKE-calcium complex on improving the calcium absorption was investigated in vitro using Caco-2 cells. Results showed that the DHTKE-calcium complex could facilitate the calcium influx into the cytosol and further improve calcium absorption across Caco-2 cell monolayers by more than 7 times when compared to calcium-free control. This study facilitates the understanding about the binding mechanism between peptides and calcium ions as well as suggests a potential application of egg white peptides as nutraceuticals to improve calcium absorption.

  8. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    Science.gov (United States)

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  9. Modeling oscillatory control in NF-¿B, p53 and Wnt signaling

    DEFF Research Database (Denmark)

    Mengel, Benedicte; Hunziker, Alexander; Pedersen, Lykke

    2010-01-01

    Oscillations are commonly observed in cellular behavior and span a wide range of timescales, from seconds in calcium signaling to 24 hours in circadian rhythms. In between lie oscillations with time periods of 1-5 hours seen in NF-¿B, p53 and Wnt signaling, which play key roles in the immune system......, cell growth/death and embryo development, respectively. In the first part of this article, we provide a brief overview of simple deterministic models of oscillations. In particular, we explain the mechanism of saturated degradation that has been used to model oscillations in the NF-¿B, p53 and Wnt...

  10. ROS-activated calcium signaling mechanisms regulating endothelial barrier function.

    Science.gov (United States)

    Di, Anke; Mehta, Dolly; Malik, Asrar B

    2016-09-01

    Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa.

    Science.gov (United States)

    Gonçalves, A Pedro; Cordeiro, J Miguel; Monteiro, João; Lucchi, Chiara; Correia-de-Sá, Paulo; Videira, Arnaldo

    2015-10-01

    Staurosporine-induced cell death in Neurospora crassa includes a well defined sequence of alterations in cytosolic calcium levels, comprising extracellular Ca(2+) influx and mobilization of Ca(2+) from internal stores. Here, we show that cells undergoing respiratory stress due to the lack of certain components of the mitochondrial complex I (like the 51kDa and 14kDa subunits) or the Ca(2+)-binding alternative NADPH dehydrogenase NDE-1 are hypersensitive to staurosporine and incapable of setting up a proper intracellular Ca(2+) response. Cells expressing mutant forms of NUO51 that mimic human metabolic diseases also presented Ca(2+) signaling deficiencies. Accumulation of reactive oxygen species is increased in cells lacking NDE-1 and seems to be required for Ca(2+) oscillations in response to staurosporine. Measurement of the mitochondrial levels of Ca(2+) further supported the involvement of these organelles in staurosporine-induced Ca(2+) signaling. In summary, our data indicate that staurosporine-induced fungal cell death involves a sophisticated response linking Ca(2+) dynamics and bioenergetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Calcium Co-regulates Oxidative Metabolism and ATP Synthase-dependent Respiration in Pancreatic Beta Cells

    Science.gov (United States)

    De Marchi, Umberto; Thevenet, Jonathan; Hermant, Aurelie; Dioum, Elhadji; Wiederkehr, Andreas

    2014-01-01

    Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)+ ratio. PMID:24554722

  13. Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels.

    Science.gov (United States)

    Nanou, Evanthia; Lee, Amy; Catterall, William A

    2018-05-02

    Activity-dependent regulation controls the balance of synaptic excitation to inhibition in neural circuits, and disruption of this regulation impairs learning and memory and causes many neurological disorders. The molecular mechanisms underlying short-term synaptic plasticity are incompletely understood, and their role in inhibitory synapses remains uncertain. Here we show that regulation of voltage-gated calcium (Ca 2+ ) channel type 2.1 (Ca V 2.1) by neuronal Ca 2+ sensor (CaS) proteins controls synaptic plasticity and excitation/inhibition balance in a hippocampal circuit. Prevention of CaS protein regulation by introducing the IM-AA mutation in Ca V 2.1 channels in male and female mice impairs short-term synaptic facilitation at excitatory synapses of CA3 pyramidal neurons onto parvalbumin (PV)-expressing basket cells. In sharp contrast, the IM-AA mutation abolishes rapid synaptic depression in the inhibitory synapses of PV basket cells onto CA1 pyramidal neurons. These results show that CaS protein regulation of facilitation and inactivation of Ca V 2.1 channels controls the direction of short-term plasticity at these two synapses. Deletion of the CaS protein CaBP1/caldendrin also blocks rapid depression at PV-CA1 synapses, implicating its upregulation of inactivation of Ca V 2.1 channels in control of short-term synaptic plasticity at this inhibitory synapse. Studies of local-circuit function revealed reduced inhibition of CA1 pyramidal neurons by the disynaptic pathway from CA3 pyramidal cells via PV basket cells and greatly increased excitation/inhibition ratio of the direct excitatory input versus indirect inhibitory input from CA3 pyramidal neurons to CA1 pyramidal neurons. This striking defect in local-circuit function may contribute to the dramatic impairment of spatial learning and memory in IM-AA mice. SIGNIFICANCE STATEMENT Many forms of short-term synaptic plasticity in neuronal circuits rely on regulation of presynaptic voltage-gated Ca 2+ (Ca V

  14. Effect of calcium chloride treatments on calcium content, anthracnose severity and antioxidant activity in papaya fruit during ambient storage.

    Science.gov (United States)

    Madani, Babak; Mirshekari, Amin; Yahia, Elhadi

    2016-07-01

    There have been no reports on the effects of preharvest calcium application on anthracnose disease severity, antioxidant activity and cellular changes during ambient storage of papaya, and therefore the objective of this study was to investigate these effects. Higher calcium concentrations (1.5 and 2% w/v) increased calcium concentration in the peel and pulp tissues, maintained firmness, and reduced anthracnose incidence and severity. While leakage of calcium-treated fruit was lower for 1.5 and 2% calcium treatments compared to the control, microscopic results confirmed that pulp cell wall thickness was higher after 6 days in storage, for the 2% calcium treatment compared to the control. Calcium-treated fruit also had higher total antioxidant activity and total phenolic compounds during storage. Calcium chloride, especially at higher concentrations, is effective in maintaining papaya fruit quality during ambient storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Calcium-sensing receptor gene polymorphism (rs7652589) is associated with calcium nephrolithiasis in the population of Yi nationality in Southwestern China.

    Science.gov (United States)

    Li, Hao; Zhang, Jianhua; Long, Jiang; Shi, Jiarun; Luo, Yuhui

    2018-04-16

    The calcium-sensing receptor (CaSR) gene plays an important role in regulating the Ca 2+ balance and reducing the risk for calcium stones. In this study, we evaluated the association of CaSR polymorphisms with calcium nephrolithiasis in the population of Yi nationality in Southwestern China. Biochemical variables were evaluated in 624 calcium nephrolithiasis patients and 470 age-matched healthy controls without a history of nephrolithiasis. CaSR polymorphisms rs7652589, rs1501899, rs1801725 (Ala986Ser), rs1042636 (Arg990Gly) and rs1801726 (Gln1011Glu) were investigated between the calcium nephrolithiasis patients and healthy controls, using direct sequencing. Compared with the healthy controls, serum creatinine and 24-hour urine calcium levels were significantly higher in calcium nephrolithiasis patients. Among these five polymorphisms, the genotypic and allelic frequency distributions of rs7652589 SNP was significantly associated with the risk of calcium nephrolithiasis. However, there were no genotypic or allelic distribution differences for rs1501899, rs1801725, rs1042636, and rs1801726 polymorphisms between calcium nephrolithiasis patients and healthy controls. Moreover, the association between rs7652589 SNP genotypes and the biochemical variables was not found. Our study showed that CaSR rs7652589 polymorphism had a significant effect on the risk of developing calcium nephrolithiasis in the population of Yi nationality in Southwestern China. © 2018 John Wiley & Sons Ltd/University College London.

  16. Fouling control mechanisms of demineralized water backwash: Reduction of charge screening and calcium bridging effects

    KAUST Repository

    Li, Sheng

    2011-12-01

    This paper investigates the impact of the ionic environment on the charge of colloidal natural organic matter (NOM) and ultrafiltration (UF) membranes (charge screening effect) and the calcium adsorption/bridging on new and fouled membranes (calcium bridging effect) by measuring the zeta potentials of membranes and colloidal NOM. Fouling experiments were conducted with natural water to determine whether the reduction of the charge screening effect and/or calcium bridging effect by backwashing with demineralized water can explain the observed reduction in fouling. Results show that the charge of both membranes and NOM, as measured by the zeta potential, became more negative at a lower pH and a lower concentration of electrolytes, in particular, divalent electrolytes. In addition, calcium also adsorbed onto the membranes, and consequently bridged colloidal NOM and membranes via binding with functional groups. The charge screening effect could be eliminated by flushing NOM and membranes with demineralized water, since a cation-free environment was established. However, only a limited amount of the calcium bridging connection was removed with demineralized water backwashes, so the calcium bridging effect mostly could not be eliminated. As demineralized water backwash was found to be effective in fouling control, it can be concluded that the reduction of the charge screening is the dominant mechanism for this. © 2011 Elsevier Ltd.

  17. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity.

    Science.gov (United States)

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T

    2011-04-15

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.

  18. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide

    International Nuclear Information System (INIS)

    Li, Xuerun; Zhang, Yu; Shen, Xiaodong; Wang, Qianqian; Pan, Zhigang

    2014-01-01

    The formation kinetics of tricalcium aluminate (C 3 A) and calcium sulfate yielding calcium sulfoaluminate (C 4 A 3 $) and the decomposition kinetics of calcium sulfoaluminate were investigated by sintering a mixture of synthetic C 3 A and gypsum. The quantitative analysis of the phase composition was performed by X-ray powder diffraction analysis using the Rietveld method. The results showed that the formation reaction 3Ca 3 Al 2 O 6 + CaSO 4 → Ca 4 Al 6 O 12 (SO 4 ) + 6CaO was the primary reaction 4 Al 6 O 12 (SO 4 ) + 10CaO → 6Ca 3 Al 2 O 6 + 2SO 2 ↑ + O 2 ↑ primarily occurred beyond 1350 °C with an activation energy of 792 ± 64 kJ/mol. The optimal formation region for C 4 A 3 $ was from 1150 °C to 1350 °C and from 6 h to 1 h, which could provide useful information on the formation of C 4 A 3 $ containing clinkers. The Jander diffusion model was feasible for the formation and decomposition of calcium sulfoaluminate. Ca 2+ and SO 4 2− were the diffusive species in both the formation and decomposition reactions. -- Highlights: •Formation and decomposition of calcium sulphoaluminate were studied. •Decomposition of calcium sulphoaluminate combined CaO and yielded C 3 A. •Activation energy for formation was 231 ± 42 kJ/mol. •Activation energy for decomposition was 792 ± 64 kJ/mol. •Both the formation and decomposition were controlled by diffusion

  19. Finite element model to study calcium distribution in oocytes ...

    African Journals Online (AJOL)

    Calcium is one of the most important signalling ions in cell biology performing numerous functions with high specificity. A calcium wave triggers life at fertilization but also can cause cell death. The means by which this single ion can be both highly specific and universal is believed to lie in its spatiotemporal dynamics ...

  20. Advances in cell proliferation and apoptosis signal pathway and therapies of polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Xiao-ying LIAN

    2016-12-01

    Full Text Available Polycystic kidney disease (PKD is one of the monogenic inherited diseases. In PKD, excessive cell proliferation and fluid secretion, and disruption of the mechanisms controlling tubular diameter may all lead to cyst formation. Current evidence has demonstrated that intracellular calcium ion and cAMP imbalance drive both abnormal cell proliferation and apoptosis signal pathway. The present paper summarized the evidence implicating calcium ion and cAMP as central players in the signaling pathway of cell proliferation and apoptosis in PKD, and considered the potential therapeutic approaches targeted to slow cyst growth in PKD. DOI: 10.11855/j.issn.0577-7402.2016.11.13

  1. Impact of calcium-sensitive dyes on the beating properties and pharmacological responses of human iPS-derived cardiomyocytes using the calcium transient assay.

    Science.gov (United States)

    Kopljar, Ivan; Hermans, An N; Teisman, Ard; Gallacher, David J; Lu, Hua Rong

    Calcium-based screening of hiPS-CMs is a useful preclinical safety evaluation platform with the ability to generate robust signals that facilitates high-throughput screening and data analysis. However, due to the potential inherent toxicities, it is important to understand potential effects of different calcium-sensitive dyes on the hiPS-CMs model. We compared three calcium-sensitive fluorescence dyes (Cal520, ACTOne and Calcium 5) for their impact on the variability, the beating properties and the pharmacological responses of hiPS-CMs using the Hamamatsu FDSS/μCell imaging platform. Direct effects of three dyes on the electrophysiological properties of hiPS-CMs were evaluated with the multi-electrode array (MEA) Axion Maestro platform. We propose a specific experimental protocol for each dye which gives the most optimal assay conditions to minimize variability and possible adverse effects. We showed that Cal520 had the smallest effect on hiPS-CMs together with the longest-lasting stable amplitude signal (up to 4 h). Although all dyes had a (minor) acute effect on hiPS-CMs, in the form of reduced beat rate and prolonged field potential duration, the selection of the dye did not influence the pharmacological response of four cardioactive drugs (dofetilide, moxifloxacin, nimodipine and isoprenaline). In conclusion, we have documented that different calcium sensitive dyes have only minor direct (acute) effects on hiPS-CMs with Cal520 showing the least effects and the longest lasting signal amplitude. Importantly, drug-induced pharmacological responses in hiPS-CMs were comparable between the three dyes. These findings should help further improve the robustness of the hiPS-CMs-based calcium transient assay as a predictive, preclinical cardiac safety evaluation tool. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Calcium Stone Growth in Urine from Cystic Fibrosis Patients and Healthy Controls

    Science.gov (United States)

    McSorley, Anita; Jones, Andrew M.; Webb, A. Kevin; Rao, P. Nagaraj; Kavanagh, John P.

    2007-04-01

    Cystic fibrosis patients have an increased risk of renal stone disease. There is some evidence that this may be related to a different excretory pattern of stone risk factors, but an alternative hypothesis, that the urine of cystic fibrosis patients is deficient in urinary inhibitors of crystallization and stone formation has not been tested. Here we have grown calcium stones, in vitro, in the presence of urine from healthy controls and compared this with growth in the presence of urine from cystic fibrosis patients. A stone farm was used to grow twelve calcium stones simultaneously, firstly in artificial urine for about 200 hours and then in 90% whole human urine for another 500 hours. Six of the stones received urine from healthy controls and six received urine from adult cystic fibrosis patients. There were no significant differences in stone mass at any of the key time points or in the overall growth pattern (p>0.05) between stones destined for, or treated with, urine from CF patients and the controls. Human urine greatly inhibited stone growth in vitro but there was no difference in the growth rate in urine from healthy controls and CF patients. This refutes the hypothesis that a tendency for a higher prevalence of urinary stones in CF patients is related to a deficiency in inhibitory activity.

  3. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death

    Science.gov (United States)

    Zhu, Xiaohong; Caplan, Jeffrey; Mamillapalli, Padmavathi; Czymmek, Kirk; Dinesh-Kumar, Savithramma P

    2010-01-01

    Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca2+-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca2+-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response. PMID:20075858

  4. Calcium intake and risk of fracture: systematic review.

    Science.gov (United States)

    Bolland, Mark J; Leung, William; Tai, Vicky; Bastin, Sonja; Gamble, Greg D; Grey, Andrew; Reid, Ian R

    2015-09-29

    To examine the evidence underpinning recommendations to increase calcium intake through dietary sources or calcium supplements to prevent fractures. Systematic review of randomised controlled trials and observational studies of calcium intake with fracture as an endpoint. Results from trials were pooled with random effects meta-analyses. Ovid Medline, Embase, PubMed, and references from relevant systematic reviews. Initial searches undertaken in July 2013 and updated in September 2014. Randomised controlled trials or cohort studies of dietary calcium, milk or dairy intake, or calcium supplements (with or without vitamin D) with fracture as an outcome and participants aged >50. There were only two eligible randomised controlled trials of dietary sources of calcium (n=262), but 50 reports from 44 cohort studies of relations between dietary calcium (n=37), milk (n=14), or dairy intake (n=8) and fracture outcomes. For dietary calcium, most studies reported no association between calcium intake and fracture (14/22 for total, 17/21 for hip, 7/8 for vertebral, and 5/7 for forearm fracture). For milk (25/28) and dairy intake (11/13), most studies also reported no associations. In 26 randomised controlled trials, calcium supplements reduced the risk of total fracture (20 studies, n=58,573; relative risk 0.89, 95% confidence interval 0.81 to 0.96) and vertebral fracture (12 studies, n=48,967. 0.86, 0.74 to 1.00) but not hip (13 studies, n=56,648; 0.95, 0.76 to 1.18) or forearm fracture (eight studies, n=51,775; 0.96, 0.85 to 1.09). Funnel plot inspection and Egger's regression suggested bias toward calcium supplements in the published data. In randomised controlled trials at lowest risk of bias (four studies, n=44,505), there was no effect on risk of fracture at any site. Results were similar for trials of calcium monotherapy and co-administered calcium and vitamin D. Only one trial in frail elderly women in residential care with low dietary calcium intake and vitamin D

  5. Phytoplankton calcification as an effective mechanism to alleviate cellular calcium poisoning

    Science.gov (United States)

    Müller, M. N.; Ramos, J. Barcelos e.; Schulz, K. G.; Riebesell, U.; Kaźmierczak, J.; Gallo, F.; Mackinder, L.; Li, Y.; Nesterenko, P. N.; Trull, T. W.; Hallegraeff, G. M.

    2015-11-01

    Marine phytoplankton have developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 μmol L-1 in the presence of seawater Ca2+ concentrations of 10 mmol L-1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological timescales. For example, the Cretaceous (145 to 66 Ma), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to 4 times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to alleviate cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations. The exact function of calcification and the reason behind the highly ornate physical structures of coccoliths remain elusive.

  6. Combining ChIP-chip and expression profiling to model the MoCRZ1 mediated circuit for Ca/calcineurin signaling in the rice blast fungus.

    Directory of Open Access Journals (Sweden)

    Soonok Kim

    2010-05-01

    Full Text Available Significant progress has been made in defining the central signaling networks in many organisms, but collectively we know little about the downstream targets of these networks and the genes they regulate. To reconstruct the regulatory circuit of calcineurin signal transduction via MoCRZ1, a Magnaporthe oryzae C2H2 transcription factor activated by calcineurin dephosphorylation, we used a combined approach of chromatin immunoprecipitation - chip (ChIP-chip, coupled with microarray expression studies. One hundred forty genes were identified as being both a direct target of MoCRZ1 and having expression concurrently differentially regulated in a calcium/calcineurin/MoCRZ1 dependent manner. Highly represented were genes involved in calcium signaling, small molecule transport, ion homeostasis, cell wall synthesis/maintenance, and fungal virulence. Of particular note, genes involved in vesicle mediated secretion necessary for establishing host associations, were also found. MoCRZ1 itself was a target, suggesting a previously unreported autoregulation control point. The data also implicated a previously unreported feedback regulation mechanism of calcineurin activity. We propose that calcium/calcineurin regulated signal transduction circuits controlling development and pathogenicity manifest through multiple layers of regulation. We present results from the ChIP-chip and expression analysis along with a refined model of calcium/calcineurin signaling in this important plant pathogen.

  7. Effects of Oxcarbazepine and Levetiracetam on Calcium, Ionized Calcium, and 25-OH Vitamin-D3 Levels in Patients with Epilepsy.

    Science.gov (United States)

    Aksoy, Duygu; Güveli, Betül Tekin; Ak, Pelin Doğan; Sarı, Hüseyin; Ataklı, Dilek; Arpacı, Baki

    2016-02-29

    The primary objective of the present study was to further elucidate the effects of oxcarbazepine (OXC) and levetiracetam (LEV) monotherapies on the bone health status of patients with epilepsy. This study included 48 patients who attended our epilepsy outpatient clinic, had a diagnosis of epilepsy, and were undergoing either OXC or LEV monotherapy and 42 healthy control subjects. The demographic and clinical features of the patients, including gender, age, onset of disease, daily drug dosage, and duration of disease, were noted. Additionally, the calcium, ionized calcium, and 25-OH vitamin-D3 levels of the participants were prospectively evaluated. The 25-OH vitamin-D3, calcium, and ionized calcium levels of the patients taking OXC were significantly lower than those of the control group. These levels did not significantly differ between the patients taking LEV and the control group, but there was a significant negative relationship between daily drug dose and ionized calcium levels in the LEV patients. In the present study, anti-epileptic drugs altered the calcium, ionized calcium, and 25-OH vitamin-D3 levels of epilepsy patients and resulted in bone loss, abnormal mineralization, and fractures. These findings suggest that the calcium, ionized calcium, and 25-OH vitamin-D3 levels of patients with epilepsy should be regularly assessed.

  8. A signal processing analysis of Purkinje cells in vitro

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2010-05-01

    Full Text Available Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM. We find that the three characteristic frequencies - Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques.

  9. Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid)

    International Nuclear Information System (INIS)

    Yu Jiaguo; Tang Hua; Cheng Bei; Zhao Xiujian

    2004-01-01

    Calcium oxalate (CaOx) particles exhibiting different shapes and phase structures were fabricated by a simple precipitation reaction of sodium oxalate with calcium chloride in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA) as a crystal modifier at room temperature. The as-obtained products were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of reaction conditions including pH, [Ca 2+ ]/[C 2 O 4 2- ] ratio and concentration of PSMA and CaC 2 O 4 on the crystal forms and morphologies of the as-obtained calcium oxalate were investigated. The results show that various crystal morphologies of calcium oxalate, such as parallelograms, plates, spheres, bipyramids etc. can be obtained depending on the experimental conditions. Higher polymer concentration favors formation of the metastable calcium oxalate dihydrate (COD) crystals. Lower pH is beneficial to the formation of plate-like CaOx crystals. Especially, the monodispersed parallelogram-like CaOx crystals can be produced by PSMA as an additive at pH 2. PSMA may act as a good inhibitor for urolithiasis since it induces the formation of COD and reduces the particle size of CaOx. This research may provide new insight into the morphological control of CaOx particles and the prevention of urolithiasis

  10. Safety Impacts of the Actuated Signal Control at Urban Intersections

    Directory of Open Access Journals (Sweden)

    Sang Hyuk Lee

    2016-02-01

    Full Text Available To reduce travel time, the actuated signal controls have been implemented at urban intersections. However, the safety impacts of actuated signal controls thus far have rarely been examined. In this assessment of the safety impact of urban intersections with semi-actuated signal controls, the safety performance functions and EB approaches were applied. The semi-actuated signal controls have increased injuries and total crashes in all crash types by around 5.9% and 3.8%, respectively. Regarding the most common crash types, such as angle, sideswipe & rear-end, and head-on crashes, semi-actuated signal controls have been seen to decrease injuries by 7.7%. Total crashes have been reduced by over 9.2% through the use of semi-actuated signal controls. This may be result of optimal signal timings considering traffic conditions during peak time periods. In conclusion, safety impact factors which have been established in this study can be used to improve safety and minimize travel times using semi-actuated signal controls.

  11. In vivo immunotoxicity of perfluorooctane sulfonate in BALB/c mice: Identification of T-cell receptor and calcium-mediated signaling pathway disruption through gene expression profiling of the spleen.

    Science.gov (United States)

    Lv, Qi-Yan; Wan, Bin; Guo, Liang-Hong; Yang, Yu; Ren, Xiao-Min; Zhang, Hui

    2015-10-05

    Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant that is used worldwide and is continuously being detected in biota and the environment, thus presenting potential threats to the ecosystem and human health. Although PFOS is highly immunotoxic, its underlying molecular mechanisms remain largely unknown. The present study examined PFOS-induced immunotoxicity in the mouse spleen and explored its underlying mechanisms by gene expression profiling. Oral exposure of male BALB/c mice for three weeks followed by one-week recovery showed that a 10 mg/kg/day PFOS exposure damaged the splenic architecture, inhibited T-cell proliferation in response to mitogen, and increased the percentages of T helper (CD3(+)CD4(+)) and cytotoxic T (CD3(+)CD8(+)) cells, despite the decrease in the absolute number of these cells. A delayed type of PFOS immunotoxicity was observed, which mainly occurred during the recovery period. Global gene expression profiling of mouse spleens and QRT-PCR analyses suggest that PFOS inhibited the expression of genes involved in cell cycle regulation and NRF2-mediated oxidative stress response, and upregulated those in TCR signaling, calcium signaling, and p38/MAPK signaling pathways. Western blot analysis confirmed that the expressions of CAMK4, THEMIS, and CD3G, which were involved in the upregulated pathways, were induced upon PFOS exposure. Acute PFOS exposure modulated calcium homoeostasis in splenocytes. These results indicate that PFOS exposure can activate TCR signaling and calcium ion influx, which provides a clue for the potential mechanism of PFOS immunotoxicity. The altered signaling pathways by PFOS treatment as revealed in the present study might facilitate in better understanding PFOS immunotoxicity and explain the association between immune disease and PFOS exposure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin.

    Science.gov (United States)

    Atanasijevic, Tatjana; Shusteff, Maxim; Fam, Peter; Jasanoff, Alan

    2006-10-03

    We describe a family of calcium indicators for magnetic resonance imaging (MRI), formed by combining a powerful iron oxide nanoparticle-based contrast mechanism with the versatile calcium-sensing protein calmodulin and its targets. Calcium-dependent protein-protein interactions drive particle clustering and produce up to 5-fold changes in T2 relaxivity, an indication of the sensors' potency. A variant based on conjugates of wild-type calmodulin and the peptide M13 reports concentration changes near 1 microM Ca(2+), suitable for detection of elevated intracellular calcium levels. The midpoint and cooperativity of the response can be tuned by mutating the protein domains that actuate the sensor. Robust MRI signal changes are achieved even at nanomolar particle concentrations (calcium levels. When combined with technologies for cellular delivery of nanoparticulate agents, these sensors and their derivatives may be useful for functional molecular imaging of biological signaling networks in live, opaque specimens.

  13. Monitoring Calcium in Trout Eggs Exposed to Hydrazine.

    Science.gov (United States)

    1981-07-10

    healthy muscle of the same individual. The notochord of the 8.0 mg/P group showed a higher calcium level than the control group. The chorion did not...calcium in quantities that can be monitored with conventional instru- ments or techniques. The chorion, muscle and notochord tissues were the primary...deposits of calcium pyorantimonate (Figure 26), supported the findings of the microelemental analysis. NOTOCHORD 1. Control The notochord of control embryos

  14. Depletion of intracellular calcium stores facilitates the influx of extracellular calcium in platelet derived growth factor stimulated A172 glioblastoma cells.

    Science.gov (United States)

    Vereb, G; Szöllösi, J; Mátyus, L; Balázs, M; Hyun, W C; Feuerstein, B G

    1996-05-01

    Calcium signaling in non-excitable cells is the consequence of calcium release from intracellular stores, at times followed by entry of extracellular calcium through the plasma membrane. To study whether entry of calcium depends upon the level of saturation of intracellular stores, we measured calcium channel opening in the plasma membrane of single confluent A172 glioblastoma cells stimulated with platelet derived growth factor (PDGF) and/or bradykinin (BK). We monitored the entry of extracellular calcium by measuring manganese quenching of Indo-1 fluorescence. PDGF raised intracellular calcium concentration ([Ca2+]i) after a dose-dependent delay (tdel) and then opened calcium channels after a dose-independent delay (tch). At higher doses (> 3 nM), BK increased [Ca2+]i after a tdel approximately 0 s, and tch decreased inversely with both dose and peak [Ca2+]i. Experiments with thapsigargin (TG), BK, and PDGF indicated that BK and PDGF share intracellular Ca2+ pools that are sensitive to TG. When these stores were depleted by treatment with BK and intracellular BAPTA, tdel did not change, but tch fell to almost 0 s in PDGF stimulated cells, indicating that depletion of calcium stores affects calcium channel opening in the plasma membrane. Our data support the capacitative model for calcium channel opening and the steady-state model describing quantal Ca2+ release from intracellular stores.

  15. Calcium and Egg Activation in Drosophila

    Science.gov (United States)

    Sartain, Caroline V.; Wolfner, Mariana F.

    2012-01-01

    Summary In many animals, a rise in intracellular calcium levels is the trigger for egg activation, the process by which an arrested mature oocyte transitions to prepare for embryogenesis. In nearly all animals studied to date, this calcium rise, and thus egg activation, is triggered by the fertilizing sperm. However in the insects that have been examined, fertilization is not necessary to activate their oocytes. Rather, these insects’ eggs activate as they transit through the female’s reproductive tract, regardless of male contribution. Recent studies in Drosophila have shown that egg activation nevertheless requires calcium and that the downstream events and molecules of egg activation are also conserved, despite the difference in initial trigger. Genetic studies have uncovered essential roles for the calcium-dependent enzyme calcineurin and its regulator calcipressin, and have hinted at roles for calmodulin, in Drosophila egg activation. Physiological and in vitro studies have led to a model in which mechanical forces that impact the Drosophila oocyte as it moves through the reproductive tract triggers the influx of calcium from the external environment, thereby initiating egg activation. Future research will aim to test this model, as well as to determine the spatiotemporal dynamics of cytoplasmic calcium flux and mode of signal propagation in this unique system. PMID:23218670

  16. development of an electronic vehicular traffic signal controller

    African Journals Online (AJOL)

    INTRODUCTION ... The SCOOT (Split Cycle Offset Optimization Technique) signal control system implements an adaptive ... An electronic traffic signal controller is basically a sequential machine whose operation can be modeled using finite ...

  17. Exclusive photorelease of signalling lipids at the plasma membrane.

    Science.gov (United States)

    Nadler, André; Yushchenko, Dmytro A; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-12-21

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems.

  18. Calcium signaling in smooth muscle.

    Science.gov (United States)

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  19. Multiple signaling pathways mediated by dopamine and calcium ionophore A23187 in human platelets

    International Nuclear Information System (INIS)

    Saeed, S.A.; Waqar, M.A.

    2009-01-01

    This study was undertaken to investigate the mechanism(s) of platelet aggregation induced by the synergistic action of dopamine (DA) and a Ca/sup +2/-ionophore, A23187. DA showed non significant effect on platelet aggregation over a wide range of concentrations (up to 500 micro M), but did potentiate the aggregation response of A23187. Aggregation induced by A23187 was inhibited by calcium channel blockers (diltiazem and verpamil), receptor blockers (chlorpromazine and haloperidol) and a cyclo-oxygenase inhibitor (indomethacin). However, the inhibitory effect of these blockers was more pronounced (with a selectivity ratio of 1.5-28) in the aggregation induced by synergistic effect of A23187 and DA. A phosphatidylinositol 3-kinase (P1 3-Kinase) inhibitor, wortmanin (1C/sub 50/. 25-30 nM), inhibited aggregation induced by either A23187 or DA and act synergistically. This synergistic effect on platelet aggregation is mediated through multiple signaling pathways. (author)

  20. Mean field strategies induce unrealistic nonlinearities in calcium puffs

    Directory of Open Access Journals (Sweden)

    Guillermo eSolovey

    2011-08-01

    Full Text Available Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs. To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic nonlinear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes.

  1. Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves

    Science.gov (United States)

    Restrepo, Simon; Basler, Konrad

    2016-08-01

    Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies.

  2. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells.

    Science.gov (United States)

    Vatsa, Parul; Chiltz, Annick; Luini, Estelle; Vandelle, Elodie; Pugin, Alain; Roblin, Gabriel

    2011-07-01

    The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca²⁺](cyt) which intensity depends on ergosterol concentration in the range 0.002-10 μM. Among sterols, this calcium mobilization was specific for ergosterol and, ergosterol-induced pH and [Ca²⁺](cyt) changes were specifically desensitized after two subsequent applications of ergosterol. Specific modulators allowed elucidating some events in the signalling pathway triggered by ergosterol. The action of BAPTA, LaCl₃, nifedipine, verapamil, neomycin, U73122 and ruthenium red suggested that the first phase was linked to calcium influx from external medium which subsequently triggered the second phase linked to calcium release from internal stores. The calcium influx and the [Ca²⁺](cyt) increase depended on upstream protein phosphorylation. The extracellular alkalinization and ROS production depended on calcium influx but, the ergosterol-induced MAPK activation was calcium-independent. ROS were not involved in cytosolic calcium rise as described in other models, indicating that ROS do not systematically participate in the amplification of calcium signalling. Interestingly, ergosterol-induced ROS production is not linked to cell death and ergosterol does not induce any calcium elevation in the nucleus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  3. Distributed traffic signal control using fuzzy logic

    Science.gov (United States)

    Chiu, Stephen

    1992-01-01

    We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.

  4. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    Science.gov (United States)

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The

  5. Brushless DC motor control system responsive to control signals generated by a computer or the like

    Science.gov (United States)

    Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)

    1987-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  6. Odorant receptors directly activate phospholipase C/inositol-1,4,5-trisphosphate coupled to calcium influx in Odora cells.

    Science.gov (United States)

    Liu, Guang; Badeau, Robert M; Tanimura, Akihiko; Talamo, Barbara R

    2006-03-01

    Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.

  7. Does dietary calcium interact with dietary fiber against colorectal cancer? A case-control study in Central Europe.

    Science.gov (United States)

    Galas, Aleksander; Augustyniak, Malgorzata; Sochacka-Tatara, Elzbieta

    2013-10-04

    An unfavorable trend of increasing rates of colorectal cancer has been observed across modern societies. In general, dietary factors are understood to be responsible for up to 70% of the disease's incidence, though there are still many inconsistencies regarding the impact of specific dietary items. Among the dietary minerals, calcium intake may play a crucial role in the prevention. The purpose of this study was to assess the effect of intake of higher levels of dietary calcium on the risk of developing of colorectal cancer, and to evaluate dose dependent effect and to investigate possible effect modification. A hospital based case-control study of 1556 patients (703 histologically confirmed colon and rectal incident cases and 853 hospital-based controls) was performed between 2000-2012 in Krakow, Poland. The 148-item semi-quantitative Food Frequency Questionnaire to assess dietary habits and level of nutrients intake was used. Data regarding possible covariates was also collected. After adjustment for age, gender, education, consumption of fruits, raw and cooked vegetables, fish, and alcohol, as well as for intake of fiber, vitamin C, dietary iron, lifetime recreational physical activity, BMI, smoking status, and taking mineral supplements, an increase in the consumption of calcium was associated with the decrease of colon cancer risk (OR = 0.93, 95% CI: 0.89-0.98 for every 100 mg Ca/day increase). Subjects consumed >1000 mg/day showed 46% decrease of colon cancer risk (OR = 0.54, 95% CI: 0.35-0.83). The effect of dietary calcium was modified by dietary fiber (p for interaction =0.015). Finally, consistent decrease of colon cancer risk was observed across increasing levels of dietary calcium and fiber intake. These relationships were not proved for rectal cancer. The study confirmed the effect of high doses of dietary calcium against the risk of colon cancer development. This relationship was observed across different levels of dietary fiber, and the

  8. Two-photon activation of endogenous store-operated calcium channels without optogenetics

    Science.gov (United States)

    Cheng, Pan; Tang, Wanyi; He, Hao

    2018-02-01

    Store-operated calcium (SOC) channels, regulated by intracellular Ca2+ store, are the essential pathway of calcium signaling and participate in a wide variety of cellular activities such as gene expression, secretion and immune response1. However, our understanding and regulation of SOC channels are mainly based on pharmacological methods. Considering the unique advantages of optical control, optogenetic control of SOC channels has been developed2. However, the process of genetic engineering to express exogenous light-sensitive protein is complicated, which arouses concerns about ethic difficulties in some research of animal and applications in human. In this report, we demonstrate rapid, robust and reproducible two-photon activation of endogenous SOC channels by femtosecond laser without optogenetics. We present that the short-duration two-photon scanning on subcellular microregion induces slow Ca2+ influx from extracellular medium, which can be eliminated by removing extracellular Ca2+. Block of SOC channels using various pharmacological inhibitors or knockdown of SOC channels by RNA interference reduce the probability of two-photon activated Ca2+ influx. On the contrary, overexpression of SOC channels can increase the probability of Ca2+ influx by two-photon scanning. These results collectively indicate Ca2+ influx through two-photon activated SOC channels. Different from classical pathway of SOC entry activated by Ca2+ store depletion, STIM1, the sensor protein of Ca2+ level in endoplasmic reticulum, does not show any aggregation or migration in this two-photon activated Ca2+ influx, which rules out the possibility of intracellular Ca2+ store depletion. Thereby, we propose this all-optical method of two-photon activation of SOC channels is of great potential to be widely applied in the research of cell calcium signaling and related biological research.

  9. Does calcium constrain reproductive activity in insectivorous bats ...

    African Journals Online (AJOL)

    Insects are a poor source of dietary calcium and since they are seasonally abundant, it has been suggested that calcium availability may play a significant role in controlling the timing of reproduction in insectivorous bats. To assess the possible role of dietary calcium, we have measured bone calcium concentrations in ...

  10. Astrocyte calcium signal and gliotransmission in human brain tissue.

    Science.gov (United States)

    Navarrete, Marta; Perea, Gertrudis; Maglio, Laura; Pastor, Jesús; García de Sola, Rafael; Araque, Alfonso

    2013-05-01

    Brain function is recognized to rely on neuronal activity and signaling processes between neurons, whereas astrocytes are generally considered to play supportive roles for proper neuronal function. However, accumulating evidence indicates that astrocytes sense and control neuronal and synaptic activity, indicating that neuron and astrocytes reciprocally communicate. While this evidence has been obtained in experimental animal models, whether this bidirectional signaling between astrocytes and neurons occurs in human brain remains unknown. We have investigated the existence of astrocyte-neuron communication in human brain tissue, using electrophysiological and Ca(2+) imaging techniques in slices of the cortex and hippocampus obtained from biopsies from epileptic patients. Cortical and hippocampal human astrocytes displayed spontaneous Ca(2+) elevations that were independent of neuronal activity. Local application of transmitter receptor agonists or nerve electrical stimulation transiently elevated Ca(2+) in astrocytes, indicating that human astrocytes detect synaptic activity and respond to synaptically released neurotransmitters, suggesting the existence of neuron-to-astrocyte communication in human brain tissue. Electrophysiological recordings in neurons revealed the presence of slow inward currents (SICs) mediated by NMDA receptor activation. The frequency of SICs increased after local application of ATP that elevated astrocyte Ca(2+). Therefore, human astrocytes are able to release the gliotransmitter glutamate, which affect neuronal excitability through activation of NMDA receptors in neurons. These results reveal the existence of reciprocal signaling between neurons and astrocytes in human brain tissue, indicating that astrocytes are relevant in human neurophysiology and are involved in human brain function.

  11. Role of DARPP-32 and ARPP-21 in the Emergence of Temporal Constraints on Striatal Calcium and Dopamine Integration

    Science.gov (United States)

    Bhalla, Upinder S.; Hellgren Kotaleski, Jeanette

    2016-01-01

    In reward learning, the integration of NMDA-dependent calcium and dopamine by striatal projection neurons leads to potentiation of corticostriatal synapses through CaMKII/PP1 signaling. In order to elicit the CaMKII/PP1-dependent response, the calcium and dopamine inputs should arrive in temporal proximity and must follow a specific (dopamine after calcium) order. However, little is known about the cellular mechanism which enforces these temporal constraints on the signal integration. In this computational study, we propose that these temporal requirements emerge as a result of the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. Specifically, DARPP-32-mediated signaling could implement an input-interval dependent gating function, via transient PP1 inhibition, thus enforcing the requirement for temporal proximity. Furthermore, ARPP-21 signaling could impose the additional input-order requirement of calcium and dopamine, due to its Ca2+/calmodulin sequestering property when dopamine arrives first. This highlights the possible role of phosphoproteins in the temporal aspects of striatal signal transduction. PMID:27584878

  12. The complex nature of calcium cation interactions with phospholipid bilayers

    Science.gov (United States)

    Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz

    2016-01-01

    Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555

  13. Calcium absorption from fortified ice cream formulations compared with calcium absorption from milk.

    Science.gov (United States)

    van der Hee, Regine M; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S M J E; Rietveld, Anton G; Wilkinson, Joy E; Quail, Patricia J; Berry, Mark J; Dainty, Jack R; Teucher, Birgit; Fairweather-Tait, Susan J

    2009-05-01

    Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Effects on calcium absorption were evaluated by analysis of variance. Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%+/-8%, 28%+/-5%, and 31%+/-9%, respectively, and did not differ significantly (P=0.159). Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium.

  14. Calcium-Responsive Liposomes via a Synthetic Lipid Switch.

    Science.gov (United States)

    Lou, Jinchao; Carr, Adam J; Watson, Alexa J; Mattern-Schain, Samuel I; Best, Michael D

    2018-03-07

    Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Antagonist effects of calcium on borosilicate glass alteration

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Depierre, S. [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France); Angeli, F., E-mail: frederic.angeli@cea.fr [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France); Frizon, F. [CEA Marcoule, DTCD SECM LP2C, 30207 Bagnols sur Cèze (France); Gin, S. [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •Kinetic study of glass alteration is investigated in calcium-enriched solutions. •New insights into silicon–calcium interactions in glass/cement systems are proposed. •Glass alteration is controlled by pH, Ca concentration and reaction progress. •Evidence of antagonist effects according to the importance of these parameters. -- Abstract: Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon–calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass–cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C–S–H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon–calcium interactions on glass durability and open the way for a better understanding of glass–cement mixing in civil engineering applications as well as in nuclear waste storage.

  16. Antagonist effects of calcium on borosilicate glass alteration

    International Nuclear Information System (INIS)

    Mercado-Depierre, S.; Angeli, F.; Frizon, F.; Gin, S.

    2013-01-01

    Graphical abstract: Display Omitted -- Highlights: •Kinetic study of glass alteration is investigated in calcium-enriched solutions. •New insights into silicon–calcium interactions in glass/cement systems are proposed. •Glass alteration is controlled by pH, Ca concentration and reaction progress. •Evidence of antagonist effects according to the importance of these parameters. -- Abstract: Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon–calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass–cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C–S–H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon–calcium interactions on glass durability and open the way for a better understanding of glass–cement mixing in civil engineering applications as well as in nuclear waste storage

  17. ACTIVATION AND REACTIVITY OF NOVEL CALCIUM-BASED SORBENTS FOR DRY SO2 CONTROL IN BOILERS

    Science.gov (United States)

    Chemically modified calcium hydroxide (Ca(OH)2) sorbents developed in the U.S. Environmental Protection Agency's Air and Energy Engineering Research Laboratory (AEERL) for sulfur dioxide (SO2) control in utility boilers were tested in an electrically heated, bench-scale isotherma...

  18. Cardiovascular Effects of Calcium Supplements

    Directory of Open Access Journals (Sweden)

    Ian R. Reid

    2013-07-01

    Full Text Available Calcium supplements reduce bone turnover and slow the rate of bone loss. However, few studies have demonstrated reduced fracture incidence with calcium supplements, and meta-analyses show only a 10% decrease in fractures, which is of borderline statistical and clinical significance. Trials in normal older women and in patients with renal impairment suggest that calcium supplements increase the risk of cardiovascular disease. To further assess their safety, we recently conducted a meta-analysis of trials of calcium supplements, and found a 27%–31% increase in risk of myocardial infarction, and a 12%–20% increase in risk of stroke. These findings are robust because they are based on pre-specified analyses of randomized, placebo-controlled trials and are consistent across the trials. Co-administration of vitamin D with calcium does not lessen these adverse effects. The increased cardiovascular risk with calcium supplements is consistent with epidemiological data relating higher circulating calcium concentrations to cardiovascular disease in normal populations. There are several possible pathophysiological mechanisms for these effects, including effects on vascular calcification, vascular cells, blood coagulation and calcium-sensing receptors. Thus, the non-skeletal risks of calcium supplements appear to outweigh any skeletal benefits, and are they appear to be unnecessary for the efficacy of other osteoporosis treatments.

  19. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture,

  20. Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention.

    Directory of Open Access Journals (Sweden)

    Ziying Han

    2015-10-01

    Full Text Available Hemorrhagic fever viruses, including the filoviruses (Ebola and Marburg and arenaviruses (Lassa and Junín viruses, are serious human pathogens for which there are currently no FDA approved therapeutics or vaccines. Importantly, transmission of these viruses, and specifically late steps of budding, critically depend upon host cell machinery. Consequently, strategies which target these mechanisms represent potential targets for broad spectrum host oriented therapeutics. An important cellular signal implicated previously in EBOV budding is calcium. Indeed, host cell calcium signals are increasingly being recognized to play a role in steps of entry, replication, and transmission for a range of viruses, but if and how filoviruses and arenaviruses mobilize calcium and the precise stage of virus transmission regulated by calcium have not been defined. Here we demonstrate that expression of matrix proteins from both filoviruses and arenaviruses triggers an increase in host cytoplasmic Ca2+ concentration by a mechanism that requires host Orai1 channels. Furthermore, we demonstrate that Orai1 regulates both VLP and infectious filovirus and arenavirus production and spread. Notably, suppression of the protein that triggers Orai activation (Stromal Interaction Molecule 1, STIM1 and genetic inactivation or pharmacological blockade of Orai1 channels inhibits VLP and infectious virus egress. These findings are highly significant as they expand our understanding of host mechanisms that may broadly control enveloped RNA virus budding, and they establish Orai and STIM1 as novel targets for broad-spectrum host-oriented therapeutics to combat these emerging BSL-4 pathogens and potentially other enveloped RNA viruses that bud via similar mechanisms.

  1. Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template.

    Science.gov (United States)

    Yao, Chengli; Xie, Anjian; Shen, Yuhua; Zhu, Jinmiao; Li, Hongying

    2015-06-01

    Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF4/GO composite template. During the process of calcium carbonate formation, [BMIM]BF4 acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Takashi Nakano

    2010-02-01

    Full Text Available Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD, the combination with dopamine switches LTD to long-term potentiation (LTP, which is known as dopamine-dependent plasticity. LTP is also induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32, as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA, protein phosphatase 2A (PP2A, and the phosphorylation site at threonine 75 of DARPP-32 (Thr75 served as the major switch for inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B-CK1 (casein kinase 1-Cdk5 (cyclin-dependent kinase 5-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA activation by cyclic AMP (cAMP. The positive feedback loop displayed robust bi-stable responses following changes in the reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The

  3. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    Directory of Open Access Journals (Sweden)

    Xiquan Gao

    2014-03-01

    Full Text Available An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP, which is called PAMP-triggered immunity (PTI. The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI. Calcium (Ca2+ signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response.

  4. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    Science.gov (United States)

    Gao, Xiquan; Cox, Kevin L.; He, Ping

    2014-01-01

    An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498

  5. Pedestrian Friendly Traffic Signal Control.

    Science.gov (United States)

    2016-01-01

    This project continues research aimed at real-time detection and use of pedestrian : traffic flow information to enhance adaptive traffic signal control in urban areas : where pedestrian traffic is substantial and must be given appropriate attention ...

  6. IP3 Receptor-Dependent Cytoplasmic Ca2+ Signals Are Tightly Controlled by Cavβ3

    Directory of Open Access Journals (Sweden)

    Anouar Belkacemi

    2018-01-01

    Full Text Available Voltage-gated calcium channels (Cavs are major Ca2+ entry pathways in excitable cells. Their β subunits facilitate membrane trafficking of the channel’s ion-conducting α1 pore and modulate its gating properties. We report that one β subunit, β3, reduces Ca2+ release following stimulation of phospholipase C-coupled receptors and inositol 1,4,5-trisphosphate (IP3 formation. This effect requires the SH3-HOOK domain of Cavβ3, includes physical β3/IP3 receptor interaction, and prevails when agonist-induced IP3 formation is bypassed by photolysis of caged IP3. In agreement with β3 acting as a brake on Ca2+ release, fibroblast migration is enhanced in vitro, and in vivo, closure of skin wounds is accelerated in the absence of β3. To mediate specific physiological responses and to prevent Ca2+ toxicity, cytoplasmic Ca2+ signals must be tightly controlled. The described function of β3, unrelated to its function as a Cav subunit, adds to this tight control.

  7. Effect of HeNe laser on calcium signals in sperm cells

    Science.gov (United States)

    Lubart, Rachel; Friedmann, Harry; Cohen, Natalie; Brietbart, Haim

    1998-12-01

    Irradiation of mouse spermatozoa by 630 nm HeNe laser was found to enhance calcium transport in these cells. The change in Ca transport was investigated through two approaches, the first employing the fluorescent Ca indicator, Fluo-3 AM and a fluorescence microscopic system, and the second the radiolabeled Ca uptake. In both approaches the effect of light on Ca transport was abrogated in the absence of Ca during the irradiation time, indicating that the effect of light is Ca-dependent. The stimulatory effect of light on Ca uptake was inhibited by treatment with catalase, suggesting H2O2 to be involved in light stimulated Ca2+ uptake. The stimulatory effect of light on Ca uptake was abolished in the presence of a voltage-dependent Ca-channel inhibitor, nifedipine, indicating the involvement of a plasma membrane, voltage- dependent Ca-channel. In contrast, addition of nifedipine prior to the HeNe laser irradiation did not affect the light-induced rise in intracellular Ca levels, as measured with Fluo-3 loaded sperm cells. Therefore, it can be concluded that this Ca influx occurs via a voltage- insensitive Ca-channel. The stimulatory effect of light on Ca uptake was almost completely abolished by the mitochondrial uncoupler FCCP. These data imply that light affects the mitochondrial Ca transport mechanisms. It is well known that Ca influx from an extracellular environment is an essential component of a signaling cascade leading to fertilization.

  8. Calcium Balance in Chronic Kidney Disease.

    Science.gov (United States)

    Hill Gallant, Kathleen M; Spiegel, David M

    2017-06-01

    The kidneys play a critical role in the balance between the internal milieu and external environment. Kidney failure is known to disrupt a number of homeostatic mechanisms that control serum calcium and normal bone metabolism. However, our understanding of calcium balance throughout the stages of chronic kidney disease is limited and the concept of balance itself, especially with a cation as complex as calcium, is often misunderstood. Both negative and positive calcium balance have important implications in patients with chronic kidney disease, where negative balance may increase risk of osteoporosis and fracture and positive balance may increase risk of vascular calcification and cardiovascular events. Here, we examine the state of current knowledge about calcium balance in adults throughout the stages of chronic kidney disease and discuss recommendations for clinical strategies to maintain balance as well as future research needs in this area. Recent calcium balance studies in adult patients with chronic kidney disease show that neutral calcium balance is achieved with calcium intake near the recommended daily allowance. Increases in calcium through diet or supplements cause high positive calcium balance, which may put patients at risk for vascular calcification. However, heterogeneity in calcium balance exists among these patients. Given the available calcium balance data in this population, it appears clinically prudent to aim for recommended calcium intakes around 1000 mg/day to achieve neutral calcium balance and avoid adverse effects of either negative or positive calcium balance. Assessment of patients' dietary calcium intake could further equip clinicians to make individualized recommendations for meeting recommended intakes.

  9. Mechanically induced intracellular calcium waves in osteoblasts demonstrate calcium fingerprints in bone cell mechanotransduction.

    Science.gov (United States)

    Godin, Lindsay M; Suzuki, Sakiko; Jacobs, Christopher R; Donahue, Henry J; Donahue, Seth W

    2007-11-01

    An early response to mechanical stimulation of bone cells in vitro is an increase in intracellular calcium concentration ([Ca (2+)](i)). This study analyzed the [Ca (2+)](i) wave area, magnitude, duration, rise time, fall time, and time to onset in individual osteoblasts for two identical bouts of mechanical stimulation separated by a 30-min rest period. The area under the [Ca (2+)](i) wave increased in the second loading bout compared to the first. This suggests that rest periods may potentiate mechanically induced intracellular calcium signals. Furthermore, many of the [Ca (2+)](i) wave parameters were strongly, positively correlated between the two bouts of mechanical stimulation. For example, in individual primary osteoblasts, if a cell had a large [Ca (2+)](i) wave area in the first bout it was likely to have a large [Ca (2+)](i) wave area in the second bout (r (2) = 0.933). These findings support the idea that individual bone cells have "calcium fingerprints" (i.e., a unique [Ca (2+)](i) wave profile that is reproducible for repeated exposure to a given stimulus).

  10. Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots.

    Science.gov (United States)

    Özsu, Nesibe; Monteiro, Antónia

    2017-10-16

    One hypothesis surrounding the origin of novel traits is that they originate from the co-option of pre-existing genes or larger gene regulatory networks into novel developmental contexts. Insights into a trait's evolutionary origins can, thus, be gained via identification of the genes underlying trait development, and exploring whether those genes also function in other developmental contexts. Here we investigate the set of genes associated with the development of eyespot color patterns, a trait that originated once within the Nymphalid family of butterflies. Although several genes associated with eyespot development have been identified, the eyespot gene regulatory network remains largely unknown. In this study, next-generation sequencing and transcriptome analyses were used to identify a large set of genes associated with eyespot development of Bicyclus anynana butterflies, at 3-6 h after pupation, prior to the differentiation of the color rings. Eyespot-associated genes were identified by comparing the transcriptomes of homologous micro-dissected wing tissues that either develop or do not develop eyespots in wild-type and a mutant line of butterflies, Spotty, with extra eyespots. Overall, 186 genes were significantly up and down-regulated in wing tissues that develop eyespots compared to wing tissues that do not. Many of the differentially expressed genes have yet to be annotated. New signaling pathways, including the Toll, Fibroblast Growth Factor (FGF), extracellular signal-regulated kinase (ERK) and/or Jun N-terminal kinase (JNK) signaling pathways are associated for the first time with eyespot development. In addition, several genes involved in wound healing and calcium signaling were also found to be associated with eyespots. Overall, this study provides the identity of many new genes and signaling pathways associated with eyespots, and suggests that the ancient wound healing gene regulatory network may have been co-opted to cells at the center of the

  11. Calcium and Bone Metabolism Indices.

    Science.gov (United States)

    Song, Lu

    2017-01-01

    Calcium and inorganic phosphate are of critical importance for many body functions, thus the regulations of their plasma concentrations are tightly controlled by the concerted actions of reabsorption/excretion in the kidney, absorption in the intestines, and exchange from bone, the major reservoir for calcium and phosphate in the body. Parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH) 2 D) control calcium homeostasis, whereas PTH, 1,25(OH) 2 D, and bone-derived fibroblast growth factor 23 (FGF 23) control phosphate homeostasis. Hypoparathyroidism can cause hypocalcemia and hyperphosphatemia, whereas deficient vitamin D actions can cause osteomalacia in adults and rickets in children. Hyperparathyroidism, alternatively, can cause hypercalcemia and hypophosphatemia. Laboratory tests of calcium, phosphate, PTH, and 25-hydroxyvitamin D are very useful in the diagnosis of abnormalities associated with calcium and/or phosphate metabolisms. Bone is constantly remodeled throughout life in response to mechanical stress and a need for calcium in extracellular fluids. Metabolic bone diseases such as osteoporosis, osteomalacia in adults or rickets in children, and renal osteodystrophy develop when bone resorption exceeds bone formation. Bone turnover markers (BTM) such as serum N-terminal propeptide of type I procollagen (P1NP) and C-terminal collagen cross-link (CTX) may be useful in predicting future fracture risk or monitoring the response to anti-resorptive therapy. There is a need to standardize sample collection protocols because certain BTMs exhibit large circadian variations and tend to be influenced by food intakes. In the United States, a project to standardize BTM sample collection protocols and to establish the reference intervals for serum P1NP and serum CTX is ongoing. We anticipate the outcome of this project to shine lights on the standardization of BTM assays, sample collection protocols, reference intervals in relation to age, sex, and ethnic

  12. Assessment of fluoride-induced changes on physicochemical and structural properties of bone and the impact of calcium on its control in rabbits.

    Science.gov (United States)

    Gopalakrishnan, Subarayan Bothi; Viswanathan, Gopalan

    2012-03-01

    Bone deformities caused by the chronic intake of large quantities of fluoride and the beneficial effect of calcium on its control have been studied for many years, but only limited data are available on the quantitative effect of fluoride intake and the beneficial impact of calcium on fluoride-induced changes in bone at the molecular level. It is necessary to determine the degree of fluoride-induced changes in bone at different levels of fluoride intake to evaluate the optimum safe intake level of fluoride for maintaining bone health and quality. The ameliorative effect of calcium at different dose levels on minimizing fluoride-induced changes in bone is important to quantify the amount of calcium intake necessary for reducing fluoride toxicity. Thirty rabbits, 2 months old, were divided into five groups. Group I animals received 1 mg/l fluoride and 0.11% calcium diet; groups II and III received 10 mg/l fluoride and diet with 0.11% or 2.11% calcium, respectively; and groups IV and V received 150 mg/l fluoride and diet with 2.11% or 0.11% calcium, respectively. Analysis of bone density, ash content, fluoride, calcium, phosphorus, and Ca:P molar ratio levels after 6 months of treatment indicated that animals that received high fluoride with low-calcium diet showed significant detrimental changes in physicochemical properties of bone. Animals that received fluoride with high calcium intake showed notable amelioration of the impact of calcium on fluoride-induced changes in bone. The degree of fluoride-induced characteristic changes in structural properties such as crystalline size, crystallinity, and crystallographic "c"-axis length of bone apatite cells was also assessed by X-ray diffraction and Fourier transform infrared studies. X-ray images showed bone deformity changes such as transverse stress growth lines, soft tissue ossification, and calcification in different parts of bones as a result of high fluoride accumulation and the beneficial role of calcium

  13. Calcium-sensing beyond neurotransmitters

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Han, Weiping

    2009-01-01

    Neurotransmitters, neuropeptides and hormones are released through the regulated exocytosis of SVs (synaptic vesicles) and LDCVs (large dense-core vesicles), a process that is controlled by calcium. Synaptotagmins are a family of type 1 membrane proteins that share a common domain structure. Most....... Also, we discuss potential roles of synaptotagmins in non-traditional endocrine systems....... synaptotagmins are located in brain and endocrine cells, and some of these synaptotagmins bind to phospholipids and calcium at levels that trigger regulated exocytosis of SVs and LDCVs. This led to the proposed synaptotagmin-calcium-sensor paradigm, that is, members of the synaptotagmin family function...... as calcium sensors for the regulated exocytosis of neurotransmitters, neuropeptides and hormones. Here, we provide an overview of the synaptotagmin family, and review the recent mouse genetic studies aimed at understanding the functions of synaptotagmins in neurotransmission and endocrine-hormone secretion...

  14. Interplay between phosphoinositide lipids and calcium signals at the leading edge of chemotaxing ameboid cells☆

    Science.gov (United States)

    Falke, Joseph J.; Ziemba, Brian P.

    2014-01-01

    The chemotactic migration of eukaryotic ameboid cells up concentration gradients is among the most advanced forms of cellular behavior. Chemotaxis is controlled by a complex network of signaling proteins bound to specific lipids on the cytoplasmic surface of the plasma membrane at the front of the cell, or the leading edge. The central lipid players in this leading edge signaling pathway include the phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), both of which play multiple roles. The products of PI(4,5)P2 hydrolysis, diacylglycerol (DAG) and Ins(1,4,5)P3 (IP3), are also implicated as important players. Together, these leading edge phosphoinositides and their degradation products, in concert with a local Ca2+ signal, control the recruitment and activities of many peripheral membrane proteins that are crucial to the leading edge signaling network. The present critical review summarizes the current molecular understanding of chemotactic signaling at the leading edge, including newly discovered roles of phosphoinositide lipids and Ca2+, while highlighting key questions for future research. PMID:24451847

  15. Control of striatal signaling by G protein regulators

    Directory of Open Access Journals (Sweden)

    Keqiang eXie

    2011-08-01

    Full Text Available Signaling via heterotrimeric G proteins plays a crucial role in modulating the responses of striatal neurons that ultimately shape core behaviors mediated by the basal ganglia circuitry, such as reward valuation, habit formation and movement coordination. Activation of G-protein-coupled receptors (GPCRs by extracellular signals activates heterotrimeric G proteins by promoting the binding of GTP to their α subunits. G proteins exert their effects by influencing the activity of key effector proteins in this region, including ion channels, second messenger enzymes and protein kinases. Striatal neurons express a staggering number of GPCRs whose activation results in the engagement of downstream signaling pathways and cellular responses with unique profiles but common molecular mechanisms. Studies over the last decade have revealed that the extent and duration of GPCR signaling are controlled by a conserved protein family named Regulator of G protein Signaling (RGS. RGS proteins accelerate GTP hydrolysis by the α subunits of G proteins, thus promoting deactivation of GPCR signaling. In this review, we discuss the progress made in understanding the roles of RGS proteins in controlling striatal G protein signaling and providing integration and selectivity of signal transmission. We review evidence on the formation of a macromolecular complex between RGS proteins and other components of striatal signaling pathways, their molecular regulatory mechanisms and impacts on GPCR signaling in the striatum obtained from biochemical studies and experiments involving genetic mouse models. Special emphasis is placed on RGS9-2, a member of the RGS family that is highly enriched in the striatum and plays critical roles in drug addiction and motor control.

  16. Controlled adsorption and release onto calcium phosphates materials and drug delivery applications

    Directory of Open Access Journals (Sweden)

    Barroug A.

    2013-11-01

    Full Text Available The adsorptive properties of synthetic calcium phosphates analogous to bone mineral were examined with respect to cisplatin and risedronate, two biological active drugs; the uptake and release experiments were carried out under various conditions in order to understand the basic mechanism of interaction. The effect of temperature and solution composition were highlighted and discussed. The adsorption results obtained for the therapeutic agents demonstrated that, depending on the conditions investigated (nature of the sorbent, concentration range, ionic composition, temperature…, the shape of the isotherms is of Freundlich or Langmuir type. The adsorption is described as an ion-exchange process in dilute solutions, while the interaction appears to be reactive for concentrated solutions (dissolution of mineral ions from the apatite substrate and formation of soluble calcium complex and/or precipitation of calcium salts involving sorbate molecules. The information gained on the surface reactivity of calcium phosphate were exploited to associate an antibiotic to calcium phosphate cements for drug delivery applications. The specimens were obtained by combination of calcium phosphate and calcium carbonate powders upon mixing with water. The physicochemical properties of the paste were altered by the drug loading method (in the liquid or solid phase. Thus, a dose-dependent effect was noticed for the paste setting time, hardening and the release process.

  17. Digital signal processing in power system protection and control

    CERN Document Server

    Rebizant, Waldemar; Wiszniewski, Andrzej

    2011-01-01

    Digital Signal Processing in Power System Protection and Control bridges the gap between the theory of protection and control and the practical applications of protection equipment. Understanding how protection functions is crucial not only for equipment developers and manufacturers, but also for their users who need to install, set and operate the protection devices in an appropriate manner. After introductory chapters related to protection technology and functions, Digital Signal Processing in Power System Protection and Control presents the digital algorithms for signal filtering, followed

  18. Effect of calcium chloride and calcium lactate on quality and shelf-life of fresh-cut guava slices

    International Nuclear Information System (INIS)

    Raheem, M.I.U.; Huma, N.; Anjum, F.M.

    2013-01-01

    Present study was conducted to investigate the effectiveness of chemical treatments at low temperature on the quality of fresh-cut guava slices during 2011-12. Uniform sized guava slices were made free from seeds and treated with calcium chloride and calcium lactate with concentration 0.9%, 1.8%, 2.7% or 3.6%. After packing in plastic boxes, all treated samples were stored at 5 degree C + 2 degree C in a refrigerator for 24 days with 6 day interval between different removals. The results obtained from physico-chemical analysis showed decrease in firmness (111.67-12.67gf) and increase in browning (1.19-1.93nm) of guava slices compared to control with the passage of storage interval. Moreover, scores in taste (7.33-1.00), flavour (7.33-1.00), colour (7.50-1.00) and texture (7.67-1.00) of guava slices was also decreased with respect to interaction of treatments and storage period. Calcium chloride at the rate 2.7% showed significantly higher stability than other concentrations of calcium chloride and calcium lactate in delaying firmness and browning of fresh-cut guava slices along with maintaining their organoleptic properties for longer storage period. However, calcium chloride imparted undesirable bitterness to fresh-cut guava slices at the concentration of 3.6%. Based on the overall quality performance, 2.7% calcium chloride and 3.6% calcium lactate exhibited better results than other concentrations and control with storage life of 8 days at 5 degree C + 2 degree C. (author)

  19. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR1 activation

    International Nuclear Information System (INIS)

    Blanc-Brude, Olivier P.; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-01-01

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR 1 ). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR 1 -deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR 1 -specific agonists and inhibitors were used to demonstrate that PAR 1 mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR 1 and not PAR 2 . These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis

  20. Signal differentiation in position tracking control of dc motors

    International Nuclear Information System (INIS)

    Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C

    2015-01-01

    An asymptotic differentiation approach with respect to time is used for on-line estimation of velocity and acceleration signals in controlled dc motors. The attractive feature of this differentiator of signals is that it does not require any system mathematical model, which allows its use in engineering systems that require the signal differentiation for its control, identification, fault detection, among other applications. Moreover, it is shown that the differentiation approach can be applied for output signals showing a chaotic behavior. In addition a differential flatness control scheme with additional integral compensation of the output error is proposed for tracking tasks of position reference trajectories for direct current electric motors using angular position measurements only

  1. [Role of melatonin in calcium overload-induced heart injury].

    Science.gov (United States)

    Kong, Lingheng; Wei, Ming; Sun, Na; Zhu, Juanxia; Su, Xingli

    2017-06-28

    To investigate the role of melatonin in calcium overload-induced heart injury.
 Methods: Thirty-two rats were divided into 4 groups: a control group (Control), a melatonin control group (Mel), a calcium overload group (CaP), and a calcium overload plus melatonin group (Mel+CaP). Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Triphenyltetrazolium chloride staining was used to measure the infarct size of myocardium. Lactate dehydrogenase (LDH) activity in the coronary flow was determined. The expressions of caspase-3 and cytochrome c were determined by Western blot. The pathological morphological changes in myocardial fiber were analyzed by HE staining.
 Results: Compared with the control group, calcium overload significantly induced an enlarged infarct size (Poverload-induced heart injury.

  2. Ouabain rescues rat nephrogenesis during intrauterine growth restriction by regulating the complement and coagulation cascades and calcium signaling pathway.

    Science.gov (United States)

    Chen, L; Yue, J; Han, X; Li, J; Hu, Y

    2016-02-01

    Intrauterine growth restriction (IUGR) is associated with a reduction in the numbers of nephrons in neonates, which increases the risk of hypertension. Our previous study showed that ouabain protects the development of the embryonic kidney during IUGR. To explore this molecular mechanism, IUGR rats were induced by protein and calorie restriction throughout pregnancy, and ouabain was delivered using a mini osmotic pump. RNA sequencing technology was used to identify the differentially expressed genes (DEGs) of the embryonic kidneys. DEGs were submitted to the Database for Annotation and Visualization and Integrated Discovery, and gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted. Maternal malnutrition significantly reduced fetal weight, but ouabain treatment had no significant effect on body weight. A total of 322 (177 upregulated and 145 downregulated) DEGs were detected between control and the IUGR group. Meanwhile, 318 DEGs were found to be differentially expressed (180 increased and 138 decreased) between the IUGR group and the ouabain-treated group. KEGG pathway analysis indicated that maternal undernutrition mainly disrupts the complement and coagulation cascades and the calcium signaling pathway, which could be protected by ouabain treatment. Taken together, these two biological pathways may play an important role in nephrogenesis, indicating potential novel therapeutic targets against the unfavorable effects of IUGR.

  3. A model of propagating calcium-induced calcium release mediated by calcium diffusion

    NARCIS (Netherlands)

    Backx, P. H.; de Tombe, P. P.; van Deen, J. H.; Mulder, B. J.; ter Keurs, H. E.

    1989-01-01

    The effect of sudden local fluctuations of the free sarcoplasmic [Ca++]i in cardiac cells on calcium release and calcium uptake by the sarcoplasmic reticulum (SR) was calculated with the aid of a simplified model of SR calcium handling. The model was used to evaluate whether propagation of calcium

  4. Calcium constrains plant control over forest ecosystem nitrogen cycling.

    Science.gov (United States)

    Groffman, Peter M; Fisk, Melany C

    2011-11-01

    Forest ecosystem nitrogen (N) cycling is a critical controller of the ability of forests to prevent the movement of reactive N to receiving waters and the atmosphere and to sequester elevated levels of atmospheric carbon dioxide (CO2). Here we show that calcium (Ca) constrains the ability of northern hardwood forest trees to control the availability and loss of nitrogen. We evaluated soil N-cycling response to Ca additions in the presence and absence of plants and observed that when plants were present, Ca additions "tightened" the ecosystem N cycle, with decreases in inorganic N levels, potential net N mineralization rates, microbial biomass N content, and denitrification potential. In the absence of plants, Ca additions induced marked increases in nitrification (the key process controlling ecosystem N losses) and inorganic N levels. The observed "tightening" of the N cycle when Ca was added in the presence of plants suggests that the capacity of forests to absorb elevated levels of atmospheric N and CO2 is fundamentally constrained by base cations, which have been depleted in many areas of the globe by acid rain and forest harvesting.

  5. Sensory analysis of calcium-biofortified lettuce

    Science.gov (United States)

    Vegetables represent an attractive means of providing increased calcium nutrition to the public. In this study, it was demonstrated that lettuce expressing the deregulated Arabidopsis H(+)/Ca(2+) transporter sCAX1 (cation exchanger 1) contained 25-32% more calcium than controls. These biofortified l...

  6. Inositol trisphosphate receptor mediated spatiotemporal calcium signalling.

    Science.gov (United States)

    Miyazaki, S

    1995-04-01

    Spatiotemporal Ca2+ signalling in the cytoplasm is currently understood as an excitation phenomenon by analogy with electrical excitation in the plasma membrane. In many cell types, Ca2+ waves and Ca2+ oscillations are mediated by inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channels in the endoplasmic reticulum membrane, with positive feedback between cytosolic Ca2+ and IP3-induced Ca2+ release creating a regenerative process. Remarkable advances have been made in the past year in the analysis of subcellular Ca2+ microdomains using confocal microscopy and of Ca2+ influx pathways that are functionally coupled to IP3-induced Ca2+ release. Ca2+ signals can be conveyed into the nucleus and mitochondria. Ca2+ entry from outside the cell allows repetitive Ca2+ release by providing Ca2+ to refill the endoplasmic reticulum stores, thus giving rise to frequency-encoded Ca2+ signals.

  7. Bruton's tyrosine kinase mediates the synergistic signalling between TLR9 and the B cell receptor by regulating calcium and calmodulin.

    Directory of Open Access Journals (Sweden)

    Elaine F Kenny

    Full Text Available B cells signal through both the B cell receptor (BCR which binds antigens and Toll-like receptors (TLRs including TLR9 which recognises CpG DNA. Activation of TLR9 synergises with BCR signalling when the BCR and TLR9 co-localise within an auto-phagosome-like compartment. Here we report that Bruton's tyrosine kinase (BTK is required for synergistic IL6 production and up-regulation of surface expression of MHC-class-II, CD69 and CD86 in primary murine and human B cells. We show that BTK is essential for co-localisation of the BCR and TLR9 within a potential auto-phagosome-like compartment in the Namalwa human B cell line. Downstream of BTK we find that calcium acting via calmodulin is required for this process. These data provide new insights into the role of BTK, an important target for autoimmune diseases, in B cell activation.

  8. Net analyte signal based statistical quality control

    NARCIS (Netherlands)

    Skibsted, E.T.S.; Boelens, H.F.M.; Westerhuis, J.A.; Smilde, A.K.; Broad, N.W.; Rees, D.R.; Witte, D.T.

    2005-01-01

    Net analyte signal statistical quality control (NAS-SQC) is a new methodology to perform multivariate product quality monitoring based on the net analyte signal approach. The main advantage of NAS-SQC is that the systematic variation in the product due to the analyte (or property) of interest is

  9. Interplay between phosphoinositide lipids and calcium signals at the leading edge of chemotaxing ameboid cells.

    Science.gov (United States)

    Falke, Joseph J; Ziemba, Brian P

    2014-09-01

    The chemotactic migration of eukaryotic ameboid cells up concentration gradients is among the most advanced forms of cellular behavior. Chemotaxis is controlled by a complex network of signaling proteins bound to specific lipids on the cytoplasmic surface of the plasma membrane at the front of the cell, or the leading edge. The central lipid players in this leading edge signaling pathway include the phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), both of which play multiple roles. The products of PI(4,5)P2 hydrolysis, diacylglycerol (DAG) and Ins(1,4,5)P3 (IP3), are also implicated as important players. Together, these leading edge phosphoinositides and their degradation products, in concert with a local Ca(2+) signal, control the recruitment and activities of many peripheral membrane proteins that are crucial to the leading edge signaling network. The present critical review summarizes the current molecular understanding of chemotactic signaling at the leading edge, including newly discovered roles of phosphoinositide lipids and Ca(2+), while highlighting key questions for future research. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs.

    Science.gov (United States)

    Tokmakov, Alexander A; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2010-05-01

    Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.

  11. Evaluation of plasma membrane calcium/calmodulin-dependent ATPase isoform 4 as a potential target for fertility control.

    Science.gov (United States)

    Cartwright, Elizabeth J; Neyses, Ludwig

    2010-01-01

    The array of contraceptives currently available is clearly inadequate and does not meet consumer demands since it is estimated that up to a quarter of all pregnancies worldwide are unintended. There is, therefore, an overwhelming global need to develop new effective, safe, ideally non-hormonal contraceptives for both male and female use. The contraceptive field, unlike other areas such as cancer, has a dearth of new targets. We have addressed this issue and propose that isoform 4 of the plasma membrane calcium ATPase is a potentially exciting novel target for fertility control. The plasma membrane calcium ATPase is a ubiquitously expressed calcium pump whose primary function in the majority of cells is to extrude calcium to the extracellular milieu. Two isoforms of this gene family, PMCA1 and PMCA4, are expressed in spermatozoa, with PMCA4 being the predominant isoform. Although this gene is ubiquitously expressed, its function is highly tissue-specific. Genetic deletion of PMCA4, in PMCA4 knockout mice, led to 100% infertility specifically in the male mutant mice due to a selective defect in sperm motility. It is important to note that the gene deletion did not affect normal mating characteristics in these mice. This phenotype was mimicked in wild-type sperm treated with the non-specific PMCA inhibitor 5-(and 6-) carboxyeosin diacetate succinimidyl ester; a proof-of-principle that inhibition of PMCA4 has potential importance in the control of fertility. This review outlines the potential for PMCA4 to be a novel target for fertility control by acting to inhibit sperm motility. It will outline the characteristics that make this target drugable and will describe methodologies to identify and validate novel inhibitors of this target.

  12. Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Chengli [School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039 (China); School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230601 (China); Xie, Anjian, E-mail: anjx@163.com [School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039 (China); Shen, Yuhua [School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039 (China); Zhu, Jinmiao; Li, Hongying [School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230601 (China)

    2015-06-01

    Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF{sub 4}) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF{sub 4}/GO composite template. During the process of calcium carbonate formation, [BMIM]BF{sub 4} acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed. - Highlights: • Nacre-like CaCO{sub 3}/GO were prepared by gas diffusion. • Ionic liquid/GO served as composite templates. • The interaction of Ca{sup 2+} ions and GO played a very important role in the formation of nacre-like CaCO{sub 3}.

  13. Intersection signal control multi-objective optimization based on genetic algorithm

    OpenAIRE

    Zhanhong Zhou; Ming Cai

    2014-01-01

    A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at ...

  14. Calcium transport in turtle bladder

    International Nuclear Information System (INIS)

    Sabatini, S.; Kurtzman, N.A.

    1987-01-01

    Unidirectional 45 Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J net Ca ) was secretory (serosa to mucosa). Ouabain reversed J net Ca to an absorptive flux. Amiloride reduced both fluxes such that J net Ca was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J net Ca decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J net Ca was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45 Ca content was ≅30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca 2+ -ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na + -K + -ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa

  15. Non-invasive phenotyping and drug testing in single cardiomyocytes or beta-cells by calcium imaging and optogenetics.

    Directory of Open Access Journals (Sweden)

    Yu-Fen Chang

    Full Text Available Identification of drug induced electrical instability of the heart curtails development, and introduction, of potentially proarrhythmic drugs. This problem usually requires complimentary contact based approaches such as patch-clamp electrophysiology combined with field stimulation electrodes to observe and control the cell. This produces data with high signal to noise but requires direct physical contact generally preventing high-throughput, or prolonged, phenotyping of single cells or tissues. Combining genetically encoded optogenetic control and spectrally compatible calcium indicator tools into a single adenoviral vector allows the analogous capability for cell control with simultaneous cellular phenotyping without the need for contact. This combination can be applied to single rodent primary adult cardiomyocytes, and human stem cell derived cardiomyocytes, enabling contactless small molecule evaluation for inhibitors of sodium, potassium and calcium channels suggesting it may be useful for early toxicity work. In pancreatic beta-cells it reveals the effects of glucose and the KATP inhibitor gliclazide.

  16. Programs for control of an analog-signal switching network

    International Nuclear Information System (INIS)

    D'Ottavio, T.; Enriquez, R.; Katz, R.; Skelly, J.

    1989-01-01

    A suite of programs has been developed to control the network of analog-signal switching multiplexers in the AGS complex. The software is driven by a relational database which describes the architecture of the multiplexer tree and the set of available analog signals. Signals are routed through a three-layer multiplexer tree, to be made available at four consoles each with three 4-trace oscilloscopes. A menu-structured operator interface program is available at each console, to accept requests to route any available analog signal to any of that console's 12 oscilloscope traces. A common routing-server program provides automatic routing-server program provides automatic routing of requested signals through the layers of multiplexers, maintaining a reservation database to denote free and in-use trunks. Expansion of the analog signal system is easily accommodated in software by adding new signals, trunks, multiplexers, or consoles to the database. Programmatic control of the triggering signals for each of the oscilloscopes is also provided. 3 refs., 4 figs., 3 tabs

  17. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual

    Science.gov (United States)

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward

    2013-01-01

    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate PTHrP secretion and milk calcium transport with calcium availability. To test this idea genetically, we bred BLG-Cre mice with CaSR-floxed mice to ablate the CaSR specifically from mammary epithelial cells only at the onset of lactation (CaSR-cKO mice). Loss of the CaSR in the lactating mammary gland did not disrupt alveolar differentiation or milk production. However, it did increase the secretion of PTHrP into milk and decreased the transport of calcium from the circulation into milk. CaSR-cKO mice did not show accelerated bone resorption, but they did have a decrease in bone formation. Loss of the mammary gland CaSR resulted in hypercalcemia, decreased PTH secretion, and increased renal calcium excretion in lactating mothers. Finally, loss of the mammary gland CaSR resulted in decreased calcium accrual by suckling neonates, likely due to the combination of increased milk PTHrP and decreased milk calcium. These results demonstrate that the mammary gland CaSR coordinates maternal bone and calcium metabolism, calcium transport into milk, and neonatal calcium accrual during lactation. PMID:23782944

  18. Calcium Biofortification: Three Pronged Molecular Approaches for Dissecting Complex Trait of Calcium Nutrition in Finger Millet (Eleusine coracana) for Devising Strategies of Enrichment of Food Crops.

    Science.gov (United States)

    Sharma, Divya; Jamra, Gautam; Singh, Uma M; Sood, Salej; Kumar, Anil

    2016-01-01

    Calcium is an essential macronutrient for plants and animals and plays an indispensable role in structure and signaling. Low dietary intake of calcium in humans has been epidemiologically linked to various diseases which can have serious health consequences over time. Major staple food-grains are poor source of calcium, however, finger millet [ Eleusine coracana (L.) Gaertn.], an orphan crop has an immense potential as a nutritional security crop due to its exceptionally high calcium content. Understanding the existing genetic variation as well as molecular mechanisms underlying the uptake, transport, accumulation of calcium ions (Ca 2+ ) in grains is of utmost importance for development of calcium bio-fortified crops. In this review, we have discussed molecular mechanisms involved in calcium accumulation and transport thoroughly, emphasized the role of molecular breeding, functional genomics and transgenic approaches to understand the intricate mechanism of calcium nutrition in finger millet. The objective is to provide a comprehensive up to date account of molecular mechanisms regulating calcium nutrition and highlight the significance of bio-fortification through identification of potential candidate genes and regulatory elements from finger millet to alleviate calcium malnutrition. Hence, finger millet could be used as a model system for explaining the mechanism of elevated calcium (Ca 2+ ) accumulation in its grains and could pave way for development of nutraceuticals or designer crops.

  19. Continuous residual reinforcement learning for traffic signal control optimization

    NARCIS (Netherlands)

    Aslani, Mohammad; Seipel, Stefan; Wiering, Marco

    2018-01-01

    Traffic signal control can be naturally regarded as a reinforcement learning problem. Unfortunately, it is one of the most difficult classes of reinforcement learning problems owing to its large state space. A straightforward approach to address this challenge is to control traffic signals based on

  20. Intensified Vegetation Water Use due to Soil Calcium Leaching under Acid Deposition

    Science.gov (United States)

    Lanning, M.; Wang, L.; Scanlon, T. M.; Vadeboncoeur, M. A.; Adams, M. B.; Epstein, H. E.; Druckenbrod, D.

    2017-12-01

    Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. Nitrate and sulfate deposition from fossil fuel burning has caused significant soil acidification, leading to the leaching of soil base cations. From a physiological perspective, plants require various soil cations as signaling and regulatory ions as well as integral parts of structural molecules; a depletion of soil cations can cause reduced productivity and abnormal responses to environmental change. A deficiency in calcium could also potentially prolong stomatal opening, leading to increased transpiration until enough calcium had been acquired to stimulate stomatal closure. Based on the plant physiology and the nature of acidic deposition, we hypothesize that depletion of the soil calcium supply, induced by acid deposition, would intensify vegetation water use at the watershed scale. We tested this hypothesis by analyzing a long-term and unique data set (1989-2012) of soil lysimeter data along with stream flow and evapotranspiration data at the Fernow Experimental Forest. We show that depletion of soil calcium by acid deposition can intensify vegetation water use ( 10% increase in evapotranspiration and depletion in soil water) for the first time. These results are critical to understanding future water availability, biogeochemical cycles, and surficial energy flux and may help reduce uncertainties in terrestrial biosphere models.

  1. Single-cell analysis reveals a link between CD3- and CD59-mediated signaling pathways in Jurkat T cells

    International Nuclear Information System (INIS)

    Lipp, A. M.

    2012-01-01

    Elevation of intracellular free calcium concentration ([Ca2+]i) is a key signal during T cell activation and is commonly used as a read-out parameter for stimulation of T cell signaling. Upon T cell stimulation a variety of calcium signals is produced by individual cells of the T cell population and the type of calcium signal strongly influences cell fate decisions. The heterogeneous nature of T cells is masked in ensemble measurements, which highlights the need for single-cell measurements. In this study we used single-cell calcium measurements in Jurkat cells to investigate signaling pathways, which are triggered by different proteins, namely CD3 and CD59. By application of an automated cluster algorithm the presented assay provides unbiased analysis of a large data set of individual calcium time traces generated by the whole cell population. By using this method we could demonstrate that the Jurkat population generates heterogeneous calcium signals in a stimulus-dependent manner. Furthermore, our data revealed the existence of a link between CD3- and CD59-mediated signaling pathways. Single-cell calcium measurements in Jurkat cells expressing different levels of the T cell receptor (TCR) complex indicated that CD59-mediated calcium signaling is critically dependent on TCR surface expression levels. In addition, triggering CD59-mediated calcium signaling resulted in down-regulation of TCR surface expression levels, which is known to happen upon direct TCR triggering too. Moreover, by using siRNA-mediated protein knock-downs and protein knock-out Jurkat mutants we could show that CD3- and CD59-mediated calcium signaling require identical key proteins. We therefore explored by which mechanism CD59-mediated signaling couples into TCR-mediated signaling. Fluorescence recovery after photobleaching (FRAP) experiments and live-cell protein-protein interaction assays provided no evidence of a direct physical interaction between CD3- and CD59-mediated signaling pathways

  2. Restoring calcium homeostasis to treat Alzheimer's disease: a future perspective.

    Science.gov (United States)

    Popugaeva, Elena; Vlasova, Olga L; Bezprozvanny, Ilya

    2015-10-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that primarily compromises memory formation and storage. Several hypotheses regarding the pathogenesis of AD have been proposed; however, no cure is available to date. Here we describe the calcium hypothesis of AD, which is gaining popularity. We present data supporting this hypothesis and focus on a recently discovered calcium-signaling pathway that is dysregulated in AD and propose targets for the development of disease-modifying therapies.

  3. [Myofibroblasts and afferent signalling in the urinary bladder. A concept].

    Science.gov (United States)

    Neuhaus, J; Scholler, U; Freick, K; Schwalenberg, T; Heinrich, M; Horn, L C; Stolzenburg, J U

    2008-09-01

    Afferent signal transduction in the urinary bladder is still not clearly understood. An increasing body of evidence supports the view of complex interactions between urothelium, suburothelial myofibroblasts, and sensory nerves. Bladder tissue from tumour patients was used in this study. Methods included confocal immunofluorescence, polymerase chain reaction, calcium imaging, and fluorescence recovery after photobleaching (FRAP).Myofibroblasts express muscarinic and purinergic receptors. They show constitutive spontaneous activity in calcium imaging, which completely depends on extracellular calcium. Stimulation with carbachol and ATP-evoked intracellular calcium transients also depend on extracellular calcium. The intensive coupling between the cells is significantly diminished by incubation with TGF-beta 1. Myofibroblasts form an important cellular element within the afferent signalling of the urinary bladder. They possess all features required to take part in the complex interactions with urothelial cells and sensory nerves. Modulation of their function by cytokines may provide a pathomechanism for bladder dysfunction.

  4. Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx

    Science.gov (United States)

    Yamagishi, Yuya; Tessier-Lavigne, Marc

    2015-01-01

    Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled

  5. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Directory of Open Access Journals (Sweden)

    Natalia Gustavsson

    Full Text Available BACKGROUND: Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. CONCLUSIONS: Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  6. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Science.gov (United States)

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping

    2010-11-09

    Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  7. A role for barley calcium-dependent protein kinase CPK2a in the response to drought

    Directory of Open Access Journals (Sweden)

    Agata Cieśla

    2016-10-01

    Full Text Available Increasing the drought tolerance of crops is one of the most challenging goals in plant breeding. To improve crop productivity during periods of water deficit, it is essential to understand the complex regulatory pathways that adapt plant metabolism to environmental conditions. Among various plant hormones and second messengers, calcium ions are known to be involved in drought stress perception and signaling. Plants have developed specific calcium-dependent protein kinases that convert calcium signals into phosphorylation events. In this study we attempted to elucidate the role of a calcium-dependent protein kinase in the drought stress response of barley (Hordeum vulgare L., one of the most economically important crops worldwide. The ongoing barley genome project has provided useful information about genes potentially involved in the drought stress response, but information on the role of calcium-dependent kinases is still limited. We found that the gene encoding the calcium-dependent protein kinase HvCPK2a was significantly upregulated in response to drought. To better understand the role of HvCPK2a in drought stress signaling, we generated transgenic Arabidopsis plants that overexpressed the corresponding coding sequence. Overexpressing lines displayed drought sensitivity, reduced nitrogen balance index, an increase in total chlorophyll content and decreased relative water content. In addition, in vitro kinase assay experiments combined with mass spectrometry allowed HvCPK2a autophosphorylation sites to be identified. Our results suggest that HvCPK2a is a dual-specificity calcium-dependent protein kinase that functions as a negative regulator of the drought stress response in barley.

  8. Calcium versus strontium handling by the heart muscle.

    Science.gov (United States)

    Hendrych, Michal; Olejnickova, Veronika; Novakova, Marie

    2016-01-01

    Calcium plays a crucial role in numerous processes in living systems, from both intracellular and intercellular signalling to blood clotting. Calcium can be replaced by strontium in various intracellular processes due to high level of their similarity and strontium thus may serve as a valuable tool for different experimental studies. On the other hand, strontium is also used in clinical medicine and is commonly taken to the human body with food and water. The negative cardiac side effects of strontium therapy of osteoporosis and bone metastases are well known, but still not fully explained. This fact explains enhanced interest in this element and its impact on human body. This article reviews effects of calcium and strontium on several biochemical and physiological processes, with special emphasis on cardiac muscle.

  9. Synthesis of calcium carbonate using extract components of croaker gill as morphology and polymorph adjust control agent

    International Nuclear Information System (INIS)

    Chen, Hao; Qing, Chengsong; Zheng, Jiaoling; Liu, Yuxi; Wu, Gang

    2016-01-01

    Biomimetic synthesis of calcium carbonate with various polymorphs, sizes and morphologies by using organic substrates has become an interesting topic for the last years. Calcium carbonate has been synthesized by the reaction of Na 2 CO 3 and CaCl 2 in the presence of extract components of croaker gill. The products were characterized by powder X-ray diffraction (PXRD) and Fourier transform infrared (FT-IR) spectrum, and particle morphologies were observed by scanning electron microscope (SEM). The results show that at lower concentration yellow croaker gill extract has no effect on calcium carbonate crystal polymorph. Calcite was obtained only. But the morphologies of calcite particle change with the increase of the concentration. The corners of the particle change from angular to curved. However, with the further increase of the concentration of yellow croaker gill extract, the calcium carbonate obtained is a mixture of calcite and vaterite. The vaterite component in the mixture rises with increasing concentration of extract solution, indicating that the proteins from the yellow croaker gill during growth play a crucial role in stabilizing and directing the crystal growth. - Graphical abstract: Calcium carbonate has been synthesized by using extract components of croaker gill as adjust control agent. The results indicate that yellow croaker gill extract has no effect on calcium carbonate crystal polymorph when its concentration is low. But the morphologies of calcite particle change with the increase of the concentration. With the further increase of the concentration of yellow croaker gill extract, the calcium carbonate obtained is a mixture of calcite and vaterite. The vaterite component in the mixture rises with increasing concentration of extract solution, indicating that the proteins from the yellow croaker gill during growth play a crucial role in stabilizing and directing the crystal growth. - Highlights: • Biomimetic synthesis of calcium carbonate

  10. Power system small signal stability analysis and control

    CERN Document Server

    Mondal, Debasish; Sengupta, Aparajita

    2014-01-01

    Power System Small Signal Stability Analysis and Control presents a detailed analysis of the problem of severe outages due to the sustained growth of small signal oscillations in modern interconnected power systems. The ever-expanding nature of power systems and the rapid upgrade to smart grid technologies call for the implementation of robust and optimal controls. Power systems that are forced to operate close to their stability limit have resulted in the use of control devices by utility companies to improve the performance of the transmission system against commonly occurring power system

  11. Route-Based Signal Preemption Control of Emergency Vehicle

    Directory of Open Access Journals (Sweden)

    Haibo Mu

    2018-01-01

    Full Text Available This paper focuses on the signal preemption control of emergency vehicles (EV. A signal preemption control method based on route is proposed to reduce time delay of EV at intersections. According to the time at which EV is detected and the current phase of each intersection on the travelling route of EV, the calculation methods of the earliest start time and the latest start time of green light at each intersection are given. Consequently, the effective time range of green light at each intersection is determined in theory. A multiobjective programming model, whose objectives are the minimal residence time of EV at all intersections and the maximal passing numbers of general society vehicles, is presented. Finally, a simulation calculation is carried out. Calculation results indicate that, by adopting the signal preemption method based on route, the delay of EV is reduced and the number of society vehicles passing through the whole system is increased. The signal preemption control method of EV based on route can reduce the time delay of EV and improve the evacuation efficiency of the system.

  12. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons.

    Science.gov (United States)

    Wang, Wenjing; Wildes, Craig P; Pattarabanjird, Tanyaporn; Sanchez, Mateo I; Glober, Gordon F; Matthews, Gillian A; Tye, Kay M; Ting, Alice Y

    2017-09-01

    Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high- to low-calcium signal ratio of 10 after 10 min of stimulation. Opsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor-activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium.

  13. A microstructural study of the degradation and calcium release from hydroxyapatite-calcium oxide ceramics made by infiltration.

    Science.gov (United States)

    Zhang, Qinghao; Schmelzer, Eva; Gerlach, Jörg C; Nettleship, Ian

    2017-04-01

    Hydroxyapatite pellets, partially densified in a low-temperature heat treatment, were infiltrated with calcium nitrate solution followed by in-situ precipitation of Ca(OH) 2 and CaCO 3 . The infiltrated bodies were then densified to high relative density and the calcium carbonate transformed to calcium oxide during sintering and resulted in biphasic hydroxyapatite-CaO ceramics. This work investigated the influence of the infiltration on surface morphology, weight change, and microstructural-level degradation caused by exposure to saline at pH=7.4 and a temperature of 20°C. The CaO rendered the materials more susceptible to degradation, and released calcium into the saline faster than single phase, calcium deficient hydroxyapatite (HA) that were used as a control. In consequence, these ceramics could be used to release calcium into the culture microenvironments of bone tissue or bone marrow cells next to a scaffold surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. FireSignal application Node for subsystem control

    International Nuclear Information System (INIS)

    Duarte, A.S.; Santos, B.; Pereira, T.; Carvalho, B.B.; Fernandes, H.; Neto, A.; Janky, F.; Cahyna, P.; Pisacka, J.; Hron, M.

    2010-01-01

    Modern fusion experiments require the presence of several subsystems, responsible for the different parameters involved in the operation of the machine. With the migration from the pre-programmed to the real-time control paradigm, their integration in Control, Data Acquisition, and Communication (CODAC) systems became an important issue, as this implies not only the connection to a main central coordination system, but also communications with related diagnostics and actuators. A subsystem for the control and operation of the vacuum, gas injection and baking was developed and installed in the COMPASS tokamak. These tasks are performed by dsPIC microcontrollers that receive commands from a hub computer and send information regarding the status of the operation. Communications are done in the serial protocol RS-232 through fibre optics. Java software, with an intuitive graphical user interface, for controlling and monitoring of the subsystem was developed and installed in a hub computer. In order to allow operators to perform these tasks remotely besides locally, this was integrated in the FireSignal system. Taking advantage of FireSignal features, it was possible to provide the users with, not only the same functionalities of the local application but also a similar user interface. An independent FireSignal Java Node bridges the central server and the control application. This design makes possible to easily reuse the Node for other subsystems or integrate the vacuum slow control in the other CODAC systems. The complete system, with local and remote control, has been installed successfully on COMPASS and has been in operation since April this year.

  15. FireSignal Application Node for Subsystem Control

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, A.; Santos, B.; Pereira, T.; Carvalho, B.; Fernandes, H. [Instituto de Plasmas e Fusao Nuclear - Instituto Superior Tecnico, Lisbon (Portugal); Cahyna, P.; Pisacka, J.; Hron, M. [Institute of Plasma Physics AS CR, Association EURATOM/IPP.CR, Prague (Czech Republic)

    2009-07-01

    Modern fusion experiments require the presence of several sub-systems, responsible for the different parameters involved in the operation of the machine. With the migration from the pre-programmed to the real-time control paradigm, their integration in Control, Data Acquisition, and Communication (CODAC) systems became an important issue, as this implies not only the connection to a main central coordination system, but also communications with related diagnostics and actuators. A sub-system for the control and operation of the vacuum, gas injection and baking was developed and installed in the COMPASS tokamak. These tasks are performed by 'dsPIC' micro-controllers that receive commands from a computer and send information regarding the status of the operation. Communications are done in the serial protocol RS-232 through fibre optics at speeds up to 1 Mbaud. A Java software, with an intuitive graphical user interface, for controlling and monitoring the sub-system was developed and installed in a hub computer. In order to allow operators to perform these tasks remotely besides locally, this was integrated in the FireSignal system. Taking advantage of FireSignal features, it was possible to provide the users with, not only the same functionalities of the local application but also a similar user interface. An independent FireSignal Java node bridges the central server and the control application. This design makes possible to easily reuse the node for other subsystems or integrate the vacuum slow control in the other CODAC systems. This document is composed of an abstract and a poster. (authors)

  16. TRPC1, STIM1, and ORAI influence signal-regulated intracellular and endoplasmic reticulum calcium dynamics in human myometrial cells.

    Science.gov (United States)

    Murtazina, Dilyara A; Chung, Daesuk; Ulloa, Aida; Bryan, Emily; Galan, Henry L; Sanborn, Barbara M

    2011-08-01

    To explore the relationship between signal-stimulated increases in intracellular calcium ([Ca(2+)](i)) and depletion and refilling of the endoplasmic reticulum (ER) Ca(2+) stores ([Ca(2+)](L)) in human myometrial cells, we measured simultaneous changes in [Ca(2+)](i) and [Ca(2+)](L) using Fura-2 and Mag-fluo-4, respectively, in PHM1-41 immortalized and primary cells derived from pregnant myometrium and in primary cells derived from nonpregnant tissue. Signal- and extracellular Ca(2+)-dependent increases in [Ca(2+)](i) (SRCE) and ER refilling stimulated by oxytocin and cyclopiazonic acid were not inhibited by voltage-operated channel blocker nifedipine or mibefradil, inhibition of Na(+)/Ca(2+) exchange with KB-R7943, or zero extracellular Na(+) in PHM1-41 cells. Gadolinium-inhibited oxytocin- and cyclopiazonic acid-induced SRCE and slowed ER store refilling. TRPC1 mRNA knockdown specifically inhibited oxytocin-stimulated SRCE but had no statistically significant effect on ER store refilling and no effect on either parameter following cyclopiazonic acid treatment. Dominant negative STIMΔERM expression attenuated oxytocin- and thapsigargin-stimulated SRCE. Both STIM1 and ORAI1-ORAI3 mRNA knockdowns significantly attenuated oxytocin- and cyclopiazonic acid-stimulated SRCE. The data also suggest that reduction in STIM1 or ORAI1-ORAI3 mRNA can impede the rate of ER store refilling following removal of SERCA inhibition. These data provide evidence for both distinct and overlapping influences of TRPC1, STIM1, and ORAI1-ORAI3 on SRCE and ER store refilling in human myometrial cells that may contribute to the regulation of myometrial Ca(2+) dynamics. These findings have important implications for understanding the control of myometrial Ca(2+) dynamics in relation to myometrial contractile function.

  17. Enzymatic pH control for biomimetic depostion of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, te J.; Habibovic, P.; Birgani, Z.T.; Li, Y.B.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  18. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, J. te; Habibovic, P.; Tahmasebi Birgani, Z.; Li, Y.; Bomans, P.H.; Jansen, J.A.; Sommerdijk, N.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  19. Building better bones in childhood: a randomized controlled study to test the efficacy of a dietary intervention program to increase calcium intake.

    Science.gov (United States)

    Weber, D R; Stark, L J; Ittenbach, R F; Stallings, V A; Zemel, B S

    2017-06-01

    Many children do not consume the recommended daily allowance of calcium. Inadequate calcium intake in childhood may limit bone accrual. The objective of this study was to determine if a behavioral modification and nutritional education (BM-NE) intervention improved dietary calcium intake and bone accrual in children. 139 (86 female) healthy children, 7-10 years of age, were enrolled in this randomized controlled trial conducted over 36 months. Participants randomized to the BM-NE intervention attended five sessions over a 6-week period designed to increase calcium intake to 1500 mg/day. Participants randomized to the usual care (UC) group received a single nutritional counseling session. The Calcium Counts Food Frequency Questionnaire was used to assess calcium intake; dual energy X-ray absorptiometry was used to assess areal bone mineral density (aBMD) and bone mineral content (BMC). Longitudinal mixed effects models were used to assess for an effect of the intervention on calcium intake, BMC and aBMD. BM-NE participants had greater increases in calcium intake that persisted for 12 months following the intervention compared with UC. The intervention had no effect on BMC or aBMD accrual. Secondary analyses found a negative association between calcium intake and adiposity such that greater calcium intake was associated with lesser gains in body mass index and fat mass index. A family-centered BM-NE intervention program in healthy children was successful in increasing calcium intake for up to 12 months but had no effect on bone accrual. A beneficial relationship between calcium intake and adiposity was observed and warrants future study.

  20. Protective effect of calcium dobesilate combined with benazepril therapy on renal injury in patients with early diabetic nephropathy and the possible molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2017-06-01

    Full Text Available Objective: To explore the protective effect of calcium dobesilate combined with benazepril therapy on renal injury in patients with early diabetic nephropathy and the possible molecular mechanisms. Methods: A total of 50 patients with early diabetic nephropathy treated in our hospital between May 2012 and January 2016 were collected, and according to the random number table, the patients were divided into observation group (n=25 and control group (n=25. On the basis of conventional treatment, control group of patients received benazepril therapy, observation group of patients received calcium dobesilate combined with benazepril therapy, and the treatment lasted for 3 months. Before and after treatment, automatic biochemical analyzer was used to detect the levels of renal injury indexes in peripheral blood, RIA method was used to detect the levels of renal injury indexes in urine, ELISA method was used to detect the levels of renal fibrosis indexes and Western-blot method was used to detect the protein expression of TGF-β1/BMP-7 and Smad signaling pathway molecules in renal tissue. Results: Before treatment, differences in renal injury index levels, renal fibrosis index levels and signaling pathway molecule protein expression were not statistically significant between two groups of patients. After treatment, BUN, SCr and β-TP levels in the peripheral blood as well as KIM-1 level in urine of observation group were lower than those of control group; renal fibrosis indexes TGF-β1, CTGF, TIMP-1, LN and HA levels in serum of observation group were lower than those of control group; TGF-β1 and Smad2/3 protein expression in renal tissue of observation group were lower than those of control group while Smad7 and BMP-7 protein expression were higher than those of control group. Conclusion: Calcium dobesilate combined with benazepril therapy can reduce the renal injury and inhibit the fibrosis process in patients with early diabetic nephropathy, and it

  1. Effect of zinc supplements on the intestinal absorption of calcium

    International Nuclear Information System (INIS)

    Spencer, H.; Rubio, N.; Kramer, L.; Norris, C.; Osis, D.

    1987-01-01

    Pharmacologic doses of zinc are widely used as zinc supplements. As calcium and zinc may compete for common absorption sites, a study was carried out on the effect of a pharmacologic dose of zinc on the intestinal absorption of calcium in adult males. The analyzed dietary zinc intake in the control studies was normal, averaging 14.6 mg/day. During the high zinc study, 140 mg zinc as the sulfate was added daily for time periods ranging from 17 to 71 days. The studies were carried out during both a low calcium intake averaging 230 mg/day and during a normal calcium intake of 800 mg/day. Calcium absorption studies were carried out during the normal and high zinc intake by using an oral tracer dose of Ca-47 and determining plasma levels and urinary and fecal excretions of Ca-47. The study has shown that, during zinc supplementation, the intestinal absorption of calcium was significantly lower during a low calcium intake than in the control study, 39.3% vs 61% respectively, p less than 0.001. However, during a normal calcium intake of 800 mg/day, the high zinc intake had no significant effect on the intestinal absorption of calcium. These studies have shown that the high zinc intake decreased the intestinal absorption of calcium during a low calcium intake but not during a normal calcium intake

  2. Enzymatic pH Control for Biomimetic Deposition of Calcium Phosphate Coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.; Reza Nejadnik, M.; Nudelman, F.; Walboomers, X.F.; te Riet, J.; Habibovic, Pamela; Tahmasebi Birgani, Zeinab; Yubao, L.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study has focused on enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of Calcium Phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  3. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate

  4. Bioinformatic identification of FGF, p38-MAPK, and calcium signalling pathways associated with carcinoma in situ in the urinary bladder

    International Nuclear Information System (INIS)

    Herbsleb, Malene; Christensen, Ole F; Thykjaer, Thomas; Wiuf, Carsten; Borre, Michael; Ørntoft, Torben F; Dyrskjøt, Lars

    2008-01-01

    Carcinoma in situ (CIS) is believed to be a precursor of invasive bladder cancer. Identification of CIS is a valuable prognostic factor since radical treatment strategies can be offered these patients before the disease becomes invasive. We developed a pathway based classifier approach to predict presence or absence of CIS in patients suffering from non muscle invasive bladder cancer. From Ingenuity Pathway Analysis we considered four canonical signalling pathways (p38 MAPK, FGF, Calcium, and cAMP pathways) with most coherent expression of transcription factors (TFs) across samples in a set of twenty-eight non muscle invasive bladder carcinomas. These pathways contained twelve TFs in total. We used the expression of the TFs to predict presence or absence of CIS in a Leave-One-Out Cross Validation classification. We showed that TF expression levels in three pathways (FGF, p38 MAPK, and calcium signalling) or the expression of the twelve TFs together could be used to predict presence or absence of concomitant CIS. A cluster analysis based on expression of the twelve TFs separated the samples in two main clusters: one branch contained 11 of the 15 patients without concomitant CIS and with the majority of the genes being down regulated; the other branch contained 10 of 13 patients with concomitant CIS, and here genes were mostly up regulated. The expression in the CIS group was comparable to the expression of twenty-three patients suffering from muscle-invasive bladder carcinoma. Finally, we validated our results in an independent test set and found that prediction of CIS status was possible using TF expression of the p38 MAPK pathway. We conclude that it is possible to use pathway analysis for molecular classification of bladder tumors

  5. The Role of Calcium in Osteoporosis

    Science.gov (United States)

    Arnaud, C. D.; Sanchez, S. D.

    1991-01-01

    Calcium requirements may vary throughout the lifespan. During the growth years and up to age 25 to 30, it is important to maximize dietary intake of calcium to maintain positive calcium balance and achieve peak bone mass, thereby possibly decreasing the risk of fracture when bone is subsequently lost. Calcium intake need not be greater than 800 mg/day during the relatively short period of time between the end of bone building and the onset of bone loss (30 to 40 years). Starting at age 40 to 50, both men and women lose bone slowly, but women lose bone more rapidly around the menopause and for about 10 years after. Intestinal calcium absorption and the ability to adapt to low calcium diets are impaired in many postmenopausal women and elderly persons owing to a suspected functional or absolute decrease in the ability of the kidney to produce 1,25(OH)2D2. The bones then become more and more a source of calcium to maintain critical extracellular fluid calcium levels. Excessive dietary intake of protein and fiber may induce significant negative calcium balance and thus increase dietary calcium requirements. Generally, the strongest risk factors for osteoporosis are uncontrollable (e.g., sex, age, and race) or less controllable (e.g., disease and medications). However, several factors such as diet, physical activity, cigarette smoking, and alcohol use are lifestyle related and can be modified to help reduce the risk of osteoporosis.

  6. Electrical control of calcium oscillations in mesenchymal stem cells using microsecond pulsed electric fields.

    Science.gov (United States)

    Hanna, Hanna; Andre, Franck M; Mir, Lluis M

    2017-04-20

    Human mesenchymal stem cells are promising tools for regenerative medicine due to their ability to differentiate into many cellular types such as osteocytes, chondrocytes and adipocytes amongst many other cell types. These cells present spontaneous calcium oscillations implicating calcium channels and pumps of the plasma membrane and the endoplasmic reticulum. These oscillations regulate many basic functions in the cell such as proliferation and differentiation. Therefore, the possibility to mimic or regulate these oscillations might be useful to regulate mesenchymal stem cells biological functions. One or several electric pulses of 100 μs were used to induce Ca 2+ spikes caused by the penetration of Ca 2+ from the extracellular medium, through the transiently electropermeabilized plasma membrane, in human adipose mesenchymal stem cells from several donors. Attached cells were preloaded with Fluo-4 AM and exposed to the electric pulse(s) under the fluorescence microscope. Viability was also checked. According to the pulse(s) electric field amplitude, it is possible to generate a supplementary calcium spike with properties close to those of calcium spontaneous oscillations, or, on the contrary, to inhibit the spontaneous calcium oscillations for a very long time compared to the pulse duration. Through that inhibition of the oscillations, Ca 2+ oscillations of desired amplitude and frequency could then be imposed on the cells using subsequent electric pulses. None of the pulses used here, even those with the highest amplitude, caused a loss of cell viability. An easy way to control Ca 2+ oscillations in mesenchymal stem cells, through their cancellation or the addition of supplementary Ca 2+ spikes, is reported here. Indeed, the direct link between the microsecond electric pulse(s) delivery and the occurrence/cancellation of cytosolic Ca 2+ spikes allowed us to mimic and regulate the Ca 2+ oscillations in these cells. Since microsecond electric pulse delivery

  7. Myoelectric signal processing for control of powered limb prostheses.

    Science.gov (United States)

    Parker, P; Englehart, K; Hudgins, B

    2006-12-01

    Progress in myoelectric control technology has over the years been incremental, due in part to the alternating focus of the R&D between control methodology and device hardware. The technology has over the past 50 years or so moved from single muscle control of a single prosthesis function to muscle group activity control of multifunction prostheses. Central to these changes have been developments in the means of extracting information from the myoelectric signal. This paper gives an overview of the myoelectric signal processing challenge, a brief look at the challenge from an historical perspective, the state-of-the-art in myoelectric signal processing for prosthesis control, and an indication of where this field is heading. The paper demonstrates that considerable progress has been made in providing clients with useful and reliable myoelectric communication channels, and that exciting work and developments are on the horizon.

  8. Simulation of traffic control signal systems

    Science.gov (United States)

    Connolly, P. J.; Concannon, P. A.; Ricci, R. C.

    1974-01-01

    In recent years there has been considerable interest in the development and testing of control strategies for networks of urban traffic signal systems by simulation. Simulation is an inexpensive and timely method for evaluating the effect of these traffic control strategies since traffic phenomena are too complex to be defined by analytical models and since a controlled experiment may be hazardous, expensive, and slow in producing meaningful results. This paper describes the application of an urban traffic corridor program, to evaluate the effectiveness of different traffic control strategies for the Massachusetts Avenue TOPICS Project.

  9. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue

    2010-01-01

    the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast......BACKGROUND: Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define...... neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium...

  10. Calcium regulation of EGF-induced ERK5 activation: role of Lad1-MEKK2 interaction.

    Directory of Open Access Journals (Sweden)

    Zhong Yao

    Full Text Available The ERK5 cascade is a MAPK pathway that transmits both mitogenic and stress signals, yet its mechanism of activation is not fully understood. Using intracellular calcium modifiers, we found that ERK5 activation by EGF is inhibited both by the depletion and elevation of intracellular calcium levels. This calcium effect was found to occur upstream of MEKK2, which is the MAP3K of the ERK5 cascade. Co-immunoprecipitation revealed that EGF increases MEKK2 binding to the adaptor protein Lad1, and this interaction was reduced by the intracellular calcium modifiers, indicating that a proper calcium concentration is required for the interactions and transmission of EGF signals to ERK5. In vitro binding assays revealed that the proper calcium concentration is required for a direct binding of MEKK2 to Lad1. The binding of these proteins is not affected by c-Src-mediated phosphorylation on Lad1, but slightly affects the Tyr phosphorylation of MEKK2, suggesting that the interaction with Lad1 is necessary for full Tyr phosphorylation of MEKK2. In addition, we found that changes in calcium levels affect the EGF-induced nuclear translocation of MEKK2 and thereby its effect on the nuclear ERK5 activity. Taken together, these findings suggest that calcium is required for EGF-induced ERK5 activation, and this effect is probably mediated by securing proper interaction of MEKK2 with the upstream adaptor protein Lad1.

  11. Lipopolysaccharide (LPS)-mediated macrophage activation: the role of calcium in the generation of tumoricidal activity

    International Nuclear Information System (INIS)

    Drysdale, B.E.; Shin, H.S.

    1986-01-01

    As the authors reported, calcium ionophore, A23187, activates macrophages (M theta) for tumor cell killing and the activated M theta produce a soluble cytotoxic factor (M theta-CF) that is similar if not identical to tumor necrosis factor. Based on these observations they have investigated whether calcium is involved in the activation mediated by another potent M theta activator, LPS. The authors have shown that A23187 caused uptake of extracellular 45 Ca ++ but LPS did not. They have examined the effect of depleting extracellular calcium by using medium containing no added calcium containing 1.0 mM EGTA. In no case did depletion result in decreased M theta-CF production by the M theta activated with LPS. Measurements using the fluorescent, intracellular calcium indicator, Quin 2 have also been performed. While ionomycin, caused a rapid change in the Quin-2 signal, LPS at a concentration even in excess of that required to activate the M theta caused no change in the signal. When high doses of Quin 2 or another intracellular chelator, 8-(diethylaminol-octyl-3,4,5-trimethoxybenzoate, were used to treat M theta, M theta-CF production decreased and cytotoxic activity was impaired. These data indicate that one or more of the processes involved in M theta-CF production does require calcium, but that activation mediated by LPS occurs without the influx of extracellular calcium or redistribution of intracellular calcium

  12. Exopolysaccharides regulate calcium flow in cariogenic biofilms

    Science.gov (United States)

    Varenganayil, Muth M.; Decho, Alan W.

    2017-01-01

    Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS) provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya’s agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC) by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR) spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC). Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries. PMID:29023506

  13. Exopolysaccharides regulate calcium flow in cariogenic biofilms.

    Directory of Open Access Journals (Sweden)

    Monika Astasov-Frauenhoffer

    Full Text Available Caries-associated biofilms induce loss of calcium from tooth surfaces in the presence of dietary carbohydrates. Exopolysaccharides (EPS provide a matrix scaffold and an abundance of primary binding sites within biofilms. The role of EPS in binding calcium in cariogenic biofilms is only partially understood. Thus, the aim of the present study is to investigate the relationship between the calcium dissolution rates and calcium tolerance of caries-associated bacteria and yeast as well as to examine the properties of EPS to quantify its binding affinity for dissolved calcium. Calcium dissolution was measured by dissolution zones on Pikovskaya's agar. Calcium tolerance was assessed by isothermal microcalorimetry (IMC by adding CaCl2 to the bacterial cultures. Acid-base titration and Fourier transform infrared (FTIR spectroscopy were used to identify possible functional groups responsible for calcium binding, which was assessed by isothermal titration calorimetry (ITC. Lactobacillus spp. and mutans streptococci demonstrated calcium dissolution in the presence of different carbohydrates. All strains that demonstrated high dissolution rates also revealed higher rates of calcium tolerance by IMC. In addition, acidic functional groups were predominantly identified as possible binding sites for calcium ions by acid-base titration and FTIR. Finally, ITC revealed EPS to have a higher binding affinity for calcium compared, for example, to lactic acid. In conclusion, this study illustrates the role of EPS in terms of the calcium tolerance of cariogenic microbiota by determining the ability of EPS to control free calcium concentrations within the biofilms as a self-regulating mode of action in the pathogenesis of dental caries.

  14. Quantitation of stable isotopic tracers of calcium by fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Jiang, X.; Smith, D.L.

    1987-01-01

    Instrumentation and methodology developed for quantitation of stable isotopic traces in urine are described. Calcium is isolated from urine as the insoluble oxalate salt which is subsequently dissolved in hydrochloric acid. The isotopic content of the acid solution is determined by use of a conventional mass spectrometer equipped with a fast atom bombardment ion source. Calcium ions are desorbed from the sample surface by a beam of high-energy xenon atoms and detected with a high-resolution mass spectrometer. A data acquisition system has been developed to control the mass spectrometer and record the ion signals. Detailed analysis of potential sources of error indicates that the precision of the method is presently limited primarily by an isotope effect that occurs during ion desorption. Results presented here demonstrate that the relative abundances of calcium isotopes in urine can be determined with high precision (coefficient of variation < 0.2%) and that the method is a viable alternative to conventional thermal ionization mass spectrometry. The method is especially attractive because it uses a conventional high-resolution mass spectrometer which is routinely used for analysis of organic substances

  15. Stress-induced dissociations between intracellular calcium signaling and insulin secretion in pancreatic islets.

    Science.gov (United States)

    Qureshi, Farhan M; Dejene, Eden A; Corbin, Kathryn L; Nunemaker, Craig S

    2015-05-01

    In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca(2+)]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca(2+)]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48h to a variety of stressors: cytokines (low-grade inflammation), 28mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca(2+)]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca(2+)]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3-11mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca(2+)]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3mM glucose) observed for FFAs and also for 28G. We also clamped [Ca(2+)]i using 30mM KCl+250μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3-11mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca(2+)]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca(2+)]i but not conventional insulin secretion and 'metabolic' stressors (FFAs, 28G, rotenone) impacted insulin secretion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The calcium and vitamin D controversy

    DEFF Research Database (Denmark)

    Abrahamsen, Bo

    2017-01-01

    Areas of the world where vitamin D levels are low for months of the year and intakes of calcium are high have a high prevalence of osteoporosis and cardiovascular disease. This suggests a public health message of avoiding calcium supplements and increasing vitamin D intake. No message could be more...... welcome as vitamin D can be given as a bolus while calcium must be taken daily and may be poorly tolerated. This approach is based on no evidence from intervention studies. Randomized controlled trials (RCTs) suggest that vitamin D given with calcium elicits a small reduction in fracture risk and deaths....... This has not been demonstrated for D given alone. The cardiovascular safety of calcium and vitamin D (CaD) supplements is difficult to ascertain due to weaknesses in RCT designs and adjudication that cannot be remedied by subanalysis. Moreover, no major new RCTs are in process to provide better evidence...

  17. Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate and Three Calcium Phosphate on Enamel Microhardness.

    Science.gov (United States)

    Haghgou, En Hr; Haghgoo, Roza; Roholahi, Mohamad R; Ghorbani, Zahra

    2017-07-01

    This study aims to investigate the effect of casein phos-phopeptide-amorphous calcium phosphate and three calcium phosphate (CPP-ACP and TCP) on increasing the microhardness of human enamel after induction of erosion. A total of 26 healthy human-impacted third molar teeth were chosen, and their hardness measured using a microhardness testing machine. The samples were immersed in Coca Cola (pH = 4.7) for 8 minutes. Then, micro-hardness was measured again, and these samples were randomly divided into four groups (two control groups and two experimental groups). (1) Negative control group: Artificial saliva was used for 10 minutes, (2) positive control group: Fluoride gel was used for 10 minutes, (3) β-TCP group: TCP was used for 10 minutes, (4) CCP-ACP group: CCP-ACP was used for 10 minutes. The final microhardness of those samples was measured, and the changes in microhardness of teeth within group and between groups were analyzed using the paired and analysis of variance tests respectively. Results were considered statistically significant at a level of p < 0.05. No significant difference was observed in microhard-ness between CPP-ACP group and TCP group (p = 0.368) during the time microhardness significantly dropped after soaking in soda. Casein phosphopeptide-amorphous calcium phosphate and TCP increased the microhardness of teeth. The increase in hardness in the TCP group was higher than in the CPP-ACP group, but this difference was not significant (p = 0.36). Casein phosphopeptide-amorphous calcium phosphate and TCP can affect the remineralization of erosive lesions.

  18. The Effect of Vitamin D and Calcium plus Vitamin D during Pregnancy on Pregnancy and Birth Outcomes: a Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Sakineh Mohammad-Alizadeh-Charandabi

    2015-03-01

    Full Text Available Introduction: Evidence suggests a high prevalence of calcium and vitamin D deficiencies exists in both pregnant women and babies. Adequate intake of micronutrients has great importance especially during pregnancy and lactation period. Thus, the present study aimed at assessing the effect of vitamin D and calcium-vitamin D on pregnancy and birth outcomes (including duration of pregnancy, type of delivery and infant anthropometric indicators. Methods: A randomized, controlled, clinical, triple-blind trial conducted on 126 pregnant women referring to Tabriz health centers in 2013-14. Subjects were allocated into three groups using block randomization. Interventional groups received vitamin D, calcium-vitamin D and placebo pills daily for 60 days. ANCOVA and Chi-square tests were used for data analysis. Results: By controlling BMI before and during pregnancy, there were no significant differences between the group in average neonatal weight, height and head circumference, duration of pregnancy, type of delivery and gestational age at the time of delivery. Conclusion: The results show that calcium-vitamin D and vitamin D have no effect on duration of pregnancy, type of delivery and infant anthropometric indicators.

  19. An interplay between 2 signaling pathways: Melatonin-cAMP and IP3–Ca2+ signaling pathways control intraerythrocytic development of the malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Furuyama, Wakako; Enomoto, Masahiro; Mossaad, Ehab; Kawai, Satoru; Mikoshiba, Katsuhiko; Kawazu, Shin-ichiro

    2014-01-01

    Highlights: • A melatonin receptor antagonist blocked Ca 2+ oscillation in P. falciparum and inhibited parasite growth. • P. falciparum development is controlled by Ca 2+ - and cAMP-signaling pathways. • The cAMP-signaling pathway at ring form and late trophozoite stages governs parasite growth of P. falciparum. - Abstract: Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca 2+ ) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca 2+ imaging showed that LZ treatment completely abolished Ca 2+ oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP 3 –Ca 2+ and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum

  20. Oro-gustatory perception of dietary lipids and calcium signaling in taste bud cells are altered in nutritionally obesity-prone Psammomys obesus.

    Science.gov (United States)

    Abdoul-Azize, Souleymane; Atek-Mebarki, Feriel; Bitam, Arezki; Sadou, Hassimi; Koceïr, Elhadj Ahmed; Khan, Naim Akhtar

    2013-01-01

    Since the increasing prevalence of obesity is one of the major health problems of the modern era, understanding the mechanisms of oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. We have conducted the present study on Psammomys obesus, the rodent desert gerbil which is a unique polygenic natural animal model of obesity. Our results show that obese animals exhibit a strong preference for lipid solutions in a two-bottle test. Interestingly, the expression of CD36, a lipido-receptor, in taste buds cells (TBC), isolated from circumvallate papillae, was decreased at mRNA level, but remained unaltered at protein level, in obese animals. We further studied the effects of linoleic acid (LA), a long-chain fatty acid, on the increases in free intracellular calcium (Ca(2+)) concentrations, [Ca(2+)]i, in the TBC of P. obesus. LA induced increases in [Ca(2+)]i, largely via CD36, from intracellular pool, followed by the opening of store-operated Ca(2+) (SOC) channels in the TBC of these animals. The action of this fatty acid on the increases in [Ca(2+)]i was higher in obese animals than that in controls. However, the release of Ca(2+) from intracellular stores, studied also by employing thapsigargin, was lower in TBC of obese animals than control rodents. In this study, we show, for the first time, that increased lipid intake and altered Ca(2+) signaling in TBC are associated with obesity in Psammomys obesus.

  1. TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis.

    Science.gov (United States)

    Rojas-Rivera, D; Armisén, R; Colombo, A; Martínez, G; Eguiguren, A L; Díaz, A; Kiviluoto, S; Rodríguez, D; Patron, M; Rizzuto, R; Bultynck, G; Concha, M L; Sierralta, J; Stutzin, A; Hetz, C

    2012-06-01

    Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane.

  2. Prediagnostic serum calcium and albumin and ovarian cancer: A nested case-control study in the Norwegian Janus Serum Bank Cohort.

    Science.gov (United States)

    Schwartz, Gary G; Tretli, Steinar; Vos, Linda; Robsahm, Trude E

    2017-08-01

    Women with higher serum calcium may be more likely to be diagnosed and die of ovarian cancer. We evaluated that finding in a large, prospective cohort. We conducted a nested case-control study using a population-based biobank from Norway. We compared 202 ovarian cancer cases and 202 controls, matched for age, date at blood draw, and county of residence, with respect to serum calcium and albumin, adjusted for anthropometric variables. We evaluated risks using the entire follow-up period as well as 2-15 years and 16-25 years ("early" and "late", respectively). For the entire follow-up, risk was significantly increased in the highest tertile of albumin and for high albumin and calcium jointly. Risks for ovarian cancer differed markedly by follow-up time. In early follow-up, women in the highest tertile of serum calcium had a 2.5-fold increased risk, adjusted for height and body mass index (OR=2.47, 95% C.I. 1.12-5.45) with a significant dose-response (p=0.024). Risk was not elevated in late follow-up (OR=0.62, 95% C.I. 0.27-1.36). Similarly, in early follow-up, women in the highest tertile of serum albumin had an increased risk (OR=2.55, 95% C.I.1.22-5.49) with a significant dose-response (p=0.009). Conversely, risk was not increased in late follow-up (OR=1.36, 95% C.I. 0.65-2.83). These data confirm a prospective association between higher serum calcium and ovarian cancer. An association in early, but not late, follow-up suggests that the higher calcium reflects the presence of existing cancer. A positive association with serum albumin is novel and should be interpreted cautiously. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Nonlinear Waves on Stochastic Support: Calcium Waves in Astrocyte Syncytia

    Science.gov (United States)

    Jung, P.; Cornell-Bell, A. H.

    Astrocyte-signaling has been observed in cell cultures and brain slices in the form of Calcium waves. Their functional relevance for neuronal communication, brain functions and diseases is, however, not understood. In this paper, the propagation of intercellular calcium waves is modeled in terms of waves in excitable media on a stochastic support. We utilize a novel method to decompose the spatiotemporal patterns into space-time clusters (wave fragments). Based on this cluster decomposition, a statistical description of wave patterns is developed.

  4. Polycystins, calcium signaling, and human diseases

    International Nuclear Information System (INIS)

    Delmas, Patrick; Padilla, Francoise; Osorio, Nancy; Coste, Bertrand; Raoux, Matthieu; Crest, Marcel

    2004-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a major, inherited nephropathy affecting over 1:1000 of the worldwide population. It is a systemic condition with frequent hepatic and cardiovascular manifestations in addition to the progressive development of fluid-filled cysts from the tubules and collecting ducts of affected kidneys. The pathogenesis of cyst formation is currently thought to involve increased proliferation of epithelial cells, mild dedifferentiation, and fluid accumulation. In the past decade, study of ADPKD led to the discovery of a unique family of highly complex proteins, the polycystins. Loss-of-function mutations in either of two polycystin proteins, polycystin-1 or polycystin-2, give rise to ADPKD. These proteins are thought to function together as part of a multiprotein complex that may initiate Ca 2+ signals, directing attention to the regulation of intracellular Ca 2+ as a possible misstep that participates in cyst formation. Here we review what is known about the Ca 2+ signaling functions of polycystin proteins and focus on findings that have significantly advanced our physiological insight. Special attention is paid to the recently discovered role of these proteins in the mechanotransduction of the renal primary cilium and the model it suggests

  5. Intracellular free calcium concentration and calcium transport in human erythrocytes of lead-exposed workers

    International Nuclear Information System (INIS)

    Quintanar-Escorza, M.A.; Gonzalez-Martinez, M.T.; Navarro, L.; Maldonado, M.; Arevalo, B.; Calderon-Salinas, J.V.

    2007-01-01

    Erythrocytes are the route of lead distribution to organs and tissues. The effect of lead on calcium homeostasis in human erythrocytes and other excitable cells is not known. In the present work we studied the effect of lead intoxication on the uptake and efflux (measured as (Ca 2+ -Mg 2+ )-ATPase activity) of calcium were studied in erythrocytes obtained from lead-exposed workers. Blood samples were taken from 15 workers exposed to lead (blood lead concentration 74.4 ± 21.9 μg/dl) and 15 non-exposed workers (9.9 ± 2 μg/dl). In erythrocytes of lead-exposed workers, the intracellular free calcium was 79 ± 13 nM, a significantly higher concentration (ANOVA, P 2+ -Mg 2+ )-ATPase activity. Lipid peroxidation was 1.7-fold higher in erythrocytes of lead-exposed workers as compared with control. The alteration on calcium equilibrium in erythrocytes is discussed in light of the toxicological effects in lead-exposed workers

  6. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  7. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology.

    Science.gov (United States)

    Gryshchenko, Oleksiy; Gerasimenko, Julia V; Peng, Shuang; Gerasimenko, Oleg V; Petersen, Ole H

    2018-02-09

    Ca 2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca 2+ signals evoked by K + -induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca 2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca 2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol-related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca 2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation. Physiological Ca 2+ signals in pancreatic acinar cells control fluid and enzyme secretion, whereas excessive Ca 2+ signals induced by pathological agents induce destructive processes leading to acute pancreatitis. Ca 2+ signals in the peri-acinar stellate cells may also play a role in the development of acute pancreatitis. In this study, we explored Ca 2+ signalling in the different cell types in the acinar environment of the pancreatic tissue. We have, for the first time, recorded depolarization-evoked Ca 2+ signals in pancreatic nerves and shown that whereas acinar cells receive a functional cholinergic innervation, there is no evidence for functional innervation of the stellate cells. The stellate, like the acinar, cells are not electrically excitable as they do not generate Ca 2+ signals in response to membrane depolarization. The principal agent evoking Ca 2+ signals in the stellate cells is bradykinin, but in experimental alcohol

  8. Chaos control applied to cardiac rhythms represented by ECG signals

    International Nuclear Information System (INIS)

    Borem Ferreira, Bianca; Amorim Savi, Marcelo; Souza de Paula, Aline

    2014-01-01

    The control of irregular or chaotic heartbeats is a key issue in cardiology. In this regard, chaos control techniques represent a good alternative since they suggest treatments different from those traditionally used. This paper deals with the application of the extended time-delayed feedback control method to stabilize pathological chaotic heart rhythms. Electrocardiogram (ECG) signals are employed to represent the cardiovascular behavior. A mathematical model is employed to generate ECG signals using three modified Van der Pol oscillators connected with time delay couplings. This model provides results that qualitatively capture the general behavior of the heart. Controlled ECG signals show the ability of the strategy either to control or to suppress the chaotic heart dynamics generating less-critical behaviors. (paper)

  9. The calcium connection - deficient mothers with normal newborn

    International Nuclear Information System (INIS)

    Baig, S.; Hussain, F.; Khan, S.A.

    2010-01-01

    A cross-sectional study on blood calcium levels of pregnant women of low socioeconomic status was designed to find out the consequences of low levels on the outcome of pregnancy. Blood samples from 52 women and their cord were collected at the time of delivery. Calcium was analyzed calorimetrically in maternal as well as cord blood. For comparative analysis, levels of phosphorus were analyzed on atomic absorption spectrophotometer. The results were compared with 24 non- pregnant age matched controls. Calcium levels were significantly low (p < 0.01), in maternal (8.13 +- 0.40 mg/dl) and cord blood (8.69 +- 0.28mg/dl) compared to controls (10.5 +- 0.6 mg/dl) and significantly higher in primiparous mothers (M= 8.2 +- 0.78 mg/dl, C= 8.1 +- 0.50 mg/dl) compared to multiparous (M=6.4 +- 0.59 mg/dl, C= 7.9 +- 0.53 mg/dl). Calcium levels were also found significantly lower in mothers who had a miscarriage (M=7.60 +- 0.37 mg/dl,C=9.1+-0.65 mg/dl) before this pregnancy than the primiparous and the controls. The results on the whole suggest that women tend to develop a marginal calcium deficiency after pregnancy. (author)

  10. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    Directory of Open Access Journals (Sweden)

    Aminul Islam

    Full Text Available A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3 are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  11. Determination of percent calcium carbonate in calcium chromate

    International Nuclear Information System (INIS)

    Middleton, H.W.

    1979-01-01

    The precision, accuracy and reliability of the macro-combustion method is superior to the Knorr alkalimetric method, and it is faster. It also significantly reduces the calcium chromate waste accrual problem. The macro-combustion method has been adopted as the official method for determination of percent calcium carbonate in thermal battery grade anhydrous calcium chromate and percent calcium carbonate in quicklime used in the production of calcium chromate. The apparatus and procedure can be used to measure the percent carbonate in inorganic materials other than calcium chromate. With simple modifications in the basic apparatus and procedure, the percent carbon and hydrogen can be measured in many organic material, including polymers and polymeric formulations. 5 figures, 5 tables

  12. A randomized, double-blind, placebo-controlled trial of calcium acetate on serum phosphorus concentrations in patients with advanced non-dialysis-dependent chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Ho Chiang-Hong

    2011-02-01

    Full Text Available Abstract Background Hyperphosphatemia in patients with chronic kidney disease (CKD contributes to secondary hyperparathyroidism, soft tissue calcification, and increased mortality risk. This trial was conducted to examine the efficacy and safety of calcium acetate in controlling serum phosphorus in pre-dialysis patients with CKD. Methods In this randomized, double-blind, placebo-controlled trial, 110 nondialyzed patients from 34 sites with estimated GFR 2 and serum phosphorus > 4.5 mg/dL were randomized to calcium acetate or placebo for 12 weeks. The dose of study drugs was titrated to achieve target serum phosphorus of 2.7-4.5 mg/dL. Serum phosphorus, calcium, iPTH, bicarbonate and serum albumin were measured at baseline and every 2 weeks for the 12 week study period. The primary efficacy endpoint was serum phosphorus at 12 weeks. Secondary endpoints were to measure serum calcium and intact parathyroid hormone (iPTH levels. Results At 12 weeks, serum phosphorus concentration was significantly lower in the calcium acetate group compared to the placebo group (4.4 ± 1.2 mg/dL vs. 5.1 ± 1.4 mg/dL; p = 0.04. The albumin-adjusted serum calcium concentration was significantly higher (9.5 ± 0.8 vs. 8.8 ± 0.8; p p Conclusions In CKD patients not yet on dialysis, calcium acetate was effective in reducing serum phosphorus and iPTH over a 12 week period. Trial Registration www.clinicaltrials.gov NCT00211978.

  13. Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women

    International Nuclear Information System (INIS)

    Dawson-Hughes, B.; Seligson, F.H.; Hughes, V.A.

    1986-01-01

    We measured the effect of calcium carbonate and hydroxyapatite on whole-body retention of zinc-65 in 11 and iron-59 in 13 healthy, postmenopausal women. In a single-blind, controlled, crossover study, each subject, on three occasions, ingested a standard test meal supplemented with iron-59 or zinc-65 and capsules containing placebo or 500 mg elemental calcium as calcium carbonate or hydroxyapatite. Whole-body countings were performed prior to, 30 min after, and 2 wk after each meal. Mean (SEM) zinc retention was 18.1 +/- 1.0% with placebo (control) and did not vary significantly with calcium carbonate (110.0 +/- 8.6% of control) or hydroxyapatite (106.0 +/- 7.9% of control). Iron retention, 6.3 +/- 2.0% with placebo, was significantly reduced with both calcium carbonate (43.3 +/- 8.8% of control, p = 0.002) and hydroxyapatite (45.9 +/- 10.0% of control, p = 0.003). Iron absorption may be significantly reduced when calcium supplements are taken with meals

  14. Changes in the distribution of lens calcium during development of x-ray cataract

    International Nuclear Information System (INIS)

    Hightower, K.R.; Giblin, F.J.; Reddy, V.N.

    1983-01-01

    The present study was designed to examine the possible role of calcium in the opacification of x-ray-induced cataract in rabbit. The results demonstrate that the concentration of calcium in x-rayed lenses, just prior to lens hydration (7.5 weeks postirradiation), was twice that present in contralateral control lenses. At this stage of immature cataract, the lens nucleus remained transparent and maintained a normal level of calcium, but the lens cortex, containing regions of subcapsular opacification, accumulated a level of calcium that was twice that of the control. In the completely opaque mature cataract, (8-9 weeks post x-ray), both the cortex and nucleus had gained significant amounts of calcium. As the concentration of total calcium increased in the immature x-ray cataract, the amount of the cation bound to membranes and insoluble proteins of the cytosol also increased comparably. However, the relative proportion of calcium in the various fractions remained unaltered in the immature cataract; in both control lenses and immature cataracts, 20% of the total calcium remained in the membrane pellet and 70% was located in the soluble protein fraction. Only in the mature stage of cataract was a shift in the distribution of calcium apparent, as the proportion of calcium in the soluble protein fraction increased to 90%. Although only 7% of the total calcium in a mature cataract was bound to membrane, the amount represented a fivefold increase over the control. The results of this study demonstrate that an elevation in lens calcium accompanies the opacification process in x-ray cataract. The work also suggests that changes in calcium levels are not likely to result from inactivation of Ca-ATPase

  15. Multiscale Vision Model Highlights Spontaneous Glial Calcium Waves Recorded by 2-Photon Imaging in Brain Tissue

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Mathiesen, Claus; Lauritzen, Martin

    2013-01-01

    Intercellular glial calcium waves constitute a signaling pathway which can be visualized by fluorescence imaging of cytosolic Ca2+ changes. However, there is a lack of procedures for sensitive and reliable detection of calcium waves in noisy multiphoton imaging data. Here we extend multiscale...

  16. Calcium intake and risk of fracture: systematic review

    OpenAIRE

    Bolland, Mark J; Leung, William; Tai, Vicky; Bastin, Sonja; Gamble, Greg D; Grey, Andrew; Reid, Ian R

    2015-01-01

    Objective To examine the evidence underpinning recommendations to increase calcium intake through dietary sources or calcium supplements to prevent fractures. Design Systematic review of randomised controlled trials and observational studies of calcium intake with fracture as an endpoint. Results from trials were pooled with random effects meta-analyses. Data sources Ovid Medline, Embase, PubMed, and references from relevant systematic reviews. Initial searches undertaken in July 2013 and upd...

  17. Calcium dynamics of cortical astrocytic networks in vivo.

    Directory of Open Access Journals (Sweden)

    Hajime Hirase

    2004-04-01

    Full Text Available Large and long-lasting cytosolic calcium surges in astrocytes have been described in cultured cells and acute slice preparations. The mechanisms that give rise to these calcium events have been extensively studied in vitro. However, their existence and functions in the intact brain are unknown. We have topically applied Fluo-4 AM on the cerebral cortex of anesthetized rats, and imaged cytosolic calcium fluctuation in astrocyte populations of superficial cortical layers in vivo, using two-photon laser scanning microscopy. Spontaneous [Ca(2+](i events in individual astrocytes were similar to those observed in vitro. Coordination of [Ca(2+](i events among astrocytes was indicated by the broad cross-correlograms. Increased neuronal discharge was associated with increased astrocytic [Ca(2+](i activity in individual cells and a robust coordination of [Ca(2+](i signals in neighboring astrocytes. These findings indicate potential neuron-glia communication in the intact brain.

  18. Changes in root gravitropism, ultrastructure, and calcium balance of pea root statocytes induced by A23187

    Science.gov (United States)

    Belyavskaya, N.

    The role for calcium in the regulation of a wide variety of cellular events in plants is well known. Calcium signaling has been implicated in plant gravitropism. A carboxylic acid antibiotic A23187 (calcimycin) has been widely used in biological studies since it can translocate calcium across membranes. Seedlings of Pisum sativum L. cv. Uladovsky germinated in a vertically oriented cylinder of moist filter paper soaked in water during 4.5 day had been treated with 10-5 M A23187 for 12 hr. Tips of primary roots of control and A23187-treated pea seedlings were fixed for electron microscopy and electron cytochemistry. Experiments with Pisum sativum 5- day seedlings placed horizontally for 4 h after treatment with 10 μM A23187 during 12 h found that the graviresponsiveness of their primary roots was lost completely (91 % of roots) or inhibited (24 +/- 6° in comparison with 88 +/- 8° in control). At ultrastructural level, there were observed distribution of amyloplasts around the nucleus, remarkable lengthening of statocytes, advanced vacuolization, changes in dictyosome structure, ER fragmentation, cell wall thinning in A23187-treated statocytes. Cytochemical study has indicated that statocytes exposed to calcimycin have contained a number of Ca-pyroantimonate granules detected Ca 2 + ions in organelles and hyaloplasm (unlike the control ones). The deposits were mainly associated with the plasma membrane. Among organelles, mitochondria were notable for their ability to accumulate Ca 2 +. In amyloplasts, a fine precipitate was predominately located in their stroma and envelope lumens. In cell walls, deposits of the reaction product were observed along the periphery and in the median zone. Localization of electron-dense granules of lead phosphate, which indicated Ca 2 +- ATPase activities in pea statocytes exposed to A23187, was generally consistent with that in untreated roots. Apart from plasma membrane, chromatin, and nucleolus components, the cytochemical reaction

  19. Facile synthesis of biphasic calcium phosphate microspheres with engineered surface topography for controlled delivery of drugs and proteins.

    Science.gov (United States)

    Zarkesh, Ibrahim; Ghanian, Mohammad Hossein; Azami, Mahmoud; Bagheri, Fatemeh; Baharvand, Hossein; Mohammadi, Javad; Eslaminejad, Mohamadreza Baghaban

    2017-09-01

    Biphasic calcium phosphate (BCP) microspheres are of great interest due to their high stability and osteoinductive properties at specific compositions. However, the need for optimal performance at a unique composition limits their flexibility for tuning drug release by modulation of bulk properties and presents the question of engineering surface topography as an alternative. It is necessary to have a facile method to control surface topography at a defined bulk composition. Here, we have produced BCP microspheres with different surface topographies that have the capability to be used as tunable drug release systems. We synthesized calcium deficient hydroxyapatite (CDHA) microparticles by precipitating calcium and phosphate ions onto ethylenediaminetetraacetic acid (EDTA) templates. The morphology and surface topography of CDHA microparticles were controlled using process parameters, which governed nucleation and growth. These parameters included template concentration, heat rate, and stirring speed. Under low heat rate and static conditions, we could obtain spherical microparticles with long and short nanosheets on their surfaces at low and high EDTA concentrations, respectively. These nanostructured microspheres were subsequently crystallized by thermal treatment to produce EDTA-free BCP microspheres with intact morphology. These biocompatible BCP microspheres were highly effective in loading and prolonged release of both small molecule [dexamethasone (Dex)] and protein [bovine serum albumin (BSA)] models. This strategy has enabled us to control the surface topography of BCP microspheres at defined compositions and holds tremendous promise for drug delivery and tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  1. The Risks and Benefits of Calcium Supplementation

    Directory of Open Access Journals (Sweden)

    Chan Soo Shin

    2015-03-01

    Full Text Available The association between calcium supplementation and adverse cardiovascular events has recently become a topic of debate due to the publication of two epidemiological studies and one meta-analysis of randomized controlled clinical trials. The reports indicate that there is a significant increase in adverse cardiovascular events following supplementation with calcium; however, a number of experts have raised several issues with these reports such as inconsistencies in attempts to reproduce the findings in other populations and questions concerning the validity of the data due to low compliance, biases in case ascertainment, and/or a lack of adjustment. Additionally, the Auckland Calcium Study, the Women's Health Initiative, and many other studies included in the meta-analysis obtained data from calcium-replete subjects and it is not clear whether the same risk profile would be observed in populations with low calcium intakes. Dietary calcium intake varies widely throughout the world and it is especially low in East Asia, although the risk of cardiovascular events is less prominent in this region. Therefore, clarification is necessary regarding the occurrence of adverse cardiovascular events following calcium supplementation and whether this relationship can be generalized to populations with low calcium intakes. Additionally, the skeletal benefits from calcium supplementation are greater in subjects with low calcium intakes and, therefore, the risk-benefit ratio of calcium supplementation is likely to differ based on the dietary calcium intake and risks of osteoporosis and cardiovascular diseases of various populations. Further studies investigating the risk-benefit profiles of calcium supplementation in various populations are required to develop population-specific guidelines for individuals of different genders, ages, ethnicities, and risk profiles around the world.

  2. Robust control of dielectric elastomer diaphragm actuator for human pulse signal tracking

    Science.gov (United States)

    Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan; Chan, Hoyin

    2017-08-01

    Human pulse signal tracking is an emerging technology that is needed in traditional Chinese medicine. However, soft actuation with multi-frequency tracking capability is needed for tracking human pulse signal. Dielectric elastomer (DE) is one type of soft actuating that has great potential in human pulse signal tracking. In this paper, a DE diaphragm actuator was designed and fabricated to track human pulse pressure signal. A physics-based and control-oriented model has been developed to capture the dynamic behavior of DE diaphragm actuator. Using the physical model, an H-infinity robust control was designed for the actuator to reject high-frequency sensing noises and disturbances. The robust control was then implemented in real-time to track a multi-frequency signal, which verified the tracking capability and robustness of the control system. In the human pulse signal tracking test, a human pulse signal was measured at the City University of Hong Kong and then was tracked using DE actuator at Wichita State University in the US. Experimental results have verified that the DE actuator with its robust control is capable of tracking human pulse signal.

  3. Vitamin D with calcium reduces mortality

    DEFF Research Database (Denmark)

    Rejnmark, Lars; Avenell, Alison; Masud, Tahir

    2012-01-01

    Introduction: Vitamin D may affect multiple health outcomes. If so, an effect on mortality is to be expected. Using pooled data from randomized controlled trials, we performed individual patient data (IPD) and trial level meta-analyses to assess mortality among participants randomized to either...... vitamin D alone or vitamin D with calcium. Subjects and Methods: Through a systematic literature search, we identified 24 randomized controlled trials reporting data on mortality in which vitamin D was given either alone or with calcium. From a total of 13 trials with more than 1000 participants each......,528 randomized participants (86.8% females) with a median age of 70 (interquartile range, 62-77) yr. Vitamin D with or without calcium reduced mortality by 7% [hazard ratio, 0.93; 95% confidence interval (CI), 0.88-0.99]. However, vitamin D alone did not affect mortality, but risk of death was reduced if vitamin...

  4. Dietary calcium deficiency in laying ducks impairs eggshell quality by suppressing shell biomineralization.

    Science.gov (United States)

    Chen, Wei; Zhao, Fei; Tian, Zhi Mei; Zhang, Han Xing; Ruan, Dong; Li, Yan; Wang, Shuang; Zheng, Chun Tian; Lin, Ying Cai

    2015-10-01

    The objective of this study was to determine the effects of dietary calcium deficiency on the process of shell formation. Four hundred and fifty female ducks (Anas platyrhynchos) at 22 weeks were randomly assigned to three groups. Ducks were fed one of two calcium-deficient diets (containing 1.8% or 0.38% calcium, respectively) or a calcium-adequate control diet (containing 3.6% calcium) for 67 days (depletion period) and then all ducks were fed a calcium-adequate diet for an additional 67 days (repletion period). Compared with the calcium-adequate control, the average shell thickness, egg shell weight, breaking strength, mammillae density and mammillary knob thickness of shell from ducks that consumed the diet with 0.38% calcium were significantly decreased (Pducks fed 0.38% calcium but not 1.8% calcium. Plasma estradiol concentration was decreased by both of the calcium-deficient diets (Pstudy suggest that dietary calcium deficiency negatively affects eggshell quality and microarchitecture, probably by suppressing shell biomineralization. © 2015. Published by The Company of Biologists Ltd.

  5. Tuning plant signaling and growth to survive salt

    NARCIS (Netherlands)

    Julkowska, M.M.; Testerink, C.

    2015-01-01

    Salinity is one of the major abiotic factors threatening food security worldwide. Recently, our understanding of early processes underlying salinity tolerance has expanded. In this review, early signaling events, such as phospholipid signaling, calcium ion (Ca(2+)) responses, and reactive oxygen

  6. Calcium controls the formation of vacuoles from mitochondria to regulate microspore development in wheat.

    Science.gov (United States)

    Li, Dong Xiao; Hu, Hai Yan; Li, Gan; Ru, Zhen Gang; Tian, Hui Qiao

    2017-09-01

    Potassium antimonite was used to investigate the localisation of calcium in developing wheat anthers to examine the relationship between Ca 2+ and pollen development. During anther development, calcium precipitate formation increased in anther wall cells prior to microspore mother cell meiosis and appeared in microspores, suggesting the presence of a calcium influx from anther wall cells into the locule. Initially, the precipitates in microspore cytoplasm primarily accumulated in the mitochondria and destroyed their inner membranes (cisterns) to become small vacuoles, which expanded and fused, ultimately becoming a large vacuole during microspore vacuolisation. After microspore division and large vacuole decomposition, many calcium precipitates again accumulated in the small vacuoles, indicating that calcium from the large vacuole moved back into the cytoplasm of bicellular pollen.

  7. 40 CFR 424.40 - Applicability; description of the covered calcium carbide furnaces with wet air pollution control...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the covered calcium carbide furnaces with wet air pollution control devices subcategory. 424.40 Section 424.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE...

  8. Calcium signaling and amyloid toxicity in Alzheimer disease.

    Science.gov (United States)

    Demuro, Angelo; Parker, Ian; Stutzmann, Grace E

    2010-04-23

    Intracellular Ca(2+) signaling is fundamental to neuronal physiology and viability. Because of its ubiquitous roles, disruptions in Ca(2+) homeostasis are implicated in diverse disease processes and have become a major focus of study in multifactorial neurodegenerative diseases such as Alzheimer disease (AD). A hallmark of AD is the excessive production of beta-amyloid (Abeta) and its massive accumulation in amyloid plaques. In this minireview, we highlight the pathogenic interactions between altered cellular Ca(2+) signaling and Abeta in its different aggregation states and how these elements coalesce to alter the course of the neurodegenerative disease. Ca(2+) and Abeta intersect at several functional levels and temporal stages of AD, thereby altering neurotransmitter receptor properties, disrupting membrane integrity, and initiating apoptotic signaling cascades. Notably, there are reciprocal interactions between Ca(2+) pathways and amyloid pathology; altered Ca(2+) signaling accelerates Abeta formation, whereas Abeta peptides, particularly in soluble oligomeric forms, induce Ca(2+) disruptions. A degenerative feed-forward cycle of toxic Abeta generation and Ca(2+) perturbations results, which in turn can spin off to accelerate more global neuropathological cascades, ultimately leading to synaptic breakdown, cell death, and devastating memory loss. Although no cause or cure is currently known, targeting Ca(2+) dyshomeostasis as an underlying and integral component of AD pathology may result in novel and effective treatments for AD.

  9. Inference of neuronal network spike dynamics and topology from calcium imaging data

    Directory of Open Access Journals (Sweden)

    Henry eLütcke

    2013-12-01

    Full Text Available Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP occurrence ('spike trains' from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties.

  10. Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice[OPEN

    Science.gov (United States)

    Sun, Jongho; Miller, J. Benjamin; Granqvist, Emma; Wiley-Kalil, Audrey; Gobbato, Enrico; Maillet, Fabienne; Cottaz, Sylvain; Samain, Eric; Venkateshwaran, Muthusubramanian; Fort, Sébastien; Morris, Richard J.; Ané, Jean-Michel; Dénarié, Jean; Oldroyd, Giles E.D.

    2015-01-01

    Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi. PMID:25724637

  11. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density

    Science.gov (United States)

    Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.

    2014-04-01

    Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.

  12. Digital Signal Processing and Control for the Study of Gene Networks

    Science.gov (United States)

    Shin, Yong-Jun

    2016-04-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  13. Glial calcium and diseases of the nervous system

    Czech Academy of Sciences Publication Activity Database

    Nedergaard, M.; Rodríguez Arellano, Jose Julio; Verkhratsky, Alexei

    2010-01-01

    Roč. 47, č. 2 (2010), s. 140-149 ISSN 0143-4160 R&D Projects: GA ČR GA309/09/1696; GA ČR GA305/08/1384 Institutional research plan: CEZ:AV0Z50390703 Keywords : Glia * Calcium signalling * Astrocytes Subject RIV: FH - Neurology Impact factor: 3.553, year: 2010

  14. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice.

    Science.gov (United States)

    Chen, Yixing; Zhou, Xiaojin; Chang, Shu; Chu, Zhilin; Wang, Hanmeng; Han, Shengcheng; Wang, Yingdian

    2017-12-02

    The calcium-dependent protein kinases (CDPKs) are a class of plant-specific kinase that directly bind Ca 2+ and mediate the calcium-signaling pathways to play important physiological roles in growth and development. The rice genome contains 31 CDPK genes, one of which, OsCPK21, is known to modulate the abscisic acid (ABA) and salt stress responses in this crop; however, the molecular mechanisms underlying this regulation are largely unknown. In the present study, we performed yeast two-hybrid screening, glutathione S-transferase pull-down, co-immunoprecipitation, and bimolecular fluorescence complementation assays to confirm the interaction between OsCPK21 and one of its putative targets, Os14-3-3 (OsGF14e). We used an in vitro kinase assay and site-directed mutagenesis to verify that OsCPK21 phosphorylates OsGF14e at Tyr-138. We used real-time PCR to reveal that several ABA and salt inducible genes were more highly expressed in the OsCPK21-OE and OsGF14e WT-OE plants than in the mutant OsGF14e Y138A-OE and wild-type plants. These results suggest that OsCPK21 phosphorylates OsGF14e to facilitate the response to ABA and salt stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. 30 CFR 77.515 - Bare signal or control wires; voltage.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bare signal or control wires; voltage. 77.515 Section 77.515 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Electrical Equipment-General § 77.515 Bare signal or control wires; voltage. The voltage on...

  16. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels

    Czech Academy of Sciences Publication Activity Database

    Zemková, Hana; Tomič, M.; Kučka, M.; Aguilera, G.; Stojilkovic, S. S.

    2016-01-01

    Roč. 157, č. 4 (2016), s. 1576-1589 ISSN 0013-7227 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : action potential * background sodium conductance * bursting activity * cation -conducting channels * cytosolic calcium concentration * resting membrane potential Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.286, year: 2016

  17. Layered reward signalling through octopamine and dopamine in Drosophila.

    Science.gov (United States)

    Burke, Christopher J; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott

    2012-12-20

    Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neurons. Part of the octopamine signal requires the α-adrenergic-like OAMB receptor in an identified subset of mushroom-body-targeted dopamine neurons. Octopamine triggers an increase in intracellular calcium in these dopamine neurons, and their direct activation can substitute for sugar to form appetitive memory, even in flies lacking octopamine. Analysis of the β-adrenergic-like OCTβ2R receptor reveals that octopamine-dependent reinforcement also requires an interaction with dopamine neurons that control appetitive motivation. These data indicate that sweet taste engages a distributed octopamine signal that reinforces memory through discrete subsets of mushroom-body-targeted dopamine neurons. In addition, they reconcile previous findings with octopamine and dopamine and suggest that reinforcement systems in flies are more similar to mammals than previously thought.

  18. Contactless Stimulation and Control of Biomimetic Nanotubes by Calcium Ion Gradients.

    Science.gov (United States)

    Kirejev, Vladimir; Ali Doosti, Baharan; Shaali, Mehrnaz; Jeffries, Gavin D M; Lobovkina, Tatsiana

    2018-04-17

    Membrane tubular structures are important communication pathways between cells and cellular compartments. Studying these structures in their native environment is challenging, due to the complexity of membranes and varying chemical conditions within and outside of the cells. This work demonstrates that a calcium ion gradient, applied to a synthetic lipid nanotube, triggers lipid flow directed toward the application site, resulting in the formation of a bulge aggregate. This bulge can be translated in a contactless manner by moving a calcium ion source along the lipid nanotube. Furthermore, entrapment of polystyrene nanobeads within the bulge does not tamper the bulge movement and allows transporting of the nanoparticle cargo along the lipid nanotube. In addition to the synthetic lipid nanotubes, the response of cell plasma membrane tethers to local calcium ion stimulation is investigated. The directed membrane transport in these tethers is observed, but with slower kinetics in comparison to the synthetic lipid nanotubes. The findings of this work demonstrate a novel and contactless mode of transport in lipid nanotubes, guided by local exposure to calcium ions. The observed lipid nanotube behavior can advance the current understanding of the cell membrane tubular structures, which are constantly reshaped during dynamic cellular processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Phagocytosis-induced /sup 45/calcium efflux in polymorphonuclear leucocytes

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, A; Schell-Frederick, E [Brussels Univ. (Belgium). Institut de Recherche Interdisciplinaire; Paridaens, R [Brussels Univ. (Belgium). Faculte de Medicine

    1977-10-15

    The role of calcium ions in regulating the structure and function of non-muscle cells is a subject of intense study. Several lines of evidence that calcium may be essential in the function of polymorphonuclear leuocytes (PMNL) and an important control element in the process of phagocytosis. Direct studies of calcium distribution and fluxes have only recently been undertaken. To our knowledge, no report of calcium movements during normal phagocytosis has been published. In the context of an overall study of calcium dynamics in the PMNL, we report here initial studies on /sup 45/Ca efflux in prelabelled guinea pig PMNL. The results demonstrate the energy-dependence of resting calcium efflux and an increased efflux upon addition of phagocytic particles which is not dependent on particle internalization.

  20. Signal validation and failure correction algorithms for PWR steam generator feedwater control

    International Nuclear Information System (INIS)

    Nasrallah, C.N.; Graham, K.F.

    1986-01-01

    A critical contributor to the reliability of a nuclear power plant is the reliability of the control systems which maintain plant operating parameters within desired limits. The most difficult system to control in a PWR nuclear power plant and the one which causes the most reactor trips is the control of the feedwater flow to the steam generators. The level in the steam generator must be held within relatively narrow limits, with reactor trips set for both too high and too low a level. The steam generator level is inherently unstable in that it is an open integrator of feedwater flow steam flow mismatch. The steam generator feedwater control system relies on sensed variables in order to generate the appropriate feedwater valve control signal. In current systems, each of these sensed variables comes from a single sensor which may be a separate control sensor or one of the redundant protection sensors that is manually selected by the operator. In case this single signal is false, either due to sensor malfunction or due to a test signal being substituted during periodic test and maintenance, the control system will generate a wrong control signal to the feedwater control valve. This will initiate a steam generator level upset. The solution to this problem is for the control system to sense a given variable with more than one redundant sensor. Normally there are three or four sensors for each variable monitored by the reactor protection system. The techniques discussed allow the control system to compare these redundant sensor signals and generate a validated signal for each measured variable that is insensitive to false signals

  1. Calcium absorption

    International Nuclear Information System (INIS)

    Carlmark, B.; Reizenstein, P.; Dudley, R.A.

    1976-01-01

    The methods most commonly used to measure the absorption and retention of orally administered calcium are reviewed. Nearly all make use of calcium radioisotopes. The magnitude of calcium absorption and retention depends upon the chemical form and amount of calcium administered, and the clinical and nutritional status of the subject; these influences are briefly surveyed. (author)

  2. Association of Calcium-Sensing Receptor (CASR rs 1801725 with Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Fateme Rostami

    2012-07-01

    Full Text Available Background: Calcium induces apoptosis in intestinal epithelial cells and subsequently prevents colorectal cancer through ion calcium receptor. Calcium-sensing receptor mutation reduces the expression of this receptor, and subsequently in reduces calcium transportation. Many studies have shown that Calcium-sensing receptor gene polymorphism may increase the risk of colorectal cancer. The purpose of this study is to assess the prevalence of calcium-sensing receptor polymorphisms (rs 1801725 in Iran society and to examine the role of this polymorphism in the increased risk of colorectal cancer (CRC.Materials and Methods: The research was a case-control study. 105 patients with colorectal cancer and 105 controls were randomly studied using polymerase chain reaction and restriction fragment length polymorphism. χ2 test and software 16- SPSS were used for statistical analysis.Results: In patient samples, the frequency of the genotypes TT, GT, GG in gene CASR rs 1801725 was respectively 64.8, 32.4, and 2.9 and the frequency of this polymorphism in control samples was respectively 51.2, 45.7, and 2.9. Frequency of allele G in patient samples was 0/48 and frequency of allele T was 0.25. In addition, Frequency of allele G in control samples was 0.74 and Frequency of allele T was calculated 0.19.Conclusion: The results show that calcium-sensing receptor variant (1801725 rs is not associated with increased risk of colorectal cancer.

  3. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    Directory of Open Access Journals (Sweden)

    Widyasri Prananingrum

    2012-06-01

    Full Text Available Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP is a paste material containing milk protein (casein, that actually contains minerals, such as calcium and phosphate. The casein ability to stabilize calcium phosphate and enhance mineral solubility and bioavailability confers upon CPP potential to be biological delivery vehicles for calcium and phosphate. Purpose: The aim of this study was to determine the calcium levels in tooth enamel after being covered with CPP-ACP 2 times a day for 3, 14 and 28 days. Methods: Sample were bovine incisors of 3 year old cows divided into 4 groups, namely group I as control group, group II, III and IV as treatment groups covered with CPP-ACP 2 times a day. All of those teeth were then immersed in artificial saliva. Group II was immersed for 3 days, while group III was immersed for 14 days, and group IV was immersed for 28 days. One drop of CPP-ACP was used to cover the entire labial surface of teeth. The measurement of the calcium levels was then conducted by using titration method. All data were analyzed by One- Way ANOVA test with 5% degree of confidence. Results: The results showed significant difference of the calcium levels in tooth enamel of those groups after covered with CPP-ACP 2 times a day for 3, 14 and 28 days (p = 0.001. There is also significant difference of the calcium levels in tooth enamel of those treatment groups and the control group (p = 0.001. Conclusion: The calcium levels of tooth enamel are increased after covered with CPP-ACP 2 times a day for 3, 14 and 28 days.Latar belakang: Proses terjadinya karies gigi ditandai oleh adanya demineralisasi

  4. Oro-gustatory perception of dietary lipids and calcium signaling in taste bud cells are altered in nutritionally obesity-prone Psammomys obesus.

    Directory of Open Access Journals (Sweden)

    Souleymane Abdoul-Azize

    Full Text Available Since the increasing prevalence of obesity is one of the major health problems of the modern era, understanding the mechanisms of oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. We have conducted the present study on Psammomys obesus, the rodent desert gerbil which is a unique polygenic natural animal model of obesity. Our results show that obese animals exhibit a strong preference for lipid solutions in a two-bottle test. Interestingly, the expression of CD36, a lipido-receptor, in taste buds cells (TBC, isolated from circumvallate papillae, was decreased at mRNA level, but remained unaltered at protein level, in obese animals. We further studied the effects of linoleic acid (LA, a long-chain fatty acid, on the increases in free intracellular calcium (Ca(2+ concentrations, [Ca(2+]i, in the TBC of P. obesus. LA induced increases in [Ca(2+]i, largely via CD36, from intracellular pool, followed by the opening of store-operated Ca(2+ (SOC channels in the TBC of these animals. The action of this fatty acid on the increases in [Ca(2+]i was higher in obese animals than that in controls. However, the release of Ca(2+ from intracellular stores, studied also by employing thapsigargin, was lower in TBC of obese animals than control rodents. In this study, we show, for the first time, that increased lipid intake and altered Ca(2+ signaling in TBC are associated with obesity in Psammomys obesus.

  5. An interplay between 2 signaling pathways: Melatonin-cAMP and IP{sub 3}–Ca{sup 2+} signaling pathways control intraerythrocytic development of the malaria parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Furuyama, Wakako [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan); Enomoto, Masahiro [Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario (Canada); Mossaad, Ehab [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan); Kawai, Satoru [Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi 321-0293 (Japan); Mikoshiba, Katsuhiko [Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198 (Japan); Kawazu, Shin-ichiro, E-mail: skawazu@obihiro.ac.jp [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan)

    2014-03-28

    Highlights: • A melatonin receptor antagonist blocked Ca{sup 2+} oscillation in P. falciparum and inhibited parasite growth. • P. falciparum development is controlled by Ca{sup 2+}- and cAMP-signaling pathways. • The cAMP-signaling pathway at ring form and late trophozoite stages governs parasite growth of P. falciparum. - Abstract: Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca{sup 2+}) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca{sup 2+} imaging showed that LZ treatment completely abolished Ca{sup 2+} oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP{sub 3}–Ca{sup 2+} and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum.

  6. Radioisotope 45Ca labeling four calcium chemical compounds and tracing calcium bioavailability

    International Nuclear Information System (INIS)

    Zheng Hui; Zhen Rong; Niu Huisheng; Li Huaifen

    2004-01-01

    Objective: To build up a new method of the radioisotope 45 Ca labeling four calcium chemical compounds, observe and tracing bioavailability change of calcium labeled with radioisotope 45 Ca. Methods: The calcium gluconate (Ca-Glu), calcium citrate (Ca-Cit), calcium carbonate (Ca-Car) and calcium L-threonate (Ca-Thr)were labeled by radioisotope 45 Ca. Four calcium chemical compounds of 45 Ca labeling were used of calcium content 200 mg/kg in the rats and measure the absorption content and bioavailability of calcium in tissue of heart, lever spleen, stomach, kidney, brain, intestine, whole blood, urine, faeces. Results: 1) Radioisotope 45 Ca labeling calcium chemical compound has high radio intensity, more steady standard curve and recover rate. 2) The absorption of organic calcium chemical compounds is higher than the inorganic calcium chemical compound in the study of calcium bioavailability. Conclusion: The method of tracing with radioisotope 45 Ca labeling calcium chemical compounds has the characteristic of the sensitive, objective, accurate and steady in the study of calcium bioavailability

  7. The impact of calcium assay change on a local adjusted calcium equation.

    Science.gov (United States)

    Davies, Sarah L; Hill, Charlotte; Bailey, Lisa M; Davison, Andrew S; Milan, Anna M

    2016-03-01

    Deriving and validating local adjusted calcium equations is important for ensuring appropriate calcium status classification. We investigated the impact on our local adjusted calcium equation of a change in calcium method by the manufacturer from cresolphthalein complexone to NM-BAPTA. Calcium and albumin results from general practice requests were extracted from the Laboratory Information Management system for a three-month period. Results for which there was evidence of disturbance in calcium homeostasis were excluded leaving 13,482 sets of results for analysis. The adjusted calcium equation was derived following least squares regression analysis of total calcium on albumin and normalized to the mean calcium concentration of the data-set. The revised equation (NM-BAPTA calcium method) was compared with the previous equation (cresolphthalein complexone calcium method). The switch in calcium assay resulted in a small change in the adjusted calcium equation but was not considered to be clinically significant. The calcium reference interval differed from that proposed by Pathology Harmony in the UK. Local adjusted calcium equations should be re-assessed following changes in the calcium method. A locally derived reference interval may differ from the consensus harmonized reference interval. © The Author(s) 2015.

  8. Calcium Hydroxide-induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Chen, Luoping; Zheng, Lisha; Jiang, Jingyi; Gui, Jinpeng; Zhang, Lingyu; Huang, Yan; Chen, Xiaofang; Ji, Jing; Fan, Yubo

    2016-09-01

    Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Calcium-induced conformational changes of Thrombospondin-1 signature domain: implications for vascular disease.

    Science.gov (United States)

    Gupta, Akanksha; Agarwal, Rahul; Singh, Ashutosh; Bhatnagar, Sonika

    2017-06-01

    Thrombospondin1 (TSP1) participates in numerous signaling pathways critical for vascular physiology and disease. The conserved signature domain of thrombospondin 1 (TSP1-Sig1) comprises three epidermal growth factor (EGF), 13 calcium-binding type 3 thrombospondin (T3) repeats, and one lectin-like module arranged in a stalk-wire-globe topology. TSP1 is known to be present in both calcium-replete (Holo-) and calcium-depleted (Apo-) state, each with distinct downstream signaling effects. To prepare a homology model of TSP1-Sig1 and investigate the effect of calcium on its dynamic structure and interactions. A homology model of Holo-TSP1-Sig1 was prepared with TSP2 as template in Swissmodel workspace. The Apo-form of the model was obtained by omitting the bound calcium ions from the homology model. Molecular dynamics (MD) simulation studies (100 ns) were performed on the Holo- and Apo- forms of TSP1 using Gromacs4.6.5. After simulation, Holo-TSP1-Sig1 showed significant reorientation at the interface of the EGF1-2 and EGF2-3 modules. The T3 wire is predicted to show the maximum mobility and deviation from the initial model. In Apo-TSP1-Sig1 model, the T3 repeats unfolded and formed coils with predicted increase in flexibility. Apo-TSP1-Sig1model also predicted the exposure of the binding sites for neutrophil elastase, integrin and fibroblast growth factor 2. We present a structural model and hypothesis for the role of TSP1-Sig1 interactions in the development of vascular disorders. The simulated model of the fully calcium-loaded and calcium-depleted TSP1-Sig1 may enable the development of its interactions as a novel therapeutic target for the treatment of vascular diseases.

  10. Shape control synthesis of low-dimensional calcium sulfate

    Indian Academy of Sciences (India)

    Calcium sulfate nanorods, nanowires, nanobelts and sheets had been synthesized via a facile solution reaction of CaCl2 and H2SO4 in mixed solvents of ethanol/, -dimethylformamide and deionized water at 35°C. The results indicated that well-crystallized CaSO4 nanomaterials with different morphology were obtained ...

  11. Robust Bio-Signal Based Control of an Intelligent Wheelchair

    Directory of Open Access Journals (Sweden)

    Dongyi Chen

    2013-09-01

    Full Text Available In this paper, an adaptive human-machine interaction (HMI method that is based on surface electromyography (sEMG signals is proposed for the hands-free control of an intelligent wheelchair. sEMG signals generated by the facial movements are obtained by a convenient dry electrodes sensing device. After the signals features are extracted from the autoregressive model, control data samples are updated and trained by an incremental online learning algorithm in real-time. Experimental results show that the proposed method can significantly improve the classification accuracy and training speed. Moreover, this method can effectively reduce the influence of muscle fatigue during a long time operation of sEMG-based HMI.

  12. Control of earphone produced binaural signals

    DEFF Research Database (Denmark)

    Hammershøi, Dorte; Hoffmann, Pablo F.

    2011-01-01

    While most people keep a high attention to the significance of the binaural recording method, whether it is e.g. individual or non-individual (as e.g. artificial head recording), many pay less attention to the type of earphone used to reproduce the binaural signals, and to the accurate control...

  13. Light signals for road traffic control.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1981-01-01

    Signals for road traffic control are a major constituent of the modern traffic scene, particularly in built-up areas. A vast amount of research has been executed in the last two decennia, resulting in a fairly generally accepted view on what the requirements for effective traffic lights are. For the

  14. SH Oxidation Stimulates Calcium Release Channels (Ryanodine Receptors From Excitable Cells

    Directory of Open Access Journals (Sweden)

    CECILIA HIDALGO

    2000-01-01

    Full Text Available The effects of redox reagents on the activity of the intracellular calcium release channels (ryanodine receptors of skeletal and cardiac muscle, or brain cortex neurons, was examined. In lipid bilayer experiments, oxidizing agents (2,2'-dithiodipyridine or thimerosal modified the calcium dependence of all single channels studied. After controlled oxidation channels became active at sub µM calcium concentrations and were not inhibited by increasing the calcium concentration to 0.5 mM. Subsequent reduction reversed these effects. Channels purified from amphibian skeletal muscle exhibited the same behavior, indicating that the SH groups responsible for modifying the calcium dependence belong to the channel protein. Parallel experiments that measured calcium release through these channels in sarcoplasmic reticulum vesicles showed that following oxidation, the channels were no longer inhibited by sub mM concentrations of Mg2+. It is proposed that channel redox state controls the high affinity sites responsible for calcium activation as well as the low affinity sites involved in Mg2+ inhibition of channel activity. The possible physiological and pathological implications of these results are discussed

  15. Lead perturbs epidermal growth factor (EGF) modulation of intracellular calcium metabolism in clonal rat osteoblastic (ROS 17/2.8) cells

    International Nuclear Information System (INIS)

    Long, G.J.; Rosen, J.F.

    1991-01-01

    EGF, a single chain polypeptide growth factor important for many cellular functions including glycolysis and protein phophorylation, is known to modulate calcium metabolism in several cell systems. It has been shown that EGF causes an increase in Ca 2+ influx and accumulation of inositol triphosphate, and probably exhibits many, if not all, of its effects via the calcium messenger system. Lead is known to interact with and perturb normal calcium signaling pathways; hence, the purpose of this work was to determine if lead perturbs EGF modulation of calcium metabolism in ROS 17/2.8 cells and if cell functions controlled by EGF were impaired. Cells were labelled with 45 Ca (1.87 mM Ca) for 20 hr in the presence of 5 μM Pb, 50 ng/ml EGF or μM Pb and 50 ng/ml EGF. Following an EGTA rinse, kinetic parameters were determined from 45 Ca efflux curves. Three kinetic compartments described the intracellular metabolism of 45 Ca. 5 μM Pb significantly altered the effect of EGF on intracellular calcium metabolism. Calcium distribution was shifted from the fast exchanging, quantitatively small calcium pools, S 1 and S 2 to the slow exchanging, quantitatively large S 2 . There was also a 50% increase in total cell calcium in cells treated with 5 μM Pb and 50 ng/ml EGF over cells treated with 50 ng/ml EGF alone. There was also a 25% decrease in the half-time for calcium exchange from S 3 to S 1 was also decreased. These data show that Pb impairs the normal modulation of intracellular calcium homeostasis by EGF and may therefore perturb functions that are modulated by EGF via the calcium messenger system

  16. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  17. A mathematical model of T lymphocyte calcium dynamics derived from single transmembrane protein properties

    Directory of Open Access Journals (Sweden)

    Christine Dorothee Schmeitz

    2013-09-01

    Full Text Available Fate decision processes of T lymphocytes are crucial for health and disease. Whether a T lymphocyte is activated, divides, gets anergic or initiates apoptosis depends on extracellular triggers and intracellular signalling. Free cytosolic calcium dynamics plays an important role in this context. The relative contributions of store-derived calcium entry and calcium entry from extracellular space to T lymphocyte activation are still a matter of debate. Here we develop a quantitative mathematical model of T lymphocyte calcium dynamics in order to establish a tool which allows to disentangle cause-effect relationships between ion fluxes and observed calcium time courses. The model is based on single transmembrane protein characteristics which have been determined in independent experiments. This reduces the number of unknown parameters in the model to a minimum and ensures the predictive power of the model. Simulation results are subsequently used for an analysis of whole cell calcium dynamics measured under various experimental conditions. The model accounts for a variety of these conditions, which supports the suitability of the modelling approach. The simulation results suggest a model in which calcium dynamics dominantly relies on the opening of channels in calcium stores while calcium entry through calcium-release activated channels (CRAC is more associated with the maintenance of the T lymphocyte calcium levels and prevents the cell from calcium depletion. Our findings indicate that CRAC guarantees a long-term stable calcium level which is required for cell survival and sustained calcium enhancement.

  18. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Directory of Open Access Journals (Sweden)

    Elodie Barat

    Full Text Available The substantia nigra pars reticulata (SNr is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN, which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied.In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A receptors were involved in this effect.Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  19. Subthalamic nucleus electrical stimulation modulates calcium activity of nigral astrocytes.

    Science.gov (United States)

    Barat, Elodie; Boisseau, Sylvie; Bouyssières, Céline; Appaix, Florence; Savasta, Marc; Albrieux, Mireille

    2012-01-01

    The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN), which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied. In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity) while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABA(A) receptors were involved in this effect. Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.

  20. Fenspiride and membrane transduction signals in rat alveolar macrophages.

    Science.gov (United States)

    Féray, J C; Mohammadi, K; Taouil, K; Brunet, J; Garay, R P; Hannaert, P

    1997-07-15

    Fenspiride inhibits the calcium signal evoked by the inflammatory peptide formyl-Met-Leu-Phe (fMLP) in peritoneal macrophages, but at concentrations (approximately 1 mM) far above the therapeutic range (approximately 1 microM). Here, in rat alveolar macrophages, high fenspiride concentrations (1 mM) were required to inhibit the calcium signals evoked by the calcium agonist Bay K8644 or by ionomycin. Moreover, fenspiride (1 mM) was a poor inhibitor of the cell membrane depolarization induced by gramicidine D. By contrast, fenspiride blocked Na+-H+ antiport activation by (i) fMLP with an IC50 = 3.1 +/- 1.9 nM and (ii) PMA (phorbol 12-myristate 13-acetate) with an IC50 = 9.2 +/- 3.1 nM. Finally, protein kinase C (PKC) activity of macrophage homogenate was not significantly modified by 10 or 100 microM fenspiride (at 100 microM: 2.57 +/- 1.60 vs. 2.80 +/- 1.71 pmol/10(6) cells/min). In conclusion, fenspiride inhibits fMLP- and PMA-induced pH signals in rat alveolar macrophages, probably by acting distally on the PKC transduction signal. This pH antagonistic action may be relevant for the antiinflammatory mechanism of fenspiride and requires further investigation.

  1. Direct transformation of calcium sulfite to {alpha}-calcium sulfate hemihydrate in a concentrated Ca-Mg-Mn chloride solution under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baohong Guan; Hailu Fu; Jie Yu; Guangming Jiang; Bao Kong; Zhongbiao Wu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2011-01-15

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber sludge have been generated by coal burning power plants. Utilization of the sulfite-rich sludge for preparing {alpha}-calcium sulfate hemihydrate ({alpha}-HH), an important kind of cementitious material, is of particular interest to electric utilities and environmental preservation. In the experiment, calcium sulfite hemihydrate was directly transformed to {alpha}-HH without the occurrence of calcium sulfate dihydrate (DH). The transformation was performed in a concentrated CaCl{sub 2} solution containing Mg{sup 2+} and Mn{sup 2+} at 95{sup o}C, atmospheric pressure and low pH. The oxidation of calcium sulfite and the subsequent crystallization of {alpha}-HH constitute the whole conversion, during which the oxidation turns out to be the rate controlling step. Solid solution comprised of calcium sulfite hemihydrate and calcium sulfate was found to coexist with {alpha}-HH in the suspension. Calcium sulfate increases and calcium sulfite decreases spontaneously until the solid solution disappears. Thus, it is a potential alternative to utilize sulfite-rich FGD scrubber sludge for the direct preparation of {alpha}-HH. 36 refs., 10 figs., 1 tab.

  2. PDGF-mediated protection of SH-SY5Y cells against Tat toxin involves regulation of extracellular glutamate and intracellular calcium

    International Nuclear Information System (INIS)

    Zhu Xuhui; Yao Honghong; Peng Fuwang; Callen, Shannon; Buch, Shilpa

    2009-01-01

    The human immunodeficiency virus (HIV-1) protein Tat has been implicated in mediating neuronal apoptosis, one of the hallmark features of HIV-associated dementia (HAD). Mitigation of the toxic effects of Tat could thus be a potential mechanism for reducing HIV toxicity in the brain. In this study we demonstrated that Tat-induced neurotoxicity was abolished by NMDA antagonist-MK801, suggesting the role of glutamate in this process. Furthermore, we also found that pretreatment of SH-SY5Y cells with PDGF exerted protection against Tat toxicity by decreasing extracellular glutamate levels. We also demonstrated that extracellular calcium chelator EGTA was able to abolish PDGF-mediated neuroprotection, thereby underscoring the role of calcium signaling in PDGF-mediated neuroprotection. We also showed that Erk signaling pathway was critical for PDGF-mediated protection of cells. Additionally, blocking calcium entry with EGTA resulted in suppression of PDGF-induced Erk activation. These findings thus underscore the role of PDGF-mediated calcium signaling and Erk phosphorylation in the protection of cells against HIV Tat toxicity.

  3. Studies on endogenous circulating calcium entry blocker and stimulator

    International Nuclear Information System (INIS)

    Pang, P.K.T.; Yang, M.C.M.

    1986-01-01

    Several synthetic compounds have been studied extensively for their calcium entry blockade and stimulation in smooth muscles. It is hypothesized that there should be endogenous substances which control calcium entry into cells. We recently investigated the effect of some vasoactive hormones on calcium entry. Our studies on rat tail artery helical strip showed that the in vitro vasoconstriction produced by arginine vasopressin (AVP) decreased stepwise with decreasing concentration of both calcium. After exposure of the tail artery to calcium-free Ringer's solution for 1 minute or longer, the tissue lost its ability to respond to AVP. Subsequent addition of calcium to the medium produced immediate contraction. Measurements of low affinity lanthanum resistant pool of calcium with 45 Ca showed that AVP increased calcium uptake by tail artery in a dose-dependent manner. In another study rat tail artery helical strip indicated that the vasorelaxing action of parathyroid hormone (PTH) was related to an inhibition of calcium uptake. AVP or 60 mM potassium chloride increased the low affinity lanthanum resistant pool of calcium in rate tail artery and PTH inhibited the increase. In conclusion, AVP and PTH may behave like endogenous calcium entry stimulator and inhibitor respectively in vascular tissues

  4. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells

    International Nuclear Information System (INIS)

    Christie, J.M.; Jenkins, G.I.

    1996-01-01

    UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the, effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species

  5. Diverse Regulation of Temperature Sensation by Trimeric G-Protein Signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Tomoyo Ujisawa

    Full Text Available Temperature sensation by the nervous system is essential for life and proliferation of animals. The molecular-physiological mechanisms underlying temperature signaling have not been fully elucidated. We show here that diverse regulatory machinery underlies temperature sensation through trimeric G-protein signaling in the nematode Caenorhabditis elegans. Molecular-genetic studies demonstrated that cold tolerance is regulated by additive functions of three Gα proteins in a temperature-sensing neuron, ASJ, which is also known to be a light-sensing neuron. Optical recording of calcium concentration in ASJ upon temperature-changes demonstrated that three Gα proteins act in different aspects of temperature signaling. Calcium concentration changes in ASJ upon temperature change were unexpectedly decreased in a mutant defective in phosphodiesterase, which is well known as a negative regulator of calcium increase. Together, these data demonstrate commonalities and differences in the molecular components concerned with light and temperature signaling in a single sensory neuron.

  6. Diverse Regulation of Temperature Sensation by Trimeric G-Protein Signaling in Caenorhabditis elegans

    Science.gov (United States)

    Ujisawa, Tomoyo; Ohta, Akane; Uda-Yagi, Misato

    2016-01-01

    Temperature sensation by the nervous system is essential for life and proliferation of animals. The molecular-physiological mechanisms underlying temperature signaling have not been fully elucidated. We show here that diverse regulatory machinery underlies temperature sensation through trimeric G-protein signaling in the nematode Caenorhabditis elegans. Molecular-genetic studies demonstrated that cold tolerance is regulated by additive functions of three Gα proteins in a temperature-sensing neuron, ASJ, which is also known to be a light-sensing neuron. Optical recording of calcium concentration in ASJ upon temperature-changes demonstrated that three Gα proteins act in different aspects of temperature signaling. Calcium concentration changes in ASJ upon temperature change were unexpectedly decreased in a mutant defective in phosphodiesterase, which is well known as a negative regulator of calcium increase. Together, these data demonstrate commonalities and differences in the molecular components concerned with light and temperature signaling in a single sensory neuron. PMID:27788246

  7. Calcium waves.

    Science.gov (United States)

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  8. Comparison of efficacy of an arginine-calcium carbonate-MFP toothpaste to a calcium carbonate-MFP toothpaste in controlling supragingival calculus formation and gingivitis: a 6-month clinical study.

    Science.gov (United States)

    Li, Yiming; Lee, Sean; Stephens, Joni; Mateo, Luis R; Zhang, Yun Po; DeVizio, William

    2012-02-01

    To investigate whether the long-term use (6 months) of an arginine-calcium carbonate-MFP toothpaste would affect calculus formation and/or gingivitis when compared to a calcium carbonate-MFP toothpaste. This was a double-blind clinical study. Eligible adult subjects (120) entered a 2-month pre-test phase of the study. After receiving an evaluation of oral tissue and a dental prophylaxis, the subjects were provided with a regular fluoride toothpaste, a soft-bristled adult toothbrush with instructions to brush their teeth for 1-minute twice daily (morning and evening) for 2 months. The subjects were then examined for baseline calculus using the Volpe-Manhold Calculus Index (VMI) and gingivitis using the Löe-Silness Gingival Index (GI), along with an oral tissue examination. Qualifying subjects were randomized to two treatment groups: (1) Colgate Sensitive Pro-Relief toothpaste containing 8.0% arginine, 1450 ppm MFP and calcium carbonate (Test group), or (2) Colgate Cavity Protection toothpaste containing 1450 ppm MFP and calcium carbonate (Control group). Subjects were stratified by the VMI score and gender. After a dental prophylaxis (VMI=0), the subjects entered a 6-month test phase. Each received the assigned toothpaste and a soft-bristled adult toothbrush for home use with instructions of brushing teeth for 1 minute twice daily (morning and evening). The examinations of VMI, Löe-Silness GI and oral tissues were conducted after 3 and 6 months. Prior to each study visit, subjects refrained from brushing their teeth as well as eating and drinking for 4 hours. 99 subjects complied with the study protocol and completed the 6-month test phase. No within-treatment comparison was performed for the VMI because it was brought down to zero after the prophylaxis at the baseline of the test phase. For the Löe-Silness GI, subjects of the Test group exhibited a significant difference from baseline at the 3- and 6-month examinations. The 3-month Löe-Silness GI of the Control

  9. Absorbability of calcium from calcium-bound phosphoryl oligosaccharides in comparison with that from various calcium compounds in the rat ligated jejunum loop.

    Science.gov (United States)

    To-o, Kenji; Kamasaka, Hiroshi; Nishimura, Takahisa; Kuriki, Takashi; Saeki, Shigeru; Nakabou, Yukihiro

    2003-08-01

    Calcium-bound phosphoryl oligosaccharides (POs-Ca) were prepared from potato starch. Their solubility and in situ absorbability as a calcium source were investigated by comparing with the soluble calcium compounds, calcium chloride and calcium lactate, or insoluble calcium compounds, calcium carbonate and dibasic calcium phosphate. The solubility of POs-Ca was as high as that of calcium chloride and about 3-fold higher than that of calcium lactate. An in situ experiment showed that the intestinal calcium absorption rate of POs-Ca was almost comparable with that of the soluble calcium compounds, and was significantly higher (pcalcium groups. Moreover, the total absorption rate of a 1:1 mixture of the calcium from POs-Ca and a whey mineral complex (WMC) was significantly higher (psoluble calcium source with relatively high absorption in the intestinal tract.

  10. Nonpeptide and peptide growth hormone secretagogues act both as ghrelin receptor agonist and as positive or negative allosteric modulators of ghrelin signaling

    DEFF Research Database (Denmark)

    Holst, Birgitte; Brandt, Erik; Bach, Anders

    2005-01-01

    Two nonpeptide (L692,429 and MK-677) and two peptide [GH-releasing peptide (GHRP)-6 and ghrelin] agonists were compared in binding and in signal transduction assays: calcium mobilization, inositol phosphate turnover, cAMP-responsive element (CRE), and serum-responsive element (SRE) controlled tra...

  11. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    Science.gov (United States)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  12. Astrocytes in endocannabinoid signalling.

    Science.gov (United States)

    Navarrete, Marta; Díez, Adolfo; Araque, Alfonso

    2014-10-19

    Astrocytes are emerging as integral functional components of synapses, responding to synaptically released neurotransmitters and regulating synaptic transmission and plasticity. Thus, they functionally interact with neurons establishing tripartite synapses: a functional concept that refers to the existence of communication between astrocytes and neurons and its crucial role in synaptic function. Here, we discuss recent evidence showing that astrocytes are involved in the endocannabinoid (ECB) system, responding to exogenous cannabinoids as well as ECBs through activation of type 1 cannabinoid receptors, which increase intracellular calcium and stimulate the release of glutamate that modulates synaptic transmission and plasticity. We also discuss the consequences of ECB signalling in tripartite synapses on the astrocyte-mediated regulation of synaptic function, which reveal novel properties of synaptic regulation by ECBs, such as the spatially controlled dual effect on synaptic strength and the lateral potentiation of synaptic efficacy. Finally, we discuss the potential implications of ECB signalling for astrocytes in brain pathology and animal behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Decentralized Hierarchical Controller Design for Selective Damping of Inter Area Oscillations Using PMU Signals

    Directory of Open Access Journals (Sweden)

    Ashfaque Ahmed Hashmani

    2011-07-01

    Full Text Available This paper deals with the decentralized hierarchical PSS (Power System Stabilizer controller design to achieve a better damping of specific inter-area oscillations. The two-level decentralized hierarchical structure consists of two PSS controllers. The first level controller is a local PSS controller for each generator to damp local mode in the area where controller is located. This controller uses only local signals as input signals. The local signal comes from the generator at which the controller is located. The secondary level controller is a multivariable decentralized global PSS controller to damp inter-area modes. This controller uses selected suitable wide area PMU (Phasor Measurement Units signals as inputs. The PMU or global signals are taken from network locations where the oscillations are well observable. The global controller uses only those global input signals in which the assigned single inter-area mode is most observable and is located at a generator that is most effective in controlling the assigned mode. The global controller works mainly in a frequency band given by the natural frequency of the assigned mode. The effectiveness of the resulting hierarchical controller is demonstrated through simulation studies conducted on a test power system.

  14. Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons.

    Science.gov (United States)

    Suyama, Shigetomo; Ralevski, Alexandra; Liu, Zhong-Wu; Dietrich, Marcelo O; Yada, Toshihiko; Simonds, Stephanie E; Cowley, Michael A; Gao, Xiao-Bing; Diano, Sabrina; Horvath, Tamas L

    2017-08-01

    POMC neurons integrate metabolic signals from the periphery. Here, we show in mice that food deprivation induces a linear current-voltage relationship of AMPAR-mediated excitatory postsynaptic currents (EPSCs) in POMC neurons. Inhibition of EPSCs by IEM-1460, an antagonist of calcium-permeable (Cp) AMPARs, diminished EPSC amplitude in the fed but not in the fasted state, suggesting entry of GluR2 subunits into the AMPA receptor complex during food deprivation. Accordingly, removal of extracellular calcium from ACSF decreased the amplitude of mEPSCs in the fed but not the fasted state. Ten days of high-fat diet exposure, which was accompanied by elevated leptin levels and increased POMC neuronal activity, resulted in increased expression of Cp-AMPARs on POMC neurons. Altogether, our results show that entry of calcium via Cp-AMPARs is inherent to activation of POMC neurons, which may underlie a vulnerability of these neurons to calcium overload while activated in a sustained manner during over-nutrition.

  15. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity

    Directory of Open Access Journals (Sweden)

    Masako Isokawa

    2016-01-01

    Full Text Available GABAergic inhibition plays a critical role in the regulation of neuron excitability; thus, it is subject to modulations by many factors. Recent evidence suggests the elevation of intracellular calcium ([Ca2+]i and calcium-dependent signaling molecules underlie the modulations. Caffeine induces a release of calcium from intracellular stores. We tested whether caffeine modulated GABAergic transmission by increasing [Ca2+]i. A brief local puff-application of caffeine to hippocampal CA1 pyramidal cells transiently suppressed GABAergic inhibitory postsynaptic currents (IPSCs by 73.2 ± 6.98%. Time course of suppression and the subsequent recovery of IPSCs resembled DSI (depolarization-induced suppression of inhibition, mediated by endogenous cannabinoids that require a [Ca2+]i rise. However, unlike DSI, caffeine-induced suppression of IPSCs (CSI persisted in the absence of a [Ca2+]i rise. Intracellular applications of BAPTA and ryanodine (which blocks caffeine-induced calcium release from intracellular stores failed to prevent the generation of CSI. Surprisingly, ruthenium red, an inhibitor of multiple calcium permeable/release channels including those of stores, induced metaplasticity by amplifying the magnitude of CSI independently of calcium. This metaplasticity was accompanied with the generation of a large inward current. Although ionic basis of this inward current is undetermined, the present result demonstrates that caffeine has a robust Ca2+-independent inhibitory action on GABAergic inhibition and causes metaplasticity by opening plasma membrane channels.

  16. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... women, don't get enough calcium. How much calcium do I need every day? Women: If you ...

  17. Preparation of calcium- and magnesium-fortified potato starches with altered pasting properties.

    Science.gov (United States)

    Noda, Takahiro; Takigawa, Shigenobu; Matsuura-Endo, Chie; Ishiguro, Koji; Nagasawa, Koichi; Jinno, Masahiro

    2014-09-15

    Calcium- and magnesium-fortified potato starches were prepared by immersion in various concentrations of CaCl2 and MgCl2 aqueous solutions, respectively. The pasting properties, i.e., peak viscosity and breakdown, of all the starches obtained above were analyzed using a Rapid Visco Analyzer. Furthermore, the gelatinization properties and in vitro digestibility of the representative calcium- and magnesium-fortified starches were tested. The maximum calcium content of the fortified potato starches was as high as 686 ppm with the addition of a high-concentration CaCl2 solution, while the calcium content of the control potato starch was 99 ppm. The magnesium content increased from 89 to 421 ppm by treatment of the potato starch with an MgCl2 solution. Markedly lower values of peak viscosity and breakdown were observed in calcium- and magnesium-fortified potato starches than in the control potato starch. However, the gelatinization temperature and enthalpy as well as resistant starch content of calcium- and magnesium-fortified potato starches were similar to those of the control potato starch. It is concluded that potato starches with altered pasting properties can be easily manufactured by the use of solutions containing high levels of calcium and magnesium.

  18. Functions of vitamin D / Calcium

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Excitation-contraction coupling,. Cardiac functions. Hormonal secretion. Control of enzymatic reactions. Mitotic division. Maintenance of cell integrity. Ciliary motility. Notes: Calcium is a vital second messenger.

  19. The Effects of Dietary Calcium and/or Iron Deficiency upon Murine Intestinal Calcium Binding Protein Activity and Calcium Absorption

    OpenAIRE

    McDonald, Catherine M.

    1980-01-01

    Iron deficiency has been shown to impair calcium absorption, leading to decreased bone mass. Vitamin D3-dependent calcium binding protein (CaBP) has been demonstrated to be necessary for the active transport of calcium in the intestine of numerous species. Iron deficiency might affect the activity of the calcium binding protein. Four experimental diets were formulated as follows: Diet 1, iron adequate, calcium adequate; Diet 2, iron deficient, calcium adequate; Diet 3, iron adequate, calci...

  20. Effects of diphosphonate on kidney calcium content and duodenal absorption of 45calcium

    International Nuclear Information System (INIS)

    Goulding, A.; Cameron, V.

    1978-01-01

    In rats the relationships between EHDP-induced changes in serum calcium concentration, kidney calcium content and duodenal transport of 45 calcium were studied. Body weights and kidney weights were similar in all groups. EHDP administration was associated with an increase in serum calcium concentration and kidney calcium content, and a decrease in duodenal 45 calcium transport. In the EHDP-treated rats, there was a significant negative correlation between kidney calcium concentration and duodenal 45 calcium transport but no correlation between either kidney calcium content and serum calcium concentration (r = 0.116) or between serum calcium concentration and duodenal 45 calcium transport (r = 0.02). Further experiments will be needed to determine whether the demonstrated increase in kidney calcium content induced by EHDP administration was the cause of, or was secondary to, inhibition of 1, 25(OH) 2 D 3 synthesis. (orig./AJ) [de

  1. Effect of lowering dietary calcium intake on fractional whole body calcium retention

    International Nuclear Information System (INIS)

    Dawson-Hughes, B.; Stern, D.T.; Shipp, C.C.; Rasmussen, H.M.

    1988-01-01

    Although fractional calcium absorption is known to vary inversely with calcium intake, the extent and timing of individual hormonal and calcium absorption responses to altered calcium intake have not been defined. We measured fractional whole body retention of orally ingested 47 Ca, an index of calcium absorption, in nine normal women after they had eaten a 2000-mg calcium diet for 8 weeks and a 300-mg calcium diet for 1, 2, 4, and 8 weeks. After the diet change, serum intact PTH (32.2% increase; P = 0.005), serum 1,25-dihydroxyvitamin D [1,25-(OH)2D; 43.8% increase; P = 0.003], and fractional whole body calcium retention (42.8% increase; P = 0.004) increased within 1 week. Although the PTH and calcium retention responses remained fairly constant throughout the low calcium intake period, serum 1,25-(OH)2D concentrations declined toward baseline after week 1. Thus, the late increase in calcium retention may have resulted from calcium absorption that was independent of 1,25-(OH)2D stimulation

  2. Modulation of intestinal absorption of calcium

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, P; Dupuis, Y [Ecole Pratique des Hautes Etudes, 75 - Paris (France); Paris-11 Univ., 92 - Chatenay-Malabry (France))

    1975-01-01

    Absorption of ingested calcium (2ml of a 10mM CaCl/sub 2/ solution + /sup 45/Ca) by the adult rat was shown to be facilitated by the simultaneous ingestion of an active carbohydrate, L-arabinose. As the carbohydrate concentration is increased from 10 to 200mM, the absorption of calcium is maximised at a level corresponding to about twice the control absorption level. A similar doubling of calcium absorption is obtained when a 100mM concentration of any one of a number of other carbohydrates is ingested simultaneously with a 10mM CaCl/sub 2/ solution. Conversely, the simultaneous ingestion of increasing doses (10 to 100mM) of phosphate (NaH/sub 2/PO/sub 4/) with a 10mM CaCl/sub 2/ solution results in decreased /sup 45/Ca absorption and retention by the adult rat. The maximum inhibition of calcium absorption by phosphate is independent of the concentration of the ingested calcium solution (from 5 to 50mM CaCl/sub 2/). The simultaneous ingestion of CaCl/sub 2/ (10mM) with lactose and sodium phosphate (50 and 10mM respectively) shows that the activation effect of lactose upon /sup 45/Ca absorption may be partly dissimulated by the presence of phosphate. These various observations indicate that, within a large concentration range (2 to 50mM CaCl/sub 2/) calcium absorption appears to be a precisely modulated diffusion process. Calcium absorption varies (between minimum and maximum levels) as a function of the state of saturation by the activators (carbohydrates) and inhibitors (phosphate) of the calcium transport system.

  3. Intersection signal control multi-objective optimization based on genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhanhong Zhou

    2014-04-01

    Full Text Available A signal control intersection increases not only vehicle delay, but also vehicle emissions and fuel consumption in that area. Because more and more fuel and air pollution problems arise recently, an intersection signal control optimization method which aims at reducing vehicle emissions, fuel consumption and vehicle delay is required heavily. This paper proposed a signal control multi-object optimization method to reduce vehicle emissions, fuel consumption and vehicle delay simultaneously at an intersection. The optimization method combined the Paramics microscopic traffic simulation software, Comprehensive Modal Emissions Model (CMEM, and genetic algorithm. An intersection in Haizhu District, Guangzhou, was taken for a case study. The result of the case study shows the optimal timing scheme obtained from this method is better than the Webster timing scheme.

  4. Warts signaling controls organ and body growth through regulation of ecdysone

    DEFF Research Database (Denmark)

    Møller, Morten Erik; Nagy, Stanislav; Gerlach, Stephan Uwe

    2017-01-01

    Coordination of growth between individual organs and the whole body is essential during development to produce adults with appropriate size and proportions [1, 2]. How local organ-intrinsic signals and nutrient-dependent systemic factors are integrated to generate correctly proportioned organisms...... under different environmental conditions is poorly understood. In Drosophila, Hippo/Warts signaling functions intrinsically to regulate tissue growth and organ size [3, 4], whereas systemic growth is controlled via antagonistic interactions of the steroid hormone ecdysone and nutrient-dependent insulin....../insulin-like growth factor (IGF) (insulin) signaling [2, 5]. The interplay between insulin and ecdysone signaling regulates systemic growth and controls organismal size. Here, we show that Warts (Wts; LATS1/2) signaling regulates systemic growth in Drosophila by activating basal ecdysone production, which negatively...

  5. Development of remote control software for multiformat test signal generator

    Directory of Open Access Journals (Sweden)

    Gao Yang

    2017-01-01

    Full Text Available The multi format test signal generator mentioned in this paper is the video signal generator named TG8000 produced by Tektronix Company. I will introduce the function about remote control for signal generator, how to connect the computer to the instrument, and how to remote control. My topic uses my computer to connect the instrument through the 10/100/1000 BASE-T port on the rear panel of TG8000. Then I write program to transmit SCPI (Standard Commands for Programmable Instruments to control TG8000. The application is running on the Windows operating system, the programming language is C#, development environment is Microsoft Visual Studio 2010, using the TCP/IP protocol based on Socket. And the method of remote control refers to the application called TGSetup which is developed by Tektronix Company. This paper includes a brief summary of the basic principle, and introduce for details about the process of remote control software development, and how to use my software. In the end, I will talk about the advantages of my software compared with another one.

  6. Role of cellular oxalate in oxalate clearance of patients with calcium oxalate monohydrate stone formation and normal controls.

    Science.gov (United States)

    Oehlschläger, Sven; Fuessel, Susanne; Meye, Axel; Herrmann, Jana; Froehner, Michael; Albrecht, Steffen; Wirth, Manfred P

    2009-03-01

    To examine the cellular, plasma, and urinary oxalate and erythrocyte oxalate flux in patients with calcium oxalate monohydrate (COM) stone formation vs normal controls. Pathologic oxalate clearance in humans is mostly integrated in calcium oxalate stone formation. An underlying cause of deficient oxalate clearance could be defective transmembrane oxalate transport, which, in many tissues, is regulated by an anion exchanger (SLC26). We studied 2 groups: 40 normal controls and 41 patients with COM stone formation. Red blood cells were divided for cellular oxalate measurement and for resuspension in a buffered solution (pH 7.40); 0.1 mmol/L oxalate was added. The supernatant was measured for oxalate immediately and 1 hour after incubation. The plasma and urinary oxalate were analyzed in parallel. The mean cellular oxalate concentrations were significantly greater in the normal controls (5.25 +/- 0.47 micromol/L) than in those with COM stone formation (2.36 +/- 0.28 micromol/L; P stone formation (0.31 +/- 0.02 mmol/L) than in the controls (0.24 +/- 0.02 mmol/L; P r = 0.49-0.63; P r = -0.29-0.41; P r = -0.30; P r = 0.25; P stone formation. Our data implicate the presence of a cellular oxalate buffer to stabilize plasma and urinary oxalate concentrations in normal controls.

  7. Calcium hydroxide isotope effect in calcium isotope enrichment by ion exchange

    International Nuclear Information System (INIS)

    Jepson, B.E.; Shockey, G.C.

    1984-01-01

    The enrichment of calcium isotopes has been observed in ion-exchange chromatography with an aqueous phase of calcium hydroxide and a solid phase of sulfonic acid resin. The band front was exceedingly sharp as a result of the acid-base reaction occuring at the front of the band. Single-stage separation coefficients were found to be epsilon( 44 Ca/ 40 Ca) = 11 x 10 -4 and epsilon( 48 Ca/ 40 Ca) = 18 x 10 -4 . The maximum column separation factors achieved were 1.05 for calcium-44 and 1.09 for calcium-48 with the heavy isotopes enriching in the fluid phase. The calcium isotope effect between fully hydrated aqueous calcium ions and undissociated aqueous calcium hydroxide was estimated. For the calcium-44/40 isotope pair the separation coefficient was 13 x 10 -4 . 20 references, 2 figures

  8. Hedonic and incentive signals for body weight control.

    Science.gov (United States)

    Egecioglu, Emil; Skibicka, Karolina P; Hansson, Caroline; Alvarez-Crespo, Mayte; Friberg, P Anders; Jerlhag, Elisabet; Engel, Jörgen A; Dickson, Suzanne L

    2011-09-01

    Here we review the emerging neurobiological understanding of the role of the brain's reward system in the regulation of body weight in health and in disease. Common obesity is characterized by the over-consumption of palatable/rewarding foods, reflecting an imbalance in the relative importance of hedonic versus homeostatic signals. The popular 'incentive salience theory' of food reward recognises not only a hedonic/pleasure component ('liking') but also an incentive motivation component ('wanting' or 'reward-seeking'). Central to the neurobiology of the reward mechanism is the mesoaccumbal dopamine system that confers incentive motivation not only for natural rewards such as food but also by artificial rewards (eg. addictive drugs). Indeed, this mesoaccumbal dopamine system receives and integrates information about the incentive (rewarding) value of foods with information about metabolic status. Problematic over-eating likely reflects a changing balance in the control exerted by hypothalamic versus reward circuits and/or it could reflect an allostatic shift in the hedonic set point for food reward. Certainly, for obesity to prevail, metabolic satiety signals such as leptin and insulin fail to regain control of appetitive brain networks, including those involved in food reward. On the other hand, metabolic control could reflect increased signalling by the stomach-derived orexigenic hormone, ghrelin. We have shown that ghrelin activates the mesoaccumbal dopamine system and that central ghrelin signalling is required for reward from both chemical drugs (eg alcohol) and also from palatable food. Future therapies for problematic over-eating and obesity may include drugs that interfere with incentive motivation, such as ghrelin antagonists.

  9. Serum Calcium is Related to the Degree of Artery Stenosis in Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Jiayan Wu

    2018-04-01

    Full Text Available Background/Aims: Acute ischemic stroke is caused by stenosis of artery supplying to brain. We aimed to detect some metabolites in the serum that would be related to the degree of artery stenosis and to analyze potential mechanisms. Methods: Patients diagnosed with acute ischemic stroke were divided into two groups according to their degree of artery stenosis (which was determined by computed tomographic angiography: a mild group (stenosis ≤ 30% and a severe group (stenosis > 30%. Serum from these patients was collected, and we focused on the differences in the concentrations of calcium, uric acid, low density lipoprotein and homocysteine. The dataset GSE11583 from the Gene Expression Omnibus database was analyzed to find the potential mechanism using bioinformatics methods. Results: Among the four metabolites, the only difference that reached significance between the two groups was in the concentration of calcium in serum (2.27±0.08 mmol/L vs 2.21±0.08 mmol/L. By comparing the gene expression levels between normal endothelial cells and adaptive remodeling endothelial cells in GSE11583, we identified 51 upregulated and 40 downregulated genes in adaptive remodeling endothelial cells. The gene set enrichment analysis revealed that upregulated genes were enriched in a phosphatidylinositol signaling system, which is closely involved in the calcium signaling pathway. Conclusion: Our results suggest that the concentration of serum calcium is higher in patients with more severe artery stenosis lesions and that the phosphatidylinositol signaling system is a key biological pathway involved in this process.

  10. Serum Calcium is Related to the Degree of Artery Stenosis in Acute Ischemic Stroke.

    Science.gov (United States)

    Wu, Jiayan; Xie, Junchao; Zhao, Yanxin; Gong, Li; Liu, Xueyuan; Liu, Wangmi

    2018-01-01

    Acute ischemic stroke is caused by stenosis of artery supplying to brain. We aimed to detect some metabolites in the serum that would be related to the degree of artery stenosis and to analyze potential mechanisms. Patients diagnosed with acute ischemic stroke were divided into two groups according to their degree of artery stenosis (which was determined by computed tomographic angiography): a mild group (stenosis ≤ 30%) and a severe group (stenosis > 30%). Serum from these patients was collected, and we focused on the differences in the concentrations of calcium, uric acid, low density lipoprotein and homocysteine. The dataset GSE11583 from the Gene Expression Omnibus database was analyzed to find the potential mechanism using bioinformatics methods. Among the four metabolites, the only difference that reached significance between the two groups was in the concentration of calcium in serum (2.27±0.08 mmol/L vs 2.21±0.08 mmol/L). By comparing the gene expression levels between normal endothelial cells and adaptive remodeling endothelial cells in GSE11583, we identified 51 upregulated and 40 downregulated genes in adaptive remodeling endothelial cells. The gene set enrichment analysis revealed that upregulated genes were enriched in a phosphatidylinositol signaling system, which is closely involved in the calcium signaling pathway. Our results suggest that the concentration of serum calcium is higher in patients with more severe artery stenosis lesions and that the phosphatidylinositol signaling system is a key biological pathway involved in this process. © 2018 The Author(s). Published by S. Karger AG, Basel.

  11. Coordinated signal control for arterial intersections using fuzzy logic

    Science.gov (United States)

    Kermanian, Davood; Zare, Assef; Balochian, Saeed

    2013-09-01

    Every day growth of the vehicles has become one of the biggest problems of urbanism especially in major cities. This can waste people's time, increase the fuel consumption, air pollution, and increase the density of cars and vehicles. Fuzzy controllers have been widely used in many consumer products and industrial applications with success over the past two decades. This article proposes a comprehensive model of urban traffic network using state space equations and then using Fuzzy Logic Tool Box and SIMULINK Program MATLAB a fuzzy controller in order to optimize and coordinate signal control at two intersections at an arterial road. The fuzzy controller decides to extend, early cut or terminate a signal phase and phase sequence to ensure smooth flow of traffic with minimal waiting time and length of queue. Results show that the performance of the proposed traffic controller at novel fuzzy model is better that of conventional controllers under normal and abnormal traffic conditions.

  12. Acute Treatment with T-Type Calcium Channel Enhancer SAK3 Reduces Cognitive Impairments Caused by Methimazole-Induced Hypothyroidism Via Activation of Cholinergic Signaling.

    Science.gov (United States)

    Husain, Noreen; Yabuki, Yasushi; Shinoda, Yasuharu; Fukunaga, Kohji

    2018-01-01

    Hypothyroidism is a common disorder that is associated with psychological disturbances such as dementia, depression, and psychomotor disorders. We recently found that chronic treatment with the T-type calcium channel enhancer SAK3 prevents the cholinergic neurodegeneration induced by a single intraperitoneal (i.p.) injection of methimazole (MMI; 75 mg/kg), thereby improving cognition. Here, we evaluated the acute effect of SAK3 on cognitive impairments and its mechanism of action following the induction of hypothyroidism. Hypothyroidism was induced by 2 injections of MMI (75 mg/kg, i.p.) administered once per week. Four weeks after the final MMI treatment, MMI-treated mice showed reduced serum thyroxine (T4) levels and cognitive impairments without depression-like behaviors. Although acute SAK3 (1.0 mg/kg, p.o.) administration failed to ameliorate the decreased T4 levels and histochemical destruction of the glomerular structure, acute SAK3 (1.0 mg/kg, p.o.) administration significantly reduced cognitive impairments in MMI-treated mice. Importantly, the α7 nicotinic acetylcholine receptor (nAChR)-selective inhibitor methyllycaconitine (MLA; 12 mg/kg, i.p.) and T-type calcium channel-specific blocker NNC 55-0396 (25 mg/kg, i.p.) antagonized the acute effect of SAK3 on memory deficits in MMI-treated mice. We also confirmed that acute SAK3 administration does not rescue reduced olfactory marker protein or choline acetyltransferase immunoreactivity levels in the olfactory bulb or medial septum. Taken together, these results suggest that SAK3 has the ability to improve the cognitive decline caused by hypothyroidism directly through activation of nAChR signaling and T-type calcium channels. © 2018 S. Karger AG, Basel.

  13. Calcium-responsive contractility during fertilization in sea urchin eggs.

    Science.gov (United States)

    Stack, Christianna; Lucero, Amy J; Shuster, Charles B

    2006-04-01

    Fertilization triggers a reorganization of oocyte cytoskeleton, and in sea urchins, there is a dramatic increase in cortical F-actin. However, the role that myosin II plays during fertilization remains largely unexplored. Myosin II is localized to the cortical cytoskeleton both before and after fertilization and to examine myosin II contractility in living cells, Lytechinus pictus eggs were observed by time-lapse microscopy. Upon sperm binding, a cell surface deflection traversed the egg that was followed by and dependent on the calcium wave. The calcium-dependence of surface contractility could be reproduced in unfertilized eggs, where mobilization of intracellular calcium in unfertilized eggs under compression resulted in a marked contractile response. Lastly, inhibition of myosin II delayed absorption of the fertilization cone, suggesting that myosin II not only responds to the same signals that activate eggs but also participates in the remodeling of the cortical actomyosin cytoskeleton during the first zygotic cell cycle. (c) 2006 Wiley-Liss, Inc.

  14. Calcium

    Science.gov (United States)

    ... You can get decent amounts of calcium from baked beans, navy beans, white beans, and others. Canned fish. You're in luck if you like sardines and canned salmon with bones. Almond milk. Working Calcium Into Your ...

  15. The Signal Detection and Control Circuit Design for Confocal Auto-Focus System

    OpenAIRE

    Yin Liu; Jin Yu; Zeqiang Mo

    2016-01-01

    Based on the demands of Confocal Auto-Focus system, the implementation method of signal measurement circuit and control circuit is given. Using the high performance instrumental amplifier AD620BN, low noise precision FET Op amplifier AD795JRZ and ultralow offset voltage Op amplifier OP07EP, a signal measurement circuit used to converse the two differential light intensity signal to electric signal is designed. And a control circuit which takes MCU MSP430F149 as core processes the former signa...

  16. Influence of dietary calcium on bone calcium utilization

    International Nuclear Information System (INIS)

    Farmer, M.; Roland, D.A. Sr.; Clark, A.J.

    1986-01-01

    In Experiment 1, 10 microCi 45 Ca/day were administered to 125 hens for 10 days. Hens were then allocated to five treatments with calcium levels ranging from .08 to 3.75% of the diet. In Experiment 2, hens with morning oviposition times were randomly allocated to 11 treatments that were periods of time postoviposition ranging from 6 hr to 24 hr, in 2-hr increments (Experiment 2). At the end of each 2-hr period, eggs from 25 hens were removed from the uterus. The 18-, 20-, and 22-hr treatments were replicated three times. In Experiment 3, hens were fed either ad libitum or feed was withheld the last 5 or 6 hr before oviposition. In Experiment 4, hens were fed 10 microCi of 45 Ca for 15 days to label skeletal calcium. Hens were divided into two groups and fed a .08 or 3.75% calcium diet for 2 days. On the second day, 25 hens fed the 3.75% calcium diet were intubated with 7 g of the same diet containing .5 g calcium at 1700, 2100, 0100, 0500, and 0700 hr. The measurements used were egg weight, shell weight, and 45 Ca content of the egg shell. Results indicated a significant linear or quadratic regression of dietary calcium levels on 45 Ca accumulation in eggshells and eggshell weight (Experiment 1). As the calcium level of the diet increased, eggshell weight increased and 45 Ca recovery decreased. Utilization of skeletal calcium for shell formation ranged from 28 to 96%. In Experiment 2, the rate of shell calcification was not constant throughout the calcification process but varied significantly

  17. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  18. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila

    Directory of Open Access Journals (Sweden)

    Carlos Estella

    2015-02-01

    Full Text Available The Notch signalling pathway is evolutionary conserved and participates in numerous developmental processes, including the control of cell proliferation. However, Notch signalling can promote or restrain cell division depending on the developmental context, as has been observed in human cancer where Notch can function as a tumor suppressor or an oncogene. Thus, the outcome of Notch signalling can be influenced by the cross-talk between Notch and other signalling pathways. The use of model organisms such as Drosophila has been proven to be very valuable to understand the developmental role of the Notch pathway in different tissues and its relationship with other signalling pathways during cell proliferation control. Here we review recent studies in Drosophila that shed light in the developmental control of cell proliferation by the Notch pathway in different contexts such as the eye, wing and leg imaginal discs. We also discuss the autonomous and non-autonomous effects of the Notch pathway on cell proliferation and its interactions with different signalling pathways.

  19. Calcium phosphate bioceramics prepared from wet chemically precipitated powders

    Directory of Open Access Jou