WorldWideScience

Sample records for calcium hydroxyapatite

  1. Calcium Deficient Hydroxyapatite for Medical Application Prepared by Hydrothermal Method

    Science.gov (United States)

    Ioku, Koji; Kamitakahara, Masanobu; Ikeda, Tohru

    2010-11-01

    Hydrothermal processing plays a key role in the synthesis of biomaterials with excellent biocompatibility in the physiological environment. Especially, calcium phosphates are paid to much attention for the regenerative medicine. Two kinds of porous materials of hydroxyapatite with 70% porosity were prepared. One of them is a newly developed calcium-deficient hydroxyapatite composed of rod-shaped particles of about 20 μm in length synthesized hydrothermally (HHA) and the other one is the stoichiometric hydroxyapatite (SHA) prepared by the conventional sintering method. These materials were used for animal implantation tests to compare these biological responses. In the rabbit femur, implanted HHA was slowly resorbed and then most of the implanted HHA was resorbed after 72 weeks. The implanted SHA was unresorbed throughout the experimental period. The volume of newly formed bone and the number of osteoclasts in the implanted region were significantly larger in HHA than in SHA after 24 weeks. Results in the present research suggested that the activity of osteoclasts correlated to the bone forming activity of osteoblasts. The method to synthesize biodegradable pure calcium-deficient HA is expected to provide adequate biodegradability and bone replaceability.

  2. Controlled degradation pattern of hydroxyapatite/calcium carbonate composite microspheres.

    Science.gov (United States)

    Yang, Ning; Zhong, Qiwei; Zhou, Ying; Kundu, Subhas C; Yao, Juming; Cai, Yurong

    2016-06-01

    Hydroxyapatite (HAP) is widely used in clinic due to its good biocompatibility and osteoconductivity except for its slow degradation speed. In the present study, spherical calcium carbonate (CaCO3 ) is fabricated in the presence of silk protein sericin, which is transmuted into HAP microsphere in phosphate solution with the assistance of microwave irradiation. The effect of reaction conditions on the conversion of CaCO3 is investigated including reaction time, chemical composition of phosphate solution, and microwave power to get a series of HAP/CaCO3 composites. The degradation property of the composites is evaluated in vitro. Results show the degradation speed of the composite with higher HAP content is slower. The degradation rate of the composite could be changed effectively by modulating the proportion of HAP and CaCO3 . This work provides a feasible method for the preparation of spherical HAP/CaCO3 composite with controllable degradability. The composite thus obtained may be an ideal material for bone tissue engineering application. Microsc. Res. Tech. 79:518-524, 2016. © 2016 Wiley Periodicals, Inc. PMID:27037606

  3. Synthesis and characterization of cadmium-calcium hydroxyapatite solid solutions

    Institute of Scientific and Technical Information of China (English)

    Xin Zhao; Yi-nian Zhu; Liu-qin Dai

    2014-01-01

    A series of cadmium-calcium hydroxyapatite solid solutions was prepared by an aqueous precipitation method. By various means, the characterizations confirmed the formation of continuous solid solutions over all ranges of Cd/(Cd+Ca) atomic ratio. In the results, both lattice parameters a and c display slight deviations from Vegard’s rule when the Cd/(Cd+Ca) atomic ratio is greater than 0.6. The particles change from smaller acicular to larger hexagonal columnar crystals as the Cd/(Cd+Ca) atomic ratio increases from 0-0.60 to 0.60-1.00. The area of the phosphate peak for symmetric P-O stretching decreases with the increase in Cd/(Cd+Ca) atomic ratio, and the peak disappears when the Cd/(Cd+Ca) atomic ratio is greater than 0.6; the two phosphate peaks of P-O stretching gradually merge together for the Cd/(Cd+Ca) atomic ratio near 0.60. These variations can be explained by a slight tendency of larger Cd ions to occupy M(2) sites and smaller Ca ions to prefer M(1) sites in the structure.

  4. Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Pei [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, PR China, (China); Wei, Pingpin [Cancer Research Institute, Central South University, Changsha 410078 (China); Li, Pengjian; Gao, Chengde [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, PR China, (China); Shuai, Cijun, E-mail: shuai@csu.edu.cn [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, PR China, (China); Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425 (United States); Peng, Shuping, E-mail: shuping@csu.edu.cn [Cancer Research Institute, Central South University, Changsha 410078 (China)

    2014-11-15

    Calcium silicate possessed excellent biocompatibility, bioactivity and degradability, while the high brittleness limited its application in load-bearing sites. Hydroxyapatite whiskers ranging from 0 to 30 wt.% were incorporated into the calcium silicate matrix to improve the strength and fracture resistance. Porous scaffolds were fabricated by selective laser sintering. The effects of hydroxyapatite whiskers on the mechanical properties and toughening mechanisms were investigated. The results showed that the scaffolds had a uniform and continuous inner network with the pore size ranging between 0.5 mm and 0.8 mm. The mechanical properties were enhanced with increasing hydroxyapatite whiskers, reached a maximum at 20 wt.% (compressive strength: 27.28 MPa, compressive Young's modulus: 156.2 MPa, flexural strength: 15.64 MPa and fracture toughness: 1.43 MPa·m{sup 1/2}) and then decreased by addition of more hydroxyapatite whiskers. The improvement of mechanical properties was due to whisker pull-out, crack deflection and crack bridging. Moreover, the degradation rate decreased with the increase of hydroxyapatite whisker content. A layer of bone-like apatite was formed on the scaffold surfaces after being soaked in simulated body fluid. Human osteoblast-like MG-63 cells spread well on the scaffolds and proliferated with increasing culture time. These findings suggested that the calcium silicate scaffolds reinforced with hydroxyapatite whiskers showed great potential for bone regeneration and tissue engineering applications. - Highlights: • HA whiskers were incorporated into CS to improve the properties. • The scaffolds were successfully fabricated by SLS. • Toughening mechanisms was whisker pull-out, crack deflection and bridging. • The scaffolds showed excellent apatite forming ability.

  5. Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering

    International Nuclear Information System (INIS)

    Calcium silicate possessed excellent biocompatibility, bioactivity and degradability, while the high brittleness limited its application in load-bearing sites. Hydroxyapatite whiskers ranging from 0 to 30 wt.% were incorporated into the calcium silicate matrix to improve the strength and fracture resistance. Porous scaffolds were fabricated by selective laser sintering. The effects of hydroxyapatite whiskers on the mechanical properties and toughening mechanisms were investigated. The results showed that the scaffolds had a uniform and continuous inner network with the pore size ranging between 0.5 mm and 0.8 mm. The mechanical properties were enhanced with increasing hydroxyapatite whiskers, reached a maximum at 20 wt.% (compressive strength: 27.28 MPa, compressive Young's modulus: 156.2 MPa, flexural strength: 15.64 MPa and fracture toughness: 1.43 MPa·m1/2) and then decreased by addition of more hydroxyapatite whiskers. The improvement of mechanical properties was due to whisker pull-out, crack deflection and crack bridging. Moreover, the degradation rate decreased with the increase of hydroxyapatite whisker content. A layer of bone-like apatite was formed on the scaffold surfaces after being soaked in simulated body fluid. Human osteoblast-like MG-63 cells spread well on the scaffolds and proliferated with increasing culture time. These findings suggested that the calcium silicate scaffolds reinforced with hydroxyapatite whiskers showed great potential for bone regeneration and tissue engineering applications. - Highlights: • HA whiskers were incorporated into CS to improve the properties. • The scaffolds were successfully fabricated by SLS. • Toughening mechanisms was whisker pull-out, crack deflection and bridging. • The scaffolds showed excellent apatite forming ability

  6. Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, Jani, E-mail: jani.holopainen@helsinki.fi; Santala, Eero; Heikkilä, Mikko; Ritala, Mikko

    2014-12-01

    Calcium carbonate (CaCO{sub 3}) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO{sub 3}){sub 2}·4H{sub 2}O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO{sub 3} fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO{sub 3} layer by spin or dip coating Ca(NO{sub 3}){sub 2}/PVP precursor solution on the CaCO{sub 3} fibers followed by annealing of the gel formed inside the fiber layer. The CaCO{sub 3} fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings. - Highlights: • Calcium carbonate fibers were prepared by electrospinning. • The electrospun fibers crystallized to calcite upon calcination at 500 °C. • Spin and dip coating methods were used to improve the adhesion of the CaCO{sub 3} fibers. • The CaCO{sub 3} fibers were converted to hydroxyapatite by treatment in phosphate solution. • The hydroxyapatite fibers consisted of plate-like nanocrystals.

  7. A novel microwave synthesis of calcium hydroxyapatite. Optimisation and investigation of a microwave assisted reaction route

    CERN Document Server

    Zawahreh, Y

    2001-01-01

    Hydroxyapatite is a bioactive calcium phosphate used in non-load bearing applications, such as space-filling in maxillofacial reconstruction. As a coating, hydroxyapatite is used on load-bearing orthopaedic metal prostheses to improve fixation and/or biocompatibility. Conventional synthesis processes for the production of hydroxyapatite are time-consuming and labour-intensive. Microwave irradiation was investigated as a means to enhance the synthesis reaction using calcium hydroxide (Ca(OH) sub 2) and orthophosphoric acid (H sub 3 PO sub 4) as reactants. An initial set of reactions indicated the feasibility of the microwave synthesis route. Optimisation reactions were then performed followed by investigation sets of reactions. Parameters such as microwave power, irradiation time, and reactant concentrations were varied. Using 0.5M Ca(OH) sub 2 and 0.3M H sub 3 PO sub 4 , a phase-pure hydroxyapatite powder with a stoichiometric molar Ca/P ratio of 1.67 was produced in 60 seconds at 450W and 2.45GHz. The microw...

  8. New bone implant material with calcium sulfate and Ti modified hydroxyapatite

    OpenAIRE

    A. Ślósarczyk; J. Czechowska; Z. Paszkiewicz; A. Zima

    2010-01-01

    (TiHA) to develop a novel bone cement. Results of previous studies showed that bioactive potential of titanium modified hydroxyapatite ceramics is higher than that of pure HA. Calcium sulfate hemihydrate is also considered as a safe, biocompatible material, however it has been criticized for its rapid resorption. Combination of these materials may result in new cement type material with surgical handiness and selective resorption.Design/methodology/approach: TiHA was obtained by a wet method....

  9. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    International Nuclear Information System (INIS)

    Highlights: ► LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. ► The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln3+ contents. ► A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0–0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y3+, Gd3+, Dy3+, Er3+ and Yb3+) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([XLn]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [XY] ≤ 0.10 for substituting Y system and at [XLn] ≤ 0.01–0.03 for substituting the other Ln systems. LnPO4 was mixed with LnCaHap at higher [XLn] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [XY] = 0–0.10 were investigated using XRD, TEM, ICP-AES, IR and TG–DTA in detail.

  10. In-situ observation on the transformation of calcium phosphate cement into hydroxyapatite

    International Nuclear Information System (INIS)

    In the present study, the in-situ transformation of calcium phosphate cement into hydroxyapatite (HAp) within the first hour is monitored with a synchrotron X-ray beam. A disodium hydrogen phosphate solution is used as cement liquid to activate the reaction between dicalcium phosphate anhydrous (DCPA) and calcium hydroxide (Ca(OH)2). The XRD analysis indicates that the amounts of DCPA and Ca(OH)2 first decrease within the first min of the reaction. Then, the intensity of DCPA's XRD peaks starts to increase instead in the period of 5 to 20 min. After 20 min, the DCPA particles are consumed slowly to form fine HAp particles. Large pores are evident upon the completion of reaction.

  11. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Yinfu; Huang, Yanlin; Qi, Shuyun [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Chen, Cuili [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-10-01

    A novel calcium silicate borate Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramic was firstly prepared by the conventional solid-state reaction. In vitro hydroxyapatite mineralization was investigated by soaking the ceramics in simulated body fluid (SBF) solutions at body temperature (37 °C) for various time periods. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) measurements were applied to investigate the samples before and after the immersion of ceramics in SBF solution. The elemental compositions of a hydroxyapatite layer on the ceramics during the mineralization were confirmed by X-ray energy-dispersive spectra (EDS). Meanwhile, the bending strength and elastic modulus of Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramics were also measured, which indicate that the biomaterials based on Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramics possess bioactivity and might be a potential candidate as biomaterials for hard tissue repair. The bioactive mineralization ability was evaluated on the base of its crystal structural characteristics, i.e., silanol (Si–OH) and B–OH groups can be easily induced on the surface of Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramics soaked in SBF solutions. - Highlights: • Calcium silicate borate Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} ceramics were developed as a new biomaterial. • Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} shows a superior in vitro bioactivity by inducing bone-like apatite. • Ca{sub 11}Si{sub 4}B{sub 2}O{sub 22} has good mechanical properties as potential candidate biomaterials. • The structure with SiO{sub 4} and BO{sub 3} groups is favorable for hydroxyapatite formation.

  12. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics

    International Nuclear Information System (INIS)

    A novel calcium silicate borate Ca11Si4B2O22 ceramic was firstly prepared by the conventional solid-state reaction. In vitro hydroxyapatite mineralization was investigated by soaking the ceramics in simulated body fluid (SBF) solutions at body temperature (37 °C) for various time periods. Scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) measurements were applied to investigate the samples before and after the immersion of ceramics in SBF solution. The elemental compositions of a hydroxyapatite layer on the ceramics during the mineralization were confirmed by X-ray energy-dispersive spectra (EDS). Meanwhile, the bending strength and elastic modulus of Ca11Si4B2O22 ceramics were also measured, which indicate that the biomaterials based on Ca11Si4B2O22 ceramics possess bioactivity and might be a potential candidate as biomaterials for hard tissue repair. The bioactive mineralization ability was evaluated on the base of its crystal structural characteristics, i.e., silanol (Si–OH) and B–OH groups can be easily induced on the surface of Ca11Si4B2O22 ceramics soaked in SBF solutions. - Highlights: • Calcium silicate borate Ca11Si4B2O22 ceramics were developed as a new biomaterial. • Ca11Si4B2O22 shows a superior in vitro bioactivity by inducing bone-like apatite. • Ca11Si4B2O22 has good mechanical properties as potential candidate biomaterials. • The structure with SiO4 and BO3 groups is favorable for hydroxyapatite formation

  13. Surface acidity of calcium phosphate and calcium hydroxyapatite: FTIR spectroscopic study of low-temperature CO adsorption

    International Nuclear Information System (INIS)

    The surface properties of calcium phosphate precursor (CP) and crystalline calcium hydroxyapatite (HA) prepared biomimetically have been studied by IR spectroscopy of adsorbed CO. Both samples are characterized by the absence of Bronsted acidity. Low-temperature CO adsorption on CP evacuated at 523 K leads to formation of only one family of Ca2+-CO species (2168 cm-1). The analysis indicates that the respective calcium ions on the surface are not isolated. Similar spectra were obtained with HA evacuated at 573 K. In this case, however, the Ca2+-CO band was detected at 2165 cm-1 due to enhanced lateral interaction between the adsorbed CO molecules. Another family of Ca2+ sites (Ca2+-CO band at 2178 cm-1) was created after evacuation of the HA sample at 673 K. These sites were assumed to be a result of sample dehydroxylation. The results demonstrate the absence of any protonic acidity of the samples (i.e. P-OH surface groups) and weak electrostatic Lewis acidity caused by coordinatively unsaturated Ca2+ cations.

  14. New bone implant material with calcium sulfate and Ti modified hydroxyapatite

    Directory of Open Access Journals (Sweden)

    A. Ślósarczyk

    2010-11-01

    Full Text Available (TiHA to develop a novel bone cement. Results of previous studies showed that bioactive potential of titanium modified hydroxyapatite ceramics is higher than that of pure HA. Calcium sulfate hemihydrate is also considered as a safe, biocompatible material, however it has been criticized for its rapid resorption. Combination of these materials may result in new cement type material with surgical handiness and selective resorption.Design/methodology/approach: TiHA was obtained by a wet method. Three compositions with different CSH:TiHA weight ratios, namely 3:2, 2:3 and 1:4 were examined. Pure CSH was used as a reference. Distilled water and Na2HPO4 solutions were applied as liquid phases. The study presents the setting time (Gillmore apparatus, phase composition (XRD, microstructure (SEM, porosity (mercury porosimetry and compressive strength of the obtained new, cement type, implant material.Findings: Initial (I and final (F setting times of the obtained cements differed in the range of 2-16 min (I and 4-75 min (F. The phase composition of the hardened cement bodies characterized by XRD method revealed the presence of calcium sulfate dihydrate (CSD and hydroxyapatite. Scanning electron microscopy images show excellent bonding between needle-like CSD crystals and apatitic phase. Porosity of the final samples varied from 49 to 59% with pore size diameter from 5 nm to 3.0 μm. Compressive strength of the samples differed in the range of 3.81-7.58 MPa.Research limitations/implications: The obtained results suggest that CSH-TiHA cements have the potential to be applied in bone substitution and for delivery of drugs. Bioactivity and biodegradation of the studied materials should be checked.Originality/value: According to our knowledge, these are the first studies concerning surgical handiness of bone implant materials based on calcium sufate hemihydrate and titanium doped hydroxyapatite. The cement type composites are biocompatible, shapeable and easy

  15. Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition.

    Science.gov (United States)

    Chakraborty, Rajib; Sengupta, Srijan; Saha, Partha; Das, Karabi; Das, Siddhartha

    2016-12-01

    The orthopaedic implants for human body are generally made of different biomaterials like stainless steels or Ti based alloys. However, it has been found that from surface properties point of view, none of these materials is attractive for fast tissue or cell growth on the surface of implant. This is one of the most important criteria to assure quick bonding between implant and body tissues vis-à-vis minimum recovery time for the patient. Keeping in view of the above facts, this work involves the pulsed electro-deposition coating of biocompatible hydroxyapatite and its group compounds from a diluted bath of calcium and phosphate salt at various current densities over the biomaterial sheet of SS316. SEM study confirms different morphologies of the coatings at different current densities. Characterization techniques like X-ray diffraction, SEM with EDX and FTIR have been used to confirm the phase and percentage quantity of hydroxyapatite compound in the depositions. This coating can serve as a medium for faster tissue growth over the metallic implants. PMID:27612782

  16. Effect of fuel characteristics on synthesis of calcium hydroxyapatite by solution combustion route

    Indian Academy of Sciences (India)

    Samir K Ghosh; Asit Prakash; Someswar Datta; Sujit K Roy; Debabrata Basu

    2010-02-01

    The effect of fuel characteristics on the processing of nano sized calcium hydroxyapatite (HA) fine powders by the solution combustion technique is reported. Urea, glycine and glucose were used as fuels in this study. By using different combinations of urea and glycine fuels and occasional addition of small amounts of highly water-soluble glucose, the flame temperature (f) of the process as well as product characteristics could be controlled easily. The powders obtained by this modified solution combustion technique were characterized by XRD, FTIR spectroscopy, SEM, FESEM–EDX, particle size analyser (PSD) and specific surface area (SSA) measurements. The particle size of phase pure HA powder was found to be < 20 nm in this investigation. The effects of glucose addition with stoichiometric ( = 1) and fuel excess ( > 1) urea and glycine precursor batches were investigated separately.

  17. Removal of Pb (II from Aqueous Solutions Using Mixtures of Bamboo Biochar and Calcium Sulphate, and Hydroxyapatite and Calcium Sulphate

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan

    2016-01-01

    Full Text Available Sorption characteristics of Pb(II from aqueous solutions through a low-cost adsorbent mixture comprising of Bamboo biochar (BB and Calcium Sulphate (CS, and a more expensive mixture of Hydroxyapatite (HAP and Calcium Sulphate (CS, were investigated. The effects of equilibrium contact time, and adsorbate concentration conducted in batch experiments were studied. Adsorption equilibrium was established in 40 (min. The adsorption mechanism of Pb(II from these two adsorbent mixtures was carried out through a kinetic rate order. A pseudo second-order kinetic model was applied for the adsorption processes. The model yielded good correlation (R2 >0.999 of the experimental data. Adsorption of Pb(II using (BB&CS and (HAP&CS correlated well (R2 >0.99 with both the Langmuir and Freundlich isotherm equations under the concentration range studied. Hence, the effectiveness of an inexpensive natural material (BB&CS mixture in Pb(II removal is established, and is promising for use in other heavy metal adsorptions.

  18. Biomimetic Synthesis of Calcium-Deficient Hydroxyapatite in a Natural Hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Hutchens, Stacy A [ORNL; Benson, Roberto S. [University of Tennessee, Knoxville (UTK); Evans, Barbara R [ORNL; O' Neill, Hugh Michael [ORNL; Rawn, Claudia J [ORNL

    2006-01-01

    A novel composite material consisting of calcium-deficient hydroxyapatite (CdHAP) biomimetically deposited in a bacterial cellulose hydrogel was synthesized and characterized. Cellulose produced by Gluconacetobacter hansenii was purified and sequentially incubated in solutions of calcium chloride followed by sodium phosphate dibasic. A substantial amount of apatite (50-90% of total dry weight) was homogeneously incorporated throughout the hydrogel after this treatment. X-ray diffractometry (XRD) showed that CdHAP crystallites had formed in the cellulose. XRD further demonstrated that the CdHAP was comprised of 10-50nm anisotropic crystallites elongated in the c-axis, similar to natural bone apatite. Fourier transform infrared (FTIR) spectroscopy demonstrated that hydroxyl IR bands of the cellulose shifted to lower wave numbers indicating that a coordinate bond had possibly formed between the CdHAP and the cellulose hydroxyl groups. FTIR also suggested that the CdHAP had formed from an octacalcium phosphate precursor similar to physiological bone. Scanning electron microscopy (SEM) images confirmed that uniform ?1 mm spherical CdHAP particles comprised of nanosized crystallites with a lamellar morphology had formed in the cellulose. The synthesis of the composite mimics the natural biomineralization of bone indicating that bacterial cellulose can be used as a template for biomimetic apatite formation. This composite may have potential use as an orthopedic biomaterial.

  19. Modelling of flame temperature of solution combustion synthesis of nanocrystalline calcium hydroxyapatite material and its parametric optimization

    Indian Academy of Sciences (India)

    Samir K Ghosh; Sukhomay Pal; Sujit K Roy; Surjya K Pal; Debabrata Basu

    2010-08-01

    Hydroxyapatite (HAp), an important bio-ceramic was successfully synthesized by combustion in the aqueous system containing calcium nitrate-di-ammonium hydrogen orthophosphate-urea. The combustion flame temperature of solution combustion reaction depends on various process parameters, and it plays a significant role in the phase formation, phase stability and physical characteristics of calcium hydroxyapatite powder. In this work, an attempt has been made to evaluate the influence of each selected process parameters on the flame temperature as well as physical characteristics of powder, and to select an optimal parameters setting using Taguchi method. A regression model has also been developed to correlate the input parameters, viz. batch size, diluents, fuel to oxidizer ratio and initial furnace temperature, with flame temperature of the solution combustion reaction. The adequacy of the developed model has been checked using analysis of variance technique.

  20. Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix

    OpenAIRE

    Dong Joon Lee; Ricardo Padilla; He Zhang; Wei-Shou Hu; Ching-Chang Ko

    2014-01-01

    Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS). Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD). Twelve Sprague-Dawley rats were randomized to four groups: control (defect only), decellularized bone matrix (DECBM), and HGCS with and without multipotent adult progenitor cells (MAPCs). DECBM was prepared by removing all the cells using ...

  1. Studies on removal of cobalt from an alkaline waste using synthetic calcium hydroxyapatite

    International Nuclear Information System (INIS)

    The removal of cobalt from an alkaline waste solutions containing sodium was carried out using a radiotracer in a batch method using synthetic calcium hydroxyapatite (HAP). The influence of different parameters such as solution pH, contact time, cobalt concentration, and presence of other ions like sodium on cobalt removal was studied. The sorption process followed pseudo-second-order kinetics with necessary time of around 23-25 h to reach equilibrium and the cobalt uptake was quantitatively evaluated using the Freundlich model. The results indicated that the mechanism of cobalt removal by HAP was mainly due to chemisorption on a heterogeneous surface. In the presence of sodium, the sorption of cobalt on HAP was not affected. The sorption of cobalt on HAP was pH independent in the range from 4 to 8, because of its buffering properties. The adsorption of cobalt on HAP was fast and the percentage of cobalt sorption was >97 % during the first 30-40 min of the contact time. (author)

  2. Mechanical and microstructure of reinforced hydroxyapatite/calcium silicate nano-composites materials

    International Nuclear Information System (INIS)

    Highlights: ► Nano sized of HA and CS powders were prepared. ► Mechanical of HACS composites enhanced with content of CS. ► The apatite formation onto the composites is proved. -- Abstract: In this study, the nano sized hydroxyapatite (HA) and calcium silicate (CS) powders prepared by both chemical precipitation and sol–gel methods respectively. Biphasic nano-composites materials containing different ratios of HA and CS were fabricated and assessed using X-ray diffraction (XRD), Fourier transmission infrared reflectance (FT-IR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The effect of variation of ratios between HA and CS on mechanical properties, microstructure and in vitro study was studied. The results proved that the mechanical properties were enhanced with increasing the CS ratio in the composite. In vitro study proved the formation and nucleation of apatite onto composites surfaces which contain low content of CS after one week of immersion. Finally, it is concluded that the HACS composites containing high HA content at the expense of CS content will be promising for bone substitute’s applications, especially in load bearing sites.

  3. Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications

    International Nuclear Information System (INIS)

    A novel method of electrolytic porous hydroxyapatite/calcium silicate (HA/CaSiO3) composite coating was conducted on pure titanium in a mixed solution of nano-SiO2, Ca(NO3)2 and NH4H2PO4. SEM observation showed that the composite layer was porous, thereby providing abundant sites for the osteoblast adhesion. XRD results showed that the composite coating was mainly composed of HA and CaSiO3. Bond strength testing exhibited that HA-CaSiO3/Ti had higher bond strength than HA/Ti. The HA/CaSiO3 coating was more corrosion resistant than the HA coating based on the polarization tests. In vitro cell experiments demonstrated that both the HA and HA/CaSiO3 coatings showed better cell response than the bared titanium. In addition, the proliferation of MC3T3-E1 osteoblast cells grown on the HA/CaSiO3 coating were remarkably higher than those on the bared Ti and pure HA coating.

  4. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yufu, E-mail: Yufu.Ren@rockets.utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Zhou, Huan [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Nabiyouni, Maryam [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-04-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10 min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7 days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5 days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials. - Highlights: • A microwave assisted coating process for biodegradable Mg alloy. • CDHA coatings were successfully developed on AZ31 alloy in minutes. • The as-deposited CDHA coatings significantly reduced the degradation rate of AZ31 alloy. • The CDHA coated AZ31 alloy showed good bioactivity and biocompatibility in vitro. • The microwave assisted coating process can be used as rapid surface modification for bioimplants.

  5. Formation of Calcium-Deficient Hydroxyapatite via Hydrolysis of Nano-Sized Pure Α-Tricalcium Phosphate

    OpenAIRE

    Vecbiškena, L; Gross, K.; Riekstina, U; CK Yang, T

    2015-01-01

    Nano-sized pure α-tricalcium phosphate (α-TCP) fabricated by a novel synthesis approach shows great potential for a faster transformation into calcium-deficient hydroxyapatite (CDHA) than conventionally prepared α-TCP. In this work, amorphous tricalcium phosphate precursors were precipitated and treated with a solvent (water or ethanol), and dried (freeze-dried and oven-dried) before heating at 775 °C. Nano-sized α-TCP powders were investigated for their phase composition and crystallinity...

  6. Novel microcalorimetric assay for antibacterial activity of implant coatings: The cases of silver-doped hydroxyapatite and calcium hydroxide.

    Science.gov (United States)

    Braissant, Olivier; Chavanne, Philippe; de Wild, Michael; Pieles, Uwe; Stevanovic, Sabrina; Schumacher, Ralf; Straumann, Lukas; Wirz, Dieter; Gruner, Philipp; Bachmann, Alexander; Bonkat, Gernot

    2015-08-01

    Biomaterials with antimicrobial properties are now commonly used in different clinical specialties including orthopedics, endodontic, and traumatology. As a result, assessing the antimicrobial effect of coatings applied on implants is of critical importance. In this study, we demonstrate that isothermal microcalorimetry (IMC) can be used for monitoring bacterial growth and biofilm formation at the surface of such coatings and for determining their antimicrobial effects. The antibacterial effects of silver doped hydroxyapatite (HA) and calcium hydroxide coatings on Staphylococcus epidermidis were determined with a minimal workload. Using the Gompertz growth model we determined biofilm growth rates close to those values reported in the literature. Furthermore, we were able to estimate the reduction in the bacterial inocula originally applied at the surface of the coatings. Therefore, in addition to monitoring the antimicrobial effect of silver doped HA and calcium hydroxide coatings, we also demonstrate that IMC might be a valuable tool for assessing such antimicrobial properties of implant coatings at a minimal workload.

  7. In-situ observation of the transformation of amorphous calcium phosphate to crystalline hydroxyapatite

    Science.gov (United States)

    Stammeier, Jessica; Hippler, Dorothee; Mavromatis, Vasileios; Sacher, Stephan; Dietzel, Martin

    2016-04-01

    Amorphous calcium phosphate (Ca3(PO4)2*nH2O; ACP) is often a precursor phase of the mineral (hydroxy-) apatite (Ca5(PO4)3(OH)) that can be formed in natural settings during both authigenic and biogenic mineral formation. Particularly, in the biomineralization process of fish tissue, ACP has shown to be an important transient phase. In solution ACP rapidly transforms into the crystalline phase. The transformation rate highly depends on the physico-chemical conditions of the solution: Ca & P availability, pH and temperature. In natural settings Ca can be provided by different sources: from (1) seawater, (2) porewater, or (3) diagenetically-altered carbonates, whereas local supersaturation of P can be induced by microbial activity. In this study, we performed phosphate precipitation experiments in order to monitor the transformation process of the ACP to crystalline hydroxyapatite (HAP) using in-situ Raman spectroscopy. During the experiments the temperature was kept constant at 20.0 ± 0.01 ° C and pH at 9 ± 0.1. 50 ml of 0.3 CaCl 2H2O was titrated at a rate of 5 ml/min to an equal volume of 0.2 M Na2HPO4. The pH was kept constant by titration of 1 M NaOH. During the experiment samples were taken from the solution and instantly filtered. The obtained solid samples were lyophilized and analyzed with XRD, ATR and SEM. The respective solution samples were analyzed using ion chromatography and ICP OES, coupling the spectroscopic data with detailed solution chemistry data. We observed transformation of ACP to HAP to occur within 14 hours, illustrated in a clear peak shift in Raman spectra from 950 cm-1 to 960 cm-1. The obtained results are discussed in the aspects of distribution of major elements during the formation of phosphates and/or the diagenetic alteration of carbonates to phosphates in geologic settings. Financial support by DFG-FG 736 and NAWI Graz is kindly acknowledged.

  8. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics

    Science.gov (United States)

    2014-01-01

    Background Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. Methods We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. Results nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50–200 nm and diameters from ~15–30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Conclusions Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more

  9. Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes.

    Science.gov (United States)

    Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji

    2014-01-01

    In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.

  10. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials

    Directory of Open Access Journals (Sweden)

    Dai ZY

    2015-10-01

    Full Text Available Zhenyu Dai,1,2,* Yue Li,3,* Weizhong Lu,2,* Dianming Jiang,4 Hong Li,1 Yonggang Yan,1 Guoyu Lv,1 Aiping Yang1 1College of Physical Science and Technology, Sichuan University, Chengdu, 2Department of Orthopedics, Chongqing Hospital of Traditional Chinese Medicine, 3Department of Clinical Laboratory, the Second Affiliated Hospital, 4Department of Orthopedics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China *These authors contributed equally to this work Objective: To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA complex biomaterials with muscle and bone tissue in an in vivo model.Methods: Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining.Results: HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that

  11. In vitro corrosion investigations of plasma-sprayed hydroxyapatite and hydroxyapatite–calcium phosphate coatings on 316L SS

    Indian Academy of Sciences (India)

    Gurpreet Singh; Hazoor Singh; Buta Singh Sidhu

    2014-10-01

    The present paper discusses various issues associated with biological corrosion of uncoated and plasma-sprayed hydroxyapatite (HA)-coated 316L SS and studies the effect of contents of calcium phosphate (CaP) on corrosion behaviour of hydroxyapatite (HA) coatings in simulated body fluid (Ringer’s solution). Three types of coatings, i.e. HA + 20 wt% CaP (type 1), HA + 10 wt% CaP (type 2), HA (type 3), were laid on 316L SS using plasma-spraying technique. Structural characterization techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to investigate the crystallinity, microstructure and morphology of the coatings. Electrochemical potentiodynamic tests were performed to determine the corrosion resistance of uncoated and all the three coatings. After the electrochemical corrosion testing, the samples were examined by XRD, SEM and EDX. The electrochemical study showed a significant improvement in the corrosion resistance after HA coating and corrosion resistance of type 3 coating was found maximum.

  12. Strontium hydroxyapatite and strontium carbonate as templates for the precipitation of calcium-phosphates in the absence and presence of fluoride

    Science.gov (United States)

    Sternitzke, Vanessa; Janousch, Markus; Heeb, Michèle B.; Hering, Janet G.; Johnson, C. Annette

    2014-06-01

    The heterogeneous precipitation of calcium-phosphates on calcium hydroxyapatite (Ca10(PO4)6(OH)2 or HAP) in the presence and absence of fluoride is important in the formation of bone and teeth, protection against tooth decay, dental and skeletal fluorosis and defluoridation of drinking water. Strontium hydroxyapatite (Sr10(PO4)6(OH)2 or SrHAP) and strontium carbonate (SrCO3) were used as calcium-free seed templates in precipitation experiments conducted with varying initial calcium-to-phosphate (Ca/P) or calcium-to-phosphate-to-fluoride (Ca/P/F) ratios. Suspensions of SrHAP or SrCO3 seed templates (which were calcium-limited for both templates and phosphate-limited in the case of SrCO3) were reacted at pH 7.3 (25 °C) over 3 days. The resulting solids were examined with Scanning Transmission Electron Microscopy (STEM), X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Near Edge Structure (XANES), and Extended X-ray Absorption Fine Structure spectroscopy (EXAFS). Calcium apatite was the predominant phase identified by all techniques independent of the added Ca/P ratios and of the presence of fluoride. It was not possible to make an unambiguous distinction between HAP and fluorapatite (Ca10(PO4)6F2, FAP). The apatite was calcium-deficient and probably contained some strontium.

  13. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects

    DEFF Research Database (Denmark)

    Broggini, Nina; Bosshardt, Dieter D; Jensen, Simon S;

    2015-01-01

    The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled with nanocr......The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled...... with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA...

  14. An investigation into the effects of high laser fluence on hydroxyapatite/calcium phosphate films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Pulsed laser deposited mixed hydroxyapatite (HA)/calcium phosphate thin films were prepared at room temperature using KrF laser source with different laser fluence varying between 2.4 J/cm2 and 29.2 J/cm2. Samples deposited at 2.4 J/cm2 were partially amorphous and had rough surfaces with a lot of droplets while higher laser fluences showed higher level of crytallinity and lower roughness of surfaces of obtained samples. Higher laser fluences also decreased ratio Ca/P of as-deposited samples. X-ray photoelectron spectroscopy (XPS) revealed traces of carbonate groups in obtained samples, which were removed after thermal annealing. The decomposition of HA into TCP was observed to start at about 400 deg. C. The formation of new crystalline phase of HA was found after annealing as well. The cracks observed on surface of sample deposited at 29.2 J/cm2 after annealing indicated that the HA/ calcium phosphate films deposited at higher laser energy densities were probably more densed.

  15. Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using Raman microspectroscopy

    DEFF Research Database (Denmark)

    Chen, Ko-Hua; Li, Mei-Jane; Cheng, Wen-Ting;

    2009-01-01

    Raman microspectroscopy was first used to determine the composition of a calcified plaque located at the pterygium-excision site of a 51-year-old female patient's left nasal sclera after surgery. It was unexpectedly found that the Raman spectrum of the calcified sample at 1149, 1108, 1049, 756, 517...... to the characteristic peak at 958/cm of hydroxyapatite (HA). This is the first study to report the spectral biodiagnosis of both monoclinic CPPD and HA co-deposited in the calcified plaque of a patient with sclera dystrophic calcification using Raman microspectroscopy....

  16. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration.

    Science.gov (United States)

    Subramaniam, Sadhasivam; Fang, Yen-Hsin; Sivasubramanian, Savitha; Lin, Feng-Huei; Lin, Chun-pin

    2016-01-01

    Periodontitis is a very severe inflammatory condition of the periodontium that progressively damages the soft tissue and destroys the alveolar bone that supports the teeth. The bone loss is naturally irreversible because of limited reparability of the teeth. Advancement in tissue engineering provides an effective regeneration of osseous defects with suitable dental implants or tissue-engineered constructs. This study reports a hydroxyapatite, calcium sulfate hemihydrate and hyaluronic acid laden collagenase (HAP/CS/HA-Col) as a bone substitute for the alveolar bone regeneration. The composite material was mechanically tested and the biocompatibility was evaluated by WST-1 assay. The in vivo bone formation was assessed in rat with alveolar bone defects and the bone augmentation by the HAP/CS/HA-Col composite was confirmed by micro-CT images and histological examination. The mechanical strength of 6.69 MPa with excellent biocompatibility was obtained for the HAP/CS/HA-Col composite. The collagenase release profile had facilitated the acceleration of bone remodeling process and it was confirmed by the findings of micro-CT and H&E staining. The bone defects implanted with HAP/CS/HA composite containing 2 mg/mL type I collagenase have shown improved new bone formation with matured bone morphology in comparison with the HAP/CS/HA composite that lacks the collagenase and the porous hydroxyapatite (p-HAP) granules. The said findings demonstrated that the collagenase inclusion in HAP/CS/HA composite is a feasible approach for the alveolar bone regeneration and the same design can also be applied to other defective tissues.

  17. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration.

    Science.gov (United States)

    Subramaniam, Sadhasivam; Fang, Yen-Hsin; Sivasubramanian, Savitha; Lin, Feng-Huei; Lin, Chun-pin

    2016-01-01

    Periodontitis is a very severe inflammatory condition of the periodontium that progressively damages the soft tissue and destroys the alveolar bone that supports the teeth. The bone loss is naturally irreversible because of limited reparability of the teeth. Advancement in tissue engineering provides an effective regeneration of osseous defects with suitable dental implants or tissue-engineered constructs. This study reports a hydroxyapatite, calcium sulfate hemihydrate and hyaluronic acid laden collagenase (HAP/CS/HA-Col) as a bone substitute for the alveolar bone regeneration. The composite material was mechanically tested and the biocompatibility was evaluated by WST-1 assay. The in vivo bone formation was assessed in rat with alveolar bone defects and the bone augmentation by the HAP/CS/HA-Col composite was confirmed by micro-CT images and histological examination. The mechanical strength of 6.69 MPa with excellent biocompatibility was obtained for the HAP/CS/HA-Col composite. The collagenase release profile had facilitated the acceleration of bone remodeling process and it was confirmed by the findings of micro-CT and H&E staining. The bone defects implanted with HAP/CS/HA composite containing 2 mg/mL type I collagenase have shown improved new bone formation with matured bone morphology in comparison with the HAP/CS/HA composite that lacks the collagenase and the porous hydroxyapatite (p-HAP) granules. The said findings demonstrated that the collagenase inclusion in HAP/CS/HA composite is a feasible approach for the alveolar bone regeneration and the same design can also be applied to other defective tissues. PMID:26454048

  18. Novel phosphorus-containing cyclodextrin polymers and their affinity for calcium cations and hydroxyapatite.

    Science.gov (United States)

    Wintgens, Véronique; Dalmas, Florent; Sébille, Bernard; Amiel, Catherine

    2013-10-15

    Novel phosphorous-containing β-cyclodextrin (βCD) polymers (CDP) were synthesized easily under "green chemistry" conditions. A simple polycondensation between the hydroxyl groups of βCD and non-toxic sodium trimetaphosphate (STMP) under basic conditions led to soluble, non-reticulated CDPs with molecular weights (Mw) higher than 10(4) g mol(-1), the actual value depending on the NaOH:βCD and STMP:βCD weight ratios. The presence of both βCD and phosphate groups in the polymer allows for strong interactions with amphiphilic probes, such as 1-adamantyl acetic acid, or with divalent cations, such as Ca(2+), whose strengths were characterized by isothermal titration microcalorimetry. The obtained phosphated compounds also display high affinity towards hydroxyapatite (HA), leading to HA nanoparticles that could easily be recovered by CDPs, as demonstrated by transmission electron microscopy and quantitative determination of the total amount of phosphated molecules fixed on HA. PMID:23987426

  19. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    International Nuclear Information System (INIS)

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts (5(PO4)2SiO4 and Na3Ca6(PO4)5 in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L2,3-edge and calcium (Ca) K-edge XANES. Si L2,3-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L2,3-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and β-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na3Ca6(PO4)5 in a silicate matrix indicating that it is more soluble compared to the other compositions.

  20. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites

    International Nuclear Information System (INIS)

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg+2 and Ca+2 ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg+2 and Ca+2 ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg+2, calcium magnesium phosphates (CMPs) which release Mg+2 and Ca+2, and hydroxyapatites (HAs) which release Ca+2 were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7 days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg+2 and Ca+2 ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. - Highlights: • Role of Mg2+ and Ca2+ ions in proliferation, and differentiation of

  1. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds. (papers)

  2. Anticorrosive effects and in vitro cytocompatibility of calcium silicate/zinc-doped hydroxyapatite composite coatings on titanium

    Science.gov (United States)

    Huang, Yong; Zhang, Honglei; Qiao, Haixia; Nian, Xiaofeng; Zhang, Xuejiao; Wang, Wendong; Zhang, Xiaoyun; Chang, Xiaotong; Han, Shuguang; Pang, Xiaofeng

    2015-12-01

    This work elucidated the corrosion resistance and cytocompatibility of electroplated Zn- and Si-containing bioactive calcium silicate/zinc-doped hydroxyapatite (ZnHA/CS) ceramic coatings on commercially pure titanium (CP-Ti). The formation of ZnHA/CS coating was investigated through Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray and inductively coupled plasma analyses. The XRD image showed that the reaction layer was mainly composed of HA and CaSiO3. The fabricated ZnHA/CS coatings presented a porous structure and appropriate thickness for possible applications in orthopaedic surgery. Potentiodynamic polarization tests showed that ZnHA/CS coatings exhibited higher corrosion resistance than CP-Ti. Dissolution tests on the coating also revealed that Si4+ and Zn2+ were leached at low levels. Moreover, MC3T3-E1 cells cultured on ZnHA/CS featured improved cell morphology, adhesion, spreading, proliferation and expression of alkaline phosphatase than those cultured on HA. The high cytocompatibility of ZnHA/CS could be mainly attributed to the combination of micro-porous surface effects and ion release (Zn2+ and Si4+). All these results indicate that ZnHA/CS composite-coated CP-Ti may be a potential material for orthopaedic applications.

  3. Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix

    Directory of Open Access Journals (Sweden)

    Dong Joon Lee

    2014-01-01

    Full Text Available Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS. Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD. Twelve Sprague-Dawley rats were randomized to four groups: control (defect only, decellularized bone matrix (DECBM, and HGCS with and without multipotent adult progenitor cells (MAPCs. DECBM was prepared by removing all the cells using SDS and NH4OH. After 12 weeks, the CSD specimens were harvested to evaluate radiographical, histological, and histomorphometrical outcomes. The in vitro osteogenic effects of the materials were studied by focal adhesion, MTS, and alizarin red. Micro-CT analysis indicated that the DECBM and the HGCS scaffold groups developed greater radiopaque areas than the other groups. Bone regeneration, assessed using histological analysis and fluorochrome labeling, was the highest in the HGCS scaffold seeded with MAPCs. The DECBM group showed limited osteoinductivity, causing a gap between the implant and host tissue. The group grafted with HGCS+MAPCs resulting in twice as much new bone formation seems to indicate a role for effective bone regeneration. In conclusion, the novel HGCS scaffold could improve bone regeneration and is a promising carrier for stem cell-mediated bone regeneration.

  4. Biological assessment of a calcium silicate incorporated hydroxyapatite-gelatin nanocomposite: a comparison to decellularized bone matrix.

    Science.gov (United States)

    Lee, Dong Joon; Padilla, Ricardo; Zhang, He; Hu, Wei-Shou; Ko, Ching-Chang

    2014-01-01

    Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS). Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD). Twelve Sprague-Dawley rats were randomized to four groups: control (defect only), decellularized bone matrix (DECBM), and HGCS with and without multipotent adult progenitor cells (MAPCs). DECBM was prepared by removing all the cells using SDS and NH4OH. After 12 weeks, the CSD specimens were harvested to evaluate radiographical, histological, and histomorphometrical outcomes. The in vitro osteogenic effects of the materials were studied by focal adhesion, MTS, and alizarin red. Micro-CT analysis indicated that the DECBM and the HGCS scaffold groups developed greater radiopaque areas than the other groups. Bone regeneration, assessed using histological analysis and fluorochrome labeling, was the highest in the HGCS scaffold seeded with MAPCs. The DECBM group showed limited osteoinductivity, causing a gap between the implant and host tissue. The group grafted with HGCS+MAPCs resulting in twice as much new bone formation seems to indicate a role for effective bone regeneration. In conclusion, the novel HGCS scaffold could improve bone regeneration and is a promising carrier for stem cell-mediated bone regeneration. PMID:25054149

  5. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    Science.gov (United States)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C. M.; Faria, Amanda N.; Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro; Ramos, Ana P.

    2016-05-01

    CaCO3 particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO3 deposited as thin films for this propose is unknown. Here, we report the growth of CaCO3 continuous films on Langmuir-Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca2+, exposed to CO2 (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO3 film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γs) were accessed. The presence of HAp increased the wettability and γs of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO3 thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  6. Hydroxyapatite Mineralization on the Calcium Chloride Blended Polyurethane Nanofiber via Biomimetic Method

    OpenAIRE

    Nam Ki; Park Soo-Jin; Kim Hak; Navamathavan R; Nirmala R

    2011-01-01

    Abstract Polyurethane nanofibers containing calcium chloride (CaCl2) were prepared via an electrospinning technique for the biomedical applications. Polyurethane nanofibers with different concentration of CaCl2 were electrospun, and their bioactivity evaluation was conducted by incubating in biomimetic simulated body fluid (SBF) solution. The morphology, structure and thermal properties of the polyurethane/CaCl2 composite nanofibers were characterized by means of scanning electron microscopy ...

  7. Effect of addition of nano-hydroxyapatite on physico-chemical and antibiofilm properties of calcium silicate cements

    Science.gov (United States)

    GUERREIRO-TANOMARU, Juliane Maria; VÁZQUEZ-GARCÍA, Fernando Antonio; BOSSO-MARTELO, Roberta; BERNARDI, Maria Inês Basso; FARIA, Gisele; TANOMARU, Mario

    2016-01-01

    ABSTRACT Objective Mineral Trioxide Aggregate (MTA) is a calcium silicate cement composed of Portland cement (PC) and bismuth oxide. Hydroxyapatite has been incorporated to enhance mechanical and biological properties of dental materials. This study evaluated physicochemical and mechanical properties and antibiofilm activity of MTA and PC associated with zirconium oxide (ZrO2) and hydroxyapatite nanoparticles (HAn). Material and Methods White MTA (Angelus, Brazil); PC (70%)+ZrO2 (30%); PC (60%)+ZrO2 (30%)+HAn (10%); PC (50%)+ZrO2 (30%)+HAn (20%) were evaluated. The pH was assessed by a digital pH-meter and solubility by mass loss. Setting time was evaluated by using Gilmore needles. Compressive strength was analyzed by mechanical test. Samples were radiographed alongside an aluminum step wedge to evaluate radiopacity. For the antibiofilm evaluation, materials were placed in direct contact with E. faecalis biofilm induced on dentine blocks. The number of colony-forming units (CFU mL-1) in the remaining biolfilm was evaluated. The results were submitted to ANOVA and the Tukey test, with 5% significance. Results There was no difference in pH levels of PC+ZrO2, PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p>0.05) and these cements presented higher pH levels than MTA (p<0.05). The highest solubility was observed in PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p<0.05). MTA had the shortest initial setting time (p<0.05). All the materials showed radiopacity higher than 3 mmAl. PC+ZrO2 and MTA had the highest compressive strength (p<0.05). Materials did not completely neutralize the bacterial biofilm, but the association with HAn provided greater bacterial reduction than MTA and PC+ZrO2 (p<0.05) after the post-manipulation period of 2 days. Conclusions The addition of HAn to PC associated with ZrO2 harmed the compressive strength and solubility. On the other hand, HAn did not change the pH and the initial setting time, but improved the radiopacity (HAn 10%), the final setting time

  8. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Demirkiran, Hande [Graduate Student, Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States); Hu Yongfeng; Zuin, Lucia [Beamline Scientist, Canadian Light Source, Saskatoon, SK (Canada); Appathurai, Narayana [Beamline Scientist, Synchrotron Radiation Center, Madison, WI (United States); Aswath, Pranesh B., E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States)

    2011-03-12

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts (< 5 wt.%) of Bioglass (registered) 45S5 was added it behaved as a sintering aid and also enhanced the decomposition of hydroxyapatite to {beta}-tricalcium phosphate. However when 10 wt.% and 25 wt.% Bioglass (registered) 45S5 was used it resulted in the formation of Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4} and Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L{sub 2,3}-edge and calcium (Ca) K-edge XANES. Si L{sub 2,3}-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L{sub 2,3}-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and {beta}-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in a silicate matrix indicating that it is more soluble compared to the other compositions.

  9. Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors

    International Nuclear Information System (INIS)

    In the absence of any organic surfactants and solvents, the silicon (Si) and strontium (Sr) co-substituted hydroxyapatite [Ca10(PO4)6(OH)2, Si/Sr-HAp] nanowires were synthesized via hydrothermal treatment of the Sr-containing calcium silicate (Sr-CS) powders as the precursors in trisodium phosphate (Na3PO4) aqueous solution. The morphology, phase, chemical compositions, lattice constants and the degradability of the products were characterized. The Si/Sr-HAp nanowires with diameter of about 60 nm and up to 2 μm in length were obtained after hydrothermal treatment of the Sr-CS precursors. The Sr and Si substitution amount of the HAp nanowires could be well regulated by facile tailoring the Sr substitution level of the precursors and the reaction ratio of the precursor/solution, respectively. The SiO4 tetrahedra and Sr2+ ions occupied the crystal sites of the HAp, and the lattice constants increased apparently with the increase of the substitution amount. EDS mapping also suggested the uniform distribution of Si and Sr in the synthetic nanowires. Moreover, the Si/Sr-substitution apparently improved the degradability of the HAp materials. Our study suggested that the precursor transformation method provided a facile approach to synthesize the Si/Sr co-substituted HAp nanowires with controllable substitution amount, and the synthetic Si/Sr-HAp nanowires might be used as bioactive materials for hard tissue regeneration applications. - Highlights: • Si/Sr-HAp nanowires were hydrothermally transformed from Srx-CaSiO3 precursors. • The Si/Sr-substitution level could be facilely regulated. • The nanowire-like morphology and composition could be simultaneously regulated

  10. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites

    Energy Technology Data Exchange (ETDEWEB)

    Nabiyouni, Maryam, E-mail: maryam.nabiyouni@rockets.utoledo.edu [Department of Bioengineering, University of Toledo, Toledo, OH (United States); Ren, Yufu [Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH (United States); Department of Surgery (Dentistry), University of Toledo, Toledo, OH (United States)

    2015-07-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg{sup +2} and Ca{sup +2} ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg{sup +2} and Ca{sup +2} ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg{sup +2}, calcium magnesium phosphates (CMPs) which release Mg{sup +2} and Ca{sup +2}, and hydroxyapatites (HAs) which release Ca{sup +2} were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7 days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg{sup +}2 and Ca{sup +2} ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. - Highlights: • Role of Mg{sup 2

  11. Fibronectin-calcium phosphate composite layer on hydroxyapatite to enhance adhesion, cell spread and osteogenic differentiation of human mesenchymal stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sogo, Yu [National Institute of Advanced Industrial Science and Technology (AIST), Institute for Human Science and Biomedical Engineering, Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Ito, Atsuo [National Institute of Advanced Industrial Science and Technology (AIST), Institute for Human Science and Biomedical Engineering, Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Matsuno, Tomonori [Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159 (Japan); Oyane, Ayako [National Institute of Advanced Industrial Science and Technology (AIST), Nanotechnology Research Institute, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Tamazawa, Gaku [Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159 (Japan); Satoh, Tazuko [Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159 (Japan); Yamazaki, Atsushi [Department of Resources and Environmental Engineering, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Uchimura, Eiji [Department of Resources and Environmental Engineering, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Ohno, Tadao [Department of Resources and Environmental Engineering, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2007-06-01

    Fibronectin (Fn) and type I collagen (Col) were immobilized on a surface of a hydroxyapatite (HAP) ceramic by coprecipitation with calcium phosphate in a supersaturated calcium phosphate solution prepared by mixing clinically approved infusion fluids. These proteins and the calcium phosphate precipitate formed a composite surface layer. As a result, the proteins were immobilized firmly as not to be released completely for 3 d in a physiological salt solution. When human mesenchymal stem cells (hMSCs) were cultured on a HAP ceramic in a differentiation medium supplemented with dexamethasone, {beta}-glycerophosphate and ascorbic acid, hMSCs spread well within 1 h. The alkaline phosphatase (ALP) activity of hMSCs cultured on the Fn-calcium phosphate composite layer significantly increased compared with that of hMSCs cultured on the untreated HAP ceramic. On the other hand, Col did not increase the ALP activity of hMSCs and no synergy between Fn and Col was observed. Therefore, the Fn-calcium phosphate composite layer formed on the HAP is useful for the enhancement of the spreading and osteogenic differentiation of hMSCs in vitro.

  12. The effects of hydroxyapatite/calcium phosphate glass scaffold and its surface modification with bovine serum albumin on 1-wall intrabony defects of beagle dogs: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Um, Yoo-Jung; Jung, Ui-Won; Chae, Gyung-Joon; Kim, Chang-Sung; Cho, Kyoo-Sung; Kim, Chong-Kwan; Choi, Seong-Ho [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752 l (Korea, Republic of); Lee, Yong-Keun [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-750 (Korea, Republic of)], E-mail: shchoi726@yuhs.ac

    2008-12-15

    The purpose of this study was to evaluate the effects of biphasic hydroxyapatite/calcium phosphate glass (HA/CPG) scaffold and its surface modification with bovine serum albumin (BSA) on periodontal regeneration. 1-wall intrabony defects were surgically created on five beagle dogs. HA/CPG scaffolds, with a hydroxyapatite (HA)/calcium phosphate glass (CPG) ratio of 95:5 by weight (%) and surface modification done by 2% bovine serum albumin, were used. The control group received surgical flap operation, and the experimental groups were filled with HA/CPG scaffolds and HA/CPG(BSA) scaffolds. The animals were sacrificed eight weeks after surgery. Histological findings revealed better space maintenance in the experimental groups than the control group, and showed new bone formation intermittently in between the residual material particles. The newly formed bone was mostly woven bone and the residual particles were undergoing resorption. Cementum regeneration was observed with limited root resorption in all the groups. Histometric analysis also revealed greater mean values in new bone formation, cementum regeneration and bone area than the control group in both experimental groups. However, similar findings were presented between HA/CPG and HA/CPG(BSA). The result of the present study revealed the newly fabricated HA/CPG scaffold to have a potential use as a bone substitute material.

  13. Synthesis of calcium-deficient by hydroxyapatite-collage composite by the electrolytic deposition method; Denkai sekishutsu ho ni yoru karushiumu kesson hidorokishiapataito-coragen fukugotai no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, H. [Niigata University, Niigata (Japan). Graduate School Of Science and Technology; Yasuda, M.; Oota, M. [Niigata University, Niigata (Japan)

    1997-07-05

    Hydroxyapatite is known as that it has a good joining property with teeth and bone, and a study on the application to the living body was conducted by using this property. Its application examples were given as the cement used in dentistry, the artificial tooth root, the artificial bone, the bone cement and the artificial joint. However, they were a sinter heated at more than 1000degC, and were put into use by means of reinforcement using a titanium alloy since their mechanical strength was low. In this study, synthesis of calcium-deficient hydroxyapatite (DAp) and collagen composite by the electrolytic deposition method was attempted in order to develop bionic materials, and the correlation of various physical properties of the obtained composite and the electrolytic deposition conditions were investigated. When the electrolytic voltage is more than 22.0V, a single phase of DAp could be obtained. It was clarified that a DAp and collagen composite was synthesized from results of IR and ESR. 16 refs., 5 figs.

  14. Preparation and characterization of nano hydroxyapatite sol

    Institute of Scientific and Technical Information of China (English)

    王友法; 闫玉华; 任卫; 曹献英; 李世普

    2004-01-01

    Nano hydroxyapatite has special biological effects when it interacts with cells. The method of preparation of nano hydroxyapatite crystals in water and the stability of hydroxyapatite sol are reported. Nanometer sized hydroxyapatite crystals were synthesized by precipitation with monocalcium phosphate and calcium hydroxide. The size of the crystals is 30 - 50 nm as determined by laser light scattering and transmission electron microscopy (TEM). The shape of the crystals particles is either sphere or rod-shaped. Beijing Synchrotron Radiation Facility (BSRF) micro-probe X-ray fluorescence analysis and TEM analysis reveal that hydroxyapatite crystals can pass human liver cancer cell membrane in the form of particles.

  15. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics.

    Science.gov (United States)

    Radwan, M M; Abd El-Hamid, H K; Mohamed, A F

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C2S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C2S (27-30 nm) was prepared by solid state reaction at 1450°C, while biphasic compound TCP/HAp (7-15 nm) was synthesized from an aqueous solution of Ca(NO3)2·4H2O and (NH4)2HPO4·12H2O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C2S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way.

  16. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair.

    Science.gov (United States)

    Fan, Xiaoxia; Ren, Haohao; Luo, Xiaoman; Wang, Peng; Lv, Guoyu; Yuan, Huipin; Li, Hong; Yan, Yonggang

    2016-03-01

    A ternary composite of poly(amino acid), hydroxyapatite, and calcium sulfate (PAA/HA/CS) was prepared using in situ melting polycondensation method and evaluated in terms of mechanical strengths, in vitro degradability, bioactivity, as well as in vitro and in vivo biocompatibility. The results showed that the ternary composite exhibited a compressive strength of 147 MPa, a bending strength of 121 MPa, a tensile strength of 122 MPa, and a tensile modulus of 4.6 GPa. After immersion in simulated body fluid, the compressive strength of the composite decreased from 147 to 98 MPa for six weeks and the bending strength decreased from 121 to 75 MPa for eight weeks, and both of them kept stable in the following soaking period. The composite could be slowly degraded with 7.27 wt% loss of initial weight after soaking in phosphate buffered solution for three weeks when started to keep stable weight in the following days. The composite was soaked in simulated body fluid solution and the hydroxyapatite layer, as flower-like granules, formed on the surface of the composite samples, showing good bioactivity. Moreover, it was found that the composite could promote proliferation of MG-63 cells, and the cells with normal phenotype extended and spread well on the composite surface. The implantation of the composite into the ulna of sheep confirmed that the composite was biocompatible and osteoconductive in vivo, and offered the PAA/HA/CS composite promising material for load-bearing bone substitutes for clinical application.

  17. Effect of hydroxyapatite, octacalcium phosphate and calcium phosphate on the auto-flocculation of the microalgae in a high-rate algal pond.

    Science.gov (United States)

    Baya, D T; Effebi, K R; Tangou, T T; Keffala, C; Vasel, J L

    2013-01-01

    Recovering microalgae is one of the main technological and economic concerns in a high-rate algal pond (HRAP) because of their small size and their low density. This paper emphasizes the characterization (identification and assessment of potential flocculation) of chemical compounds involved in microalgae auto-flocculation in a HRAP. First, thermodynamic simulations were performed, using two models (i.e. Visual Minteq and a simplified thermodynamic model) in order to determine the chemical compounds of interest. Experimental tests were then carried out with these compounds for assessing their flocculation ability. Both models revealed that precipitates of calcium phosphates and their substituted forms were the compounds involved in the auto-flocculation. Moreover, experimental tests showed that the stoichiometric neutralization of algal charges by calcium phosphates (i.e. hydroxyapatite (Ca5(PO4)3OH), octacalcium phosphate (Ca4H(PO4)3) and amorphous calcium phosphate (Ca3(PO4)2)), at a pH within the range 7-10 yields 70-82% recovered algal biomass. The optimum ratio required for algae auto-flocculation was 0.33 Ca5(PO4)3OH/g DM(algae) at pH 10, 0.11 Ca4H(PO4)3/g DM(algae) at pH 7 and 0.23 g Ca3(PO4)2/g DM(algae) at pH 9. Auto-flocculation appears as a simple, sustainable and promising method for efficient harvesting of microalgae in a HRAP. PMID:24350497

  18. Investigation of Silver Doped Hydroxyapatite

    OpenAIRE

    Dubņika, A; Loča, D; Mālniece, L

    2012-01-01

    Biomaterials based on calcium phosphate ceramics are used as implants in human/animal body due to their excellent biocompatibility. Silver containing materials have a very broad spectrum of antibacterial activity; therefore silver doped hydroxyapatite can be used in medicine as antibacterial implant material. The aim of this work was to synthesize monophasic and biphasic silver doped hydroxyapatite and evaluate the differences in their physical and antibacterial properties.

  19. Equilibrium and kinetic studies of sorption of 2.4-dichlorophenol onto 2 mixtures: bamboo biochar plus calcium sulphate (BC and hydroxyapatite plus bamboo biochar plus calcium sulphate (HBC, in a fluidized bed circulation column

    Directory of Open Access Journals (Sweden)

    Alamin Ahmed Hassan

    2016-06-01

    Full Text Available Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate, and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate; both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. The data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment.

  20. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics

    International Nuclear Information System (INIS)

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C2S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C2S (27–30 nm) was prepared by solid state reaction at 1450 °C, while biphasic compound TCP/HAp (7–15 nm) was synthesized from an aqueous solution of Ca(NO3)2·4H2O and (NH4)2HPO4·12H2O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C2S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. - Highlights: • The dissolution and hydration of β-C2S and TCP/HAp in distilled water and saline solution were studied. • TCP/HAp did not show mechanical strength, while β-C2S showed good mechanical strength. • The use of saline solution did enhances the dissolution & hydration rate. • An increase in pH values was detected when using saline solution. • Both materials showed a moderate cytotoxicity in no significant way

  1. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.M., E-mail: mmahmoudradwan@yahoo.com [Ceramics Dept, National Research Centre, Cairo (Egypt); Abd El-Hamid, H.K. [Ceramics Dept, National Research Centre, Cairo (Egypt); Mohamed, A.F. [The Holding Company for Production of Vaccines, Sera and Drugs (EGYVAC) (Egypt)

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C{sub 2}S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C{sub 2}S (27–30 nm) was prepared by solid state reaction at 1450 °C, while biphasic compound TCP/HAp (7–15 nm) was synthesized from an aqueous solution of Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4}·12H{sub 2}O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C{sub 2}S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. - Highlights: • The dissolution and hydration of β-C{sub 2}S and TCP/HAp in distilled water and saline solution were studied. • TCP/HAp did not show mechanical strength, while β-C{sub 2}S showed good mechanical strength. • The use of saline solution did enhances the dissolution & hydration rate. • An increase in pH values was detected when using saline solution. • Both materials showed a moderate cytotoxicity in no significant way.

  2. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.

    Science.gov (United States)

    Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin

    2015-11-01

    The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic.

  3. The usability of ark clam shell (Anadara granosa) as calcium precursor to produce hydroxyapatite nanoparticle via wet chemical precipitate method in various sintering temperature.

    Science.gov (United States)

    Khiri, Mohammad Zulhasif Ahmad; Matori, Khamirul Amin; Zainuddin, Norhazlin; Abdullah, Che Azurahanim Che; Alassan, Zarifah Nadakkavil; Baharuddin, Nur Fadilah; Zaid, Mohd Hafiz Mohd

    2016-01-01

    This paper reported the uses of ark clam shell calcium precursor in order to form hydroxyapatite (HA) via the wet chemical precipitation method. The main objective of this research is to acquire better understanding regarding the effect of sintering temperature in the fabrication of HA. Throughout experiment, the ratio of Ca:P were constantly controlled, between 1.67 and 2.00. The formation of HA at these ratio was confirmed by means of energy-dispersive X-ray spectroscopy analysis. In addition, the effect of sintering temperature on the formation of HA was observed using X-ray diffraction analysis, while the structural and morphology was determined by means of field emission scanning electron microscopy. The formation of HA nanoparticle was recorded (~35-69 nm) in the form of as-synthesize HA powder. The bonding compound appeared in the formation of HA was carried out using Fourier transform infrared spectroscopy such as biomaterials that are expected to find potential applications in orthopedic and biomedical industries .

  4. Influential Factors on Morphology of Hydroxyapatite Crystals

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Needle-like hydroxyapatite crystals were synthesized by homogeneous precipitation method with water-soluble calcium salts and phosphates.The work focuses on the analysis of influencing factors on length and lengh/diameter ratio of hydroxyapatite crystals,which are main characteristics of reinforcement materials.The effects caused by system temperature,concentration of nutrient,and additives are discussed,and the optimum reacting condition is given.

  5. Hydroxyapatite-coated uncemented implants and peri-implant infection

    NARCIS (Netherlands)

    Oosterbos, Cornelis Johannes Maria

    2004-01-01

    One of the major complications of joint replacement surgery is a peri-implant infection. A hip prosthesis coated with hydroxyapatite, a calcium phosphate (found in human bone), may offer protection in this respect. In a series of patients who were treated with a hydroxyapatite-coated hip prosthesis

  6. Properties of Hydroxyapatite Coatings on Metal Oxide

    Directory of Open Access Journals (Sweden)

    V.V. Starikov

    2016-06-01

    Full Text Available The hydroxyapatite coating Ca10(PO46(OH2 was formed on the oxidized niobium surface by RF magnetron sputtering method using hydroxyapatite and three calcium phosphate targets. The structure, substructure and mechanical properties of the Nb-Nb2O5-HAP system were investigated by X-ray diffraction, atomic force microscopy, nanoindentation, as well as an assessment of the stress state in such system. Synthesized hydroxyapatite film had the following characteristics: the thermal expansion coefficient αHA = 1 × 10 – 5 К – 1; elasticity modulus ЕHA = 120 GPa; adhesive strength was not less than 0.45 kg/mm2; density 2900 kg/m3. The stress magnitude in the metal-oxide substrate was from 11 to 14 MPa at hydroxyapatite films deposition.

  7. Gallium-containing hydroxyapatite for potential use in orthopedics

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, P., E-mail: petrmelnikov@yahoo.com [Department of Clinical Surgery, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul (Brazil); Teixeira, A.R.; Malzac, A. [Department of Clinical Surgery, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul (Brazil); Coelho, M. de B. [Brazilian Agricultural Research Corporation - EMBRAPA (Brazil)

    2009-09-15

    A novel material that may be recommended for grafts and implants stimulating bone growth has been obtained by introducing gallium ions (up to 11.0 mass%) into crystalline lattice of hydroxyapatite. The doping was carried out using gallium nitrate and sodium gallate solutions. In both cases, lattice parameters of gallium-doped hydroxyapatite are identical to those of pure synthetic hydroxyapatite. Gallium does not replace calcium as a result of heterovalent substitution and consequently produces no distortions in the framework of hydroxyapatite matrix. It remains strongly fixed in the form of solid solution of intercalation. According to scanning electron microscopy images gallium insertion does not cause any morphological alterations in hydroxyapatite structure and the product developed meets physico-chemical criteria for biomaterial to be employed in orthopedic practice and local handling of traumatic injuries. Its future usage opens the opportunity to enhance osteosynthesis and calcium retention in loco.

  8. Biomimetic Hydroxyapatite Coating on Metal Implants

    OpenAIRE

    Habibovic, Pamela; Barrere, Florence; Blitterswijk, van, H.; Groot, de, W.T.; Layrolle, Pierre

    2002-01-01

    The combination of the high mechanical strength of metals with the osteoconductive properties of calcium phosphates make hydroxyapatite coatings on titanium implants widely used in orthopedic surgery. However, the most popular coating method, plasma spraying, exhibits some important drawbacks: the inability to cover porous implants and to incorporate biologically active agents, delamination, and particle release. The aim of this study was to elaborate a dense, strong, and thick calcium-phosph...

  9. Biomimetic Hydroxyapatite Coating on Metal Implants

    NARCIS (Netherlands)

    Habibovic, Pamela; Barrere, Florence; Blitterswijk, van Clemens A.; Groot, de Klaas; Layrolle, Pierre

    2002-01-01

    The combination of the high mechanical strength of metals with the osteoconductive properties of calcium phosphates make hydroxyapatite coatings on titanium implants widely used in orthopedic surgery. However, the most popular coating method, plasma spraying, exhibits some important drawbacks: the i

  10. Cementless Hydroxyapatite Coated Hip Prostheses

    Directory of Open Access Journals (Sweden)

    Antonio Herrera

    2015-01-01

    Full Text Available More than twenty years ago, hydroxyapatite (HA, calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality.

  11. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    Science.gov (United States)

    Mallik, P. K.; Swain, P. K.; Patnaik, S. C.

    2016-02-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles.

  12. Unusual facet cyst containing struvite and hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Grantham, M.; Richmond, B. [Dept. of Musculoskeletal Radiology, Cleveland Clinic Foundation, OH (United States)

    2001-01-01

    This case report describes a patient with severe back pain and radiculopathy. She was found to have a facet cyst within the lumbar spine that appeared to contain calcium on MRI and CT. Upon aspiration the cyst was found to contain calcium ammonium phosphate (struvite) and calcium phosphate (hydroxyapatite). Ammonia production in the presence of urease-producing bacteria is responsible for the production of struvite in the human body. We postulate that there was a prior infection of the facet with urease-producing bacteria, thus accounting for the production of the struvite within the facet cyst. (orig.)

  13. Biphasic calcium phosphate in periapical surgery

    OpenAIRE

    Suneelkumar, Chinni; Datta, Krithika; Manali R Srinivasan; Kumar, Sampath T

    2008-01-01

    Calcium phosphate ceramics like hydroxyapatite and β -tricalcium phosphate (β -TCP) possess mineral composition that closely resembles that of the bone. They can be good bone substitutes due to their excellent biocompatibility. Biphasic calcium phosphate is a bone substitute which is a mixture of hydroxyapatite and β -tricalcium phosphate in fixed ratios. Studies have demonstrated the osteoconductive potential of this composition. This paper highlights the clinical use of biphasic calcium pho...

  14. Heterogeneous nucleation of hydroxyapatite on protein: structural effect of silk sericin

    OpenAIRE

    Takeuchi, Akari; Ohtsuki, Chikara; Miyazaki, Toshiki; Kamitakahara, Masanobu; Ogata, Shin-ichi; Yamazaki, Masao; Furutani, Yoshiaki; Kinoshita, Hisao; Tanihara, Masao

    2005-01-01

    Acidic proteins play an important role during mineral formation in biological systems, but the mechanism of mineral formation is far from understood. In this paper, we report on the relationship between the structure of a protein and hydroxyapatite deposition under biomimetic conditions. Sericin, a type of silk protein, was adopted as a suitable protein for studying structural effect on hydroxyapatite deposition, since it forms a hydroxyapatite layer on its surface in a metastable calcium pho...

  15. An experimental-computer modeling study of inorganic phosphates surface adsorption on hydroxyapatite particles

    OpenAIRE

    Rivas Cañas, Manuel; Casanovas Salas, Jordi; Valle Mendoza, Luis Javier del; Bertran Cànovas, Òscar; Revilla López, Guillermo; Turon Dols, Pau; Puiggalí Bellalta, Jordi; Alemán Llansó, Carlos

    2015-01-01

    The adsorption of orthophosphate, pyrophosphate, triphosphate and a trisphosphonate onto hydroxyapatite has been examined using experiments and quantum mechanical calculations. Adsorption studies with FTIR and X-ray photoelectron spectroscopies have been performed considering both crystalline hydroxyapatite (HAp) and amorphous calcium phosphate particles, which were specifically prepared and characterized for this purpose. Density functional theory (DFT) calculations have been carried out con...

  16. Synthesis and characterization of nanostructured powders of hydroxyapatite and of three-calcium {beta} phosphate: elaboration of two phase compositions for application in the orthopedics and traumatology; Sintese e caracterizacao de pos nanoestruturados de hidroxiapatita e de fosfato tricalcico {beta}: elaboracao de composicoes bifasicas para aplicacoes na ortopedia e traumatologia

    Energy Technology Data Exchange (ETDEWEB)

    Dalmonico, G.M.L.; Pinheiro, D.M.; Camargo, N.H.A.; Orzechowki, L.G.; Goncalves, A.F.; Melnik, V.; Jesus, J.; Gemelli, E. [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas], e-mail: gidalmonico@gmail.com

    2010-07-01

    This paper synthesized nano structured hydroxyapatite and three calcium {beta} phosphate, for elaboration of two phase compositions of HA/TCP in the concentration in volume of 80% HA/20% TCP-{beta}, 60% HA/40% TCP-{beta} and 50% HA/50% TCP-{beta}. For phase mixing realization, the method of mechanical fragmentation by attritor mill were used. The material recovered from the process of mechanical fragmentation was dried in rotate evaporator, supplying the two phase compositions. The preliminary studies shown the obtention of nano metric powders and a good phase dispersions inside the two phase compositions. (author)

  17. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic

    Indian Academy of Sciences (India)

    M P Mahabole; R C Aiyer; C V Ramakrishna; B Sreedhar; R S Khairnar

    2005-10-01

    Hydroxyapatite (HAp) biomaterial ceramic was synthesized by three different processing routes viz. wet chemical process, microwave irradiation process, and hydrothermal technique. The synthesized ceramic powders were characterized by SEM, XRD, FTIR and XPS techniques. The dielectric measurements were carried out as a function of frequency at room temperature and the preliminary study on CO gas sensing property of hydroxyapatite was investigated. The XRD pattern of the hydroxyapatite biomaterial revealed that hydroxyapatite ceramic has hexagonal structure. The average crystallite size was found to be in the range 31–54 nm. Absorption bands corresponding to phosphate and hydroxyl functional groups, which are characteristic of hydroxyapatite, were confirmed by FTIR. The dielectric constant was found to vary in the range 9–13 at room temperature. Hydroxyapatite can be used as CO gas sensor at an optimum temperature near 125°C. X-ray photoelectron spectroscopic studies showed the Ca/P ratio of 1.63 for the HAp sample prepared by chemical process. The microwave irradiation technique yielded calcium rich HAp whereas calcium deficient HAp was obtained by hydrothermal method.

  18. 表面涂覆含氟羟基磷灰石和缺钙羟基磷灰石的镁合金体外降解行为%In-vitro degradation behavior of Mg alloy coated by fluorine doped hydroxyapatite and calcium deficient hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    HR BAKHSHESHI-RAD; EHAMZAH; M DAROONPARVAR; MAM YAJID; M KASIRI-ASGARANI; MR ABDUL-KADIR; M MEDRAJ

    2014-01-01

    Fluorine-doped hydroxyapatite (FHA) and calcium deficient hydroxyapatite (CDHA) were coated on the surface of biodegradable magnesium alloy using electrochemical deposition (ED) technique. Coating characterization was investigated by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The result shows that nano-FHA coated sample presents nano needle-like structure, which is oriented perpendicular to the surface of the substrate with denser and more uniform layers compared to the nano-CDHA coated sample. The nano-FHA coating shows smaller crystallite size (65 nm) compared to the nano-CDHA coating (95 nm); however, CDHA presents thicker layer (19 μm in thickness) compared to the nano-FHA (15 μm in thickness). The corrosion behaviour determined by polarization, immersion and hydrogen evolution tests indicates that the nano-FHA and nano-CDHA coatings significantly decrease corrosion rate and induce passivation. The nano-FHA and nano-CDHA coatings can accelerate the formation of bone-like apatite layer and significantly decrease the dissolution rate as compared to the uncoated Mg alloy. The nano-FHA coating provides effective protection to Mg alloy and presents the highest corrosion resistance. Therefore, the nano-FHA coating on Mg alloy is suggested as a great candidate for orthopaedic applications.%通过电化学沉积方法,在生物降解镁合金表面覆盖含氟羟基磷灰石(FHA)涂层和缺钙羟基磷灰石(CDHA)涂层。采用 X 射线衍射、傅立叶变换红外光谱、透射电子显微镜、扫描电子显微镜和能量色散 X 射线光谱研究涂层特性。结果表明:涂覆纳米FHA涂层的样品具有垂直于样品表面的纳米针状结构,比涂覆CDHA涂层样品的结构更致密和更均匀。纳米FHA涂层比纳米CDHA涂层具有更小的晶粒尺寸,分别为65 nm 和95 nm

  19. Formation of Nanocrystalline Hydroxyapatite in Presence of Some Aminoacids

    Directory of Open Access Journals (Sweden)

    O.V. Kalinkevich

    2014-11-01

    Full Text Available The influence of three amino acids on the hydroxyapatite formation in vitro under mild condition was investigated. The mineral obtained was studied by transmission electron microscopy and powder X-ray diffraction. The experiments suggest that the addition of these amino acids has a significant effect on the phase composition, crystal size and lattice microstrains of the resulting calcium phosphate mineral.

  20. A process for the development of strontium hydroxyapatite

    International Nuclear Information System (INIS)

    A procedure for the preparation of Strontium Hydroxyapatite is adapted to produce high purity and better homogeneity ceramic with good Crystallinity. The strontium substituted bone cement has potential for use in orthopedic surgeries. Ionic Strontium (Sr) in humans shares the same physiological pathway as calcium and can be deposited in the mineral structure of the bone. In the present study, a novel concept of preparing Sr-contained Hydroxyapatite bone cement by using a precipitation method is proposed to get an ideal biomaterial that possesses potential degradability and more excellent pharmacological effect. Chemical analysis, Fourier Transform Infra Red analysis and Thermogravimetric/ Differential Scanning Calorimetric studies were conducted on prepared Strontium Hydroxyapatite sample to characterize the incorporation of 15% Sr2+ into the crystal lattice of Hydroxyapatite. Strontium was quantitatively incorporated into Hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. Thus, the formation of Sr-HAp was confirmed by Chemical Analysis, FT-IR and TGA/DSC results

  1. Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Tavakol, S. [Tehran University of Medical Sciences, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (Iran, Islamic Republic of); Nikpour, M. R. [Babol University of Technology, Nanotechnology Research Institute, Nanobiotechnology Research Group (Iran, Islamic Republic of); Amani, A. [Tehran University of Medical Sciences, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (Iran, Islamic Republic of); Soltani, M. [University of Waterloo, Department of Chemical Engineering, Waterloo Institute for Nanotechnology (Canada); Rabiee, S. M. [Babol University of Technology, Nanotechnology Research Institute, Nanobiotechnology Research Group (Iran, Islamic Republic of); Rezayat, S. M. [Tehran University of Medical Sciences, Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (Iran, Islamic Republic of); Chen, P., E-mail: p4chen@uwaterloo.ca [University of Waterloo, Department of Chemical Engineering, Waterloo Institute for Nanotechnology (Canada); Jahanshahi, M., E-mail: mjahan@nit.ac.ir [Babol University of Technology, Nanotechnology Research Institute, Nanobiotechnology Research Group (Iran, Islamic Republic of)

    2013-01-15

    Surface morphology, surface wettability, and size distribution of biomaterials affect their in vitro and in vivo bone regeneration potential. Since nano-hydroxyapatite has a great chemical and structural similarity to natural bone and dental tissues, incorporated biomaterial of such products could improve bioactivity and bone bonding ability. In this research, nano-hydroxyapatite (23 {+-} 0.09 nm) and its composites with variety of chitosan content [2, 4, and 6 g (45 {+-} 0.19, 32 {+-} 0.12, and 28 {+-} 0.12 nm, respectively)] were prepared via an in situ hybridization route. Size distribution of the particles, protein adsorption, and calcium deposition of powders by the osteoblast cells, gene expression and percentage of new bone formation area were investigated. The highest degree of bone regeneration potential was observed in nano-hydroxyapatite powder, while the bone regeneration was lowest in nano-hydroxyapatite with 6 g of chitosan. Regarding these data, suitable size distribution next to size distribution of hydroxyapatite in bone, smaller size, higher wettability, lower surface roughness of the nano-hydroxyapatite particles and homogeneity in surface resulted in higher protein adsorption, cell differentiation and percentage of bone formation area. Results obtained from in vivo and in vitro tests confirmed the role of surface morphology, surface wettability, mean size and size distribution of biomaterial besides surface chemistry as a temporary bone substitute.

  2. Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an in vitro and in vivo comparative study

    International Nuclear Information System (INIS)

    Surface morphology, surface wettability, and size distribution of biomaterials affect their in vitro and in vivo bone regeneration potential. Since nano-hydroxyapatite has a great chemical and structural similarity to natural bone and dental tissues, incorporated biomaterial of such products could improve bioactivity and bone bonding ability. In this research, nano-hydroxyapatite (23 ± 0.09 nm) and its composites with variety of chitosan content [2, 4, and 6 g (45 ± 0.19, 32 ± 0.12, and 28 ± 0.12 nm, respectively)] were prepared via an in situ hybridization route. Size distribution of the particles, protein adsorption, and calcium deposition of powders by the osteoblast cells, gene expression and percentage of new bone formation area were investigated. The highest degree of bone regeneration potential was observed in nano-hydroxyapatite powder, while the bone regeneration was lowest in nano-hydroxyapatite with 6 g of chitosan. Regarding these data, suitable size distribution next to size distribution of hydroxyapatite in bone, smaller size, higher wettability, lower surface roughness of the nano-hydroxyapatite particles and homogeneity in surface resulted in higher protein adsorption, cell differentiation and percentage of bone formation area. Results obtained from in vivo and in vitro tests confirmed the role of surface morphology, surface wettability, mean size and size distribution of biomaterial besides surface chemistry as a temporary bone substitute.

  3. Mechanical behaviour of new zirconia-hydroxyapatite ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J.A.; Morejon, L. [La Habana Univ. (Cuba). Centro de Biomateriales; Martinez, S. [Barcelona Univ. (Spain). Dept. Cristallografia, Mineralogia; Ginebra, M.P.; Carlsson, N.; Fernandez, E.; Planell, J.A. [Universidad Politecnica de Cataluna, Barcelona (Spain). CREB; Clavaguera-Mora, M.T.; Rodriguez-Viejo, J. [Universitat Autonoma de Barcelona (Spain). Dept. de Fisica

    2001-07-01

    In this work a new zirconia-hydroxyapatite ceramic material was obtained by uniaxial pressing and sintering in humid environment. The powder X-ray diffraction (XRD) patterns and infrared spectra (FT-IR) showed that the hydroxyapatite (HA) is the only calcium phosphate phase present. The fracture toughness for HA with 20 wt.% of magnesia partially stabilised zirconia (Mg-PSZ) was around 2.5 times higher than those obtained for HA pure, also the highest value of bending strength (160 MPa) was obtained for material reinforced with Mg-PSZ. For the MgPSZ-HA (20%) the fracture mechanism seems to be less transgranular. (orig.)

  4. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  5. Hydroxyapatite with environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Popa, C. L. [National Institute of Materials Physics, P.O. Box MG 07, Bucharest, Magurele, Romania and Faculty of Physics, University of Bucharest, 405 Atomistilor, CP MG-1, 077125 Magurele (Romania); Ciobanu, C. S.; Predoi, D., E-mail: dpredoi@gmail.com [National Institute of Materials Physics, P.O. Box MG 07, Bucharest, Magurele (Romania); Petre, C. C.; Jiga, G. [University Politehnica of Bucharest, Faculty of Engineering and Management of Technological Systems, Department of Strength of Materials, 060032, Bucharest (Romania); Motelica-Heino, M. [ISTO, UMR 7327 CNRS-Université d' Orléans, 1A rue de la Férollerie 45071 Orléans Cedex 2 (France); Iconaru, S. L. [National Institute of Materials Physics, P.O. Box MG 07, Bucharest, Magurele (Romania); Faculty of Physics, University of Bucharest, 405 Atomistilor, CP MG-1, 077125 Magurele (Romania); ISTO, UMR 7327 CNRS-Université d' Orléans, 1A rue (France)

    2014-05-15

    The aim of this study was to synthetize new nanoparticles based on methyltrimethoxysilane coated hydroxyapatite (MTHAp) for lead removal in aqueous solutions. The morphological and compositional analysis of MTHAp was investigated by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). Removal experiments of Pb{sup 2+} ions were carried out in aqueous solutions with controlled concentration of Pb{sup 2+} and at fixed pH of 5. After the removal experiment of Pb{sup 2+} ions from solutions, porous hydroxyapatite nanoparticles were transformed into PbMTHAp-5 via the adsorption of Pb{sup 2+} ions followed by a cation exchange reaction. Our results demonstrate that the porous hydroxyapatite nanoparticles can be used as an adsorbent for removing Pb{sup 2+} ions from aqueous solution.

  6. Biomineralization of nanoscale single crystal hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Omokanwaye, Tiffany [Catholic University of America, BONE/CRAB Lab, Department of Biomedical Engineering, Washington, DC 20064 (United States); Wilson, Otto C., E-mail: wilsono@cua.edu [Catholic University of America, BONE/CRAB Lab, Department of Biomedical Engineering, Washington, DC 20064 (United States); Gugssa, Ayelle; Anderson, Winston [Howard University, Department of Biology, Washington, DC (United States)

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague–Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5 nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54 nm and 0.23 nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. - Highlights: • Nanocrystalline particles were formed during in vivo implantation of crab shell using a rat model. • High resolution TEM revealed that nanoparticles were single crystals and less than 5 nm in size. • The relative distance between spots matches the expected values for hydroxyapatite.

  7. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    Directory of Open Access Journals (Sweden)

    Mythili Prakasam

    2015-12-01

    Full Text Available In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes.

  8. Surface fractal dimensions and textural properties of mesoporous alkaline-earth hydroxyapatites

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis-Granados, J. [Instituto Nacional de Investigaciones Nucleares, Departamento de Química, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, DF (Mexico); Universidad Autónoma del Estado de México, Facultad de Química, Av. Paseo Colón esquina con Paseo Tollocan s/n Toluca, México (Mexico); Granados-Correa, F., E-mail: francisco.granados@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Química, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, DF (Mexico); Barrera-Díaz, C.E. [Universidad Autónoma del Estado de México, Facultad de Química, Av. Paseo Colón esquina con Paseo Tollocan s/n Toluca, México (Mexico)

    2013-08-15

    This work examines the surface fractal dimensions (D{sub f}) and textural properties of three different alkaline-earth hydroxyapatites. Calcium, strontium and barium hydroxyapatite compounds were successfully synthesized via chemical precipitation method and characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and N{sub 2}-physisorption measurements. Surface fractal dimensions were determined using single N{sub 2}-adsorption/desorption isotherms method to quantify the irregular surface of as-prepared compounds. The obtained materials were also characterized through their surface hydroxyl group content, determined by the mass titration method. It was found that the D{sub f} values for the three materials covered the range of 0.77 ± 0.04–2.33 ± 0.11; these results indicated that the materials tend to have smooth surfaces, except the irregular surface of barium hydroxyapatite. Moreover, regarding the synthesized calcium hydroxyapatite exhibited better textural properties compared with the synthesized strontium and barium hydroxyapatites for adsorbent purposes. However, barium hydroxyapatite shows irregular surface, indicating a high population of active sites across the surface, in comparison with the others studied hydroxyapatites. Finally, the results showed a linear correlation between the surface hydroxyl group content at the external surface of materials and their surface fractal dimensions.

  9. Synthesis and release of trace elements from hollow and porous hydroxyapatite spheres

    International Nuclear Information System (INIS)

    It is known that organic species regulate fabrication of hierarchical biological forms via solution methods. However, in this study, we observed that the presence of inorganic ions plays an important role in the formation and regulation of biological spherical hydroxyapatite formation. We present a mineralization method to prepare ion-doped hydroxyapatite spheres with a hierarchical structure that is free of organic surfactants and biological additives. Porous and hollow strontium-doped hydroxyapatite spheres were synthesized via controlling the concentration of strontium ions in a calcium and phosphate buffer solution. Similarly, fluoride and silicon-doped hydroxyapatite spheres were synthesized. While spherical particle formation was attainable at low and high temperature for Sr-doped hydroxyapatite, it was only possible at high temperature in the F/Si-doped system. The presence of inorganic ions not only plays an important role in the formation and regulation of biological spherical hydroxyapatite, but also could introduce pharmaceutical effects as a result of trace element release. Such ion release results showed a sustained release with pH responsive behavior, and significantly influenced the hydroxyapatite re-precipitation. These ion-doped hydroxyapatite spheres with hollow and porous structure could have promising applications as bone/tooth materials, drug delivery systems, and chromatography supports.

  10. Development of graded hydroxyapatite/CaCO(3) composite structures for bone ingrowth.

    Science.gov (United States)

    Heilmann, F; Standard, O C; Müller, F A; Hoffman, M

    2007-09-01

    Ceramic composites composed of constituents with different bone cell reactions present an interesting consideration for a new bone replacement material. The first component of the composite used in this study, hydroxyapatite, is known to be replaced by natural tissue significantly slower than the second, calcium carbonate, which has limited structural stability. A graded hydroxyapatite/calcium carbonate composite with bimodal component distribution was developed using a combined slip infiltration and dip-coating technique from a porous polyurethane sponge replica. A graded hydroxyapatite scaffold with porosities from 5 to 90% was produced and then infiltrated with a calcium carbonate slip and sintered. The resultant composite had improved mechanical properties compared with the monolith as measured by crushing and moduli tests. PMID:17483903

  11. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  12. Gellan gum : hydroxyapatite composite hydrogels for bone tissue engineering

    OpenAIRE

    Manda-Guiba, G. M.; Oliveira, Mariana B.; Mano, J.F; Marques, A.P; Joaquim M. Oliveira; Correlo, V. M.; Reis, R. L.

    2012-01-01

    The modification of polymeric matrices by adding calcium-phosphate derivatives has been proven an effective strategy for tailoring the properties of scaffolds employed in bone tissue engineering. In this regard and, considering the biomechanics of bone as well as the durotactic response of osteoblasts, this study builds on the hypothesis that the preparation of novel Gellan Gum (GG)-Hydroxyapatite (HA) hydrogel composites could benefit the mechanical profile of matrices as well as the cell-su...

  13. Hydrothermal synthesis of hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Earl, J S; Wood, D J; Milne, S J [Institute for Materials Research, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2006-02-22

    A hydrothermal method of synthesizing hydroxyapatite by heating a precipitate, formed by mixing Ca(NO{sub 3}){sub 2}{center_dot}4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4} with distilled water, in a hydrothermal reactor at 200 deg. C for 24-72 hrs is described. A treatment time of 24 hrs produced single phase (as shown by XRD) hydroxyapatite powder, however for longer treatment times XRD patterns were indicative of the presence of a secondary phase, monetite (CaHPO{sub 4}). SEM examination of the treated powders displayed particles of rod-like morphology with dimensions 100-500 nm in length and 10-60 nm in diameter. Preliminary results on the use of the particles for the infiltration of dentine tubules are presented.

  14. Cadmium immobilization by hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Smičiklas Ivana D.

    2003-01-01

    Full Text Available The contamination of air, soil and water by cadmium is a great environmental problem. If cadmium occurs in nature in ionic form, soluble in water, it easily enters into the food chain. Hydroxyapatite (HAP, Ca-o(POAe(OH2 is a sparingly soluble salt and an excellent matrix for the removal of heavy metals from solutions. Considerable research attention has been paid to the bond between Cc/2+ ions and synthetic hydroxyapatite of known composition. The sorption mechanism is complex. The dominant process is ion exchange, but surface adsorption, surface complexation and coprecipitation can also contribute to the overall mechanism. The sorption capacity depends on the characteristics of hydroxyapatite itself and on the experimental conditions. Under optimum conditions a maximum capacity of 0.8 mol Cd2+/mol HAP can be achieved. HAP is a potential sorbent for the remediation of contaminated water and soil, for industrial waste treatment, and it is also referenced as a material that can be used as a barrier around waste depositories.

  15. Effect of trimetaphosphate and fluoride association on hydroxyapatite dissolution and precipitation in vitro.

    Science.gov (United States)

    Delbem, Alberto Carlos Botazzo; Souza, José Antonio Santos; Zaze, Ana Carolina Soares Fraga; Takeshita, Eliana Mitsue; Sassaki, Kikue Takebayashi; Moraes, João Carlos Silos

    2014-01-01

    The present study analyzed the action of sodium trimetaphosphate (TMP) and/or fluoride on hydroxyapatite. Hydroxyapatite powder was suspended in different solutions: deionized water, 500 µg F/mL, 1,100 µg F/mL, 1%TMP, 3%TMP, 500 µg F/mL plus 1%TMP and 500 µg F/mL plus 3%TMP. The pH value of the solutions was reduced to 4.0 and after 30 min, raised to 7.0 (three times). After pH-cycling, the samples were analyzed by X-ray diffraction and infrared spectroscopy. The concentrations of calcium fluoride, fluoride, calcium and phosphorus were also determined. Adding 1% or 3% TMP to the solution containing 500 µg F/mL produced a higher quantity of calcium fluoride compared to samples prepared in a 1,100 µg F/mL solution. Regarding the calcium concentration, samples prepared in solutions of 1,100 µg F/mL and 500 µg F/mL plus TMP were statistically similar and showed higher values. Using solutions of 1,100 µg F/mL and 500 µg F/mL plus TMP resulted in a calcium/phosphorus ratio close to that of hydroxyapatite. It is concluded that the association of TMP and fluoride favored the precipitation of a more stable hydroxyapatite. PMID:25590192

  16. Characterisations of collagen-silver-hydroxyapatite nanocomposites

    Science.gov (United States)

    Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.

    2016-05-01

    The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.

  17. Synthesis and characterization of biocompatible hydroxyapatite coated ferrite

    Indian Academy of Sciences (India)

    S Deb; J Giri; S Dasgupta; D Datta; D Bahadur

    2003-12-01

    Ferrite particles coated with biocompatible phases can be used for hyperthermia treatment of cancer. We have synthesized substituted calcium hexaferrite, which is not stable on its own but is stabilized with small substitution of La. Hexaferrite of chemical composition (CaO)0.75(La2O3)0.20(Fe2O3)6 was prepared using citrate gel method. Hydroxyapatite was prepared by precipitating it from aqueous solution of Ca(NO3)2 and (NH4)2HPO4 maintaining pH above 11. Four different methods were used for coating of hydroxyapatite on ferrite particles. SEM with EDX and X-ray diffraction analysis shows clear evidence of coating of hydroxy-apatite on ferrite particles. These coated ferrite particles exhibited coercive field up to 2 kOe, which could be made useful for hysteresis heating in hyperthermia. Studies by culturing BHK-21 cells and WBC over the samples show evidence of biocompatibility. SEM micrographs and cell counts give clear indication of cell growth on the surface of the sample. Finally coated ferrite particle was implanted in Kasaulli mouse to test its biocompatibility. The magnetic properties and biocompatibility studies show that these hydroxyapatite coated ferrites could be useful for hyperthermia.

  18. Elimination of radical on the x-ray irradiated hydroxyapatite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, M.; Yasuda, M.; Miyazawa, C.; Okamura, H.; Suzuki, Y. [Niigata Univ., Niigata, (Japan)

    2002-07-01

    We investigate the elimination of radical produced in a human tooth and synthetic calcium-deficient hydroxyapatite compounds after X-ray irradiation. Used samples were enamel and dentine of a human tooth and synthetic calcium-deficient hydroxyapatite (DAp), and stoichiometric hydroxyapatite (HAp). The ESR signal intensities at nearly g = 2 in the samples after X-ray irradiation were proportional to the absorbed dose in the range from 6 to 39 Gy. And these ESR signal intensities of the samples soaked in various ion containing fluids decreased with soaking time. Especially, the decrease in these ESR signal intensities was remarkably large in the samples soaked in Na{sub 2}HPO{sub 4} aqueous solution. This fact suggests that the surface layer of the samples easily dissolves in ion containing fluids.

  19. Synthesis of fluorapatite–hydroxyapatite nanoparticles and toxicity investigations

    Science.gov (United States)

    Montazeri, N; Jahandideh, R; Biazar, Esmaeil

    2011-01-01

    In this study, calcium phosphate nanoparticles with two phases, fluorapatite (FA; Ca10(PO4)6F2) and hydroxyapatite (HA; Ca10(PO4)6(OH)2), were prepared using the solgel method. Ethyl phosphate, hydrated calcium nitrate, and ammonium fluoride were used, respectively, as P, Ca, and F precursors with a Ca:P ratio of 1:72. Powders obtained from the sol-gel process were studied after they were dried at 80°C and heat treated at 550°C. The degree of crystallinity, particle and crystallite size, powder morphology, chemical structure, and phase analysis were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Zetasizer experiments. The results of XRD analysis and FTIR showed the presence of hydroxyapatite and fluorapatite phases. The sizes of the crystallites estimated from XRD patterns using the Scherrer equation and the crystallinity of the hydroxyapatite phase were about 20 nm and 70%, respectively. Transmission electron microscope and SEM images and Zetasizer experiments showed an average size of 100 nm. The in vitro behavior of powder was investigated with mouse fibroblast cells. The results of these experiments indicated that the powders were biocompatibile and would not cause toxic reactions. These compounds could be applied for hard-tissue engineering. PMID:21499417

  20. Synthesis of fluorapatite-hydroxyapatite nanoparticles and toxicity investigations.

    Science.gov (United States)

    Montazeri, N; Jahandideh, R; Biazar, Esmaeil

    2011-01-01

    In this study, calcium phosphate nanoparticles with two phases, fluorapatite (FA; Ca(10)(PO(4))(6)F(2)) and hydroxyapatite (HA; Ca(10)(PO(4))(6)(OH)(2)), were prepared using the solgel method. Ethyl phosphate, hydrated calcium nitrate, and ammonium fluoride were used, respectively, as P, Ca, and F precursors with a Ca:P ratio of 1:72. Powders obtained from the sol-gel process were studied after they were dried at 80°C and heat treated at 550°C. The degree of crystallinity, particle and crystallite size, powder morphology, chemical structure, and phase analysis were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Zetasizer experiments. The results of XRD analysis and FTIR showed the presence of hydroxyapatite and fluorapatite phases. The sizes of the crystallites estimated from XRD patterns using the Scherrer equation and the crystallinity of the hydroxyapatite phase were about 20 nm and 70%, respectively. Transmission electron microscope and SEM images and Zetasizer experiments showed an average size of 100 nm. The in vitro behavior of powder was investigated with mouse fibroblast cells. The results of these experiments indicated that the powders were biocompatible and would not cause toxic reactions. These compounds could be applied for hard-tissue engineering. PMID:21499417

  1. [Application of elemental microanalysis for estimation of osteoinduction and osteoconduction of hydroxyapatite bone implants].

    Science.gov (United States)

    Dawidowicz, Aleksander; Pielka, Stanisław; Paluch, Danuta; Kuryszko, Jan; Staniszewska-Kuś, Jolanta; Solski, Leszek

    2005-01-01

    Hydroxyapatite (HAp) ceramics based on calcium phosphates, chemical compounds being natural constructive element of bones is now regarded to be one of better implantation materials in osseous surgery and stomatology. HAp is poorly soluble and slowly resorbing in tissues material. Easiness of connecting of hydroxyapatite ceramics with other materials creates possibilities to produce new composites of chemical compounds containing calcium and easier resorbing. An important and till now not fully known problem is influence of hydrodroxyapatite grafts on the processes leading to production of calcium and phosphorus ions responsive for mineralization of bone tissue around the graft. Proliferation of osteoblasts and rate of osseous trabeculas production depends, among others, concentration of calcium and phosphorus ions. The main target of this study was the comparative analysis of the bone mineralisation rate after implantation of hydroxyapatite (HAp) and composites hydroxyapatite + beta tricalcium phosphate (HAp + TCP) and hydroxyapatite + calcium hydrosulfate (HAp + gypsum), on the basis of elemental microanalysis. Implantation studies were carried out on 24 rabbits. Sections were carried out 5, 9, 11 and 14 weeks after implantation of the tested materials. The carried out punctual analysis of the occurring elements and their topographic location (mapping) in bones after implantation showed essential differences among the tested grafts. Those differences were most significant after 5 and 14 weeks and depended on the rate of the tested materials resorption. On the basis of conducted macroscopic evaluation and scanning microscope assessment we can stated that the composite of HAp+TCP showed the best osteocunductive properties, while the best osteoinductive influence was shown by the composite HAp + gypsum.

  2. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells.

    Science.gov (United States)

    Finoli, Anthony; Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  3. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    Directory of Open Access Journals (Sweden)

    Anthony Finoli

    2016-01-01

    Full Text Available Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  4. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    Science.gov (United States)

    Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  5. In situ synthesis of hydroxyapatite nanocomposites using iron oxide nanofluids at ambient conditions.

    Science.gov (United States)

    Sheikh, Lubna; Mahto, Neha; Nayar, Suprabha

    2015-01-01

    This paper describes a simple method for the room temperature synthesis of magnetite/hydroxyapatite composite nanocomposites using ferrofluids. The in situ synthesis of magnetic-hydroxyapatite results in a homogenous distribution of the two phases as seen both in transmission electron micrographs and assembled to a micron range in the confocal micrographs. The selected area diffraction pattern analysis shows the presence of both phases of iron oxide and hydroxyapatite. To the dialyzed ferrofluid, the constituents of hydroxyapatite synthesis was added, the presence of the superparamagnetic iron oxide particles imparts directionality to the hydroxyapatite crystal growth. Electron probe microanalysis confirms the co-existence of both iron and calcium atoms. Vibrating Sample magnetometer data shows magnetization three times more than the parent ferrofluid, the local concentration of iron oxide nanoparticles affects the strength of dipolar interparticle interactions changing the energy barrier for determining the collective magnetic behavior of the sample. The limitations inherent to the use of external magnetic fields which can be circumvented by the introduction of internal magnets located in the proximity of the target by a minimal surgery or by using a superparamagnetic scaffold under the influence of externally applied magnetic field inspires us to increase the magnetization of our samples. The composite in addition shows anti-bacterial properties against the two gram (-ve) bacteria tested. This work is significant as magnetite-hydroxyapatite composites are attracting a lot of attention as adsorbents, catalysts, hyperthermia agents and even as regenerative medicine. PMID:25589209

  6. Bone formation on synthetic precursors of hydroxyapatite.

    Science.gov (United States)

    Suzuki, O; Nakamura, M; Miyasaka, Y; Kagayama, M; Sakurai, M

    1991-05-01

    The aim of this study was to investigate the reaction of skeletal tissue to various synthetic calcium phosphate (Ca-P) compounds in vivo. Five synthetic Ca-P compounds were implanted into the subperiosteal area of the calvaria of 7-week-old BALB/c mice for one to 15 weeks. Synthetic compounds were dicalcium phosphate (DCP), octacalcium phosphate (OCP), amorphous calcium phosphate (ACP), Ca-deficient hydroxyapatite and hydroxyapatile (HA). Implanted DCP, OCP and ACP were found to be converted to apatitic phase by x-ray microdiffraction analysis using undecalcified specimens. Structure of bone was found out on all of Ca-P compounds eventually at late stage under the light microscope, but the rate of bone formation calculated from a number of experiments varied on respective synthetic Ca-P compound. It was high as 80% for DCP, OCP and ACP, but was low as 5.6% for Ca-deficient HA, and no reaction was found for HA at the stage of 3 weeks. Fine filaments and granular materials in the newly formed bone matrix were detected at 7 days around the remnants of OCP particles which already converted to apatitic phase by ultrastructural study of decalcified specimens. These structures were very similar to the components of bone nodules seen in intramembranous osteogenesis. It is postulated that the precursors of HA have an important role in intramembranous osteogenesis.

  7. Amino acid-assisted synthesis of strontium hydroxyapatite bone cement by a soft solution freezing method

    Indian Academy of Sciences (India)

    D Gopi; S Nithiya; L Kavitha; J M F Ferreira

    2012-12-01

    Among many cations that can substitute for calcium in the structure of hydroxyapatite, strontium provokes an increasing interest because of its beneficial effect on bone formation and prevention of bone resorption. Strontium-incorporated calcium phosphates show potential in biomedical application, particularly the doped strontium may help in new bone formation. We have synthesized strontium hydroxyapatite powders at 2 °C by a soft solution freezing method using glycine as the template. The structural and morphological characterizations were carried out on the as obtained powders using Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy techniques. Strontium was quantitatively incorporated into hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. The strontium substituted bone cement has potential for use in orthopaedic surgeries. The present study shows that the addition of glycine plays an important role in reducing the particle size of strontium hydroxyapatite which could be used for biomedical applications.

  8. Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density.

    Science.gov (United States)

    Cho, Jung Sang; Lee, Jeong-Cheol; Rhee, Sang-Hoon

    2016-02-01

    In the synthesis of hydroxyapatite powders by spray pyrolysis, control of the particle size was investigated by varying the initial concentration of the precursor solution and the pyrolysis temperature. Calcium phosphate solutions (Ca/P ratio of 1.67) with a range of concentrations from 0.1 to 2.0 mol/L were prepared by dissolving calcium nitrate tetrahydrate and diammonium hydrogen phosphate in deionized water and subsequently adding nitric acid. Hydroxyapatite powders were then synthesized by spray pyrolysis at 900°C and at 1500°C, using these calcium phosphate precursor solutions, under the fixed carrier gas flow rate of 10 L/min. The particle size decreased as the precursor concentration decreased and the spray pyrolysis temperature increased. Sinterability tests conducted at 1100°C for 1 h showed that the smaller and denser the particles were, the higher the relative densities were of sintered hydroxyapatite disks formed from these particles. The practical implication of these results is that highly sinterable small and dense hydroxyapatite particles can be synthesized by means of spray pyrolysis using a low-concentration precursor solution and a high pyrolysis temperature under a fixed carrier gas flow rate. PMID:25891158

  9. Laser-assisted production of tricalcium phosphate nanoparticles from biological and synthetic hydroxyapatite in aqueous medium

    Science.gov (United States)

    Boutinguiza, M.; Pou, J.; Lusquiños, F.; Comesaña, R.; Riveiro, A.

    2011-04-01

    Pulsed laser ablation technique has attracted great attention as a method for preparing nanoparticles. In this work, calcined fish bones and synthetic hydroxyapatite, have been used as target to be ablated in de-ionized water with a pulsed CO 2 laser to produce calcium phosphate nanoparticles. The obtained nanoparticles were amorphous and spherical in shape with a mean diameter of about 25 nm. The microanalyses revealed that nanoparticles obtained from the synthetic HA undergo transformation to tricalcium phosphate. While nanoparticles obtained from the biological hydroxyapatite mostly preserve the composition of precursor material.

  10. Synthesis of hydroxyapatite in the presence of biologically significant molecules

    International Nuclear Information System (INIS)

    In bone mineralization non-collagenous phosphoproteins containing polycarboxylate sequences are thought to control crystal nucleation and to subsequently modify crystal growth. Invertebrate calcified tissues may also contain significant amounts of phosphoserine and/or acidic amino acid residues together with chitin (a polysaccharide). The present study investigated the effect of synthetic phosphorylated compounds as well as monomeric/polymeric carboxylic acid compounds on the formation of hydroxyapatite (HAp) under conditions of physiological pH, temperature and ionic strength. Poly-L-sodium aspartate was found to have the greatest inhibitory effect; only octacalcium phosphate (a known precursor of hydroxyapatite) could be detected in the presence of this polymer. Resultant minerals showed a variety of aggregation states. The biomimetically formed calcium phosphate minerals were identified and characterised by a variety of analytical thechniques, including laser Raman, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy and x-ray diffraction analysis. In addition, a series of experiments were performed to induce the formation of HAp on biogenic substrates, such as chitin and its derivatives, chitosan, reconstituted chitin and phosphorylated chitin. Granular aggregates of hydroxyapatite could be induced to form directly on phosphorylated chitin surfaces, but not on other biogenically-derived substrates. Copyright (2000) The Australian Ceramic Society

  11. Hyperfine interaction measurements in biological compounds: the case of hydroxyapatite

    International Nuclear Information System (INIS)

    The use o nanoparticles in current medicine are under intense investigation. The possible advantages proposed by these systems are very impressive and the results may be quite schemer. In this scenario, the association of nanoparticles with radioactive materials (radionuclide) may be the most important step since the discovery of radioactive for nuclear medicine and radiopharmacy, especially for cancer targeting and therapy. The hyperfine interaction of the nuclear probe 111Cd in the Hydroxyapatite compounds has been investigated by perturbed angular correlation (PAC) spectroscopy in room temperature for the hydroxyapatite made in the temperatures of 90°C, 35°C and with Ho doped, both thermalized and not. The thermalized samples were heated to T= 1273 K for 6 h. The 111Cd was broadcast in the structure of the material by diffusion, closing in quartz tubes were heated – together with the radioactive PAC probe 111In/111Cd to T = 1073 K for 12 h. In not thermalized samples the PAC spectra indicate a distribution of frequency, but in the thermalized samples, the PAC spectra shows the presence of β-tri calcium phosphate in the structure of this kind of Hydroxyapatite. (author)

  12. Protein Adsorption onto Nanosized Hydroxyapatite Particles for Controlled Drug Release

    Institute of Scientific and Technical Information of China (English)

    WANG Bo; TENG Li-rong; WANG Chun-yan; MENG Qing-fan; ZHAO Ling-zhi; GAO Bo

    2007-01-01

    Nanosized hydroxyapatite(nsHAp) was synthesized to examine its possibility as a controlled release carrier of protein. To achieve effective protein release from nanosized hydroxyapatite, the study of the adsorptive properties of protein on nsHAp and different influence parameters such as pH, calcium, and phosphate concentrations during the adsorption process is necessary. Ovalbumin(OVA) was selected as the model of growth factors. The results show that the amount of OVA adsorbed onto nsHAp in acetic buffer(pH=3.6) is more than that in acetic buffer(pH=5.6) because of the electric interaction. The amount of OVA adsorption in phosphate buffer solution(PBS) is smaller than that in acetic buffer because of surface complexation and surface hydroxylation. The presence of Ca2+ dramatically increases the adsorbed amount of OVA in acetic buffer on maintaining the same pH. Meanwhile, the release kinetics of OVA adsorbed onto nsHAp(nsHAp-OVA) was also examined. The amount of released OVA in PBS(pH=5.6) was significantly smaller than that released in solution of pH=7.0. All the results suggest that nanosized hydroxyapatite particles could be successfully used as controlled released carrier of protein.

  13. Structural and Biological Assessment of Zinc Doped Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cristina Liana Popa

    2016-01-01

    Full Text Available The aim of the current research work was to study the physicochemical and biological properties of synthesized zinc doped hydroxyapatite (ZnHAp nanoparticles with Zn concentrations xZn=0 (HAp, xZn=0.07 (7ZnHAp, and xZn=0.1 (10ZnHAp for potential use in biological applications. The morphology, size, compositions, and incorporation of zinc into hydroxyapatite were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, Fourier Transform Infrared Spectroscopy (FTIR, Raman scattering, and X-Ray Photoelectron Spectroscopy (XPS. In addition, the cytotoxicity of ZnHAp nanoparticles was tested on both E. coli bacteria and human hepatocarcinoma cell line HepG2. The results showed that ZnHAp nanoparticles (HAp, 7ZnHAp, and 10ZnHAp have slightly elongated morphologies with average diameters between 25 nm and 18 nm. On the other hand, a uniform and homogeneous distribution of the constituent elements (calcium, phosphorus, zinc, and oxygen in the ZnHAp powder was noticed. Besides, FTIR and Raman analyses confirmed the proper hydroxyapatite structure of the synthesized ZnHAp nanoparticles with the signature of phosphate, carbonate, and hydroxyl groups. Moreover, it can be concluded that Zn doping at the tested concentrations is not inducing a specific prokaryote or eukaryote toxicity in HAp compounds.

  14. Hydrothermal synthesis of hydroxyapatite whisker

    Institute of Scientific and Technical Information of China (English)

    LI Shi-pu; ZHANG Yong; WANG You-fa; YAN Yu-hua

    2001-01-01

    @@ INTRODUCITION Hydroxyapatite (Ca10 (PO4) 6 (OH)2, HA) is a material with biological activity, which has good biocompatibility and is the major mineral constituent of vertebrate hard tissues, such as bone, tooth and some ectopic calcification. As an implanting material, it can induce the growth of new bone, and supply supporting frame for new bone.

  15. Synthesis and application of hydroxyapatite and fluoroapatite to scorodite encapsulation

    Science.gov (United States)

    Katsarou, Lydia

    Recent research has investigated the precipitation of crystalline scorodite (FeAsO4˙2H2O) as a method to stabilise arsenic for disposal due to its good stability performance according to EPA's TCLP test. It has been determined, however, that scorodite releases arsenic in significant concentrations under alkaline pH or under anoxic conditions. With the objective of enhancing the stability of scorodite, its encapsulation with minerals inert to pH and redox potential variations is considered in this work. Such encapsulation materials are hydroxyapatite (HAP-Ca5(PO4)3OH) and fluoroapatite (FAP-Ca5(PO4)3F), the two most stable of the calcium phosphates. The work described in this thesis includes: 1) the preparation of hydroxyapatite and fluoroapatite powders and their characterisation, 2) the synthesis of crystalline scorodite under atmospheric conditions and its characterisation, 3) the encapsulation of scorodite with hydroxyapatite and fluoroapatite, and 4) the long term stability testing of the encapsulated solids. Hydroxyapatite and fluoroapatite were prepared first by homogeneous precipitation from a metastable solution, to which "Ca" and "PO4" source reagents of different concentrations were added at variable rates. The crystallinity of the produced materials was found to increase with temperature. Crystalline scorodite was produced by seeded crystallisation in ambient pressure. For the encapsulation of the scorodite particles various methods of direct precipitation by controlled supersaturation were attempted, by adjusting the pH and adding/mixing feed solutions of individual calcium and phosphate source reagents. Heterogeneous deposition of HAP on scorodite proved rather difficult. Optimum results were obtained via prior conditioning of the scorodite substrate in a calcium solution and employment of low agitation regime and high (37 °C rather than 22°C) temperature. The stability tests were done in oxic and anoxic environments and their results demonstrated

  16. Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers.

    Science.gov (United States)

    Aljabo, Anas; Abou Neel, Ensanya A; Knowles, Jonathan C; Young, Anne M

    2016-03-01

    The study aim was to develop light-curable, high strength dental composites that would release calcium phosphate and chlorhexidine (CHX) but additionally promote surface hydroxyapatite/CHX co-precipitation in simulated body fluid (SBF). 80 wt.% urethane dimethacrylate based liquid was mixed with glass fillers containing 10 wt.% CHX and 0, 10, 20 or 40 wt.% reactive mono- and tricalcium phosphate (CaP). Surface hydroxyapatite layer thickness/coverage from SEM images, Ca/Si ratio from EDX and hydroxyapatite Raman peak intensities were all proportional to both time in SBF and CaP wt.% in the filler. Hydroxyapatite was, however, difficult to detect by XRD until 4 weeks. XRD peak width and SEM images suggested this was due to the very small size (~10 nm) of the hydroxyapatite crystallites. Precipitate mass at 12 weeks was 22 wt.% of the sample CaP total mass irrespective of CaP wt.% and up to 7 wt.% of the specimen. Early diffusion controlled CHX release, assessed by UV spectrometry, was proportional to CaP and twice as fast in water compared with SBF. After 1 week, CHX continued to diffuse into water but in SBF, became entrapped within the precipitating hydroxyapatite layer. At 12 weeks CHX formed 5 to 15% of the HA layer with 10 to 40 wt.% CaP respectively. Despite linear decline of strength and modulus in 4 weeks from 160 to 101 MPa and 4 to 2.4 GPa, respectively, upon raising CaP content, all values were still within the range expected for commercial composites. The high strength, hydroxyapatite precipitation and surface antibacterial accumulation should reduce tooth restoration failure due to fracture, aid demineralised dentine repair and prevent subsurface carious disease respectively.

  17. Development of Antibiotics Impregnated Nanosized Silver Phosphate-Doped Hydroxyapatite Bone Graft

    Directory of Open Access Journals (Sweden)

    Waraporn Suvannapruk

    2013-01-01

    Full Text Available Nanosized Ag3PO4 loaded hydroxyapatite which was prepared by a novel low temperature phosphorization of 3D printed calcium sulfate dihydrate at the nominal silver concentration of 0.001 M and 0.005 M was impregnated by two antibiotics including gentamicin and vancomycin. Phase composition, microstructure, antibiotics loading, silver content, antimicrobial performance, and cytotoxic potential of the prepared samples were characterized. It was found that the fabricated sample consisted of hydroxyapatite as a main phase and spherical-shaped silver phosphate nanoparticles distributing within the cluster of hydroxyapatite crystals. Antibacterial activity of the samples against two bacterial strains (gram negative P. aeruginosa and gram positive S. aureus was carried out. It was found that the combination of antibiotics and nanosized Ag3PO4 in hydroxyapatite could enhance the antibacterial performance of the samples by increasing the duration in which the materials exhibited antibacterial property and the size of the inhibition zone depending on the type of antibiotics and bacterial strains compared to those contained antibiotics or nanosilver phosphate alone. Cytotoxic potential against osteoblasts of antibiotics impregnated nanosilver phosphate hydroxyapatite was found to depend on the combination of antibiotics content, type of antibiotics, and nanosilver phosphate content.

  18. Synthesis and characterization of a nanostructured matrix hydroxyapatite ceramic bone reconstruction

    International Nuclear Information System (INIS)

    The nanostructured ceramics have been shown promise as biomaterials for bone reconstruction. Among calcium phosphates, hydroxyapatite Ca/P ratio = 1.67 mol stands out because of its crystallographic similarity with the mineral bone phase and biocompatibility. This work was based on synthesis and characterization of a nanostructured hydroxyapatite for use in reconstituting bone tissue. The synthesis method for obtaining the bioceramic powder occurred at process of dissolution/precipitation, involving CaO solid/liquid and phosphoric acid required for forming the composition of Ca/P = 1.67 mole. The material recovered from the synthesis was calcined at 900 ° C/2h, providing the hydroxyapatite powder nanometer. This was subjected to mechanical fragmentation process in mill attritor, providing a hydroxyapatite with modified surface morphology. The results presented relate to morphological characterization studies (SEM), mineralogical (XRD), chemical (FTIR) and particle size distribution, using the laser particle size analysis method. Such results showed the formation of hydroxyapatite phase and morphology satisfactory for use in reconstituting bone tissue

  19. Electrokinetic properties of hydroxyapatite under flotation conditions.

    Science.gov (United States)

    Vucinić, Dusica R; Radulović, Dragan S; Deusić, Slaven D

    2010-03-01

    The effect of calcite supernatant, calcium, and carbonate ions on the hydroxyapatite (HA) zeta potential without and in the presence of sodium oleate (1x10(-4) mol L(-1)) was examined within the pH range from 4 to 12. The interpretation of results was based on the HA surface and oleate solution chemistry, and on some floatability tests. HA, with different positive and negative surface sites formed depending on its solubility and pH, had a negative zeta potential over the whole pH range. This mineral is not naturally floatable (flotation recovery, 5%9.3. The HA surface is less negatively charged in calcite supernatant than in water from pH 6.6 to 9.2 due to the adsorption on HA negative surface active centers ([triple bond]HPO(4)(-) and [triple bond]PO(4)(2-)) of the Ca(2+), and CaOH(+) ions (present in the calcite supernatant), producing more surface sites [triple bond]HPO(4)Ca(+), [triple bond]PO(4)Ca, [triple bond]HPO(4)CaOH, and [triple bond]PO(4)(-) CaOH, and new centers [triple bond]HPO(4)CaHCO(3) and [triple bond]PO(4)(-) CaHCO(3). In the presence of 1x10(-3) mol L(-1) CaCl(2), the HA sample has positive zeta potential, the same as calcite from the same deposit, up to IEP at pH 11.25. Carbonate ions (1x10(-3) mol L(-1) Na(2)CO(3)) do not affect the HA zeta potential. However, a possible process can be the ion-exchange reaction between bicarbonate (or carbonate) and some anion from the surface sites formed on HA. The obtained values of the HA zeta potential with the collector (1x10(-4) mol L(-1) Na-oleate) added into hydroxyapatite/calcite supernatant suspensions corroborate the weak chemisorption of Ol(-) and H(Ol)(2)(-). The likely processes in this system also are the ion-exchange reactions on [triple bond]HPO(4)CaOH and [triple bond]PO(4)(-) CaOH, [triple bond]HPO(4)CaHCO(3) and [triple bond]PO(4)(-) CaHCO(3) between oleate ion and surface hydroxyl and bicarbonate ions, surface and bulk precipitations of calcium oleate, Ca(Ol)(2), and the surface and bulk

  20. Calcium - urine

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003603.htm Calcium - urine To use the sharing features on this ... enable JavaScript. This test measures the amount of calcium in urine. All cells need calcium in order ...

  1. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  2. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  3. Effects of Nickel on Calcium Phosphate Formation

    Science.gov (United States)

    Guerra-López, J.; González, R.; Gómez, A.; Pomés, R.; Punte, G.; Della Védova, C. O.

    2000-05-01

    We have investigated the effect of nickel on calcium phosphate formation from aqueous solutions. The calcium phosphates prepared under different reaction conditions (pH, temperature, and nickel concentration) were characterized by X-ray diffraction, FTIR spectroscopy, and chemical analysis. The apatite compounds were also studied thermogravimetrically. From the combined results of the techniques employed we have determined that nickel favors the formation of brushite and amorphous calcium phosphate. We have found, as well, that the presence of nickel in the solution inhibits calcium hydroxyapatite (CaHAP) and octacalcium phosphate formation. However in the synthesis performed at basic pH and 95°C the apatitic phase (HAP) could be obtained. The present results suggest that the presence of nickel may modify the precipitation of oral calcium phosphate.

  4. Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics.

    Science.gov (United States)

    Kim, Hae-Won; Kim, Hyoun-Ee

    2006-05-01

    In this study, we produced hydroxyapatite (HA) and fluor-hydroxyapatite (FHA) bioceramics as a novel geometrical form, the nanoscale fiber, for the biomedical applications. Based on the sol-gel precursors of the apatites, an electrospinning technique was introduced to generate nanoscale fibers. The diameter of the fibers was exploited in the range of a few micrometers to hundreds of nanometers (1.55 microm-240 nm) by means of adjusting the concentration of the sols. Through the fluoridation of apatite, the solubility of the fiber was tailored and the fluorine ions were well released from the FHA. The HA and FHA nanofibers produced in this study are considered to find potential applications in the biomaterials and tissue engineering fields.

  5. Biocompatibility and osteoconductivity of injectable bone xenograft, hydroxyapatite and hydroxyapatite-chitosan on osteoblast culture

    Directory of Open Access Journals (Sweden)

    Bachtiar EW

    2010-12-01

    Full Text Available Background: Bone graft in the form of injectable paste gives several advantages over the powder form as it could be placed in the defect area that has limited accessibility. Purpose: The purpose of this study was to assess biocompatibility and osteoconductivity of an injectable bone xenograft (IBX, injectable hydroxyapatite (IHA and injectable hydroxyapatite-chitosan (IHA-C on osteoblastic cell line (MG-63. Methods: Three concentrations (0.25%, 0.5% and 1.0% of IBX, IHA and IHA-C were supplemented with DMEM culture medium. The viability cells were measured by MTT assay 4 hour after incubation. ALP activity was measured at day 1, 3, 5 and 7. Calcium deposition was tested at day 3 and day 7 by means of Von Kossa staining. Results: MTT assay showed that the viability cells of all the test groups were above 100% compared to the control group. The cell viability of the 0.25% IHA paste was significantly higher (115.02% ± 4.37%, p < 0.05 compared with IBX paste and IHA-C in all concentrations tested. The highest level of ALP secretion of all test groups was found on the fifth day of exposure. The highest level of ALP in the IBX paste group was 0.25% concentration while the highest level of ALP in the IHA-C and IHA paste group was 1% and 0.25%, respectively. In addition, the highest calcium deposition was shown on IHA 1% at day 7 (p > 0.05. Conclusion: It was suggested that adequate biocompatibility and osteoconductivity was evident for all injectable pastes tested.Latar belakang: Bahan tandur tulang dalam bentuk pasta injeksi memiliki kelebihan dibandingkan bila bahan tersebut berupa bubuk, karena lebih mudah diaplikasikan pada daerah yang sulit dijangkau. Tujuan: Penelitian ini bertujuan untuk mengamati sifat biokompatibilitas dan osteokonduktifitas biomaterial tandur tulang dalam bentuk injectable bone xenograft (IBX, injectable hydroxyapatite (IHA dan injectable hydroxyapatite-chitosan (IHA-C pada galur sel osteoblas (MG-63. Metode: Bahan tandur

  6. Sintering of calcium phosphate bioceramics.

    Science.gov (United States)

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful. PMID:23212081

  7. Synthesis and characterization of porous hydroxyapatite and hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, T G; Choi, B W; Jankowski, A F

    2000-10-25

    A technique is developed to construct bulk hydroxyapatite (HAp) with different cellular structures. The technique involves the initial synthesis of nanocrystalline hydroxyapatite powder from an aqueous solution using water-soluble compounds and then followed by spray drying into agglomerated granules. The granules were further cold pressed and sintered into bulks at elevated temperatures. The sintering behavior of the HAp granules was characterized and compared with those previously reported. Resulting from the fact that the starting HAp powders were extremely fine, a relatively low activation energy for sintering was obtained. In the present study, both porous and dense structures were produced by varying powder morphology and sintering parameters. Porous structures consisting of open cells were constructed. Sintered structures were characterized using scanning electron microscopy and x-ray tomography. In the present paper, hydroxyapatite coatings produced by magnetron sputtering on silicon and titanium substrates will also be presented. The mechanical properties of the coatings were measured using nanoindentation techniques and microstructures examined using transmission electron microscopy.

  8. Similarities Analysis on Hydroxyapatite-Zirconia Composites

    Directory of Open Access Journals (Sweden)

    Sorana D. BOLBOACĂ

    2007-12-01

    Full Text Available Hydroxyapatite (Ca10(PO46(OH2 is one of the implants materials with medical applications due to its higher biocompatibility. The hydroxyapatite found complete utilization after proper preparation of composite. The influence of zirconia (ZrO2 on the phase composition and on mechanical properties of hydroxyapatite-zirconia composites has been previous investigated and reported. Hierarchical cluster analysis methods were applied in order to assess the similarities of four different types of hydroxyapatite-zirconia composites. Four classes of composites (hydroxyapatite, hydroxyapatite coarse-grained zirconia, hydroxyapatite fine-grained zirconia, and hydroxyapatite needle-grained zirconia cumulating a total number of sixteen experiments were analyzed. A number of nine quantitative variables were included into analysis: sintering temperature, Vickers hardness, bending strength, characteristic strength, Weibull modulus, anisotropy, Young’s modulus, rigidity modulus, and Poisson ratio. Data were analyzed using SPSS software by applying cluster analysis techniques. The analysis revealed interesting information regarding similarities between studied hydroxyapatite-zirconia composites.

  9. Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury

    Science.gov (United States)

    Xu, Yun-Jun; Dong, Liang; Lu, Yang; Zhang, Le-Cheng; An, Duo; Gao, Huai-Ling; Yang, Dong-Mei; Hu, Wen; Sui, Cong; Xu, Wei-Ping; Yu, Shu-Hong

    2016-01-01

    Inorganic non-metallic biomaterials, including the silicon frustule of a unicellular diatom, the carbonate shell of a mollusk and the calcium skeleton of the vertebrate, which are the main constituent part of an organism, serve as the supportive and protective components of soft tissue. Among them, hydroxyapatite, which primarily makes up the enamel and bone, is widely used in tissue engineering. Recently, the inorganic nonmetallic biomaterials, especially the applications of hydroxyapatites have attracted great attention. Herein, we report a novel synthesis method of magnetic functionalized hydroxyapatite nanocomposites. By simply tuning the ratios of reactants, a series of hydroxyapatite-Fe3O4 worm-shaped nanocomposites (HAP-ION nanoworms) are obtained. In addition, layer-by-layer surface modifications with chitosan (CH) and sodium alginate (SA) were employed to improve the solubility and biocompatibility, and low cytotoxicity and no hemolysis were observed. With the increase of iron oxide nanocrystals, the magnetic properties of the magnetic assembled nanoworms were enhanced, which resulted in better performance of magnetic resonance (MR) imaging. Owing to the intravenous injection of HAP-ION nanoworms, the contrast to noise ratio (CNR) of hepatic MR imaging in vivo was enhanced obviously, which should be beneficial for hepatic injury grading and further therapeutic treatment.Inorganic non-metallic biomaterials, including the silicon frustule of a unicellular diatom, the carbonate shell of a mollusk and the calcium skeleton of the vertebrate, which are the main constituent part of an organism, serve as the supportive and protective components of soft tissue. Among them, hydroxyapatite, which primarily makes up the enamel and bone, is widely used in tissue engineering. Recently, the inorganic nonmetallic biomaterials, especially the applications of hydroxyapatites have attracted great attention. Herein, we report a novel synthesis method of magnetic

  10. Electrophoretic Deposition of Hydroxyapatite Coating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Hydroxyapatite (HAP) coatings were deposited onto titanium substrates by electrophoretic deposition (EPD) fromethanol. The results indicated that the addition of very small amount of HCI resulted in a decrease in the aging timeas well as the suspension concentration required to obtain a coating. In addition, the results revealed the existenceof a critical saturated voltage (Vsat), which had significant effect on the quality of deposition. The mean interfacialshear strengths of HAP coatings after sintering were found to be greater than 13 MPa.

  11. Whiskers and fibers of hydroxyapatite

    International Nuclear Information System (INIS)

    Hydroxyapatite is a bioactive ceramic, which acts in tissue engineering by attracting bone cells. Occasionally it can be used as a biocompatible reinforcement. The mechanical role of this biomaterial can be defined depending of some characteristics analyzed by scanning electron microscope and X ray power diffraction. It can be classified in whiskers and fibers; each one has their own properties, which were discussed in this work. For its use as reinforcement it is necessary matrix with specific characteristics. (author)

  12. Determination of Ca/P molar ratio in hydroxyapatite (HA) by X-ray fluorescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Scapin, Marcos A.; Guilhen, Sabine N.; Cotrim, Marycel E.B.; Pires, Maria Ap. F., E-mail: mascapin@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Hydroxyapatite (HA) is a mineral composed of calcium phosphate employed for endodontics, restorative dentistry and other applications in orthopedics and prosthesis. Additionally, this biomaterial is an inexpensive but efficient adsorbent for the removal of heavy metals and other unwanted species of contaminated liquid effluents. This is especially interesting when low-cost effective remediation is required. A Ca / P molar ratio of 1.667 is consistent with the theoretical Ca / P ratio for calcium hydroxyapatite with a compositional formula of Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, which properties are well discussed in the literature. The aim of this work was to implement and validate a methodology for simultaneous determination of major and minor constituents in the hydroxyapatite (HA) as well as providing the Ca / P molar ratio. To accomplish these achievements, wavelength dispersive X-ray fluorescence spectroscopy (WDXRF) was applied. This is a non-destructive technique that requires no chemical treatment, enabling fast chemical analysis in a wide variety of samples, with no hazardous waste being generated as a result of the process of determination. A standard reference material from NIST (SRM 1400 – Bone Ash) was used to validate the methodology for the determination of magnesium, phosphorus, potassium, calcium, iron, zinc, strontium and the Ca / P ratio in HA samples by WDXRF. The Z-score test was applied as a statistical tool and showed that the calculated values were of less than 1.8 for all the measured analytes. (author)

  13. Determination of Ca/P molar ratio in hydroxyapatite (HA) by X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Hydroxyapatite (HA) is a mineral composed of calcium phosphate employed for endodontics, restorative dentistry and other applications in orthopedics and prosthesis. Additionally, this biomaterial is an inexpensive but efficient adsorbent for the removal of heavy metals and other unwanted species of contaminated liquid effluents. This is especially interesting when low-cost effective remediation is required. A Ca / P molar ratio of 1.667 is consistent with the theoretical Ca / P ratio for calcium hydroxyapatite with a compositional formula of Ca10(PO4)6(OH)2, which properties are well discussed in the literature. The aim of this work was to implement and validate a methodology for simultaneous determination of major and minor constituents in the hydroxyapatite (HA) as well as providing the Ca / P molar ratio. To accomplish these achievements, wavelength dispersive X-ray fluorescence spectroscopy (WDXRF) was applied. This is a non-destructive technique that requires no chemical treatment, enabling fast chemical analysis in a wide variety of samples, with no hazardous waste being generated as a result of the process of determination. A standard reference material from NIST (SRM 1400 – Bone Ash) was used to validate the methodology for the determination of magnesium, phosphorus, potassium, calcium, iron, zinc, strontium and the Ca / P ratio in HA samples by WDXRF. The Z-score test was applied as a statistical tool and showed that the calculated values were of less than 1.8 for all the measured analytes. (author)

  14. Physical and Chemical Transformation of Hydroxyapatite Nanoparticles in Aqueous Sol after Preparation and in vitro

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The co-precipitation method followed by ultrasound and heat treatment is a common way to prepare below 100 nm sized hydroxyapatite nanoparticles for biomedical studies and applications. The size and pH value of the obtained calcium phosphate nanoparticles in aqueous sol have a strong impact on the interactions with cells and tissue. The physical and chemical properties of material samples for in vitro and in vivo studies are often assumed to remain constant from the time after fabrication to the actual use. Only little attention is paid to eventual changes of the material over time or due to the different in vitro conditions. In this study, the physical and chemical transformation of calcium phosphate nanoparticles after preparation and in vitro was investigated. As the result showed, dispersed nano sized amorphous calcium phosphate precipitation as well as crystallized hydroxyapatite nanoparticles continue to crystallize even when kept at 4 ℃ leading to declining pH values and particle sizes.Due to the pH buffer in the medium the pH value of the cell culture remained stable after adding 20% nanoparticle sol in vitro. However, hydroxyapatite nanoparticles immediately became unstable in the presents of cell culture medium. The resulting loose agglomerations showed a size of above 500 nm.

  15. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Jinfa, E-mail: jinfa.ming@gmail.com [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Liu, Zhi; Bie, Shiyu [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Zhang, Feng [Jiangsu Province Key Laboratory of Stem Cell Research, Medical College, Soochow University, Suzhou 215006 (China); Zuo, Baoqi, E-mail: bqzuo@suda.edu.cn [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China)

    2014-04-01

    Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6 ± 20.4 nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0 wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. - Highlights: • SF fibers were firstly successfully dissolved in FA/HAp solution. • The rheological behavior of SF solution was significantly influenced by HAp contents. • SF nanofibrils were observed in FA/HAp solution with 103.6 ± 20.4 nm in diameter. • SF films prepared by FA/HAp dissolution method had higher mechanical properties.

  16. Synthesis and characterization of nanocrystalline hydroxyapatite gel and its application as scaffold aggregation

    Directory of Open Access Journals (Sweden)

    Leonardo Ribeiro Rodrigues

    2012-12-01

    Full Text Available The sol-gel process is a technique used to synthesize materials from colloidal suspensions and, therefore, is suitable for preparing materials in the nanoscale. In this work hydroxyapatite was used due to its known properties in tissue engineering. Hydroxyapatite Ca10(PO46(OH2 is a bioactive ceramic which is found in the mineral phase of bone tissue and is known for its great potential in tissue engineering applications. For this reason, this material can be applied as particle aggregates on ceramic slurry, coating or film on materials with a poorer biological response than hydroxyapatite. In this work, hydroxyapatite gel was obtained by the sol-gel process and applied as nanoparticle aggregation in the mixture of hydroxyapatite and tricalcium phosphate to form a ceramic slurry. This process is the polymer foam replication technique used to produce scaffolds, which are used in tissue engineering. For HA gel characterization it was used enviromental scanning electron microscopy (ESEM, transmission electron microscopy (TEM, electron energy loss spectroscopy (EELS, scanning electron microscopy (SEM, X-ray diffraction (XRD and X-ray fluorescence (XRF. The crystallite size was calculated from XRD data using the Scherrer equation. The nanoparticles size before firing was approximately 5nm. The crystallite size calculated after calcination was approximately 63 nm. The EELS results showed that calcium phosphate was obtained before firing. After HA gel calcination at 500 ºC the XRD results showed hydroxyapatite with a small content of beta-TCP. The scaffolds obtained by polymer foam replication technique showed a morphology with adequate porosity for tissue engineering.

  17. Preparation and comparison study of hydroxyapatite and Eu-hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    Xian-ying CAO; Feng WEN; Wei BIAN; Yang CAO; Su-juan PANG; Wan-ke ZHANG

    2009-01-01

    Hydroxyapatite (HA) is the main component of inorganic minerals in animal sclerous tissues. Nano HA has been used as an inorganic drug for many years in laboratories. In this paper, nano HA was at frist synthesized by the coprecipitation method. The element europium was then doped to HA to obtain a new kind of product with fluorescence. Both products of doped and of non-doped HA were analyzed by IR, XRD, TEM and fluorescence microscope. It was proven that Eu-HA had fluorescence.

  18. Fabrication and Characterization of Hierarchically Nanostructured Porous Carbonated Hydroxyapatite Coatings

    Institute of Scientific and Technical Information of China (English)

    吕君英; 郭亚平

    2012-01-01

    Hierarchically nanostructured porous carbonated hydroxyapatite coatings (HNPCs) on Ti6A14V substrate were fabricated by a two-stage application route:fabrication of nacre coatings (NCs) on Ti6A14V substrate by electrophoretic technique,and conversion of NCs to HNPCs in a phosphate buffer solution (PBS) by microwave irradiation method.Their samples were characterized by using XRD,FT-IR,SEM,TEM,and N2 adsorption-desorption isotherms.The results show that the microwave irradiation technique improves obviously the conversion rate of NCs to HNPCs as compared with conventional method.After soaking the NCs in the PBS,calcium ions are released from the nacre particles and react with phosphate ions to form carbonated hydroxyapatite nanoparticles.These nanoparticles aggregate to form the plate-like carbonated apatite.The mesopores with a size of about 3.9 nm and macropores with the diameters of 1~4 μm exist within and among the carbonated apatite plates,respectively.Simulated body fluid immersion tests reveal that the HNPCs have a good in vitro bioactivity.

  19. Phosphate reduction in a hydroxyapatite fluoride removal system

    Science.gov (United States)

    Egner, A.

    2012-12-01

    Fluorosis is a widespread disease that occurs as a result of excess fluoride consumption and can cause severe tooth and bone deformations. To combat fluorosis, several previous studies have examined the potential to replace traditional bone char filters with synthetic hydroxyapatite. Calcite particles with a synthetic hydroxyapatite coating have been shown to effectively removed fluoride, yet the low-cost method for forming these particles leaves high amounts of phosphate both in synthesis waste-water and in filter effluent. High phosphate in filter effluent is problematic because consumption of extremely high phosphate can leach calcium from bones, further exacerbating the fluoride effect. This study examines ways of reducing and reusing waste. In particular, a method of fluoride removal is explored in which fluorapatite coatings may be formed directly. In preliminary studies, batches of 4.1g of Florida limestone (<710 μm) were equilibrated with 100 mL of 10ppm fluoride. In a control batch containing lime but no added phosphate, 14% treatment was achieved, but with added phosphate, 100% treatment was achieved in all batches. Batches with lower levels of phosphate took longer to reach 100% treatment, ranging from less than 24 hours in the highest phosphate batches to approximately 42 hours in the lowest batches. The lower levels tested were well within reasonable levels for drinking water and reached 0ppm fluoride in 42 hours or less.

  20. Effect of sintering on the microstructural and mechanical properties of meleagris gallopova hydroxyapatite.

    Science.gov (United States)

    Pazarlioglu, S Serdar; Gokce, Hasan; Ozyegin, Sevgi; Salman, Serdar

    2014-01-01

    In this study, we obtained hydroxyapatite powders from the femur bones of meleagris gallopova at three steps and sintered at five different temperatures. The reactions, which occur during sintering of obtained powders, have been characterized by X-ray diffraction (XRD) patterns, scanning electron microscope (SEM), differential thermal analysis (DTA), thermo-gravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. The mechanical properties of meleagris gallopova hydroxyapatite powders were determined by the measurements of density, hardness, porosity, activation energy for grain growth, variation of average grain sizes, fracture toughness and compression strength. The Fourier transform infrared spectra and the thermogravimetric analysis/differential thermal analysis thermograms of meleagris gallopova hydroxyapatite powders indicated that the presence of organic compounds were completely removed from the matrice. The X-ray diffraction patterns showed that decomposition of meleagris gallopova hydroxyapatite into tricalcium phosphate and calcium oxide was observed for the sintered samples at 1300°C. At the same temperature, formation of microcracks were also detected by scanning electron microscopy image. Mechanical tests showed that maximum hardness, fracture toughness and compression strength values were measured for the sintered samples at 1200°C. PMID:24948459

  1. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    Science.gov (United States)

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  2. Hydrothermal synthesis of hydroxyapatite nanorods using pyridoxal-5′-phosphate as a phosphorus source

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang; Chen, Feng; Qi, Chao; Zhao, Jing; Wu, Jin

    2014-07-01

    Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects of experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.

  3. Effect of sintering on the microstructural and mechanical properties of meleagris gallopova hydroxyapatite.

    Science.gov (United States)

    Pazarlioglu, S Serdar; Gokce, Hasan; Ozyegin, Sevgi; Salman, Serdar

    2014-01-01

    In this study, we obtained hydroxyapatite powders from the femur bones of meleagris gallopova at three steps and sintered at five different temperatures. The reactions, which occur during sintering of obtained powders, have been characterized by X-ray diffraction (XRD) patterns, scanning electron microscope (SEM), differential thermal analysis (DTA), thermo-gravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. The mechanical properties of meleagris gallopova hydroxyapatite powders were determined by the measurements of density, hardness, porosity, activation energy for grain growth, variation of average grain sizes, fracture toughness and compression strength. The Fourier transform infrared spectra and the thermogravimetric analysis/differential thermal analysis thermograms of meleagris gallopova hydroxyapatite powders indicated that the presence of organic compounds were completely removed from the matrice. The X-ray diffraction patterns showed that decomposition of meleagris gallopova hydroxyapatite into tricalcium phosphate and calcium oxide was observed for the sintered samples at 1300°C. At the same temperature, formation of microcracks were also detected by scanning electron microscopy image. Mechanical tests showed that maximum hardness, fracture toughness and compression strength values were measured for the sintered samples at 1200°C.

  4. Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere

    Science.gov (United States)

    Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.

    2015-03-01

    Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.

  5. Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties.

    Science.gov (United States)

    Hesaraki, Saeed; Ebadzadeh, Touraj; Ahmadzadeh-Asl, Shaghayegh

    2010-07-01

    In this study, bioceramic nanocomposites were synthesized by sintering compacted bodies of hydroxyapatite (HA) mixed with 5 or 15 wt% nanosilicon carbide at 1,100 or 1,200 degrees C in a reducing atmosphere. Pure hydroxyapatite was also prepared for comparison. Phase compositions, structural and physical properties of the composites were studied using appropriate techniques. Some in vitro biological properties of the composites were also investigated by using newrat calvaria osteoblastic cells. X-ray diffraction analysis indicated that tricalcium phosphate (TCP) comprising negligible alpha-TCP and considerable beta-TCP were formed in composites during sintering meanwhile hydroxyapatite and silicon carbide (SiC) were also existed in the composition. Based on the results, that composite made of 5 wt% nanosilicon carbide exhibited higher bending strength, fracture toughness and bulk density than pure HA and composite with 15 wt% silicon carbide. The scanning electron microscopy coupled with energy dispersive X-ray analysis revealed that the addition of nanosilicon carbide suppressed the grain growth and yielded a feature of island-type clusters consisting of blistered calcium phosphate (HA and TCP) and SiC grains. Also, in this study, better proliferation rate and alkaline phosphatase activity were observed for the osteoblastic cells seeded on top of the composites compared to pure HA. Overall, the results indicated that the composite of 95 wt% hydroxyapatite and 5 wt% SiC exhibited better mechanical and biological properties than pure HA and further addition of SiC failed strength and toughness.

  6. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    Science.gov (United States)

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity. PMID:27567779

  7. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: dissolution behaviour and biological properties after crystallisation.

    Science.gov (United States)

    Tredwin, Christopher J; Young, Anne M; Abou Neel, Ensanya A; Georgiou, George; Knowles, Jonathan C

    2014-01-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) were synthesised by the sol-gel method as possible implant coating or bone-grafting materials. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride were incorporated for the preparation of the FHA and FA sol-gels. After heating and powdering the sol-gels, dissolution behaviour was assessed using ion chromatography to measure Ca(2+) and PO4 (3-) ion release. Biological behaviour was assessed using cellular proliferation with human osteosarcoma cells and alamarBlue™ assay. Statistical analysis was performed with a two way analysis of variance and post hoc testing with a Bonferroni correction. Increasing fluoride substitution into an apatite structure decreased the dissolution rate. Increasing the firing temperature of the HA, FHA and FA sol-gels up to 1,000 °C decreased the dissolution rate. There was significantly higher cellular proliferation on highly substituted FHA and FA than on HA or Titanium. The properties of an implant coating or bone grafting material can be tailored to meet specific requirements by altering the amount of fluoride that is incorporated into the original apatite structure. The dissolution behaviour can further be altered by the temperature at which the sol-gel is fired.

  8. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  9. Low temperature synthesis and characterization of carbonated hydroxyapatite nanocrystals

    Science.gov (United States)

    Anwar, Aneela; Asghar, Muhammad Nadeem; Kanwal, Qudsia; Kazmi, Mohsin; Sadiqa, Ayesha

    2016-08-01

    Carbonate substituted hydroxyapatite (CHA) nanorods were synthesized via coprecipitation method from aqueous solution of calcium nitrate tetrahydrate and diammonium hydrogen phosphate (with urea as carbonate ion source) in the presence of ammonium hydroxide solution at 70 °C at the conditions of pH 11. The obtained powders were physically characterized using transmission electron microscopy (TEM), X-ray powder diffraction analysis (XRD), and FTIR and Raman spectroscopy. The particle size was evaluated by Dynamic light scattering (DLS). The chemical structural analysis of as prepared sample was performed using X-ray photoelectron spectroscopy (XPS). After ageing for 12 h, and heat treatment at 1000 °C for 1 h, the product was obtained as highly crystalline nanorods of CHA.

  10. Preparation of Hydroxyapatite Cement and Analysis as of its Disposition

    Institute of Scientific and Technical Information of China (English)

    同志超; 陈君长; 王坤正; 同志勤; 党晓谦; 李毅; 白斌; 时志斌

    2003-01-01

    Objective: To prepare hydroxyapatite cement (or calcium phosphate cement,CPC) and analyze its capability. Methods: Tetracalcium phospluge (TTCP ) was prepared by the method of high heat. TTCP reacted with in simulated body situation and produced CPC. Its capability was analyzed by scanning electron microscopy ( SEM), X-ray diffraction( XRD). Its density, absorbing water coefficient, macroporosity and compressive strength were measured also. Results: The main element of CPC is hydroxyapatile (HA), its microstructure comprised of petal crys-tals. The diameter of micropore was 4-10μm, density was 1. 922 g/cm3, macroporosity was 29. 777%, absorbing coefficient was 15. 503%, compressive strength was 42.70 Mpa. Conclusion: This CPC has three-dimensional spatial structure, its strength meets the need of cancellous bone grafting.

  11. Polarization-induced surface charges in hydroxyapatite ceramics

    Science.gov (United States)

    Horiuchi, N.; Nakaguki, S.; Wada, N.; Nozaki, K.; Nakamura, M.; Nagai, A.; Katayama, K.; Yamashita, K.

    2014-07-01

    Calcium hydroxyapatite (HAp; Ca10(PO4)6(OH)2) is a well-known biomaterial that is the main inorganic component of bones and teeth. Control over the surface charge on HAp would be a key advance in the development of the material for tissue engineering. We demonstrate here that surface charge can be induced by an electrical poling process using the Kelvin method. Positive and negative charges were induced on the HAp surface in response to the applied electric field in the poling process. The surface charging is attributed to dipole polarization that is homogeneously distributed in HAp. Additionally, the surface charging is considered to originate from the organization of OH- ions into a polar phase in the structure.

  12. Synthesis of hydroxyapatite nanopowders by sol–gel emulsion technique

    Indian Academy of Sciences (India)

    K Saranya; Meenal Kowshik; Sutapa Roy Ramanan

    2011-12-01

    Hydroxyapatite nanopowders were synthesized by a sol–gel emulsion technique by varying the concentration of a non-ionic surfactant in the organic phases (oil phase) of water-in-oil (w/o) emulsion. Calcium acetate dissolved in distilled water and phosphorous pentoxide dissolved in 2-butanol were used as starting precursors. The prepared sol was emulsified in a support solvent (cyclohexane) containing 2, 4 and 5 volume% of surfactant (Span 80), followed by the addition of triethylamine, for gelation. The gel powders thus obtained were calcined at different temperatures up to 750°C. Characterization was done using XRD, SEM and TEM. Pellets were made from the developed HAP powders and tested for its biocompatibility after their immersion in the simulated body fluid.

  13. Nanocrystalline Hydroxyapatite/Si Coating by Mechanical Alloying Technique

    Science.gov (United States)

    Hannora, Ahmed E.; Mukasyan, Alexander S.; Mansurov, Zulkhair A.

    2012-01-01

    A novel approach for depositing hydroxyapatite (HA) films on titanium substrates by using mechanical alloying (MA) technique has been developed. However, it was shown that one-hour heat treatment at 800°C of such mechanically coated HA layer leads to partial transformation of desired HA phase to beta-tri-calcium phosphate (β-TCP) phase. It appears that the grain boundary and interface defects formed during MA promote this transformation. It was discovered that doping HA by silicon results in hindering this phase transformation process. The Si-doped HA does not show phase transition to β-TCP or decomposition after heat treatment even at 900°C. PMID:22312324

  14. Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Lin Yingguang; Yang Zhuoru; Cheng Jiang

    2007-01-01

    Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[Ca+Ce] (xCe) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with xCe below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g·ml-1, however, the CeHAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when xCe was above 0.08, and the antibacterial ability gets better with the increase of xCe, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.

  15. Modulation of enamel matrix proteins on the formation and nano-assembly of hydroxyapatite in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li Hong, E-mail: tlihong@jnu.edu.cn [Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong 510630 (China); Department of Bioengineering, Clemson University, Charleston, SC 29425 (United States); Huang Weiya [Department of Chemistry, Jinan University, Guangzhou, Guangdong 510630 (China); Department of Materials Science and Engineering, Taizhou, Taizhou University, Zhejiang 317000 (China); Zhang Yuanming [Department of Chemistry, Jinan University, Guangzhou, Guangdong 510630 (China); Xue Bo [Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong 510630 (China); Wen Xuejun [Department of Bioengineering, Clemson University, Charleston, SC 29425 (United States)

    2012-05-01

    Natural enamel has a hierarchically nanoassembled architecture that is regulated by enamel matrix proteins (EMPs) during the formation of enamel crystals. To understand the role of EMPs on enamel mineralization, calcium phosphate (CaP) growth experiments in both the presence and absence of native rat EMPs in a single diffusion system were conducted. The morphology and organization of formed CaP crystals were examined by X-Ray Diffraction (XRD), High-Resolution Transmission Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED). In the system containing the EMPs, hydroxyapatite (HAP) with hierarchical lamellar nanostructure can be formed and the aligned HAP assembly tightly bundled by 3-4 rod-like nanocrystals like an enamel prism. However, in the absence of EMPs, only a sheet-like structure of octacalcium phosphate (OCP) phase was presented. EMPs promote HAP formation and inhibit the growth of OCP on the (010) plane. It is discussed that the organized Amelogenin/Amorphous Calcium Phosphate might be the precursor to the bundled HAP crystal prism. The study benefits the understanding of biomineralization of tooth enamel. - Highlights: Black-Right-Pointing-Pointer An aligned hydroxyapatite crystal bundled by rod-like nanosize crystals was obtained. Black-Right-Pointing-Pointer An organized Amel/ACP would be the precursor of the bundled hydroxyapatite crystal prism. Black-Right-Pointing-Pointer EMPs inhibit the growth of octacalcium phosphate in a defined plane.

  16. Modulation of enamel matrix proteins on the formation and nano-assembly of hydroxyapatite in vitro

    International Nuclear Information System (INIS)

    Natural enamel has a hierarchically nanoassembled architecture that is regulated by enamel matrix proteins (EMPs) during the formation of enamel crystals. To understand the role of EMPs on enamel mineralization, calcium phosphate (CaP) growth experiments in both the presence and absence of native rat EMPs in a single diffusion system were conducted. The morphology and organization of formed CaP crystals were examined by X-Ray Diffraction (XRD), High-Resolution Transmission Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED). In the system containing the EMPs, hydroxyapatite (HAP) with hierarchical lamellar nanostructure can be formed and the aligned HAP assembly tightly bundled by 3–4 rod-like nanocrystals like an enamel prism. However, in the absence of EMPs, only a sheet-like structure of octacalcium phosphate (OCP) phase was presented. EMPs promote HAP formation and inhibit the growth of OCP on the (010) plane. It is discussed that the organized Amelogenin/Amorphous Calcium Phosphate might be the precursor to the bundled HAP crystal prism. The study benefits the understanding of biomineralization of tooth enamel. - Highlights: ► An aligned hydroxyapatite crystal bundled by rod-like nanosize crystals was obtained. ► An organized Amel/ACP would be the precursor of the bundled hydroxyapatite crystal prism. ► EMPs inhibit the growth of octacalcium phosphate in a defined plane.

  17. Synthesis,Charactcrization and Antibacterial Property of Strontium Half and Totally Substituted Hydroxyapatite Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    LIN Yingguang; YANG Zhuoru; CHENG Jiang; WANG Lianshi

    2008-01-01

    Nanoparticles of hydroxyapatite(HAP),strontium half substituted hydroxyapatite(SrCaHAP) and strontium totally substituted hydroxyapatite(SrHAP)were prepared by sol-gel-supercritical fluid drying (SCFD) method.The nanoparticles were characterized by element content analysis,FT-IR,XRD and TEM,and the effects of strontium substitution on crystal structure.crystallinity,particle shape and antibacterial propemes of the nanoparticles on Escherichia coli,Staphylococcus aureus,Lactobacillus were researched.Results show that strontium can half and totally substitute for calcium and enter the structure of apatite according to the initial atomic ratios of Sr/[Sr+Ca] as 0.5,1.The substitution decreases the IR wavenumbers of SrCaHAP and SrHAP, and changes the morphology of the nanoparticles from short rod shaped HAP to needle shaped SrCaHAE and back to short rod shaped SrHAP.The crystallinity of HAP is higher than that of SrCaHAP, but is lower thall that of SrHAP.Moreove~the antibacterial property of SrCaHAP and SrHAP are improved after the calcium is half and totally substituted by strontium.

  18. The formation of hydroxyapatite-ionomer cements at 38 degrees C.

    Science.gov (United States)

    TenHuisen, K S; Brown, P W

    1994-03-01

    This study describes the formation of a calcium polyacrylate-hydroxyapatite cement. Our hypothesis was that calcium phosphates would rapidly hydrolyze in the presence of polyacrylic acid (PAA) to form a cement. PAA, tetracalcium phosphate (TetCP), and dicalcium phosphate (DCP) were reacted together and formed calcium polyacrylate (CPA) and hydroxyapatite(HAp) within 10 h at 38 degrees C, resulting in hardened masses. Reaction times increased with decreasing (HApreactants)/PAA ratios. In the first of three reaction stages, the pH increased while CPA and dicalcium phosphate dihydrate (DCPD) formed. Two steady-state pH conditions occurred during the second stage as TetCP reacted with DCPD and DCP. The first steady-state pH was the result of DCPD and TetCP reacting at near-equilibrium conditions. The second steady-state pH resulted as the reaction became limited by DCP dissolution. The third, diffusionally controlled, stage occurred as DCP and previously formed HA preacted to produce calcium-deficient HAp (Ca/P = 1.5). The emphasis of this investigation was to establish the mechanistic path involved and the rate-limiting steps of the reaction.

  19. Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells

    Science.gov (United States)

    Maleki-Ghaleh, H.; Aghaie, E.; Nadernezhad, A.; Zargarzadeh, M.; Khakzad, A.; Shakeri, M. S.; Beygi Khosrowshahi, Y.; Siadati, M. H.

    2016-06-01

    Modern techniques for expanding stem cells play a substantial role in tissue engineering: the raw material that facilitates regeneration of damaged tissues and treats diseases. The environmental conditions and bioprocessing methods are the primary determinants of the rate of cultured stem cell proliferation. Bioceramic scaffolds made of calcium phosphate are effective substrates for optimal cell proliferation. The present study investigates the effects of two bioceramic scaffolds on proliferating cells in culture media. One scaffold was made of hydroxyapatite and the other was a mixture of hydroxyapatite and ferromagnetic material (Fe3O4 nanoparticles). Disk-shaped (10 mm × 2 mm) samples of the two scaffolds were prepared. Primary human fibroblast proliferation was 1.8- and 2.5-fold faster, respectively, when cultured in the presence of hydroxyapatite or ferrous nanoparticle/hydroxyapatite mixtures. Optical microscopy images revealed that the increased proliferation was due to enhanced cell-cell contact. The presence of magnetic Fe3O4 nanoparticles in the ceramic scaffolds significantly increased cell proliferation compared to hydroxyapatite scaffolds and tissue culture polystyrene.

  20. Separation of lanthanides through hydroxyapatite

    International Nuclear Information System (INIS)

    With the objective of obtaining from an independent way to each one of the lanthanides 151 Pm, 161 Tb, 166 Ho and 177 Lu free of carrier and with high specific activities starting from the indirect irradiation via, it intends in this work to determine the viability of separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu, by means of ion exchange column chromatography, using hydroxyapatite (HAp) and fluorite like absorbent material in complexing media. It is important to mention that have registered separation studies among lanthanides of the heavy group with those of the slight group, using the same mass and, in comparison with this work, quantities different from the father were used and of the son, also, that the separation studies were carried out among neighboring lanthanides. In this investigation, it was determined the effect that its have the complexing media: KSCN, sodium tartrate, sodium citrate, EDTA and aluminon, their pH and concentration, in the adsorption of the lanthanides in both minerals, in order to determine the chromatographic conditions for separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu. The work consists of five chapters, in the first one they are presented a theoretical introduction of the characteristics more important of the lanthanides, the hydroxyapatite and the fluorite; in the second, it is deepened in the ion exchange, as well as the two techniques (XRD and High Vacuum Electron Microscopy) to make the characterization of LnCI3 (Ln = Nd, Gd, Dy or Yb) synthesized. The third chapter, it describes the methodology continued in our experimental work; in the room, its are presented the obtained results of the static and dynamic method to determine the viability of separation of neighboring lanthanides; and finally, the five chapter shows the conclusions. In this study, it is concludes that the separation among neighboring lanthanides cannot be carried out in the minerals and used media; because practically these lanthanides

  1. Serum Proteins Stabilized Calcium Phosphate Nanoparticles and Its Effect on Bel-7402 Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Hydroxyapatite has a high affinity to biological macromolecules, especially to proteins. Bovine serum proteins were extracted to be used as stablizer to prepare calcium phosphate nanoparticles. 167.7 am and87.7 nm particles were respectively prepared by using bovine serum protein fractions at the concentration of 0.5mg/mL and 1.0 mg/mL. As the polysaccharide stabilized hydroxyapatite nanoparticles, the protein-stablized nanoparticles also inhibited the proliferation rate of Bel-7402 cells. It suggested that proteins could be applied to prepare calcium phosphate nanoparticles and it also has the anticancer effect.

  2. Critical ageing and chemistry of nanocrystalline hydroxyapatite sol-gel solutions

    International Nuclear Information System (INIS)

    In previous work we have demonstrated that using alkoxide precursors, it is possible to produce crystalline hydroxyapatite coatings with potential uses in orthopaedic and dental applications. However, to produce monophasic hydroxyapatite coatings, sols must be aged for a minimum of 24 hours prior to deposition. 31P NMR has been used to analyse chemical changes occurring in the sol during the ageing process and have revealed that P-O-C bonds present in the precursor material are gradually replaced by P-O-Ca bonds with an accompanying change in oxidation state from P(III) to P(V). Thermal analysis was used to examine hydrolysed gels and showed that sols aged less than 24 hours contain unreacted calcium diethoxide which produces CaO upon heating. These findings have been confirmed by x-ray diffraction. Copyright (1998) Australasian Ceramic Society

  3. Development of hydroxyapatite bone cement for controlled drug release via tetracycline hydrochloride

    Indian Academy of Sciences (India)

    Sayed Mahmood Rabiee

    2013-02-01

    The purpose of this work was to study the preparation and characterization of drug–hydroxyapatite cement. The hydroxyapatite (HA) cement has been synthesized by using tricalcium phosphate, calcium carbonate and dicalcium phosphate anhydrous with sodium hydrogen phosphate as liquid phase. The effect of added tetracycline hydrochloride (TCH) as drug on final phases, microstructure, setting behaviour and compressive strength has been studied. The drug release rate was first order within the first day and then was zero order. No obvious difference could be detected in XRD patterns of the TCH–HA cement with various amounts of drug. By increasing the drug concentration, mechanical strength of cement was decreased and its setting time was increased. The results of this study demonstrate the potential of using HA cement as a carrier for drug delivery.

  4. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO2 anatase, TiO2 rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower Icorr than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO2, HA, and Ca5(PO4)2SiO4. • Polarization resistance of the coating was increased by Si substitution in HA

  5. Removal of Cadmium and Lead from Aqueous Solution by Hydroxyapatite/Chitosan Hybrid Fibrous Sorbent: Kinetics and Equilibrium Studies

    OpenAIRE

    Soyeon Park; Allan Gomez-Flores; Yong Sik Chung; Hyunjung Kim

    2015-01-01

    Hydroxyapatite (HAp)/chitosan composites were prepared by a coprecipitation method, dropping a mixture of chitosan solution and phosphoric acid solution into a calcium hydroxide solution. Using the HAp/chitosan composites prepared, HAp/chitosan hybrid fibers with various HAp contents were prepared by a wet spinning method. X-ray diffraction and scanning electron microscopy analyses revealed that HAp particles were coated onto the surface of the fiber, and the surface roughness increased with ...

  6. Investigating the addition of SiO₂-CaO-ZnO-Na₂O-TiO₂ bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity.

    Science.gov (United States)

    Yatongchai, Chokchai; Placek, Lana M; Curran, Declan J; Towler, Mark R; Wren, Anthony W

    2015-11-01

    Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2-CaO-ZnO-Na2O-TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability.

  7. The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth

    Directory of Open Access Journals (Sweden)

    Widowati Siswomihardjo

    2012-01-01

    . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony.

  8. Plasma plume induced during pulsed laser deposition of hydroxyapatite

    International Nuclear Information System (INIS)

    Pulsed laser deposition is well-established method of deposition of thin films on different substrates. The particles ablated from a target owing to laser radiation-target interaction form a plasma plume and subsequently are deposited on a substrate. The mechanism of plasma formation and expansion consists of three stages. During the interaction of the laser beam with a material the target is heated to the temperatures exceeding the boiling temperatures and sometimes also the critical temperatures. The characteristic time of the target temperature rise is from 1 nanosecond in the case of dielectrics to some hundreds nanoseconds in the case of metals case of metals. In the same time the process of ablation begins. In the second stage the ablated particles are heated by the laser beam to the temperatures of 10-20 kK and form a plasma plume. The characteristic time of plasma heating is 10-100 nanoseconds. This process depends on the intensity of the laser beam and energy of quanta. Next the laser radiation decays (laser pulse duration FWHM ∼ 20-50 ns) and plasma plume expands adiabatically. In this work plasma plume induced by ArF excimer laser ablation of a hydroxyapatite (Ca10(PO4)6(OH)2) target during deposition process has been studied in different ambient conditions., i.e in air or water vapour with the addition of oxygen. Hydroxyapatite is a biocompatible ceramic. It may be deposited onto orthopedic implants in order to increase the bone-implant contact or over a porous titanium coating where it is used to promote bone ingrowth. The process of deposition significantly depends on mechanisms of plasma plume formation and its expansion. ArF laser operated at the wavelength of 193 nm with the pulse energy of 300 mJ and 20 ns pulse duration. The emission spectra of the plasma plume were registered with the use of a spectrograph and a fast gate, micro-channel plate (MCP) image intensifier optically coupled to an Andor CCD camera. The emission spectra consist mainly

  9. Fabrication and characterization of fluoridated hydroxyapatite nanopowders via mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, M.H. [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 8415683111 (Iran, Islamic Republic of); Zahrani, E. Mohammadi [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 8415683111 (Iran, Islamic Republic of)], E-mail: emohamadizahrani@gmail.com

    2009-05-05

    The aim of this work was preparation and characterization of fluoridated hydroxyapatite (FHA) nanopowders with different degrees of fluoridation via mechanical alloying (MA) method. FHA nanopowders with a chemical composition of Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2-x}F{sub x} (where x values were selected equal to 0.0, 0.5, 1.0, 1.5, and 2.0) were synthesized using a mixture of appropriate amounts of calcium hydroxide, phosphorous pentoxide, and calcium fluoride powders by 6 h of mechanical alloying at 300 rpm, using eight balls with a diameter of 20 mm, and the ball-to-powder weight ratio equal to 35:1. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and ICP-OES analysis techniques were utilized in order to evaluate phase composition, agglomerates size distribution, morphology and particle size, functional groups, and purity of synthesized FHA nanopowders. The FTIR result combined with the X-ray diffraction indicated that single phase of homogeneous FHA with the carbonate peaks in the FTIR spectrum could be prepared after 6 h MA. TEM photomicrograph revealed that obtained powder after 6 h of MA was composed of FHA nanoparticles (35-65 nm). The results of ICP-OES analysis illustrated that synthesized nanopowder could fulfill the requirement of ASTM F1185-88 to be used as a biomaterial.

  10. Synthesis and characterization of hydroxyapatite from fish bone waste

    International Nuclear Information System (INIS)

    Waste fish bones is a problem stemming from activities in the field of fisheries and it has not been used optimally. Fish bones contain calcium as natural source that used to synthesize hydroxyapatite (HA). In this research, HA synthesized from waste fish bones as local wisdom in Semarang. The goal are to produce HA with cheaper production costs and to reduce the environmental problems caused by waste bones. The novelty of this study was using of local fish bone as a source of calcium and simple method of synthesis. Synthesis process of HA can be done through a maceration process with firing temperatures of 1000°C or followed by a sol-gel method with firing at 550°C. The results are analyzed using FTIR (Fourier Transform Infrared), XRD (X-Ray Diffraction) and SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-Ray). FTIR spectra showed absorption of phosphate and OH group belonging to HA as evidenced by the results of XRD. The average grain size by maceration and synthesized results are not significant different, which is about 69 nm. The ratio of Ca/P of HA by maceration result is 0.89, then increase after continued in the sol-gel process to 1.41. Morphology of HA by maceration results are regular and uniform particle growth, while the morphology of HA after the sol-gel process are irregular and agglomerated

  11. Synthesis and characterization of hydroxyapatite from fish bone waste

    Science.gov (United States)

    Marliana, Ana; Fitriani, Eka; Ramadhan, Fauzan; Suhandono, Steven; Yuliani, Keti; Windarti, Tri

    2015-12-01

    Waste fish bones is a problem stemming from activities in the field of fisheries and it has not been used optimally. Fish bones contain calcium as natural source that used to synthesize hydroxyapatite (HA). In this research, HA synthesized from waste fish bones as local wisdom in Semarang. The goal are to produce HA with cheaper production costs and to reduce the environmental problems caused by waste bones. The novelty of this study was using of local fish bone as a source of calcium and simple method of synthesis. Synthesis process of HA can be done through a maceration process with firing temperatures of 1000°C or followed by a sol-gel method with firing at 550°C. The results are analyzed using FTIR (Fourier Transform Infrared), XRD (X-Ray Diffraction) and SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-Ray). FTIR spectra showed absorption of phosphate and OH group belonging to HA as evidenced by the results of XRD. The average grain size by maceration and synthesized results are not significant different, which is about 69 nm. The ratio of Ca/P of HA by maceration result is 0.89, then increase after continued in the sol-gel process to 1.41. Morphology of HA by maceration results are regular and uniform particle growth, while the morphology of HA after the sol-gel process are irregular and agglomerated.

  12. Synthesis and characterization of hydroxyapatite from fish bone waste

    Energy Technology Data Exchange (ETDEWEB)

    Marliana, Ana, E-mail: na-cwith22@yahoo.co.id; Fitriani, Eka; Ramadhan, Fauzan; Suhandono, Steven; Yuliani, Keti; Windarti, Tri [Chemistry Department, Faculty of Science and Mathematics, Diponegoro University, Indonesia, 50 275 (Indonesia)

    2015-12-29

    Waste fish bones is a problem stemming from activities in the field of fisheries and it has not been used optimally. Fish bones contain calcium as natural source that used to synthesize hydroxyapatite (HA). In this research, HA synthesized from waste fish bones as local wisdom in Semarang. The goal are to produce HA with cheaper production costs and to reduce the environmental problems caused by waste bones. The novelty of this study was using of local fish bone as a source of calcium and simple method of synthesis. Synthesis process of HA can be done through a maceration process with firing temperatures of 1000°C or followed by a sol-gel method with firing at 550°C. The results are analyzed using FTIR (Fourier Transform Infrared), XRD (X-Ray Diffraction) and SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-Ray). FTIR spectra showed absorption of phosphate and OH group belonging to HA as evidenced by the results of XRD. The average grain size by maceration and synthesized results are not significant different, which is about 69 nm. The ratio of Ca/P of HA by maceration result is 0.89, then increase after continued in the sol-gel process to 1.41. Morphology of HA by maceration results are regular and uniform particle growth, while the morphology of HA after the sol-gel process are irregular and agglomerated.

  13. Growth of hydroxyapatite nanoparticles on silica gels.

    Science.gov (United States)

    Rivera-Muñoz, E M; Huirache-Acuña, R; Velázquez, R; Alonso-Núñez, G; Eguía-Eguía, S

    2011-06-01

    Synthetic, hydroxyapatite nanoparticles were grown on the surface of silica gels. The synthesis of those nanoparticles was obtained by immersing silica gels in a simulated body fluid (SBF) at 37 degrees C. The SBF was replaced every week to keep constant the Ca and P ion concentration and subsequent growth of hydroxyapatite was evaluated after 1-6 weeks of total soaking time in SBF. Hydroxyapatite nanoparticles were observed by scanning electron microscopy (SEM) on the surface of silica gel samples and confirmed by energy dispersive X-ray spectroscopy (EDS), Fourier Transform Infra Red Spectroscopy (FTIR) and powder X-ray Diffractometry (XRD) analysis. These particles show a regular shape and uniform size every week, keeping within the nanoscale always. Both the size and morphology of hydroxyapatite nanoparticles obtained are the result of the use of different chemical additives in the synthesis of silica gels, since they affect the liquid-to-solid interface, and the growth could correspond to a diffusion limited aggregation (DLA) process. A more detailed analysis, with higher magnifications, showed that hydroxyapatite nanoparticles are not solid spheres, showing a branched texture and their size depends on the scale and resolution of the measure instrument. PMID:21770224

  14. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  15. Fabrication and characterization of hydroxyapatite/Al2O3 biocomposite coating on titanium

    Institute of Scientific and Technical Information of China (English)

    WU Zhen-jun; HE Li-ping; CHEN Zong-zhang

    2006-01-01

    A novel biocomposite coating of hydroxyapatite/Al2O3 was fabricated on titanium using a multi-step technique including physical vapor deposition(PVD), anodization, electrodeposition and hydrothermal treatment. Anodic Al2O3 layer with micrometric pore diameter was formed by anodization of the PVD-deposited aluminum film on titanium and subsequent removal of part barrier Al2O3 layer. Hydroxyapatite coating was then electrodeposited onto the as-synthesized anodic Al2O3 on titanium. A hydrothermal process was finally applied to the fabricated biocomposite coating on titanium in alkaline medium. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffractometry(XRD) were employed to investigate the morphologies and compositions of the pre- and post-hydrothermally treated hydroxyapatite/Al2O3 biocomposite coatings. The results show that micrometric plate-like Ca-deficient hydroxyapatite (CDHA) coatings are directly electrodeposited onto anodic Al2O3 at constant current densities ranging from 1.2 to 2.0 mA/cm2 using NaH2PO4 as the phosphorous source. After hydrothermal treatment,the micrometric plate-like CDHA coating electrodeposited at 2.0 mA/cm2 is converted into nano-network Ca-rich hydroxyapatite (CRHA) one and the adhesion strength is improved from 9.5 MPa to 21.3 MPa. A mechanism of dissolution-recrystallization was also proposed for the formation of CRHA.

  16. Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste

    OpenAIRE

    S.M. Mousa; N.S. Ammar; Ibrahim, H. A.

    2016-01-01

    Nano-material of calcium hydroxyapatite (n-CaHAP), with particle size ranging from 50 to 57 nm which was prepared from phosphogypsum waste (PG), was used for the removal of lead ions (Pb (II)) from aqueous solutions. It was investigated in a batch reactor under different experimental conditions. Effects of process parameters such as pH, initial Pb ion concentration and adsorbent dose were studied. Also, various types of kinetic modeling have been studied where the lead uptake was quantitative...

  17. Coating of hydroxyapatite films on titanium substrates by electrodeposition under pulse current

    OpenAIRE

    HAYAKAWA, Tomoyasu; Kawashita, Masakazu; TAKAOAKA, Gikan H.

    2008-01-01

    Titanium (Ti) metal substrates were etched in sulfuric acid (H2SO4) with concentrations of 25, 50, 75 and 97% at 60°C for 30 min. Hydroxyapatite (HA) films were deposited onto unetched and etched substrates by an electrodeposition method under a pulse current. The electrolyte was metastable calcium phosphate solution that had 1.5 times the ion concentrations of human body fluid, but did not contain magnesium ion at 36.5°C. Deposition times were 90 min. We used the average current density of 0...

  18. Fluorescent Labeling of Nanometer Hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    Yuan ZHANG; Yuan YUAN; Changsheng LIU

    2008-01-01

    A novel surface treatment method using 3-aminopropyltriethoxysilane (AMPTES), was developed to immobilize the fluorescein molecule on nano-HAP (nanometer hydroxyapatite) powders. By pretreating the nano-HAP powders surface with AMPTES, fluorescein, chosen on the basis of the chemical structure of the nano- HAP powders, could be bound to the nano-HAP powders surface. The chemical compositions of nano-HAP before and after being labeled were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The morphology, phase composition, and the fluorescence characteristics of the nano-HAP powders with and without staining were also investigated. The FTIR and XPS results revealed that fiuorescein had been successfully immobilized on the surface of AMPTES-bound nano-HAP powders via the acylamide bond formation between the -COOH of fluorescein and the -NH2 of AMPTES. The labeled nano-HAP powders possessed strong fluorescent intensity with a little deviation from the maximum emission wavelength of fluorescein. But the morphology and phase composition had no obvious alteration. Under fluorescence microscopy, the labeled nano-HAP powders., even after 24 h cell incubation, exhibited strong fluorescence.

  19. Fabrication of porous hydroxyapatite by foam technique

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Y.; Reusmaazran Yusof, M.; Besar, I.; Mustafa, R. [Malaysian Inst. for Nuclear Technology Research (MINT), Kajang, Selangor (Malaysia); Hing, K.A. [IRC in Biomedical Materials, Queen Mary and Westfield Coll., Univ. of London (United Kingdom)

    2002-07-01

    To improve healthcare, there is an increasing demand for bone replacement or bone graft materials towards treating and improving available parts of human body. Beside bioactive and biocompatible, synthetic hydroxyapatite can be produced with a porous structure to meet the requirement as a bone graft materials. In this work, the foam burnout technique was successfully used to produce porous hydroxyapatite. A polyurethane foam was soaked in a slip prepared by mixing hydroxyapatite powder with a binder solution prepared from polyvinylpyrolidone (PVP). After dried, the green structure was burnout and sintered. In this method, the prepared slip can influence the porous structure, hence gives rise to higher porosity and pore connectivity due to lower molecular weight binder (PVP). This paper presents the physical and morphological characteristics of the porous structure produced. (orig.)

  20. Synthesis of nanocrystalline hydroxyapatite using surfactant template systems: Role of templates in controlling morphology

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Susanta Kumar; Banerjee, Ashis; Banerjee, Shashwat [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States); Bose, Susmita, E-mail: sbose@wsu.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)

    2009-08-31

    Hydroxyapatite (HA) nanopowder was synthesized by reverse microemulsion technique using calcium nitrate and phosphoric acid as starting materials in aqueous phase. Cyclohexane, hexane, and isooctane were used as organic solvents, and Dioctyl sulfosuccinate sodium salt (AOT), dodecyl phosphate (DP), NP5 (poly(oxyethylene){sub 5} nonylphenol ether), and NP12 (poly(oxyethylene){sub 12} nonylphenol ether) as surfactants to make the emulsion. Effect of synthesis parameters, such as type of surfactant, aqueous to organic ratio (A/O), pH and temperature on powder characteristics were studied. It was found that the surfactant templates played a significant role in regulating the morphology of the nanoparticle. Hydroxyapatite nanoparticle of different morphologies such as spherical, needle shape or rod-like were obtained by adjusting the conditions of the emulsion system. Synthesized powder was characterized using X-ray diffraction (XRD), BET surface area and transmission electron microscopy (TEM). Phase pure HA nanopowder with highest surface area of 121 m{sup 2}/g were prepared by this technique using NP5 as a surfactant. Densification studies showed that this nanoparticle can give about 98% of their theoretical density. In vitro bioactivity of the dense HA compacts was confirmed by excellent apatite layer formation after 21 days in SBF solution. Cell material interaction study showed good cell attachment and after 5 days cells were proliferated on HA compacts in OPC1 cell culture medium. The results imply this to be a versatile approach for making hydroxyapatite nanocrystals with controlled morphology and excellent biocompatibility.

  1. Scaffolds of polycaprolactone with hydroxyapatite fibers

    International Nuclear Information System (INIS)

    Scaffolds of poly (ε-caprolactone) has been studied in many researches in tissue engineering. The used of hydroxyapatite fibers, allowed increase its resistance mechanical, beside the character bioactive and osteoconductive. Improving, its role in tissue engineering. The aim in this study was developed polycaprolactone matrix with dispersed hydroxyapatite fibers. The characterizations were by scanning electron microscopy (SEM), X- Ray Diffractometer (XRD), X-Ray Fluorescence (XRF) and Energy dispersive X-Ray Detector (EDX). Was able reviewed its composition, morphology and possible contaminations. The results were scaffolds with porosity and distribution of the fibers in all its area. (author)

  2. Novel tea polyphenol-modified calcium phosphate nanoparticle and its remineralization potential

    NARCIS (Netherlands)

    L. He; D. Deng; X. Zhou; L. Cheng; J.M. ten Cate; J. Li; X. Li; W. Crielaard

    2015-01-01

    Tea polyphenols (TP) are not only potent antimicrobial and antioxidant agents but also effective modifiers in the formation of nanosized crystals. Since nano-hydroxyapatite (n-HA) is known to enhance remineralization of dental hard tissue, our aims were to synthesize nanosized calcium phosphate part

  3. Amorphous calcium phosphate and its application in dentistry

    Directory of Open Access Journals (Sweden)

    Sun Wei-bin

    2011-07-01

    Full Text Available Abstract Amorphous Calcium Phosphate (ACP is an essential mineral phase formed in mineralized tissues and the first commercial product as artificial hydroxyapatite. ACP is unique among all forms of calcium phosphates in that it lacks long-range, periodic atomic scale order of crystalline calcium phosphates. The X-ray diffraction pattern is broad and diffuse with a maximum at 25 degree 2 theta, and no other different features compared with well-crystallized hydroxyapatite. Under electron microscopy, its morphological form is shown as small spheroidal particles in the scale of tenths nanometer. In aqueous media, ACP is easily transformed into crystalline phases such as octacalcium phosphate and apatite due to the growing of microcrystalline. It has been demonstrated that ACP has better osteoconductivity and biodegradability than tricalcium phosphate and hydroxyapatite in vivo. Moreover, it can increase alkaline phosphatase activities of mesoblasts, enhance cell proliferation and promote cell adhesion. The unique role of ACP during the formation of mineralized tissues makes it a promising candidate material for tissue repair and regeneration. ACP may also be a potential remineralizing agent in dental applications. Recently developed ACP-filled bioactive composites are believed to be effective anti-demineralizing/remineralizing agents for the preservation and repair of tooth structures. This review provides an overview of the development, structure, chemical composition, morphological characterization, phase transformation and biomedical application of ACP in dentistry.

  4. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  5. Calcium Calculator

    Science.gov (United States)

    ... Latvia - Lebanon - Libya - Lithuania - Luxembourg - Macedonia, Republic of - Malaysia - Malta - Mexico - Moldova - Morocco - Netherlands - New Zealand - Nigeria - ... and Statistics Popular content Calcium content of common foods What is Osteoporosis? The Board Introduction to Bone ...

  6. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  7. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.

    Science.gov (United States)

    Shanmugavel, Suganya; Reddy, Venugopal Jayarama; Ramakrishna, Seeram; Lakshmi, B S; Dev, Vr Giri

    2014-07-01

    Advances in electrospun nanofibres with bioactive materials have enhanced the scope of fabricating biomimetic scaffolds for tissue engineering. The present research focuses on fabrication of polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds by electrospinning followed by hydroxyapatite deposition by calcium-phosphate dipping method for bone tissue engineering. Morphology, composition, hydrophilicity and mechanical properties of polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds along with controls polycaprolactone and polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds were examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle and tensile tests, respectively. Adipose-derived stem cells cultured on polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds displayed highest cell proliferation, increased osteogenic markers expression (alkaline phosphatase and osteocalcin), osteogenic differentiation and increased mineralization in comparison with polycaprolactone control. The obtained results indicate that polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds have appropriate physico-chemical and biological properties to be used as biomimetic scaffolds for bone tissue regeneration.

  8. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution.

  9. Magnetic properties study on Fe-doped calcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C C; Valente, M A [Physics Department (I3N), Aveiro University (Portugal); Vasconcelos, I F [Metallurgical and Materials Engineering Department, Federal University of Ceara, Campus do Pici, 714 Block, 60455-760, Fortaleza, Ceara (Brazil); Sombra, A S B [Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Department of Physics, Federal University of Ceara, Campus do Pici, Postal Code 6030, 60455-760, Fortaleza, Ceara (Brazil)], E-mail: ccsilva@ua.pt, E-mail: ccsilva@fisica.ufc.br

    2009-11-15

    Calcium phosphates are very important for applications in medicine due to their properties such as biocompatibility and bioactivity. In order to enhance these properties, substitution of calcium with other ions has been proposed. Partial substitution of calcium by different ions has been made in order to improve the properties of the calcium phosphates and also to allow new applications of apatite in medicine. In this work, hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}-HAP] was prepared by high-energy dry milling (20 h) and mixed with iron oxide (5 wt.%). The mixture was calcinated at 900 deg. C for 5 h with a heating rate of 3 deg. C min{sup -1} in an attempt to introduce iron oxide into the HAP structure. The sintered sample was characterized using x-ray diffraction (XRD) and magnetization. The {sup 57}Fe-Moessbauer spectra of the calcium phosphate oxides were also measured, revealing the presence of iron in three different phases: Ca{sub 2}Fe{sub 2}O{sub 5}, Fe{sub 2}O{sub 3} and hydroxyapatite.

  10. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: Effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity

    International Nuclear Information System (INIS)

    Synthetic hydroxyapatite (HA) nanoparticles, that mimic natural HA, are widely used as biocompatible coatings on prostheses to repair and substitute human bones. In this study, HA nanoparticles are prepared by precipitating them from a precursor solution containing calcium sucrate and ammonium dihydrogen orthophosphate, at a Ca/P mole ratio of 1.67:1, at temperatures, ranging from 10 °C to 95 °C. A set of products, prepared at different temperatures, is analyzed for their crystallinity, crystallite size, morphology, thermal stability and composition, by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopic techniques, while the other set is analyzed after calcining the respective products, soon after their synthesis, for 3 h, at 700 °C. The as-prepared products, after 2 h of drying, without any calcination, are not crystalline, but they grow very slowly into needle-like morphologies, as they are ripened with time. The percentage crystallinity of the final products increases from 15% to 52%, with increasing the preparative temperature. The calcined samples always produce spherical nanoparticles of essentially the same diameter, between 90 nm and 100 nm, which does not change due to aging and preparative temperatures. Therefore, the same method can be utilized to synthesize both spherical and needle-like nanoparticles of hydroxyapatite, with well-defined sizes and shapes. The ability to use readily available cheap raw materials, for the synthesis of such well-defined crystallites of hydroxyapatite, is an added advantage of this method, which may be explored further for the scaling up of the procedures to suit to industrial scale synthesis of such hydroxyapatite nanoparticles. - Highlights: • Hydroxyapatite nanoparticles are synthesized using a simple precipitation method. • Both needle-like and spherical hydroxyapatite nanoparticles are synthesized. • The prepared

  11. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: Effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Post-graduate Institute of Science, P.O. Box: 25, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Premalal, E.V.A. [Department of Materials Science, Shizuoka University, Johoku, Naka-ku Hamamatsu, 432-8011 (Japan); Herath, H.M.T.U. [Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Mahalingam, S.; Edirisinghe, M. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Rajapakse, R.P.V.J. [Department of Veterinary Pathobiology, Faculty of Veterinary, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Post-graduate Institute of Science, P.O. Box: 25, University of Peradeniya, Peradeniya 20400 (Sri Lanka)

    2014-09-01

    Synthetic hydroxyapatite (HA) nanoparticles, that mimic natural HA, are widely used as biocompatible coatings on prostheses to repair and substitute human bones. In this study, HA nanoparticles are prepared by precipitating them from a precursor solution containing calcium sucrate and ammonium dihydrogen orthophosphate, at a Ca/P mole ratio of 1.67:1, at temperatures, ranging from 10 °C to 95 °C. A set of products, prepared at different temperatures, is analyzed for their crystallinity, crystallite size, morphology, thermal stability and composition, by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopic techniques, while the other set is analyzed after calcining the respective products, soon after their synthesis, for 3 h, at 700 °C. The as-prepared products, after 2 h of drying, without any calcination, are not crystalline, but they grow very slowly into needle-like morphologies, as they are ripened with time. The percentage crystallinity of the final products increases from 15% to 52%, with increasing the preparative temperature. The calcined samples always produce spherical nanoparticles of essentially the same diameter, between 90 nm and 100 nm, which does not change due to aging and preparative temperatures. Therefore, the same method can be utilized to synthesize both spherical and needle-like nanoparticles of hydroxyapatite, with well-defined sizes and shapes. The ability to use readily available cheap raw materials, for the synthesis of such well-defined crystallites of hydroxyapatite, is an added advantage of this method, which may be explored further for the scaling up of the procedures to suit to industrial scale synthesis of such hydroxyapatite nanoparticles. - Highlights: • Hydroxyapatite nanoparticles are synthesized using a simple precipitation method. • Both needle-like and spherical hydroxyapatite nanoparticles are synthesized. • The prepared

  12. Nutrient-substituted hydroxyapatites: synthesis and characterization

    Science.gov (United States)

    Golden, D. C.; Ming, D. W.

    1999-01-01

    Incorporation of Mg, S, and plant-essential micronutrients into the structure of synthetic hydroxyapatite (HA) may be advantageous for closed-loop systems, such as will be required on Lunar and Martian outposts, because these apatites can be used as slow-release fertilizers. Our objective was to synthesize HA with Ca, P, Mg, S, Fe, Cu, Mn, Zn, Mo, B, and Cl incorporated into the structure, i.e., nutrient-substituted apatites. Hydroxyapatite, carbonate hydroxyapatite (CHA), nutrient-substituted hydroxyapatite (NHA), and nutrient-substituted carbonate hydroxyapatite (NCHA) were synthesized by precipitating from solution. Chemical and mineralogical analysis of precipitated samples indicated a considerable fraction of the added cations were incorporated into HA, without mineral impurities. Particle size of the HA was in the 1 to 40 nm range, and decreased with increased substitution of nutrient elements. The particle shape of HA was elongated in the c-direction in unsubstituted HA and NHA but more spherical in CHA and NCHA. The substitution of cations and anions in the HA structure was confirmed by the decrease of the d[002] spacing of HA with substitution of ions with an ionic radius less than that of Ca or P. The DTPA-extractable Cu ranged from 8 to 8429 mg kg-1, Zn ranged from 57 to 1279 mg kg-1, Fe from 211 to 2573 mg kg-1, and Mn from 190 to 1719 mg kg-1, depending on the substitution level of each element in HA. Nutrient-substituted HA has the potential to be used as a slow-release fertilizer to supply micronutrients, S, and Mg in addition to Ca and P.

  13. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Milovac, Dajana, E-mail: dmilovac@fkit.hr [Faculty of Chemical Engineering and Technology, University of Zagreb (Croatia); Gallego Ferrer, Gloria [Center for Biomaterials and Tissue Engineering, Polytechnic University of Valencia (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) (Spain); Ivankovic, Marica; Ivankovic, Hrvoje [Faculty of Chemical Engineering and Technology, University of Zagreb (Croatia)

    2014-01-01

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200 °C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88 MPa) and the elastic modulus (15.5 MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. - Highlights: • Hydroxyapatite/poly(ε-caprolactone) scaffolds with interconnected pores were prepared. • Hydrothermal transformation of cuttlefish bone and vacuum impregnation were used. • A material with improved mechanical properties was obtained. • The in vitro mineralization of calcium phosphate was observed.

  14. Effect of urea on formation of hydroxyapatite through double-step hydrothermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Parthiban, S. Prakash, E-mail: prakashparthiban@gmail.com; Kim, Ill Yong; Kikuta, Koichi; Ohtsuki, Chikara

    2011-10-10

    The effect of urea on the formation of hydroxyapatite (HAp) was studied by employing the double-step hydrothermal processing of a powder mixture of beta-tricalcium phosphate ({beta}-TCP) and dicalcium phosphate dihydrate (DCPD). Co-existence of urea was found to sustain morphology of HAp crystals in the compacts under an initial concentration of 2 mol dm{sup -3} and less. Homogenous morphology of needle-like crystals was observed on the compacts carbonated owing to decomposition of urea. Carbonate ions (CO{sub 3}{sup 2-}) was found to be substituted in both the phosphate and hydroxide sites of HAp lattice. The synthesized HAp was calcium deficient, as it had a Ca/P atomic ratio of 1.62 and the phase was identified as calcium deficient hydroxyapatite (CDHA). The release of CO{sub 3}{sup 2-} ions from urea during the hydrothermal treatment determined the morphology of the CDHA in the compacts. The usage of urea in the morphological control of carbonate-substituted HAp (CHAp) employing the double-step hydrothermal method is established. Highlights: {yields} Carbonate substituted hydroxyapatite (CHAp) compacts were developed by a new method, namely double-step hydrothermal processing. {yields} CHAp compacts with uniform micromorphology were obtained by using urea as solvent. {yields} Morphology was sustained even at higher concentration of urea, which emphasized the versatility of urea. {yields} Homogenous morphology of CHAp compacts were obtained for higher concentration of urea. Pores were also formed at higher concentration on the CHAp compacts. {yields} The slow dissociation of urea under hydrothermal conditions is the reason for morphology control.

  15. Effect of highly dispersed yttria addition on thermal stability of hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Parente, P., E-mail: pparente@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain); Savoini, B. [Departamento de Fisica, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganes 28911 (Spain); Ferrari, B. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganes 28911 (Spain); Sanchez-Herencia, A.J. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain)

    2013-03-01

    The capability of the colloidal method to produce yttria (Y{sub 2}O{sub 3}) dispersed hydroxyapatite (HA) has been investigated as an alternative method to the conventional method of mechanical mixing and sintering for developing HA-based materials that could exhibit controllable and enhanced functional properties. A water based colloidal route to produce HA materials with highly dispersed Y{sub 2}O{sub 3} has been applied, and the effect of 10 wt.% Y{sub 2}O{sub 3} addition to HA investigated by thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. These measurements evidence a remarkable effect of this Y{sub 2}O{sub 3} addition on decomposition mechanisms of synthetic HA. Results show that incorporation of Y{sub 2}O{sub 3} as dispersed second phase is beneficial because it hinders the decomposition mechanisms of HA into calcium phosphates. This retardation will allow the control of the sintering conditions for developing HA implants with improved properties. Besides, substitution of Ca{sup 2+} with Y{sup 3+} ions appears to promote the formation of OH{sup -} vacancies, which could improve the conductive properties of HA favorable to osseointegration. - Highlights: Black-Right-Pointing-Pointer We reveal the influence of Y{sub 2}O{sub 3} on thermal stability of hydroxyapatite. Black-Right-Pointing-Pointer Incorporation of Y{sub 2}O{sub 3} delays decomposition of hydroxyapatite to calcium phosphates. Black-Right-Pointing-Pointer Addition of Y{sub 2}O{sub 3} enables sintering conditions more favorable to the densification.

  16. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity

    International Nuclear Information System (INIS)

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200 °C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88 MPa) and the elastic modulus (15.5 MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. - Highlights: • Hydroxyapatite/poly(ε-caprolactone) scaffolds with interconnected pores were prepared. • Hydrothermal transformation of cuttlefish bone and vacuum impregnation were used. • A material with improved mechanical properties was obtained. • The in vitro mineralization of calcium phosphate was observed

  17. Hydroxyapatite-alginate biocomposite promotes bone mineralization in different length scales in vivo

    Institute of Scientific and Technical Information of China (English)

    E L.DE PAULA; I.C.BARRETO; M.H.ROCHA-LE(A)O; R.BOROJEVIC; A.M.ROSSIA; F.P.ROSA; M.FARINA

    2009-01-01

    Tissue engineering is a multidisciplinary research area that aims to develop new techniques and/or biomaterials for medical applications. The objective of thepresent study was to evaluate the osteogenic potential of a composite of hydroxyapatite and alginate in bone defects with critical sizes, surgically made in the calvaria region of rats. The rats (48 adult males), Rattus norvegicus Wistar,were divided into two groups: control (without composite implantation) and experimental (with composite implanta-tion) and analyzed by optical microscopy at the biological time points 15, 45, 90 and 120 d, and transmission electron microscopy 120 d after file implantation of the biomaterinl.It was observed that the biomaterial presented a high degree of fragmentation since the first experilnental points studied, and that the fragments were surrounded by new bone after the duration of the project. These areas were studied by analytical transmission electron microscopy using an energy thsperslve X-ray spectrometer, Three regions could be distinguished: (1) the biomaterial rich in hydroxyapatite; (2) a thin contiguous region containing phosphorus but without calcium; (3) a region of initial ossification containing mineralizing collagen fibrils with a calcium/phosphorus ratio smaller than the particles of the composite. The intermediate region (without calcium or containing very low amounts of calcium), which just surrounded the cothposite had not been described in the hterature yet. And is probably associated specitically to the biocomposite used. The high performance of the bioma-terial observed may be related to the fact that alginate molecules form highly anionic complexes and are capable of adsorbing important factors recognized by integrins from osteoblasts. Regions of fibrotic tissue were also observed mainly in theinitial experimental points analyzed. However, it did not significantly influence the final result. In conclusion, the biomaterial presents a great potential for

  18. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications

    International Nuclear Information System (INIS)

    This study describes the design and synthesis of bacterial cellulose/hydroxyapatite nanocomposites for bone healing applications using a biomimetic approach. Bacterial cellulose (BC) with various surface morphologies (pellicles and tubes) was negatively charged by the adsorption of carboxymethyl cellulose (CMC) to initiate nucleation of calcium-deficient hydroxyapatite (cdHAp). The cdHAp was grown in vitro via dynamic simulated body fluid (SBF) treatments over a one week period. Characterization of the mineralized samples was done with X-ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM) with Energy Dispersive Spectroscopy (EDS). The amount of cdHAp observed varied among different samples. XPS demonstrated that the atomic presence of calcium and phosphorus ranged from 0.44 at.% to 7.71 at.% Ca and 0.27 at.% to 11.18 at.% P. The Ca/P overall ratio ranged from 1.22 to 1.92. FESEM images showed that the cdHAp crystal size increased with increasing nanocellulose fibril density. To determine the viability of the scaffolds in vitro, the morphology and differentiation of osteoprogenitor cells was analyzed using fluorescence microscopy and alkaline phosphatase gene expression. The presence of cdHAp crystals on BC surfaces resulted in increased cell attachment.

  19. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Kristen A., E-mail: kazimmer@vt.edu [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); School of Biomedical Engineering Sciences, Virginia Tech, Blacksburg, VA 24060 (United States); LeBlanc, Jill M.; Sheets, Kevin T.; Fox, Robert W. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); Gatenholm, Paul [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); School of Biomedical Engineering Sciences, Virginia Tech, Blacksburg, VA 24060 (United States)

    2011-01-01

    This study describes the design and synthesis of bacterial cellulose/hydroxyapatite nanocomposites for bone healing applications using a biomimetic approach. Bacterial cellulose (BC) with various surface morphologies (pellicles and tubes) was negatively charged by the adsorption of carboxymethyl cellulose (CMC) to initiate nucleation of calcium-deficient hydroxyapatite (cdHAp). The cdHAp was grown in vitro via dynamic simulated body fluid (SBF) treatments over a one week period. Characterization of the mineralized samples was done with X-ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM) with Energy Dispersive Spectroscopy (EDS). The amount of cdHAp observed varied among different samples. XPS demonstrated that the atomic presence of calcium and phosphorus ranged from 0.44 at.% to 7.71 at.% Ca and 0.27 at.% to 11.18 at.% P. The Ca/P overall ratio ranged from 1.22 to 1.92. FESEM images showed that the cdHAp crystal size increased with increasing nanocellulose fibril density. To determine the viability of the scaffolds in vitro, the morphology and differentiation of osteoprogenitor cells was analyzed using fluorescence microscopy and alkaline phosphatase gene expression. The presence of cdHAp crystals on BC surfaces resulted in increased cell attachment.

  20. Sol-gel synthesis and spectrometric structural evaluation of strontium substituted hydroxyapatite

    International Nuclear Information System (INIS)

    Investigations of the electronic structures of substituted strontium apatites were carried out by using X-ray photo electron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction technique (XRD) has been used to determine the structural parameters. Electron microprobe microanalysis technique was used to estimate the elemental concentrations in each substituted apatite material. The present work aims at studying the changes in the electronic structure of Sr5(PO4)3OH (Sr-HAP) upon isomorphic substitution by F and Cl at the OH site of apatite and Sr by Na at trans Sr-HAP. The ion exchange between Na+ in sodium alginate and aqueous Ca2+ was important for the preparation of calcium hydroxyapatite. In contrast, the reaction of sodium alginate with the mixture of Na4P2O7 and aqueous Sr2+ afforded strontium hydroxyapatite at the specific ratio. The structure of calcium and strontium phosphates prepared from the sol-gel process evidently depended on the amount of sodium alginate introduced into the mixture of Na4P2O7 and the corresponding divalent cations. The findings have ensured that substitution of Sr-HAP by Na enhances the binding energy of O and Sr core levels. It was also noticed that the same substitution decreases the binding energy of P 2s-level. These observations point out to a decrease in the electron density at P and an increase in the electron density at O in Sr atoms.

  1. Preparation and properties of a cerium-containing hydroxyapatite coating on commercially pure titanium by micro-arc oxidation

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong; WANG Yingjun; NING Chengyun; NAN Kaihui; HAN Yong

    2008-01-01

    A porous cerium-containing hydroxyapatite coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in an electrolytic solution containing calcium acetate, β-glycerol phosphate disodium salt pentahydrate (β-GP), and cerium nitrate. The thickness, phase, composition morphology, and biocompatibility of the oxide coating were characterized by X-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS), and cell culture. The thickness of the MAO film is about 15-25μm, and the coating is porous and uneven, without any apparent interface to the titanium substrates. The results of XRD and EDS show that the porous coating is made up of hydroxyapatite (HA) film containing Ce. The favorable osteoblast cell affinity makes the Ce-HA film have a good biocompatibility. The Ce-HA film is expected to have significant medical applications as dental implants and artificial bone joints.

  2. Molecular simulation of water behaviors on crystal faces of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    PAN Haihua; TAO Jinhui; WU Tao; TANG Ruikang

    2007-01-01

    The water behavior on (001) and (100) crystal faces of hydroxyapatite (HAP) were studied using molecular dynamics (MD) simulations.The study showed that the water molecules between the HAP faces were under conditions of strong electrical field and high pressure,and hence formed 2-3 well-organized water layers on the crystal surfaces.These structured water layers had ice-like features.Compared with the crystallographic [100] direction of HAP,the polarity along the [001] direction was stronger,which resulted in more structured water layers on the surface.The interaction of water molecules with the calcium and phosphate sites at the HAP-water interface was also studied.The results indicated the multiple pathways of water adsorption onto the HAP surfaces.This study revealed the formation and the detailed structure of water layers on HAP surfaces and suggested that the interracial water played an important role in stabilizing the HAP particles in aqueous solutions.

  3. Monitoring of hydroxyapatite crystal formation using field-effect transistor

    Science.gov (United States)

    Kajisa, Taira; Sakata, Toshiya

    2016-04-01

    The biomineralization process of hydroxyapatite (HAp) in simulated body fluid (SBF) was monitored in realtime using extended-gate FETs whose gate electrode was modified with a variety of alkanethiol self-assembled monolayers (SAMs). It was found that the gate surface potential of the carboxyl- and amino-group-terminated SAM-coated gate FET was increased in SBF as HAp crystals grew on the gate surface. Moreover, in the carboxyl-group-terminated SAM-coated gate FET, the rate of increase and the shift of gate surface potential of the FET were found to depend on the concentration of calcium ions in the SBF. It was concluded that the process of HAp crystallization at a SAM-modified surface can be detected using FETs. Thus, a FET device that enables the easy detection of ionic charges in a real-time and label-free manner, will be useful for evaluating biomaterials based on biomineralization such as those in the bone regeneration process.

  4. Porous hydroxyapatite composite with alumina for bone repair

    International Nuclear Information System (INIS)

    Porous fabrications, a number of techniques were investigated using polyurethane foam as the scaffold. These techniques involve dipping of the foam into a slurry prepared by mixing of HA+Al2O3 powder with PVA and Sago as binder and subjecting to burn off procedure to get the porous products. Sintering parameter was studied at 1100, 1200 and 1300 degree Celsius. Initially HA powder was prepared by the sol-gel precipitation method using calcium hydroxide and ortho-phosphoric acid meanwhile Al2O3 powder from supplier (MERK). The fine HA powder, measuring 2O3. These techniques also produce the uniformity pore shape. Characterization of the physical analysis, porosity, surface morphology by Scanning Electron Microscopy analysis (SEM) and compression strength were studied. Mechanical properties showing that the composite of porous HA+Al2O3 gives higher maximum compression strength compared to the porous hydroxyapatite itself. Observation from this studied the increasing of temperature will increase the strength. (author)

  5. Influence of Intravenous Injection of Hydroxyapatite on Mouse Movement Ability

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; HU Yazhe; ZHANG Haibin

    2014-01-01

    Lactic acid is usually formed during strenuous exercise, and a large amount of lactic acid and slow anaerobic glycolysis in muscle lead to limitations of movement ability. Hydroxyapatite (HAp) is an alkaline inorganic material with a good biocompatibility. It slowly degrades in vivo and releases trace amounts of calcium ions, reducing cell damage by reacting with polylactic acid and neutralizing local acid environment. Whether HAp can reduce the concentration of lactic acid in vivo and improve movement ability is not yet clear. Here, after eight days of training, 40 mice were randomly divided into four groups: control, distilled water, sodium bicarbonate and HAp group. After one day of rest, the mice were intravenously injected via the lateral tail veins with 1 ml distilled water, sodium bicarbonate and HAp suspension (2.2 mg/ml), respectively, and subjected to a swimming exhaustive experiment (load 10%). The swimming time of mice in the water, under water and total time were recorded. The exhaustive exercise mice were immediately subject to abdominal cavity anaesthesia. The concentrations of blood, gastrocnemius and myocardial lactic acid as well as serum LDH activity were detected. We demonstrate that HAp can significantly prolong swimming time and improve serum LDH activity, but does not affect lactic acid concentration. In conclusion, intravenous injection of HAp nanoparticles can significantly improve the exhaustive swimming ability of mice mainly because of the elevated blood LDH activity induced by HAp.

  6. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    S. Saska

    2011-01-01

    Full Text Available The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA, similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration.

  7. Modeling of the Calcium/Phosphorus Mass ratio for Breast Imaging

    Science.gov (United States)

    Martini, N.; Koukou, V.; Michail, C.; Sotiropoulou, P.; Kalyvas, N.; Kandarakis, I.; Nikiforidis, G.; Fountos, G.

    2015-09-01

    Breast microcalcifications are mainly composed of calcite (CaCO3), calcium oxalate (CaC2O4) and apatite (a calcium-phosphate mineral form). Any pathologic alteration (carcinogenesis) of the breast may produce apatite. In the present simulation study, an analytical model was implemented in order to distinguish malignant and non-malignant lesions. The Calcium/Phosphorus (Ca/P) mass ratio and the standard deviation (SD) of the calcifications were calculated. The size of the calcifications ranged from 100 to 1000 μm, in 50 μm increments. The simulation was performed for hydroxyapatite, calcite and calcium oxalate calcifications. The optimum pair of energies for all calcifications was 22keV and 50keV. Hydroxyapatite and calcite calcifications were sufficiently characterized through their distinct confidence interval (99.7%, 3SD) values for calcifications sizes above 500 μm, while the corresponding sizes for hydroxyapatite and calcium oxalate characterization were found above 250 μm. Initial computer simulation results indicate that the proposed method can be used in breast cancer diagnosis, reducing the need for invasive methods, such as biopsies.

  8. Synthesis of hydroxyapatite powders by sol-gel techniques

    OpenAIRE

    Quinten, Andreas; Nass, Rüdiger; Schmidt, Helmut K.

    1991-01-01

    The formation of hydroxyapatite from aqueous salt solutions has been investigated. Special emphasis was put on the influence of synthesis parameters and on the properties of the precipitates. It was found that the development of crystalline phases during sintering strongly depends on synthesis conditions and can be controlled by sintering temperature and time. Thus, pure hydroxyapatite as well as a mixture of hydroxyapatite and tri-calciumphosphate can be synthesized. Finally, the microstruct...

  9. Calcium and bones

    Science.gov (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  10. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  11. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  12. Formation of hydroxyapatite coating on titanium at 200°C through pulsed laser deposition followed by hydrothermal treatment

    Indian Academy of Sciences (India)

    Manoj Komath; P Rajesh; C V Muraleedharan; H K Varma; R Reshmi; M K Jayaraj

    2011-04-01

    Pulsed laser deposition (PLD) has emerged as an acceptable technique to coat hydroxyapatite on titanium-based permanent implants for the use in orthopedics and dentistry. It requires substrate temperature higher than 400°C to form coatings of good adhesion and crystallinity. As this range of temperatures is likely to affect the bulk mechanical properties of the implant, lowering the substrate temperature during the coating process is crucial for the long-term performance of the implant. In the present study, hydroxyapatite target was ablated using a pulsed Nd:YAG laser (355 nm) onto commercially pure titanium substrates kept at 200°C. The coating thus obtained has been subjected to hydrothermal treatment at 200°C in an alkaline medium. The coatings were analysed using microscratch test, optical profilometry, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and infrared spectroscopy (FTIR). XRD, EDS and FTIR showed that the as-deposited coating contained amorphous calcium phosphate and the hydrothermal treatment converted it into crystalline hydroxyapatite. The micro-morphology was granular, with an average size of 1 micron. In the microscratch test, a remarkable increase in adhesion with the substrate was seen as a result of the treatment. The plasma plume during the deposition has been analysed using optical emission spectroscopy, which revealed atomic and ionic species of calcium, phosphorous and oxygen. The outcomes demonstrate the possibility of obtaining adherent and crystalline hydroxyapatite on titanium substrate at 200°C through pulsed laser deposition and subsequent hydrothermal treatment.

  13. Characterisation of the bioactive behaviour of sol-gel hydroxyapatite-CaO and hydroxyapatite-CaO-bioactive glass composites

    International Nuclear Information System (INIS)

    The fabrication and characterization of sol-gel derived hydroxyapatite-calcium oxide (HAp-CaO) material is investigated focusing on the effect of the addition of a bioactive glass on the material bioactive behaviour through the fabrication of a novel HAp-CaO (70 wt.%)-bioactive glass (30 wt.%) composite material. The bioactive behaviour of the materials was assessed by immersion studies in Simulated Body Fluid (SBF) and the alterations of the materials surfaces after soaking periods in SBF were characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). A brittle and weakly crystalline carbonate hydroxyapatite (HCAp) layer was found to develop on the surface of all samples, few hours after immersion in SBF, confirming the high bioactivity of the material. Alterations of the morphology of the developed HCAp layer, which led to a more compact structure, were observed on the surface of composite samples after 7 days of immersion in SBF. The presence of the CaO phase seems to accelerate the formation of HCAp, while the bioactive glass affects both the morphology and cohesion of the developed layer.

  14. Reactive hydroxyapatite fillers for pectin biocomposites.

    Science.gov (United States)

    Munarin, Fabiola; Petrini, Paola; Barcellona, Giulia; Roversi, Tommaso; Piazza, Laura; Visai, Livia; Tanzi, Maria Cristina

    2014-12-01

    In this work, a novel injectable biocomposite hydrogel is produced by internal gelation, using pectin as organic matrix and hydroxyapatite either as crosslinking agent and inorganic reinforcement. Tunable gelling kinetics and rheological properties are obtained varying the hydrogels' composition, with the final aim of developing systems for cell immobilization. The reversibility by dissolution of pectin-hydroxyapatite hydrogels is achieved with saline solutions, to possibly accelerate the release of the cells or active agents immobilized. Texture analysis confirms the possibility of extruding the biocomposites from needles with diameters from 20 G to 30 G, indicating that they can be implanted with minimally-invasive approaches, minimizing the pain during injection and the side effects of the open surgery. L929 fibroblasts entrapped in the hydrogels survive to the immobilization procedure and exhibit high cell viability. On the overall, these systems result to be suitable supports for the immobilization of cells for tissue regeneration applications.

  15. Bioactivity and mineralization of hydroxyapatite with bioglass as sintering aid and bioceramics with Na3Ca6(PO4)5 and Ca5(PO4)2SiO4 in a silicate matrix

    International Nuclear Information System (INIS)

    Hydroxyapatite and Bioglass-45S5 were sintered together creating new ceramic compositions that yielded increased apatite deposition and osteoblast differentiation and proliferation in vitro compared to hydroxyapatite. The sintered products characterized by X-ray diffraction, revealed hydroxyapatite as the main phase when small quantities (1, 2.5 and 5 wt.%) of bioglass was added. Bioglass behaved as a sintering aid with β-TCP (Ca3(PO4)2) being the minor phase. The amount of β-TCP increased with the amount of bioglass added. In compositions with larger additions of bioglass (10 and 25 wt.%), new phases with compositions of calcium phosphate silicate (Ca5(PO4)2SiO4) and sodium calcium phosphate (Na3Ca6(PO4)5) were formed respectively within amorphous silicate matrices. In vitro cell culture studies of the ceramic compositions were examined using bone marrow stromal cell (BMSC). Cell proliferation and differentiation of bone marrow stromal cells into osteoblasts were determined by Pico Green DNA assays and alkaline phosphatase (ALP) activity, respectively. All hydroxyapatite-bioglass co-sintered ceramics exhibited larger cell proliferation compared to pure hydroxyapatite samples. After 6 days in cell culture, the ceramic with Ca5(PO4)3SiO4 in a silicate matrix formed by reacting hydroxyapatite with 10 wt.% bioglass exhibited the maximum proliferation of the BMSC's. The ALP activity was found to be largest in the ceramic with Na3Ca6(PO4)5 embedded in a silicate matrix synthesized by reacting hydroxyapatite with 25 wt.% bioglass.

  16. Porous hydroxyapatite for artificial bone applications

    OpenAIRE

    I. Sopyan et al

    2007-01-01

    Hydroxyapatite (HA) has been used clinically for many years. It has good biocompatibility in bone contact as its chemical composition is similar to that of bone material. Porous HA ceramics have found enormous use in biomedical applications including bone tissue regeneration, cell proliferation, and drug delivery. In bone tissue engineering it has been applied as filling material for bone defects and augmentation, artificial bone graft material, and prosthesis revision surgery. Its high surfa...

  17. Atomic structure of intracellular amorphous calcium phosphate deposits.

    Science.gov (United States)

    Betts, F; Blumenthal, N C; Posner, A S; Becker, G L; Lehninger, A L

    1975-06-01

    The radial distribution function calculated from x-ray diffraction of mineralized cytoplasmic structures isolated from the hepatopancreas of the blue crab (Callinectes sapidus) is very similar to that previously found for synthetic amorphous calcium phosphate. Both types of mineral apparently have only short-range atomic order, represented as a neutral ion cluster of about 10 A in longest dimension, whose probable composition is expressed by the formula Ca9(PO4)6. The minor differences observed are attributed to the presence in the biological mineral of significant amounts of Mg-2+ and ATP. Synthetic amorphous calcium phosphate in contact with a solution containing an amount of ATP equivalent to that of the biological mineral failed to undergo conversion to the thermodynamically more stable hydroxyapatite. The amorphous calcium phosphate of the cytoplasmic mineral granules is similarly stable, and does not undergo conversion to hydroxyapatite, presumably owing to the presence of ATP and Mg-2+, known in inhibitors of the conversion process. The physiological implications of mineral deposits consisting of stabilized calcium phosphate ion clusters are discussed.

  18. Effect of silver additive on physicochemical properties of hydroxyapatite applied to reconstructive surgery

    Energy Technology Data Exchange (ETDEWEB)

    Zhuk, I. V., E-mail: zhukiv1993@mail.ru; Rasskazova, L. A., E-mail: ly-2207@mail.ru; Korotchenko, N. M., E-mail: korotch@mail.ru [National Research Tomsk State University 36, Lenina Avenue, Tomsk, 634050 (Russian Federation)

    2015-11-17

    The effect of silver adding to hydroxyapatite (HA) in its solubility in physiological solution and biological activity was investigated. Samples of HA containing silver (AgHA) obtained by liquid-phase method in the conditions of microwave exposure. Solubility (C{sub Ca}{sup 2+}·10{sup 3}, mol/l) of the powders AgHA was determined by chemical methods according trilonometric titration of the calcium ions in physiological solution at 25 and 37 °C. To investigate the biological activity of the samples, a series of experiments on the formation of the calcium-phosphate layer on the surface of the SBF-solution at 37 °C for 28 days. Electronic micrographs of samples taken at the end of each 7 days of the experiment, indicate the formation of calcium-phosphate layer (CPL) in the samples, the kinetics of which is shown as a function of cumulative concentrations of calcium and magnesium ions from time.

  19. Structural and mechanical study of the sintering effect in hydroxyapatite doped with iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Filho, F.P.; Nogueira, R.E.F.Q. [Metallurgical and Materials Engineering Department, Federal University of Ceara, Campus do Pici, 714 Block, 60455-760 Fortaleza, Ceara (Brazil); Graca, M.P.F.; Valente, M.A. [Physics Department (I3N), Aveiro University (Portugal); Sombra, A.S.B. [Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Department of Physics, Federal University of Ceara-Campus do Pici, Postal Code 6030, 60455-760 Fortaleza, Ceara (Brazil)], E-mail: sombra@ufc.br; Silva, C.C. [Physics Department (I3N), Aveiro University (Portugal); Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Department of Physics, Federal University of Ceara-Campus do Pici, Postal Code 6030, 60455-760 Fortaleza, Ceara (Brazil)

    2008-10-01

    Calcium phosphates are very important for applications in medicine due to their properties such as biocompatibility and bioactivity. In order to improve their properties, substitution of calcium with other ions has been proposed. Partial substitution of calcium by different ions has been made as a way to improve the properties of the calcium phosphates and also to allow new applications of apatites in medicine. In this work, hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}-HAP], prepared by high-energy dry milling (20 h), was mixed with different amounts of iron oxide (0.5, 1, 2.5 and 5 wt%). The mixtures were calcinated at 900 deg. C for 5 h with a heating rate of 3 deg. C/min in an attempt to introduce the iron oxide in the HAP structure. Small discs (12.5 mm o) were uniaxially pressed under a load of 2 t for 2 min. The pellets were sintered at 1000, 1200 and 1300 deg. C for 5 h in air. The main purpose of this work is to study why the iron oxide concentration and the heat treatment of the samples change the microhardness of the obtained ceramics. The sintered samples were characterized by X-ray diffraction (XRD), Vickers Microhardness and scanning electron microscopy (SEM)

  20. Monolithic Pellets, Composites and Thick Films of Hydroxyapatite: Correlation of Mechanical Properties with Microstructure.

    Science.gov (United States)

    Wang, Pauchiu Either

    Hydroxyapatite Ca_{10}(PO _4)_6(OH)_2 (abbreviated as HA) has great biocompatibility. Poor mechanical properties of HA implants and decomposition of HA during processing are the major obstacles for widespread uses of HA. In the present thesis we have attempted to understand the sintering behavior of monolithic HA and metal-reinforced HA-matrix composites, and the mechanism of formation of HA coating in the solutions at the normal temperature. The powders of two calcium phosphates, namely hydroxyapatite and dicalcium phosphate (DCP: chemical formula Ca_2P_2O_7), were sintered at various temperatures and in various environments. The density, flexural strength and knoop hardness of both phosphates sintered in air for 4 h initially increased with the sintering temperature, reaching maxima at around 1000-1150 ^circC, and then decreased due to decomposition. To reduce dehydroxylation, HA powder was sintered in moisture at various temperatures up to 1350^circ C and X-ray diffraction study did not indicate any decomposition at the highest sintering temperature. It is seen that dehydroxylation did not hinder sintering, but decomposition obstructed sintering of both HA and DCP. Ductile-phase reinforcement of hydroxyapatite was achieved by addition of silver particulates (5-30 vol.%) in HA powder compacts. A composite made by sintering 10 vol.% Ag and balance HA at 1200^circ C for 1 h in air had flexural strength of 75 +/- 7 MPa, which was almost double that of pure HA sintered under an identical condition. Silver in the composite melted during sintering, but due to poor wetting, did not spread in between HA particles. The increase in the flexural strength of the composites was thought to be due to crack-bridging and crack-arrest by silver inclusions. Thick films (several μm) of hydroxyapatite were deposited on silicon single crystal placed in close proximity to a plate of apatite- and wollastonite -containing glass and dipped into a simulated body fluid (SBF) at 36^circ

  1. Preparation and crystallization control of nanoparticle hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    Lianfeng Guo; Wenguang Zhang; Chengtao Wang

    2004-01-01

    Nanoparticle hydroxyapatite was prepared by a wet chemical precipitation method. The effects of different synthesis conditions, I.e. Contents of reagents (0.2, 0.5 and 0.8 mol/L), reaction temperatures (20, 37, 55 and 75℃) and reaction time (0-24 h),were studied based on crystallization process analysis and the effects of washing methods (with water or alcohol) were also studied.Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED) and inductively coupled plasma spectroscopy (ICP) were used to characterize the powders. Chemical analysis shows that the purity of the precipitated hydroxyapatite largely depends on reaction time. X-ray diffraction and TEM micrographs results show that reaction temperature is a key factor affecting crystallinity, morphology and particle size. Degree of supersaturation and stirring also affects the crystallization. Particles are in a shape of short rod and have a size of 20-40 nm in length at 20℃ and 37℃,but acicular morphology and a size of 150-170 nm in length at 75C. Particles are monocrystalline at 20℃ and 37℃, and are polycrystalline at 55℃ and 75℃. The results show that stoichiometry hydroxyapatite with controlled particle size, morphology and crystallinity can be obtained by carefully controlling the reaction conditions.

  2. Formation of hydroxyapatite by hydrolysis of alpha-tricalcium phosphate

    Science.gov (United States)

    Durucan, Caner

    Low-temperature cement-type formation of hydroxyapatite [Ca10(PO4)6(OH)2 or HAp) has value in terms of developing synthetic compounds similar in compositions to those formed by natural mineralization of bone. Understanding the in vitro kinetics of formation of the synthetic composition could produce insights into developing hard tissue analogs. The kinetics and chemistry of cement-type formation of HAp by hydrolysis of particulate alpha-tricalcium phosphate (alpha-Ca 3(PO4)2 or alpha-TCP) were examined. In particular, the effects of reaction temperature, synthesis route, inorganic salt additives and presence of biodegradable polymers (poly(alpha-hydroxyl acids) on the hydrolysis rate and microstructural/mechanical properties of HAp were determined using the following analytical techniques: isothermal calorimetry, x-ray diffraction, scanning electron microscsopy (SEM), fourier transform infrared spectroscopy (FTIR), solution chemistry, diametrical compression and 3-point bending tests. For the phase-pure alpha-TCP/water system the complete reaction times and morphologies of the resultant HAp were found to be strongly dependent on reaction temperature over a range of 37°C to 56°C. Isothermal calorimetry analyses revealed a thermally activated hydrolysis mechanism, leading to higher reaction rates with an increase in hydrolysis temperature. The microstructure of the resultant HAp typically had entangled, flake-like morphology, with HAp formed at 37°C having a smaller crystalline size than that formed at 45°C and 56°C. The cement hardening contributed to entanglement at the microstructural level. In all cases the hydrated product was phase pure calcium-deficient hydroxyapatite [Ca10-x(HPO4) x(PO4)6-x(OH)2-x], and no other intermediates or by-products were formed through the complete transformation. According to the proposed kinetic model, a two-step mechanism was found to control the overall hydrolysis reaction and thereby HAp formation at 37°C. During the first

  3. Silica enhanced formation of hydroxyapatite nanocrystals in simulated body fluid (SBF) at 37 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Sadjadi, M.S., E-mail: m.s.sadjad@gmail.com [Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ebrahimi, H.R. [Department of Chemistry, Sciences and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Meskinfam, M. [Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, University of Shahid Beheshti, Eveen Tehran (Iran, Islamic Republic of)

    2011-10-17

    Highlights: {yields} We report on fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in silica-containing simulated body fluid solution at 37 deg. C. {yields} Bioactivity and biodegradability of TCP precursor have been confirmed by the dissolution of TCP and formation of a bone like layer of new HA nanoparticles outside of the precursor after 24 h soaking in SBF solution. {yields} Successive nucleation and formation of tiny hexagonal HA nanoplates and nanorods have been confirmed by TEM results after 24 h soaking of TCP in silica-containing BSF solution. - Abstract: The chemical modification of implant (prosthesis) surfaces is being investigated worldwide for improving the fixation of orthopaedic and dental implants. The main goal in this surface modification approach is to achieve a faster bone growth and chemical bonding of the implant to the newly generated and/or remodeled bone. In this work, we report fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in simulated body fluid (SBF, inorganic components of human blood plasma) solutions at 37 deg. C, using calcium phosphate (TCP) and sodium silicate as precursors. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated enhanced nucleation and formation of bone like layer of HA nanocrystals at the surface of TCP nanoparticles and occurrence of HA nanocrystals during 24 h soaking of TCP in SBF solution containing silica ions. The average size of a nanoparticle, using Scherrer formula, was found to be 18.2 nm.

  4. Silica enhanced formation of hydroxyapatite nanocrystals in simulated body fluid (SBF) at 37 deg. C

    International Nuclear Information System (INIS)

    Highlights: → We report on fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in silica-containing simulated body fluid solution at 37 deg. C. → Bioactivity and biodegradability of TCP precursor have been confirmed by the dissolution of TCP and formation of a bone like layer of new HA nanoparticles outside of the precursor after 24 h soaking in SBF solution. → Successive nucleation and formation of tiny hexagonal HA nanoplates and nanorods have been confirmed by TEM results after 24 h soaking of TCP in silica-containing BSF solution. - Abstract: The chemical modification of implant (prosthesis) surfaces is being investigated worldwide for improving the fixation of orthopaedic and dental implants. The main goal in this surface modification approach is to achieve a faster bone growth and chemical bonding of the implant to the newly generated and/or remodeled bone. In this work, we report fast formation of hexagonal nanocrystals of calcium hydroxyapatite (HA) in simulated body fluid (SBF, inorganic components of human blood plasma) solutions at 37 deg. C, using calcium phosphate (TCP) and sodium silicate as precursors. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicated enhanced nucleation and formation of bone like layer of HA nanocrystals at the surface of TCP nanoparticles and occurrence of HA nanocrystals during 24 h soaking of TCP in SBF solution containing silica ions. The average size of a nanoparticle, using Scherrer formula, was found to be 18.2 nm.

  5. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture, exhausti

  6. In-situ deposition of hydroxyapatite on graphene nanosheets

    OpenAIRE

    Neelgund, Gururaj M.; Oki, Aderemi; Luo, Zhiping

    2013-01-01

    Graphene nanosheets were effectively functionalized by in-situ deposition of hydroxyaptite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, trans...

  7. Chemical modification of hydroxyapatite fiber and its characterization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sheng-min; LI Shi-pu

    2001-01-01

    @@ INTRODUCTION In recent years, many efforts have been made towards the development of new bone substitute materials. Among these, hydroxyapatite / absorbable polymer composites have attracted much attention since such composites may have bone bonding ability due to the presence of hydroxyapatite (HA).

  8. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States); Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States)

    2013-11-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO{sub 2} anatase, TiO{sub 2} rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I{sub corr} than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO{sub 2}, HA, and Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4}. • Polarization resistance of the coating was increased by Si substitution in HA.

  9. Nano-hydroxyapatite colloid suspension coated on chemically modified porous silicon by cathodic bias: a suitable surface for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Alejandra [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Gonzalez, Jerson [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Garcia-Pineres, Alfonso [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Investigacion en Biologia Celular y Molecular (CIBCM), Universidad de Costa Rica, 2060 (Costa Rica); Montero, Mavis L. [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Centro de Ciencia e Ingenieria en Materiales (CICIMA), Universidad de Costa Rica, 2060 (Costa Rica)

    2011-06-15

    The properties of porous silicon make it an interesting material for biological applications. However, porous silicon is not an appropriate surface for cell growth. Surface modification is an alternative that could afford a bioactive material. In this work, we report a method to yield materials by modification of the porous silicon surface with hydroxyapatite of nanometric dimensions, produced using an electrochemical process and coated on macroporous silicon substrates by cathodic bias. The chemical nature of the calcium phosphate deposited on the substrates after the experimental process and the amount of cell growth on these surfaces were characterized. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Characterization of cement calcium phosphate for use dental

    International Nuclear Information System (INIS)

    Calcium phosphates are interesting biological and medical attention due to its occurrence in different animal species and humans. Ceramics based on calcium phosphate in the form of implants or porous particulate materials, have proven to be suitable replacements for bone tissue when they are only subjected to small mechanical stresses. Was obtained research laboratory DEMA/UFCG a calcium phosphate phase. The goal is to characterize the material by X-ray diffraction (XRD) in order to analyze what the phases and infrared spectroscopy (FTIR) to identify the absorption bands of the bonding characteristic. Was identified by XRD phase present in the sample is hydroxyapatite Ca/P 1.67. In infrared spectroscopy has absorption bands characteristic of the phosphate group at 1032 cm1 region. (author)

  11. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold

    International Nuclear Information System (INIS)

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. - Highlights: • The hydroxyapatite and silver nanoparticles were grown on the polyurethane scaffold • The hydroxyapatite/polyurethane acts as reducing agent, stabilizer and matrix for Ag • The samples were well characterized by SEM-EDX, XRD, XPS, UV-visible spectroscopy • The hydroxyapatite/silver polyurethane scaffold shows antibacterial property

  12. Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.

    Science.gov (United States)

    Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang

    2016-01-01

    Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. PMID:26372940

  13. Removal of Cadmium Ions from Aqueous Solution by Silicate-incorporated Hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    SHI Hebin; ZHONG Hong; LIU Yu; DENG Jinyang

    2007-01-01

    This article reports a preliminary research on silicate-incorporated hydroxyapatite as a new environmental mineral used to remove cadmium ions from aqueous solutions. The silicate-incorporated hydroxyapatite was prepared by coprecipitation and calcining, and silicate was incorporated into the crystal lattice of hydroxyapatite by partial substitution of phosphate. The amount of cadmium ions removed by silicate-incorporated hydroxyapatite was significantly elevated, which was 76% higher than that of pure hydroxyapatite. But the sorption behavior of cadmium ions on silicate-incorporated hydroxyapatite was similar to that of pure hydroxyapatite. Morphological study revealed that silicate incorporation confined the crystal growth and increased the specific surface area of hydroxyapatite,which were in favor of enhancing the cadmium ion sorpfion capacity of the samples. Incorporation of silicate into hydroxyapatite seems to be an effective approach to improve the environmental property of hydroxyapatite on removal of aqueous cadmium ions.

  14. Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy

    Science.gov (United States)

    Jafari, Hassan; Hessam, Hamid; Shahri, Seyed Morteza Ghaffari; Assadian, Mahtab; Shairazifard, Shahin Hamtaie Pour; Idris, Mohd Hasbullah

    2016-03-01

    In this study, sol-gel dip-coating method was used to coat nano-hydroxyapatite on specimens of Ti-14Zr-13Nb alloy for orthopedic applications. The coated specimens were sintered at three different temperatures and time spans to evaluate the impact of sintering process on microstructure, mechanical, bio-corrosion, and bioactivity properties of the coating. Field-emission scanning electron microscopy and x-ray diffraction were used to analyze the coating microstructure. Coating adhesion and mechanical performance were also investigated by scratch testing. Besides, electrochemical corrosion and immersion tests were performed in simulated body fluid to examine the sintering effect on corrosion performance and bioactivity of the coatings, respectively. The evaluations of coated specimens displayed that sintering at elevated temperatures leads to higher surface integrity and improves crystallinity of the nano-hydroxyapatite to approximately 89% which brings about distinctively enhanced mechanical properties. Similarly, it improved the corrosion rate for about 17 times through sintering at 700 °C. Immersion test proved that the coating increased the bioactivity resulted from the dissolution of calcium phosphates into the corresponding environment. It is noticeable that sintering the dip-coated specimens in the nano-hydroxyapatite improves corrosion performance and maintains bioactive behaviors as well.

  15. Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite

    Science.gov (United States)

    Handley-Sidhu, Stephanie; Mullan, Thomas K.; Grail, Quentin; Albadarneh, Malek; Ohnuki, Toshihiko; Macaskie, Lynne E.

    2016-03-01

    Anthropogenic radionuclides contaminate a range of environments as a result of nuclear activities, for example, leakage from waste storage tanks/ponds (e.g. Hanford, USA or Sellafield sites, UK) or as a result of large scale nuclear accidents (e.g. Chernobyl, Ukraine or Fukushima, Japan). One of the most widely applied remediation techniques for contaminated waters is the use of sorbent materials (e.g. zeolites and apatites). However, a key problem at nuclear contaminated sites is the remediation of radionuclides from complex chemical environments. In this study, biogenic hydroxyapatite (BHAP) produced by Serratia sp. bacteria was investigated for its potential to remediate surrogate radionuclides (Sr2+ and Co2+) from environmentally relevant waters by varying pH, salinity and the type and concentration of cations present. The sorption capacity of the BHAP for both Sr2+ and Co2+ was higher than for a synthetically produced hydroxyapatite (HAP) in the solutions tested. BHAP also compared favorably against a natural zeolite (as used in industrial decontamination) for Sr2+ and Co2+ uptake from saline waters. Results confirm that hydroxyapatite minerals of high surface area and amorphous calcium phosphate content, typical for biogenic sources, are suitable restoration or reactive barrier materials for the remediation of complex contaminated environments or wastewaters.

  16. Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite

    Science.gov (United States)

    Handley-Sidhu, Stephanie; Mullan, Thomas K.; Grail, Quentin; Albadarneh, Malek; Ohnuki, Toshihiko; Macaskie, Lynne E.

    2016-01-01

    Anthropogenic radionuclides contaminate a range of environments as a result of nuclear activities, for example, leakage from waste storage tanks/ponds (e.g. Hanford, USA or Sellafield sites, UK) or as a result of large scale nuclear accidents (e.g. Chernobyl, Ukraine or Fukushima, Japan). One of the most widely applied remediation techniques for contaminated waters is the use of sorbent materials (e.g. zeolites and apatites). However, a key problem at nuclear contaminated sites is the remediation of radionuclides from complex chemical environments. In this study, biogenic hydroxyapatite (BHAP) produced by Serratia sp. bacteria was investigated for its potential to remediate surrogate radionuclides (Sr2+ and Co2+) from environmentally relevant waters by varying pH, salinity and the type and concentration of cations present. The sorption capacity of the BHAP for both Sr2+ and Co2+ was higher than for a synthetically produced hydroxyapatite (HAP) in the solutions tested. BHAP also compared favorably against a natural zeolite (as used in industrial decontamination) for Sr2+ and Co2+ uptake from saline waters. Results confirm that hydroxyapatite minerals of high surface area and amorphous calcium phosphate content, typical for biogenic sources, are suitable restoration or reactive barrier materials for the remediation of complex contaminated environments or wastewaters. PMID:26988070

  17. in situ ring-opening polymerization of hydroxyapatite/poly(ethylene adipate)--(ethylene terephthalate) biomimetic composites

    Indian Academy of Sciences (India)

    Punnama Siriphannon; Pathavuth Monvisade

    2013-02-01

    Hydroxyapatite/poly(ethylene adipate)--poly(ethylene terephthalate) biomaterials (HAp/PEA--PET) have been prepared by ring opening polymerization (ROP) of cyclic oligo(ethylene adipate)--oligo(ethylene terephthalate) (C-OEA--C-OET) in the porous hydroxyapatite (HAp) scaffolds at 250 °C for 24 h under vacuum. The content of ROP-PEA--PET in the HAp/PEA--PET composite was about 20 wt% with the values of number average molecular weight ($\\bar{M}$n) and weight average molecular weight ($\\bar{M}$W) of 3380 and 7160 g/mol, respectively. Compressive strength and modulus of the HAp/PEA--PET composites were about 29 and 246 MPa, respectively. These mechanical properties were higher than those of the porous HAp templates and natural cancellous bone. In vitro bioactivity of the HAp/PEA--PET composites was studied by soaking in simulated body fluid (SBF) under the flowing system at the rate of 130 mL/day for 7, 14, 21 and 28 days. The formation of hydroxyapatite nanocrystals was observed on the composite surfaces through the consumption of calcium and phosphorus from the SBF solution, indicating the bioactivity of these HAp/PEA--PET composites. These results indicated the competency of HAp/PEA--PET composites for biomedical applications.

  18. The effect of calcium and chitosan metabolism to the excretion of radiostrontium in mice

    International Nuclear Information System (INIS)

    Chitosan, a natural nontoxic chelator, was reported to reduce whole body retention of radiostrontium in mice. As calcium has a similar chemical properties to strontium both of which be easily bound with hydroxyapatite structure, calcium can be either a competitor or enhancer to chitosan on the removal of radiostrontium. We compared the effect of chitosan and calcium on the excretion of ingested radiostrontium (85Sr). Chitosan or calcium(CaCl2) and usual food was mixed as 1:99 by weight. The mixed food to chitosan(group 1) or calcium(group 2) were given orally for 30 days before 85Sr administration. In other groups, mixed calcium and chitosan solution (group 3), 1% calcium (group 4), or 1% chitosan solution (group 5) was given for 7 days immediately after oral administration of 85SrCl2 (0.25μCi). In control group, no chitosan or calcium were given. Either chitosan or calcium was effective on the removal of 85Sr from mouse body (Table 1). Addition of calcium on chitosan did not improve or deteriorate the effect of chitosan on the removal of 85Sr from mouse body. In conclusion, calcium was similarly effective on the removal of 85Sr from mouse body. (author)

  19. Cytocompatibility of Highly Dispersed Nano Hydroxyapatite Sol

    Institute of Scientific and Technical Information of China (English)

    MAOXuan; WUPei-zhu; TANGShun-qing; YANYan-ling; DAIYun

    2004-01-01

    Nano hydroxyapatite (HA) crystals were prepared and dispersed in water to form HA sol by simple methods. The cytotoxicity of the sols were tested by MTT assay and lymphocytotoxicity test. Results show that the average secondary particle size of the sol containing uncalcined HA crystals is around 750 nm, within micrograde; while the sol of calcined HA contains over 88% nanoparticles with the size between 65~86 nm, in which nano HA crystals are highly dispersed. Both the HA sols have no toxicity on the proliferation of 3T3 cells and lymphocytes. It demonstrates that the nano sol is safe for the application of drug delivery.

  20. In Vivo Evaluation of Hydroxyapatite Foams

    Directory of Open Access Journals (Sweden)

    P. Sepulveda

    2002-09-01

    Full Text Available Porous hydroxyapatite manufactured by foaming of aqueous ceramic suspensions and setting via gelcasting of organic monomers was tested for in vivo biocompatibility in rabbit tibia for a period of 8 weeks. The foams provide tortous frameworks and large interconnected pores that support cell attachment and organisation into 3D arrays to form new tissue. The HA foam implants were progressively filled with mature new bone tissue and osteoid after the implanted period, confirming the high osteoconductive potential and high biocompatibility of HA and the suitability of foam network in providing good osteointegration. No immune or inflammatory reactions were detected.

  1. Preparation of hydroxyapatite nanoparticles by sol-gel method with optimum processing parameters

    Energy Technology Data Exchange (ETDEWEB)

    Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah [Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO{sub 3}){sub 2}.4H{sub 2}O and phosphorous pentoxide, P{sub 2}O{sub 5}. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used for its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.

  2. Obtaining of biodegradable polylactide films and fibers filled hydroxyapatite for medical purposes

    Science.gov (United States)

    Lytkina, D. N.; Shapovalova, Y. G.; Rasskazova, L. A.; Kurzina, I. A.; Filimoshkin, A. G.

    2015-11-01

    Relevance of the work is due to the need for new materials that are used in medicine (orthopedics, surgery, dentistry, and others) as a substitute for natural bone tissue injuries, fractures, etc. The aim of presented work is developing of a method of producing biocompatible materials based on polyesters of hydroxycarboxylic acids and calcium phosphate ceramic (hydroxyapatite, HA) with homogeneous distribution of the inorganic component. Bioactive composites based on poly-L-lactide (PL) and hydroxyapatite with homogeneous distribution were prepared. The results of scanning electron microscopy confirm homogeneous distribution of the inorganic filler in the polymer matrix. The positive effect of ultrasound on the homogeneity of the composites was determined. The rate of hydrolysis of composites was evaluated. The rate of hydrolysis of polylactide as an individual substance is 7 times lower than the rate of hydrolysis of the polylactide as a part of the composite. It was found that materials submarines HA composite and do not cause a negative response in the cells of the immune system, while contributing to anti-inflammatory cytokines released by cells.

  3. Study of nanobiomaterial hydroxyapatite in simulated body fluid: Formation and growth of apatite

    Energy Technology Data Exchange (ETDEWEB)

    Chavan, Pradnya N.; Bahir, Manjushri M.; Mene, Ravindra U.; Mahabole, Megha P. [School of Physical Sciences, SRTM University, Nanded 431606 (India); Khairnar, Rajendra S., E-mail: rk2kin@yahoo.co [School of Physical Sciences, SRTM University, Nanded 431606 (India)

    2010-04-15

    Hydroxyapatite (HAp) is main mineral component of hard tissues. It is widely used in biomedical applications due to its excellent bioactivity and biocompatibility. Nanosized HAp is synthesized by wet chemical process. The synthesized HAp is characterized by XRD, FTIR, AFM and SEM for structural, morphological and functional groups analysis. The Simulated Body Fluid (SBF) is prepared by using chlorides, carbonates, oxides, and sulphates of alkali metals at 37 deg. C. The ion exchange process is carried out to exchange calcium cation by sodium and potassium. The pure HAp and ion exchanged HAp pellets are used as source of nucleating agent for apatite layer formation, in SBF maintained at 37 deg. C using incubator for different periods of time to study the bioactivity. The dielectric study is carried out on incubated pure and ion exchanged HAp pellets. XRD analysis confirms the hexagonal phase of hydroxyapatite. FTIR shows the presence of functional groups. SEM observations reveal that the growth of highly porous apatite layer on HAp surface increases with time. The dielectric constant is found to be in the range 3-12. It is seen that the synthesized HAp bioceramic nano material not only supports the growth of apatite layer but also accelerates the growth onto itself.

  4. Effect of aging temperature on formation of sol-gel derived fluor-hydroxyapatite nanoparticles.

    Science.gov (United States)

    Joughehdoust, S; Behnamghader, A; Jahandideh, R; Manafi, S

    2010-04-01

    Synthetic hydroxyapatite (HA) has been recognized as one of the most important bone substitute materials in orthopaedics and dentistry over past few decades because of its chemical and biological similarity to the mineral phase of human bone. One solution for reduction the solubility of HA in biological environments is replacing F- by OH in HA structure and forming fluor-hydroxyapatite (FHA) solid solution. In this paper, FHA nanoparticles were successfully synthesized by a sol-gel method. Also, the influence of aging temperature on formation of FHA powder was studied. Equimolar solutions of calcium nitrate tetrahydrate, triethyl phosphite and ammonium fluoride in ethanol were used as Ca, P and F precursors. After aging at different temperatures, the synthesized powders were heat treated at 550 degrees C. The powders were investigated with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), selected area electron diffraction pattern (SAED), energy dispersive analysis of X-ray (EDAX) and zetasizer measurement. The results of XRD proved the presence of fluorapatite (FA) and HA in all samples. In addition, the formation of FHA was confirmed by FT-IR results. XRD studies also showed that the crystallites were in nanometric scale. At the same time, this result was in good agreement with the result of zetasizer analysis.

  5. Surface characteristics of hydroxyapatite films deposited on anodized titanium by an electrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang [Research Institute, Kuwotech, 970–88, Wolchul-dong, Buk-ku, Gwangju (Korea, Republic of); Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon; Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State, University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of)

    2013-11-01

    The biocompatibility of anodized titanium (Ti) was improved by an electrochemically deposited calcium phosphate (CaP) layer. The CaP layer was grown on the anodized Ti surface in modified simulated body fluid (M-SBF) at 85 °C. The phases and morphologies for the CaP layers were influenced by the electrolyte concentration. Nano flake-like precipitates that formed under low M-SBF concentrations were identified as hydroxyapatite (HAp) crystals orientated in the c-axis direction. In high M-SBF concentrations, the CaP layer formed micro plate-like precipitates on anodized Ti, and micropores were covered with HAp. Proliferation of murine preosteoblast cell (MC3T3-E1) on the HAp/anodized Ti surfaces was significantly higher than for untreated Ti and anodized Ti surfaces. - Highlights: • CaP layers were grown on anodized Ti surfaces by an electrochemical deposition process. • Phases and morphologies of layers were influenced by the electrolyte concentration. • Superior cell proliferation was observed on hydroxyapatite-coated anodized surfaces.

  6. Compounding of hydroxyapatite crystals to molecularly aligned crab tendon chitosan: the effect of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Atsushi [Creative Research Initiative ' Sousei' , Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan) and Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)]. E-mail: Matsuda.Atsushi@nims.go.jp; Kasahara, Mayumi [School of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-0072 (Japan); Kobayashi, Hisatoshi [Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)]. E-mail: Kobayashi.Hisatoshi@nims.go.jp; Ichinose, Noboru [School of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-0072 (Japan); Tanaka, Junzo [Creative Research Initiative ' Sousei' , Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan); Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)

    2004-12-01

    The aim of this study was to demonstrate the effect of heat treatment on the formation of hydroxyapatite crystals in molecularly aligned chitosan. Molecularly aligned chitosan was prepared from crab (Macrocheira Kaempferi) tendons by treatment with ethanol and a 4 wt.% NaOH solution to remove proteins and calcium phosphate, subsequently performed was deacetyl treatment using a 50 wt.% NaOH solution at 100 deg. C. The tendon chitosan (t-chitosan) obtained was compounded with hydroxyapatite (HAp) before and after heat treatment by applying an alternate soaking method. The amount of compounded HAp to t-chitosan before heat treatment was larger than that after heat treatment as shown by thermogravimetric and differential thermal analysis (TG-DTA) analysis. The HAp compounded to t-chitosan before heat treatment was distributed on the whole area as shown by energy dispersive X-ray spectroscopy (EDS) analysis. On the other hand, the compound after heat treatment was distributed only on the surface of t-chitosan. The compounded HAp crystals to t-chitosan before heat treatment were aligned in the horizontal direction to t-chitosan molecules as shown by transmission electron microscopy (TEM) and electron diffraction technique. These results suggest the control of crystallographic orientation in HAp by aligned amino groups.

  7. Obtaining of biodegradable polylactide films and fibers filled hydroxyapatite for medical purposes

    Energy Technology Data Exchange (ETDEWEB)

    Lytkina, D. N., E-mail: darya-lytkina@yandex.ru; Shapovalova, Y. G., E-mail: elena.shapovalova@ro.ru; Rasskazova, L. A., E-mail: ly-2207@mail.ru; Kurzina, I. A., E-mail: kurzina99@mail.ru; Filimoshkin, A. G., E-mail: filag05@rambler.ru [National Research Tomsk State University 36, Lenina Avenue, Tomsk, 634050 (Russian Federation)

    2015-11-17

    Relevance of the work is due to the need for new materials that are used in medicine (orthopedics, surgery, dentistry, and others) as a substitute for natural bone tissue injuries, fractures, etc. The aim of presented work is developing of a method of producing biocompatible materials based on polyesters of hydroxycarboxylic acids and calcium phosphate ceramic (hydroxyapatite, HA) with homogeneous distribution of the inorganic component. Bioactive composites based on poly-L-lactide (PL) and hydroxyapatite with homogeneous distribution were prepared. The results of scanning electron microscopy confirm homogeneous distribution of the inorganic filler in the polymer matrix. The positive effect of ultrasound on the homogeneity of the composites was determined. The rate of hydrolysis of composites was evaluated. The rate of hydrolysis of polylactide as an individual substance is 7 times lower than the rate of hydrolysis of the polylactide as a part of the composite. It was found that materials submarines HA composite and do not cause a negative response in the cells of the immune system, while contributing to anti-inflammatory cytokines released by cells.

  8. In vitro study of nano-hydroxyapatite/chitosan–gelatin composites for bio-applications

    Directory of Open Access Journals (Sweden)

    Khaled R. Mohamed

    2014-03-01

    Full Text Available The present work aims to study the in vitro properties of nano-hydroxyapatite/chitosan–gelatin composite materials. In vitro behavior was performed in simulated body fluid (SBF to verify the formation of apatite layer onto the composite surfaces. The in vitro data proved the deposition of calcium and phosphorus ions onto hydroxyapatite /polymeric composite surfaces especially those containing high concentrations of polymer content. The degradation of the composites decreased with increase in the polymeric matrix content and highly decreased in the presence of citric acid (CA, especially these composites which contain 30% polymeric content. The water absorption of the composites increased with increase in the polymeric content and highly increased with CA addition. The Fourier transformed infrared reflectance (FT-IR and scanning electron microscope (SEM for the composites confirmed the formation of bone-like apatite layer on the composite surfaces, especially those containing high content of polymers (30% with 0.2 M of CA. These promising composites have suitable properties for bio-applications such as bone grafting and bone tissue engineering applications in the future.

  9. Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys.

    Science.gov (United States)

    Lugovskoy, Alex; Lugovskoy, Svetlana

    2014-10-01

    Hydroxyapatite (HA) is a bioactive material that is widely used for improving the osseointegration of titanium dental implants. Titanium can be coated with HA by various methods, such as chemical vapor deposition (CVD), thermal spray, or plasma spray. HA coatings can also be grown on titanium surfaces by hydrothermal, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO), or microarc oxidation (MAO), is an electrochemical method that enables the production of a thick porous oxide layer on the surface of a titanium implant. If the electrolyte in which PEO is performed contains calcium and phosphate ions, the oxide layer produced may contain hydroxyapatite. The HA content can then be increased by subsequent hydrothermal treatment. The HA thus produced on titanium surfaces has attractive properties, such as a high porosity, a controllable thickness, and a considerable density, which favor its use in dental and bone surgery. This review summarizes the state of the art and possible further development of PEO for the production of HA on Ti implants.

  10. Surface characteristics of hydroxyapatite films deposited on anodized titanium by an electrochemical method

    International Nuclear Information System (INIS)

    The biocompatibility of anodized titanium (Ti) was improved by an electrochemically deposited calcium phosphate (CaP) layer. The CaP layer was grown on the anodized Ti surface in modified simulated body fluid (M-SBF) at 85 °C. The phases and morphologies for the CaP layers were influenced by the electrolyte concentration. Nano flake-like precipitates that formed under low M-SBF concentrations were identified as hydroxyapatite (HAp) crystals orientated in the c-axis direction. In high M-SBF concentrations, the CaP layer formed micro plate-like precipitates on anodized Ti, and micropores were covered with HAp. Proliferation of murine preosteoblast cell (MC3T3-E1) on the HAp/anodized Ti surfaces was significantly higher than for untreated Ti and anodized Ti surfaces. - Highlights: • CaP layers were grown on anodized Ti surfaces by an electrochemical deposition process. • Phases and morphologies of layers were influenced by the electrolyte concentration. • Superior cell proliferation was observed on hydroxyapatite-coated anodized surfaces

  11. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.

    Science.gov (United States)

    Milovac, Dajana; Gallego Ferrer, Gloria; Ivankovic, Marica; Ivankovic, Hrvoje

    2014-01-01

    In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200°C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88MPa) and the elastic modulus (15.5MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications. PMID:24268280

  12. Properties of Nanostructured Hydroxyapatite Prepared by a Spray Drying Technique.

    Science.gov (United States)

    Chow, Laurence C; Sun, Limin; Hockey, Bernard

    2004-01-01

    In previous studies nano sized hydroxyapatite (HA) particles were prepared by solgel or precipitation methods, in which the products were washed by aqueous or non-aqueous liquids to remove impurities or undesired components. The washing is know to modify the surfaces of the cystalline particles. This study evaluated properties of nano HA materials prepared by a spray drying method in which the HA product was not exposed to any liquid after its formation. The spray drying apparatus consisted of a nozzle that sprayed an acidic calcium phosphate solution in the form of a fine mist into a stream of filtered air flowing through a heated glass column. The water and volatile acid were evaporated by the time the mist reached the end of the column, and the fine particles were collected by an electrostatic precipitator. Powder x ray diffraction patterns suggested the material was amorphous, exhibiting a single broad peak at 30.5° 2θ. However, high resolution transmission electron microscopic analysis showed that the particles, some of which were 5 nm in size, exhibited well ordered HA lattice fringes. Small area diffraction patterns were indicative of HA. Fourier transfer infrared spectroscopy showed patterns of typical of HA with small amounts of HPO4 (2-). The thermodynamic solubility product of the nano HA was 3.3 × 10(-94) compared to 1 × 10(-117) for macro scale crystalline HA. These results showed that a spray drying technique can be used to prepare nanometer sized crystalline HA that have significantly different physicochemical properties than those of its bulk-scale counterpart. PMID:27366633

  13. The enamel protein amelotin is a promoter of hydroxyapatite mineralization.

    Science.gov (United States)

    Abbarin, Nastaran; San Miguel, Symone; Holcroft, James; Iwasaki, Kengo; Ganss, Bernhard

    2015-05-01

    Amelotin (AMTN) is a recently discovered protein that is specifically expressed during the maturation stage of dental enamel formation. It is localized at the interface between the enamel surface and the apical surface of ameloblasts. AMTN knock-out mice have hypomineralized enamel, whereas transgenic mice overexpressing AMTN have a compact but disorganized enamel hydroxyapatite (HA) microstructure, indicating a possible involvement of AMTN in regulating HA mineralization directly. In this study, we demonstrated that recombinant human (rh) AMTN dissolved in a metastable buffer system, based on light scattering measurements, promotes HA precipitation. The mineral precipitates were characterized by scanning and transmission electron microscopy and electron diffraction. Colloidal gold immunolabeling of AMTN in the mineral deposits showed that protein molecules were associated with HA crystals. The binding affinity of rh-AMTN to HA was found to be comparable to that of amelogenin, the major protein of the forming enamel matrix. Overexpression of AMTN in mouse calvaria cells also increased the formation of calcium deposits in the culture medium. Overexpression of AMTN during the secretory stage of enamel formation in vivo resulted in rapid and uncontrolled enamel mineralization. Site-specific mutagenesis of the potential serine phosphorylation motif SSEEL reduced the in vitro mineral precipitation to less than 25%, revealing that this motif is important for the HA mineralizing function of the protein. A synthetic short peptide containing the SSEEL motif was only able to facilitate mineralization in its phosphorylated form ((P)S(P) SEEL), indicating that this motif is necessary but not sufficient for the mineralizing properties of AMTN. These findings demonstrate that AMTN has a direct influence on biomineralization by promoting HA mineralization and suggest a critical role for AMTN in the formation of the compact aprismatic enamel surface layer during the maturation

  14. Effects of the Interaction between Hydroxyapatite Nanoparticles and Hepatoma Cells

    Institute of Scientific and Technical Information of China (English)

    YIN Meizhen; XU Weiguo; CUI Bingcun; DAI Honglian; HAN Yingchao; YIN Yixia; LI Shipu

    2014-01-01

    To gain a better understanding of the anticancer effects of hydroxyapatite (HAP) nanoparticles in vivo and in vitro, the effects of the interaction of HAP nanoparticles with hepatoma cells were explored. HAP nanoparticles were prepared by homogeneous precipitation and characterized by laser particle analysis and transmission electron microscopy (TEM). HAP nanoparticles were observed to be uniformly distributed, with rod-like shapes and diameters in the range of 42.1-87.1 nm. Overnight attached, suspended, and proliferating Bel-7402 cells were incubated with HAP nanoparticles. Inverted microscopy observation revealed that HAP nanoparticles with a cell membrane showed good adsorption. TEM demonstrated that HAP nanoparticles were present on the surface of cells, continuously taken up by cells through endocytosis, and transported in vesicles close to the nucleus. Fluorescence microscopy showed that the concentrations of intracellular Ca2+labeled with Fluo-3 calcium fluorescent probe were significantly enhanced. In addition, inverted microscopy observation revealed that suspended cells treated with HAP nanoparticles did not adhere to the culture bottle, resulting in cell death. After the overnight attached cells were treated with HAP nanoparticles for 96 h with increasing doses of HAP nanoparticles, inverted microscopy observation revealed that cell proliferation was slowed and cell-cell adhesion was weakened. Feulgen staining and image analysis indicated that the nuclear DNA content of the cells was markedly reduced, and argyrophilic nucleolar organizer region (AgNOR) staining and image analysis indicated that the number of AgNORs was significantly decreased. Therefore, hepatoma cells brought about the adsorption, uptake, transport and degradation of HAP nanoparticles. In addition, HAP nanoparticles affected hepatoma cells with regard to cell-cell adhesion, cell and extracellular matrix adhesion, and DNA and protein synthesis;thus inhibiting cell proliferation. This

  15. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  16. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  17. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  18. Coronary Calcium Scan

    Science.gov (United States)

    ... the NHLBI on Twitter. What Is a Coronary Calcium Scan? A coronary calcium scan is a test ... you have calcifications in your coronary arteries. Coronary Calcium Scan Figure A shows the position of the ...

  19. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  20. Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal

    Institute of Scientific and Technical Information of China (English)

    CHEN Xuechu; KONG Hainan; WU Deyi; WANG Xinze; LIN Yongyong

    2009-01-01

    Xonotlite was synthesized and tested for phosphate removal and recovery from synthetic solution in a batch mode. The effects of pH, initial calcium concentration, bicarbonate concentration on phosphate removal through crystallization were examined. The morphology and X-ray diffraction (XRD) pattern of xonotlite before and after crystallization confirmed the formation of crystalline hydroxyapatite. The results indicated that, the crystallization product had a very high P content (> 10%), which is comparable to phosphate rock at the dosage of 50-200 mg xonotlite per liter, with a maximum P content of 16.7%. The kinetics of phosphate removal followed the second-order reaction equation. The phosphate removal ability increased with increasing pH. The precipitation of calcium phosphate took place when pH is higher than 7.2, whereas the crystallization occurred at pH 6.0. A high calcium concentration can promote the removal of phosphate via crystallization, while a high bicarbonate concentration also enhanced phosphate removal through that it increased the pH and thus induced the precipitation process. When xonotlite was used to remove phosphate from wastewater, the removal efficiency could reach 91.3% after 24 h reaction time, with removal capacity 137 mg/g. The results indicated that xonotlite might be used as an effective crystal seed for the removal and recovery of phosphate from aqueous solution.

  1. Characterization of a calcium phosphate cement based on alpha-tricalcium phosphate obtained by wet precipitation process

    International Nuclear Information System (INIS)

    There are several systems of calcium phosphate cements being studied. Those based on alpha-tricalcium phosphate are of particular interest. After setting they produce calcium deficient hydroxyapatite similar to bone like hydroxyapatite. This work aims to obtain alpha-tricalcium phosphate powders by the wet precipitation process, using calcium nitrate and phosphoric acid as reagents. This powder was characterized by infrared spectroscopy, X-ray diffraction and particle size distribution. In order to prepare the calcium phosphate cement, the powder was mixed with an accelerator in an aqueous solution. The mechanical properties of the cement were assessed and it was evaluated by means of apparent density, X-ray diffraction and scanning electron microscopy. The described method produced crystalline alpha-tricalcium phosphate as the major phase. The calcium phosphate cement showed high values of compression strength (50 MPa). The soaking of the cement in a simulated body fluid (SBF) formed a layer of hydroxyapatite like crystals in the surface of the samples. (author)

  2. Comparison of crystallinity between natural hydroxyapatite and synthetic cp-Ti /HA coatings

    Directory of Open Access Journals (Sweden)

    Camila Molena de Assis

    2005-06-01

    Full Text Available Commercial purity titanium (cp-Ti, and some of its alloys are important materials in the medical field because of their excellent biocompatibility and mechanical properties. Recently a simple chemical method to induce bioactivity in these inert metallic materials was reported. In this work, the biomimetic chemical process has been used to modify the surface of cp-Ti with the formation of a deposit layer of apatite (a calcium phosphate compound. The main purpose was to study the influence of heat treatment on changes in crystallinity in the deposited phases. X-ray diffraction analysis and scanning electron microscopy showed that the apatite coatings heat treated between 400 and 600 °C were less crystalline, similar to biological apatites. Upon heat treatment at temperatures above 700 °C, the apatite coatings appeared more crystalline, and were a mixture of hydroxyapatite, octacalcium phosphate and magnesium phosphate.

  3. Biomimetic mineralization of nano-sized, needle-like hydroxyapatite with ultrahigh capacity for lysozyme adsorption.

    Science.gov (United States)

    Ma, Yi; Zhang, Juan; Guo, Shanshan; Shi, Jie; Du, Wenying; Wang, Zheng; Ye, Ling; Gu, Wei

    2016-11-01

    Because of its superior biocompatibility, hydroxyapatite (HA) has been widely exploited as a promising vehicle to deliver a broad range of therapeutics in a variety of biological systems. Herein, we report a biomimetic process to prepare nano-sized, colloidal stable HA with needle-like morphology by using carboxymethyl cellulose (CMC) as the template. It was revealed that the needle-like HA was transformed from the spherical amorphous calcium phosphate (ACP) nanoparticles after a 14-day period of aging under ambient conditions. The needle-like HA/CMC exhibited an ultra-high lysozyme adsorption capacity up to 930-940mg/g. Moreover, a sustained and pH-sensitive release of adsorbed lysozyme from HA/CMC was evidenced. Therefore, our biomimetic needle-like HA/CMC nanoparticles hold great potential in serving as an efficient carrier for the delivery and controlled release of lysozyme. PMID:27524053

  4. Use of sodium polyaspartate for the removal of hydroxyapatite/brushite deposits from stainless steel tubing

    Energy Technology Data Exchange (ETDEWEB)

    Littlejohn, F.; Saez, A.E.; Grant, C.S. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemical Engineering

    1998-07-01

    This research investigates the use of sodium polyaspartate, a nontoxic, biodegradable polycarboxylic sequestrant, for removing calcium phosphate deposit consisting of hydroxyapatite (HAP) and brushite or dicalcium phosphate dihydrate (DCPD) from stainless steel surfaces. Cleaning studies show that the use of sodium polyaspartate under alkaline conditions significantly enhances the removal rates when compared to deionized water. In acidic solutions, sodium polyaspartate concentrations below 300 ppm inhibit removal of HAP/DCPD deposits whereas higher concentrations increase the removal rate. Comparative cleaning studies at alkaline pHs show that sodium polyaspartate cleans the surface at a rate comparable to sodium citrate but slower than in ethylenediaminetetraacetic acid. Supplementary dissolution experiments show that sodium polyaspartate enhances the HAP/DCPD dissolution rate while inhibiting the release of Ca{sup 2+}. On the basis of these findings, the authors have concluded that sodium polyaspartate improves the HAP/DCPD dissolution and cleaning rates by Ca{sup 2+} sequestration.

  5. Gelatin-Chitosan composite capped gold nanoparticles: a matrix for the growth of hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Sobhana, S. S. Liji; Sundaraseelan, J.; Sekar, S.; Sastry, T. P., E-mail: sastrytp@hotmail.com; Mandal, A. B., E-mail: clrim@vsnl.co [Central Leather Research Institute, Bio-products Lab (India)

    2009-02-15

    Growth of hydroxyapatite (HA) on gelatin-chitosan composite capped gold nanoparticles is presented for the first time by employing wet precipitation methods and we obtained good yields of HA. Fourier transform infrared spectroscopy (FTIR) spectrum has shown the characteristic bands of phosphate groups in the HA. Scanning electron microscopy (SEM) pictures have shown spherical nanoparticles with the size in the range of 70-250 nm, whereas {>=}2-50 nm sized particles were visualized in high resolution transmission electron microscopy (HR-TEM). X-ray diffraction (XRD) spectrum has shown Bragg reflections which are comparable with the HA. Energy dispersive X-ray (EDX) studies have confirmed calcium/phosphate stoichiometric ratio of HA. The thermogravimetric analysis (TGA) has shown about 74% of inorganic crystals in the nanocomposite formed. These results have revealed that gelatin-chitosan capped gold nanoparticles, acted as a matrix for the growth of HA.

  6. Synthesis of Chitosan-Hydroxyapatite Composites and Its Effect on the Properties of Bioglass Bone Cement

    Institute of Scientific and Technical Information of China (English)

    Jingxiao Liu; Fei Shi; Ling Yu; Liting Niu; Shanshan Gao

    2009-01-01

    Chitosan-hydroxyapatite (CS-HA) composite powders were synthesized via in situ co-precipitation method, through the reaction of Ca(NO3)2 and H3PO4 in the simulated body fluid (SBF) containing appropriate amount of chitosan. The thermal evolution, microstructure and morphology were studied by TG-DTA (thermogravimetry-differential thermal analysis), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy) and TEM (transmission electron microscopy). The in vitro bioactivity test showed that the obtained CS-HA composites had higher capability of inducing calcium ions deposition. Effects of CS-HA composites on the bioactivity and compressive strength of bioglass bone cement were investigated. The results indicated that the bioactivity of bioglass bone cement could be improved further when CS-HA composite powders were added into the cement, and appropriate amount of CS-HA additive was favorable for compressive strength improvement of bioglass bone cement.

  7. Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste

    Directory of Open Access Journals (Sweden)

    S.M. Mousa

    2016-05-01

    Full Text Available Nano-material of calcium hydroxyapatite (n-CaHAP, with particle size ranging from 50 to 57 nm which was prepared from phosphogypsum waste (PG, was used for the removal of lead ions (Pb (II from aqueous solutions. It was investigated in a batch reactor under different experimental conditions. Effects of process parameters such as pH, initial Pb ion concentration and adsorbent dose were studied. Also, various types of kinetic modeling have been studied where the lead uptake was quantitatively evaluated using the Langmuir, Freundlich and Dubinin–Kaganer–Radushkevich (DKR model. The Pb ions adsorption onto n-CaHAP could best fit the Langmuir isotherm model. The maximum adsorption capacity (qmax for Pb ions was 769.23 mg/g onto n-CaHAP particles.

  8. Preparation and mechanical property of core-shell type chitosan/calcium phosphate composite fiber

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Atsushi [Japan Society for the Promotion of Science, Ikenohata1-1-1, Daitou-ku, Tokyo 110-0008 (Japan) and Creative Research Initiative ' Sousei' , Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan)]. E-mail: MATSUDA.Atsushi@nims.go.jp; Ikoma, Toshiyuki [Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan); Kobayashi, Hisatoshi [Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)]. E-mail: Kobayashi.Hisatoshi@nims.go.jp; Tanaka, Junzo [Creative Research Initiative ' Sousei' , Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan); Biomaterials Research Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)

    2004-12-01

    Core-shell type chitosan/calcium phosphate composite fibers were prepared by a facile wet spinning method; the chitosan aqueous solution with PO{sub 4} ions was dropped and coagulated in the ethanol/calcium hydroxide solutions at different mixed ratio. X-ray diffraction (XRD) patterns indicated that the crystal phases of calcium phosphates in the composite fibers were a low-crystalline hydroxyapatite (HAp; Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2})or the low-crystalline hydroxyapatite/brushite mixture depended on the ratio of ethanol/calcium hydroxide solutions. The inorganic contents were ca. 60 wt.% by using the TG-DTA analysis. The energy-dispersive X-ray spectroscopy (EDS) analysis indicated that Ca and P atoms were mainly distributed on the outer layer of the composite fiber to grow calcium phosphate crystals; however, a little amount of P atom still remained at the inside of the fiber. This indicated that the composite fibers formed a unique core-shell structure with shell of calcium phosphate and core of chitosan. The mechanical property of the fibers was reinforced by the initial concentration of chitosan solution.

  9. Characterization of polyetheretherketone-hydroxyapatite nanocomposite materials

    International Nuclear Information System (INIS)

    Research highlights: → PEEK-HA composite materials have been successfully produced. → The tensile strength of the composites is 5% higher than that of pure PEEK. → HA nanoparticles show strong bonding to PEEK matrix. - Abstract: Polyetheretherketone-hydroxyapatite nanocomposite materials are investigated for the purpose of improving the bonding between polyetheretherketone (PEEK) matrix and hydroxyapatite (HA) fillers since their debonding deteriorates the otherwise superior antifatigue properties of PEEK materials. The nanocomposites are successfully produced by incorporating lab-prepared HA nanoparticles, up to 15.0 vol%, to PEEK matrix via a compounding and injection molding process. The microstructures of the composite samples are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystallization and phase structure of the composites are examined by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) measurements. The mechanical properties of the composites are evaluated, and their tensile strength reaches 98 MPa at 5.0 vol% HA. Most importantly the study suggests that there is no debonding occurring between the well-dispersed HA nanoparticles and PEEK matrix, which provides a promising way to overcome the debonding issue of the PEEK-HA composites.

  10. Erosive potential of calcium-modified acidic candies in irradiated dry mouth patients

    DEFF Research Database (Denmark)

    Jensdottir, Thorbjörg; Buchwald, Christian; Nauntofte, Birgitte;

    2010-01-01

    candies, while their whole saliva was collected into a closed system. The erosive potential of both candies was evaluated from saliva degree of saturation with respect to hydroxyapatite and by dissolution of hydroxyapatite (HAp) directly in candy-stimulated saliva. The results were compared to normative......PURPOSE: Patients who have received irradiation therapy on the head and neck area are known to suffer from reduced saliva flow and may therefore use acidic candies to relieve symptoms of dry mouth. However, such acidic candies have erosive potential even among healthy individuals. Therefore......, the aim of the present study was to determine if calcium-modified acidic candies have reduced erosive potential in irradiated cancer patients. MATERIALS AND METHODS: Nineteen cancer patients (26 to 70 years) ipsilaterally irradiated on the head and neck area sucked control and calcium-modified acidic...

  11. Preparation of novel bioactive nano-calcium phosphate-hydrogel composites

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Judith A; Best, Serena M; Bonfield, William, E-mail: jaj33@cam.ac.u [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2010-02-15

    Nano-sized hydroxyapatite (nHA) and carbonate-substituted hydroxyapatite (nCHA) particles were incorporated into a poly-2-hydroxyethylmethacrylate/polycaprolactone (PHEMA/PCL) hydrogel at a filler content of 10 wt%. Fourier transform infrared absorption, transmission electron microscopy, x-ray diffraction and scanning electron microscopy were used to analyse the physical and chemical characteristics of the calcium phosphate fillers and resultant composites. Nano-sized calcium phosphate particles were produced with a needle-like morphology, average length of 50 nm and an aspect ratio of 3. The nanoparticles were uniformly distributed in the polymer matrix. The addition of both HA and CHA in nano-form enhanced the bioactivity and biocompatibility of the PHEMA/PCL matrix. The carbonate-substitution has allowed for improved bioactivity and biocompatibility of the resultant composite, indicating the potential of this material for use in bone tissue engineering.

  12. Sol-gel synthesis and spectrometric structural evaluation of strontium substituted hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Balamurugan, A. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Balossier, G. [INSERM ERM 0203, Laboratoire de Microscopie Electronique Analytique, University of Reims, 21, Rue Clement Ader, 51685 Reims (France); Torres, P.; Michel, J. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Ferreira, J.M.F., E-mail: jmf@cv.ua.pt [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

    2009-04-30

    Investigations of the electronic structures of substituted strontium apatites were carried out by using X-ray photo electron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction technique (XRD) has been used to determine the structural parameters. Electron microprobe microanalysis technique was used to estimate the elemental concentrations in each substituted apatite material. The present work aims at studying the changes in the electronic structure of Sr{sub 5}(PO{sub 4}){sub 3}OH (Sr-HAP) upon isomorphic substitution by F and Cl at the OH site of apatite and Sr by Na at trans Sr-HAP. The ion exchange between Na{sup +} in sodium alginate and aqueous Ca{sup 2+} was important for the preparation of calcium hydroxyapatite. In contrast, the reaction of sodium alginate with the mixture of Na{sub 4}P{sub 2}O{sub 7} and aqueous Sr{sup 2+} afforded strontium hydroxyapatite at the specific ratio. The structure of calcium and strontium phosphates prepared from the sol-gel process evidently depended on the amount of sodium alginate introduced into the mixture of Na{sub 4}P{sub 2}O{sub 7} and the corresponding divalent cations. The findings have ensured that substitution of Sr-HAP by Na enhances the binding energy of O and Sr core levels. It was also noticed that the same substitution decreases the binding energy of P 2s-level. These observations point out to a decrease in the electron density at P and an increase in the electron density at O in Sr atoms.

  13. Calcium phosphate bioceramics prepared from wet chemically precipitated powders

    Directory of Open Access Journals (Sweden)

    Kristine Salma

    2010-03-01

    Full Text Available In this work calcium phosphates were synthesized by modified wet chemical precipitation route. Contrary to the conventional chemical precipitation route calcium hydroxide was homogenized with planetary mill. Milling calcium oxide and water in planetary ball mill as a first step of synthesis provides a highly dispersed calcium hydroxide suspension. The aim of this work was to study the influence of main processing parameters of wet chemical precipitation synthesis product and to control the morphology, phase and functional group composition and, consequently, thermal stability and microstructure of calcium phosphate bioceramics after thermal treatment. The results showed that it is possible to obtain calcium phosphates with different and reproducible phase compositions after thermal processing (hydroxyapatite [HAp], β-tricalcium phosphate [β-TCP] and HAp/β-TCP by modified wet-chemical precipitation route. The β-TCP phase content in sintered bioceramics samples is found to be highly dependent on the changes in technological parameters and it can be controlled with ending pH, synthesis temperature and thermal treatment. Pure, crystalline and highly thermally stable (up to 1300°C HAp bioceramics with homogenous grainy microstructure, grain size up to 200–250 nm and high open porosity can be successfully obtained by powder synthesized at elevated synthesis temperature of 70°C and stabilizing ending pH at 9.

  14. Response of Human Osteoblast to n-HA/PEEK—Quantitative Proteomic Study of Bio-effects of Nano-Hydroxyapatite Composite

    Science.gov (United States)

    Zhao, Minzhi; Li, Haiyun; Liu, Xiaochen; Wei, Jie; Ji, Jianguo; Yang, Shu; Hu, Zhiyuan; Wei, Shicheng

    2016-03-01

    Nano-sized hydroxyapatite (n-HA) is considered as a bio-active material, which is often mixed into bone implant material, polyetheretherketone (PEEK). To reveal the global protein expression modulations of osteoblast in response to direct contact with the PEEK composite containing high level (40%) nano-sized hydroxyapatite (n-HA/PEEK) and explain its comprehensive bio-effects, quantitative proteomic analysis was conducted on human osteoblast-like cells MG-63 cultured on n-HA/PEEK in comparison with pure PEEK. Results from quantitative proteomic analysis showed that the most enriched categories in the up-regulated proteins were related to calcium ion processes and associated functions while the most enriched categories in the down-regulated proteins were related to RNA process. This enhanced our understanding to the molecular mechanism of the promotion of the cell adhesion and differentiation with the inhibition of the cell proliferation on n-HA/PEEK composite. It also exhibited that although the calcium ion level of incubate environment hadn’t increased, merely the calcium fixed on the surface of material had influence to intracellular calcium related processes, which was also reflect by the higher intracellular Ca2+ concentration of n-HA/PEEK. This study could lead to more comprehensive cognition to the versatile biocompatibility of composite materials. It further proves that proteomics is useful in new bio-effect discovery.

  15. Cytotoxicity of hydroxyapatite, fluorapatite and fluor-hydroxyapatite: a comparative in vitro study.

    Science.gov (United States)

    Theiszova, M; Jantova, S; Letasiova, S; Palou, M; Cipak, L

    2008-01-01

    The purpose of this study was to evaluate the cytotoxicity of two formulations of hydroxyapatite (HA), namely fluorapatite (FA) and fluor-hydroxyapatite (FHA). HA is used as carrier material for antibiotics or anticancer drugs during treatment of bone metastasis. Negative control, represented by HA, was included for comparative purposes. Leukemia cells were used as a model cell line, and the effect of eluates of tested biomaterials on cell proliferation/viability and mechanism of antiproliferative activity were assessed. Study design attempted to reveal the toxicity of tested biomaterials with an emphasis to decide if tested biomaterials have promise for further studies in vivo. Results showed that eluates of FA and FHA inhibit the growth of leukemia cells and induce programmed cell death through mitochondrial/caspase-9/caspase-3-dependent pathway. Due to these differences compare to HA, it is concluded that FA and FHA have promise for evaluation of their behaviour in vivo.

  16. Phosphate Adsorption from Membrane Bioreactor Effluent Using Dowex 21K XLT and Recovery as Struvite and Hydroxyapatite.

    Science.gov (United States)

    Nur, Tanjina; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2016-03-01

    Discharging phosphate through wastewaters into waterways poses a danger to the natural environment due to the serious risks of eutrophication and health of aquatic organisms. However, this phosphate, if economically recovered, can partly overcome the anticipated future scarcity of phosphorus (P) resulting from exhaustion of natural phosphate rock reserves. An experiment was conducted to determine the efficiency of removing phosphate from a membrane bioreactor effluent (pH 7.0-7.5, 20, 35 mg phosphate/L) produced in a water reclamation plant by adsorption onto Dowex 21K XLT ion exchange resin and recover the phosphate as fertilisers. The data satisfactorily fitted to Langmuir adsorption isotherm with a maximum adsorption capacity of 38.6 mg · P/g. The adsorbed phosphate was quantitatively desorbed by leaching the column with 0.1 M NaCl solution. The desorbed phosphate was recovered as struvite when ammonium and magnesium were added at the molar ratio of phosphate, ammonium and magnesium of 1:1:1 at pH 9.5. Phosphate was also recovered from the desorbed solution as hydroxyapatite precipitate by adding calcium hydroxide to the solution at a phosphate to calcium molar ratio of 1:2 at pH 7.0. The P contents of struvite and hydroxyapatite produced were close to those of the respective commercial phosphate fertilisers. PMID:26950136

  17. Phosphate Adsorption from Membrane Bioreactor Effluent Using Dowex 21K XLT and Recovery as Struvite and Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Tanjina Nur

    2016-03-01

    Full Text Available Discharging phosphate through wastewaters into waterways poses a danger to the natural environment due to the serious risks of eutrophication and health of aquatic organisms. However, this phosphate, if economically recovered, can partly overcome the anticipated future scarcity of phosphorus (P resulting from exhaustion of natural phosphate rock reserves. An experiment was conducted to determine the efficiency of removing phosphate from a membrane bioreactor effluent (pH 7.0–7.5, 20, 35 mg phosphate/L produced in a water reclamation plant by adsorption onto Dowex 21K XLT ion exchange resin and recover the phosphate as fertilisers. The data satisfactorily fitted to Langmuir adsorption isotherm with a maximum adsorption capacity of 38.6 mg·P/g. The adsorbed phosphate was quantitatively desorbed by leaching the column with 0.1 M NaCl solution. The desorbed phosphate was recovered as struvite when ammonium and magnesium were added at the molar ratio of phosphate, ammonium and magnesium of 1:1:1 at pH 9.5. Phosphate was also recovered from the desorbed solution as hydroxyapatite precipitate by adding calcium hydroxide to the solution at a phosphate to calcium molar ratio of 1:2 at pH 7.0. The P contents of struvite and hydroxyapatite produced were close to those of the respective commercial phosphate fertilisers.

  18. Hydroxyapatite, a biomaterial: Its chemical synthesis, characterization and study of biocompatibility prepared from shell of garden snail, Helix aspersa

    Indian Academy of Sciences (India)

    Anjuvan Singh

    2012-11-01

    The shell of garden snail (Helix aspersa) is basically made of calcium carbonate. An attempt is made to convert calcium carbonate of garden snail shell to hydroxyapatite. The snail shell was found to decompose within 850°C to all the carbonate phases. The calcined snail shells were then treated with acids followed by different chemicals in ammoniacal media maintaining proper stoichiometry to produce fine hydroxyapatite (HAP) as filter cake with a Ca/P molar ratio of 1.67. The dried HAP powder was extremely pure with a specific surface area of 15 m2/g. The different characterization techniques were adopted both for calcined snail shell and HAP synthesized by X-ray diffraction (XRD), thermal analysis (DTA/TGA), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The surface area and particle size of HAP powder prepared by chemical precipitation route, were also determined by BET and Malvern particle size analyser, respectively. The synthesized powder was soaked in stimulated body fluid (SBF) medium for various periods of time in order to evaluate its bioactivity. The changes of pH of SBF medium were measured. High bioactivity of prepared HAP powder due to the formation of apatite on its surface was observed.

  19. Effect of high dietary calcium on weight management in rats

    International Nuclear Information System (INIS)

    The present study was undertaken to find out a suitable dietary regime to maintain a lower prevalence of overweight or obesity by adjusting the diet components. Therefore, male Swiss albino rats were selected according to their ages and divided into two main groups, i.e., premature and mature groups. Each rat group was divided into 4 subgroups and each subgroup was fed on a diet of varied composition. Serum levels of lipids, calcium, phosphorous and testosterone were determined in addition to body weight measurement. The results indicate non-significant decrease of percentage of body weight gain in premature rats fed on high-calcium diets while significant decrease of percentage of body weight gain in mature rats fed on the same diet composition. The levels of serum HDL-C, LDL-C, triglycerides and testosterone were significantly decreased in premature rats fed high- calcium diets. In premature rats, only rat subgroup fed on high calcium from milk, showed a significant decrease in serum cholesterol levels. Calcium and phosphorus levels exhibited non- significant change between premature rats. In mature rats, LDL-C data demonstrate nonsignificant changes while cholesterol and triglyceride levels were significantly decreased in rats fed high -calcium diet compared to control. HDL-C level revealed a significant decrease in sera of mature rats fed on high calcium from milk. Serum testosterone levels were significantly decreased in mature rats fed low- fat diets or low fat diets supplemented with high- calcium level. In general, one would suggest to consume low fat diet (4%) supplemented with high calcium from dry skimmed milk fortified with hydroxyapatite as suitable dietary program to avoid overweight or obesity.

  20. Tuning the Degradation Rate of Calcium Phosphate Cements by Incorporating Mixtures of Polylactic-co-Glycolic Acid Microspheres and Glucono-Delta-Lactone Microparticles

    NARCIS (Netherlands)

    Sariibrahimoglu, K.; An, J.; Oirschot, B.A.J.A. van; Nijhuis, A.W.G.; Eman, R.M.; Alblas, J.; Wolke, J.G.C.; Beucken, J.J.J.P van den; Leeuwenburgh, S.C.G.; Jansen, J.A.

    2014-01-01

    Calcium phosphate cements (CPCs) are frequently used as synthetic bone graft materials in view of their excellent osteocompatibility and clinical handling behavior. Hydroxyapatite-forming CPCs, however, degrade at very low rates, thereby limiting complete bone regeneration. The current study has inv

  1. Carbonate Hydroxyapatite and Silicon-Substituted Carbonate Hydroxyapatite: Synthesis, Mechanical Properties, and Solubility Evaluations

    Directory of Open Access Journals (Sweden)

    L. T. Bang

    2014-01-01

    Full Text Available The present study investigates the chemical composition, solubility, and physical and mechanical properties of carbonate hydroxyapatite (CO3Ap and silicon-substituted carbonate hydroxyapatite (Si-CO3Ap which have been prepared by a simple precipitation method. X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray fluorescence (XRF spectroscopy, and inductively coupled plasma (ICP techniques were used to characterize the formation of CO3Ap and Si-CO3Ap. The results revealed that the silicate (SiO44- and carbonate (CO32- ions competed to occupy the phosphate (PO43- site and also entered simultaneously into the hydroxyapatite structure. The Si-substituted CO3Ap reduced the powder crystallinity and promoted ion release which resulted in a better solubility compared to that of Si-free CO3Ap. The mean particle size of Si-CO3Ap was much finer than that of CO3Ap. At 750°C heat-treatment temperature, the diametral tensile strengths (DTS of Si-CO3Ap and CO3Ap were about 10.8±0.3 and 11.8±0.4 MPa, respectively.

  2. Hardness and microplasticity of nanocrystalline and amorphous calcium phosphate coatings

    Science.gov (United States)

    Ievlev, V. M.; Kostyuchenko, A. V.; Darinskii, B. M.; Barinov, S. M.

    2014-02-01

    The hardness of thin (1.0-4.0 μm) hydroxyapatite coatings with different structures (nanocrystalline, amorphous-crystalline, and amorphous) grown by rf magnetron sputtering on Ti and Si plates has been studied using the nanoindentation method. All the grown structures are characterized by the strain which has reversible and irreversible components. The hardness of nanocrystalline coatings (about 10 GPa) corresponds to the average hardness of hydroxyapatite single crystals. The structure of nanocrystalline coatings in the indentation zone and outside it has been investigated and changes in the structure under the indenter have been revealed using high-resolution transmission electron microscopy. From a comparison of the hardnesses of coatings with different structures and based on an analysis of the intragranular structure, it has been assumed that the plastic deformation occurs according to a dislocation-free mechanism. The plastic deformation is interpreted in terms of the cluster representation of the hydroxyapatite structure and amorphous calcium phosphates of the same elemental composition and cluster-boundary sliding during the deformation.

  3. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, S., E-mail: smsilva@ineb.up.pt [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalurgica e Materiais, Porto (Portugal); Rodriguez, M.A.; Pena, P.; De Aza, A.H.; De Aza, S. [Instituto de Ceramica y Vidrio, CSIC, 28049-Cantoblanco, Madrid (Spain); Ferraz, M.P. [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Faculdade de Ciencias da Saude da Universidade Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto (Portugal); Monteiro, F.J. [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalurgica e Materiais, Porto (Portugal)

    2009-06-01

    The present study refers to the preparation and characterization of porous hydroxyapatite scaffolds to be used as matrices for bone regeneration or as specific release vehicles. Ceramics are widely used for bone tissue engineering purposes and in this study, hydroxyapatite porous scaffolds were produced using the polymer replication method. Polyurethane sponges were used as templates and impregnated with a ceramic slurry at different ratios, and sintered at 1300 deg. C following a specific thermal cycle. The characteristics of the hydroxyapatite porous scaffolds and respective powder used as starting material, were investigated by using scanning electron microscopy, particle size distribution, X-ray diffraction, Fourier transformed infrared spectroscopy and compressive mechanical testing techniques. It was possible to produce highly porous hydroxyapatite scaffolds presenting micro and macropores and pore interconnectivity.

  4. Calcium and Vitamin D

    Science.gov (United States)

    ... Home › Patients › Treatment › Calcium/Vitamin D Calcium/Vitamin D Getting enough calcium and vitamin D is essential ... counter medications and calcium supplements. What is Vitamin D and What Does it Do? Vitamin D plays ...

  5. A novel electrospun silk fibroin/hydroxyapatite hybrid nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Jinfa, E-mail: jinfa.ming@gmail.com [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China); Zuo, Baoqi, E-mail: bqzuo@suda.edu.cn [National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123 (China); College of Textile and Clothing Engineering, Soochow University, Suzhou 215021 (China)

    2012-11-15

    A novel electrospinning of silk fibroin/hydroxyapatite hybrid nanofibers with different composition ratios was performed with methanoic acid as a spinning solvent. The silk fibroin/hydroxyapatite hybrids containing up to 30% hydroxyapatite nanoparticles could be electrospun into the continuous fibrous structure. The electrospun silk fibroin/hydroxyapatite hybrid nanofibers showed bigger diameter and wider diameter distribution than pure silk fibroin nanofibers, and the average diameter gradually increased from 95 to 582 nm. At the same time, the secondary structure of silk fibroin/hydroxyapatite nanofibers was characterized by X-ray diffraction, Fourier transform infrared analysis, and DSC measurement. Comparing with the pure silk fibroin nanofibers, the crystal structure of silk fibroin was mainly amorphous structure in the hybrid nanofibers. X-ray diffraction results demonstrated the hydroxyapatite crystalline nature remained as evidenced from the diffraction planes (002), (211), (300), and (202) of the hydroxyapatite crystallites, which was also confirmed by Fourier transform infrared analysis. The thermal behavior of hybrid nanofibers exhibited the endothermic peak of moisture evaporation ranging from 86 to 113 Degree-Sign C, and the degradation peak at 286 Degree-Sign C appeared. The SF/HAp nanofibers mats containing 30% HAp nanoparticles showed higher breaking tenacity and extension at break for 1.1688 {+-} 0.0398 MPa and 6.55 {+-} 1.95%, respectively. Therefore, the electrospun silk fibroin/hydroxyapatite hybrid nanofibers should be provided potentially useful options for the fabrication of biomaterial scaffolds for bone tissue engineering. -- Highlights: Black-Right-Pointing-Pointer The novel SF/HAp nanofibers were directly prepared by electrospinning method. Black-Right-Pointing-Pointer The nanofiber diameter had significant related to the content of HAp. Black-Right-Pointing-Pointer The crystal structure of silk fibroin was mainly amorphous structure in

  6. Hydroxyapatite reinforced chitosan and polyester blends for biomedical applications

    OpenAIRE

    Correlo, V.M.; Boesel, L. F.; Bhattacharya, Mrinal; Mano, J. F.; Neves, N. M.; Reis, R. L.

    2005-01-01

    Hydroxyapatite, chitosan, and aliphatic polyester were compounded using a twin-screw extruder. The polyesters include poly(e-caprolactone) (PCL), poly(lactic acid) , poly(butylene succinate) (PBS), and poly(butylene terephthalate adipate). The mass fraction of chitosan ranged from 17.5 to 45%, while that of HA ranged from 10 to 30%. These blends were injection molded and evaluated for thermal, morphological, and mechanical properties. The addition of hydroxyapatite dec...

  7. Polylactic acid-nanocrystalline carbonated hydroxyapatite (PLA-cHAP) composite: preparation and surface topographical structuring with direct laser writing (DLW)

    CERN Document Server

    Garskaite, Edita; Drienovsky, Marian; Krajcovic, Jozef; Cicka, Roman; Palcut, Marian; Jonusauskas, Linas; Malinauskas, Mangirdas; Stankeviciute, Zivile; Kareiva, Aivaras

    2016-01-01

    The fabrication of polylactic acid (PLA)-carbonated hydroxyapatite (cHAP) composite material from synthesised phase pure nano-cHAP and melted PLA by mechanical mixing at 220-235{\\deg}C has been developed in this study. Topographical structuring of PLA-cHAP composite surfaces was performed by direct laser writing (DLW). Microstructured surfaces and the apatite distribution within the composite and formed grooves were evaluated by optical and scanning electron microscopies. The influence of the dopant concentration as well as the laser power and translation velocity on the composite surface morphology is discussed. The synthesis of carbonated hydroxyapatite (cHAP) nanocrystalline powders via wet chemistry approach from calcium acetate and diammonium hydrogen phosphate precursors together with crosslinking and complexing agents of polyethylene glycol, poly(vinyl alcohol) and triethanolamine is also reported. Thermal decomposition of the gels and formation of nanocrystalline cHAP were evaluated by thermal analysi...

  8. Formation of Biomimetic Hydroxyapatite Coating on Titanium Plates

    Directory of Open Access Journals (Sweden)

    Ievgen Volodymyrovych PYLYPCHUK

    2014-09-01

    Full Text Available Hydroxyapatite (HA has long been used as a coating material in the implant industry for orthopedic implant applications. HA is the natural inorganic constituent of bone and teeth. By coating titanium (base material of implant engineering because of its lightness and durability with hydroxyapatite, we can provide higher biocompatibility of titanium implants, according to HA ability to form a direct biochemical bond with living tissues. This article reports a biomimetic approach for coating hydroxyapatite with titanium A method of modifying the surface of titanium by organic modifiers (for creating functional groups on the surface, followed by formation "self-assembled" layer of biomimetic hydroxyapatite in simulated body fluid (SBF. FTIR and XPS confirmed the formation of hydroxyapatite coatings on titanium surface. Comparative study of the formation of HA on the surface of titanium plates modified by different functional groups: Ti(≡OH, Ti/(≡Si-OH and Ti/(≡COOH is conducted. It was found that the closest to natural stoichiometric hydroxyapatite Ca/P ratio was obtained on Ti/(≡COOH samples. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4974

  9. In situ deposition of hydroxyapatite on graphene nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Neelgund, Gururaj M. [Department of Chemistry, Prairie View A and M University, Prairie View, TX 77446 (United States); Oki, Aderemi, E-mail: aroki@pvamu.edu [Department of Chemistry, Prairie View A and M University, Prairie View, TX 77446 (United States); Luo, Zhiping [Microscopy and Imaging Center and Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843 (United States)

    2013-02-15

    Graphical abstract: A facile chemical precipitation method is reported for effective in situ deposition of hydroxyapatite on graphene nanosheets. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. Display Omitted Highlights: ► It is a facile and effective method for deposition of HA on GR nanosheets. ► It avoids the use of harmful reducing agents like hydrazine, NaBH{sub 4} etc. ► GR nanosheets were produced using bio-compatible, ethylenediamine. ► The graphitic structure of synthesized GR nanosheets was high ordered. ► The ratio of Ca to P in HA was 1.64, which is close to ratio in natural bone. -- Abstract: Graphene nanosheets were effectively functionalized by in situ deposition of hydroxyapatite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, Raman spectroscopy and thermogravimetric analysis. These characterization techniques revealed the successful grafting of hydroxyapatite over well exfoliated graphene nanosheets without destroying their structure.

  10. In situ deposition of hydroxyapatite on graphene nanosheets

    International Nuclear Information System (INIS)

    Graphical abstract: A facile chemical precipitation method is reported for effective in situ deposition of hydroxyapatite on graphene nanosheets. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. Display Omitted Highlights: ► It is a facile and effective method for deposition of HA on GR nanosheets. ► It avoids the use of harmful reducing agents like hydrazine, NaBH4 etc. ► GR nanosheets were produced using bio-compatible, ethylenediamine. ► The graphitic structure of synthesized GR nanosheets was high ordered. ► The ratio of Ca to P in HA was 1.64, which is close to ratio in natural bone. -- Abstract: Graphene nanosheets were effectively functionalized by in situ deposition of hydroxyapatite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, Raman spectroscopy and thermogravimetric analysis. These characterization techniques revealed the successful grafting of hydroxyapatite over well exfoliated graphene nanosheets without destroying their structure.

  11. Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.

    Science.gov (United States)

    Bolelli, Giovanni; Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella; Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer; Altomare, Lina; De Nardo, Luigi

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27-37μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%-70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (hardness values, all characterised by Weibull modulus in the 5-7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates.

  12. Dissolubility of Hydroxyapatite Powder under Hydrothermal Condition

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dissolubility of hydroxyapatite(HA) in the hydrothermal solution was investigated in Morey-type autoclave over a temperature range of 150 to 350 ℃ and the pH value range of 5 to 9. It is shown that the dissolubility of HA is determined as a function of temperature and time under a constant filling ratio of autoclave, and the temperature coefficient for the solubility of HA is positive. The equilibrium time attained in the hydrothermal solution is shortened with the increase of hydrothermal temperature, and the effect of temperature on the solubility is obviously stronger than that of pH value. The solubility data suggest that HA has higher dissolubility in the HA-H2O system under the hydrothermal condition than that under the normal temperature-pressure.

  13. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    Science.gov (United States)

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures. PMID:25280036

  14. Hydroxyapatite chromatography of phage-display virions.

    Science.gov (United States)

    Smith, George P; Gingrich, Todd R

    2005-12-01

    Hydroxyapatite column chromatography can be used to purify filamentous bacteriophage--the phage most commonly used for phage display. Virions that have been partially purified from culture supernatant by two cycles of precipitation in 2% polyethylene glycol are adsorbed onto the matrix at a density of at least 7.6 x 10(13) virions (about 3 mg) per milliliter of packed bed volume in phosphate-buffered saline (PBS; 0.15 M NaCl, 5 mM NaH2PO4, pH-adjusted to 7.0 with NaOH). The matrix is washed successively with wash buffer I(150 mM NaCl, 125 mM phosphate, pH 7.0), wash buffer II (2.55 M NaCl, 125 mM phosphate, pH 7.0), and wash buffer I; after which virions are desorbed in desorption buffer (150 mM NaCl, 200 mM phosphate, pH 7.0), and the matrix is stripped with stripping buffer (150 mM NaCl, 1 Mphosphate, pH 7.0). About half of the applied virions are recovered in desorption buffer. Western blot analysis shows that they have undetectable levels of host-derived protein contaminants that are present in the input virions and in virions purified by CsCl equilibrium density gradient centrifugation--the method most commonly used to prepare virions in high purity. Hydroxyapatite chromatography is thus an attractive alternative method for purifying filamentous virions, particularly when the scale is too large for ultracentrifugation to be practical. PMID:16382907

  15. Study of the fission products fixation in the hydroxyapatite mineral

    International Nuclear Information System (INIS)

    In this research work, sorption properties of hydroxyapatite in aqueous solutions were studied using Na+ and K+ ion behavior. In addition, the fission products 99Tc and 107Pd uptake was studied to determine their sorption mechanisms on hydroxyapatite. This research was conducted in two stages. The first stage aimed to identify surface reactive sites of hydroxyapatite surface. This surface study was performed by the radiotracer method using 24Na and 42K radionuclides and applying the ion-exchange theory. It provides evidence in terms of the saturation curves of individual behaviour of the Na+ and K+ cations. Hydroxyapatite reactive sites were identified and quantified from the results and application of the ion-exchange model: a mono-functional site of 0.28 mmol g-1 for the sodium hydroxylate form and a dipr otic site with two saturation curves of 0.14 mmol g-1 each, for the sodium phosphate form. In a second stage, the sorption of fission products, Tc and Pd, on hydroxyapatite was studied. This sorption was expressed in terms of distribution coefficients obtained with equivalent radiotracers: 99mTc and 109Pd. Tc presented a low sorption affinity on hydroxyapatite in aqueous medium 0.02 M NaH2PO4 and the results also show that Tc is not sorbed from perchlorate medium (0.01 M Ca(ClO4)2). Sorption behaviour of Pd(II) on hydroxyapatite was studied for different experimental conditions, with parameter such as: ph, aqueous medium (0.01 M NaClO4, 0.01 M and 0.025 M Ca(ClO4)2, and 0.02 M NaH2PO4), the solid solution ratio (10, 4 and 0.020 g/L), and the palladium concentration were studied. Pd sorption was complete at solid-solution ratios 10 and 4 g/L. A strong sorption affinity of hydroxyapatite for palladium was obtained at solid-solution ratio 0.020 g/L. In the interpretation of the results it was considered the aqueous chemistry of palladium, solid dissolution, as well as the existence of reactive sites at the hydroxyapatite surface. The distribution coefficients were

  16. Formation of calcium phosphate mineral materialcontrolled by microemulsion

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to prepare calcium phosphate-based material with nano-structure and bioactivity, natural lecithin and n-tetradecane were used as the amphipile and the oil phase respectively, along with the water phase, to form a microemulsion template. Phosphate mineralization was induced and controlled by the microemulsion. The products, characterized by scanning electronic microscopy, infrared spectroscopy and X-ray diffraction analysis, are composed of lecithin and hydroxyapatite, and possess the nano-structure of sticks, balls and three-dimensional nets connected by tubes. These results show that the microemulsion can be used to control calcium phosphate mineralization for the preparation of biomimetic mineral materials with various nano-structures.

  17. Bioactivity and mineralization of hydroxyapatite with bioglass as sintering aid and bioceramics with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} and Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4} in a silicate matrix

    Energy Technology Data Exchange (ETDEWEB)

    Demirkiran, Hande [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX 76019 (United States); Mohandas, Arunesh; Dohi, Motokazi; Fuentes, Alonso; Nguyen, Kytai [Bioengineering Department, University of Texas at Arlington, Arlington, TX 76019 (United States); Aswath, Pranesh, E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2010-01-30

    Hydroxyapatite and Bioglass-45S5 were sintered together creating new ceramic compositions that yielded increased apatite deposition and osteoblast differentiation and proliferation in vitro compared to hydroxyapatite. The sintered products characterized by X-ray diffraction, revealed hydroxyapatite as the main phase when small quantities (1, 2.5 and 5 wt.%) of bioglass was added. Bioglass behaved as a sintering aid with {beta}-TCP (Ca{sub 3}(PO{sub 4}){sub 2}) being the minor phase. The amount of {beta}-TCP increased with the amount of bioglass added. In compositions with larger additions of bioglass (10 and 25 wt.%), new phases with compositions of calcium phosphate silicate (Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4}) and sodium calcium phosphate (Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5}) were formed respectively within amorphous silicate matrices. In vitro cell culture studies of the ceramic compositions were examined using bone marrow stromal cell (BMSC). Cell proliferation and differentiation of bone marrow stromal cells into osteoblasts were determined by Pico Green DNA assays and alkaline phosphatase (ALP) activity, respectively. All hydroxyapatite-bioglass co-sintered ceramics exhibited larger cell proliferation compared to pure hydroxyapatite samples. After 6 days in cell culture, the ceramic with Ca{sub 5}(PO{sub 4}){sub 3}SiO{sub 4} in a silicate matrix formed by reacting hydroxyapatite with 10 wt.% bioglass exhibited the maximum proliferation of the BMSC's. The ALP activity was found to be largest in the ceramic with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} embedded in a silicate matrix synthesized by reacting hydroxyapatite with 25 wt.% bioglass.

  18. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects

    Energy Technology Data Exchange (ETDEWEB)

    Han, I-H [Institute of Physics and Applied Physics, and Atomic-Scale Surface Science Research Center, Yonsei University, Seou1 120-749 (Korea, Republic of); Lee, I-S [Institute of Physics and Applied Physics, and Atomic-Scale Surface Science Research Center, Yonsei University, Seou1 120-749 (Korea, Republic of); Song, J-H [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, M-H [Department of Medical Engineering, Yonsei University, Seoul 120-752 (Korea, Republic of); Park, J-C [Department of Medical Engineering, Yonsei University, Seoul 120-752 (Korea, Republic of); Lee, G-H [Korea Institute of Machinery and Materials, Chang-Won 641-010 (Korea, Republic of); Sun, X-D [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chung, S-M [Implantium Research Center, Seoul 135-879 (Korea, Republic of)

    2007-09-15

    A thin calcium phosphate film was synthesized on both commercially pure Ti and Si wafers by electron beam evaporation of hydroxyapatite as an evaporant with simultaneous Ar ion beam bombardments. Silver was introduced into an ion-beam-assisted deposition of a calcium phosphate thin film for antimicrobial effect. The amount of incorporated silver ions was controlled by immersing calcium-phosphate-coated samples in different AgNO{sub 3} concentrations, and Rutherford backscattering spectrometry (RBS) was employed to measure the amounts of substituted silver. The higher concentration of silver in the calcium phosphate film was more effective in reducing the bacteria of Escherichia coli ATCC 8739 and Streptococcus mutans OMZ 65 on contact with respect to controls.

  19. Evaluation of Calcium Phosphate Cement As a Root Canal Sealer Filling Material

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Calcium phosphate cement for root end sealing was obtained by mixing α-tricalcium phosphate and additives with an aqueous solution of citric. Powder and liquid were mixed at a ratio of 1.25g/mL. The biocompatibility of this material was investigated primarily by subcutaneous implantation tests. Then calcium phosphate cement was used to fill three adult dogs' root canal, both calcium hydroxide paste and hydroxyapatite paste as control. The animals were killed at 4,12,20 weeks postoperatively respectively. The effects of different materials on the apical closure, restoration of periapical tissues and adaptability to the dentinal surface were examined by optical and electronic microscope. The observation at 20 weeks shows that the calcium phosphate cement has the potentialities of being a root canal sealer filling material available for pulpless teeth with open-apex and destructive periapical tissue.

  20. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    Science.gov (United States)

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji

    2014-01-01

    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials. PMID:24090874

  1. Post-translational modification of osteopontin: Effects on in vitro hydroxyapatite formation and growth

    DEFF Research Database (Denmark)

    Boskey, Adele L.; Christensen, Brian Søndergaard; Taleb, Hayat;

    2012-01-01

    The manuscript tests the hypothesis that posttranslational modification of the SIBLING family of proteins in general and osteopontin in particular modify the abilities of these proteins to regulate in vitro hydroxyapatite (HA) formation. Osteopontin has diverse effects on hydroxyapatite (HA...

  2. Preparation and characterization of nano-hydroxyapatite powder using sol–gel technique

    Indian Academy of Sciences (India)

    K P Sanosh; Min-Cheol Chu; A Balakrishnan; T N Kim; Seong-Jai Cho

    2009-10-01

    Hydroxyapatite (HA) nano powders (20–60 nm) were synthesized using a sol–gel route with calcium nitrate and phosphoric acid as calcium and phosphorus precursors, respectively. Double distilled water was used as a diluting media for HA sol preparation and ammonia was used to adjust the pH. After aging, the HA gel was dried at 65°C and calcined to different temperatures ranging from 200–800°C. The dried and calcined powders were characterized for phase composition using X-ray diffractometry, elemental dispersive X-ray and Fourier transform infra-red spectroscopy. The particle size and morphology were studied using transmission electron microscopy. Calcination revealed HA nano powders of increased particle size and crystallinity with increase in temperature. For all calcinations temperatures, the particle size distribution analysis of HA powders showed skewed distribution plot. At temperature of 700°C and above, formation of CaO was noticed which was attributed to phosphorous volatilization. This study showed that high purity HA with varying degrees of crystallinity could be obtained using this simple technique.

  3. Lanthanum-silicon-substituted hydroxyapatite: Mechanochemical synthesis and prospects for medical applications

    Science.gov (United States)

    Chaikina, M. V.; Komarova, E. G.; Sharkeev, Yu. P.; Bulina, N. V.; Prosanov, I. Yu.

    2016-08-01

    The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La3+) for calcium ions and silicate ((SiO4)4--group) for the phosphate group with the substituent concentrations in the range 0.2-2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La3+ in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It is known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.

  4. Study of synthesis of nano-hydroxyapatite using a silk fibroin template

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jing; Yu Feng; Qu Lijie; Meng Xiangcai [Provincial Key Laboratory of Biomaterials, Jiamusi University, Jiamusi 154007 (China); Wen, G [School of Materials Science and Engineering, Harbin Institute of Technology, Heilongjiang Province 150001 (China)

    2010-08-01

    Nano-hydroxyapatite (HA) was directly synthesized on a silk fibroin (SF) template using the property of SF being soluable in a concentrated CaCl{sub 2} solution as a HA source of calcium at pH 7.4 and room temperature. The microstructure and bonding state were investigated by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry-thermogravimetry analysis (DSC-TG) and transmission electron microscopy (TEM). The results indicated that the HA crystals were poorly crystallized with a rod-like shape of 20-60 nm length and 10-20 nm diameter. Strong molecular interactions and chemical bonds might be present between SF and HA. There were other nucleation sites such as carbonyl (-C-O) and amine (-N-H-) groups on SF molecules besides the carboxyl (-COOH) and hydroxyl (-OH) groups previously reported. During the formation of HA, the coordination action between specific functional groups on SF and calcium ions (Ca{sup 2+}) played an important role. The crystallinity of HA was improved and had an orientation growth along (0 0 2) at the presence of SF, resulting in a structure similar to natural bone. It was concluded that SF could regulate the structure and morphology of HA effectively. (communication)

  5. Characterisation and sintering of nanophase hydroxyapatite synthesised by a species of Serratia

    Energy Technology Data Exchange (ETDEWEB)

    LSammons, R [University of Birmingham School of Dentistry, St Chad' s Queensway, Birmingham, B4 6NN (United Kingdom); Thackray, A C [University of Birmingham School of Dentistry, St Chad' s Queensway, Birmingham, B4 6NN (United Kingdom); Ledo, H Medina [University of Birmingham School of Engineering, Metallurgy and Materials, Birmingham B15 2TT (United Kingdom); Marquis, P M [University of Birmingham School of Dentistry, St Chad' s Queensway, Birmingham, B4 6NN (United Kingdom); Jones, I P [University of Birmingham School of Engineering, Metallurgy and Materials, Birmingham B15 2TT (United Kingdom); Yong, P [University of Birmingham, School of Biosciences, Birmingham B15 2TT (United Kingdom); Macaskie, L E [University of Birmingham, School of Biosciences, Birmingham B15 2TT (United Kingdom)

    2007-12-15

    The bacterium Serratia sp. NCIMB40259, which grows as a biofilm on polymeric, glass and metal substrates, produces extracellular crystals of hydroxyapatite (HA) by enzymatic cleavage of {beta}-glycerophosphate in the presence of calcium chloride. Following growth on polyurethane foam, biomineralisation and subsequent sintering, an HA scaffold is formed whose three-dimensional architecture replicates that of the foam and the biofilm. Serratia HA was characterised using X-ray diffraction (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR), energy dispersive X-ray analysis (EDX) scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED). The nascent, unsintered material consisted mainly of calcium-deficient HA (CDHA) with a Ca/P ratio of 1.61+/- 0.06 and crystal size (TEM) of 50 +/- 10nm length. ED of unsintered crystals and crystals sintered at 600{sup 0} C showed resolvable ring (unsintered) or dot (600{sup 0} C) patterns ascribed to (0002), (1122) and (0006) planes of crystalline HA. Material sintered at 1200{sup 0} C consisted of needle-like crystals of length range 54-111nm (XRD) with lattice parameters of a = 9.441 A and c = 6.875 A, consistent with HA.

  6. Characterisation and sintering of nanophase hydroxyapatite synthesised by a species of Serratia

    International Nuclear Information System (INIS)

    The bacterium Serratia sp. NCIMB40259, which grows as a biofilm on polymeric, glass and metal substrates, produces extracellular crystals of hydroxyapatite (HA) by enzymatic cleavage of β-glycerophosphate in the presence of calcium chloride. Following growth on polyurethane foam, biomineralisation and subsequent sintering, an HA scaffold is formed whose three-dimensional architecture replicates that of the foam and the biofilm. Serratia HA was characterised using X-ray diffraction (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR), energy dispersive X-ray analysis (EDX) scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED). The nascent, unsintered material consisted mainly of calcium-deficient HA (CDHA) with a Ca/P ratio of 1.61+/- 0.06 and crystal size (TEM) of 50 +/- 10nm length. ED of unsintered crystals and crystals sintered at 6000 C showed resolvable ring (unsintered) or dot (6000 C) patterns ascribed to (0002), (1122) and (0006) planes of crystalline HA. Material sintered at 12000 C consisted of needle-like crystals of length range 54-111nm (XRD) with lattice parameters of a = 9.441 A and c = 6.875 A, consistent with HA

  7. Preparation and property of porous hydroxyapatite as an inorganic dispersant used in suspension polymerization

    Institute of Scientific and Technical Information of China (English)

    Kaqiu XU; Jiale XU; Yuhong WANG

    2008-01-01

    The porous hydroxyapatite (HAP) for suspen-sion polymerization dispersant was prepared using calcium carbonate and phosphoric acid as raw materials. The samples were characterized by scanning electron micro-scopy (SEM), X-ray diffraction (XRD) and BET nitrogen adsorption. The results show that the prepared HAP has a porous structure, low particle density, large specific surface area, uniform particle size and does not agglomerate easily between the particles. The preparation conditions for the HAP were optimized as follows: solid content of calcium carbonate aqueous suspension 90 g/L, concentration of phosphoric acid 1.0 mol/L, reaction/aging temperature 50℃, and aging time 3 h. The HAP prepared under optimal preparation conditions has 106.8 m2·g-1 of specific surface area, which is about 1.5-1.8 times as much as that of Japanese HAP or commercial HAP. Its application result in the suspension polymerization of styrene show that the porous HAP dispersant has high surface activity, excellent suspension dispersibility and stability and can markedly improve the quality of polystyrene beads.

  8. Phase transformations, microstructure formation and in vitro osteoblast response in calcium silicate/brushite cement composites.

    Science.gov (United States)

    Sopcak, T; Medvecky, L; Giretova, M; Kovalcikova, A; Stulajterova, R; Durisin, J

    2016-01-01

    Self-setting simple calcium silicate/brushite (B) biocements with various Ca/P ratios were prepared by mutual mixing of both monocalcium silicate hydrate (CSH) or β-wollastonite (woll) powders with B and the addition of 2 wt% NaH2PO4 solution as a hardening liquid. The phase composition of the final composites and the texture of the surface calcium phosphate/silica layer were controlled by the starting Ca/P ratio in composites and the pH during setting. It was verified that the presence of continuous bone-like calcium phosphate coating on the surface of the samples was not essential for in vitro osteoblast proliferation. The nanocrystalline calcium deficient hydroxyapatite and amorphous silica were found as the main setting products in composite mixtures with a Ca/P ratio close to the region of the formation of deficient hydroxyapatite-like calcium phosphates. No CSH phase with a lower Ca/Si ratio was identified after transformation. The results confirmed a small effect of the monocalcium silicate addition on the compressive strength (CS) of cements up to 30 wt% (around 20-25 MPa) and a significant rise of the value in 50 woll/B cement (65 MPa). The final setting times of the cement composites varied between 5 and 43 min depending on the P/L ratio and the type of monocalcium silicate phase in the cement mixture. 10CSH/B and 50 woll/B cements with different textures but free of both the needle-like and perpendicularly-oriented hydroxyapatite particles on the surface of the samples had low cytotoxicity. PMID:27509265

  9. Synthesis of Nanospherical and Ultralong Fibrous Hydroxyapatite and Reinforcement of Biodegradable Chitosan/hydroxyapatite Composite

    Science.gov (United States)

    Zhang, Huigang; Zhu, Qingshan

    Morphologies of hydroxyapatite (HAp) powders have influence on the mechanical properties of HAp/polymer composites. In this paper we reported a synthetic route for nanospherical and ultralong fibrous HAp powders and compared the influence of HAp morphologies on composite mechanical properties. HAp fibers with the length of ~250 µm along c-axis direction and nanospheres with the diameter of ~80 nm were produced, respectively, in the acidic solution containing glutamic acid and in the alkaline solution containing polyacrylic acid. The ultralong HAp fibers synthesized were used to reinforce biodegradable chitosan biomaterials with the significant improvement of bending strength because of the pull-out effect of long fibers.

  10. Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nida Iqbal [Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, M. A. Jinnah Campus, Defence Road, Off Raiwind Road, Lahore (Pakistan); Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Ijaz, Kashif; Zahid, Muniza; Khan, Abdul S. [Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, M. A. Jinnah Campus, Defence Road, Off Raiwind Road, Lahore (Pakistan); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Hussain, Rafaqat [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johore (Malaysia); Anis-ur-Rehman [Department of Physics, COMSATS Institute of Information Technology, Chakshahzad Campus, Islamabad (Pakistan); Darr, Jawwad A. [Clean Materials Technology Group, Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Ihtesham-ur-Rehman [The Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Chaudhry, Aqif A., E-mail: aqifanwar@ciitlahore.edu.pk [Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, M. A. Jinnah Campus, Defence Road, Off Raiwind Road, Lahore (Pakistan)

    2015-11-01

    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900 °C for 1 h) reduced twelve folds (to 2 h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1 h) at 900 °C. - Highlights: • Microwave irradiation of suspensions of calcium phosphates accelerated maturation. • Reactions took 2 h to complete as compared to 18 h required traditionally. • Magnesium contents higher than 1 wt.% lead to the presence of non-apatitic phases. • Agglomerates with micron and sub-micron porosity were obtained after heat-treatment.

  11. Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics

    International Nuclear Information System (INIS)

    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900 °C for 1 h) reduced twelve folds (to 2 h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1 h) at 900 °C. - Highlights: • Microwave irradiation of suspensions of calcium phosphates accelerated maturation. • Reactions took 2 h to complete as compared to 18 h required traditionally. • Magnesium contents higher than 1 wt.% lead to the presence of non-apatitic phases. • Agglomerates with micron and sub-micron porosity were obtained after heat-treatment

  12. Polymeric-Calcium Phosphate Cement Composites-Material Properties: In Vitro and In Vivo Investigations

    Science.gov (United States)

    Khashaba, Rania M.; Moussa, Mervet M.; Mettenburg, Donald J.; Rueggeberg, Frederick A.; Chutkan, Norman B.; Borke, James L.

    2010-01-01

    New polymeric calcium phosphate cement composites (CPCs) were developed. Cement powder consisting of 60 wt% tetracalcium phosphate, 30 wt% dicalcium phosphate dihydrate, and 10 wt% tricalcium phosphate was combined with either 35% w/w poly methyl vinyl ether maleic acid or polyacrylic acid to obtain CPC-1 and CPC-2. The setting time and compressive and diametral tensile strength of the CPCs were evaluated and compared with that of a commercial hydroxyapatite cement. In vitro cytotoxicity and in vivo biocompatibility of the two CPCs and hydroxyapatite cement were assessed. The setting time of the cements was 5–15 min. CPC-1 and CPC-2 showed significantly higher compressive and diametral strength values compared to hydroxyapatite cement. CPC-1 and CPC-2 were equivalent to Teflon controls after 1 week. CPC-1, CPC-2, and hydroxyapatite cement elicited a moderate to intense inflammatory reaction at 7 days which decreased over time. CPC-1 and CPC-2 show promise for orthopedic applications. PMID:20811498

  13. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium channel blockers are a type of medicine used ...

  14. Fenoprofen calcium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  15. New Bismuth-Substituted Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    Science.gov (United States)

    Ciobanu, Gabriela; Bargan, Ana Maria; Luca, Constantin

    2015-11-01

    New bismuth-substituted hydroxyapatite [Ca10- x Bi x (PO4)6(OH)2 where x = 0-2.5] nanoparticles were synthesized by the co-precipitation method from aqueous solutions. The structural properties of the samples were analyzed by scanning electron microscopy coupled with x-ray analysis, x-ray powder diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area analysis. The results confirm that bismuth ions have been incorporated into the hydroxyapatite lattice. The prepared nanocrystalline powders consisted of hydroxyapatite as single phase with hexagonal structure, crystal sizes smaller than 60 nm and (Bi + Ca)/P atomic ratio of around 1.67. The hydroxyapatite samples doped with Bi have mesoporous textures with pores size of around 2 nm and specific surface area in the range of 12-25 m2/g. The Bi-substituted hydroxyapatite powders are more effective against Gram-negative Escherichia coli bacteria than Gram-positive Staphylococcus aureus bacteria.

  16. Characteristics of porous zirconia coated with hydroxyapatite as human bones

    Indian Academy of Sciences (India)

    V V Narulkar; S Prakash; K Chandra

    2007-08-01

    Since hydroxyapatite has excellent biocompatibility and bone bonding ability, porous hydroxyapatite ceramics have been intensively studied. However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared by ceramic slurry infiltration of expanded polystyrene bead compacts, followed by firing at 1500°C. Then slurry of hydroxyapatite–borosilicate glass mixed powder was used to coat the porous ceramics, followed by firing at 1200°C. The porous structures without the coating had high porosities of 51–69%, high pore interconnectivity, and sufficiently large pore window sizes (300–500 m). The porous ceramics had compressive strengths of 5.3∼36.8 MPa, favourably comparable to the mechanical properties of cancellous bones. In addition, porous hydroxyapatite surface was formed on the top of the composite coating, whereas a borosilicate glass layer was found on the interface. Thus, porous zirconia-based ceramics were modified with a bioactive composite coating for biomedical applications.

  17. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  18. In vitro osteoclast formation and resorption of silicon-substituted hydroxyapatite ceramics.

    Science.gov (United States)

    Friederichs, Robert J; Brooks, Roger A; Ueda, Masato; Best, Serena M

    2015-10-01

    Materials that participate in bone remodeling at the implant/tissue interface represent a modern tissue engineering approach with the aim of balancing implant resorption and nascent tissue formation. Silicon-substituted hydroxyapatite (SiHA) ceramics are capable of stimulating new bone formation, but little is known about their interaction with osteoclasts (OC). The effects of soluble silicate and SiHA on OCs were investigated in this study. Soluble silicate below 500 μM did not stimulate cell metabolism at 4 days or alter resorption area at 7 days on calcium phosphate discs. On sintered ceramics, OC numbers were similar on HA, Si0.3 HA (0.5 wt % Si) and Si0.5 HA (1.2 wt % Si) after 21 days in vitro, but actin ring sealing zone morphology on SiHA resembled that commonly found on bone or on carbonate-substituted hydroxyapatite (CHA). Smaller and thicker actin rings on SiHA as compared to HA were probably the result of altered surface chemistry and solubility differences. The more stable sealing zones and increased lattice solubility likely contributed to increased individual pit volumes observed on Si0.5 HA. The delayed formation of OCs on Si0.5 HA (lower numbers at day 14) excludes earlier differentiation as a possible mechanism of increased individual OC pit volumes at later times (day 21). Materials characterization of Si containing biomaterials remains paramount as the Si type and amounts can subsequently impact downstream OC behaviour in a complex manner.

  19. Cytocompatibility and biocompatibility of nanostructured carbonated hydroxyapatite spheres for bone repair

    Science.gov (United States)

    CALASANS-MAIA, Mônica Diuana; de MELO, Bruno Raposo; ALVES, Adriana Terezinha Neves Novellino; RESENDE, Rodrigo Figueiredo de Brito; LOURO, Rafael Seabra; SARTORETTO, Suelen Cristina; GRANJEIRO, José Mauro; ALVES, Gutemberg Gomes

    2015-01-01

    ABSTRACT Objective The aim of this study was to investigate the in vitro and in vivo biological responses to nanostructured carbonated hydroxyapatite/calcium alginate (CHA) microspheres used for alveolar bone repair, compared to sintered hydroxyapatite (HA). Material and Methods The maxillary central incisors of 45 Wistar rats were extracted, and the dental sockets were filled with HA, CHA, and blood clot (control group) (n=5/period/group). After 7, 21 and 42 days, the samples of bone with the biomaterials were obtained for histological and histomorphometric analysis, and the plasma levels of RANKL and OPG were determined via immunoassay. Statistical analysis was performed by Two-Way ANOVA with post-hoc Tukey test at 95% level of significance. Results The CHA and HA microspheres were cytocompatible with both human and murine cells on an in vitro assay. Histological analysis showed the time-dependent increase of newly formed bone in control group characterized by an intense osteoblast activity. In HA and CHA groups, the presence of a slight granulation reaction around the spheres was observed after seven days, which was reduced by the 42nd day. A considerable amount of newly formed bone was observed surrounding the CHA spheres and the biomaterials particles at 42-day time point compared with HA. Histomorphometric analysis showed a significant increase of newly formed bone in CHA group compared with HA after 21 and 42 days from surgery, moreover, CHA showed almost 2-fold greater biosorption than HA at 42 days (two-way ANOVA, p<0.05) indicating greater biosorption. An increase in the RANKL/OPG ratio was observed in the CHA group on the 7th day. Conclusion CHA spheres were osteoconductive and presented earlier biosorption, inducing early increases in the levels of proteins involved in resorption. PMID:26814461

  20. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.

    1985-01-01

    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of cardiop

  1. Efficient modification of the surface properties of interconnected porous hydroxyapatite by low-pressure low-frequency plasma treatment to promote its biological performance

    International Nuclear Information System (INIS)

    Dielectric barrier discharge plasma treatment at low pressure is found to significantly improve the biological performance of artificial bones made of interconnected porous calcium hydroxyapatite (IP-CHA). One of the essential parameters associated with their biological performance is hydrophilicity of their exterior surfaces as well as surfaces of inner pores. It is found that plasma treatment at low pressures is highly effective in making the inner pore surfaces more hydrophilic. Preliminary in vivo experiments of plasma-treated IP-CHA artificial bones in rats have shown fast formation of blood vessels in their inner pores, implying the increase in osteoconductivity due to the plasma treatment.

  2. Efficient modification of the surface properties of interconnected porous hydroxyapatite by low-pressure low-frequency plasma treatment to promote its biological performance

    Science.gov (United States)

    Lee, Dae-Sung; Moriguchi, Yu; Myoui, Akira; Yoshikawa, Hideki; Hamaguchi, Satoshi

    2012-09-01

    Dielectric barrier discharge plasma treatment at low pressure is found to significantly improve the biological performance of artificial bones made of interconnected porous calcium hydroxyapatite (IP-CHA). One of the essential parameters associated with their biological performance is hydrophilicity of their exterior surfaces as well as surfaces of inner pores. It is found that plasma treatment at low pressures is highly effective in making the inner pore surfaces more hydrophilic. Preliminary in vivo experiments of plasma-treated IP-CHA artificial bones in rats have shown fast formation of blood vessels in their inner pores, implying the increase in osteoconductivity due to the plasma treatment.

  3. Electron paramagnetic resonance dosimetry using synthetic hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwon; Kim, Hwi Young; Ye, Sung Joon [Seoul National University, Seoul (Korea, Republic of); Hirata, Hiroshi [Hokkaido University, Sapporo (Japan); Park, Jong Min [Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-11-15

    The victims exposed doses under 3.5-4.0 Gy have chance to survive if treated urgently. To determine the priority of treatment among a large number of victims, the triage – distinguishing patients who need an urgent treatment from who may not be urgent – is necessary based on radiation biodosimetry. A current gold standard for radiation biodosimetry is the chromosomal assay using human lymphocytes. But this method requires too much time and skilled labors to cover the mass victims in radiation emergencies. Electron paramagnetic resonance (EPR) has been known for its capability of quantifying radicals in matters. EPR dosimetry is based on the measurement of stable radiation-induced radicals in tooth enamel. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) contained in tooth enamel is a major probe for radiation dose reconstruction. This HAP dosimetry study was performed using a novel EPR spectrometer in Hokkaido University, Japan. The EPR dose-response curve was made using HAP samples. The blind test using 250 cGy samples showed the feasibility of EPR dosimetry for the triage purpose.

  4. Nano-Hydroxyapatite Thick Film Gas Sensors

    Science.gov (United States)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P.

    2011-12-01

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  5. Nano-Hydroxyapatite Thick Film Gas Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606 (India)

    2011-12-10

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  6. Antibacterial Effects of Silver Loaded Hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The antibacterial capability of silver loaded hydroxyapatite(HA-Ag) in both poor nutrient phosphate buffer saline solution(PBS,pH=7.4)and nutrient rich medium,which represented two kinds of typical conditions in real life,was evaluated respectively using Escherichia coli as a model.At 0.4 mg/mL in PBS solution containing an initial cell concentration of 106/mL,HA-Ag killed all the E.coli cells in the PBS solution within 4.5 h.In a nutrient rich medium containing a cell concentration of 107/mL,HA-Ag exhibited a remarkable inhibitory effect of E.coli cells.The maximum specific growth rate in the medium containing 3 mg/mL HA-Ag was only 0.292, 26% of that in a control sample which was 1.116,and the viable cell concentration in the former HA-Ag medium was just 40% of that in the control.As a safe antibacterial agent,HA-Ag powder demonstrated antibacterial efforts both in poor nutrient and in nutrient rich environment.It seems that the HA-Ag compound hold a lot of promises for practical applications.

  7. Synthesis and structural characterization of nano-hydroxyapatite biomaterials prepared by microwave processing

    Science.gov (United States)

    Ramli, Rosmamuhamadani; Arawi, Ainaa Zafirah Omar; Talari, Mahesh Kumar; Mahat, Mohd Muzamir; Jais, Umi Sarah

    2012-07-01

    Synthetic hydroxyapatite, (HA, Ca10(PO4)6(OH)2), is an attractive and widely utilized bio-ceramic material for orthopedic and dental implants because of its close resemblance of native tooth and bone crystal structure. Synthetic HA exhibits excellent osteoconductive properties. Osteoconductivity means the ability to provide the appropriate scaffold or template for bone formation. Calcium phosphate biomaterials [(HA), tri-calcium phosphate (TCP) and biphasic calcium phosphate (HA/TCP)] with appropriate three-dimensional geometry are able to bind and concentrate endogenous bone morphogenetic proteins in circulation, and may become osteoinductive and can be effective carriers of bone cell seeds. This HA can be used in bio-implants as well as drug delivery application due to the unique properties of HA. Biomaterials synthesized from the natural species like mussel shells have additional benefits such as high purity, less expensive and high bio compatibility. In this project, HA-nanoparticles of different crystallite size were prepared by microwave synthesis of precursors. High purity CaO was extracted from the natural mussel shells for the synthesis of nano HA. Dried nano HA powders were analyzed using X-Ray Diffraction (XRD) technique for the determination of crystal structure and impurity content. Scanning Electron Microscopic (SEM) investigation was employed for the morphological investigation of nano HA powders. From the results obtained, it was concluded that by altering the irradiation time, nano HA powders of different crystallite sizes and morphologies could be produced. Crystallite sizes calculated from the XRD patterns are found to be in the range of 10-55 nm depending on the irradiation time.

  8. Effects of chronic passive smoking on the regeneration of rat femoral defects filled with hydroxyapatite and stimulated by laser therapy.

    Science.gov (United States)

    Franco, G R; Laraia, I O; Maciel, A A W; Miguel, N M; Dos Santos, G R; Fabrega-Carvalho, C A; Pinto, C A L; Pettian, M S; Cunha, M R

    2013-07-01

    Defects associated with bone mass loss are frequently treated by autogenous bone grafting. However, synthetic biomaterials such as calcium phosphate ceramics can substitute autologous grafts as long as they are biocompatible with bone tissue. In addition, low-level laser therapy (LLLT) is used to enhance bone regeneration by stimulating the local microcirculation and increasing the synthesis of collagen by bone cells. However, bone health is fundamental for osseointegration of the graft and bone repair. In this respect, excessive tobacco consumption can compromise expected outcomes because of its deleterious effects on bone metabolism that predispose to the development of osteoporosis. The objective of this study was to evaluate the regeneration of bone defects implanted with biomaterial and stimulated by LLLT in rats submitted to passive cigarette smoking. Porous hydroxyapatite granules were implanted into critical-size defects induced experimentally in the distal epiphysis of the right femur of 20 female Wistar rats submitted to passive smoking for 8 months in a smoking box. The defect site was irradiated with a gallium-arsenide laser at an intensity of 5.0 J/cm2. The animals were divided into four groups: control (non-smoking) rates submitted (G2) or not (G1) to laser irradiation, and smoking rats submitted (G4) or not (G3) to laser irradiation. The animals were sacrificed 8 weeks after biomaterial implantation. The right femurs were removed for photodocumentation, radiographed, and processed for routine histology. The results showed good radiopacity of the implant site and of the hydroxyapatite granules. Histologically, formation of new trabecular bone was observed adjacent to the hydroxyapatite granules in G1 and G2. In G3 and G4, the granules were surrounded mainly by connective tissue. In conclusion, passive smoking compromised bone neoformation in the defects and the LLLT protocol was not adequate to stimulate local osteogenesis. PMID:23340234

  9. Inflammatory responses to Hydroxyapatite implants in middle ear in rats

    Institute of Scientific and Technical Information of China (English)

    YE Qing; JIANG Yi; WANG Xiao-yan; ZHENG Ke-fei

    2008-01-01

    Objective To study local inflammatory response after implantation of hydroxyapatite synthetic ossicular prosthesis. Methods Hydroxyapatite gantries were implanted in the bulla in 32 rats. Sham surgical procedures were performed in 10 rats as the control. Animals were sacrificed at 1 to 300 days after surgery. Bulla sections, stained with HE and Mallory's azan, were examined for numbers and percentages of various inflammatory cell types. Results Slightly more inflammatory reaction was seen in animals with the implant than in the controls, mostly during the early stage following the implantation procedure. Few inflammatory cells were observed at later times. There were satisfactory fibrosis in both implanted and control ears. Conclusion The results indicate that hydroxyapatite synthetic prosthesis is a biocompatible implantation material in the middle ear. Nonetheless, the presence of inflammatory reaction immediately following implantation implies that control of infection is important in the early times after the implantation procedure.

  10. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO46(OH2 nanoparticles (Ag:HAp-NPs for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.

  11. [IN VIVO EVALUATION OF POLYCAPROLACTONE-HYDROXYAPATITE SCAFFOLD BIOCOMPATIBILITY].

    Science.gov (United States)

    Ivanov, A N; Kozadaev, M N; Bogomolova, N V; Matveeva, O V; Puchinyan, D M; Norkin, I A; Sal'kovskii, Yu E; Lyubun, G P

    2015-01-01

    Biocompatibility is one of the main and very important properties for scaffolds. The aim of the present study was to investigate cells population dynamics in vivo in the process of original polycaprolactone-hydroxyapatite scaffold colonization, as well as tissue reactions to the implantation to assess the biocompatibility of the matrix. It has been found that tissue reactive changes in white rats subside completely up to the 21st day after subcutaneous polycaprolactone-hydroxyapatite scaffold implantation. Matrix was actively colonized by connective tissue cells in the period from the 7th to the 21st day of the experiment. However, intensive scaffold vascularization started from the 14th day after implantation. These findings suggest a high degree of the polycaprolactone-hydroxyapatite scaffold biocompatiblilitye.

  12. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells.

    Science.gov (United States)

    Michel, John; Penna, Matthew; Kochen, Juan; Cheung, Herman

    2015-01-01

    Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs) are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs) published in the last three years.

  13. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    John Michel

    2015-01-01

    Full Text Available Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs published in the last three years.

  14. CALCIUM ORTHOPHOSPHATES HYDRATES: FORMATION, STABILITY AND INFLUENCE ON STANDARD PROPERTIES OF PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    Kaziliunas A.

    2013-12-01

    Full Text Available Preparation of phosphogypsum to produce the binders requires a much higher input than preparation of natural gypsum stone. This makes it uncompetitive material. The investigations presented therein are meant to reduce this input by looking for the ways of rendering impurities harmless. Soluble acid orthophosphates are the main harmful impurity of phosphogypsum. The studies show that dry insoluble calcium orthophosphates hydrates (1.09 % and 2.18 % P2O5 in gypsum have little effect on W/C, setting times and soundness of Portland cement pastes. Insoluble calcium orthophosphates hydrates {CaHPO4∙2H2O, Ca8(HPO42(PO44∙5H2O and Ca9(HPO4(PO45(OH∙4H2O} formed in acidic medium (pH = 4.2 - 5.9 have been destroyed in alkaline medium and reduce standard compressive strength of cement up to 28 %. Calcium orthophosphates hydrates of hydroxyapatite group are stable in alcaline medium, while in dry state they reduce the standard compressive strength of cement until 10 %, but their suspensions prolong setting times of Portland cement as soluble orthophosphates – 2 - 3 times. Alkalis in cement increase pH of paste, but do not change the process of formation of calcium orthophosphates hydrates of hydroxyapatite group: it takes place through an intermediate phase - CaHPO4·2H2O, whose transformation into apatite lasts for 2 - 3 months.

  15. Adsorption of Pb(II) present in aqueous solution on calcium, strontium and barium hydroxy apatites

    International Nuclear Information System (INIS)

    Calcium, strontium and barium hydroxy apatites were successfully synthesized by chemical precipitation method, the obtained powders were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (Sem), semi-quantitative elemental analysis (EDS), infrared spectroscopy (IR), and N2 physisorption studies, complementary to these analytical techniques, was determined the surface fractal dimension (Df), and the amount of surface active sites of the materials, in order to know application as ceramic for water remediation. The ability of Pb(II) ion adsorption present in aqueous solution on the hydroxy apatites synthesized by batch type experiments was studied as a function of contact time, concentration of the adsorbate and temperature. The maximum lead adsorption efficiencies obtained were 0.31, 0.32 and 0.26 mg/g for calcium, strontium and barium hydroxy apatites respectively, achieved an equilibrium time of 20 minutes in the three solid-liquid systems studied. Experimental data were adequately adjusted at the adsorption kinetic model pseudo-second order, for the three cases. Moreover, experimental data of the strontium and calcium hydroxy apatites were adjusted to the Langmuir adsorption isotherm, indicating that the adsorption was through a monolayer, whereas barium hydroxyapatite was adjusted to the Freundlich adsorption isotherm, indicating a multilayer adsorption. The thermodynamic parameters obtained during adsorption studies as a function of temperature showed physisorption, exothermic and spontaneous processes respectively. The results showed that the calcium hydroxyapatite, strontium and barium are an alternative for the Pb(II) ion adsorption present in wastewaters. (Author)

  16. Suspension thermal spraying of hydroxyapatite: Microstructure and in vitro behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Bolelli, Giovanni, E-mail: giovanni.bolelli@unimore.it [Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, MO (Italy); Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella [Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena, MO (Italy); Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer [Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Universität Stuttgart, Allmandring 7b, 70569 Stuttgart (Germany); Altomare, Lina; De Nardo, Luigi [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Via Mancinelli 7, I-20131 Milano (Italy)

    2014-01-01

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27–37 μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%–70% were obtained, depending on the deposition parameters and the use of a TiO{sub 2} bond coat. The average hardness of layers with low (< 24%) and high (70%) crystallinity was ≈ 3.5 GPa and ≈ 4.5 GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5–7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈ 3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14 days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. - Highlights: • Thin, dense HA layers were originated by HVSFS deposition of molten agglomerates of ≈ 1 μm. • Tensile adhesion strength of HVSFS HA onto Ti well above the threshold of ISO 13779-2 • Crystallinity (10–70%) is determined by system temperature during deposition. • Crystallinity controls the reactivity during immersion in simulated body fluid. • SAOS-2 osteoblast-like cells adhered well and

  17. Suspension thermal spraying of hydroxyapatite: Microstructure and in vitro behaviour

    International Nuclear Information System (INIS)

    In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27–37 μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%–70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (< 24%) and high (70%) crystallinity was ≈ 3.5 GPa and ≈ 4.5 GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5–7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈ 3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14 days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. - Highlights: • Thin, dense HA layers were originated by HVSFS deposition of molten agglomerates of ≈ 1 μm. • Tensile adhesion strength of HVSFS HA onto Ti well above the threshold of ISO 13779-2 • Crystallinity (10–70%) is determined by system temperature during deposition. • Crystallinity controls the reactivity during immersion in simulated body fluid. • SAOS-2 osteoblast-like cells adhered well and

  18. Lanthanum-containing hydroxyapatite coating on ultrafine-grained titanium by micro-arc oxidation: a promising strategy to enhance overall performance of titanium.

    Science.gov (United States)

    Deng, Zhennan; Wang, LiLi; Zhang, Dafeng; Liu, Jinsong; Liu, Chuantong; Ma, Jianfeng

    2014-01-01

    Titanium is widely used in biomedical materials, particularly in dental implants, because of its excellent biocompatibility and mechanical characteristics. However, titanium implant failures still remain in some cases, varying with implantation sites and patients. Improving its overall performance is a major focus of dental implant research. Equal-channel angular pressing (ECAP) can result in ultrafine-grained titanium with superior mechanical properties and better biocompatibility, which significantly benefits dental implants, and without any harmful alloying elements. Lanthanum (La) can inhibit the acidogenicity of dental plaque and La-containing hydroxyapatite (La-HA) possesses a series of attractive properties, in contrast to La-free HA. Micro-arc oxidation (MAO) is a promising technology that can produce porous and firmly adherent hydroxyapatite (HA) coatings on titanium substrates. Therefore, we hypothesize that porous La-containing hydroxyapatite coatings with different La content (0.89%, 1.3% and 1.79%) can be prepared on ultrafine-grained (~200-400 nm) titanium by ECAP and MAO in electrolytic solution containing 0.2 mol/L calcium acetate, 0.02 mol/L beta-glycerol phosphate disodium salt pentahydrate (beta-GP), and lanthanum nitrate with different concentrations to further improve the overall performance of titanium, which are expected to have great potential in medical applications as a dental implant. PMID:24487779

  19. Hyperfine interaction measurements in biological compounds: the case of hydroxyapatite; Medidas de interacoes hiperfinas em compostos biologicos: o caso da hidroxiapatita

    Energy Technology Data Exchange (ETDEWEB)

    Leite Neto, Osmar Flavio da Silveira

    2014-07-01

    The use o nanoparticles in current medicine are under intense investigation. The possible advantages proposed by these systems are very impressive and the results may be quite schemer. In this scenario, the association of nanoparticles with radioactive materials (radionuclide) may be the most important step since the discovery of radioactive for nuclear medicine and radiopharmacy, especially for cancer targeting and therapy. The hyperfine interaction of the nuclear probe {sup 111}Cd in the Hydroxyapatite compounds has been investigated by perturbed angular correlation (PAC) spectroscopy in room temperature for the hydroxyapatite made in the temperatures of 90°C, 35°C and with Ho doped, both thermalized and not. The thermalized samples were heated to T= 1273 K for 6 h. The {sup 111}Cd was broadcast in the structure of the material by diffusion, closing in quartz tubes were heated – together with the radioactive PAC probe {sup 111}In/{sup 111}Cd to T = 1073 K for 12 h. In not thermalized samples the PAC spectra indicate a distribution of frequency, but in the thermalized samples, the PAC spectra shows the presence of β-tri calcium phosphate in the structure of this kind of Hydroxyapatite. (author)

  20. Formulation, caractérisation et mise en oeuvre de barrières perméables réactives à base de phosphate de calcium, Utilisation pour la fixation de polluants

    OpenAIRE

    Raii, Mohamed

    2012-01-01

    The main purpose of this thesis was the formulation of stable blends based on synthesized hydroxyapatite-gel (Ca-HAGel). The rheological behavior of water−calcium sulfates and hydroxyapatite−calcium sulfates blends was considered in this study. The results show that all blends and formulations exhibit a shear-thinning effect and thixotropic behavior. The ζ potential was used in this study to understand the interaction between particles and its effect on the global behavior of the blends. Fixa...

  1. Calcium signaling and epilepsy.

    Science.gov (United States)

    Steinlein, Ortrud K

    2014-08-01

    Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.

  2. Mineralization of Hydroxyapatite Regulated by Recombinant Human-like Collagen

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We reported recombinant human-like type I collagen inducing growth of hydroxyapatite crystals in vitro in the form of self-assembly of nano-fibrils of mineralized collagen resembling extracellular matrix, which obey the same rules, but is superior to the collagen derived from animal tissues because the latter may carry diseases of animals and cause immunological reactions. The mineralized collagen fibrils aligned parallel to each other to form mineralized collagen fibers. Hydroxyapatite nanocrystals grew on the surface of these collagen fibrils with the c-axis of nanocrystals of HA orienting along the longitudinal axis of the fibrils.

  3. Waste utilization for the controlled synthesis of nanosized hydroxyapatite

    International Nuclear Information System (INIS)

    This work uses biomolecules in waste and medicinally important materials for the synthesis of hydroxyapatite nanoparticles. Orange and potato peel, eggshell, papaya leaf and calendula flower extracts have varied biomolecules, which exert a significant, control on the in situ synthesis of nanosized hydroxyapatite particles. The biomimetic synthesis of inorganic particles using known matrices is already well established, however, there are only a few reports using compound extracts. The synthesized nanocomposite has been characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy studies. Role of varied biomolecules in controlled inorganic synthesis may have tremendous technological impact.

  4. Waste utilization for the controlled synthesis of nanosized hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Nayar, Suprabha, E-mail: Suprabha.nayar@gmail.com [National Metallurgical Laboratory, Jamshedpur (India); Guha, Avijit [National Metallurgical Laboratory, Jamshedpur (India)

    2009-05-05

    This work uses biomolecules in waste and medicinally important materials for the synthesis of hydroxyapatite nanoparticles. Orange and potato peel, eggshell, papaya leaf and calendula flower extracts have varied biomolecules, which exert a significant, control on the in situ synthesis of nanosized hydroxyapatite particles. The biomimetic synthesis of inorganic particles using known matrices is already well established, however, there are only a few reports using compound extracts. The synthesized nanocomposite has been characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy studies. Role of varied biomolecules in controlled inorganic synthesis may have tremendous technological impact.

  5. Optimization of calcium phosphate fine ceramic powders preparation

    Science.gov (United States)

    Sezanova, K.; Tepavitcharova, S.; Rabadjieva, D.; Gergulova, R.; Ilieva, R.

    2013-12-01

    The effect of biomimetic synthesis method, reaction medium and further precursor treatments on the chemical and phase composition, crystal size and morphology of calcium phosphates was examined. Nanosized calcium phosphate precursors were biomimetically precipitated by the method of continuous precipitation in three types of reaction media at pH 8: (i) SBF as an inorganic electrolyte system; (ii) organic (glycerine) modified SBF (volume ratio of 1:1); (iii) polymer (10 g/l xanthan gum or 10 g/l guar gum) modified SBF (volume ratio of 1:1). After maturation (24 h) the samples were lyophilized, calcinated at 300°C for 3 hours, and washed with water, followed by new gelation, lyophilization and step-wise (200, 400, 600, 800, and 1000°C, each for 3 hours) sintering. The reaction medium influenced the chemical composition and particle size but not the morphology of the calcium phosphate powders. In all studied cases bi-phase calcium phosphate fine powders with well-shaped spherical grains, consisting of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) with a Ca/P ratio of 1.3 - 1.6 were obtained. The SBF modifiers decreased the particle size of the product in the sequence guar gum ˜ xanthan gum < glycerin < SBF medium.

  6. Effect of humic substances on the precipitation of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    SONG Yong-hui; Hermann H. HAHN; Erhard HOFFMANN; Peter G. WEIDLER

    2006-01-01

    For phosphorus (P) recovery from wastewater, the effect of humic substances (HS) on the precipitation of calcium phosphate was studied. Batch experiments of calcium phosphate precipitation were undertaken with synthetic water that contained 20 mg/L phosphate (as P) and 20 mg/L HS (as dissolved organic carbon, DOC) at a constant pH value in the range of 8.0-10.0. The concentration variations of phosphate, calcium (Ca) and HS were measured in the precipitation process; the crystalline state and compositions of the precipitates were analysed by powder X-ray diffraction (XRD) and chemical methods, respectively. It showed that at solution pH 8.0, the precipitation rate and removal efficiency of phosphate were greatly reduced by HS, but at solution pH ≥9.0,the effect of HS was very small. The Ca consumption for the precipitation of phosphate increased when HS was added; HS was also removed from solution with the precipitation of calcium phosphate. At solution pH 8.0 and HS concentrations ≤ 3.5 mg/L, and at pH ≥ 9.0 and HS concentrations ≤ 10 mg/L, the final precipitates were proved to be hydroxyapatite (HAP) by XRD. The increases of solution pH value and initial Ca/P ratio helped reduce the influence of HS on the precipitation of phosphate.

  7. Modification of polylactic acid surface using RF plasma discharge with sputter deposition of a hydroxyapatite target for increased biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Tverdokhlebov, S.I., E-mail: tverd@tpu.ru [Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050 (Russian Federation); Bolbasov, E.N.; Shesterikov, E.V. [Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050 (Russian Federation); Antonova, L.V.; Golovkin, A.S.; Matveeva, V.G. [Federal State Budgetary Institution Research Institute for Complex Issues of Cardiovascular Disease, 6 Sosnovy Blvd, Kemerovo 650002 (Russian Federation); Petlin, D.G.; Anissimov, Y.G. [Griffith University, School of Natural Sciences, Engineering Dr., Southport, QLD 4222 (Australia)

    2015-02-28

    Highlights: • The treatment by plasma of radio-frequency magnetron discharge with hydroxyapatite target sputtering improves the biocompatibility of PLLA surface. • The treatment significantly increases the roughness of PLLA surface. • The formation of rough highly porous surface is due to the etching and crystallization processes on PLLA surface during treatment. • Maximum concentration of the ions from the sputtered target is achieved at 60 s of the plasma treatment. - Abstract: Surface modification of polylactic acid (PLLA) by plasma of radio-frequency magnetron discharge with hydroxyapatite target sputtering was investigated. Increased biocompatibility was demonstrated using studies with bone marrow multipotent mesenchymal stromal cells. Atomic force microscopy demonstrates that the plasma treatment modifies the surface morphology of PLLA to produce rougher surface. Infrared spectroscopy and X-ray diffraction revealed that changes in the surface morphology are caused by the processes of PLLA crystallization. Fluorescent X-ray spectroscopy showed that the plasma treatment also changes the chemical composition of PLLA, enriching it with ions of the sputtered target: calcium, phosphorus and oxygen. It is hypothesized that these surface modifications increase biocompatibility of PLLA without increasing toxicity.

  8. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite.

    Science.gov (United States)

    Fulmer, M T; Brown, P W

    1998-04-01

    Dicalcium phosphate dihydrate (DCPD) was hydrolysed in water and in 1 M Na2HPO4 solution at temperatures from 25-60 degrees C. Hydrolysis was incomplete in water. At 25 degrees C, DCPD partially hydrolysed to hydroxyapatite (HAp). Formation of HAp is indicative of incongruent DCPD dissolution. At the higher temperatures, hydrolysis to HAp was more extensive and was accompanied by the formation of anhydrous dicalcium phosphate (DCP). Both of these processes are endothermic. When hydrolysis was carried out in 1 M Na2HPO4 solution, heat absorption was greater at any given temperature than for hydrolysis in water. Complete hydrolysis to HAp occurred in this solution. The hydrolysis of DCPD to HAp in sodium phosphate solution was also endothermic. The complete conversion of DCPD to HAp in sodium phosphate solution would not be expected if the only effect of this solution was to cause DCPD dissolution to become congruent. Because of the buffering capacity of a dibasic sodium phosphate solution, DCPD hydrolysed completely to HAp. Complete conversion to HAp was accompanied by the conversion of dibasic sodium phosphate to monobasic sodium phosphate. The formation of DCP was not observed indicating that the sodium phosphate solution precluded the DCPD-to-DCP dehydration reaction. In addition to affecting the extent of hydrolysis, reaction in the sodium phosphate solution also caused a morphological change in the HAp which formed. HAp formed by hydrolysis in water was needle-like to globular while that formed in the sodium phosphate solution exhibited a florette-like morphology.

  9. Calcium phosphate glass-ceramics for bioactive coating on a β-titanium alloy

    International Nuclear Information System (INIS)

    The formation of a porous coating is the decisive feature for the bio-compatibility of silica-free calcium phosphate glass ceramics on alloy surfaces like the β-Ti structured Ti-29Nb-13Ta-4.6Zr used in this work. The ceramic composition is highly important: 50CaO-40P2O5-7Na2O-3TiO2 glass powder produces a pore-free coating unable to bind hydroxyapatite, whereas 60CaO-30P2O5-7Na2O-3TiO2 glass incorporates pores from which a crystalline hydroxyapatite phase can grow over the surface from simulated body fluid (see Figure). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  10. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells

    Science.gov (United States)

    Lee, Jong Ho; Shin, Yong Cheol; Jin, Oh Seong; Kang, Seok Hee; Hwang, Yu-Shik; Park, Jong-Chul; Hong, Suck Won; Han, Dong-Wook

    2015-07-01

    Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 +/- 476 nm and 438 +/- 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential.Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite

  11. Mg-doped hydroxyapatite nanoplates for biomedical applications: A surfactant assisted microwave synthesis and spectroscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Vijay Kumar [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Bhattacharjee, Birendra Nath; Parkash, Om [Department of Ceramic Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Kumar, Devendra, E-mail: devendra.cer@iitbhu.ac.in [Department of Ceramic Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Rai, Shyam Bahadur, E-mail: sbrai49@yahoo.co.in [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)

    2014-11-25

    Highlights: • Microwave irradiation technique: employed for the synthesis of Mg-HAp nanoplates. • Surfactant (EDTA) assisted synthesis of Mg-HAp. • FT-IR and Raman analysis of functional groups of Mg-HAp. - Abstract: Nanoplates of Mg doped hydroxyapatite (Mg-HAp) were derived successfully and rapidly via microwave irradiation technique. Hydroxyapatite (HAp) is the hard tissues and main inorganic component in mammals. Different nanostructures of HAp exist in different parts of human bone but nanorods are very common due to its intrinsic nature to grow in rode-like structure under physiological as well as under applied ambient conditions in laboratory. On the addition of Mg at very low level (0.06 mol%) in pure HAp results the formation of 2-D plate-like nanostructures rather than rod-like which is the matter of interest. In this attempt our efforts have been focused on the study of effect of Mg incorporation on structural and spectroscopic properties of HAp prepared via microwave irradiation technique. This technique is preferred due to several advantages viz. very fast as well as homogeneous heating, time/energy saving and eco-friendliness. The calcium nitrate tetrahydrate (Ca(NO{sub 3}){sub 2}⋅4H{sub 2}O)) as a source of calcium, magnesium nitrate hexahydrate (Mg(NO{sub 3}){sub 2}⋅6H{sub 2}O) as a source of magnesium, disodium hydrogen phosphate dihydrate (NaH{sub 2}PO{sub 4}⋅2H{sub 2}O) as a source of phosphorous and sodium ethylene diamine tetra acetate (NaEDTA) as a surfactant were used as starting reagents. Sodium hydroxide (NaOH) pellets were employed to adjust the pH value of final solution. The solution of fixed pH value was kept into the microwave oven generating waves of frequency 2.45 GHz (water absorption frequency) and power 750 W for 8 min. The precipitate thus obtained was washed, centrifuged and then dried at 100 °C for 2 h. Dried powder was then calcined at 700 °C for 2 h. The bright white powder thus obtained was characterized

  12. Mg-doped hydroxyapatite nanoplates for biomedical applications: A surfactant assisted microwave synthesis and spectroscopic investigations

    International Nuclear Information System (INIS)

    Highlights: • Microwave irradiation technique: employed for the synthesis of Mg-HAp nanoplates. • Surfactant (EDTA) assisted synthesis of Mg-HAp. • FT-IR and Raman analysis of functional groups of Mg-HAp. - Abstract: Nanoplates of Mg doped hydroxyapatite (Mg-HAp) were derived successfully and rapidly via microwave irradiation technique. Hydroxyapatite (HAp) is the hard tissues and main inorganic component in mammals. Different nanostructures of HAp exist in different parts of human bone but nanorods are very common due to its intrinsic nature to grow in rode-like structure under physiological as well as under applied ambient conditions in laboratory. On the addition of Mg at very low level (0.06 mol%) in pure HAp results the formation of 2-D plate-like nanostructures rather than rod-like which is the matter of interest. In this attempt our efforts have been focused on the study of effect of Mg incorporation on structural and spectroscopic properties of HAp prepared via microwave irradiation technique. This technique is preferred due to several advantages viz. very fast as well as homogeneous heating, time/energy saving and eco-friendliness. The calcium nitrate tetrahydrate (Ca(NO3)2⋅4H2O)) as a source of calcium, magnesium nitrate hexahydrate (Mg(NO3)2⋅6H2O) as a source of magnesium, disodium hydrogen phosphate dihydrate (NaH2PO4⋅2H2O) as a source of phosphorous and sodium ethylene diamine tetra acetate (NaEDTA) as a surfactant were used as starting reagents. Sodium hydroxide (NaOH) pellets were employed to adjust the pH value of final solution. The solution of fixed pH value was kept into the microwave oven generating waves of frequency 2.45 GHz (water absorption frequency) and power 750 W for 8 min. The precipitate thus obtained was washed, centrifuged and then dried at 100 °C for 2 h. Dried powder was then calcined at 700 °C for 2 h. The bright white powder thus obtained was characterized structurally using X-ray diffraction and SEM techniques and

  13. Smoking, calcium, calcium antagonists, and aging.

    Science.gov (United States)

    Nicita-Mauro, V

    1990-01-01

    Aging is characterized, besides other changes, by a progressive increase in calcium content in the arterial wall, which is enhanced by diabetes mellitus, osteoporosis, arterial hypertension, and tabagism. As to tabagism, experiments in animals have shown that nicotine can increase calcium content of the arterial wall, and clinical studies have demonstrated that cigarette smoking induces peripheral vasoconstriction, with consequent increase in blood pressure levels. In order to study the role of calcium ions in the pathogenesis of the vasoconstrictive lesions caused by "acute" smoking, the author has studied the peripheral vascular effects of the calcium-channel antagonist nifedipine, a dihydropyridine derivative, and calcitonin, a hypocalcemizing hormone which possess vasoactive actions on 12 elderly regular smokers (mean age 65.8 years). The results demonstrated that both nifedipine (10 mg sublingually 20 min before smoking) and salmon calcitonin (100 MRC U/daily intramuscularly for three days) are able to prevent peripheral vasoconstriction evaluated by Doppler velocimetry, as well as the increase of blood pressure induced by smoking. On the basis of our results, the author proposes that cigarette smoking-induced vasoconstriction is a calcium-mediated process, which can be hindered by drugs with calcium antagonist action. PMID:2226675

  14. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  15. Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    Idil Uysal; Feride Severcana; Aysen Tezcanera; Zafer Evisa

    2014-01-01

    Hydroxyapatite (HA) co-doped with Zn2+ and F- ions was synthesized by precipitation method for the first time in this study. FTIR spectroscopy revealed Zn2+ and F- ions incorporation into HA structure. Co-doping of Zn2 + and F- ions decreased unit cell volume of HA and decreased grain sizes. Zn2+ or 5 mol% F- addition into HA significantly improved its density. Microhardness was increased with Zn2 + addition and further increase was detected with F- co-doping. Zn2+ and F- co-doped samples had higher fracture toughness than pure HA. Zn2+incorporation to the structure resulted in an increase in cell proliferation and ALP activity of cells, and further increase was observed with 1 mol%F- addition. With superior mechanical properties and biological response 2Zn1F is a good candidate for biomedical applications.

  16. Hydroxyapatite coating on stainless steel by biomimetic method; Recobrimento de hidroxiapatita em acos inoxidaveis austeniticos pelo metodo biomimetico

    Energy Technology Data Exchange (ETDEWEB)

    Dias, V.M.; Maia Filho, A.L.M.; Silva, G.; Sousa, E. de; Cardoso, K.R., E-mail: katiarc@univap.b [Universidade do Vale do Paraiba (IPD/UNIVAP), Sao Jose dos Campos, SP (Brazil). Inst. de Pesquisa e Desenvolvimento

    2010-07-01

    Austenitic stainless steels are widely used in implants due to their high mechanical strength and corrosion, however, are not able to connect to bone tissue and were classified as bioinert. The calcium phosphate ceramics such as hydroxyapatite (HA) are bioactive materials and create strong chemical bonds with bone tissue, but its brittleness and low fracture toughness render its use in conditions of high mechanical stress. The coating of steel with the bioactive ceramics such as HA, combines the properties of interest of both materials, accelerating bone formation around the implant. In this study, austenitic stainless steel samples were coated with apatite using the biomimetic method. The effect of three different surface conditions of steel and the immersion time in the SBF solution on the coating was evaluated. The samples were characterized by SEM, EDS and X-ray diffraction. (author)

  17. Modification of polylactic acid surface using RF plasma discharge with sputter deposition of a hydroxyapatite target for increased biocompatibility

    Science.gov (United States)

    Tverdokhlebov, S. I.; Bolbasov, E. N.; Shesterikov, E. V.; Antonova, L. V.; Golovkin, A. S.; Matveeva, V. G.; Petlin, D. G.; Anissimov, Y. G.

    2015-02-01

    Surface modification of polylactic acid (PLLA) by plasma of radio-frequency magnetron discharge with hydroxyapatite target sputtering was investigated. Increased biocompatibility was demonstrated using studies with bone marrow multipotent mesenchymal stromal cells. Atomic force microscopy demonstrates that the plasma treatment modifies the surface morphology of PLLA to produce rougher surface. Infrared spectroscopy and X-ray diffraction revealed that changes in the surface morphology are caused by the processes of PLLA crystallization. Fluorescent X-ray spectroscopy showed that the plasma treatment also changes the chemical composition of PLLA, enriching it with ions of the sputtered target: calcium, phosphorus and oxygen. It is hypothesized that these surface modifications increase biocompatibility of PLLA without increasing toxicity.

  18. Mechanism of Zn stabilization in hydroxyapatite and hydrated (0 0 1) surfaces of hydroxyapatite.

    Science.gov (United States)

    Matos, M; Terra, J; Ellis, D E

    2010-04-14

    A basic understanding of Zn incorporation on bulk and hydrated (0 0 1) surfaces of hydroxyapatite (HA) is attained through electronic structure calculations which use a combined first principles density functional (DFT) and extended Hückel tight binding (EHTB) methodology. A Zn substituted hydroxyapatite relaxed structure is obtained through a periodic cell DFT geometry optimization method. Electronic structure properties are calculated by using both cluster DFT and periodic cell EHTB methods. Bond order calculations show that Zn preference for the Ca2 vacancy, near the OH channel and with greater structural flexibility, is associated with the formation of a four-fold (bulk) and nearly four-fold (surface) coordination, as in ZnO. When occupying the octahedral Ca1 vacancy, Zn remains six-fold in the bulk, but coordination decreases to five-fold in the surface. In the bulk and surface, Zn2 is found to be more covalent than Zn1, due to a decrease in bond lengths at the four-fold site, which approach the 1.99 Å ZnO value. Zn is however considerably less bound in the biomaterial than in the oxide, where calculated bond orders are twice as large as in HA. Surface phosphate groups (PO(4)) and hydroxide ions behave as compact individual units as in the bulk; no evidence is found for the presence of HPO(4). Ca-O bond orders decrease at the surface, with a consequent increase in ionicity. Comparison between DFT and EHTB results show that the latter method gives a good qualitative account of charge and bonding in these systems. PMID:21389531

  19. Bone-Like Hydroxyapatite Formation in Human Blood

    Science.gov (United States)

    Titov, Anatoly T.; Larionov, Peter M.; Ivanova, Alexandra S.; Zaikovskii, Vladimir I.; Chernyavskiy, Mikhail A.

    2016-01-01

    The purpose of this study was to prove the mechanism of mineralization, when hydroxyapatite (HAP) is formed in blood plasma. These observations were substantiated by in vitro simulation of HAP crystallization in the plasma of healthy adults in a controllable quasi-physiological environment (T = 37°C, pH = 7.4) and at concentrations of dissolved Ca…

  20. Evaluation of Silver Distribution within the Silver Doped Hydroxyapatite

    OpenAIRE

    Dubņika, A; Loča, D; Jakovļevs, D; Bērziņa-Cimdiņa, L.

    2013-01-01

    Various researches of silver doped hydroxyapatite (HAp/Ag) synthesis and evaluation can be found, but scarce information can be found on evaluation of silver distribution within powders and pallets depending on the material preparation method. Silver distribution is essential parameter responsible for silver release and material in vitro properties.

  1. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Guangfei [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Ma, Jun, E-mail: caltary@gmail.com [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Shengmin [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7 days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%. - Highlights: • We investigate the Zn/Ca ratios for the synthesis of zinc-substituted HA. • Zinc-substituted HA nanoparticles are used for electrophoretic deposition. • Adding triethanolamine and HCl may aid electrophoretic deposition. • Uniform dense coatings of zinc-substituted HA are obtained when Zn/Ca = 5%.

  2. Development and properties of polycaprolactone/hydroxyapatite composite biomaterials

    NARCIS (Netherlands)

    Azevedo, M.C.; Reis, R.L.; Claase, M.B.; Grijpma, D.W.; Feijen, J.

    2003-01-01

    Polycaprolactone/hydroxyapatite (PCL/HA) composites were prepared by two different procedures. The first one consists of a conventional blending of the polymer and the reinforcement material in an extruder. The second method consists of grafting of PCL on the surface of HA particles. This was achiev

  3. Histologic analysis of a retrieved hydroxyapatite-coated femoral prosthesis

    DEFF Research Database (Denmark)

    Søballe, K; Gotfredsen, K; Brockstedt-Rasmussen, H;

    1991-01-01

    A hydroxyapatite-coated hip hemi-prosthesis was retrieved from a 98-year-old osteoporotic woman 12 weeks after implantation. Histologic analysis revealed bone and fibrous tissue almost evenly distributed around the surface of the implant circumference. Quantitative histologic analysis showed...

  4. Physico-chemical study of coating plasma duplex alumina/hydroxyapatite for medical applications relation elaboration/structure/properties(dissolution/adherence/residual constraints); Etude physico-chimique de depots plasma duplex alumine/hydroxyapatite pour applications medicales relations elaboration/structure/proprietes (dissolution/adherence/contraintes residuelles)

    Energy Technology Data Exchange (ETDEWEB)

    Demonet, N

    1998-11-19

    The physico-chemical behavior of porous ceramics depositing is studied in order to use them to favour the biological fixing of hip prosthesis fixed without cement. Alumina depositing, hydroxyapatite depositing and duplex (the both together) have been realized by plasma projection on a substrate in Ti-6Al-V. Tests of dissolution have been made. An original method of sound followed by radioactive tracers has allowed to establish an order of phases degradation and to consider the kinetics of calcium ions in function of several parameters of tests. (N.C.)

  5. Kinetics and Mechanism of Adsorption of Phosphate on Fluorine-containing Calcium Silicate

    Institute of Scientific and Technical Information of China (English)

    ZHU Xinhua; ZHANG Zhao; SHEN Jun

    2016-01-01

    The nanowires-reticulated calcium silicate with a speciifc surface area more than 100 m2/g was prepared by a hydrothermal process using hydrated lime (Ca(OH)2, HL) and silica containing soluble lfuoride, which was a by-product of lfuorine industry, and the soluble lfuoride in raw silica was ifxed as CaSiF6 at the same time. The kinetic characteristics and mechanism of adsorbing phosphate by lfuorine-containing calcium silicate were investigated in the experiments of phosphorus (P) removal from aqueous solution. The results show that the prepared lfuorine-containing calcium silicate has excellent performance for adsorbing phosphate, the adsorption process appears to follow pseudo-second-order reaction kinetics and the process is mainly controlled by chemisorption. The product resulted from P adsorption is mainly composed of hydroxyapatite (HAP) and lfuorapatite (FAP), which are further used as adsorbents of heavy metal ion Cd2+ in aqueous solution and display excellent performance.

  6. Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis.

    Science.gov (United States)

    Ben-Nissan, Besim; Macha, Innocent; Cazalbou, Sophie; Choi, Andy H

    2016-01-01

    During the last two decades although many calcium phosphate based nanomaterials have been proposed for both drug delivery, and bone regeneration, their coating applications have been somehow slow due to the problems related to their complicated synthesis methods. In order to control the efficiency of local drug delivery of a biomaterial the critical pore sizes as well as good control of the chemical composition is pertinent. A variety of calcium phosphate based nanocoated composite drug delivery systems are currently being investigated. This review aims to give an update into the advancements of calcium phosphate nanocoatings and thin film nanolaminates. In particular recent research on PLA/hydroxyapatite composite thin films and coatings into the slow drug delivery for the possible treatment of osteomyelitis is covered. PMID:26891748

  7. Measurements of intracellular calcium

    International Nuclear Information System (INIS)

    Intracellular calcium concentration ([Ca2+]i) has been measured in cultured cells by using Fura-2 load cells and a computer-controlled Perkin Elmer LS-5B spectrofluorometer. Increased [Ca2+]i in cells exposed to extracellular bilirubin was observed both with and without extracellular calcium. However, the increase was considerable larger with extracellular calcium. The enhancement of [Ca2+]i became smaller with decreasing bilirubin/BSA (bovine serum albumine) ratio. 5 refs., 5 figs

  8. Catalytic activity of cobalt and cerium catalysts supported on calcium hydroxyapatite in ethanol steam reforming

    Directory of Open Access Journals (Sweden)

    Dobosz Justyna

    2016-09-01

    Full Text Available In this paper, Co,Ce/Ca10(PO46(OH2 catalysts with various cobalt loadings for steam reforming of ethanol (SRE were prepared by microwave-assisted hydrothermal and sol-gel methods, and characterized by XRD, TEM, TPR-H2, N2 adsorption-desorption measurements and cyclohexanol (CHOL decomposition tests. High ethanol conversion (close to 100% was obtained for the catalysts prepared by both methods but these ones prepared under hydrothermal conditions (HAp-H ensured higher hydrogen yield (3.49 mol H2/mol C2H5OH as well as higher amount of hydrogen formed (up to 70% under reaction conditions. The superior performance of 5Co,10Ce/HAp-H catalyst is thought to be due to a combination of factors, including increased reducibility and oxygen mobility, higher density of basic sites on its surface, and improved textural properties. The results also show a significant effect of cobalt loading on catalysts efficiency in hydrogen production: the higher H2 yield exhibit catalysts with lower cobalt content, regardless of the used synthesis method.

  9. Synthesis and characterization of carbonated hydroxyapatite and bioinspired polymer-calcium phosphate nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Yusufoglu, Yusuf

    2009-08-15

    Nature offers many exciting ideas and inspiration for the development of new materials and processes. The toughness of spider silk, the strength and lightweight of bone, and the adhesion abilities of the gecko's feet are some of the many examples of highperformance natural materials, which have attracted the interest of scientist to duplicate their properties in man-made materials. Materials found in nature combine many inspiring properties such as miniaturization, sophistication, hierarchical organization, hybridization, and adaptability. In all biological systems, whether very basic or highly complex, nature provides a multiplicity of materials, architectures, systems and functions. Generally, the architectural configurations and material characteristics are the important features that have been duplicated from nature for building synthetic structural composites.

  10. Synthesis and characterization of carbonated hydroxyapatite and bioinspired polymer-calcium phosphate nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Yusufoglu, Yusuf [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Nature offers many exciting ideas and inspiration for the development of new materials and processes. The toughness of spider silk, the strength and lightweight of bone, and the adhesion abilities of the gecko's feet are some of the many examples of highperformance natural materials, which have attracted the interest of scientist to duplicate their properties in man-made materials. Materials found in nature combine many inspiring properties such as miniaturization, sophistication, hierarchical organization, hybridization, and adaptability. In all biological systems, whether very basic or highly complex, nature provides a multiplicity of materials, architectures, systems and functions. Generally, the architectural configurations and material characteristics are the important features that have been duplicated from nature for building synthetic structural composites.

  11. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  12. Sintering Effects on Morphology, Thermal Stability and Surface Area of Sol-Gel Derived Nano-Hydroxyapatite Powder

    Science.gov (United States)

    Kapoor, Seema; Batra, Uma; Kohli, Suchita

    2011-12-01

    Hydroxyapatite (HAP) ceramics have been recognized as substitute materials for bone and teeth in orthopedic and dentistry field due to their chemical and biological similarity to human hard tissue. The nanosized and nanocrystalline forms of HAP have great potential to revolutionize the hard tissue-engineering field, starting from bone repair and augmentation to controlled drug delivery systems. This paper reports the synthesis of biomimetic nano-hydroxyapatite (HAP) by sol-gel method using calcium nitrate tetrahydrate (CNT) and potassium dihydrogen phosphate (KDP) as calcium and phosphorus precursors, respectively to obtain a desired Ca/P ratio of 1.67. Deionized water was used as a diluting media for HAP sol preparation and ammonia was used to adjust the pH to 11. After aging, the HAP gel was dried at 55 °C and sintered to different temperatures (200 °C, 400 °C, 600 °C, 800 °C, 1000 °C and 1200 °C). The dried and sintered powders were characterized for phase composition using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The particle size and morphology was studied using transmission electron microscopy (TEM). The thermal behavior of the dried HAP nanopowder was studied in the temperature range of 55 °C to 1000 °C using thermal gravimetric analyser (TGA). The BET surface area of absorbance was determined by Nitrogen adsorption using Brunauer-Emmett-Teller (BET) method. The presence of characteristic peaks of the phosphate and OH groups in FTIR spectrums confirmed the formation of pure HAP in dried as well as sintered powders. XRD results also confirmed the formation of stoichiometric nano-HAP. Sintering revealed that with increase in temperature, both the crystallinity and crystallite size of nano-HAP particles increased. The synthesized nano-HAP powder was found to be stable upto 1000 °C without any additional phase other than HAP, whereas peak of β-TCP (tricalcium phosphate) was observed at 1200 °C. Photomicrograph of

  13. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  14. On the development of an apatitic calcium phosphate bone cement

    Indian Academy of Sciences (India)

    Manoj Komath; H K Varma; R Sivakumar

    2000-04-01

    Development of an apatitic calcium phosphate bone cement is reported. 100 Particles of tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD) were mixed in equimolar ratio to form the cement powder. The wetting medium used was distilled water with Na2HPO4 as accelerator to manipulate the setting time. The cement powder, on wetting with the medium, formed a workable putty. The setting times of the putty were measured using a Vicat type apparatus and the compressive strength was determined with a Universal Testing Machine. The nature of the precipitated cement was analyzed through X-ray diffraction (XRD), fourier transform infrared spectrometry (FTIR) and energy dispersive electron microprobe (EDAX). The results showed the phase to be apatitic with a calcium–to–phosphorous ratio close to that of hydroxyapatite. The microstructure analysis using scanning electron microscopy (SEM) showed hydroxyapatite nanocrystallite growth over particulate matrix surface. The structure has an apparent porosity of ∼ 52%. There were no appreciable dimensional or thermal changes during setting. The cement passed the in vitro toxicological screening (cytotoxicity and haemolysis) tests. Optimization of the cement was done by manipulating the accelerator concentration so that the setting time, hardening time and the compressive strength had clinically relevant values.

  15. Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces

    Directory of Open Access Journals (Sweden)

    Pramatarova L.

    2005-02-01

    Full Text Available Biological systems have a remarkable capability to produce perfect fine structures such as seashells, pearls, bones, teeth and corals. These structures are composites of interacting inorganic (calcium phosphate or carbonate minerals and organic counterparts. It is difficult to say with certainty which part has the primary role. For example, the growth of molluscan shell crystals is thought to be initiated from a solution by the extracellular organic matrix (ECM. According to this theory, the matrix induces nucleation of calcium containing crystals. Recently, an alternative theory has been put forward, stating that a class of granulocytic hemocytes would be directly involved in shell crystal production in oysters. In the work presented here the surface of AISI 316 stainless steel was modified by deposition of ECM proteins. The ability of the modified substrates to induce nucleation and growth of hydroxyapatite (HA from simulated body fluid (SBF was examined by a kinetic study using two methods: (1 a simple soaking process in SBF and (2 a laser-liquid-solid interaction (LLSI process which allows interaction between a scanning laser beam and a solid substrate immersed in SBF. The deposited HA layers were investigated by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was found that a coating of stainless steel surface with native ECM proteins induced nucleation and growth of HA and facilitated its crystallization. By the process of simple soaking of the samples, irrespective of their horizontal or vertical position in the solution, HA layers were grown due to the reactive ECM-coated stainless steel surface. It was shown that the process occurring in the first stages of the growth was not only a result of the force of gravity. The application of the LLSI process strongly influenced HA formation on the ECM-modified substrates by promoting and enhancing the HA nucleation and growth through a synergistic effect

  16. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. PMID:27524006

  17. Biofilm layers affect the treatment outcomes of NaF and Nano-hydroxyapatite.

    Science.gov (United States)

    Zhang, M; He, L B; Exterkate, R A M; Cheng, L; Li, J Y; Ten Cate, J M; Crielaard, W; Deng, D M

    2015-04-01

    During caries formation, dental biofilms function not only as acid producers but also as reservoirs and diffusion barriers for active caries-preventive components. The aim of this study was to investigate the influence of biofilms as a stagnant layer on the efficacy of NaF and nano-hydroxyapatite (nHA). Biofilms of Streptococcus mutans C180-2 were formed on the surfaces of artificially demineralized enamel in an active attachment biofilm model. After 2 days of biofilm formation, the model was subjected to a pH-cycling schedule, together with a control group without biofilms. Specimens were treated for 5 min twice daily with water, a 10% nHA slurry, or 18.4 mM NaF. At the end of the pH-cycling period, the biofilms were removed for the determination of the viable counts, the lactic acid production, and the calcium content. The mineral changes in the demineralized enamel blocks were analyzed by transversal microradiography. No differences in the biofilm viable counts and lactic acid production were found in the different treatment groups. The mean calcium content of the biofilms in the nHA group was 60.7 ± 15.3 mmol/g wet weight, which was approximately 8-fold higher than in the other 2 groups. The application of NaF resulted in net remineralization, but in the presence of a biofilm, net demineralization was observed. In contrast, nHA treatment reduced further demineralization compared with the water treatment, but the presence of a biofilm enhanced this effect. In conclusion, the presence of biofilms clearly influenced the treatment outcomes of anticaries products. Biofilms could either enhance or impede their efficacy. This result implies that biofilms should be included in the in vitro tests for the preclinical screening of caries-protective agents.

  18. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application.

  19. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  20. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, Kate [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Kumar, Sunil [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia)]. E-mail: sunil.kumar@unisa.edu.au; Smart, Roger St.C. [Applied Centre for Structural and Synchrotron Studies (ACeSSS), University of South Australia, Mawson Lakes, SA 5095 (Australia); Dutta, Naba [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Voelcker, Nicolas H. [School of Chemistry, Physics and Earth Sciences, Flinders University, Bedford Park, SA 5042 (Australia); Anderson, Gail I. [Department of Surgery, Flinders Medical Centre, Flinders University, Bedford Park, SA 5042 (Australia); Sekel, Ron [St. George Hospital, Kogarah, Sydney, NSW 2217 (Australia)

    2006-12-30

    This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells.

  1. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings

    Science.gov (United States)

    McLeod, Kate; Kumar, Sunil; Smart, Roger St. C.; Dutta, Naba; Voelcker, Nicolas H.; Anderson, Gail I.; Sekel, Ron

    2006-12-01

    This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells.

  2. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca-P bioceramic coating.

    Science.gov (United States)

    Paital, Sameer R; Dahotre, Narendra B

    2009-09-01

    Surface-textured calcium phosphate coatings at four different length scales were synthesized on titanium-based alloys using a pulsed Nd:YAG laser system by a direct melting technique. The textures were obtained by varying the laser spot overlap with a change in laser traverse speed. Surface roughness measurements of the textured coatings carried out using a white light interferometer indicated a decrease in roughness with increasing laser scan speed. Wettability of the coated samples measured using a static sessile drop technique demonstrated an increased hydrophilicity with increasing laser scan speed. The influence of such textures and the associated surface roughness on the precipitation kinetics of hydroxyapatite (HA) during immersion in simulated body fluid (SBF) was the prime focus of the present paper. The mineralized samples obtained after immersion in SBF were characterized using X-ray diffraction, energy-dispersive spectroscopy and scanning electron microscopy to understand the kinetics of HA precipitation. The results thereafter confirmed that the precipitation kinetics of HA was strongly modulated by the varying surface roughness.

  3. Preparation of hydroxyapatite/poly(lactic acid) hybrid microparticles for local drug delivery

    International Nuclear Information System (INIS)

    Calcium phosphate (CaP) bioceramic is well known as bioactive and biocompatible material in bone tissue regeneration applications. Apatitic CaP, especially nano sized hydroxyapatite (NHAp), is more similar to the natural apatite presented in the bone tissue than CaP bioceramics. In the current research NHAp was modified using biodegradable polymer – poly(lactic acid) (PLA) to develop composites providing bone regeneration and local drug delivery. NHAp/PLA microcapsules were prepared using solid-in-water-in-oil-in-water (s/w1/o/w2) encapsulation technology. The impact of primary and secondary emulsion stability on the emulsion droplet and microparticle properties was evaluated. The stability of final emulsion can be increased by varying the process parameters. Stable s/w1/o/w2 emulsion using 3ml of NHAp suspension, not less than 100ml of 4% PVA water solution and 10ml of 10% PLA solution in dichloromethane can be obtained. S/w1/o/w2 microencapuslation method can be effectively used for the preparation of multi-domain microcapsules achieving high NHAp encapsulation efficacy (93%)

  4. Adsorption of tranexamic acid on hydroxyapatite: Toward the development of biomaterials with local hemostatic activity.

    Science.gov (United States)

    Sarda, Stéphanie; Errassifi, Farid; Marsan, Olivier; Geffre, Anne; Trumel, Catherine; Drouet, Christophe

    2016-09-01

    This work proposes to combine tranexamic acid (TAX), a clinically used antifibrinolytic agent, and hydroxyapatite (HA), widely used in bone replacement, to produce a novel bioactive apatitic biomaterial with intrinsic hemostatic properties. The aim of this study was to investigate adsorptive behavior of the TAX molecule onto HA and to point out its release in near physiological conditions. No other phase was observed by X-ray diffraction or transmission electron microscopy, and no apparent change in crystal size was detected. The presence of TAX on the powders was lightly detected on Raman spectra after adsorption. The adsorption data could be fitted with a Langmuir-Freundlich equation, suggesting a strong interaction between adsorbed molecules and the formation of multilayers. The concentration of calcium and phosphate ions in solution remained low and stable during the adsorption process, thus ion exchange during the adsorption process could be ruled out. The release of TAX was fast during the first hours and was governed by a complex process that likely involved both diffusion and dissolution of HA. Preliminary aPTT (activated partial thromboplastin time) hemostasis tests offered promising results for the development of osteoconductive apatitic biomaterials with intrinsic hemostatic properties, whether for dental or orthopedic applications. PMID:27207032

  5. Preparation of hydroxyapatite/poly(lactic acid) hybrid microparticles for local drug delivery

    Science.gov (United States)

    Loca, D.; Locs, J.; Berzina-Cimdina, L.

    2013-12-01

    Calcium phosphate (CaP) bioceramic is well known as bioactive and biocompatible material in bone tissue regeneration applications. Apatitic CaP, especially nano sized hydroxyapatite (NHAp), is more similar to the natural apatite presented in the bone tissue than CaP bioceramics. In the current research NHAp was modified using biodegradable polymer - poly(lactic acid) (PLA) to develop composites providing bone regeneration and local drug delivery. NHAp/PLA microcapsules were prepared using solid-in-water-in-oil-in-water (s/w1/o/w2) encapsulation technology. The impact of primary and secondary emulsion stability on the emulsion droplet and microparticle properties was evaluated. The stability of final emulsion can be increased by varying the process parameters. Stable s/w1/o/w2 emulsion using 3ml of NHAp suspension, not less than 100ml of 4% PVA water solution and 10ml of 10% PLA solution in dichloromethane can be obtained. S/w1/o/w2 microencapuslation method can be effectively used for the preparation of multi-domain microcapsules achieving high NHAp encapsulation efficacy (93%).

  6. Poly(lactide-co-glycolide/Hydroxyapatite Porous Scaffold with Microchannels for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2016-06-01

    Full Text Available Mass transfer restrictions of scaffolds are currently hindering the development of three-dimensional (3D, clinically viable, and tissue-engineered constructs. For this situation, a 3D poly(lactide-co-glycolide/hydroxyapatite porous scaffold, which was very favorable for the transfer of nutrients to and waste products from the cells in the pores, was developed in this study. The 3D scaffold had an innovative structure, including macropores with diameters of 300–450 μm for cell ingrowth and microchannels with diameters of 2–4 μm for nutrition and waste exchange. The mechanical strength in wet state was strong enough to offer structural support. The typical structure was more beneficial for the attachment, proliferation, and differentiation of rabbit bone marrow mesenchymal stem cells (rBMSCs. The alkaline phosphatase (ALP activity and calcium (Ca deposition were evaluated on the differentiation of rBMSCs, and the results indicated that the microchannel structure was very favorable for differentiating rBMSCs into maturing osteoblasts. For repairing rabbit radius defects in vivo, there was rapid healing in the defects treated with the 3D porous scaffold with microchannels, where the bridging by a large bony callus was observed at 12 weeks post-surgery. Based on the results, the 3D porous scaffold with microchannels was a promising candidate for bone defect repair.

  7. Composition and Structure of Fibrous Hydroxyapatite Growth on an Injectale Bone Tissue Engineering Scaffolds Material

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Fibrous hydroxyapatite ( HA ) was grown upwards from the crosslinked unsaturated polyphosphoester( UPPE ) which was used as an injectable bone tissue engineering scaffolds. Composition of fibrous HA was determined by FT- IR, XRD and EDX, which suggested that the fibrous HA was calcium deficient carbonated apatite with low crystallinity. SEM micrographs indicated that the fibrous HA had a hollow tubing structure and tube wall was a flakelike assembly. The fibre with poor mechanical property and with a growth rate about 0.5mm/min reached several centimeters in length after 2 hours . The growth was at the tip of the fibre suggested that the procedure of forming fibrous HA was as follows: Ca2 + ions were firstly incorporated into the crosslinked UPPE by dipping in Ca2 + solution, then supplied through micropores of the material reacted with PO3- 4 ions to form a small tube, the osmotic pressure or capillary force lead the Ca2 + continuously gushed out into the PO 3- 4 solution,thus fibrous HA was obtained.

  8. Bone properties surrounding hydroxyapatite-coated custom osseous integrated dental implants.

    Science.gov (United States)

    Baker, M I; Eberhardt, A W; Martin, D M; McGwin, G; Lemons, J E

    2010-10-01

    Calcium phosphate (hydroxyapatite or HA) coatings have been applied to Custom Osseous Integrated Implants (COIIs) to improve the quality of the bone-implant integration, yet little is known concerning the biomechanical properties of bone surrounding the HA-coated implants in humans over the long term. The purpose of this study was to characterize the mechanical and histomorphometric properties of the bone along the implant interface. Specimens were prepared from three similar mandibular implants that were functional in three female patients for about 11 years. Histomorphometric analyses showed bone-implant contact averaging 75% for all specimens. Area coverage of residual HA-coating ranged from 52 to 70%. When compared with previous studies, these results show a relatively high percentage of residual HA after a decade in vivo. Nanoindentation showed similar average values of hardness and modulus (p = 0.53 and p = 0.56, respectively) comparing bone adjacent to residual HA-coating and regions where the coating was absent. The elastic modulus was significantly lower for bone near the bone-implant interface (1000 μm) from the interface (p = 0.05), thereby reflecting different properties of the bone near these interfaces. Backscattered electron imaging showed darker gray levels which indicated decreased mineral content in bone adjacent to the implant, consistent with the nanoindentation results. PMID:20725958

  9. Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition

    Science.gov (United States)

    Gyorgy, E.; Grigorescu, S.; Socol, G.; Mihailescu, I. N.; Janackovic, D.; Dindune, A.; Kanepe, Z.; Palcevskis, E.; Zdrentu, E. L.; Petrescu, S. M.

    2007-07-01

    Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO 2 doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF * ( λ = 248 nm, τ ≥ 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 °C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.

  10. Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gyorgy, E. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania) and Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona, Campus UAB, 08193 Bellaterra (Spain)]. E-mail: egyorgy@icmab.es; Grigorescu, S. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Socol, G. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Janackovic, D. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Dindune, A. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Kanepe, Z. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Palcevskis, E. [Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Zdrentu, E.L. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania); Petrescu, S.M. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania)

    2007-07-31

    Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO{sub 2} doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF{sup *} ({lambda} = 248 nm, {tau} {>=} 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 deg. C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.

  11. Formation of Porous Apatite Layer during In Vitro Study of Hydroxyapatite-AW Based Glass Composites

    Directory of Open Access Journals (Sweden)

    Pat Sooksaen

    2015-01-01

    Full Text Available This research discussed the fabrication, characterization, and in vitro study of composites based on the mixture of hydroxyapatite powder and apatite-wollastonite (AW based glass. AW based glass was prepared from the SiO2-CaO-MgO-P2O5-CaF2 glass system. This study focuses on the effect of composition and sintering temperature that influences the properties of these composites. Microstructural study revealed the formation of apatite layer on the composite surfaces when immersed in simulated body fluid (SBF solution at 37°C. Composites containing ≥50 wt% AW based glass showed good bioactivity after 7 days of immersion in the SBF. A porous calcium phosphate (potentially hydroxycarbonate apatite, HCA layer formed at the SBF-composite interface and the layer became denser at longer soaking period, for periods ranging from 7 to 28 days. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES analysis showed that early stage of soaking occurred with the release of Ca and Si ions from the composites and the decrease of P ions with slow exchange rate.

  12. Synthetic tooth enamel: SEM characterization of a fluoride hydroxyapatite coating for dentistry applications

    Directory of Open Access Journals (Sweden)

    Marise Oliveira

    2007-06-01

    Full Text Available An alternative to etching enamel for retention of an adhesive is to grow crystals on the enamel surface. The potential advantages of crystal growth include easy procedure and less damage to the enamel. These crystals retain the adhesive or are the actual dental restoration. In this work, a paste of synthetic enamel was used to grow crystals of fluoride hydroxyapatite (F-HA onto the human tooth surface. This technique can be used for several dentistry applications like enamel whitening, strengthening and restoration of early carie lesions. The low cost of reagents and simplicity of the technique along with the biocompatibility of the paste render possible the utilization on the market. The samples were prepared through the application of the paste by the incremental technique. The results obtained by scanning electron microscope (SEM/EDX have indicated the deposition of a homogeneous layer of calcium phosphate that was grown onto the enamel substrate. The average thickness of the deposited film was in the range of 50-100 µm and with a similar density from the natural enamel observed by radiographic images.

  13. Rapidly in situ forming biodegradable hydrogels by combining alginate and hydroxyapatite nanocrystal

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The in situ forming biodegradable polymer scaffolds are important biomaterials for tissue engineering and drug delivery.Hydrogels derived from natural proteins and polysaccharides are ideal tissue engineering scaffolds since they resemble the extracellular matrices of the tissue comprising various amino acids and sugar based macromolecules.This work presented an injectable system from partially oxidized alginate and hydroxyapatite(HAP) nanocrystal for tissue engineering and drug delivery applications.In situ release of calcium cations from HAP nanocrystal was adopted through lowering the pH with slow hydrolysis of D-glucono-δ-lactone(GDL) and homogeneous alginate gels were formulated as scaffolds with defined dimensions.The gelation time could be controlled to be in 10-15 min.The SEM observations confirmed the porous 3D hydrogel structure with interconnected pores ranging from 20 to 300 μm and the HAP particles dispersed in the scaffolds uniformly.The potential applications such as tissue engineering scaffold and injectable drug delivery system were demonstrated by subcutaneous implant test in test rats.

  14. Modification of Hydroxyapatite Crystal Using IR Laser

    CERN Document Server

    Satoh, Saburoh; Goto, M; Guan, W; Hayashi, N; Ihara, S; Yamabe, C; Yamaguchi, Y

    2004-01-01

    The first application of laser technology to dentistry was for the removal of caries. However, reports of laser application on improvement of dental surface were emerged, much attention has been focused on the laser’s potential to enhance enamel’s hardness and resistance to acid. Most of the previous reports concentrated on the photo issue interaction. Few research has pursued the photochemical phenomenon occurred during laser irradiation on biological tissues. In order to find a creative method to remineralize the dissociating enamel and exposed coronal of dentine, the authors developed a novel procedure during laser irradiation. Slice of sound molar and artificial HAp pellet were irradiated separately, with CO2 laser under different laser parameters. Tow series of samples covered with saturation calcium ion solution were irradiated separately. To investigate the crystal morphology, XRD pattern were surveyed. The comparison of each cases show that the chemical coating affected the ablation process evidentl...

  15. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Suchanek, Katarzyna, E-mail: Katarzyna.Suchanek@ifj.edu.pl [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Bartkowiak, Amanda [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Gdowik, Agnieszka [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Perzanowski, Marcin [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Kąc, Sławomir [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewica 30, 30-059 Krakow (Poland); Szaraniec, Barbara [Department of Biomaterials, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Suchanek, Mateusz [Department of Chemistry and Physics, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow (Poland); Marszałek, Marta [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland)

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA){sup 2−} and (NH{sub 4}){sub 2}HPO{sub 4} solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method.

  16. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    International Nuclear Information System (INIS)

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)2− and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method

  17. Removal of formaldehyde by hydroxyapatite layer biomimetically deposited on polyamide film.

    Science.gov (United States)

    Kawai, Takahiro; Ohtsuki, Chikara; Kamitakahara, Masanobu; Tanihara, Masao; Miyazaki, Toshiki; Sakaguchi, Yoshimitsu; Konagaya, Shigeji

    2006-07-01

    Some harmful volatile organic compounds (VOCs), such as formaldehyde, are regulated atmospheric pollutants. Therefore, development of a material to remove these VOCs is required. We focused on hydroxyapatite, which had been biomimetically coated on a polyamide film, as an adsorbent and found that formaldehyde was successfully removed by this adsorbent. The amount of formaldehyde adsorbed increased with the area of the polyamide film occupied by hydroxyapatite. The amount of adsorbed formaldehyde and its rate of adsorption were larger for hydroxyapatite deposited on polyamide film than for the commercially available calcined hydroxyapatite powder. This high adsorption ability is achieved by the use of nanosized particles of hydroxyapatite with low crystallinity and containing a large number of active surface sites. Therefore, hydroxyapatite biomimetically coated on organic substrates can become a candidate material for removing harmful VOCs such as formaldehyde.

  18. ATR-FTIR measurements of albumin and fibrinogen adsorption: Inert versus calcium phosphate ceramics.

    Science.gov (United States)

    Boix, Marcel; Eslava, Salvador; Costa Machado, Gil; Gosselin, Emmanuel; Ni, Na; Saiz, Eduardo; De Coninck, Joël

    2015-11-01

    Arthritis, bone fracture, bone tumors and other musculoskeletal diseases affect millions of people across the world. Nowadays, inert and bioactive ceramics are used as bone substitutes or for bone regeneration. Their bioactivity is very much dictated by the way proteins adsorb on their surface. In this work, we compared the adsorption of albumin and fibrinogen on inert and calcium phosphates ceramics (CaPs) using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to follow in situ protein adsorption on these materials. To this effect, we developed a sol-gel technique to control the surface chemistry of an ATR-FTIR detector. Hydroxyapatite adsorbed more albumin and β-tricalcium phosphate adsorbed more fibrinogen. Biphasic calcium phosphate presented the lowest adsorption among CaP for both proteins, illustrating the effect of surface heterogeneities. Inert ceramics adsorbed a lower amount of both proteins compared with bioactive ceramics. A significant change was observed in the conformation of the adsorbed protein versus the surface chemistry. Hydroxyapatite produced a larger loss of α-helix structure on albumin and biphasic calcium phosphate reduced β-sheet percentage on fibrinogen. Inert ceramics produced large α-helix loss on albumin and presented weak interaction with fibrinogen. Zirconia did not adsorb albumin and titanium dioxide promoted huge denaturalization of fibrinogen.

  19. Continuous reaction crystallization of struvite from phosphate(V) solutions containing calcium ions

    Energy Technology Data Exchange (ETDEWEB)

    Hutnik, N.; Wierzbowska, B.; Matynia, A. [Wroclaw University of Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Piotrowski, K. [Silesian University of Technology, Department of Chemical and Process Engineering, ks. M. Strzody 7, 44-101 Gliwice (Poland)

    2011-05-15

    Continuous reaction crystallization of struvite from water solutions containing phosphate(V) (1.0 mass%) and calcium ions (from 0.01 to 0.20 mass%) was investigated. Process was carried out in temperature 298 K in continuous DT MSMPR type crystallizer with internal circulation of suspension. Influence of pH (from 9 to 11) and mean residence time of suspension in crystallizer (from 900 to 3600 s) on product crystal size distribution, mean size, population homogeneity and shape of crystals, as well as chemical composition of solid phase was tested. Within the investigated process parameter ranges struvite crystals of mean size from 18 to ca. 50 {mu}m were produced. With the increase in calcium ions concentration in a feed mean crystal size decreased from 34.2 to 18.4 {mu}m (pH 9, {tau} 900 s). Coexistence of struvite and hydroxyapatite crystals in the solid product was confirmed analytically (Ca content in solid product from 0.3 to 8.4 mass%). Presence of calcium ions favoured crystallization of struvite in a form of tubular crystals, characterized by lengthwise cracks and irregular edges. Co-precipitated hydroxyapatite particles showed relatively small sizes, even below 1 {mu}m, forming agglomerates on the surface of larger struvite crystals and individual agglomerates. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Biodiesel production through transesterification over natural calciums

    Energy Technology Data Exchange (ETDEWEB)

    Ngamcharussrivichai, Chawalit [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330 (Thailand); Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330 (Thailand); Nunthasanti, Pramwit; Tanachai, Sithikorn; Bunyakiat, Kunchana [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Phyathai Rd., Patumwan, Bangkok 10330 (Thailand)

    2010-11-15

    Transesterification of palm kernel oil (PKO) with methanol over various natural calciums, including limestone calcite, cuttlebone, dolomite, hydroxyapatite, and dicalcium phosphate, has been investigated at 60 C and 1 atm. The study showed that dolomite, mainly consisting of CaCO{sub 3} and MgCO{sub 3}, is the most active catalyst. The calcination temperature largely affected the physicochemical properties, as evidenced by N{sub 2} adsorption-desorption measurement, TGA, SEM and XRD, and the transesterification performance of the resultant catalysts. It was found that the calcination of dolomite at 800 C resulted in a highly active mixed oxide. CaO was suggested to be the catalytically active site responsible for the methyl ester formation. Under the suitable reaction conditions, the amount of dolomite calcined at 800 C = 6 wt.% based on the weight of oil, the methanol/oil molar ratio = 30, and the reaction time = 3 h, the methyl ester content of 98.0% can be achieved. The calcined dolomite can be reused many times. The analyses of some important fuel properties indicated that the biodiesel produced had the properties that meet the standard of biodiesel and diesel fuel issued by the Department of Energy Business, Ministry of Energy, Thailand. (author)

  1. Gel-derived bioglass as a compound of hydroxyapatite composites

    Energy Technology Data Exchange (ETDEWEB)

    Cholewa-Kowalska, Katarzyna; Kokoszka, Justyna; Laczka, Maria [Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow (Poland); Niedzwiedzki, Lukasz [Department of Health Sciences and Clinics of Ortopaedics and Traumatology, Institute of Physicotherapy, Collegium Medicum, Jagiellonian University, Krakow (Poland); Madej, Wojciech; Osyczka, Anna M, E-mail: j.kokoszka@poczta.f [Department of Cytology and Histology, Faculty of Biology and Earth Sciences, Institute of Zoology, Jagiellonian University, Krakow (Poland)

    2009-10-15

    Despite the excellent biocompatibility of hydroxyapatite and bioglass, their clinical applications are limited to non-load-bearing implants and implant coatings due to their low mechanical properties. We have developed two different composites made of hydroxyapatite (HA) and gel-derived bioglasses designated S2 (80 mol% SiO{sub 2}-16 mol% CaO-4 mol% P{sub 2}O{sub 5}) or A2 (40 mol% SiO{sub 2}-54 mol% CaO-6 mol% P{sub 2}O{sub 5}). We show that the combination of hydroxyapatite with either bioglass results in better composite bioactivity and biocompatibility compared to HA alone. We used a commercially available hydroxyapatite that was sintered with varying additions (10%, 50%) of A2 or S2 bioglass. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phases of the composites. The elastic properties of bioglass/HA composites were analyzed with the use of the pulse ultrasonic technique. The bioactivity (surface activity) of the composites was assessed by determining the changes of surface morphology and composition after soaking in simulated body fluid (SBF) for 7 and 14 days. The biocompatibility of the obtained composites was then assessed in vitro using adult human bone marrow stromal cells. Cells were seeded on the material surfaces at a density of 10{sup 4} cells cm{sup -2} and cultured for 7 days in non-differentiating and osteogenic conditions. The number of live cells was estimated in both standard and osteogenic cultures, followed by alkaline phosphatase (ALP) activity assay in osteogenic cultures. We determined that 10 wt% addition of A2 (E = 12.24 GPa) and 50 wt% addition of S2 (E = 16.96 GPa) to the HA base results in higher Young's modulus of the composites compared to pure hydroxyapatite (E = 9.03 GPa). The rate of Ca-P rich layer formation is higher for bioglass/HA composites containing A2 bioglass compared to the composites containing S2 bioglass. Evaluation of cell growth on the bioglass

  2. Preparation and Characterization of Starch-g-PVA/Nano-hydroxyapatite Complex Hydrogel

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Starch-g-PVA/hydroxyapatite complex hydrogel was prepared with two-repeated freezing/ thawing circles. SEM observation results exhibits that hydroxyapatite is dispersed in starch-g-PVA in nanoscale. Thermogravimetric analysis curves show that the remained fraction keeps the same at the temperatures higher than 490℃ . It was found the dried starch-g- PVA/ hydroxyapatite films could reswell within 12 minutes.

  3. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free calciu

  4. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    Science.gov (United States)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  5. Synthesis and Sintering Character of Nanophase Calcium-deficient Apatite

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Nanophase calcium-deficient hydroxyapatite( CDHA ) with a Ca/P ratio about 1.5 synthesized by chemical wet method was sintered at different temperatures, and then its chemical composition, phase structure and morphology were analyzed with methods of FT- IR spectroscopy, X- ray diffraction (XRD) and field emission scanning microscopy (FESEM), respectively. Results shaw that when the sintering temperature is below 500 ℃ ,apatite crystal keeps a stable size with a diameter of 12-26 nm and a length of 30-66 nm. After being sintered at600 ℃ for 2 h, apatite crystal grows much larger with a diameter of 25-40 nm and a length of 75-100 nm. At the temperature of 700-800 ℃, this powder decomposes into Ca3 ( PO4 )2 - The crystal size of the Ca3 ( PO4 )2surpasses 200 nm in diameter and length. NH4+ ion can be removed at terrperature beyond 300 ℃ .

  6. Coating of calcium phosphate on biometallic materials by electrophoretic deposition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Er-lin; YANG Ke

    2005-01-01

    Although biometallic materials have been used as bone implant materials for a long time, they are still detected as foreign bodies by human immune system. Calcium phosphate coating, especially hydroxyapatite(HA)coating attracts special attention due to its good biocompatibility. Being one of the effective methods used to deposit HA coating onto the metallic implant, the electrophoretic deposition(EPD) was reviewed in detail, including the process of EPD, the advantages and disadvantages, the important processing factors and the microstructure and mechanical properties of the coating. Research results on the processing and the coating show potential application of EPD process to the biomedical materials surface modification. In addition, the nanoparticulate HA coating as a new trend in HA coating was also introduced.

  7. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying.

    Science.gov (United States)

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed. PMID:26625888

  8. Hydroxyapatite nanocrystals: Simple preparation, characterization and formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Islamic Republic of Iran (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran (Iran, Islamic Republic of); Fereshteh, Zeinab [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ({sup 1}H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. - Highlights: • HAP nanobundles and nanoparticles have been prepared by a precipitation method. • Morphologies of HAP nanocrystals were controlled by different coordination ligands. • The formation mechanism of hydroxyapatite nanocrystals was also considered.

  9. Electrohydrodynamic coating of metal with nano-sized hydroxyapatite.

    Science.gov (United States)

    Li, Xiang; Huang, Jie; Ahmad, Zeeshan; Edirisinghe, Mohan

    2007-01-01

    Electrohydrodynamic spray deposition of a hydroxyapatite (HA) suspension consisting of nano-particles has been used to create a hydroxyapatite coating comprising of nanostructured surface topography. Preliminary coating experiments were carried out on an Al substrate and 30 s was found to be the most appropriate coating time. HA coating on titanium for this duration was found to be well-bonded to the substrate after heat-treatment. A thickness of 2 mum was achieved in 30 s and formation of a bone-like apatite on the surface was detected after incubation of the heat-treated coated Ti in simulated body fluid. Therefore, we have uncovered a new procedure by which nano-biomaterials can be deposited on real orthopedic substrates to prepare bioactive thin coatings in a simple and easy manner. PMID:18032815

  10. Synthesis and characterization of hydroxyapatite-doped silver nanoparticles

    International Nuclear Information System (INIS)

    Hydroxyapatite-doped silver nanoparticles was obtained by immersing the powder in increasing dilutions of a solution containing AGNPS which were synthesized in different times and were characterized by UV-vis spectroscopy. The X-ray diffraction (XRD)studies demonstrate no change in the major phase of HA. Scanning Electron Microscopy (SEM) revealed morphological characteristics of powders after doping and the presence of silver was confirmed by energy dispersive X-ray (EDAX) analysis.The antibacterial effect of the doped powders was evaluated using strain of Staphylococcus aureus by disc-diffusion test. The zone of inhibition was found to vary with the amount of silver nanoparticle in the doped powder even for low concentrations of AgNPs. These results indicate that the method of immersion hydroxyapatite in solutions containing AgNPs is promising to obtain bioactive materials with low cytotoxicity and antibacterial effects. (author)

  11. Comparison of Electrical Properties between Fluoroapatite and Hydroxyapatite Materials

    Science.gov (United States)

    Laghzizil, A.; El Herch, N.; Bouhaouss, A.; Lorente, G.; Macquete, J.

    2001-01-01

    By appropriate modifications of existing precipitation methods, apatite samples of formula M10(PO4)6X2 (M=Ca, Pb, Ba and X=F, OH) were prepared at 80°C. Samples were characterized using X-ray diffraction, infrared, 31P NMR, SEM, and chemical analysis. By comparing the effect of fluoride and hydroxide ions on ionic conductivity measurements, it was concluded that the fluorinated materials (MFAp) were better conductors than other hydroxyapatites (MHAp). The F- and H+ ions are the main charge carriers, respectively, in fluoroapatite and in hydroxyapatite compounds. The most pronounced effect on the conduction properties was observed in the lead apatite material. These results should provide important physico-chemical information for ionic diffusion of the roles played by fluoride in inhibiting dental caries.

  12. Removal of Arsenic from Drinking Water by Hydroxyapatite Nano Particles

    Directory of Open Access Journals (Sweden)

    Mahsa Mirhosseini

    2014-08-01

    Full Text Available Arsenic(As containedin drinking water can cause adverse effect son human health. This study investigated the effect of hydroxyapatite nano particles (nano-HAp on sorption of As(V ions in aqueous solution. The amounts of arsenic ion,nano-HAp and pH on removal efficiency were also investigated.Resultsshowed that theremoval ofarsenatefromwater using hydroxyapatite nanoparticles, improved with increasing pH. The optimum amount of nano-HAp for As (V removal isfound to be 0/6g/L with the removal efficiency of 88 %. The sorption data were then correlated with the Langmuir, Freundlich, adsorption isotherm models. The results indicated that nano-HAp can be used as an effective adsorbent for removal of As(V from aqueous solution.

  13. Physicochemical Characterization and In Vivo Evaluation of Amorphous and Partially Crystalline Calcium Phosphate Coatings Fabricated on Ti-6Al-4V Implants by the Plasma Spray Method

    OpenAIRE

    Bonfante, Estevam A.; Lukasz Witek; Nick Tovar; Marcelo Suzuki; Charles Marin; Rodrigo Granato; Paulo G. Coelho

    2012-01-01

    Objective. To characterize the topographic and chemical properties of 2 bioceramic coated plateau root form implant surfaces and evaluate their histomorphometric differences at 6 and 12 weeks in vivo. Methods. Plasma sprayed hydroxyapatite (PSHA) and amorphous calcium phosphate (ACP) surfaces were characterized by scanning electron microscopy (SEM), interferometry (IFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Implants were placed in the radius epiphysis,...

  14. Comparative sintering of zirconia and hydroxyapatite-zirconia composites

    OpenAIRE

    Reidy, Colin

    2010-01-01

    peer-reviewed Hydroxyapatite [Ca10(PO4)6OH2, HA] is the major constituent of the mineral phase of bone and exhibits desirable properties as a bone graft, such as biocompatibility, bioactivity, osteoconductivity and direct bonding to bone tissue. However, due to its limited mechanical properties, in particular low fracture toughness (KIC) and tensile strength, HA is limited to non-load bearing applications and metal implant surface coatings. Zirconia (ZrO2) based materials exhibit high frac...

  15. Biomimetic hydroxyapatite as a new consolidating agent for archaeological bone

    OpenAIRE

    North, Alexis

    2014-01-01

    Recent studies on calcareous stone and plaster consolidation have demonstrated considerable potential by bio-mimicking the growth of hydroxyapatite (HAP), the main mineralogical constituent of teeth and bone matrix. These initial conservation applications, together with significant fundamental research on the precipitation of HAP for bioengineering and biomedical applications, offer great promise in the use of HAP as a consolidating agent for archaeological bone and other similar materials su...

  16. LACTOFERRIN ADSORBED ONTO BIOMIMETIC HYDROXYAPATITE: A MULTIFUNCTIONAL ANTIMICROBIAL MOLECULE

    OpenAIRE

    Fulgione, Andrea

    2015-01-01

    Lactoferrin (LF), is an iron-binding protein, belonging to transferrin family. It is found in the mucosal secretions (tears, saliva, milk, and colostrums) of the majority of mammalian species, including humans. LF is a multitask molecule: it partecipates to iron absorption and distribution, but also displays anti-inflammatory, antioxidant, anticarcinogenic, and antimicrobial properties. Hydroxyapatite (HA) plays an important role in the formation of the bony skeleton and bone remodeling. A...

  17. Characterisation of hydroxyapatite-coated titanium for biomedical applications

    OpenAIRE

    Lee, Jiin Woei

    2014-01-01

    Orthopaedic implants function to replace or support damaged or diseased bone. Due to a global rise in demand, there is a need to prolong the service life of these implants. The current work focuses on crystallised hydroxyapatite (HA)-coated titanium (Ti) implants. One specific problem during the annealing of as-deposited amorphous HA, to induce crystallisation, is the formation of unwanted titanium oxide (Ti-O) species at the HA/Ti interface that leads to HA layer disruption. This necessitate...

  18. Preparation and characterization of polyLactide-hydroxyapatite biocomposites

    OpenAIRE

    Gültekin, Naz; Tıhmınlıoğlu, Funda; Çiftçioğlu, Rukiye; Çiftçioğlu, Muhsin; Harsa, Hayriye Şebnem

    2004-01-01

    In the present study, the preparation and characterization of polylactide-Hydroxyapatite(HA) composite films for biomedical applications have been studied. The effects of number of parameters such as polymer type, HA loading, surface modification and its concentration on the mechanical and microstructural properties of the composites were investigated. Poly-L-Lactide and 96/4 Poly(L-Lactide co D-Lactide) copolymer-HA composites containing 10-40 wt% HA particles have been prepared by solvent c...

  19. Kinetic study of the setting reaction of a calcium phosphate bone cement.

    Science.gov (United States)

    Fernández, E; Ginebra, M P; Boltong, M G; Driessens, F C; Ginebra, J; De Maeyer, E A; Verbeeck, R M; Planell, J A

    1996-11-01

    The setting reaction of a calcium phosphate bone cement consisting of a mixture of 63.2 wt % alpha-tertiary calcium phosphate (TCP)[alpha-Ca3(PO4)2], 27.7 wt % dicalcium phosphate (DCP) (CaHPO4), and 9.1 wt % of precipitated hydroxyapatite [(PHA) used as seed material] was investigated. The cement samples were prepared at a liquid-to-powder ratio of: L/P = 0.30 ml/g. Bi-distilled water was used as liquid solution. After mixing the powder and liquid, some samples were molded and aged in Ringer's solution at 37 degrees C. At fixed time intervals they were unmolded and then immediately frozen in liquid nitrogen at a temperature of TN = -196 degrees C, lyofilized, and examined by X-ray diffraction as powder samples. The compressive strength versus time was also measured in setting samples of this calcium phosphate bone cement. The crystal entanglement morphology was examined by scanning electron microscopy. The results showed that: 1) alpha-TCP reacted to a calcium-deficient hydroxyapatite (CDHA), Ca9(HPO4)(PO4)5O H, whereas DCP did not react significantly; 2) the reaction was nearly finished within 32 h, during which both the reaction percentage and the compressive strength increased versus time, with a strong correlation between them; and 3) the calcium phosphate bone cement showed in general a structure of groups of interconnected large plates distributed among agglomerations of small crystal plates arranged in very dense packings.

  20. Effect of thermal decomposition of hydroxyapatite on the thermoluminescent response

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval C, K. J.; Zarate M, J.; Lemus R, J. [Universidad Michoacana de San Nicolas de Hidalgo, Instituto de Investigaciones Metalurgicas, Ciudad Universitaria, Edificio U, 58060 Morelia, Michoacan (Mexico); Rivera M, T., E-mail: karlasandovalc@gmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2014-08-15

    In this work, a study on the thermoluminescence (Tl) induced by gamma radiation in synthetic hydroxyapatite (Hap) annealed at different temperatures obtained by the precipitation method is presented. Synthesis of hydroxyapatite Hap was carried out starting from inorganic precursors [Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4}]. The precipitate was filtered, washed, dried and then the powder was calcined at different temperatures until the Hap decomposition. The structural and morphological characterization was carried out using both X-ray diffraction (XRD) and scanning electron microscopy (Sem) techniques. Thermoluminescent (Tl) properties of Hap powders were irradiated at different gamma radiation doses. According to X ray diffraction patterns, the tricalcium diphosphate phase (Tcp) appear when the Hap was calcined at 900 grades C. Tl glow curve showed two peaks located at around 200 and 300 grades C, respectively. Tl response as a function of gamma radiation dose was in a wide range from 25 to 100 Gy. The fading of the Tl response at 134 days after irradiation was measured. Experimental results showed that the synthetic hydroxyapatite obtained by precipitation technique may have dosimetric applications when is annealed at temperature of 900 grades C, where the Tcp phase appears and contributes to Tl response, which opens the possibility of using this biomaterials in the area of dosimetry, as they are generally used for biomedical implants. (author)

  1. Multifunctional hydroxyapatite nanofibers and microbelts as drug carriers.

    Science.gov (United States)

    Hou, Zhiyao; Yang, Piaoping; Lian, Hongzhou; Wang, Lili; Zhang, Cuimiao; Li, Chunxia; Chai, Ruitao; Cheng, Ziyong; Lin, Jun

    2009-07-13

    Luminescent, mesoporous, and bioactive europium-doped hydroxyapatite (HAp:Eu(3+)) nanofibers and microbelts have been prepared by a combination of sol-gel and electrospinning processes with a cationic surfactant as template. The obtained multifunctional hydroxyapatite nanofibers and microbelts, which have mesoporous structure and red luminescence, were tested as drug carriers by investigating their drug-storage/release properties with ibuprofen (IBU) as model drug. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution (HR) TEM, FTIR spectroscopy, N(2) adsorption/desorption, photoluminescence (PL) spectra, and UV/Vis spectroscopy were used to characterize the structural, morphological, textural, and optical properties of the resulting samples. The results reveal that the multifunctional hydroxyapatites exhibit irregular mesostructure, and have fiberlike and beltlike morphologies with sizes of several hundred nanometers in width and several millimeters in length. The IBU-loaded HAp:Eu(3+) system shows red luminescence of Eu(3+) ((5)D(0)-(7)F(0,1,2)) under UV irradiation and controlled release of IBU. In addition, the emission intensity of Eu(3+) in the drug carrier system varies with the released amount of IBU, and thus drug release can be easily tracked and monitored by the change in luminescence intensity. PMID:19496099

  2. Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells

    Directory of Open Access Journals (Sweden)

    Wu XN

    2014-08-01

    Full Text Available Xiaonan Wu,1 Leiying Miao,2,# Yingfang Yao,3 Wenlei Wu,1 Yu Liu,1 Xiaofeng Chen,1 Weibin Sun1,# 1Department of Periodontology, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, People’s Republic of China; 2Department of Cariology and Endodontics, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, People’s Republic of China; 3Eco-materials and Renewable Energy Research Center, Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, People’s Republic of China #These authors contributed equally to this work Abstract: Periodontal repair is a complex process in which regeneration of alveolar bone is a vital component. The aim of this study was to develop a biodegradable scaffold with good biocompatibility and osteoinductive ability. Two types of composite fibrous scaffolds were produced by electrospinning, ie, type I collagen/poly(є-caprolactone (COL/PCL and type I collagen/poly(є-caprolactone/nanoscale hydroxyapatite (COL/PCL/nHA with an average fiber diameter of about 377 nm. After a simulated body fluid (SBF immersion test, the COL/PCL/nHA-SBF scaffold developed a rough surface because of the calcium phosphate deposited on the fibers, suggesting that the presence of nHA promoted the mineralization potential of the scaffold. Energy dispersive X-ray spectroscopy clearly showed the calcium and phosphorus content in the COL/PCL/nHA and COL/PCL/nHA-SBF scaffolds, confirming the findings of nHA and calcium phosphate precipitation on scanning electron micrographs. Water contact analysis revealed that nHA could improve the hydrophilic nature of the COL/PCL/nHA-SBF scaffold. The morphology of periodontal ligament cells cultured on COL/PCL-SBF and COL/PCL/nHA-SBF was evaluated by scanning electron microscopy. The results showed that cells adhered to either type of scaffold and were slightly spindle-shaped in the beginning, then

  3. Preparation, chemistry and physical properties of bone-derived hydroxyapatite particles having a negative zeta potential

    Energy Technology Data Exchange (ETDEWEB)

    Doostmohammadi, Ali, E-mail: alidm14@ma.iut.ac.ir [Biomaterials Research Center, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Monshi, Ahmad [Biomaterials Research Center, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Salehi, Rasoul [Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Fathi, M.H. [Biomaterials Research Center, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Karbasi, Saeed [Medical Physics and Biomedical Engineering Group, School of Medicine, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Pieles, Uwe [Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences of Northwestern Switzerland, Muttenz (Switzerland); Daniels, A.U. [Laboratory of Biomechanics and Biocalorimetry, Coaltion for Clinical Morphology and Biomedical Engineering, University of Basel Faculty of Medicine, Basel (Switzerland)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Natural and relatively pure hydroxyapatite particles can be obtained from bovine bone. Black-Right-Pointing-Pointer A Complete characterization of bone-derived HA particles was carried out. Black-Right-Pointing-Pointer Bone-derived HA particles reveal a negative zeta potential in physiological saline at 37 Degree-Sign C. - Abstract: Animal bone-derived calcium hydroxyapatite (HA) particles were produced and characterized. Adult bovine femoral bone was boiled, washed, cleaned and heated in air at 700 Degree-Sign C for 2 h. The resulting macro-porous solid was ground, crushed and sieved into particles <50 {mu}m. SEM showed the particles were agglomerations of crystals {approx}50-500 nm across. XRD showed highly crystalline HA with nominal MgO and no detectable CaO. FTIR spectroscopy yielded typical HA absorptions, plus absorptions at 1457 and 1412 cm{sup -1} (MgCO{sub 3} or CaCO{sub 3}) and 874 cm{sup -1} (CaHPO{sub 4}). Main elements by EDXRF were Ca and P (molar ratio 1.93 vs. theoretical ratio 1.67). Minor amounts of Si, Mg and Na were detected, plus traces of K, Sr, Zn, Ba, V, Al, Mn, Pb, Cu and Fe. EDX detected Ca, P, Na and Mg. BET gas adsorption surface area was {approx}2.23 m{sup 2} g{sup -1} and theoretical particle size {approx}857 nm. Laser DLS indicated {approx}40% of particles were {approx}952 nm in diameter, plus {approx}50% were {approx}760 nm - in close agreement with BET calculations. By laser Doppler electrophoresis (LDE) the zeta potential of the bone-derived HA particles suspended in 0.154 M NaCl was negative for pH 6-11 and -9.25 {+-} 0.9 mV at pH 7.4. Negative zeta potential is reported to favor attachment and proliferation of bone cells. HA particles produced synthetically are reported to have positive zeta potentials. The source of the negative potential was not determined but may stem from factors peculiar to producing HA particles from bone. The results suggest further investigation for biomedical use.

  4. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity

    Energy Technology Data Exchange (ETDEWEB)

    Monchau, F., E-mail: Francine.monchau@univ-artois.fr [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Hivart, Ph.; Genestie, B. [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Chai, F. [Laboratoire Medicaments et Biomateriaux a Liberation Controlee (INSERM U 1008, Universite Lille Nord de France), Groupe de Recherche sur les Biomateriaux (Universite Lille-2), Faculte de Medecine, 1, place de Verdun, 59045 Lille cedex (France); and others

    2013-01-01

    Close to the bone mineral phase, the calcic bioceramics, such as hydroxyapatite (HA) and {beta}-tricalcium phosphate ({beta}-TCP), are commonly used as substitutes or filling materials in bone surgery. Besides, calcium carbonate (CaCO{sub 3}) is also used for their excellent biocompatibility and bioactivity. However, the problem with the animal-origin aragonite demands the new technique to synthesize pure calcite capable of forming 3D bone implant. This study aims to manufacture and evaluate a highly-pure synthetic crystalline calcite with good cytocompatibility regarding to the osteoblasts, comparing to that of HA and {beta}-TCP. After the manufacture of macroporous bioceramic scaffolds with the identical internal architecture, their cytocompatibility is studied through MC3T3-E1 osteoblasts with the tests of cell viability, proliferation, vitality, etc. The results confirmed that the studied process is able to form a macroporous material with a controlled internal architecture, and this synthesized calcite is non-cytotoxic and facilitate the cell proliferation. Indeed requiring further improvement, the studied calcite is definitely an interesting alternative not only to coralline aragonite but also to calcium phosphate ceramics, particularly in bone sites with the large bone remodelling. Highlights: Black-Right-Pointing-Pointer Macroporous calcite manufacturing with controlled architecture as bone substitute Black-Right-Pointing-Pointer Cytotoxicity: adaptation of the colony-forming method with the target cells: MC3T3-E1 osteoblasts Black-Right-Pointing-Pointer Study of osteoblast proliferation and activity on calcite, HA and TCP.

  5. In vitro study of the SBF and osteoblast-like cells on hydroxyapatite/chitosan-silica nanocomposite

    International Nuclear Information System (INIS)

    Hydroxyapatite/chitosan-silica (HApCSi) nanocomposites were synthesized by co-precipitated method and their potential application as filler materials for bone regeneration were investigated in simulated body fluid (SBF). To study their biocompatibility, they were cultured with rat osteoblast-like UMR-106 cells for 3, 7, 14, and 21 days. Studies of the silica contents in chitosan matrix showed the presence of silinol (Si-OH) groups in CSi hybrid and their decrease after being composited with calcium phosphate (CaP) which is desirable for the formation of the apatite. XRD and TEM studies showed that the HAp formed in the CSi matrix were nanometer (20-40 nm) in size. Nanocomposites of HApCSi20 processed with 20%v/v silica whisker showed a micro hardness of 84.7 ± 3.3 MPa. Mineralization study in SBF showed the formation of apatite crystals on the HApCSi surface after being incubated for 7 days. In vitro biocompatibility, cell morphology, proliferation, and cell adhesion tests confirmed the osteoblast attachment and growth on the HApCSi20 surface. The density of cells and the production of calcium nodules on the substrate were seen to increase with increasing cultured time. The mechanical evaluation and in vitro experiment suggested that the use of HApCSi composite will lead to the formation of new apatite particles and thus be a potential implant material.

  6. Caoxite-hydroxyapatite composition as consolidating material for the chalk stone from Basarabi-Murfatlar churches ensemble

    Science.gov (United States)

    Ion, Rodica-Mariana; Turcanu-Caruţiu, Daniela; Fierăscu, Radu-Claudiu; Fierăscu, Irina; Bunghez, Ioana-Raluca; Ion, Mihaela-Lucia; Teodorescu, Sofia; Vasilievici, Gabriel; Rădiţoiu, Valentin

    2015-12-01

    The development of new composition for surface conservation of some architectural monuments represents now an important research topic. The Basarabi-Murfatlar Ensemble, recognized as the first religious monument from mediaeval Dobrogea (Romania) (from 9th to 11th century), is one of the most impressive archaeological sites of Europe. This ensemble is built from amorphous calcium carbonate, very sensitive to humidity, frost, salts, etc. The aim of this paper is to test on chalk stone samples a new consolidant - hydroxyapatite (HAp) mixed with calcium oxalate trihydrate (caoxite) (COT). Some specific techniques for evaluation its impact on chalk stone surface are used, as follows: petrographical and physical-chemical techniques: SEM, OM, ICP-AES, TGA, FTIR and Raman spectroscopy, chromatic parameters changes, the accelerated weathering tests: heating, freeze-thaw, and their effects on porosity and capillary water uptake by the chalk surface. All these have been evaluated before and after treatment with COT-HAp, putting into evidence the effect of the new composition on the chalk stone surface. HAp induces COT stabilization, and their joint composition can bind weathered stone blocks providing a substantial reinforcement of chalk surface.

  7. In vitro and in vivo investigations on bone regeneration potential of laminated hydroxyapatite/gelatin nanocomposite scaffold along with DBM

    International Nuclear Information System (INIS)

    Bone regeneration ability of a scaffold strongly depends on its structure and the size of its components. In this study, a nanostructured scaffold was designed for bone repair using nano hydroxyapatite (nHA) (8–16 nm × 50–80 nm) and gelatin (GEL) as main components. In vitro investigations of calcium matrix deposition and gene expression of the seeded cells for this scaffold, demineralized bone matrix (DBM), scaffold plus DBM, and the control group were carried out. Bone regeneration in rat calvarium with critical defect size after 1, 4, and 8 weeks post implantation was investigated. The calcium matrix depositions by the osteoblast and RUNX2, ALP, osteonectin, and osteocalcin gene expression in scaffold were more significant than in other groups. Histomorphometry analysis confirmed in vitro results. In vitro and in vivo bone regeneration were least in scaffold plus DBM group. Enhanced effects in scaffold could be attributed to the shape and size of nHA particles and good architecture of the scaffold. Reduction of bone regeneration might be due to tight bonding of BMPs and nHA particles in the third group. Results obtained from this study confirmed that nano-scale size of the main components and the scaffold architecture (pore diameter, interconnectivity pores, etc.) have significant effects on bone regeneration ability of the scaffold and are important parameters in designing a temporary bone substitute.

  8. Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells.

    Science.gov (United States)

    Wu, Xiaonan; Miao, Leiying; Yao, Yingfang; Wu, Wenlei; Liu, Yu; Chen, Xiaofeng; Sun, Weibin

    2014-01-01

    Periodontal repair is a complex process in which regeneration of alveolar bone is a vital component. The aim of this study was to develop a biodegradable scaffold with good biocompatibility and osteoinductive ability. Two types of composite fibrous scaffolds were produced by electrospinning, ie, type I collagen/poly(ε-caprolactone) (COL/PCL) and type I collagen/poly(ε-caprolactone)/nanoscale hydroxyapatite (COL/PCL/nHA) with an average fiber diameter of about 377 nm. After a simulated body fluid (SBF) immersion test, the COL/PCL/nHA-SBF scaffold developed a rough surface because of the calcium phosphate deposited on the fibers, suggesting that the presence of nHA promoted the mineralization potential of the scaffold. Energy dispersive X-ray spectroscopy clearly showed the calcium and phosphorus content in the COL/PCL/nHA and COL/PCL/nHA-SBF scaffolds, confirming the findings of nHA and calcium phosphate precipitation on scanning electron micrographs. Water contact analysis revealed that nHA could improve the hydrophilic nature of the COL/PCL/nHA-SBF scaffold. The morphology of periodontal ligament cells cultured on COL/PCL-SBF and COL/PCL/nHA-SBF was evaluated by scanning electron microscopy. The results showed that cells adhered to either type of scaffold and were slightly spindle-shaped in the beginning, then extended gradually with stretched filopodia, indicating an ability to fill the fiber pores. A Cell Counting Kit-8 assay showed that both scaffolds supported cell proliferation. However, real-time quantitative polymerase chain reaction analysis showed that expression of the bone-related markers, alkaline phosphatase and osteocalcin, was upregulated only on the COL/PCL/nHA-SBF scaffold, indicating that this scaffold had the ability to induce osteogenic differentiation of periodontal ligament cells. In this study, COL/PCL/nHA-SBF produced by electrospinning followed by biomimetic mineralization had combined electrospun fibers with nHA in it. This scaffold has

  9. Sealing ability of hydroxyapatite as a root canal sealer: in vitro study

    Directory of Open Access Journals (Sweden)

    Widowati Witjaksono

    2007-09-01

    Full Text Available Hydroxyapatite (HA is the most thermodynamically synthetic calcium phosphate cement, and has indicated useful as a sealer because can seal a furcation perforation, is shown to be biocompatible and also has potential to promote the healing of bone in endodontic therapy. The objective of this study is to determine the sealing ability of HA produced by School of Engineering, Universiti Sains Malaysia (USM when used as a sealer in root canal obturation, compare with Tubli-seal (Zinc-Oxide base and Sealapax (Calcium Hydroxyde base sealers. Forty five single rooted human anterior teeth were instrumented and randomly divided into three experimental groups of 15 teeth each. All teeth in the experimental groups were obturated with laterally condensed gutta percha technique. Teeth in the first group were sealed using Zinc-Oxide (ZnO based sealer and those of second group using Calcium Hydroxide (CaOH based root canal sealer. Third experimental group was sealed using HA from School of Engineering USM. Teeth were then suspended in 2% methylene blue. After this, teeth were demineralized dehydrated and cleared. Linear dye penetration was determined under magnifying lense with calibrated eye piece. Statistical analyses of the linear dye penetration were performed with Kruskal Wallis test. The intergroup comparison between HA and ZnO groups and CaOH groups were analyzed by Mann-Whitney test. The dye penetration for group which were sealed with HA exhibited the lowest penetration and it showed that there was a statistically significant difference both between HA and ZnO groups and also between HA and CaOH groups (p < 0.001.In conclusion, it was found that value added HA based endodontic material which were produced by USM can be used as a root canal sealing materials when it used in combination with epoxy resin since it leaked comparatively less as compared to ZnO and CaOH sealers. Before reaching a definitive conclusion, this material requires further extensive

  10. Calcium binding by dietary fibre

    International Nuclear Information System (INIS)

    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  11. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine;

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone...... and inhibition of calcium transport processes within the renal tubule. The mechanisms whereby acid alters the integrity and stability of bone have been examined extensively in the published literature. Here, after briefly reviewing this literature, we consider the effects of acid on calcium transport...

  12. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  13. Characterization and inhibitive study of gel-grown hydroxyapatite crystals at physiological temperature

    Science.gov (United States)

    Parekh, Bharat; Joshi, Mihir; Vaidya, Ashok

    2008-04-01

    Hydroxyapatite is very useful for various biomedical applications, due to its chemical similarity with mineralized bone of human. Hydroxyapatite is also responsible for arthropathy (joint disease). In the present study, the growth of hydroxyapatite crystals was carried out by using single-diffusion gel growth technique in silica hydro gel media, at physiological temperature. The growth of hydroxyapatite crystals under slow and controlled environment in gel medium can be simulated in a simple manner to the growth in human body. The crystals, formed in the Liesegang rings, were characterized by powder XRD, FTIR and dielectric study. The diffusion study is also carried out for the hydroxyapatite crystals using the moving boundary model. The inhibitive influence of various Ayurvedic medicinal plant extracts such as Boswellia serrata gum resin , Tribulus terrestris fruits, Rotula aquatica roots, Boerhaavia diffusa roots and Commiphora wightii, on the growth of hydroxyapatite was studied. Roots of R. aquatica and B. diffusa show some inhibition of the hydroxyapatite crystals in vitro. This preclinical study will be helpful to design the therapy for prevention of hydroxyapatite-based ailments.

  14. Containment of uranium in the proposed Egyptian geologic repository for radioactive waste using hydroxyapatite.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Headley, Thomas Jeffrey; Sanchez, Charles Anthony (University of Arizona, Yuma, AZ); Zhao, Hongting; Salas, Fred Manuel; Hasan, Mahmoud A. (Egyptian Atomic Energy Authority, Cairo, Egypt); Holt, Kathleen Caroline

    2004-04-01

    Currently, the Egyptian Atomic Energy Authority is designing a shallow-land disposal facility for low-level radioactive waste. To insure containment and prevent migration of radionuclides from the site, the use of a reactive backfill material is being considered. One material under consideration is hydroxyapatite, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, which has a high affinity for the sorption of many radionuclides. Hydroxyapatite has many properties that make it an ideal material for use as a backfill including low water solubility (K{sub sp}>10{sup -40}), high stability under reducing and oxidizing conditions over a wide temperature range, availability, and low cost. However, there is often considerable variation in the properties of apatites depending on source and method of preparation. In this work, we characterized and compared a synthetic hydroxyapatite with hydroxyapatites prepared from cattle bone calcined at 500 C, 700 C, 900 C and 1100 C. The analysis indicated the synthetic hydroxyapatite was similar in morphology to 500 C prepared cattle hydroxyapatite. With increasing calcination temperature the crystallinity and crystal size of the hydroxyapatites increased and the BET surface area and carbonate concentration decreased. Batch sorption experiments were performed to determine the effectiveness of each material to sorb uranium. Sorption of U was strong regardless of apatite type indicating all apatite materials evaluated. Sixty day desorption experiments indicated desorption of uranium for each hydroxyapatite was negligible.

  15. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review

    NARCIS (Netherlands)

    Zakaria, S.M.; Zein, S.H. Sharif; Othman, M.R.; Yang, F.; Jansen, J.A.

    2013-01-01

    Hydroxyapatite is a biocompatible material that is extensively used in the replacement and regeneration of bone material. In nature, nanostructured hydroxyapatite is the main component present in hard body tissues. Hence, the state of the art in nanotechnology can be exploited to synthesize nanophas

  16. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Montelongo, J., E-mail: jacobo.hernandez@uam.es [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gallach, D.; Naveas, N.; Torres-Costa, V. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Climent-Font, A. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Madrid 28049 (Spain); García-Ruiz, J.P. [Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 (Spain); Manso-Silvan, M. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering. - Highlights: • Proposed cyclic methods produce specific morphologies and CaP phases in biocomposites. • The brushite phase is favored in the biocomposite produced by Cyclic Spin Coating. • The hydroxyapatite phase is favored in the biocomposite produced by Cyclic Electrochemical Activation. • The Ca/P atomic ratio of hydroxyapatite was validated by elastic backscattering spectroscopy. • Cells grown showed morphological and

  17. Characterization of Hydroxyapatite Film on Titanium Substrate by Sputtering Technique

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Radiofrequent magnetron sputtering technique was used to produce calcium phosphate coated on the titanium substrates, and the sputtered coating films were crystallized in an autoclave at 110 ℃ using a low temperature hydrothermal technique. The crystallization of as- sputtered coating film on the titanium substrates were amorphous calcium phosphate film. However, after the hydrothermal technique, calcium phosphate crystals grew and these were columnar crystal. The Ca/ P ratio of sputtered coating films in 1.6 to 2.0.

  18. In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, A.; Mohammadi, M.R., E-mail: mohammadi@sharif.edu

    2013-01-01

    Hydroxyapatite (HA) is the most substantial mineral constituent of a bone which has been extensively used in medicine as implantable materials, owing to its good biocompatibility, bioactivity high osteoconductive, and/or osteoinductive properties. Nevertheless, its mechanical property is not utmost appropriate for a bone substitution. Therefore, a composite consist of HA and a biodegradable polymer is usually prepared to generate an apt bone scaffold. In the present work polycaprolactone (PCL), a newly remarkable biocompatible and biodegradable polymer, was employed as a matrix and hydroxyapatite nanoparticles were used as a reinforcement element of the composite. HA/PCL nanocomposites were synthesized by a new in situ sol-gel process using calcium hydroxide and phosphoric acid precursors in the presence of Tetrahydrofuran (THF) as a solvent. Chemical and physical characteristics of the nanocomposite were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FTIR) analyses. The results indicated that pure HA nanoparticles were well-incorporated and homogenously dispersed in the PCL matrix. It was found that the mechanical property of PCL was improved by addition of 20 wt.% HA nanoparticles. Furthermore, the biological property of nanocomposites was investigated under in vitro condition. For this purpose, HA/PCL scaffolds were prepared through a salt leaching process and immersed in a saturated simulated body fluid (SBF) after 3 and 7 days. It was found that a uniform layer of biomimetic HA could be deposited on the surface of HA/PCL scaffolds. Therefore, the prepared HA/PCL scaffolds showed good potential for bone tissue engineering and could be used for many clinical applications in orthopedic and maxillofacial surgery. - Graphical abstract: Preparation of HA/PCL nanocomposite and scaffold by an in situ sol-gel process is shown. Highlights: Black-Right-Pointing-Pointer Hydroxyapatite

  19. Effects of collagen types II and X on the kinetics of crystallization of calcium phosphate in biomineralization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of the components of cartilages matrix on the process of endochondral ossification and the kinetics of crystal growth of calcium phosphate have been studied in the presence of type II or X collagen. During the experiments, type I collagen was added as the seed material. FT-IR analysis shows that calcium phosphate crystallized on the surface of type I collagen was mainly hydroxyapatite. Both type II and X collagens could reduce the growth rate of calcium phosphate crystals, and the effect of type X collagen is more obvious. The reaction was in the fourth order in the presence of type II collagen. The results showed that type II or X collagen had the ability to make Ca2+ accumulate in the process of endochondral ossification, but has little effect on crystal growth and the product of biomineralization.

  20. The Effects of Dense/Nanometer Hydroxyapatite on Proliferation and Osteogenetic Differentiation of Periodontal Ligament Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The objective of this study is to investigate possible effects of nanometer powder of hydroxyapatite on proliferation of periodontal ligament cells. With sol-gel method, the nanometer hydroxyapatite powder were fabricated. The primary periodontal ligament cells were cultured on dense panicle hydroxyapatite and nanometer particle hydroxyapatite. The effects on proliferation of periodontal ligament cell were examined in vitro with MTT( methyl thiazolil tetracolium) test. The intercellular effects were observed with scanning electron microscopy and energy dispersive X-ray analyzer. In addition, the influence of two materials on osteogenetic differentiation was determined with measurement of ALP ( alkaline phosphatase) activity. It is concluded that nanometer hydroxyapatite can promote proliiferation and osteogenetic differentiation of periodontal ligament cells and it may become absorbable agent in osseous restoration.

  1. [In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].

    Science.gov (United States)

    Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei

    2015-08-01

    In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.

  2. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.K. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Chen, C.Z., E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Wang, D.G.; Lin, Z.Q. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China)

    2013-09-16

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH{sub 3}COO){sub 2}Ca·H{sub 2}O) and disodium hydrogen phosphate dodecahydrate (Na{sub 2}HPO{sub 4}·12H{sub 2}O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) and calcium pyrophosphates (Ca{sub 2}P{sub 2}O{sub 7}, CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF{sub 2}, CaO, CaF{sub 2} and Ca{sub 3}(PO{sub 4}){sub 2}. • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate.

  3. Short-term in vivo evaluation of zinc-containing calcium phosphate using a normalized procedure

    Energy Technology Data Exchange (ETDEWEB)

    Calasans-Maia, Monica, E-mail: monicacalasansmaia@gmail.com [Dental Clinical Research Center, Dentistry School, Fluminense Federal University, Niteroi, Rio de Janeiro (Brazil); Calasans-Maia, José, E-mail: josecalasans@gmail.com [Dental Clinical Research Center, Dentistry School, Fluminense Federal University, Niteroi, Rio de Janeiro (Brazil); Santos, Silvia, E-mail: silviaquimica@gmail.com [LABIOMAT, Brazilian Center for Physics Research, CBPF, Rio de Janeiro (Brazil); Mavropoulos, Elena, E-mail: elena@cbpf.br [LABIOMAT, Brazilian Center for Physics Research, CBPF, Rio de Janeiro (Brazil); Farina, Marcos, E-mail: mfarina@anato.ufrj.br [Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Lima, Inayá, E-mail: inayacorrea@gmail.com [Nuclear Instrumentation Laboratory, Nuclear Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Lopes, Ricardo Tadeu [Nuclear Instrumentation Laboratory, Nuclear Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Rossi, Alexandre, E-mail: rossi@cbpf.br [LABIOMAT, Brazilian Center for Physics Research, CBPF, Rio de Janeiro (Brazil); Granjeiro, José Mauro, E-mail: jmgranjeiro@gmail.com [Dental Clinical Research Center, Dentistry School, Fluminense Federal University, Niteroi, Rio de Janeiro (Brazil); Bioengineering Division, National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de Janeiro (Brazil)

    2014-08-01

    The effect of zinc-substituted calcium phosphate (CaP) on bone osteogenesis was evaluated using an in vivo normalized ISO 10993-6 protocol. Zinc-containing hydroxyapatite (ZnHA) powder with 0.3% by wt zinc (experimental group) and stoichiometric hydroxyapatite (control group) were shaped into cylindrical implants (2 × 6 mm) and were sintered at 1000 °C. Thermal treatment transformed the ZnHA cylinder into a biphasic implant that was composed of Zn-substituted HA and Zn-substituted β-tricalcium phosphate (ZnHA/βZnTCP); the hydroxyapatite cylinder was a highly crystalline and poorly soluble HA implant. In vivo tests were performed in New Zealand White rabbits by implanting two cylinders of ZnHA/βZnTCP in the left tibia and two cylinders of HA in the right tibia for 7, 14 and 28 days. Incorporation of 0.3% by wt zinc into CaP increased the rate of Zn release to the biological medium. Microfluorescence analyses (μXRF-SR) using synchrotron radiation suggested that some of the Zn released from the biomaterial was incorporated into new bone near the implanted region. In contrast with previous studies, histomorphometric analysis did not show significant differences between the newly formed bone around ZnHA/βZnTCP and HA due to the dissolution profile of Zn-doped CaP. Despite the great potential of Zn-containing CaP matrices for future use in bone regeneration, additional in vivo studies must be conducted to explain the mobility of zinc at the CaP surface and its interactions with a biological medium. - Highlights: • We produced a hydroxyapatite containing a low concentration (0.3 wt.%) of zinc. • The biomaterial underwent characterization before and after in vivo implant. • In vivo tests were performed according to ISO 10993-6. • Zinc-containing calcium phosphate promotes osteoconduction and bone regeneration. • Zinc-containing calcium phosphate may be useful for clinical applications.

  4. Short-term in vivo evaluation of zinc-containing calcium phosphate using a normalized procedure

    International Nuclear Information System (INIS)

    The effect of zinc-substituted calcium phosphate (CaP) on bone osteogenesis was evaluated using an in vivo normalized ISO 10993-6 protocol. Zinc-containing hydroxyapatite (ZnHA) powder with 0.3% by wt zinc (experimental group) and stoichiometric hydroxyapatite (control group) were shaped into cylindrical implants (2 × 6 mm) and were sintered at 1000 °C. Thermal treatment transformed the ZnHA cylinder into a biphasic implant that was composed of Zn-substituted HA and Zn-substituted β-tricalcium phosphate (ZnHA/βZnTCP); the hydroxyapatite cylinder was a highly crystalline and poorly soluble HA implant. In vivo tests were performed in New Zealand White rabbits by implanting two cylinders of ZnHA/βZnTCP in the left tibia and two cylinders of HA in the right tibia for 7, 14 and 28 days. Incorporation of 0.3% by wt zinc into CaP increased the rate of Zn release to the biological medium. Microfluorescence analyses (μXRF-SR) using synchrotron radiation suggested that some of the Zn released from the biomaterial was incorporated into new bone near the implanted region. In contrast with previous studies, histomorphometric analysis did not show significant differences between the newly formed bone around ZnHA/βZnTCP and HA due to the dissolution profile of Zn-doped CaP. Despite the great potential of Zn-containing CaP matrices for future use in bone regeneration, additional in vivo studies must be conducted to explain the mobility of zinc at the CaP surface and its interactions with a biological medium. - Highlights: • We produced a hydroxyapatite containing a low concentration (0.3 wt.%) of zinc. • The biomaterial underwent characterization before and after in vivo implant. • In vivo tests were performed according to ISO 10993-6. • Zinc-containing calcium phosphate promotes osteoconduction and bone regeneration. • Zinc-containing calcium phosphate may be useful for clinical applications

  5. Aqueous deposition of calcium phosphates and silicate substituted calcium phosphates on magnesium alloys

    International Nuclear Information System (INIS)

    Attempts were made to deposit homogeneous films of calcium phosphates (CaPs) on two magnesium alloy systems, AZ31 and Mg–4Y, through an aqueous phosphating bath method. The deposition of silicate substituted CaPs by this aqueous method was also explored as silicate substitution is believed to increase the bioactivity of CaPs. The effect of doped and undoped coatings on the in vitro degradation and bioactivity of both alloy systems was studied. FTIR and EDX confirmed the deposition of Ca, P, and Si on both alloys and the coatings appeared to consist primarily biphasic mixtures of hydroxyapatite and β-TCP. These largely inhomogeneous coatings, as observed by SEM, were not shown to have any significant effect on maintaining the physiological pH of the culture medium in comparison to the uncoated samples, as the pH remained approximately in the 8.4–8.7 range. Interestingly, despite similar pH profiles between the coated and uncoated samples, CaP coatings affected the degradation of both alloys. These doped and undoped calcium phosphate coatings were observed to decrease the degradation of AZ31 whereas they increased the degradation of Mg–4Y. In vitro studies on cell attachment using MC3T3-E1 mouse osteoblasts showed that between the uncoated alloys, Mg–4Y appeared to be the more biocompatible of the two. Silicate substituted CaP coatings were observed to increase the cell attachment on AZ31 compared to bare and undoped CaPs coated samples, but did not have as great of an effect on increasing cell attachment on Mg–4Y.

  6. Chitosan-coated electrospun PLA fibers for rapid mineralization of calcium phosphate.

    Science.gov (United States)

    Lin, Chi-Chang; Fu, Shu-Juan; Lin, Yu-Ching; Yang, I-Kuan; Gu, Yesong

    2014-07-01

    In this work, hydroxyapatite (HA) mineralized on chitosan (CS)-coated poly(lactic acid) (PLA) nanofiber mat was prepared and compared in terms of mineralization characteristics. Significant calcium phosphate crystals formed on various concentrations of CS-coated PLA fiber mat with better uniformity after 2h of incubation in 10 times simulated body fluid (10× SBF). X-ray diffraction results further indicated that the composition of the deposited mineral was a mixture of dicalcium phosphate dehydrates and apatite. Chitosan, a cationic polysaccharide, can promote more nucleation and growth of calcium phosphate under conditions of 0.4% chitosan concentrations. These results indicated that HA-mineralized on CS-coated PLA fiber mat can be prepared directly via simply using CS coating followed by SBF immersion, and the results also suggest that this composite can mimic structural, compositional, and biological functions of native bone and can serve as a good candidate for bone tissue engineering (BTE). PMID:24768970

  7. Influence of surface treatment of carbon fibers on electrochemical crystallization of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    TAO Ke; HUANG Su-ping; ZHOU Ke-chao

    2005-01-01

    Electrodeposition technique was used to coat calcium phosphate on carbon fiber which can be used to reinforce hydroxyapatite. The differences between fibers treated with and without nitric acid in electrodeposition were evaluated. The X-ray diffractometry results show that CaHPO4·2H2O is obtained as the kind of calcium phosphate coating on carbon fiber. The scanning electron microscopy photographs and deposit kinetic curve indicate that the influences of the functional group attained by nitric acid treatment, the crystal morphology and crystallization of the coating layers on the fiber with and without treatment rate are obviously different. The functional group, especially the acidic group, can act as nucleation centers of electrochemical crystallization.

  8. Calcium phosphate holmium-166 ceramic to addition in bone cement: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Donanzam, Blanda A.; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.b [Universidade do Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Dept. de Engenharia Nuclear; Dalmazio, Ilza; Valente, Eduardo S., E-mail: id@cdtn.b, E-mail: valente@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Spine metastases are a common and painful complication of cancer. The treatment often consists of bone cement injection (vertebroplasty or kyphoplasty) within vertebral body for vertebrae stabilization, followed by external beam radiation therapy. Recently, researchers introduced the concept of radioactive bone cement for spine tumors therapy. Then, investigations about bioactive and radioactive materials became interesting. In this study, we present the synthesis of calcium phosphate incorporated holmium (CaP-Ho) via sol-gel technique, and its characterization by XRD, FT-IR, NA and SEM. Results showed a multiphasic bioceramic composed mainly of hydroxyapatite, {beta}-tricalcium phosphate, holmium phosphate and traces of calcium pyrophosphate. Furthermore, the nuclide Ho-166 was the major radioisotope produced. Despite that, the radioactive bioceramic CaP-{sup 166}Ho must be investigated in clinical trials to assure its efficacy and safety on spine tumors treatment (author)

  9. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    Science.gov (United States)

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction. PMID:23827538

  10. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    Science.gov (United States)

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction.

  11. Biomimetic chitosan-calcium phosphate composites with potential applications as bone substitutes: preparation and characterization.

    Science.gov (United States)

    Tanase, Constantin E; Popa, Marcel I; Verestiuc, Liliana

    2012-04-01

    A novel biomimetic technique for obtaining chitosan-calcium phosphates (Cs-CP) scaffolds are presented: calcium phosphates are precipitated from its precursors, CaCl(2) and NaH(2) PO(4) on the Cs matrix, under physiological conditions (human body temperature and body fluid pH; 37°C and pH = 7.2, respectively). Materials composition and structure have been confirmed by various techniques: elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). FTIR and SEM data have shown the arrangement of the calcium phosphates-hydroxyapatite (CP-Hap) onto Cs matrix. In this case the polymer is acting as glue, bonding the calcium phosphates crystals. Behavior in biological simulated fluids (phosphate buffer solution-PBS and PBS-albumin) revealed an important contribution of the chelation between -NH3(+) and Ca(2+) on the scaffold interaction with aqueous mediums; increased quantities of chitosan in composites permit the interaction with human albumin and improve the retention of fluid. The composites are slightly degraded by the lysozyme which facilitates an in vivo degradation control of bone substitutes. Modulus of elasticity is strongly dependent of the ratio chitosan/calcium phosphates and recommends the obtained biomimetic composites as promising materials for a prospective bone application. PMID:22121073

  12. Duplex Prepared Hydroxyapatite Coating and Its Biocompatibility%羟基磷灰石生物涂层的复合制备与生物相容性

    Institute of Scientific and Technical Information of China (English)

    付涛; 张玉梅; 等

    2001-01-01

    采用等离子喷涂CaHPO4和水热处理复合制备羟基磷灰石生物涂层,研究了羟基磷灰石涂层的结合强度和溶解性,用成骨细胞考察了生物相容性。结果表明:喷涂涂层由CaHPO4、β-Ca2P2O7和α-Ca3(PO4)2组成,其相比例、结晶性和形貌取决于喷涂电流和喷涂距离;喷涂涂层经过水热处理可转化为针状结晶的缺钙羟基磷灰石;这种羟基磷灰石涂层具有高的结合强度和稳定性,与成骨细胞的生物相容性良好。%The hydroxyapatite coating was hydrothermally prepared from plasma sprayed CaHPO4 coating and its bonding strength and solubility were studied. The osteoblast culture test was also produced in order to examine the biocompatibility of the coating. The as-sprayed coating consists of CaHPO4, β-Ca2P2O7 and α-Ca3(PO4)2, and the phase ratio, crystallity and morphology are dependent on spraying current and stand-off distance. The as-spayed coating can be converted to calcium-deficient hydroxyapatite coating with needle-like crystals by hydrothermal treatment. The hydrothermally synthesized hydroxyapatite coating having high bonding strength and stability, possesses good biocompatibility with the osteoblast.

  13. Mechanism of calcium phosphates precipitation in liquid crystals; Mecanisme de precipitation de phosphates de calcium dans des cristaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Prelot, B.; Zemb, T

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m{sup 2}/g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  14. Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition.

    Science.gov (United States)

    Eraković, Sanja; Janković, Ana; Veljović, Djordje; Palcevskis, Eriks; Mitrić, Miodrag; Stevanović, Tatjana; Janaćković, Djordje; Mišković-Stanković, Vesna

    2013-02-14

    Hydroxyapatite is the most suitable biocompatible material for bone implant coatings. However, its brittleness is a major obstacle, and that is why, recently, research focused on creating composites with various biopolymers. In this study, hydroxyapatite coatings were modified with lignin in order to attain corrosion stability and surface porosity that enables osteogenesis. Incorporating silver, well known for its antimicrobial properties, seemed the best strategy for avoiding possible infections. The silver/hydroxyapatite (Ag/HAP) and silver/hydroxyapatite/lignin (Ag/HAP/Lig) coatings were cathaphoretically deposited on titanium from ethanol suspensions, sintered at 900 °C in Ar, and characterized by X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, attenuated total reflection Fourier transform infrared, and X-ray photoelectron spectroscopy. The corrosion stability of electrodeposited coatings was evaluated in vitro in Kokubo's simulated body fluid (SBF) at 37 °C using electrochemical impedance spectroscopy. Bioactivity was estimated by immersion in SBF to evaluate the formation of hydroxyapatite on the coating surface. A microcrystalline structure of newly formed plate-shaped carbonate-hydroxyapatite was detected after only 7 days, indicating enhanced bioactive behavior. Both coatings had good corrosion stability during a prolonged immersion time. Among the two, the Ag/HAP/Lig coating had a homogeneous surface, less roughness, and low values of contact angle.

  15. Investigation of the crystal structure, dielectrical, electrical and microstructural properties of cobalt-containing calcium orthophosphates

    Directory of Open Access Journals (Sweden)

    Omer Kaygili

    2015-06-01

    Full Text Available Pure hydroxyapatite and cobalt-containing calcium orthophosphate ceramics were synthesized by the sol–gel method and their properties were analyzed by Fourier transform infrared spectroscopy, X–ray diffraction, dielectrical impedance spectroscopy and scanning electron microscopy techniques. The average crystallite size of the samples was found to be 30–56 nm. The crystallinity was decreased gradually with the addition of Co. The resistance values were found to be ~1012 Ω. Dielectric permittivity and alternating current conductivity of all the samples showed substantial changes in the presence of cobalt. The morphology and particle size distribution of all the samples were changed with increasing amount of Co. In addition, the high content of Co ions was found to both destroy the apatitic structure of the hydroxyapatite and cause the calcium deficiency. The results indicated that, in presence of high amounts of Co, Ca9.5Co(PO47 ceramics could be prepared. Normal 0 21 false false false MicrosoftInternetExplorer4 DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6251

  16. Preparation, Physical-Chemical Characterization, and Cytocompatibility of Polymeric Calcium Phosphate Cements

    Directory of Open Access Journals (Sweden)

    Rania M. Khashaba

    2011-01-01

    Full Text Available Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control. Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications.

  17. Preparation, Physical-Chemical Characterization, and Cytocompatibility of Polymeric Calcium Phosphate Cements

    Science.gov (United States)

    Khashaba, Rania M.; Moussa, Mervet; Koch, Christopher; Jurgensen, Arthur R.; Missimer, David M.; Rutherford, Ronny L.; Chutkan, Norman B.; Borke, James L.

    2011-01-01

    Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs) were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control). Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications. PMID:21941551

  18. Direct growth of carbon nanotubes on hydroxyapatite using MPECVD

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M., E-mail: duraia_physics@yahoo.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farbi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, Almaty (Kazakhstan); Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States); Hannora, A. [Suez Canal University, Faculty of Petroleum and Mining Engineering (Egypt); Mansurov, Z. [Al-Farbi Kazakh National University, Almaty (Kazakhstan); Beall, Gary W. [Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2012-01-16

    Graphical abstract: Carbon nanotubes have been grown directly on hydroxyapatite by using microwave plasma-enhanced chemical vapor deposition (MPECVD). Highlights: Black-Right-Pointing-Pointer CNTs have been successfully grown directly on hydroxyapatite using MPECVD. Black-Right-Pointing-Pointer Diameter distribution of the CNTs lies in the range from 30 to 70 nm. Black-Right-Pointing-Pointer The HA surface is partially transformed to {beta}-TCP during the deposition. Black-Right-Pointing-Pointer Grown CNTs have good quality and I{sub G}/I{sub D} ratio lies between 1.243 and 1.774. - Abstract: For the first time carbon nanotubes (CNTs) have been successfully grown directly on hydroxyapatite (HA) by using microwave plasma enhanced chemical vapor deposition (MPECVD). Such integration has potential to capitalize on the merits of both HA and CNTs. This type of coating could be useful to improve the interface between bone and the implant. Scanning electron microscope SEM investigations show that; the surface of the CNTs is relatively clean and free of amorphous carbon. The CNTs diameters lie in the range 30-70 nm. In addition HA encapsulation by carbon was observed at a growth temperature 750 Degree-Sign C. Raman spectroscopy indicates that the CNTs are of high quality and the I{sub G}/I{sub D} ratio lies between 1.243 and 1.774. The changes in the X-ray diffraction (XRD) patterns give an indication that during the plasma deposition the HA-substrate surface is subjected to a temperature sufficient for partial conversion to the {beta}-tricalcium phosphate via dehydroxylation.

  19. Preparation and characterization of antimicrobial nano-hydroxyapatite composites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chu, Xiaobing [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Cai, Yurong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Tong, Peijian [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-01

    Deep infection of prosthesis is one of the most frequent complications after joint replacement. One of the most effective ways is to introduce directly some antibiotics in the local site of the surgery. In the present study, an antimicrobial composite has been fabricated using nano-hydroxyapatite particles as carriers for the antimicrobial drug of vancomycin hydrochloride (VAN) and the mixture of oxidation sodium alginate (OSA) and gelatin (GT) as a sticky matrix. Samples have been characterized using X-ray diffraction instrument (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectra, Brunauer–Emmett–Teller (BET) methods, the rotational rheometer and the texture analyzer. The release of VAN from nano-hydroxyapatite (nHAP) particles was detected by the ultraviolet–visible (UV–vis) spectrophotometer and then bactericidal property of the composite was evaluated using the Staphylococcus aureus (S. aureus) as a bacterial model. Experimental results showed that the composite possessed an adhesive property derived from the gel of OSA and GT, which implied that the composite could bond directly to the fracture surface of bones in surgery. Furthermore, VAN was loaded efficiently on the surface of nHAP particles and could be released slowly from these particles, which endowed the composite with an obvious and continuous antimicrobial performance. The sticky and antimicrobial composite may has a potential application in arthroplasty to overcome deep infection in a simple and direct manner. - Highlights: • A sticky and antimicrobial composite has been designed to overcome deep infection. • The composite was composed of antibiotic, antibiotic carrier and a viscous matrix. • The sticky matrix was obtained by blending of oxidation sodium alginate and gelatin. • Hydroxyapatite nanoparticle could be used as carrier to control release of antibiotic.

  20. Osteogenic Responses to Zirconia with Hydroxyapatite Coating by Aerosol Deposition

    OpenAIRE

    Cho, Y.; Hong, J.; Ryoo, H.; Kim, D.; Park, J.; Han, J.

    2015-01-01

    Previously, we found that osteogenic responses to zirconia co-doped with niobium oxide (Nb2O5) or tantalum oxide (Ta2O5) are comparable with responses to titanium, which is widely used as a dental implant material. The present study aimed to evaluate the in vitro osteogenic potential of hydroxyapatite (HA)-coated zirconia by an aerosol deposition method for improved osseointegration. Surface analysis by scanning electron microscopy and x-ray diffraction proved that a thin as-deposited HA film...

  1. Effect of Hydroxyapatite Nanoparticles on K562 Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    CHEN Pei; DAI Honglian; HAN Yingchao; YIN Meizhen; LI Shipu

    2008-01-01

    Stable and single-dispersed hydroxyapatite (HAP) nanoparticles were synthesized with ultrasonic-assisted method. HAP nanoparticles were characterized by dynamic light scattering, XRD (X-ray diffraction) and TEM (Transmission Electron Microscopy). The effect of HAP nanoparticles on the K562 human myelogcnous leukemia cell line was investigated by MTT assay and cell count test, and the mechanism was studied through the changes of cell cycle and ultrastructure. The results showed that HAP nanoparticles inhibited the proliferation of K562 cells dramatically in vitro. HAP nanoparticles entered the cytoplasm of K562 cells and the cells were arrested at G2/M phase, thus, the cells died directly.

  2. Hydroxyapatite-Functionalized Graphene: A New Hybrid Nanomaterial

    Directory of Open Access Journals (Sweden)

    C. Rodríguez-González

    2014-01-01

    Full Text Available Graphene oxide sheets (GO were functionalized with hydroxyapatite nanoparticles (nHAp through a simple and effective hydrothermal treatment and a novel physicochemical process. Microstructure and crystallinity were investigated by Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy, X-ray diffraction (XRD, ultraviolet-visible (UV-Vis absorption spectroscopy, and thermogravimetric analysis (TGA. Transmission electron microscopy (TEM and scanning electron microscopy (SEM were performed to characterize the morphology of the functionalized material. The resulting novel materials combine the biocompatibility of the nHAp with the strength and physical properties of the graphene.

  3. Preparation of Bone-like Hydroxyapatite via a Reverse Microemulsion

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Bone-like hydroxyapatite( HAp ) powders were synthesized using a reverse microemulsion method without further calcine processing. Synthesis conditions had significant effects on the formation of HAp. According to the results of XRD patterns and FTIR spectra, the obtained needle shape HAp powder with poorly crystallized and carbonate substitution was chemically and structurally similar to the human bone powders. The alkaline of emulsion was responsible for the obtained HAp without calcine route, and carbonate came from CO2 in air during preparation. By ultrasonic treatment, the morphology of HAp particles changed from spherical to needle shape for the reverse micelles broke up due to the high energy of ultrasonic.

  4. Hydroxyapatite-binding peptides for bone growth and inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, Carolyn R. (Berkeley, CA); Song, Jie (Shrewsbury, MA); Lee, Seung-Wuk (Walnut Creek, CA)

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  5. Tetracycline Loaded Collagen/Hydroxyapatite Composite Materials for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Laura Cristina Rusu

    2015-01-01

    Full Text Available The paper describes the preparation, characterisation, and testing of tetracycline loaded collagen-carboxymethylcellulose/hydroxyapatite ternary composite materials. The synthesis of this drug delivery system consists in two steps: the first step is the mineralization of collagen-carboxymethylcellulose gel while the second step corresponds to the loading of the ternary composite material with tetracycline. The obtained DDS is characterised by physicochemical, morphological, and release behaviour by using FTIR spectroscopy and microscopy, scanning electron microscopy, and UV-VIS spectroscopy. Based on the release study, it can be assumed that tetracycline is released in a prolonged way, assuring at least 6 days of antiseptic properties.

  6. Investigations of Titanium Implants Covered with Hydroxyapatite Layer

    Directory of Open Access Journals (Sweden)

    Świeczko – Żurek B.

    2016-06-01

    Full Text Available To reduce unfavorable phenomena occurring after introducing an implant into human body various modifications of the surface are suggested. Such modifications may have significant impact on biocompatibility of metallic materials. The titanium and it's alloys are commonly used for joint and dental implants due to their high endurance, low plasticity modulus, good corrosion resistance as well as biocompatibility. Special attention should be given to titanium alloys containing zirconium, tantalum and niobium elements. These new generation alloys are used by worldwide engineering specialists. The experiments were performed with hydroxyapatite layer on titanium specimens with the use of electrophoresis method (different voltage and time.

  7. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    OpenAIRE

    Saska, S.; H.S. Barud; Gaspar, A. M. M.; Marchetto, R.; Ribeiro, S. J. L.; Y. Messaddeq

    2011-01-01

    The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA) nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total wei...

  8. Synergistic anticancer efficacy of Bendamustine Hydrochloride loaded bioactive Hydroxyapatite nanoparticles: In-vitro, ex-vivo and in-vivo evaluation.

    Science.gov (United States)

    Thomas, Shindu C; Sharma, Harshita; Rawat, Purnima; Verma, Anita K; Leekha, Ankita; Kumar, Vijay; Tyagi, Aakriti; Gurjar, Bahadur S; Iqbal, Zeenat; Talegaonkar, Sushama

    2016-10-01

    The present work evaluates the synergistic anticancer efficacy of bioactive Hydroxyapatite (HA) nanoparticles (HA NPs) loaded with Bendamustine HCl. Hydroxyapatite is a material with an excellent biological compatibility, a well-known fact which was also supported by the results of the Hemolytic studies and a high IC50 value observed in the MTT assay. HA NPs were prepared by the chemical precipitation method and loaded with the drug via physical adsorption. In-vitro release study was performed, which confirmed the sustained release of the drug from the drug loaded HA NPs. MTT assay, Cell Uptake and FACS studies on JURKAT E6.1 cell line and in-vivo pharmacokinetic studies in Wistar rats revealed that the drug loaded HA NPs could be easily internalized by the cells and release drug in a sustained manner. The drug loaded HA NPs showed cytotoxicity similar to the drug solution at 1/10th of the drug content, which indicates a possible synergism between the activity of the anticancer drug and calcium ions derived from the carrier. An increase in intracellular Ca(2+) ions is reported to induce apoptosis in cells. Tumor regression study in Balb/c mice Ehrlich's ascites model presented a similar synergistic efficacy. The drug solution was able to decrease the tumor volume by half, while the drug loaded HA NPs reduced the tumor size by 6 times. PMID:27455405

  9. Nucleation, growth and evolution of calcium phosphate films on calcite.

    Science.gov (United States)

    Naidu, Sonia; Scherer, George W

    2014-12-01

    Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence. PMID:25233226

  10. Impact formation and microstructure characterization of thermal sprayed hydroxyapatite/titania composite coatings.

    Science.gov (United States)

    Li, H; Khor, K A; Cheang, P

    2003-03-01

    Formation mechanism of hydroxyapatite (HA)/titania (TiO(2)) composite coating deposited by high velocity oxy-fuel (HVOF) thermal spray process was studied, and its structural characterization was conducted and elaborated in this paper. The impact theory was employed to analyze the formation procedure of the HA/titania composite coatings. Results revealed that the crater caused by the impact of entirely unmelted TiO(2) particles on the HA matrix during coating formation was of smaller dimensions than the original size of the reinforcements. It was found that chemical reaction between the mechanically blended HA and TiO(2) powder took place exclusively during the impingement stage, and calcium titanate, CaTiO(3), was one notable by-product. The bonding between the HA matrix and TiO(2) reinforcement might have been achieved predominantly through a chemical bond that resulted from the mutual chemical reactions among the components. Differential scanning calorimetry analyses showed that the chemical reaction between HA and TiO(2) was at approximately 1410 degrees C. The TiO(2) addition was found to exert particular effects on the thermal behavior of HA at elevated temperatures, during both heating and cooling cycles. Transmission electron microscopy observation identified the chemical reaction zone between HA and TiO(2), which revealed an improved splats' interface. The reaction zone demonstrated some influence on the grain size of HA nearby during resolidification of the melted portion. A structural model was proposed to illustrate the location of the different phases in the HA/titania composite coating. PMID:12504516

  11. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering

    International Nuclear Information System (INIS)

    Squid pen chitosan was used in the fabrication of biocomposite scaffolds for bone tissue engineering. Hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP) obtained from waste mussel shells were used as the calcium phosphate source. The composite was prepared using 2.5% tripolyphosphate (TPP) and 1% glycerol as a cross-linker and plasticizer, respectively. The weight percent (wt.%) ratios of the ceramic components in the composite were 20/10/70, 30/20/50 and 40/30/30 (HA/β-TCP/Chi). The biodegradation rate and structural properties of the scaffolds were investigated. Scanning electron microscopy (SEM) and microCT(μCT) results indicated that the composites have a well defined lamellar structure with an average pore size of 200 μm. The porosity of the composites decreased from 88 to 56% by increasing the ratio of HA/β-TCP from 30 to 70%. After 28 days of incubation in a physiological solution, the scaffolds were degraded by approximately 30%. In vitro investigations showed that the composites were cytocompatible and supported the growth of L929 and Saos-2 cells. The obtained data suggests that the squid pen chitosan composites are potential candidates for bone regeneration. - Highlights: • Biocomposite scaffolds were made from mussel shells HA and β-TCP, and squid pin chitosan. • The porosity of the composites decreased with an increase in HA/β-TCP ratio. • Composites were cytocompatible and supported the growth of L929 and Saos-2 cells. • Composite containing 50% HA and β-TCP had the best mechanical properties

  12. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process.

    Science.gov (United States)

    Tlotleng, Monnamme; Akinlabi, Esther; Shukla, Mukul; Pityana, Sisa

    2014-10-01

    Hydroxyapatite (HAP) coatings on bioinert metals such as Ti-6Al-4V are necessary for biomedical applications. Together, HAP and Ti-6Al-4V are biocompatible and bioactive. The challenges of depositing HAP on Ti-6Al-4V with traditional thermal spraying techniques are well founded. In this paper, HAP was coated on Ti-6Al-4V using direct laser melting (DLM) process. This process, unlike the traditional coating processes, is able to achieve coatings with good metallurgical bonding and little dilution. The microstructural and mechanical properties, chemical composition and bio-activities of the produced coatings were studied with optical microscopy, scanning electron microscope equipped with energy dispersive X-ray spectroscopy, and Vickers hardness machine, and by immersion test in Hanks' solution. The results showed that the choice of the laser power has much influence on the evolving microstructure, the mechanical properties and the retainment of HAP on the surface of the coating. Also, the choice of laser power of 750 W led to no dilution. The microhardness results inferred a strong intermetallic-ceramic interfacial bonding; which meant that the 750 W coating could survive long in service. Also, the coating was softer at the surface and stronger in the heat affected zones. Hence, this process parameter setting can be considered as an optimal setting. The soak tests revealed that the surface of the coating had unmelted crystals of HAP. The CaP ratio conducted on the soaked coating was 2.00 which corresponded to tetra calcium phosphate. This coating seems attractive for metallic implant applications.

  13. Effect of sodium trimetaphosphate on hydroxyapatite solubility: an in vitro study.

    Science.gov (United States)

    Souza, José Antonio Santos; Amaral, Jackeline Gallo do; Moraes, João Carlos Silos; Sassaki, Kikue Takebayashi; Delbem, Alberto Carlos Botazzo

    2013-01-01

    This study evaluated the effect of different concentrations of sodium trimetaphosphate (TMP) with and without fluoride (F) on the concentration of calcium (Ca), phosphorus (P) and F in hydroxyapatite (HA). Synthetic HA powder (0.15 g) was suspended (n=6) in solutions (75 mL) of TMP at 0%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 2.0%, 4.0%, 6.0%, 8.0% and 10% concentrations in the presence and absence of 100 ppm F and subjected to a pH-cycling process. The precipitates were filtrated, dried at 70° C for 24 h and ground onto a fine powder. The concentrations of F (KOH (CaF2) and HCl (FA) soluble), Ca (Arsenazo III), and P (molybdate method) in HA were determined. The Ca P, and Ca/P ratio data were subjected to Tukey's test and the F data were subjected to Student-Newman-Keuls test (p<0.05). The addition of TMP to the samples reduced F deposition to 98% (p<0.001). The groups containing 100 ppm F and 0.4% or 0.6% TMP exhibited a higher Ca concentration than the group containing only 100 ppm F (p<0.05). Furthermore, the HA treated with 0.2% and 0.4% TMP and 100 ppm F showed a higher Ca/P ratio than the other groups (p<0.001). In conclusion, TMP at 0.2%, 0.4% and 0.6% concentrations combined with F seemed to be able to precipitate HA with low solubility. However, especially at high concentrations, TMP interferes with F deposition on HA. PMID:23969912

  14. Effect of steam treatment during plasma spraying on the microstructure of hydroxyapatite splats and coatings

    Science.gov (United States)

    Li, H.; Khor, K. A.; Cheang, P.

    2006-12-01

    The major problems with plasma sprayed hydroxyapatite (HA) coatings for hard tissue replacement are severe HA decomposition and insufficient mechanical properties of the coatings. Loss of crystalline HA after the high-temperature spraying is due mainly to the loss of OH- in terms of water. The current study used steam to treat HA droplets and coatings during both in-flight and flattening stages during plasma spraying. The microstructure of the HA coatings and splats was characterized using scanning electron microscope, Raman spectroscopy, Fourier transform IR spectroscopy, and x-ray diffraction. Results showed that a significant increase in crystallinity of the HA coating was achieved through the steam treatment (e.g., from 58 to 79%). In addition, the effects were dependent on particle sizes of the HA feedstock, more increase in crystallinity of the coatings made from smaller powders was revealed. The Raman spectroscopy analyses on the individual splats and coatings indicate that the mechanism involves entrapping of water molecules by the individual HA droplets upon their impingement. It further suggests that the HA decomposition has already taken place before the impingement of the droplets on precoating or substrate. The improvement in crystallinity and phases, for example, from tricalcium phosphate and amorphous calcium phosphate to HA, was achieved by reversing the HA decomposition through providing extra OH-. Furthermore, the steam treatment during the spraying also accounts for remarkably increased adhesion strength from 9.09 to 23.13 MPa. The in vitro testing through immersing the HA coatings in simulated body fluid gives further evidence that the economic and simple steam treatment is promising in improving HA coating structure.

  15. Formation of hydroxyapatite in hydrogels from tetracalcium phosphate/dicalcium phosphate mixtures.

    Science.gov (United States)

    Sugawara, A; Antonucci, J M; Takagi, S; Chow, L C; Ohashi, M

    1989-03-01

    Apatitic calcium phosphate cements, formed by the ambient reaction of tetracalcium phosphate (TTCP) with dicalcium phosphates (DCP), have been recently reported. H2O or dilute aq. H3PO4 (0.2%) is used as the liquid vehicle for this reaction. The aim of this study was to ascertain if hydroxyapatite (HAp) can form in self-cured hydrogel composites containing TTCP/DCP mixes. The setting times (ST) and diametral tensile strengths (DTS) of these hydrogel composites were also determined. The hydrogels were of two types: (1) vinyl thermosets derived from the copolymerization of HEMA (2-hydroxyethyl methacrylate) and cross-linking monomers, and (2) polyelectrolyte-based hydrogels formed from aq. poly(alkenoic acids), e.g., poly(acrylic acid). Cylindrical specimens 6 mm D x 3 mm H were prepared and stored in H2O for up to 30 days. The HEMA composites were hardened in 7-15 min by free radical initiation (benzoyl peroxide/tertiary aromatic amine). The polyelectrolyte cements were hardened in 6-8 min. After various periods of storage in H2O at 37 degrees C, some of the specimens were examined by X-ray spectroscopy for HAp. HAp formation was not observed in the HEMA composites even after 30 days of H2O storage but was detected in the polyacid cements. The 24-h DTS values of the HEMA composites (14-26 MPa) were higher than those of the polyacid cements (7-12 MPa). Both the H2O content and pH may thus be factors controlling the rate and extent of HAp formation in hydrogel composites containing TTCP/DCP mixtures.

  16. Hydroxyapatite nanoparticle injectable hydrogel scaffold to support osteogenic differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Thorpe, A A; Creasey, S; Sammon, C; Le Maitre, C L

    2016-01-01

    Bone loss associated with degenerative disease and trauma is a clinical problem increasing with the aging population. Thus, effective bone augmentation strategies are required; however, many have the disadvantages that they require invasive surgery and often the addition of expensive growth factors to induce osteoblast differentiation. Here, we investigated a LaponiteÒ crosslinked, pNIPAM-DMAc copolymer (L-pNIPAM-co-DMAc) hydrogel with hydroxyapatite nanoparticles (HAPna), which can be maintained as a liquid ex vivo, injected via narrow-gauge needle into affected bone, followed by in situ gelation to deliver and induce osteogenic differentiation of human mesenchymal stem cells (hMSC). L-pNIPAM-co-DMAc hydrogels were synthesised and HAPna added post polymerisation. Commercial hMSCs from one donor (Lonza) were incorporated in liquid hydrogel, the mixture solidified and cultured for up to 6 weeks. Viability of hMSCs was maintained within hydrogel constructs containing 0.5 mg/mL HAPna. SEM analysis demonstrated matrix deposition in cellular hydrogels which were absent in acellular controls. A significant increase in storage modulus (G') was observed in cellular hydrogels with 0.5 mg/mL HAPna. Semi-quantitative immunohistochemistry and histological analysis demonstrated that bone differentiation markers and collagen deposition was induced within 48 h, with increased calcium deposition with time. The thermally triggered hydrogel system, described here, was sufficient without the need of additional growth factors or osteogenic media to induce osteogenic differentiation of commercial hMSCs. Preliminary data presented here will be expanded on multiple patient samples to ensure differentiation is seen in these samples. This system could potentially reduce treatment costs and simplify the treatment strategy for orthopaedic repair and regeneration. PMID:27377664

  17. A novel squid pen chitosan/hydroxyapatite/β-tricalcium phosphate composite for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shavandi, Amin, E-mail: amin.shavandi@postgrad.otago.ac.nz [Department of Food Sciences, University of Otago, Dunedin (New Zealand); Department of Applied Sciences, University of Otago, Dunedin (New Zealand); Bekhit, Alaa El-Din A. [Department of Food Sciences, University of Otago, Dunedin (New Zealand); Sun, Zhifa; Ali, Azam [Department of Physics, University of Otago, Dunedin (New Zealand); Gould, Maree [Department of Anatomy, University of Otago, Dunedin (New Zealand)

    2015-10-01

    Squid pen chitosan was used in the fabrication of biocomposite scaffolds for bone tissue engineering. Hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP) obtained from waste mussel shells were used as the calcium phosphate source. The composite was prepared using 2.5% tripolyphosphate (TPP) and 1% glycerol as a cross-linker and plasticizer, respectively. The weight percent (wt.%) ratios of the ceramic components in the composite were 20/10/70, 30/20/50 and 40/30/30 (HA/β-TCP/Chi). The biodegradation rate and structural properties of the scaffolds were investigated. Scanning electron microscopy (SEM) and microCT(μCT) results indicated that the composites have a well defined lamellar structure with an average pore size of 200 μm. The porosity of the composites decreased from 88 to 56% by increasing the ratio of HA/β-TCP from 30 to 70%. After 28 days of incubation in a physiological solution, the scaffolds were degraded by approximately 30%. In vitro investigations showed that the composites were cytocompatible and supported the growth of L929 and Saos-2 cells. The obtained data suggests that the squid pen chitosan composites are potential candidates for bone regeneration. - Highlights: • Biocomposite scaffolds were made from mussel shells HA and β-TCP, and squid pin chitosan. • The porosity of the composites decreased with an increase in HA/β-TCP ratio. • Composites were cytocompatible and supported the growth of L929 and Saos-2 cells. • Composite containing 50% HA and β-TCP had the best mechanical properties.

  18. [Study on the development of Ag-nano-hydroxyapatite/polyamide66 porous scaffolds with surface mineralization].

    Science.gov (United States)

    Fan, Jianbo; Chang, Shan; Dong, Mina; Huang, Di; Li, Jidong; Jiang, Dianming

    2012-12-01

    Bacterial infection after implantation of bone tissue engineering scaffolds is still a serious clinical problem. Ag-nano-hydroxyapatite/polyamide66 (Ag-nHA/PA66) antibacterial composite scaffold were prepared with phase-inversion method in this study. The scaffolds were mineralized in saturated calcium phosphate solution at 37 degrees C for 1 day. The microstructure and the newly formed nano-apatite deposition on the scaffolds before and after mineralization were observed using scanning electron microscopy (SEM). In order to investigate the release behaviors of Ag+, the Ag-nHA/PA66 scaffolds were immersed into 5 ml PBS at 37 degrees C for a different period between 3 h and 168 h before and after mineralization. Then the samples were cultured with E. coli (8099) to test the antibacterial effect of the scaffolds. The results showed that, after mineralization, Ag-nHA/PA66 porous scaffolds still possessed a good inter-connection and a new apatite layer was formed on the surface of the scaffolds. The average macropore size was 626.61 +/- 141.94 microm, the porosity was 76.89 +/- 8.21% and the compressive strength was 2.94 +/- 1.12 MPa. All these physical parameters had no significant difference from those of the un-mineralized scaffolds. The Ag+ release of the scaffolds with and without mineralization was fast within 1 day and then kept slow and stable after 1 day. The antibacterial test confirmed that after mineralization the scaffolds had good antibacterial effects on E. coli. PMID:23469542

  19. CALCIUM-INDUCED SUPRAMOLECULAR STRUCTURES IN THE CALCIUM CASEINATE SYSTEM

    Science.gov (United States)

    The molecular details deciphering the spontaneous calcium-induced protein aggregation process in the calcium caseinate system remain obscure. Understanding this complex process could lead to potential new applications of this important food ingredient. In this work, we studied calcium-induced supra...

  20. Contrasting histopathology and crystal deposits in kidneys of idiopathic stone formers who produce hydroxy apatite, brushite, or calcium oxalate stones.

    Science.gov (United States)

    Evan, Andrew P; Lingeman, James E; Worcester, Elaine M; Sommer, Andre J; Phillips, Carrie L; Williams, James C; Coe, Fredric L

    2014-04-01

    Our previous work has shown that stone formers who form calcium phosphate (CaP) stones that contain any brushite (BRSF) have a distinctive renal histopathology and surgical anatomy when compared with idiopathic calcium oxalate stone formers (ICSF). Here we report on another group of idiopathic CaP stone formers, those forming stone containing primarily hydroxyapatite, in order to clarify in what ways their pathology differs from BRSF and ICSF. Eleven hydroxyapatite stone formers (HASF) (2 males, 9 females) were studied using intra-operative digital photography and biopsy of papillary and cortical regions to measure tissue changes associated with stone formation. Our main finding is that HASF and BRSF differ significantly from each other and that both differ greatly from ICSF. Both BRSF and ICSF patients have significant levels of Randall's plaque compared with HASF. Intra-tubular deposit number is greater in HASF than BRSF and nonexistent in ICSF while deposit size is smaller in HASF than BRSF. Cortical pathology is distinctly greater in BRSF than HASF. Four attached stones were observed in HASF, three in 25 BRSF and 5-10 per ICSF patient. HASF and BRSF differ clinically in that both have higher average urine pH, supersaturation of CaP, and calcium excretion than ICSF. Our work suggests that HASF and BRSF are two distinct and separate diseases and both differ greatly from ICSF.

  1. Comparison of murine fibroblast cell response to fluor-hydroxyapatite composite, fluorapatite and hydroxyapatite by eluate assay.

    Science.gov (United States)

    Jantová, Sona; Letasiová, Silvia; Theiszová, Marica; Palou, M

    2009-03-01

    Fluorapatite (FA) is one of the inorganic constituents of bone or teeth used for hard tissue repairs and replacements. Fluor-hydroxyapatite (FHA) is a new synthetic composite that contains the same molecular concentration of OH(-) groups and F(-) ions. The aim of this experiment was to evaluate the cellular responses of murine fibroblast NIH-3T3 cells in vitro to solid solutions of FHA and FA and to compare them with the effect of hydroxyapatite (HA). We studied 24, 48 and 72 h effects of biomaterials on cell morphology, proliferation and cell cycle of NIH-3T3 cells by eluate assay. Furthermore, we examined the ability of FHA, FA and HA to induce cell death and DNA damage. Our cytotoxic/antiproliferative studies indicated that any of tested biomaterials did not cause the total inhibition of cell division. Biomaterials induced different antiproliferative effects increasing in the order HA < FHA < FA which were time- and concentration-dependent. None of the tested biomaterials induced necrotic/apoptotic death of NIH-3T3 cells. On the other hand, after 72 h we found that FHA and FA induced G0/G1 arrest of NIH-3T3 cells, while HA did not affect any cell cycle phases. Comet assay showed that while HA demonstrated weaker genotoxicity, DNA damage induced by FHA and FA caused G0/G1 arrest of NIH-3T3 cells. Fluoridation of hydroxyapatite and different FHA and FA structure caused different cell response of NIH-3T3 cells to biomaterials.

  2. A sensor for calcium uptake

    OpenAIRE

    Collins, Sean; Meyer, Tobias

    2010-01-01

    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified.

  3. Children's Bone Health and Calcium

    Science.gov (United States)

    ... Trials Resources and Publications Children's Bone Health and Calcium: Condition Information Skip sharing on social media links ... straight, walk, run, and lead an active life. Calcium is one of the key dietary building blocks ...

  4. In vitro and in vivo evaluation of silicated hydroxyapatite and impact of insulin adsorption.

    Science.gov (United States)

    Lasgorceix, M; Costa, A M; Mavropoulos, E; Sader, M; Calasans, M; Tanaka, M N; Rossi, A; Damia, C; Chotard-Ghodsnia, R; Champion, E

    2014-10-01

    This study evaluates the biological behaviour, in vitro and in vivo, of silicated hydroxyapatite with and without insulin adsorbed on the material surface. Insulin was successfully adsorbed on hydroxyapatite and silicated hydroxyapatite bioceramics. The modification of the protein secondary structure after the adsorption was investigated by means of infrared and circular dichroism spectroscopic methods. Both results were in agreement and indicated that the adsorption process was likely to change the secondary structure of the insulin from a majority of α-helix to a β-sheet form. The biocompatibility of both materials, with and without adsorbed insulin on their surface, was demonstrated in vitro by indirect and direct assays. A good viability of the cells was found and no proliferation effect was observed regardless of the material composition and of the presence or absence of insulin. Dense granules of each material were implanted subcutaneously in mice for 1, 3 and 9 weeks. At 9 weeks of implantation, a higher inflammatory response was observed for silicated hydroxyapatite than for pure hydroxyapatite but no significant effect of adsorbed insulin was detected. Though the presence of silicon in hydroxyapatite did not improve the biological behaviour, the silicon substituted hydroxyapatite remained highly viable.

  5. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S B; Gao, S S; Yu, H Y, E-mail: yhyang6812@scu.edu.c [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2009-06-15

    The purpose of the research was to determine the effect of nano-hydroxyapatite concentrations on initial enamel lesions under dynamic pH-cycling conditions. Initial enamel lesions were prepared in bovine enamel with an acidic buffer. NaF (positive control), deionized water (negative control) and four different concentrations of nano-hydroxyapatite (1%, 5%, 10% and 15% wt%) were selected as the treatment agents. Surface microhardness (SMH) measurements were performed before/after demineralization and after 3, 6, 9 and 12 days of application, and the percentage surface microhardness recovery (%SMHR) was calculated. The specimens were then examined by a scanning electron microscope. The %SMHR in nano-hydroxyapatite groups was significantly greater than that of negative control. When the concentration of nano-HA was under 10%, SMH and %SMHR increased with increasing nano-hydroxyapatite concentrations. There were no significant differences between the 10% and 15% groups at different time periods in the pH-cycling. The SEM analysis showed that nano-hydroxyapatite particles were regularly deposited on the cellular structure of the demineralized enamel surface, which appeared to form new surface layers. It was concluded that nano-hydroxyapatite had the potential to remineralize initial enamel lesions. A concentration of 10% nano-hydroxyapatite may be optimal for remineralization of early enamel caries.

  6. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  7. Selective inhibition of crystal growth on octacalcium phosphate and nonstoichiometric hydroxyapatite by pyrophosphate at physiological concentration

    Science.gov (United States)

    Eidelman, N.; Brown, W. E.; Meyer, J. L.

    1991-09-01

    Octacalcium phosphate, Ca 8H 2(PO 4) 6·5H 2O (OCP), appears to be a precursor in biomineral formation. The formation of OCP as the precursor is supported by the observation that stoichiometric hydroxyapatite, Ca 5(PO 4) 3OH (OHAp), cannot form directly because of the presence of its growth inhibitors in serum. Therefore, the effects of the physiological concentration of pyrophosphate (P 2O 4-7), one of the most important calcium phosphate growth inhibitors in blood, on calcium phosphate growth rates on OCP and nonstoichiometric OHAp (apatite) seeds were measured. The amounts of seed crystals used to initiate the growth were adjusted by trial and error so that the control growth rates (in the absence of P 2O 4-7) were the same on both OCP and apatite seeds at a given supersaturation. The crystal growth on both kinds of seed crystals from supersaturated solutions in the presence of 1μM P 2O 4-7 added once ("one-time" addition) at constant pH (7.4) and 25°C was determined by KOH titration and decreases in Ca and PO 4 concentrations in the solutions. Crystal growth on OCP seed crystals in the presence of a constant concentration of 1μM P 2O 4-7 was also measured. The growing phases were characterized by ‡Ca/‡PO 4 ratios, chemical potential plots, X-ray diffraction (XRD) and Fourier transform infrared (FTIR). The results of this study show that: (1) P 2O 4-7 ions inhibited the growth on the apatite seeds more than on the OCP seeds; (2) apparently OCP precipitated on both types of seeds, followed by its hydrolysis to a more apatite-like phase; (3) slower crystal growth was observed on OCP seeds in the presence of a constant physiological concentration of P 2O 4-7 (1μM) than in the "one-time" addition of P 2O 4-7.

  8. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    Directory of Open Access Journals (Sweden)

    Suzuki T

    2012-02-01

    Full Text Available Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nanostructured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 µm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 µm border was lower around HA-coated implants. Thus, this study

  9. Solar Imagery - Chromosphere - Calcium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about...

  10. Calcium aluminate in alumina

    Science.gov (United States)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to

  11. Thermoluminescent study of the hydroxyapatite irradiated with gamma radiation

    International Nuclear Information System (INIS)

    Recently in dosimetry, it has been common to use bones and teeth for detecting and measuring radiation. However it has been observed that the efficiency of detection depends on the consistency of these tissues. Since the hydroxyapatite [Ca10 (PO4) 6 (OH)2] is the main mineral component of the bones and teeth, it has been suggested as material for detecting and measuring of radiations, quantifying the free radicals produced by radiation. In this work a study about the thermoluminescent properties (Tl) induced by radiation in the synthetic hydroxyapatite obtained by hydrothermal method is presented. The results have shown that this mineral presents a Tl signal whose curve contains two maximums located around 150 and 250 C degrees, respectively. Likewise, a linear behavior of the Tl signal of function of dose in the interval 10-100 Gy was observed. These results are important since that they open the possibility to use biomaterials in the dosimetric area, when they only were used for grafting in the biomedical area. (Author)

  12. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    REN ChaoFeng; HOU ZhenDe; ZHAO Wei

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies, bone tissues will grow into their porous structure, which will reinforce their strength and stiffness. The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around, as if they were part of the bone. The mechanical compatibility of bone substitutes includes both static and dynamic behavior, due to the mechanical properties of bone depending on the strain rate. In this study, split Hopkinson pressure bar technique (SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite, bones with and bones without organic com-ponents, and their dynamic stress-strain curves of the three materials were obtained. The mechanical effects of collagens in bone were assessed, by comparing the difference between the Young's moduli of the three materials. As the implanted bone substitute becomes a part of bone, it can be regarded as an inclusion composite. The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness. The evaluated result shows that the suitable porosity of HA is0.8, which is in favor of both static and dynamic stiffness compatibility.

  13. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies,bone tissues will grow into their porous structure,which will reinforce their strength and stiffness.The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around,as if they were part of the bone.The mechanical compatibility of bone substitutes includes both static and dynamic behavior,due to the mechanical properties of bone depending on the strain rate.In this study,split Hopkinson pressure bar technique(SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite,bones with and bones without organic com-ponents,and their dynamic stress-strain curves of the three materials were obtained.The mechanical effects of collagens in bone were assessed,by comparing the difference between the Young’s moduli of the three materials.As the implanted bone substitute becomes a part of bone,it can be regarded as an inclusion composite.The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness.The evaluated result shows that the suitable porosity of HA is 0.8,which is in favor of both static and dynamic stiffness compatibility.

  14. Dielectrical and structural characterization of iron oxide added to hydroxyapatite

    Indian Academy of Sciences (India)

    C C Silva; F P Filho; M F P Graça; M A Valente; A S B Sombra

    2008-08-01

    In this work we report preparation, structural and dielectric analyses of iron oxide added in hydroxyapatite bioceramic (Ca10(PO4)6(OH)2 – HAP). Hydroxyapatite is the main mineral constituent of teeth and bones with excellent biocompatibility with hard and muscle tissues. The samples were prepared through a calcination procedure associated with dry high-energy ball milling process with different iron concentrations (1, 2.5 and 5 wt%). The dielectric analyses were made measuring the sample impedance in the frequency range 1 kHz–10 MHz, at room temperature. The relative permittivity of the ceramics, at 10 MHz, are between 7.13 ± 0.07 (1 wt%) and 6.20 ± 0.11 (5 wt%) while e″ are between 0.0795 ± 0.008 (1 wt%) and 0.067 ± 0.012 (5 wt%). These characteristics were related to the sample microstructures studied by X-ray diffraction and SEM.

  15. Preparation and characterization of nano-hydroxyapatite within chitosan matrix

    Energy Technology Data Exchange (ETDEWEB)

    Rogina, A., E-mail: arogina@fkit.hr; Ivanković, M.; Ivanković, H.

    2013-12-01

    Nano-composites that show some features of natural bone both in composition and in microstructure have been prepared by in situ precipitation method. Apatite phase has been prepared from cost-effective precursors (calcite and urea phosphate) within chitosan (CS) matrix dissolved in aqueous acetic acid solution. The compositional and morphological properties of composites were studied by means of Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). Depending on the reaction conditions (temperature, reaction time, glucose addition and pH control) in addition to hydroxyapatite (HA) as a major phase, octacalcium hydrogen phosphate pentahydrate (OCP) and dicalcium phosphate anhydrate (DCPD) were formed as shown by XRD and FTIR. Crystallite lengths of precipitated HA estimated by Scherrer's equation were between 20 and 30 nm. A fibrous morphology (∼ 400 nm) of HA observed by TEM indicates that HA nucleates on chitosan chains. - Highlights: • Nano-hydroxyapatite (HA) was prepared by in situ precipitation within chitosan hydrogels and colloidal chitosan solution. • pH control was regulated by ammonia and urea degradation. • In situ urea degradation provides homogenous HA formation. • TEM imaging indicates fibrous morphology of HA with crystalline size of 400 nm. • Glucose addition and temperature variation affect inorganic phase formation.

  16. Synthesis and characterization of a lamellar hydroxyapatite/DNA nanohybrid

    International Nuclear Information System (INIS)

    Research highlights: → A lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared as a novel gene delivering vector. → Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I. → The protected DNA in the HAp/DNA nanohybrid could be recovered readily under acid conditions. - Abstract: Two-dimensional layered materials exhibit desired functionalities when being used as gene delivery materials. In this study, a novel gene delivering vector, lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared. The structure of HAp/DNA nanohybrid was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FT-IR) spectroscopy analysis revealed that ion-exchange occurred during the process. Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I and the protected DNA could be recovered readily under acid conditions. Furthermore, the integrity of released DNA was confirmed by UV-vis spectra.

  17. Preparation of microstructured hydroxyapatite microspheres using oil in water emulsions

    Indian Academy of Sciences (India)

    T S Pradeesh; M C Sunny; H K Varma; P Ramesh

    2005-08-01

    Hydroxyapatite (HAP) microspheres with peculiar spheres-in-sphere morphology were prepared by using oil-in-water emulsions and solvent evaporation technique. Ethylene vinyl acetate co-polymer (EVA) was used as the binder material. Preparation of HAP/EVA microspheres was followed by the thermal debinding and sintering at 1150°C for 3 h to obtain HAP microspheres. Each microsphere of 100–1000 m was in turn composed of spherical hydroxyapatite granules of 2–15 m size which were obtained by spray drying the precipitated HAP. The parameters such as percentage of initial HAP loading, type of stabilizer, concentration of stabilizer, stirring speed and temperature of microsphere preparation were varied to study their effect on the particle size and geometry of the microspheres obtained. It was observed that these parameters do have an effect on the size and shape of the microspheres obtained, which in turn will affect the sintered HAP microstructure. Of the three stabilizers used viz. polyoxyethylene(20) sorbitan monopalmitate (Tween-40), sodium laurate and polyvinyl alcohol (PVA), only PVA with a concentration not less than 0.1 wt% showed controlled stabilization of HAP granules resulting in spherical microspheres of required size. Morphologically better spherical microspheres were obtained at 20°C. Increasing the stirring speed produced smaller microspheres. Smaller microspheres having size < 50 m were obtained at a stirring speed of 1500 ± 50 rpm. A gradual decrease in pore size was observed in the sintered microspheres with increase in HAP loading.

  18. SCAFFOLD DARI BOVINE HYDROXYAPATITE DENGAN POLY VYNIALCHOHOL COATING

    Directory of Open Access Journals (Sweden)

    Alva Edy Tontowi, Punto Dewo, Endang Tri Wahyuni, dan Joko Triyono

    2012-06-01

    Full Text Available In Indonesia, it is about 40% patients with hard tissue defect due to ostheoporosis, cancer or accidents and therest are defect since they have born.For many years, efforts for recovering have been done by transplantation orimplantation methods.Transplantation is more appropriate butit is not sustain because of limited donor, whileimplantation using synthetic materials such as bioceramics scaffoldis expensive due to import and the scaffold iseasier to break which does not match to the medical requirements.The research therefore has been addressed to thisissue. Local bovine hydroxyapatite (bHAscaffold has been used as thebase material and poly vynilalchohol (PVAas a coating material.The bHA scaffold was prepared by cutting a fresh bovine bone in the size of 5mmx5mmx5mmand boil it in a distilled water to remove its organic material. It was then heated up at 900 oC for 2 hours infurnace to obtain bovine hydroxyapatite scaffold (bHA. Coating process has been carried out by dip coating of thebHAscaffold in PVA solution.

  19. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation.

    Science.gov (United States)

    Bellucci, Devis; Sola, Antonella; Anesi, Alexandre; Salvatori, Roberta; Chiarini, Luigi; Cannillo, Valeria

    2015-06-01

    Bioactive glass/hydroxyapatite composites for bone tissue repair and regeneration have been produced and discussed. The use of a recently developed glass, namely BG_Ca/Mix, with its low tendency to crystallize, allowed one to sinter the samples at a relatively low temperature thus avoiding several adverse effects usually reported in the literature, such as extensive crystallization of the glassy phase, hydroxyapatite (HA) decomposition and reaction between HA and glass. The mechanical properties of the composites with 80wt.% BG_Ca/Mix and 20wt.% HA are sensibly higher than those of Bioglass® 45S5 reference samples due to the presence of HA (mechanically stronger than the 45S5 glass) and to the thermal behaviour of the BG_Ca/Mix, which is able to favour the sintering process of the composites. Biocompatibility tests, performed with murine fibroblasts BALB/3T3 and osteocites MLO-Y4 throughout a multi-parametrical approach, allow one to look with optimism to the produced composites, since both the samples themselves and their extracts do not induce negative effects in cell viability and do not cause inhibition in cell growth. PMID:25842126

  20. Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongdong, E-mail: lidongchem@sina.cn [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Zhu, Yuntao; Liang, Zhiqiang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2013-06-01

    Highlights: ► The synthesized mesoporous hydroxyapatite has nanostructure and bioactivity. ► The materials have high surface area and amino group. ► The materials show higher drug loading and slower release rate than pure HAP. - Abstract: Mesoporous nanosized hydroxyapatite (HAP) functionalized by alendronate (ALN) was synthesized using cationic surfactant CTAB as template. The structural, morphological and textural properties were fully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N{sub 2} adsorption/desorption. Then the obtained materials were performed as drug delivery carriers using ibuprofen (IBU) as a model drug to investigate their drug storage/release properties in simulated body fluid (SBF). The materials showed relatively slower release rate compared with HAP due to the ionic interaction between -NH{sub 3}{sup +} on the matrix and -COO{sup −}belongs to IBU. The system provides a new concept for improving the drug loading or slowing down the release rate.