WorldWideScience

Sample records for calcites

  1. High surface area calcite

    Science.gov (United States)

    Schultz, L. N.; Andersson, M. P.; Dalby, K. N.; Müter, D.; Okhrimenko, D. V.; Fordsmand, H.; Stipp, S. L. S.

    2013-05-01

    Calcite (CaCO3) is important in many fields—in nature, because it is a component of aquifers, oil reservoirs and prospective CO2 storage sites, and in industry, where it is used in products as diverse as paper, toothpaste, paint, plastic and aspirin. It is difficult to obtain high purity calcite with a high surface area but such material is necessary for industrial applications and for fundamental calcite research. Commercial powder is nearly always contaminated with growth inhibitors such as sugars, citrate or pectin and most laboratory synthesis methods deliver large precipitates, often containing vaterite or aragonite. To address this problem, we (i) adapted the method of carbonating a Ca(OH)2 slurry with CO2 gas to develop the first simple, cheap, safe and reproducible procedure using common laboratory equipment, to obtain calcite that reproducibly had a surface area of 14-17 m2/g and (ii) conducted a thorough characterization of the product. Scanning electron microscopy (SEM) revealed nanometer scale, rhombohedral crystals. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) confirmed highly crystalline, pure calcite that more closely resembles the dimensions of the biogenic calcite produced by algae in coccoliths than other methods for synthesizing calcite. We suggest that this calcite is useful when purity and high surface area are important.

  2. Evolution and the Calcite Eye Lens

    CERN Document Server

    Williams, Vernon L

    2013-01-01

    Calcite is a uniaxial, birefringent crystal, which in its optically transparent form, has been used for animal eye lenses, the trilobite being one such animal. Because of the calcite birefringence there is a difficulty in using calcite as a lens. When the propagation direction of incoming light is not exactly on the c-axis, the mages blur. In this paper, calcite blurring is evaluated, and the non-blurring by a crystallin eye lens is compared to a calcite one.

  3. Nickel adsorption on chalk and calcite

    DEFF Research Database (Denmark)

    Belova, Dina Alexandrovna; Lakshtanov, Leonid; Carneiro, J.F.;

    2014-01-01

    Nickel uptake from solution by two types of chalk and calcite was investigated in batch sorption studies. The goal was to understand the difference in sorption behavior between synthetic and biogenic calcite. Experiments at atmospheric partial pressure of CO2, in solutions equilibrated with calcite...

  4. Thermoluminescence measurement of calcite shells

    International Nuclear Information System (INIS)

    Thermoluminescence (TL) measurements of calcite derived from shells or shell fragments are relevant to the detection of irradiated shellfish for enforcement of food labelling regulations, and to dating of archaeological and fossil materials. The bio-inorganic nature of the material, which is both micro-porous and an intimate mixture of organic and inorganic phases, presents problems for direct TL measurements. This paper discusses the optimal conditions for direct TL measurements on dried, powdered samples from modern shells. (Author)

  5. Thermoluminescence dating of stalagmitic calcite

    International Nuclear Information System (INIS)

    The thermoluminescence (TL) method of dating stalagmitic calcite has been applied to twenty-seven samples from two paleolithic cave sites; Pontnewydd, Wales, and Caune de L'Arago, Tautavel, France. Environmental dose-rates were evaluated mainly by means of CaF2 capsule burials. The ages of the stalagmitic samples were independently determined by means of the uranium series disequilibrium method. In general, good agreement is found between the TL and uranium series dates, which cover a range from approximately 15 000 to 300 000 years B.P. It is estimated that the TL method should extend to the order of a million years in good circumstances. (author)

  6. Interaction of alcohols with the calcite surface

    DEFF Research Database (Denmark)

    Bovet, Nicolas Emile; Yang, Mingjun; Javadi, Meshkat Sadat;

    2015-01-01

    A clearer understanding of calcite interactions with organic molecules would contribute to a range of fields including harnessing the secrets of biomineralisation where organisms produce hard parts, increasing oil production from spent reservoirs, remediating contaminated soils and drinking water...... aquifers and improving manufacturing methods for industrial products such as pigments, soft abrasives, building materials and optical devices. Biomineralisation by some species of blue green algae produces beautifully elaborate platelets of calcite where the individual crystals are of nanometer scale...

  7. Microbially Induced Calcite Precipitation Employing Environmental Isolates

    OpenAIRE

    Gunjo Kim; Heejung Youn

    2016-01-01

    In this study, five microbes were employed to precipitate calcite in cohesionless soils. Four microbes were selected from calcite-precipitating microbes isolated from calcareous sand and limestone cave soils, with Sporosarcina pasteurii ATCC 11859 (standard strain) used as a control. Urease activities of the four microbes were higher than that of S. pasteurii. The microbes and urea–CaCl2 medium were injected at least four times into cohesionless soils of two different relative densities (60% ...

  8. Do organic ligands affect calcite dissolution rates?

    Science.gov (United States)

    Oelkers, Eric H.; Golubev, Sergey V.; Pokrovsky, Oleg S.; Bénézeth, Pascale

    2011-04-01

    Steady state Iceland-spar calcite dissolution rates were measured at 25 °C in aqueous solutions containing 0.1 M NaCl and up to 0.05 M dissolved bicarbonate at pH from 7.9 to 9.1 in the presence of 13 distinct dissolved organic ligands in mixed-flow reactors. The organic ligands considered in this study include those most likely to be present in either (1) aquifers at the conditions pertinent to CO 2 sequestration or (2) soil/early diagenetic environments: acetate, phthalate, citrate, EDTA 4-, succinate, D-glucosaminate, L-glutamate, D-gluconate, 2,4-dihydroxybenzoate, 3,4-dihydroxybenzoate, fumarate, malonate, and gallate. Results show that the presence of extract, humic acid, pectin, and gum xanthan. In no case did the presence of <100 ppm of these organics change calcite dissolution rates by more than a factor of 2.5. Results obtained in this study suggest that the presence of aqueous organic anions negligibly affects calcite forward dissolution rates in most natural environments. Some effect on calcite reactivity may be observed, however, by the presence of organic anions if they change substantially the chemical affinity of the fluid with respect to calcite.

  9. Calcite solubility in simulated geothermal brines

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Raney, P.J.; Shannon, D.W.

    1987-02-01

    The deposition of scale on geothermal piping surfaces has been recognized as a cause of increased pressure drop and diminished fluid flow. The two most common scales encountered in the geothermal energy field are silica and calcite. The main purpose of this study was to obtain accurate, reliable calcite solubility data in brines similar to natural geothermal brines over the temperature range of most known exploitable geothermal resources. In addition, geothermal fluid equilibrium modeling efforts and data bases can be refined and fine-turned with respect to the commercially important calcite-geothermal fluid stability problem with these data. The effect of sodium chloride and sodium bicarbonate on the solubility of CaCO/sub 3/ (calcite) in high temperature solutions was measured over the 100 to 300/sup 0/C temperature range. The brines studied contained 0 to 5 wt % NaCl, 0 to 5 mM NaHCO/sub 3/, and 0.003 to 0.1 M CO/sub 2/. The data detailing calcite solubility at various temperatures are presented in tabular, graphical, and regression-equation form for each brine composition tested.

  10. Structural point defects in 'Iceland spar' calcite

    International Nuclear Information System (INIS)

    Trace element concentrations by micro-PIXE, cathodoluminescence (CL) emission spectra and electron spin resonance (ESR) spectra of Mn2+ in 'Iceland spar' calcite have been measured. The average rare earth elements (REE) abundances of the Iceland spar calcite revealed a concave shape with positive Eu and Tb anomalies. All samples show comparable average REE abundances compared to average chondrites standard. The REE signal in hydrothermal solution seems to be similar for the different locations and age of formation although the absolute REE concentration in the solution was certainly different. The CL-properties of investigated Iceland spar varied from orange to green. The orange luminescence is based on Mn2+ in Ca-position of calcite while this uncommon green luminescence is most likely attributed to UO22+ complex ions associated with electron-hole centres

  11. Calcite Biohybrids as Microenvironment for Stem Cells

    Directory of Open Access Journals (Sweden)

    Razi Vago

    2012-04-01

    Full Text Available A new type of composite 3D biomaterial that provides extracellular cues that govern the differentiation processes of mesenchymal stem cells (MSCs has been developed. In the present study, we evaluated the chondrogenecity of a biohybrid composed of a calcium carbonate scaffold in its calcite polymorph and hyaluronic acid (HA. The source of the calcite scaffolding is an exoskeleton of a sea barnacle Tetraclita rifotincta (T. rifotincta, Pilsbry (1916. The combination of a calcium carbonate-based bioactive scaffold with a natural polymeric hydrogel is designed to mimic the organic-mineral composite of developing bone by providing a fine-tuned microenvironment. The results indicate that the calcite-HA interface creates a suitable microenvironment for the chondrogenic differentiation of MSCs, and therefore, the biohybrid may provide a tool for tissue-engineered cartilage.

  12. Carbon isotope fractionation in synthetic magnesian calcite

    Science.gov (United States)

    Jimenez-Lopez, Concepción; Romanek, Christopher S.; Caballero, Emilia

    2006-03-01

    Mg-calcite was precipitated at 25 °C in closed system, free-drift experiments, from solutions containing NaHCO 3, CaCl 2 and MgCl 2. The carbon stable isotope composition of bulk solid and solution were analyzed from subsamples collected during time course experiments of 24 h duration. Considering only the Mg-content and δ 13C values for the bulk solid, the carbon isotope fractionation factor for the Mg-calcite-HCO 3(aq)- system (as 103lnα) increased with average mol percentage of Mg (X Mg) in the solid at a rate of (0.024 ± 0.011) per mol% MgCO 3. Extrapolation of this relationship to the pure calcite end member yields a value of 0.82 ± 0.09, which is similar to published values for the calcite-HCO 3(aq)- system. Although 103lnα did not vary for precipitation rates that ranged from 10 3.21 to 10 4.60 μmol m -2 h -1, it was not possible to hold Mg-content of the solid constant, so kinetic effect on 10 3 ln α could not be evaluated from these experiments.

  13. in situ Calcite Precipitation for Contaminant Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiko Fujita; Robert W. Smith

    2009-08-01

    in situ Calcite Precipitation for Contaminant Immobilization Yoshiko Fujita (Yoshiko.fujita@inl.gov) (Idaho National Laboratory, Idaho Falls, Idaho, USA) Robert W. Smith (University of Idaho-Idaho Falls, Idaho Falls, Idaho, USA) Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE’s greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide strontium-90, is co-precipitation in calcite. Calcite, a common mineral in the arid western U.S., can form solid solutions with trace metals. The rate of trace metal incorporation is susceptible to manipulation using either abiotic or biotic means. We have previously demonstrated that increasing the calcite precipitation rate by stimulating the activity of urea hydrolyzing microorganisms can result in significantly enhanced Sr uptake. Urea hydrolysis causes the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity, and also by liberating the reactive cations from the aquifer matrix via exchange reactions involving the ammonium ion derived from urea: H2NCONH2 + 3H2O ? 2NH4+ + HCO3- + OH- urea hydrolysis >X:2Ca + 2NH4+ ? 2>X:NH4 + Ca2+ ion exchange Ca2+ + HCO3- + OH- ? CaCO3(s) + H2O calcite precipitation where >X: is a cation exchange site on the aquifer matrix. This contaminant immobilization approach has several attractive features. Urea hydrolysis is catalyzed by the urease enzyme, which is produced by many indigenous subsurface microorganisms. Addition of foreign microbes is unnecessary. In turn the involvement of the native microbes and the consequent in situ generation of reactive components in the aqueous phase (e.g., carbonate and Ca or Sr) can allow dissemination of the reaction over a larger volume and/or farther away from an amendment injection point, as compared to direct addition of the reactants at

  14. Calcite growth kinetics: Modeling the effect of solution stoichiometry

    NARCIS (Netherlands)

    Wolthers, M.; Nehrke, G.; Gustafsson, J.P.; Van Cappellen, P.

    2012-01-01

    Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth rat

  15. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Science.gov (United States)

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  16. Oxygen isotope fractionation in synthetic magnesian calcite

    Science.gov (United States)

    Jiménez-López, Concepción; Romanek, Christopher S.; Huertas, F. Javier; Ohmoto, Hiroshi; Caballero, Emilia

    2004-08-01

    Mg-bearing calcite was precipitated at 25°C in closed system free-drift experiments from solutions containing NaHCO 3, CaCl 2 and MgCl 2. The chemical and isotope composition of the solution and precipitate were investigated during time course experiments of 24-h duration. Monohydrocalcite and calcite precipitated early in the experiments (95%) thereafter. Solid collected at the end of the experiments displayed compositional zoning from pure calcite in crystal cores to up to 23 mol% MgCO 3 in the rims. Smaller excursions in Mg were superimposed on this chemical record, which is characteristic of oscillatory zoning observed in synthetic and natural solid-solution carbonates of differing solubility. Magnesium also altered the predominant morphology of crystals over time from the {104} to {100} and {110} growth forms. The oxygen isotope fractionation factor for the magnesian-calcite-water system (as 10 3lnα Mg-cl-H 2O ) displayed a strong dependence on the mol% MgCO 3 in the solid phase, but quantification of the relationship was difficult due to the heterogeneous nature of the precipitate. Considering only the Mg-content and δ 18O values for the bulk solid, 10 3lnα Mg-cl-H 2O increased at a rate of 0.17 ± 0.02 per mol% MgCO 3; this value is a factor of three higher than the single previous estimate (Tarutani T., Clayton R.N., and Mayeda T. K. (1969) The effect of polymorphims and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim. Cosmochim. Acta 33, 987-996). Nevertheless, extrapolation of our relationship to the pure calcite end member yielded a value of 27.9 ± 0.02, which is similar in magnitude to published values for the calcite-water system. Although no kinetic effect was observed on 10 3lnα Mg-cl-H 2O for precipitation rates that ranged from 10 3.21 to 10 4.60 μmol · m -2 · h -1, it was impossible to disentangle the potential effect(s) of precipitation rate and Mg-content on 10 3lnα Mg-cl-H 2O due to

  17. Magnesian calcite sorbent for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Mabry, J.C.; Mondal, K. [Southern Illinois University, Carbondale, IL (United States)

    2011-07-01

    Magnesian calcite with controlled properties was synthesized for the removal of carbon dioxide. The results from characterization, reactivity and CO{sub 2} capture capacity for different synthesis conditions are reported. The magnesian calcite samples (CaCO{sub 3}:MgCO{sub 3}) were synthesized by the coprecipitation of specific amounts of commercially available CaO and MgO by carbon dioxide. Characterization was done with BET, SEM/EDS, particle size analysis and XRD. The capacity was measured using TGA cycles at 800 {sup o}C and compared for different preparation conditions. The effects of CaO, MgO and surfactant loading on the physical properties and carbonation activity were studied to determine the optimal synthesis condition. A long-term carbonation-calcination cycling test was conducted on the optimal sample. It was observed that the sample maintained its capacity to 86% of its original uptake even after 50 cycles.

  18. Recovery of crystallinity in ground calcite

    Energy Technology Data Exchange (ETDEWEB)

    Gammage, R.B.; Glasson, D.R.

    1976-01-01

    Recovery processes by thermal treatment and recrystallization are examined in a calcite specimen severely disordered by ball milling. As the annealing temperature is increased, restructuring in the bulk lags behind the recovery of crystalline perfection in the surface regions. Surface reordering is significant at temperatures as low as 150 to 175/sup 0/C and is rapidly completed at 400/sup 0/C. Annealing at 600/sup 0/C is required for removal of all lattice strain. Before loss of surface can occur by sintering, the temperature needs to exceed 300/sup 0/C. The corresponding temperature for a high-area precipitated calcite is 400/sup 0/C. Recovery of crystallinity is also promoted by light-etching with aqueous acid when extensive whisker growth occurs. Aging over a period of twelve years has led to loss of the ultrareactive characteristics.

  19. Biogenic calcite granules--are brachiopods different?

    Science.gov (United States)

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cusack, Maggie

    2013-01-01

    Brachiopods are still one of the least studied groups of organisms in terms of biomineralization despite recent studies indicating the presence of highly complex biomineral structures, particularly in taxa with calcitic shells. Here, we analyze the nanostructure of calcite biominerals, fibers and semi-nacre tablets, in brachiopod shells by high-resolution scanning electron microscopy (SEM) and atomic force microscopy (AFM). We demonstrate that basic mechanisms of carbonate biomineralization are not uniform within the phylum, with semi-nacre tablets composed of spherical aggregates with sub-rounded granules and fibers composed of large, triangular or rod-like particles composed of small sub-rounded granules (40-60 nm). Additionally, proteinaceous envelopes surrounding calcite fibers have been shown for the first time to have a dual function: providing a micro-environment in which granules are produced and acting as the organic template for particle orientation as fiber components. In summary, these new findings in brachiopod shells reveal a complex and distinctive style of biomineralization among carbonate-producing organisms. PMID:23026148

  20. Radiation-induced cathodoluminescent signatures in calcite

    International Nuclear Information System (INIS)

    At ambient temperatures, a permanent change due to neutron irradiation has been identified in the luminescent properties of the common mineral calcite. Calcite is one of many ubiquitous minerals that are known to exhibit luminescence under electron bombardment, a process known as cathodoluminescence (CL). The UV–Visible spectra of individual calcite grains were measured with CL spectroscopy before and after neutron irradiation. Exposure to neutrons causes additional crystal lattice defects (beyond those naturally-occurring) that leave a permanent, readily-measurable CL signature in the 515 nm region of the spectrum. Dose response results following irradiation have been measured and a spectroscopic signature is described that increases proportionately to neutron dose. The CL measurements are complicated by a dependence on the orientation relative to direction of excitation. When taken into account, the total dose to the crystal can be estimated, and possibly even the direction of the neutron source can be determined. This signature could potentially be developed into a nuclear forensics tool to help identify locations where special nuclear materials have been stored.

  1. Zinc isotope fractionation during adsorption on calcite

    Science.gov (United States)

    Dong, S.; Wasylenki, L. E.

    2013-12-01

    Zinc is an important element as a nutrient in the marine biosphere. However, our understanding of its biogeochemical cycling in the oceans is relatively limited. The Zn stable isotope system holds the promise of providing novel insights, since published Zn isotopic values for various natural samples reveal significant fractionations in the marine environment. Surface seawater, basalts, shales, deep-sea clay sediments, sediment trap material, bulk plankton and zooplankton samples, and eolian dust fall within a tight range (δ66/64Zn from -0.1 to 0.5‰), but modern ferromanganese crusts (δ66/64Zn from 0.5 to 1.2‰), as well as carbonates (δ66/64Zn from 0.3 to 1.4‰), are notably enriched in heavy Zn isotopes [1-4]. In this study we seek to constrain the mechanism by which carbonates are enriched in heavier isotopes. In particular, we have conducted experiments to quantify isotope fractionation during adsorption of Zn onto the surfaces of calcite crystals that are in equilibrium with solution. The adsorption experiments were carried out in a series of small-volume batch reactions in a clean laboratory environment, using high-purity reagents and calcite seed crystals. The calcite was equilibrated with the solution prior to addition of Zn at atmospheric CO2 pressure (i.e., in air) for 5 days until a stable pH of 8.3 was reached. Later, a small aliquot of dissolved ZnCl2 was added such that the solution remained undersaturated with respect to hydrozincite. Experimental duration varied among the replicates from 6 to 144 hours, and then all solids and solutions were separated by filtration, purified by ion exchange chromatography, and analyzed by MC-ICP-MS. Zn adsorbed on calcite is isotopically heavier than in the co-existing solutions, with Δ68/66Zncalcite-solution of approximately 0.3‰. The variation of Δ68/66Zncalcite-solution beyond 24 hours is insignificant, so we infer that isotopic equilibrium is reached by this time. Previous work strongly suggests that a

  2. Fracture calcites at Olkiluoto. Evidence from quaternary infills for palaeohydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Gehoer, S.; Kaerki, A.; Taikina-aho, O. [Kivitieto Oy (Finland); Karhu, J. [Helsinki Univ. (Finland); Loefman, J. [VTT Processes, Espoo (Finland); Pitkaenen, P. [VTT Building and Transport, Espoo (Finland); Ruotsalainen, P. [TUKES, Helsinki (Finland)

    2002-02-01

    Recently formed secondary minerals, predominantly calcite, occur in varying amounts as fracture infills, and the calcite types, their chemical compositions and isotope ratios reflect the compositions and physicochemical factors of the groundwater system in which they were formed. Fluid inclusions trapped in calcites give direct evidence of trapping temperatures and past salinities and of the chemical compositions of the palaeo fluids. A wide range of mineralogical and geochemical examinations were carried out within the EQUIP project to examine features of this kind. The fracture calcites at the Olkiluoto site are of various origins and represent several textural types. The exact number of calcite-producing events is unknown, but the duration of the period that was appropriate for the precipitation of low temperature calcite is estimated to have exceeded 1000 Ma. Thus the number of genetically related calcite units is assumed to be considerable. This study was focused on the petrogenesis of calcites crystallized in fractures of high water conductivity during the latest stages of geological evolution. The majority of these late stage calcites form physically homogeneous, scaly layers, and in a few cases thin layers composed of idiomorphic crystals. Chemically these are almost stoichiometric calcites (CaCO{sub 3}). The MnO content may exceed 1%, while the amounts of other elements present are minor, although the trace element concentrations, particularly those of large ionic trace elements, can be used as distinguishing features for the recognition of individual precipitates representing different calcite generations. Evidence from fluid inclusions, or more correctly from the absence of these in the late stage calcites, can be interpreted as an indication of slow rates of crystallization under cool conditions. Many chemical variables, e.g. oxygen isotope ratios, demonstrate an equilibrium between the latest calcites and water similar to the present groundwater. Older

  3. Fracture calcites at Olkiluoto. Evidence from quaternary infills for palaeohydrogeology

    International Nuclear Information System (INIS)

    Recently formed secondary minerals, predominantly calcite, occur in varying amounts as fracture infills, and the calcite types, their chemical compositions and isotope ratios reflect the compositions and physicochemical factors of the groundwater system in which they were formed. Fluid inclusions trapped in calcites give direct evidence of trapping temperatures and past salinities and of the chemical compositions of the palaeo fluids. A wide range of mineralogical and geochemical examinations were carried out within the EQUIP project to examine features of this kind. The fracture calcites at the Olkiluoto site are of various origins and represent several textural types. The exact number of calcite-producing events is unknown, but the duration of the period that was appropriate for the precipitation of low temperature calcite is estimated to have exceeded 1000 Ma. Thus the number of genetically related calcite units is assumed to be considerable. This study was focused on the petrogenesis of calcites crystallized in fractures of high water conductivity during the latest stages of geological evolution. The majority of these late stage calcites form physically homogeneous, scaly layers, and in a few cases thin layers composed of idiomorphic crystals. Chemically these are almost stoichiometric calcites (CaCO3). The MnO content may exceed 1%, while the amounts of other elements present are minor, although the trace element concentrations, particularly those of large ionic trace elements, can be used as distinguishing features for the recognition of individual precipitates representing different calcite generations. Evidence from fluid inclusions, or more correctly from the absence of these in the late stage calcites, can be interpreted as an indication of slow rates of crystallization under cool conditions. Many chemical variables, e.g. oxygen isotope ratios, demonstrate an equilibrium between the latest calcites and water similar to the present groundwater. Older

  4. Identification of biogenetic calcite and aragonite using SEM

    OpenAIRE

    Bermanec, Vladimir; Posilović, Hrvoje; Žigovečki Gobac, Željka

    2009-01-01

    Identification of calcite and aragonite is very important for studying different fossil or recent biomineralized skeletons. Problem occurs when scanning electron microscopy is used for studying calcite and aragonite present in the same part of skeleton. The same chemical composition of these two minerals produces the same contrast on SEM images. There are three possible ways how to distinguish calcite and aragonite in such mixture. (1) It is possible to recognize the crystal habits of the...

  5. Origin of calcite in the glacigenic Virttaankangas complex

    Directory of Open Access Journals (Sweden)

    Nina M. Kortelainen

    2007-01-01

    Full Text Available Groundwaters of the glacigenic Virttaankangas complex in southern Finland are characterized by high pH values ranging up to 9.5. These values are significantly higher than those observed in silicate-rich shallow groundwater formations in crystalline bedrock areas. TheVirttaankangas sediments were discovered to contain small amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. The primary goal of this study was to determine the mode of occurrence of calcite and to identifyits sources. The mineralogy of the glacigenic Virttaankangas complex was studied using material from 21 sediment drill cores. Fine-grained calcite is present in trace amounts (<< 1.4 % in the glaciofluvial and glaciolacustrine depositional units of the Virttaankangas complex. The topmost littoral sands were practically devoid of calcite. The isotope records of carbon and oxygen, the angular morphology of the grains and the uniform dispersion of calcite in the complex suggest a clastic origin for calcite, with no evidence for in-situ precipitation. In order to constrain the source of calcite, the isotopic composition of carbon and oxygen in five calcite samples was compared to the isotopic data from five carbonate rock erratics and eight crystalline bedrock samples from the region. Based on carbon and oxygen isotope ratios and chemical compositions, the dispersed calcite grains of the Virttaankangas complex appear to have been derived from the Mesoproterozoic Satakunta Formation, some 30 km NW from the Virttaankangas area. In sandstone, calcite is predominantly present as diagenetic cement in grain interspaces, concretions and interlayers. The source of detrital calcite was unexpected, as prior to this study the Satakunta sandstone hasnot been known to contain calcite.

  6. A Reacidification Model for Acidified Lakes Neutralized With Calcite

    Science.gov (United States)

    Sverdrup, Harald; Warfvinge, Per

    1985-09-01

    In lake liming operations in Sweden, acidified lakes are reclaimed by neutralization with calcite powder. The amount added is intended to neutralize the water column as well as to delay the reacidification. The reacidification of limed lakes is dependent on the dilution of the dissolved calcium carbonate with time and, for a limited period of time, the dissolution of calcite from the lake sediments. Calcite on the lake bottom will, in addition to being covered by sedimentation, become inactivated by precipitates of humus and clay minerals clogging the calcite surfaces. A model has been developed to calculate the reacidification of a limed lake which includes the following mechanisms: (1) the dissolution of calcite and a subsequent neutralization of acid water, (2) owing to the increase inpH value, occurrence of precipitation of humus and dissolved metals onto the calcite surface and inhibition of the dissolution of calcite (3) reversible sorbtion of calcium from the water column by sediments not covered with calcite, and (4) diffusive transport through a boundary bottom layer to the water column. In a first approach the lake was modeled as a continuously stirred tank. The equations were derived from a mass balance and the dissolution kinetics for calcite to describe the long-term development ofpH, alkalinity, and calcium concentration in the lake. The differential equations describing the mechanisms were solved with the help of a computer code. The model accurately describes the reacidification and the mass balances observed in several limed lakes.

  7. Calcite twin morphology : a low-temperature deformation geothermometer

    OpenAIRE

    Ferrill, David A.; Morris, Alan P.; Evans, Mark A; Burkhard, Martin; Groshong Jr., Richard H.; Onasch, Charles M.

    2005-01-01

    Twinning of the e-plane is the dominant crystal–plastic deformation mechanism in calcite deformed below about 400 °C. Calcite in a twin domain has a different crystallographic orientation from the host calcite grain. So-called thin twins appear as thin black lines when viewed parallel to the twin plane at 200–320× magnification under a petrographic microscope. Thick twins viewed in the same way have a microscopically visible width of twinned material between black lines. Calcite e-twin width ...

  8. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus;

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic concentrat......The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  9. Synthesis and characterization of spider silk calcite composite

    Directory of Open Access Journals (Sweden)

    Svetlana Dmitrović

    2016-03-01

    Full Text Available Spider silk poses excellent mechanical properties, tenacity and elasticity and it has been used as a template for calcite mineralization to improve load bearing strength of osteoconductive calcite. The samples were obtained by mimicking biomineralization for five days in order to follow formation and growth of calcite on the surface of spider silk. Crystal phase was detected by XRD and FTIR spectroscopy. Microstructure, crystal size and its morphology were studied by means of FESEM. After two days of processing, pure calcite phase was obtained, and a size of the formed crystals increased with prolongation of biomineralization.

  10. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface

    OpenAIRE

    Wolthers, M.; Di Tommaso, D.; Du, Z; de Leeuw, N. H.

    2012-01-01

    Calcite–water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different s...

  11. The role of silicate surfaces on calcite precipitation kinetics

    DEFF Research Database (Denmark)

    Stockmann, Gabrielle J.; Wolff-Boenisch, Domenik; Bovet, Nicolas Emile;

    2014-01-01

    H equal to 9.1. Although the inlet fluid composition, flow rate, and temperature were identical for all experiments, the onset of calcite precipitation depended on the identity of the seeds present in the reactor. Calcite precipitated instantaneously and at a constant rate in the presence of calcite......The aim of this study is to illuminate how calcite precipitation depends on the identity and structure of the growth substrate. Calcite was precipitated at 25°C from supersaturated aqueous solutions in the presence of seeds of either calcite or one of six silicate materials: augite, enstatite......, labradorite, olivine, basaltic glass and peridotite rock. Calcite saturation was achieved by mixing a CaCl2-rich aqueous solution with a NaHCO3-Na2CO3 aqueous buffer in mixed-flow reactors containing 0.5-2g of mineral, rock, or glass seeds. This led to an inlet fluid calcite saturation index of 0.6 and a p...

  12. Single-contact pressure solution creep on calcite monocrystals

    CERN Document Server

    Zubtsov, Sergei; Gratier, Jean-Pierre; Dysthe, Dag; Traskine, Vladimir

    2005-01-01

    Pressure solution creep rates and interface structures have been measured by two methods on calcite single crystals. In the first kind of experiments, calcite monocrystals were indented at 40 degrees C for six weeks using ceramic indenters under stresses in the 50-200 MPa range in a saturated solution of calcite and in a calcite-saturated aqueous solution of NH4Cl. The deformation (depth of the hole below the indenter) is measured ex-situ at the end of the experiment. In the second type of experiment, calcite monocrystals were indented by spherical glass indenters for 200 hours under stresses in the 0-100 MPa range at room temperature in a saturated aqueous solution of calcite. The displacement of the indenter was continuously recorded using a specially constructed differential dilatometer. The experiments conducted in a calcite-saturated aqueous solution of NH4Cl show an enhanced indentation rate owing to the fairly high solubility of calcite in this solution. In contrast, the experiments conducted in a calc...

  13. Differences in the immobilization of arsenite and arsenate by calcite

    Science.gov (United States)

    Yokoyama, Yuka; Tanaka, Kazuya; Takahashi, Yoshio

    2012-08-01

    The sorption and coprecipitation experiments of arsenic (As) with calcite coupled with determinations of the chemical state of As both in the reaction fluid and in calcite were conducted to investigate the influence of the As oxidation state on its immobilization into calcite. The oxidation states of As in calcite and water were determined via As K-edge XANES and HPLC-ICP-MS analysis, respectively. The results of the sorption experiments at pH 8.2 show that only As(V) is distributed to calcite regardless of the As oxidation state in the solution. In coprecipitation experiments, As(V) is preferentially incorporated into calcite over a wide range of pH (7-12). On the other hand, the incorporation of As(III) into calcite is not observed at circumneutral pH. This difference between As(III) and As(V) is attributed to the fact that their dissolved species are neutral vs. negatively charged, respectively, at circumneutral pH (arsenite as H3AsO3; arsenate as H2AsO4- or HAsO42-). As the pH increases (>9), up to 33% of As(III)/Astotal ratio is partitioned into calcite or a precursor of calcite (metastable vaterite formed during the early stage of precipitation). The higher interaction of As with calcite at an alkaline pH compared with circumneutral pH is due to the negative charge of As(III) at alkaline pH. However, the As(III)/Astotal ratio decreases as time progresses and only As(V) can be found finally in calcite. The ratio of distribution coefficients of As(III) and As(V) into calcite (KAs(V)/KAs(III)) at pH ˜7 is larger than 2.1 × 103, suggesting that the oxidation state of As is a significant issue in considering the interaction between As and calcite in groundwater. Moreover, low KAs(III) shows that the sequestration of As via coprecipitation with calcite is not an important chemical process under reducing conditions, such as in the groundwaters in Bangladesh and other As-contaminated areas where As(III) is the dominant dissolved species of As. In the system spiked

  14. Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies

    International Nuclear Information System (INIS)

    X-ray absorption, luminescence, and Raman spectroscopic studies of U(VI)-containing calcite and aragonite show that the UO22+ ion, the dominant and mobile form of dissolved uranium in near-surface waters, has a disordered and apparently less stable coordination environment when incorporated into calcite in comparison to aragonite, both common polymorphs of CaCO3. Their findings suggest that calcite, a widely distributed authigenic mineral in soils and near-surface sediments and a principal weathering product of concrete-based containment structures, is not likely to be a suitable host for the long-term sequestration of U(VI). The more stable coordination provided by aragonite suggests that its long-term retention should be favored in this phase, until it inverts to calcite. Consequently, future remobilization of U(VI) coprecipitated with calcium carbonate minerals should not be ruled out in assessments of contaminated sites. Their observation of a similar equatorial coordination of UO22+ in aragonite and the dominant aqueous species [UO2(CO3)34-] but a different coordination in calcite indicates that a change in UO22+ coordination is required for its incorporation into calcite. This may explain the observed preferential uptake of U(VI) by aragonite relative to calcite

  15. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface.

    Science.gov (United States)

    Wolthers, M; Di Tommaso, D; Du, Z; de Leeuw, N H

    2012-11-21

    Calcite-water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different surface sites is distinct. In addition to observing the expected formation of more calcium-water interactions and hydrogen-bonds at lower-coordinated sites, we also observed subtle differences in hydrogen bonding around acute versus obtuse edges and corners. We subsequently used this information to refine the protonation constants for the calcite surface sites, according to the Charge Distribution MUltiSite Ion Complexation (CD-MUSIC) approach. The subtle differences in hydrogen bonding translate into markedly different charging behaviour versus pH, in particular for acute versus obtuse corner sites. The results show quantitatively that calcite surface reactivity is directly related to surface topography. The information obtained in this study is not only crucial for the improvement of existing macroscopic surface models of the reactivity of calcite towards contaminants, but also improves our atomic-level understanding of mineral-water interactions. PMID:23042085

  16. Molecular ordering of ethanol at the calcite surface

    DEFF Research Database (Denmark)

    Pasarín, I. S.; Yang, M.; Bovet, Nicolas Emile;

    2012-01-01

    dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH 3-CH2-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol...... molecules stand up perpendicularly at the interface or nearly so. As a consequence, the fatty, CH3 ends form a new surface, about 6 Å from the termination of the bulk calcite, and beyond that, there is a thin gap where ethanol density is low. Following is a more disordered layer that is two to three...... ethanol molecules thick, about 14 Å, where density more resembles that of bulk liquid ethanol. The good agreement between theory and experiment gives confidence that a theoretical approach can offer information about behavior in more complex systems. © 2012 American Chemical Society....

  17. Calcite crystal growth rate inhibition by polycarboxylic acids

    Science.gov (United States)

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  18. Nuclear anomalies in the buccal cells of calcite factory workers

    OpenAIRE

    Songül Budak Diler; Serap Ergene

    2010-01-01

    The micronucleus (MN) assay on exfoliated buccal cells is a useful and minimally invasive method for monitoring genetic damage in humans. To determine the genotoxic effects of calcite dust that forms during processing, MN assay was carried out in exfoliated buccal cells of 50 (25 smokers and 25 non-smokers) calcite factory workers and 50 (25 smokers and 25 non-smokers) age- and sex-matched control subjects. Frequencies of nuclear abnormalities (NA) other than micronuclei, such as binucleates,...

  19. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Piers; *Morse, John W. (*/deceased)

    2010-11-15

    1. Objective The general objective of this research was to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, carbon dioxide partial pressure (pCO2), and modest ranges of T and P. This would be done by studying both reaction rates and solubility from changes in solution chemistry. Also, nanoscale observations of calcite surface morphology and composition would be made to provide an understanding of rate controlling mechanisms.

  20. On the complex conductivity signatures of calcite precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

    2009-11-01

    Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl{sub 2} and Na{sub 2}CO{sub 3} solutions. The experiment continued for 12 days with a constant precipitation rate of {approx}0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

  1. A Raman spectroscopic comparison of calcite and dolomite.

    Science.gov (United States)

    Sun, Junmin; Wu, Zeguang; Cheng, Hongfei; Zhang, Zhanjun; Frost, Ray L

    2014-01-01

    Raman spectroscopy was used to characterize and differentiate the two minerals calcite and dolomite and the bands related to the mineral structure. The (CO3)(2-) group is characterized by four prominent Raman vibrational modes: (a) the symmetric stretching, (b) the asymmetric deformation, (c) asymmetric stretching and (d) symmetric deformation. These vibrational modes of the calcite and dolomite were observed at 1440, 1088, 715 and 278 cm(-1). The significant differences between the minerals calcite and dolomite are observed by Raman spectroscopy. Calcite shows the typical bands observed at 1361, 1047, 715 and 157 cm(-1), and the special bands at 1393, 1098, 1069, 1019, 299, 258 and 176 cm(-1) for dolomite are observed. The difference is explained on the basis of the structure variation of the two minerals. Calcite has a trigonal structure with two molecules per unit cell, and dolomite has a hexagonal structure. This is more likely to cause the splitting and distorting of the carbonate groups. Another cause for the difference is the cation substituting for Mg in the dolomite mineral. PMID:23988531

  2. Study of delta18O calcite-dolomite mixtures

    International Nuclear Information System (INIS)

    Isotope ratio of oxygen in carbonate mixtures has been studied. For the purpose samples of calcite and dolomite with the known values delta18O are mixed in the ratios 9:1, 3:1, 1:1, 1:3, 1:9. Then from the mixtures prepared CO2 gas is separated using the McCrea method, delta18O of the gas is measured using mass-srectrometer. It has been established that to obtain delta18O calcite in the mixtures with calcite excess CO2 gas should be collected in the interval 15-30 min of the reaction duration and for the mixtures with dolomite excess - in the interval 5-15 min. To determine delta18O of dolomite the optimum time of CO2 gas collection for all the mixtures is 4-24 h

  3. Carbon isotopic thermometry calibrated by dolomite-calcite solvus temperatures

    International Nuclear Information System (INIS)

    The temperature dependence of carbon isotopic fractionations between calcite and graphite, and between dolomite and graphite are calibrated by the calcite-dolomite solvus geothermometry using marbles collected from the contact metamorphic aureole in the Kasuga area, central Japan. The carbon isotopic fractionations systematically decrease with increasing metamorphic temperature. The concordant relationships between the fractionations and solvus temperatures which are presented, are approximately linear with T-2 over the temperature range, 400 deg to 680 deg C. They suggest that carbon isotopic equilibria between carbonates and graphite were attained in many cases. The equation for the calcite-graphite system has a slope steeper than Bottinga's (1969) results. It is, however, in good agreement with that of Valley and O'Neil (1981) in the temperature range from 600 deg to 800 deg C. Because of the relatively high sensitivity to temperature, these isotopic geothermometers are useful for determining the temperatures in moderate- to high-grade metamorphosed carbonate rocks. (author)

  4. Monoclinic deformation of calcite crystals at ambient conditions

    Science.gov (United States)

    Przeniosło, R.; Fabrykiewicz, P.; Sosnowska, I.

    2016-09-01

    High resolution synchrotron radiation powder diffraction shows that the average crystal structure of calcite at ambient conditions is described with the trigonal space group R 3 bar c but there is a systematic hkl-dependent Bragg peak broadening. A modelling of this anisotropic peak broadening with the microstrain model from Stephens (1999) [15] is presented. The observed lattice parameters' correlations can be described by assuming a monoclinic-type deformation of calcite crystallites. A quantitative model of this monoclinic deformation observed at ambient conditions is described with the space group C 2 / c . The monoclinic unit cell suggested at ambient conditions is related with the monoclinic unit cell reported in calcite at high pressure (Merrill and Bassett (1975) [10]).

  5. Sulfated Macromolecules as Templates for Calcite Nucleation and Growth

    Science.gov (United States)

    David, M.; Passalacqua, K.; Neira, A. C.; Fernandez, M. S.

    2003-12-01

    Mineralization of egg and seashells is controlled by an intimate association of inorganic materials with organic macromolecules. Among them, particular polyanionic sulfated macromolecules referred to as proteoglycans have been described to be involved in the calcification of these biominerals. The sulfated moieties of the proteoglycans are part of polymer chains constituted of building-blocks of disaccharide units, referred to as sulfated glycosaminoglycans (GAGs), which are covalently attached to a protein core. By using a sitting drop crystallization assay under controlled conditions of time, pH and reactants concentration, we have tested several sulfated and non-sulfated GAGs (i.e.: dermatan and keratan sulfate, hyaluronic acid and heparin), differing in their sulfonate and carboxylate degree and pattern, in their ability to modify calcium carbonate crystal morphology as observed under scanning electron microscopy. Without the addition of GAGs, regular \\{104\\} rhombohedral calcite crystals were obtained. When hyaluronic acid (HA), a non-sulfated but carboxylated GAG, was added, 20 mm long piles of unmodified calcite crystals were observed. When desulfated dermatan, which is an epimeric form of HA but shorter polymer, having their carboxylate groups in an inverted configuration, was added, isolated rhombohedral \\{104\\} calcite crystals showing rounded corners with planes oriented parallel to the c axis were observed. When dermatan sulfated was added, isolated calcite crystals exhibit a columnar morphology as a \\{hk0\\} cylinder with three \\{104\\} faces forming a cap at both ends. Heparin activity depends on the fraction added. Fast-moving heparin fraction (FM), is an undersulfated, low-molecular-weight heterogeneous polymer, while slow-moving heparin fraction (SM) is an high-molecular-weight homogeneous polymer rich in trisulfated-disaccharide units. When FM was added, isolated calcite crystals displayed rhombohedrical \\{104\\} faces but flat corners of

  6. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite

    Science.gov (United States)

    Wombacher, F.; Eisenhauer, A.; Böhm, F.; Gussone, N.; Regenberg, M.; Dullo, W.-Chr.; Rüggeberg, A.

    2011-10-01

    This survey of magnesium stable isotope compositions in marine biogenic aragonite and calcite includes samples from corals, sclerosponges, benthic porcelaneous and planktonic perforate foraminifera, coccolith oozes, red algae, and an echinoid and brachiopod test. The analyses were carried out using MC-ICP-MS with an external repeatability of ±0.22‰ (2SD for δ 26Mg; n = 37), obtained from a coral reference sample (JCp-1). Magnesium isotope fractionation in calcitic corals and sclerosponges agrees with published data for calcitic speleothems with an average Δ 26Mg calcite-seawater = -2.6 ± 0.3‰ that appears to be weakly related to temperature. With one exception ( Vaceletia spp.), aragonitic corals and sclerosponges also display uniform Mg isotope fractionations relative to seawater with Δ 26Mg biogenic aragonite-seawater = -0.9 ± 0.2. Magnesium isotopes in high-Mg calcites from red algae, echinoids and perhaps some porcelaneous foraminifera as well as in all low-Mg calcites (perforate foraminifera, coccoliths and brachiopods) display significant biological influences. For planktonic foraminifera, the Mg isotope data is consistent with the fixation of Mg by organic material under equilibrium conditions, but appears to be inconsistent with Mg removal from vacuoles. Our preferred model, however, suggests that planktonic foraminifera synthesize biomolecules that increase the energetic barrier for Mg incorporation. In this model, the need to remove large quantities of Mg from vacuole solutions is avoided. For the high-Mg calcites from echinoids, the precipitation of amorphous calcium carbonate may be responsible for their weaker Mg isotope fractionation. Disregarding superimposed biological effects, it appears that cation light isotope enrichments in CaCO 3 principally result from a chemical kinetic isotope effect, related to the incorporation of cations at kink sites. In this model, the systematics of cation isotope fractionations in CaCO 3 relate to the

  7. Surface tension alteration on calcite, induced by ion substitution

    DEFF Research Database (Denmark)

    Sakuma, Hiroshi; Andersson, Martin Peter; Bechgaard, Klaus;

    2014-01-01

    , where particles are smaller than the smallest droplet? We investigated the energy required to exchange Mg2+ and SO4 2- from aqueous solution into calcite {10.4} surfaces using density functional theory. Mg2+ substitution for Ca2+ is favored but only when SO4 2- is also present and MgSO4 incorporates...... the pore water. Incorporation of MgSO4 into calcite, which is energetically favored, decreases surface tension and releases polar oil compounds. © 2014 American Chemical Society....

  8. Magnesium incorporation in calcite in the presence of organic ligands

    Science.gov (United States)

    Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2015-04-01

    The formation of authigenic Mg-calcites in marine early diagenetic environments is commonly driven by a bio-induced process, the anaerobic oxidation of methane (AOM), which provides inorganic carbon required for the precipitation of such authigenic carbonates. In such settings the availability of major and/or trace divalent metal cations (Me2+) incorporated in calcite and their aqueous speciation are controlled by the presence of aqueous organic molecules that are produced either as (by-)products of biological activity (i.e. exopolymeric substances) or during degradation of allochthonous organic matter in the sediments. Despite the fact that the presence of aqueous organic ligands strongly affects the growth rates and the mineralogy of precipitating CaCO3 polymorphs, till now no study addresses the role of Me2+-ligand aqueous complexes on the extent of Mg and/or other trace element content of Mg-calcites. In order to shed light on this process, relevant to authigenic calcite formation in organic-rich marine sediments and continental soils, we precipitated calcite in the presence of aqueous Mg and a variety of low molecular weight carboxylic- and aminoacids. Our experimental data indicate that the presence of organic ligands augments significantly the saturation state of calcite in the parent fluid during its precipitation. Moreover, they suggest that the higher the ligand concentration, the higher the obtained distribution coefficient of Mg in calcite. The latter is directly proportional to the ratio of Mg2+/Ca2+ aqueous ions for all ligands used. Hydrogeochemical modelling of the aqueous fluids indicate that the observed correlation can be explained by the stronger complexation of Ca2+ with organic ligands compared to Mg2+, which results in higher availability of Mg2+ vs. Ca2+ aqueous ions. Overall the obtained results suggest that the higher the organic ligand aqueous concentration the higher the Mg content of calcite forming from this fluid. These findings are

  9. Porosity and hydric behavior of typical calcite microfabrics in stalagmites

    OpenAIRE

    Muñoz García, Mercedes; López Arce, Paula; Fernández Valle, Mª Encarnación; Martín Chivelet, Javier; Fort González, Rafael

    2012-01-01

    Petrophysical techniques commonly used for material characterization are applied for the first time to speleothem samples to investigate the porosity and hydric behavior of calcite stalagmites used in paleoclimatology. These techniques allow the determination of the stalagmites' potential to undergo diagenetic transformations when substantial changes in drip waters occur in the cave environment. The petrophysical techniques include water absorption under vacuum and by capillarity,...

  10. Removal of trace elements from landfill leachate by calcite precipitation

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Zelená, O.; Mihaljevič, M.; Šebek, O.; Strnad, L.; Coufal, P.; Bezdička, Petr

    2006-01-01

    Roč. 88, 1-3 (2006), s. 28-31. ISSN 0375-6742 R&D Projects: GA AV ČR(CZ) KJB3111402 Institutional research plan: CEZ:AV0Z40320502 Keywords : landfill leachate * calcite * scavenging Subject RIV: CA - Inorganic Chemistry Impact factor: 0.922, year: 2006

  11. Isolation and identification of Pseudomonas azotoformans for induced calcite precipitation.

    Science.gov (United States)

    Heidari Nonakaran, Siamak; Pazhouhandeh, Maghsoud; Keyvani, Abdullah; Abdollahipour, Fatemeh Zahra; Shirzad, Akbar

    2015-12-01

    Biomineralization is a process by which living organisms produce minerals. The extracellular production of these biominerals by microbes has potential for various bioengineering applications. For example, crack remediation and improvement of durability of concrete is an important goal for engineers and biomineral-producing microbes could be a useful tool in achieving this goal. Here we report the isolation, biochemical characterization and molecular identification of Pseudomonas azotoformans, a microbe that produces calcite and which potentially be used to repair cracks in concrete structures. Initially, 38 bacterial isolates were isolated from soil and cements. As a first test, the isolates were screened using a urease assay followed by biochemical tests for the rate of urea hydrolysis, calcite production and the insolubility of calcite. Molecular amplification and sequencing of a 16S rRNA fragment of selected isolates permitted us to identify P. azotoformans as a good candidate for preparation of biotechnological concrete. This species was isolated from soil and the results show that among the tested isolates it had the highest rate of urea hydrolysis, produced the highest amount of calcite, which, furthermore was the most adhesive and insoluble. This species is thus of interest as an agent with the potential ability to repair cracks in concrete. PMID:26386580

  12. Adsorption of polar aromatic hydrocarbons on synthetic calcite

    DEFF Research Database (Denmark)

    Madsen, Lene; Grahl-Madsen, Laila; Grøn, Christian; Lind, Ida; Engell, John

    1996-01-01

    The wettability of hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. A model system of synthetic call cite, cyclohexane and the three probe molecules: benzoic acid, benzyl alcohol and benzylamine, have been...

  13. Is bicarbonate stable in and on the calcite surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Rodriguez Blanco, Juan Diego; Stipp, Susan Louise Svane

    2016-01-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3− <=> CO32− + H+, when HCO3− is included in, and adsorbed on, a calcite surface. We have used cluster models (80–100 atoms) to represent t...

  14. Aragonite / Calcite seas and the evolution of biomineralization

    Science.gov (United States)

    Balthasar, Uwe

    2015-04-01

    The vast majority of marine invertebrate skeletons are composed of the CaCO3 polymorphs aragonite and calcite, yet the influence of seawater composition on the evolution of calcareous skeletal composition is poorly understood. The main theoretical framework in which the evolution of CaCO3 shell mineralogy is assessed is the aragonite-calcite sea hypothesis with conventional thinking suggesting that a threshold in the marine Mg:Ca ratio determines CaCO3 polymorph formation. I present data from CaCO3 precipitation experiments to show that the concept of a distinct threshold is misleading because Mg:Ca ratio and temperature combined result in a Phanerozoic continuum of co-existing aragonite-calcite seas with aragonite-facilitating conditions existing throughout the Phanerozoic in shallow warm-water (>20° C) environments. The stable reservoir of aragonite-favouring conditions in shallow warm water environments potentially explains the trend of increasing occurrences of skeletal aragonite throughout the Phanerozoic, particularly in the context of the 'out of the tropics' hypothesis. By contrast, the most prominent fluctuations with respect to aragonite-calcite sea conditions can be expected to have occurred in mid- to high latitudes.

  15. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    Science.gov (United States)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  16. Experimental study of the replacement of calcite by calcium sulphates

    Science.gov (United States)

    Ruiz-Agudo, E.; Putnis, C. V.; Hövelmann, J.; Álvarez-Lloret, P.; Ibáñez-Velasco, A.; Putnis, A.

    2015-05-01

    Among the most relevant mineral replacement reactions are those involving sulphates and carbonates, which have important geological and technological implications. Here it is shown experimentally that during the interaction of calcite (CaCO3) cleavage surfaces with sulphate-bearing acidic solutions, calcite is ultimately replaced by gypsum (CaSO4 2H2O) and anhydrite (CaSO4), depending on the reaction temperature. Observations suggest that this occurs most likely via an interface-coupled dissolution-precipitation reaction, in which the substrate is replaced pseudomorphically by the product. At 120 and 200 °C gypsum and/or bassanite (CaSO4·0.5H2O) form as precursor phases for the thermodynamically stable anhydrite. Salinity promotes the formation of less hydrated precursor phases during the replacement of calcite by anhydrite. The reaction stops before equilibrium with respect to calcite is reached and during the course of the reaction most of the bulk solutions are undersaturated with respect to the precipitating phase(s). A mechanism consisting of the dissolution of small amounts of solid in a thin layer of fluid at the mineral-fluid interface and the subsequent precipitation of the product phase from this layer is in agreement with these observations. PHREEQC simulations performed in the framework of this mechanism highlight the relevance of transport and surface reaction kinetics on the volume change associated with the CaCO3-CaSO4 replacement. Under our experimental conditions, this reaction occurs with a positive volume change, which ultimately results in passivation of the unreacted substrate before calcite attains equilibrium with respect to the bulk solution.

  17. Impact-Induced Devolatilization or Melting of Calcite? Or Both? Answers from MEMIN Experiments

    Science.gov (United States)

    Hamann, C.; Hecht, L.; Deutsch, A.

    2015-07-01

    Calcite was experimentally shocked in a series of MEMIN hypervelocity impact and laser melting experiments. Evidence for the formation of calcite melts in both types of experiments is presented and discussed.

  18. On the Shock Behavior of Calcite: Recent Results from MEMIN Experiments

    Science.gov (United States)

    Hamann, C.; Hecht, L.; Deutsch, A.

    2015-09-01

    Hypervelocity impact and laser melting experiments, aiming at a better understanding of the shock behavior of calcite, suggest that both melting and decomposition of calcite can occur at P-T conditions commensurate with impact processes.

  19. Growth rate controlled barium partitioning in calcite and aragonite

    Science.gov (United States)

    Goetschl, Katja Elisabeth; Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2016-04-01

    The barium (Ba) content and the Ba/Ca molar ratios in biogenic and abiotic carbonates have been widely used from the scientific community as a geochemical proxy especially in marine and early diagenetic settings. The Ba content of carbonate minerals has been earlier associated to changes in oceanic circulation that may have been caused by upwelling, changes in weathering regimes and river-runoff as well as melt water discharge. The physicochemical controls of Ba ion incorporation in the two most abundant CaCO3 polymorphs found in Earth's surface environments, i.e. calcite and aragonite, have adequately been studied only for calcite. These earlier studies (i.e. [1]) suggest that at increasing growth rate, Ba partitioning in calcite is increasing as well. In contrast, to date the effect of growth rate on the partitioning of Ba in aragonite remains questionable, despite the fact that this mineral phase is the predominant carbonate-forming polymorph in shallow marine environments. To shed light on the mechanisms controlling Ba ion uptake in carbonates in this study we performed steady-state Ba co-precipitation experiments with calcite and aragonite at 25°C. The obtained results for the partitioning of Ba in calcite are in good agreement with those reported earlier by [1], whereas those for aragonite indicate a reduction of Ba partitioning at elevated aragonite growth rates, with the partitioning coefficient value between solid and fluid to be approaching the unity. This finding is good agreement with the formation of a solid solution in the aragonite-witherite system, owing to the isostructural crystallography of the two mineral phases. Moreover, our data set provides new insights that are required for reconstructing the evolution of the Ba content of pristine marine versus diagenetically altered carbonate minerals commonly occurring in marine subfloor settings, as the thermodynamically less stable aragonite will transform to calcite enriched in Ba, whilst affecting

  20. Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25°C: a test of a calcite dissolution model

    Science.gov (United States)

    Reddy, Michael M.; Plummer, L. Neil; Busenberg, E.

    1981-01-01

    A highly reproducible seeded growth technique was used to study calcite crystallization from calcium bicarbonate solutions at 25°C and fixed carbon dioxide partial pressures between 0.03 and 0.3 atm. The results are not consistent with empirical crystallization models that have successfully described calcite growth at low PCO2 (crystallization rates and those calculated from the calcite dissolution rate law and mechanism proposed by Plummer et al. (1978).

  1. Tuning hardness in calcite by incorporation of amino acids

    Science.gov (United States)

    Kim, Yi-Yeoun; Carloni, Joseph D.; Demarchi, Beatrice; Sparks, David; Reid, David G.; Kunitake, Miki E.; Tang, Chiu C.; Duer, Melinda J.; Freeman, Colin L.; Pokroy, Boaz; Penkman, Kirsty; Harding, John H.; Estroff, Lara A.; Baker, Shefford P.; Meldrum, Fiona C.

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit--mineral single crystals containing embedded macromolecules--remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  2. Adsorption of polar aromatic hydrocarbons on synthetic calcite

    DEFF Research Database (Denmark)

    Madsen, Lene; Grahl-Madsen, Laila; Grøn, Christian;

    1996-01-01

    The wettability of hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. A model system of synthetic call cite, cyclohexane and the three probe molecules: benzoic acid, benzyl alcohol and benzylamine, have been...... studied by adsorption experiments. The results clearly demonstrate the differences in the adsorption behaviour between probes with different functional groups of varying polarity and acidity. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. The order of...... magnitude of Delta G degrees for the adsorption process implies the formation of a strong bond between the calcite surface and the adsorbate molecules. Copyright (C) 1996 Elsevier Science Ltd....

  3. Calcite production by coccolithophores in the south east Pacific Ocean

    OpenAIRE

    Beaufort, L.; Couapel, M.; Buchet, N.; H. Claustre; Goyet, C

    2008-01-01

    BIOSOPE cruise covered an oceanographic transect through the centre of the South Pacific Gyre (SPG) from the Marquesas archipelago to the Peru-Chile upwelling (PCU). Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphom...

  4. Radiation damage in diopside and calcite crystals from uranothorianite inclusions

    OpenAIRE

    A.-M. Seydoux-Guillaume; J.-M. Montel; Richard Wirth; Moine, B.

    2009-01-01

    Combining observation and simulation, radiohalos formed around urano-thorianite (UTh) from the Tranomaro granulitic skarns (SE-Madagascar) were studied. These structures consist of UTh grains surrounded by both aluminous diopside (Cpx) and calcite (Cc1) crystals. Optical microscope and Scanning Electron Microscope (SEM) images revealed (1) the presence of radiating cracks around the UTh probably due to swelling of the metamict UTh, (2) a diffuse optical halo at the Cc1/UTh interface, and (3) ...

  5. The effect of dissolved magnesium on diffusion creep in calcite

    Science.gov (United States)

    Herwegh, Marco; Xiao, Xiaohui; Evans, Brian

    2003-07-01

    We experimentally tested a series of synthetic calcite marbles with varying amounts of dissolved magnesium in a standard triaxial deformation machine at 300 MPa confining pressure, temperatures between 700 and 850°C, stresses between 2 and 100 MPa, and strain rates between 10 -7 and 10 -3 s -1. The samples were fabricated by hot isostatic pressing of a mixture of calcite and dolomite at 850°C and 300 MPa. The fabrication protocol resulted in a homogeneous, fine-grained high-magnesian calcite aggregate with minimal porosity and with magnesium contents between 0.07 and 0.17 mol% MgCO 3. At stresses below 40 MPa the samples deformed with linear viscosity that depended inversely on grain size to the 3.26±0.51 power, suggesting that the mechanisms of deformation were some combination of grain boundary diffusion and grain boundary sliding. Because small grain sizes tended to occur in the high-magnesium calcite, the strength also appeared to vary inversely with magnesium content. However, the strength at constant grain size does not depend on the amount of dissolved magnesium, and thus, the impurity effect seems to be indirect. At stresses higher than 40 MPa, the aggregates become non-linearly viscous, a regime we interpret to be dislocation creep. The transition between the two regimes depends on grain size, as expected. The activation energy for diffusion creep is 200±30 kJ/mol and is quite similar to previous measurements in natural and synthetic marbles deformed at similar conditions with no added magnesium.

  6. Origin of calcite in the glacigenic Virttaankangas complex

    OpenAIRE

    Nina M. Kortelainen; Petri J. Korkeakoski; Karhu, Juha A.

    2007-01-01

    Groundwaters of the glacigenic Virttaankangas complex in southern Finland are characterized by high pH values ranging up to 9.5. These values are significantly higher than those observed in silicate-rich shallow groundwater formations in crystalline bedrock areas. TheVirttaankangas sediments were discovered to contain small amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. The primary goal of this study was to determine the mode of...

  7. Biogenic calcite structures in Green Lake, James Ross Island, Antarctica

    Czech Academy of Sciences Publication Activity Database

    Elster, Josef; Nedbalová, Linda; Komárek, Jiří; Vodrážka, R.

    Brno: Masarykova Univerzita, 2009 - (Barták, M.; Hájek, J.; Váczi, P.), s. 38-40 ISBN 978-80-210-4987-1. [Electronic Conference on Interactions between Antarctic Life and Environmental Factors. Brno (CZ), 22.10.2009-23.10.2009] R&D Projects: GA MŠk(CZ) ME 945 Institutional research plan: CEZ:AV0Z60050516 Keywords : Green Lake * James Ross * Biogenic calcite structures Subject RIV: EF - Botanics

  8. Magnetic Separation of Calcite Using Selective Magnetite Coating

    OpenAIRE

    Prakash, S; Das, B.; R. Venugopal

    1999-01-01

    Magnetic separation of naturally occurring calcite (98.2% CaCO3) using selective coating of synthetic colloidal magnetite with sodium oleate has been investigated as a function of pH, concentration of colloidal magnetite, magnetic intensity and particle size. Colloidal magnetite treated with sodium oleate (oleate magnetite) is found to be a better coating agent than the natural magnetite. The mechanism of oleate magnetite coating has been investigated through adsorption and electrokinetics me...

  9. Arsenite sorption and co-precipitation with calcite

    CERN Document Server

    Roman-Ross, Gabriela; Turrillas, Xavier; Fernandez-Martinez, Alejandro; Charlet, Laurent

    2008-01-01

    Sorption of As(III) by calcite was investigated as a function of As(III) concentration, time and pH. The sorption isotherm, i.e. the log As(III) vs. log [As(OH)3 degrees / Assat] plot is S-shaped and has been modelled on an extended version of the surface precipitation model. At low concentrations, As(OH)3 degrees is adsorbed by complexation to surface Ca surface sites, as previously described by the X-ray standing wave technique. The inflexion point of the isotherm, where As(OH)3 degrees is limited by the amount of surface sites (ST), yields 6 sites nm-2 in good agreement with crystallographic data. Beyond this value, the amount of sorbed arsenic increases linearly with solution concentration, up to the saturation of arsenic with respect to the precipitation of CaHAsO3(s). The solid solutions formed in this concentration range were examined by X-ray and neutron diffraction. The doped calcite lattice parameters increase with arsenic content while c/a ratio remains constant. Our results made on bulk calcite on...

  10. Synthetic Calcite as a Scaffold for Osteoinductive Bone Substitutes.

    Science.gov (United States)

    Chróścicka, Anna; Jaegermann, Zbigniew; Wychowański, Piotr; Ratajska, Anna; Sadło, Jarosław; Hoser, Grażyna; Michałowski, Sławomir; Lewandowska-Szumiel, Malgorzata

    2016-07-01

    Although a wide variety of biomaterials have been already proposed for use in bone tissue engineering, there is still need for man-made materials, which would combine support for osteogenesis with simplicity desirable for upscaling and costs reduction. In this study we have shown that synthetic calcite may serve as a scaffold for human osteoblasts transplantation. A simple dynamic system allows uniform and effective cell distribution. Cell viability and osteogenic phenotype were confirmed by XTT assay, alkaline phosphatase activity and selected osteoblast-specific genes expression. Extracellular matrix deposited by cells improved elasticity and made the whole system similar to the flexible composite material rather than to the brittle ceramic implants. It was revealed in the compression tests and also by the improved samples handling. Subcutaneous implantation of the cell-seeded calcite scaffolds to immunodeficient mice resulted in mineralized bone formation, which was confirmed histologically and by EPR analysis. The latter we propose as a method supplementary to histological analysis, for bone regeneration investigations. It specifically confirms the presence of bone mineral with a unique sensitivity and using bulk samples, which eliminates the risk of missing the material in the preparation. Our study resulted in development of a new osteogenic tissue engineered product based on man-made calcite. PMID:26666226

  11. PVC mixtures’ mechanical properties with the addition of modified calcite as filler

    Directory of Open Access Journals (Sweden)

    Vučinić Dušica R.

    2012-01-01

    Full Text Available In this study mechanical properties of PVC mixtures (PVC, stabilizer, lubricant, filler such as tensile strength, tensile elongation, breaking strength, and breaking elongation were investigated. Unmodified calcite, as well as calcite modified by stearic acid, were used as fillers in wet and dry processes. The PVC mixtures containing the calcite modified by wet procedure have better mechanical properties compared to those with the calcite modified by the dry process. Tensile and breaking strength of the PVC mixture containing the calcite modified with 1.5% stearic acid using wet process, are higher for 2.8% and 5.2%, respectively, compared to the PVC mixture containing the calcite modified with the same amount of acid used in the dry process. The tensile strength difference between the mixtures increases with the increase of the concentration of used stearic acid up to 3%. The strength of PVC mixture with the calcite modified by wet process is 3.1% higher compared to the mixture containing calcite modified by dry process. The results showed that the bonding strength between calcite and the adsorbed organic component affected tensile strength, tensile elongation and breaking strength of the PVC mixtures. The best filler was obtained by wet modification using 1.5% stearic acid solution that provided the formation of a stearate monolayer chemisorbed on calcite. The PVC mixtures containing the calcite modified by wet process using 1.5% stearic acid solution exhibited the best mechanical properties. This calcite was completely hydrophobic with dominant chemically adsorbed surfactant, which means that stearate chemisorbed on calcite provided stronger interaction in the calcite-stearic acid-PVC system.

  12. X-ray scattering of calcite thin films deposited by atomic layer deposition: Studies in air and in calcite saturated water solution

    International Nuclear Information System (INIS)

    Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO3) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al2O3 buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al2O3 buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial interactions

  13. Calcite production by coccolithophores in the south east Pacific Ocean

    Directory of Open Access Journals (Sweden)

    L. Beaufort

    2008-08-01

    Full Text Available BIOSOPE cruise covered an oceanographic transect through the centre of the South Pacific Gyre (SPG from the Marquesas archipelago to the Peru-Chile upwelling (PCU. Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks were usually low and reached maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales represented more than 30% of all the suspended calcite particles detected in the size range 0.1–46 μm (22% of PIC in term of calcite weight. These species grew preferentially in the Chlorophyll maximum zone. In the SPG their maximum cell concentrations were recorded between depth of 150 and 200 m, which is unusually deep for these taxa. The weight of coccoliths and coccospheres were correlated to their size. Large and heavy coccoliths and coccospheres were found in regions with relatively high fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres were found west of the PCU. This distribution is strongly related to ocean chemistry in particular to alkalinity and to carbonate ions concentration. The biotic (coccolithophores production influence on calcification is mainly driven at the local scale (depth whereas the abiotic (carbonate chemistry plays its most important role at the regional (horizontal level. Here 94% of the variability of coccolith and coccosphere weight can be explained by a change in 7 environmental variables.

  14. Calcite production by coccolithophores in the south east Pacific Ocean

    Science.gov (United States)

    Beaufort, L.; Couapel, M.; Buchet, N.; Claustre, H.; Goyet, C.

    2008-08-01

    BIOSOPE cruise covered an oceanographic transect through the centre of the South Pacific Gyre (SPG) from the Marquesas archipelago to the Peru-Chile upwelling (PCU). Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks were usually low and reached maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales) represented more than 30% of all the suspended calcite particles detected in the size range 0.1 46 μm (22% of PIC in term of calcite weight). These species grew preferentially in the Chlorophyll maximum zone. In the SPG their maximum cell concentrations were recorded between depth of 150 and 200 m, which is unusually deep for these taxa. The weight of coccoliths and coccospheres were correlated to their size. Large and heavy coccoliths and coccospheres were found in regions with relatively high fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres were found west of the PCU. This distribution is strongly related to ocean chemistry in particular to alkalinity and to carbonate ions concentration. The biotic (coccolithophores production) influence on calcification is mainly driven at the local scale (depth) whereas the abiotic (carbonate chemistry) plays its most important role at the regional (horizontal) level. Here 94% of the variability of coccolith and coccosphere weight can be explained by a change in 7 environmental variables.

  15. Principles of calcite dissolution in human and artificial otoconia.

    Directory of Open Access Journals (Sweden)

    Leif Erik Walther

    Full Text Available Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV. The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic otoconia (calcite gelatin nanocomposits and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM. Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV.

  16. Arsenite sorption and co-precipitation with calcite

    OpenAIRE

    Roman-Ross, Gabriela; Cuello, Gabriel; Turrillas, Xavier; Fernandez-Martinez, Alejandro; Charlet, Laurent

    2008-01-01

    Sorption of As(III) by calcite was investigated as a function of As(III) concentration, time and pH. The sorption isotherm, i.e. the log As(III) vs. log [As(OH)3 degrees / Assat] plot is S-shaped and has been modelled on an extended version of the surface precipitation model. At low concentrations, As(OH)3 degrees is adsorbed by complexation to surface Ca surface sites, as previously described by the X-ray standing wave technique. The inflexion point of the isotherm, where As(OH)3 degrees is ...

  17. Upscaling Calcite Growth Rates From the Mesoscale to the Macroscale

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, Jacquelyn N [ORNL; Stack, Andrew G [ORNL; Steefel, Carl I [Lawrence Berkeley National Laboratory (LBNL)

    2013-01-01

    Quantitative prediction of mineral reaction rates in the subsurface remains a daunting task partly because a key parameter for macroscopic models, the reactive site density, is poorly constrained. Here we report atomic force microscopy (AFM) measurements on the calcite surface of monomolecular step densities, treated as equivalent to the reactive site density, as a function of aqueous calcium-to-carbonate ratio and saturation index. Data for the obtuse step orientation are combined with existing step velocity measurements to generate a model that predicts overall macroscopic calcite growth rates. The model is quantitatively consistent with several published macroscopic rates under a range of alkaline solution conditions, particularly for two of the most comprehensive data sets without the need for additional fit parameters. The model reproduces peak growth rates and its functional form is simple enough to be incorporated into reactive transport or other macroscopic models designed for predictions in porous media. However, it currently cannot model equilibrium, pH effects, and may overestimate rates at high aqueous calcium-to-carbonate ratios. The discrepancies in rates at high calcium-to-carbonate ratios may be due to differences in pre-treatment, such as exposing the seed material to SI 1.0 to generate/develop growth hillocks, or other factors.

  18. Thermoluminescent of induced calcite by gamma and ultraviolet radiation

    International Nuclear Information System (INIS)

    Samples of brazilian calcite, exposed to gamma radiation in laboratory and heated at constant rate of 2.70 C/s, showed three glow peaks at 150, 250 and 350 0C in their thermoluminescent emission curves. The analysis of these peaks, using different models, indicated that they follow a second order kinetics; it has been obtained, for the activation energy, 1.3, 1.5 and 1.7 eV, and, for the pre-exponential factors, 8.1 x 10 14, 6.8 x10 13 and 2.4 x 1012 s-1. Although the total thermoluminescent emission has stayed constant, the relative height of glow peaks has changed with the temperature of annealing in the range of 400 to 700 0C. Exposed samples were also illuminated with ultraviolet light and the resultant curves showed partial or total bleaching or some glow peaks and the growth of peaks at lower temperatures. Samples of virgin calcite, submited to increasing exposures of gamma rays, showed a corresponding enhancement of the optical absorption bands in the range of 25000 to 47000 cm-1 A subsequent illumination of these samples with ultraviolet light produced a decrease of the optical absorption bands at the same range. (author)

  19. Acceleration of calcite kinetics by abalone nacre proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fu, G; Qiu, S R; Orme, C A; Morse, D E; De Yoreo, J J

    2005-06-09

    The fascinating shapes and hierarchical designs of biomineralized structures have long been an inspiration to materials scientists because of the potential they suggest for biomolecular control over synthesis of crystalline materials. One prevailing view is that mineral-associated macromolecules are responsible for initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineral surfaces. Indeed, numerous studies have demonstrated that bio-organic additives can dramatically alter crystal shapes and growth-rates in vitro. However, previous molecular-scale studies revealing mechanisms of growth modification focused on small molecules such as amino acids or peptides and always observed growth inhibition. In contrast, studies using full proteins were non-quantitative and underlying sources of growth modification were ill-defined. Here we investigate interactions between proteins isolated from abalone shell nacre and growing surfaces of calcite. We find that these proteins significantly accelerate the molecular-scale kinetics and, though much larger than atomic steps, alter growth morphology through step-specific interactions that lower their free energies. We propose that these proteins act as surfactants to promote ion attachment at calcite surfaces.

  20. Calcite sealing in a fractured geothermal reservoir: Insights from combined EBSD and chemistry mapping

    Science.gov (United States)

    McNamara, David D.; Lister, Aaron; Prior, Dave J.

    2016-09-01

    Fractures play an important role as fluid flow pathways in geothermal resources hosted in indurated greywacke basement of the Taupo Volcanic Zone, New Zealand, including the Kawerau Geothermal Field. Over time, the permeability of such geothermal reservoirs can be degraded by fracture sealing as minerals deposit out of transported geothermal fluids. Calcite is one such fracture sealing mineral. This study, for the first time, utilises combined data from electron backscatter diffraction and chemical mapping to characterise calcite vein fill morphologies, and gain insight into the mechanisms of calcite fracture sealing in the Kawerau Geothermal Field. Two calcite sealing mechanisms are identified 1) asymmetrical syntaxial growth of calcite, inferred by the presence of single, twinned, calcite crystals spanning the entire fracture width, and 2) 3D, interlocking growth of bladed vein calcite into free space as determined from chemical and crystallographic orientation mapping. This study also identifies other potential uses of combined EBSD and chemical mapping to understand geothermal field evolution including, potentially informing on levels of fluid supersaturation from the study of calcite lattice distortion, and providing information on a reservoir's history of stress, strain, and deformation through investigation of calcite crystal deformation and twinning patterns.

  1. Prediction of calcite Cement Distribution in Shallow Marine Sandstone Reservoirs using Seismic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, N.E.

    1996-12-31

    This doctoral thesis investigates how calcite cemented layers can be detected by reflection seismic data and how seismic data combined with other methods can be used to predict lateral variation in calcite cementation in shallow marine sandstone reservoirs. Focus is on the geophysical aspects. Sequence stratigraphy and stochastic modelling aspects are only covered superficially. Possible sources of calcite in shallow marine sandstone are grouped into internal and external sources depending on their location relative to the presently cemented rock. Well data and seismic data from the Troll Field in the Norwegian North Sea have been analysed. Tuning amplitudes from stacks of thin calcite cemented layers are analysed. Tuning effects are constructive or destructive interference of pulses resulting from two or more closely spaced reflectors. The zero-offset tuning amplitude is shown to depend on calcite content in the stack and vertical stack size. The relationship is found by regression analysis based on extensive seismic modelling. The results are used to predict calcite distribution in a synthetic and a real data example. It is found that describing calcite cemented beds in shallow marine sandstone reservoirs is not a deterministic problem. Hence seismic inversion and sequence stratigraphy interpretation of well data have been combined in a probabilistic approach to produce models of calcite cemented barriers constrained by a maximum amount of information. It is concluded that seismic data can provide valuable information on distribution of calcite cemented beds in reservoirs where the background sandstones are relatively homogeneous. 63 refs., 78 figs., 10 tabs.

  2. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  3. On the origin of fiber calcite crystals in moonmilk deposits.

    Science.gov (United States)

    Cañaveras, Juan Carlos; Cuezva, Soledad; Sanchez-Moral, Sergio; Lario, Javier; Laiz, Leonila; Gonzalez, Juan Miguel; Saiz-Jimenez, Cesareo

    2006-01-01

    In this study, we show that moonmilk subaerial speleothems in Altamira Cave (Spain) consist of a network of fiber calcite crystals and active microbial structures. In Altamira moonmilks, the study of the typology and distribution of fiber crystals, extracellular polymeric substances, and microorganisms allowed us to define the initial stages of fiber crystal formation in recent samples as well as the variations in the microstructural arrangement in more evolved stages. Thus, we have been able to show the existence of a relationship among the different types of fiber crystals and their origins. This allowed us to outline a model that illustrates the different stages of formation of the moonmilk, developed on different substrata, concluding that microbes influence physicochemical precipitation, resulting in a variety of fiber crystal morphologies and sizes. PMID:16240102

  4. Shock-induced effects in calcite from Cactus Crater

    Science.gov (United States)

    Vizgirda, J.; Ahrens, T. J.; Tsay, F.-D.

    1980-01-01

    The paper discusses shock metamorphism of calcite from coralline limestone samples retrieved from a borehole drilled into rocks beneath Cactus Crater, a nuclear explosion crater at Eniwetok Atoll. The metamorphism was detected and quantified using electron spin resonance (ESR); the ESR spectra of Mn(+) present as a trace constituent in the coral samples, show a consistent decrease in hyperfine peak splitting with decreasing depth of sample. It is suggested that the decrease in hyperfine peak splitting reflects a decrease in crystal field splitting, and therefore, small increases on cation-anion distances produced by mechanical energy input during the shock process. Two alternative crater models suggested by the ESR results are a depiction of a steady decay of the shock wave, and a delineation of a breccia lens with a breccia-bedrock interface at 20 plus or minus 5 m.

  5. Sorption of cesium on bentonite: The role of calcite

    International Nuclear Information System (INIS)

    Full text: Since bentonite is investigated for its use in Engineered Barriers Systems as backfill material, many studies of their surfaces properties have been performed in the past years to qualify and quantify adsorption on their surfaces, which can be one of the major processes limiting migration of radionuclides away from a disposal site. Nevertheless, most of these studies concerned simplified systems, such as Na-montmorillonite in mono-electrolyte solution. As ion-exchange processes are of importance in water-clays interactions, adsorption of natural major ions has also to be taken into account for natural systems. The aim of this work is (i) to quantify the sorption of the natural major cations on the montmorillonite surface, (ii) to compare the sorption of cesium, in two different systems, a simple one (Na-montmorillonite in NaNO3 0.05 Mol.L-1) and a complex one (natural bentonite in a synthetic natural water) and then (iii) to assess the influence of the natural major ions on this sorption, and to identify the role of the calcite phase present in bentonite. The methodology used consists in several batch experiments, first considering a very simple solution (NaNO3), then using mixtures of two different electrolytes, and lastly using a synthetic natural water. A surface complexation model, describing the surface of clays as a mixture of ion-exchange and complexation surface sites, is used to provide interpretations and quantifications of the sorption processes. Observed results indicate that affinity for the montmorillonite surface is greatest for Ca, then Mg and then K. The sorption of cesium is strongly affected by the presence in solution of Ca, witch can come from the partial dissolution of calcite. (author)

  6. Sorption of cesium on bentonite: The role of calcite

    International Nuclear Information System (INIS)

    Full text: Since bentonite is investigated for its use in Engineered Barriers Systems as backfill material, many studies of their surfaces properties have been performed in the past years to qualify and quantify adsorption on their surfaces, which can be one of the major processes limiting migration of radionuclides away from a disposal site. Nevertheless, most of these studies concerned simplified systems, such as Na-montmorillonite in mono-electrolyte solution. As ion-exchange processes are of importance in water-clays interactions, adsorption of natural major ions has also to be taken into account for natural systems. The aim of this work is (i) to quantify the sorption of the natural major cations on the montmorillonite surface; (ii) to compare the sorption of cesium, in two different systems, a simple one ( Na-montmorillonite in NaNO3 0.05 Mol.L-1) and a complex one (natural bentonite in a synthetic natural water) and then; (iii) to assess the influence of the natural major ions on this sorption, and to identify the role of the calcite phase present in bentonite. The methodology used consists in several batch experiments, first considering a very simple solution (NaNO3), then using mixtures of two different electrolytes, and lastly using a synthetic natural water. A surface complexation model, describing the surface of clays as a mixture of ion-exchange and complexation surface sites, is used to provide interpretations and quantifications of the sorption processes. Observed results indicate that affinity for the montmorillonite surface is greatest for Ca, then Mg and then K. The sorption of cesium is strongly affected by the presence in solution of Ca, witch can come from the partial dissolution of calcite. This study is one part of a work supported by ANDRA on the retention properties of bentonite materials. (author)

  7. Biotic control of skeletal growth by scleractinian corals in aragonite-calcite seas.

    Directory of Open Access Journals (Sweden)

    Tomihiko Higuchi

    Full Text Available Modern scleractinian coral skeletons are commonly composed of aragonite, the orthorhombic form of CaCO3. Under certain conditions, modern corals produce calcite as a secondary precipitate to fill pore space. However, coral construction of primary skeletons from calcite has yet to be demonstrated. We report a calcitic primary skeleton produced by the modern scleractinian coral Acropora tenuis. When uncalcified juveniles were incubated from the larval stage in seawater with low mMg/Ca levels, the juveniles constructed calcitic crystals in parts of the primary skeleton such as the septa; the deposits were observable under Raman microscopy. Using scanning electron microscopy, we observed different crystal morphologies of aragonite and calcite in a single juvenile skeleton. Quantitative analysis using X-ray diffraction showed that the majority of the skeleton was composed of aragonite even though we had exposed the juveniles to manipulated seawater before their initial crystal nucleation and growth processes. Our results indicate that the modern scleractinian coral Acropora mainly produces aragonite skeletons in both aragonite and calcite seas, but also has the ability to use calcite for part of its skeletal growth when incubated in calcite seas.

  8. Carbon and oxygen isotopes in apatite CO2 and co-existing calcite

    International Nuclear Information System (INIS)

    Carbon and oxygen isotopes were analyzed in carbonate apatite CO2 and in co-existing calcite. Both C and O in apatite CO2 are enriched in the respective light isotopes relative to calcite. These results confirm the proposition that carbonate is part of the apatite structure

  9. Biotic Control of Skeletal Growth by Scleractinian Corals in Aragonite–Calcite Seas

    Science.gov (United States)

    Higuchi, Tomihiko; Fujimura, Hiroyuki; Yuyama, Ikuko; Harii, Saki; Agostini, Sylvain; Oomori, Tamotsu

    2014-01-01

    Modern scleractinian coral skeletons are commonly composed of aragonite, the orthorhombic form of CaCO3. Under certain conditions, modern corals produce calcite as a secondary precipitate to fill pore space. However, coral construction of primary skeletons from calcite has yet to be demonstrated. We report a calcitic primary skeleton produced by the modern scleractinian coral Acropora tenuis. When uncalcified juveniles were incubated from the larval stage in seawater with low mMg/Ca levels, the juveniles constructed calcitic crystals in parts of the primary skeleton such as the septa; the deposits were observable under Raman microscopy. Using scanning electron microscopy, we observed different crystal morphologies of aragonite and calcite in a single juvenile skeleton. Quantitative analysis using X-ray diffraction showed that the majority of the skeleton was composed of aragonite even though we had exposed the juveniles to manipulated seawater before their initial crystal nucleation and growth processes. Our results indicate that the modern scleractinian coral Acropora mainly produces aragonite skeletons in both aragonite and calcite seas, but also has the ability to use calcite for part of its skeletal growth when incubated in calcite seas. PMID:24609012

  10. Low limit of Mn 2+-activated cathodoluminescence of calcite: state of the art

    Science.gov (United States)

    Habermann, Dirk; Neuser, Rolf D.; Richter, Detlev K.

    1998-02-01

    In the literature, the lower limit for Mn 2+-activated cathodoluminescence (CL) of calcite is variously reputed to over a very wide range of values above 10 ppm Mn. Our spectroscopic investigations of the CL response in natural calcite reveal that below 10 ppm manganese content Mn 2+-activation is also present. Using the Quantitative High Resolution Spectral analysis of CL (QHRS-CL) an activation by Mn 2+ in the range of 700 ppb is proved, which cannot be determined visually. So, if not quenched, the minimum Mn 2+ content for Mn 2+-activation is one atom in the irradiated calcite crystal lattice volume. As the intrinsic (background blue) luminescence is used to determine non-altered biogenic calcite, the limit of Mn 2+-activation plays an important role in the interpretation of diagenetic processes. Our results of spectroscopic analyses require a revision of current opinions about the diagenesis of calcite as revealed by CL investigation.

  11. Influence of surface conductivity on the apparent zeta potential of calcite

    CERN Document Server

    Li, Shuai; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-01-01

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength < 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted ...

  12. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite - In situ monitoring

    Science.gov (United States)

    Purgstaller, Bettina; Mavromatis, Vasileios; Immenhauser, Adrian; Dietzel, Martin

    2016-02-01

    The formation of Mg-bearing calcite via an amorphous precursor is a poorly understood process that is of relevance for biogenic and abiogenic carbonate precipitation. In order to gain an improved insight on the controls of Mg incorporation in calcite formed via an Mg-rich amorphous calcium carbonate (Mg-ACC) precursor, the precipitation of Mg-ACC and its transformation to Mg-calcite was monitored by in situ Raman spectroscopy. The experiments were performed at 25.0 ± 0.03 °C and pH 8.3 ± 0.1 and revealed two distinct pathways of Mg-calcite formation: (i) At initial aqueous Mg/Ca molar ratios ⩽ 1:6, Mg-calcite formation occurs via direct precipitation from solution. (ii) Conversely, at higher initial Mg/Ca molar ratios, Mg-calcite forms via an intermediate Mg-rich ACC phase. In the latter case, the final product is a calcite with up to 20 mol% Mg. This Mg content is significant higher than that of the Mg-rich ACC precursor phase. Thus, a strong net uptake of Mg ions from the solution into the crystalline precipitate throughout and also subsequent to ACC transformation is postulated. Moreover, the temporal evolution of the geochemical composition of the reactive solution and the Mg-ACC has no significant effect on the obtained "solubility product" of Mg-ACC. The enrichment of Mg in calcite throughout and subsequent to Mg-ACC transformation is likely affected by the high aqueous Mg/Ca ratio and carbonate alkalinity concentrations in the reactive solution. The experimental results have a bearing on the formation mechanism of Mg-rich calcites in marine early diagenetic environments, where high carbonate alkalinity concentrations are the rule rather than the exception, and on the insufficiently investigated inorganic component of biomineralisation pathways in many calcite secreting organisms.

  13. STRONTIUM ISOTOPE EVOLUTION OF PORE WATER AND CALCITE IN THE TOPOPAH SPRING TUFF, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Yucca Mountain, a ridge of Miocene volcanic rocks in southwest Nevada, is being characterized as a site for a potential high-level radioactive waste repository. One issue of concern for the future performance of the potential repository is the movement of water in and around the potential repository horizon. Past water movement in this unsaturated zone is indicated by fluid inclusions trapped in calcite coatings on fracture footwall surfaces and in some lithophysal cavities. Some of the fluid inclusions have homogenization temperatures above the present-day geotherm (J.F. Whelan, written communication), so determining the ages of the calcite associated with those fluid inclusions is important in understanding the thermal history of the potential repository site. Calcite ages have been constrained by uranium-lead dating of silica polymorphs (opal and chalcedony) that are present in most coatings. The opal and chalcedony ages indicate that deposition of the calcite and opal coatings in the welded part of the Topopah Spring Tuff (TSw hydrogeologic unit) spanned nearly the entire history of the 12.8-million-year-old rock mass at fairly uniform overall long-term rates of deposition (within a factor of five). Constraining the age of a layer of calcite associated with specific fluid inclusions is complicated. Calcite is commonly bladed with complex textural relations, and datable opal or chalcedony may be millions of years older or younger than the calcite layer or may be absent from the coating entirely. Therefore, a more direct method of dating the calcite is presented in this paper by developing a model for strontium evolution in pore water in the TSw as recorded by the strontium coprecipitated with calcium in the calcite. Although the water that precipitated the calcite in fractures and cavities may not have been in local isotopic equilibrium with the pore water, the strontium isotope composition of all water in the TSw is primarily controlled by water

  14. Uranium isotope fractionation during coprecipitation with aragonite and calcite

    Science.gov (United States)

    Chen, Xinming; Romaniello, Stephen J.; Herrmann, Achim D.; Wasylenki, Laura E.; Anbar, Ariel D.

    2016-09-01

    Natural variations in 238U/235U of marine calcium carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ∼7.5 and ∼8.5 to study possible U isotope fractionation during incorporation into these minerals. Small but significant U isotope fractionation was observed in aragonite experiments at pH ∼8.5, with heavier U isotopes preferentially enriched in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007 + 0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ∼7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3(aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism. These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2 , Ca2+, or Mg2+ concentrations. In general, these effects are likely to be small (<0.13‰), but are nevertheless potentially significant because of the small natural range of

  15. Direct nanoscale observations of the coupled dissolution of calcite and dolomite and the precipitation of gypsum.

    Science.gov (United States)

    Offeddu, Francesco Giancarlo; Cama, Jordi; Soler, Josep Maria; Putnis, Christine V

    2014-01-01

    In-situ atomic force microscopy (AFM) experiments were performed to study the overall process of dissolution of common carbonate minerals (calcite and dolomite) and precipitation of gypsum in Na2SO4 and CaSO4 solutions with pH values ranging from 2 to 6 at room temperature (23 ± 1 °C). The dissolution of the carbonate minerals took place at the (104) cleavage surfaces in sulfate-rich solutions undersaturated with respect to gypsum, by the formation of characteristic rhombohedral-shaped etch pits. Rounding of the etch pit corners was observed as solutions approached close-to-equilibrium conditions with respect to calcite. The calculated dissolution rates of calcite at pH 4.8 and 5.6 agreed with the values reported in the literature. When using solutions previously equilibrated with respect to gypsum, gypsum precipitation coupled with calcite dissolution showed short gypsum nucleation induction times. The gypsum precipitate quickly coated the calcite surface, forming arrow-like forms parallel to the crystallographic orientations of the calcite etch pits. Gypsum precipitation coupled with dolomite dissolution was slower than that of calcite, indicating the dissolution rate to be the rate-controlling step. The resulting gypsum coating partially covered the surface during the experimental duration of a few hours. PMID:25161860

  16. U-Th dating of calcitic corals from the Red Sea

    Science.gov (United States)

    Stein, M.; Yehudai, M.; Kohn, N.; Shaked, Y.; Agnon, A.; Lazar, B.

    2013-12-01

    Pristine aragonite skeletons of reef building corals can be rapidly recrystallized to calcite by the interaction of the corals with freshwater in coastal aquifers. The aragonite/calcite transformation is accompanied by opening the coral's U-Th isotope system in which uranium is partly lost while Th remains adsorbed and reincorporates into the newly formed calcite. Depending on the geological setting of the reef, the corals may incorporate secondary aragonite with higher U and 234U/238U isotope ratio, while still submerged, before the recrystallization process. Recrystallization to calcite occurs during sea level drop or coast tectonic uplift and later may follow a subaerial closed system decay scheme. In this study we examine the behavior of the U and Th in calcitic corals from the last interglacial reefs at the northern Gulf of Aqaba. We analyzed several subsamples from selected reef coral skeletons in an attempt to follow the recrystallization scheme of the corals and find a reliable method to estimate the age of these heavily altered corals. The main assumptions were that all subsamples from the same coral have identical deposition age and the sub-samples Th (and hence 230Th) was fully preserved during recrystallization to calcite (increasing the 230Th/238U isotope ratio). Diagenesis to calcite occurred several thousand years after the initial precipitation of the aragonitic skeleton. This calls for wetter (than present) conditions during the last interglacial in the currently hyperarid northern Red Sea.

  17. The potential for phosphorus pollution remediation by calcite precipitation in UK freshwaters

    Directory of Open Access Journals (Sweden)

    C. Neal

    2001-01-01

    Full Text Available This paper examines the potential for calcium carbonate to reduce phosphate pollution in freshwaters by co-precipitation, a process known as a "self cleansing mechanism". Calcium carbonate saturation levels and phosphate concentrations (SRP - soluble reactive phosphate across the major eastern UK river basins are examined to test for solubility controls. The study shows that calcite saturation varies for each catchment as a function of flow and biological activity rather than by direct regulation by SRP. Indeed, there is no evidence, for any of the rivers studied, that calcite solubility controls hold. However, for groundwater and groundwater-fed springs in the Chalk of the Thames basin, calcite saturation is observed with associated low SRP levels. A self-cleansing mechanism may well be operative within the Chalk due to two factors. Firstly, there is a high potential for nucleation on the calcite micro-crystals in the aquifer. Secondly, there are within aquifer reactions that remove the calcite nucleating inhibitors (SRP and dissolved organic carbon, DOC to levels lower than those occurring within the rivers do. These inhibitors enter the catchment at very high concentrations in association with agricultural pollution (fertilizer application and animal slurry and household contamination (e.g. sewage sources from septic tanks. Under low flow conditions, when the saturation index for calcite is at its highest, so too is the concentration of the nucleation inhibitor SRP. Companion work shows that calcite precipitation can occur at the water-sediment interface of the river and this may involve SRP removal. The data, as a whole, define an apparent bound for calcite solubility control where in the presence of nucleating centres, SRP must be less than 4 mM-P l-1 and DOC must be less than 150 mM-C l-1: a condition that does not seem to pertain within most UK rivers. Keywords: calcite, calcium carbonate, phosphate, soluble reactive phosphate, dissolved

  18. Calcite formation in soft coral sclerites is determined by a single reactive extracellular protein.

    Science.gov (United States)

    Rahman, M Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-09-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called "calcite and aragonite seas." Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that -OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106

  19. Low-magnesium uranium-calcite with high degree of crystallinity and gigantic luminescence emission

    Energy Technology Data Exchange (ETDEWEB)

    Valle-Fuentes, Francisco-Jose [Instituto de Ceramica y Vidrio, CSIC. Cantoblanco, 28049 Madrid (Spain); Garcia-Guinea, Javier [Museo Nacional Ciencias Naturales, CSIC, 28006 Madrid (Spain)]. E-mail: guinea@mncn.csic.es; Cremades, Ana [Departmento Fisica de Materiales, Facultad de Fisicas, University Complutense de Madrid, 28040 Madrid (Spain); Correcher, Virgilio [CIEMAT, Laboratory Dosimetria de Radiaciones, 28040 Madrid (Spain); Sanchez-Moral, Sergio [Museo Nacional Ciencias Naturales, CSIC, 28006 Madrid (Spain); Gonzalez-Martin, Rafael [Museo Nacional Ciencias Naturales, CSIC, 28006 Madrid (Spain); Sanchez-Munoz, Luis [CIEMAT, Laboratory Dosimetria de Radiaciones, 28040 Madrid (Spain); Lopez-Arce, Paula [Getty Conservation Institute, 1200 Getty Center Drive, Suite 700, Los Angeles, CA 90049 (United States)

    2007-01-15

    Cabrera (Madrid) low-Mg calcites exhibit: (i) an unusual twofold elevation in X-ray diffraction pattern intensity; (ii) a 60-fold elevation of luminescence emission, compared to six common natural calcites selected for comparison purposes; (iii) a natural relatively high radiation level of circa 200 nSv h{sup -1} not detected in 1300 other calcites from the Natural History Museum of Madrid. Calcites were analysed by the X-ray diffraction powder method (XRD), cathodo-luminescence spectroscopy in scanning electron microscopy (CL-SEM), thermoluminescence (TL), differential thermal analysis (DTA), X-ray fluorescence spectrometry (XRF) and particle size distribution (PSD). The Cabrera calcite study shows: (i) helicoidally distributed steps along the (0 0 0 1) orientation; (ii) protuberance defects onto the (0 0 0 1) surface, observed by SEM; (iii) XRF chemical contents of 0.03% MgO, 0.013% of Y{sub 2}O{sub 3}, and 0.022% of U{sub 3}O{sub 8}, with accessory amounts of rare earth elements (REE); (iv) DTA dissociation temperature of 879 {sup o}C; (v) TL maxima peaks at 233 and 297 {sup o}C whose areas are 60 times compared to other calcites; (vi) spectra CL-SEM bands at 2.0 and 3.4 eV in the classic structure of Mn{sup 2+} activators; (vii) a twofold XRD pattern explained given that sample is a low-Mg calcite. The huge TL and CL emissions of the Cabrera calcite sample must be linked with the uranyl group presence. This intense XRD pattern in low-Mg calcites could bring into being analytical errors.

  20. Paleohydrogeological implications from fracture calcites in fissures of low transmissivity. A report of investigations in 2011

    International Nuclear Information System (INIS)

    Samples of fracture fillings were collected from 26 bedrock fractures at Olkiluoto. Special attention was paid to fractures having low transmissivities of <1E-8 m2/s. The chemical composition and the C and O isotopic composition of the fracture filling calcite were analysed. In addition, fluid inclusions were studied and microthermometric measurements conducted on fracture filling calcite. The most common minor element in calcite fillings was Mn, having concentrations up to 3.4 wt-%. The δ13C values had a wide range, from -13.0 to 14.5 per mille, and the δ18O values a narrower range, from -13.4 to -7.3 per mille. The δ18O values of late-stage calcite appear to be independent of the transmissivity of the fractures, ranging from -11.2 to -7.3 per mille over a T range from 3E-6 to 1.6E-11 m2/s. The δ13C values of late-stage calcite appear to have more variation at high transmissivities of >1E-8 m2/s. Unusually low and high δ13C values in late-stage calcite fillings occur in the upper ∼ 400 m of the bedrock and are probably related to microbial reduction processes, at near surface (<60 m) conditions to oxidation of organic matter resulting in low δ13C values and at ∼ 55-400 m to methanogenesis, causing high δ 13C values. A relatively low spread in the δ 13C values of late-stage calcite precipitates in low transmissivity (<1E-8 m2/s) fractures is most likely caused by stable conditions in the areas of low conductivity in the bedrock, reflecting slow dissolution/reprecipitation of older carbonate fillings. Fluid inclusion data indicate variation in fracture water types from high temperature, ∼ 200 deg C, low salinity fluid with < 4 wt-% of NaCleq to low temperature, <100 deg C, high salinity fluid with 17-29 wt-% of NaCleq. The high temperature fluid is associated with Group 5 calcite fillings and the low temperature fluid with Group 3 calcite. The composition of fluids related to Group 4 calcite falls roughly between the compositions representing Group 5

  1. Comparison of galvanic displacement and electroless methods for deposition of gold nanoparticles on synthetic calcite

    Indian Academy of Sciences (India)

    Chamarthi K Srikanth; P Jeevanandam

    2012-11-01

    Gold nanoparticles have been deposited on synthetic calcite substrate by galvanic displacement reaction and electroless deposition methods. A comparative study has shown that electroless deposition is superior compared to galvanic displacement reaction for uniform deposition of gold nanoparticles on calcite. Characterization of the samples, prepared by two different deposition methods, was carried out by X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy (FE–SEM) and diffuse reflectance spectroscopy (DRS) measurements. FE–SEM studies prove that smaller nanoparticles of gold are deposited uniformly on calcite if electroless deposition method was employed and DRS measurements show the characteristic surface plasmon resonance of gold nanoparticles.

  2. Paleohydrogeological implications from fracture calcites in fissures of low transmissivity. A report of investigations in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Sahlstedt, E.; Karhu, J. [Univ. of Helsinki (Finland)

    2014-07-15

    Samples of fracture fillings were collected from 26 bedrock fractures at Olkiluoto. Special attention was paid to fractures having low transmissivities of <1E-8 m{sup 2}/s. The chemical composition and the C and O isotopic composition of the fracture filling calcite were analysed. In addition, fluid inclusions were studied and microthermometric measurements conducted on fracture filling calcite. The most common minor element in calcite fillings was Mn, having concentrations up to 3.4 wt-%. The δ13C values had a wide range, from -13.0 to 14.5 per mille, and the δ18O values a narrower range, from -13.4 to -7.3 per mille. The δ18O values of late-stage calcite appear to be independent of the transmissivity of the fractures, ranging from -11.2 to -7.3 per mille over a T range from 3E{sup -6} to 1.6E{sup -1}1 m{sup 2}/s. The δ13C values of late-stage calcite appear to have more variation at high transmissivities of >1E-8 m{sup 2}/s. Unusually low and high δ13C values in late-stage calcite fillings occur in the upper ∼ 400 m of the bedrock and are probably related to microbial reduction processes, at near surface (<60 m) conditions to oxidation of organic matter resulting in low δ13C values and at ∼ 55-400 m to methanogenesis, causing high δ 13C values. A relatively low spread in the δ 13C values of late-stage calcite precipitates in low transmissivity (<1E-8 m{sup 2}/s) fractures is most likely caused by stable conditions in the areas of low conductivity in the bedrock, reflecting slow dissolution/reprecipitation of older carbonate fillings. Fluid inclusion data indicate variation in fracture water types from high temperature, ∼ 200 deg C, low salinity fluid with < 4 wt-% of NaCl{sub eq} to low temperature, <100 deg C, high salinity fluid with 17-29 wt-% of NaCl{sub eq}. The high temperature fluid is associated with Group 5 calcite fillings and the low temperature fluid with Group 3 calcite. The composition of fluids related to Group 4 calcite falls roughly

  3. Distribution of Minor Elements in Calcite From the Unsaturated Zone at Yucca Mountain, Nevada

    Science.gov (United States)

    Marshall, B. D.; Whelan, J. F.

    2001-12-01

    Calcite is sporadically distributed in fractures and cavities in the volcanic rocks that form the 500- to 700-m-thick unsaturated zone at Yucca Mountain. Previous work has shown that the calcite precipitated from water moving downward through the unsaturated zone since the volcanic rocks were emplaced approximately 13 Ma. Calcite thus serves as a proxy for the chemistry and amounts of past percolation, two parameters that are important in predictions of the future behavior of the potential radioactive waste repository at Yucca Mountain. Latest calcite, which began forming between approximately 5 and 2 Ma, typically displays fine-scale growth zoning defined by distributions of Mn (inferred from cathodoluminescence), Mg, and Sr. Electron microprobe (EPMA) mapping of outermost calcite reveals Mg growth zoning1 and higher overall concentrations of Mg in late calcite than in older calcite. Micro X-ray fluorescence (micro-XRF) maps were obtained by slow rastering of the samples over a 100-watt X-ray source collimated through a final aperture of 100 μ m. Although the spatial resolution of the micro-XRF mapping is much less than that of EPMA, this technique reveals distributions of some elements to which EPMA is less sensitive. Micro-XRF maps show that Sr is spatially correlated with Mg; Sr concentrations range to 500 μ g/g at the resolution of the 100-μ m collimator. Because both Mg and Sr have similar calcite-water distribution coefficients much less than one, the Mg/Sr in calcite reflects the Mg/Sr of the water that precipitated the calcite. The distribution coefficient for Mn is greater than one and variations in Mn are not correlated with Mg and Sr. Covariation of Mg and Sr in the percolating water may be explained by reactions that affect the rate of uptake of chemical constituents from the overlying rock and soil, and/or evaporation. Late calcite has lower δ 13C values, probably due to a regional change from wetter to drier climate conditions. The higher Mg and

  4. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite.

    Science.gov (United States)

    Vandamme, Dries; Pohl, Philip I; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V; Hewson, John C; Muylaert, Koenraad

    2015-11-01

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5mM, flocculation was also observed at a pH of 10. Zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism. PMID:26310384

  5. Stress remagnetization in pyrrhotite-calcite synthetic aggregates

    Science.gov (United States)

    Robion, Philippe; Borradaile, Graham J.

    2001-01-01

    Stress-induced remagnetization has been applied to multidomain pyrrhotite-calcite synthetic aggregates in a triaxial rig. Experimental deformation used 150MPa confining pressure, a constant strain rate of 10-5 s-1 and applied differential stresses of up to 70MPa. New components of magnetization, parallel to the direction of the pressure vessel field, were added to the pre-deformational magnetization. The intensity of remagnetization (M'-M0) increases with the intensity of the applied differential stress and affects the coercivity fraction below 15mT. Bulk shortening is less than 8 per cent, thus grain rotation cannot explain selective remagnetization of the low-coercivity fraction. Remagnetization is thus attributed to deformational viscous remanent magnetization (DVRM). It is observed that high-coercivity (>15mT) grains do not remagnetize. There is, however, slight progressive rotation of pre-deformational magnetization with increasing strain up to 8 per cent of bulk shortening. The lack of piezoremanent magnetization in the high-coercivity range may be due to defects introduced in pyrrhotite during sample preparation. Experiments using synthetic pyrrhotite, expected to show low dislocation densities, would be necessary to test this effect.

  6. Microbiologically Induced Calcite Precipitation Mediated by Sporosarcina pasteurii.

    Science.gov (United States)

    Bhaduri, Swayamdipta; Debnath, Nandini; Mitra, Sushanta; Liu, Yang; Kumar, Aloke

    2016-01-01

    The particular bacterium under investigation here (S. pasteurii) is unique in its ability, under the right conditions, to induce the hydrolysis of urea (ureolysis) in naturally occurring environments through secretion of an enzyme urease. This process of ureolysis, through a chain of chemical reactions, leads to the formation of calcium carbonate precipitates. This is known as Microbiologically Induced Calcite Precipitation (MICP). The proper culture protocols for MICP are detailed here. Finally, visualization experiments under different modes of microscopy were performed to understand various aspects of the precipitation process. Techniques like optical microscopy, Scanning Electron Microscopy (SEM) and X-Ray Photo-electron Spectroscopy (XPS) were employed to chemically characterize the end-product. Further, the ability of these precipitates to clog pores inside a natural porous medium was demonstrated through a qualitative experiment where sponge bars were used to mimic a pore-network with a range of length scales. A sponge bar dipped in the culture medium containing the bacterial cells hardens due to the clogging of its pores resulting from the continuous process of chemical precipitation. This hardened sponge bar exhibits superior strength when compared to a control sponge bar which becomes compressed and squeezed under the action of an applied external load, while the hardened bar is able to support the same weight with little deformation. PMID:27167458

  7. Differential early diagenetic low-Mg calcite cementation and rhythmic hardground development in Campanian-Maastrichtian chalk

    DEFF Research Database (Denmark)

    Molenaar, Nicolaas; J.J.P., Zijlstra

    1997-01-01

    and differences in the degree of early diagenesis. Cemented layers and hardgrounds are the result of differential early marine calcite cementation. In these limestones early calcite cementation cannot be explained by the supply of cementing materials from saturated seawater, An alternative model for...... early marine calcite cementation is proposed, in which early calcite cementation occurred within the sediment at some distance below the seafloor as a result of organic matter degradation and internal redistribution of bioclastic carbonate. Bacterial organic matter degradation caused dissolution of...... relatively unstable high-Mg calcite (and/or aragonite) in the oxic zone followed by precipitation of calcite cement as a consequence of bacterial iron reduction. During periods with a lower sedimentation rate, any significant early cementation and replacement of high-Mg calcite occurred when younger oxic...

  8. Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite

    International Nuclear Information System (INIS)

    Six calcium sulfoaluminate-based cementitious systems composed of calcium sulfoaluminate, calcite, vaterite, and gypsum were cured as pastes and mortars for 1, 7, 28 and 84 days. Pastes were analyzed with X-ray diffraction, thermogravimetric and differential thermal analyses. Mortars were tested for compressive strength, dimensional stability and setting time. Furthermore, pastes with a water/cementitious material mass ratio of 0.80 were tested for heat evolution during the first 48 h by means of isothermal conduction calorimetry. It has been found that: (1) both calcite and vaterite reacted with monosulfoaluminate to give monocarboaluminate and ettringite, with vaterite being more reactive; (2) gypsum lowered the reactivity of both carbonates; (3) expansion was reduced by calcite and vaterite, irrespective of the presence of gypsum; and (4) both carbonates increased compressive strength in the absence of gypsum and decreased compressive strength less in the presence of gypsum, with vaterite's action more effective than that of calcite

  9. Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Craig W. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States); Telesca, Antonio [School of Engineering, University of Basilicata, Potenza (Italy); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States)

    2014-11-15

    Six calcium sulfoaluminate-based cementitious systems composed of calcium sulfoaluminate, calcite, vaterite, and gypsum were cured as pastes and mortars for 1, 7, 28 and 84 days. Pastes were analyzed with X-ray diffraction, thermogravimetric and differential thermal analyses. Mortars were tested for compressive strength, dimensional stability and setting time. Furthermore, pastes with a water/cementitious material mass ratio of 0.80 were tested for heat evolution during the first 48 h by means of isothermal conduction calorimetry. It has been found that: (1) both calcite and vaterite reacted with monosulfoaluminate to give monocarboaluminate and ettringite, with vaterite being more reactive; (2) gypsum lowered the reactivity of both carbonates; (3) expansion was reduced by calcite and vaterite, irrespective of the presence of gypsum; and (4) both carbonates increased compressive strength in the absence of gypsum and decreased compressive strength less in the presence of gypsum, with vaterite's action more effective than that of calcite.

  10. (U-Th)/He dating and He diffusion in calcite from veins and breccia

    Science.gov (United States)

    Gautheron, C.; Cros, A.; Pagel, M.; Berthet, P.; Tassan-Got, L.; Douville, E.; Pinna-Jamme, R.; Sarda, P.

    2013-12-01

    Knowledge of He retention in crystalline calcite is mandatory to estimate the possibility of (U-Th)/He dating of calcite. To this aim, fault-filling calcite crystals from the Eocene/Oligocene Gondrecourt graben, Paris Basin, Eastern France, have been sampled, based on their relatively old, Eocene-Oligocene, precipitation age and cold thermal history (agreement with the He-retentive character of calcite as determined by Copeland et al. (2007), and these ages were obtained for the most recently precipitated crystals. To better understand the large He-age scatter and why calcites precipitated earlier show younger ages, He diffusion experiments have been conducted on 10 Gondrecourt calcite fragments from 3 samples with He ages of 0.2 to 6 Ma. In addition, a crystallographic investigation by X-Ray Diffraction (XRD) performed on similar samples reveals that the crystal structure evolves with increasing temperature, showing with micro-cracks and cleavage opening. These XRD results indicate that, in fault-filling calcite, He retention is controlled by multiple diffusion domains (MDD, Lovera et al., 1991) with various sizes, and therefore, evolves through time with strong consequences on (U-Th)/He age. We thus interpret the Gondrecourt calcite (U-Th)/He age scatter of older samples as a consequence of cleavage opening due to a succession of calcite crystallization phases related to the deformation history. Finally, we propose that the crystallization age of a calcite crystal with a known thermal history can nevertheless be retrieved by the (U-Th)/He method provided the He diffusion pattern can be measured by careful step-heating degassing analysis. Copeland, P., Watson, E.B., Urizar, S.C., Patterson, D., Lapen, T.J., 2007. Alpha thermochronology of carbonates. Geochim. Cosmochim. Acta, 71: 4488-4511. Cros, A. Gautheron, C., Pagel, M., Berthet, P., Tassan-Got, L., Douville, E., Pinna-Jamme, R., Sarda, P., submitted GCA, He behavior in calcite filling viewed by (U

  11. Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?

    Directory of Open Access Journals (Sweden)

    S. Bindschedler

    2014-01-01

    Full Text Available Calcitic nanofibres are ubiquitous habits of secondary calcium carbonate (CaCO3 accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enigmatic. Three possible mechanisms fuel the debate: (i purely physicochemical processes, (ii mineralization of rod-shaped bacteria, and (iii crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic or organic in nature. They are very often observed in association with Needle Fibre Calcite (NFC, another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent association is likely to be an important fact to help understanding the origin of nanofibres. In this manuscript the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothesis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morphological resemblance when compared to their natural counterparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hypothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically-influenced mineralization process, generating calcitic nanofibres. This highlights the possible involvement of Fungi in CaCO3 biomineralization processes, a role still poorly documented at

  12. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies

    OpenAIRE

    Silvia Frisia

    2015-01-01

    The systematic documentation of calcite fabrics in stalagmites and flowstones provides robustness to palaeoclimate interpretation based on geochemical proxies, but it has been neglected because it is difficult to transform crystal morphologies into numerical values, and construct fabric time series. Here, general criteria that allow for coding fabrics of calcite composing stalagmites and flowstones is provided. Being based on known models of fabric development, the coding ascribes sequential ...

  13. The potential for phosphorus pollution remediation by calcite precipitation in UK freshwaters

    Science.gov (United States)

    Neal, Colin

    This paper examines the potential for calcium carbonate to reduce phosphate pollution in freshwaters by co-precipitation, a process known as a "self cleansing mechanism". Calcium carbonate saturation levels and phosphate concentrations (SRP - soluble reactive phosphate) across the major eastern UK river basins are examined to test for solubility controls. The study shows that calcite saturation varies for each catchment as a function of flow and biological activity rather than by direct regulation by SRP. Indeed, there is no evidence, for any of the rivers studied, that calcite solubility controls hold. However, for groundwater and groundwater-fed springs in the Chalk of the Thames basin, calcite saturation is observed with associated low SRP levels. A self-cleansing mechanism may well be operative within the Chalk due to two factors. Firstly, there is a high potential for nucleation on the calcite micro-crystals in the aquifer. Secondly, there are within aquifer reactions that remove the calcite nucleating inhibitors (SRP and dissolved organic carbon, DOC) to levels lower than those occurring within the rivers do. These inhibitors enter the catchment at very high concentrations in association with agricultural pollution (fertilizer application and animal slurry) and household contamination (e.g. sewage sources from septic tanks). Under low flow conditions, when the saturation index for calcite is at its highest, so too is the concentration of the nucleation inhibitor SRP. Companion work shows that calcite precipitation can occur at the water-sediment interface of the river and this may involve SRP removal. The data, as a whole, define an apparent bound for calcite solubility control where in the presence of nucleating centres, SRP must be less than 4 mM-P l-1 and DOC must be less than 150 mM-C l-1: a condition that does not seem to pertain within most UK rivers.

  14. Accurate measurement of the main refractive indices and thermo-optical coefficients of the calcite crystal

    Institute of Scientific and Technical Information of China (English)

    Shuang Zhao; Fuquan Wu; Haifeng Wang; Weigang Zhong; Xiuzhen Li; Hengjing Tang; Meng Shi; Hongyan Deng

    2007-01-01

    The main refractive indices of calcite crystal are measured by the means of auto-collimation, and the thermo-optical coefficients are calculated. The coefficient expression of Sellmeier equation is obtained by solving Sellmeier equation strictly and the refractive indices of different wavelengths are calculated, which accord with experimental esultsery well. The measured main refractive indices of calcite at 488-nm wavelength are identical with the values obtained by Sellmeier equation.

  15. Precipitation of Calcite during the Deposition of Paleogene Sangkarewang Oil Shale, Ombilin Basin, West Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Haris Widayat

    2015-12-01

    Full Text Available Geochemical and petrographical analyses were carried out to investigate the occurrence of calcite in theformer Ombilin lacustrine lake. The study involves eight samples taken from a 56 m long drill core of Sangkarewangoil shale. Geochemical investigation showed that the samples consist of varied terrigenous input represented by Si, Al, K, and Ti, and autochthonous input represented by S, total organic carbon (TOC, and d13C of bulk organic matter. Along the drill core profile the abundance of autochthonous input decreases upwards, while that of terrigenous input oppositely increases upwards. Petrographical analysis revealed that calcite is a major mineral in the samples. In this study, the abundance of calcite could be represented by the abundance of Ca, as calcite is the only significant Ca containing mineral. Ca is abundant in the samples (8.4% in average and its concentration varies similarly with those of S, TOC, and d13C, suggesting that the element as well as calcite incorporates the autochthonous input. Thevariation of calcite abundance in the drill core profile is considered to be related with primary productivity changes during the development of the former lake. Higher primary productivity represented by more positive of d13C value(-24.8‰ during the deposition of the lower part of the drill core profile promoted the higher amount of deposited organic matter. In such environment, the supersaturation of carbonate ion in lake water was also reached and significant precipitation of authigenic calcite occurred. As the lake developed, the primary productivity decreased as indicated by more negative of d13C value (eventually -26.8‰. This condition led to the decreases of deposited organic matterand calcite in the lake sediments.

  16. Molecular dynamics simulation of adsorption of an oil-water-surfactant mixture on calcite surface

    Institute of Scientific and Technical Information of China (English)

    Lu Guiwu; Zhang Xuefen; Shao Changjin; Yang Hong

    2009-01-01

    An interface super molecular structure model for oil-water-surfactant mixture and calcite was established. By using a molecular dynamics method, the effects of rhamnolipid, sodium dodecyl benzene sulfonate and sodium hexadecyl sulfonate on the interface adsorption behavior of oil molecules were investigated. It was found that these three surfactants could reduce oil-calcite interface binding energy, and play a role of oil-displacing agent.

  17. Origin of sulfate in barite and calcite cements in the Jebel Madar salt dome (Oman)

    Science.gov (United States)

    Vandeginste, V.; John, C. M.; Gilhooly, W. P.

    2012-12-01

    Jebel Madar is a 500-m high mountain rising in the desert at the Oman Foothills. The Jebel consists of Triassic to Cretaceous carbonate host rocks forming the carapace of a salt dome. Halokinesis caused major fracturing and faulting at Jebel Madar, and the resulting structures acted as the main pathways for fluids that generated diagenetic cements composed of both barite and calcite. The spatial distribution of calcite and barite occurrences shows that calcite is formed in large abundance along the three main faults, whereas barite is more concentrated along faults further away from the three main ones. The stable carbon and oxygen isotope composition of calcite and fluid inclusion data from both calcite and barite show a distinct evolution of the fluid with a highly saline component towards more mixing with meteoric water. This is in agreement with clumped isotopes data on calcite cements indicating an evolution towards lower temperatures, consistent with doming of the Jebel and greater input of lower-temperature descending meteoric fluids. Here, we present sulphur and oxygen isotopic data on barite that suggest a link between the barite formation and the Precambrian salt underlying Jebel Madar. The average δ34S measured in barite is 33‰ CDT (1σ = 5‰; n = 33), which falls at the lower end of the δ34S range reported for the Ara Group anhydrite. The average δ18O in the same barite samples is 23‰ VSMOW (1σ = 2‰; n = 33). Data from the barite will be compared with sulphur isotopes from the carbonate-associate sulfate in the calcite cements. The overall goal of our research is to gain a better insight in the formation process of barite and calcite in Jebel Madar and its link with salt tectonics. We would like to acknowledge the financial support of QCCSRC (funded jointly by Qatar Petroleum, Shell and the Qatar Science & Technology Park) and the GSA Laubach fund for this study.

  18. Calcite Formation in Soft Coral Sclerites Is Determined by a Single Reactive Extracellular Protein*

    OpenAIRE

    Rahman, M. Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-01-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, so...

  19. Low-Temperature Plasticity of Naturally Deformed Calcite Rocks

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Optical, cathodoluminescence and transmission electron microscope (TEM) analyses were conducted onfour groups of calcite fault rocks, a cataclastic limestone, cataclastic coarse-grained marbles from two fault zones, and afractured mylonite. These fault rocks show similar microstructural characteristics and give clues to similar processes ofrock deformation. They are characterized by the structural contrast between macroscopic cataclastic (brittle) andmicroscopic mylonitic (ductile) microstructures. Intragranular deformation microstructures (i.e. deformation twins, kinkbands and microfractures) are well preserved in the deformed grains in clasts or in primary rocks. The matrix materials areof extremely fine grains with diffusive features. Dislocation microstructures for co-existing brittle deformation andcrystalline plasticity were revealed using TEM. Tangled dislocations are often preserved at the cores of highly deformedclasts, while dislocation walls form in the transitions to the fine-grained matrix materials and free dislocations, dislocationloops and dislocation dipoles are observed both in the deformed clasts and in the fine-grained matrix materials. Dynamicrecrystallization grains from subgrain rotation recrystallization and subsequent grain boundary migration constitute themajor parts of the matrix materials. Statistical measurements of densities of free dislocations, grain sizes of subgrains anddynamically recrystallized grains suggest an unsteady state of the rock deformation. Microstructural andcathodoluminescence analyses prove that fluid activity is one of the major parts of faulting processes. Low-temperatureplasticity, and thereby induced co-existence of macroscopic brittle and microscopic ductile microstmctures are attributedto hydrolytic weakening due to the involvement of fluid phases in deformation and subsequent variation of rock rheology.During hydrolytic weakening, fluid phases, e.g. water, enhance the rate of dislocation slip and climb, and

  20. Ion beam modifications of defect sub-structure of calcite cleavages

    Indian Academy of Sciences (India)

    E Venkateshwar Rao; M Ramakrishna Murthy

    2008-04-01

    Experimental investigations on the defect sub-structure and surface modifications, brought about by He+ ion-bombardment of calcite cleavages (100), have been carried out. Optical and scanning electron microscopic investigations revealed drastic modifications on the surface morphology, local symmetry and defect concentration. Additional structural defects on ion-bombardment of calcite surfaces also have been observed. Changes in shape and form of chemical etch pits are found to be a function of ion-beam energy, as studied by optical microscopy. Radiation damage in calcite has been attributed mainly due to desorption of CO$^{-2}_{3}$ ions from the calcite surfaces, on irradiation. Measurements of surface conductivity on irradiated calcite surfaces have been made employing a four-probe technique. Enhancement of surface conductivity has been considered to be due to an increase in concentration of CO$^{-2}_{3}$ ions formed, on ion irradiation and subsequent thermal stimulation. Planar plastic anisotropy has been studied on irradiated calcite cleavages by measurement of microhardness.

  1. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bevilaqua, Rochele C. A.; Miranda, Caetano R. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Rigo, Vagner A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR (Brazil); Veríssimo-Alves, Marcos [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Departamento de Física, ICEx, Universidade Federal Fluminense, UFF, Volta Redonda, RJ (Brazil)

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  2. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    International Nuclear Information System (INIS)

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca2+. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO3 (101¯4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for 43Ca, 13C, and 17O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated

  3. In situ AFM crystal growth and dissolution study of calcite in the presence of aqueous fluoride

    Science.gov (United States)

    Vavouraki, A.; Putnis, C. V.; Putnis, A.; Koutsoukos, P. G.

    2009-04-01

    Fluoride is naturally abundant, encountered in rocks, soil and fresh and ocean water. Calcite crystals, during crystal growth may incorporate fluoride ions into their lattice (Okumura et al., 1983). In situ atomic force microscopy (AFM) has been used to study the growth and dissolution of calcite {104} surfaces in aqueous solutions in the presence of fluoride, using a fluid cell in which the supersaturated and the understaturated solutions respectively, flow over a freshly cleaved calcite crystal. For growth experiments, supersaturation index (S.I.) with respect to calcite was equal to 0.89 and the initial solution pH 10.2. The crystal growth rates were measured from the closure of the rhombohedral etch pits along the [010] direction induced by an initial dissolution step using pure water. The spreading rate of 2-dimensional nuclei was also measured along the same direction. In the presence of low fluoride concentrations (≤0.33 mM), the crystal growth rate of calcite was unaffected. At higher concentrations (up to 5 mM) growth rate decreased substantially to 50% of the rate in the absence of fluoride. Potential fluoride sorption over the calcite surface may ascribe the decrease of growth rates. Dissolution experiments were conducted at pH= 7.2 and dissolution rates of calcite were measured from the spreading of rhombohedral etch pits along both [010] and [42] directions. The presence of low concentrations of fluoride (≤1.1 mM) in the undersaturated solutions enhanced the dissolution rate along the [42] direction by 50% in comparison with pure water. The morphology of rhombohedral etch pits changed to hexagonal in the presence of fluoride in the undersaturated solutions. The AFM dissolution experiments suggested that the fluoride ions adsorbed onto the calcite surface. Further increase of fluoride concentrations (up to 1.6 mM) resulted in the decrease of the calcite dissolution rate by 60% in both [010] and [42] directions. Reference: Okumura, M, Kitano, Y

  4. Tropical Silurian Paleotemperatures from Clumped Isotope Analysis of Coexisting Dolomite and Calcite

    Science.gov (United States)

    Winkelstern, I. Z.; Lohmann, K. C.

    2013-12-01

    In many instances, pervasive diagenetic alteration of original material prevents the use of quantitative climate proxies on Paleozoic or older rocks. As an inherently diagenetic phase, dolomite may provide a more resilient paleotemperature resource. The Δ47 carbonate clumped isotope thermometer has been shown to be an accurate paleothermometer and, in a limited way, has been shown to be applicable to dolomites. The shallow water carbonates of the Pipe Creek Jr. Reef in central Indiana offer an opportunity to test the viability of the technique in ancient dolomite. After formation in the late Silurian, a sea level drop resulted in a diagenetic sequence of meteoric phreatic alteration of marine cement and biotic components, which included precipitation of dolomite cements inter-grown within the meteoric phreatic calcite cement. This was post-dated by a coarse void filling calcite spar formed at burial temperatures of ~100°C (based on fluid inclusion analysis). Preliminary analyses of coexisting dolomite and calcite suggest that near-surface temperatures are preserved in dolomites despite having experienced elevated thermal diagenetic effects.. In contrast, co-existing early-formed calcites exhibit resetting of earth surface temperatures to elevated values. Δ47 measurements in dolomites yield temperatures around 30°C using the Guo et al., (2009) theoretical calibration. This contrasts with analyses of early (original) and late (hydrothermal) calcites, which record temperatures greater than ~80°C using the Δ47-calcite calibration of Dennis and Schrag (2010). These data support the hypothesis that dolomite can be a more resilient paleotemperature proxy relative to calcite in deep-time studies. Temperatures from dolomites compare reasonably with other late Silurian paleoclimate studies, and offer insight into regional-scale paleoclimate.

  5. FORMATION OF CALCITE AND SILICA FROM PERCOLATION IN A HYDROLOGICALLY UNSATURATED SETTING, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Geological, mineralogical, chemical, and isotopic evidence from coatings of calcite and silica on open fractures and lithophysal cavities within welded tuffs at Yucca Mountain indicate an origin from meteoric water percolating through a thick (500 to 700 m) unsaturated zone (UZ) rather than from pulses of ascending ground water. Geologic evidence for a UZ setting includes the presence of coatings in only a small percentage of cavities, the restriction of coatings to fracture footwalls and cavity floors, and an absence of mineral high-water marks indicative of water ponding. Systematic mineral sequences (early calcite, followed by chalcedony with minor quartz and fluorite, and finally calcite with intercalated opal forming the bulk of the coatings) indicate progressive changes in UZ conditions through time, rather than repeated saturation by flooding. Percolation under the influence of gravity also results in mineral textures that vary between steeply dipping sites (thinner coatings of blocky calcite) and shallowly dipping sites (thicker coatings of coarse, commonly bladed calcite, with globules and sheets of opal). Micrometer-scale growth banding in both calcite and opal reflects slow average growth rates (scale of mm/m.y.) over millions of years rather than only a few rapidly deposited growth episodes. Isotopic compositions of C, O, Sr, and U from calcite and opal indicate a percolation-modified meteoric water source, and collectively refute a deeper ground-water source. Chemical and isotopic variations in coatings also indicate long-term evolution of water compositions. Although some compositional changes are related to shifts in climate, growth rates in the deeper UZ are buffered from large changes in meteoric input. Coatings most likely formed from films of water flowing down connected fracture pathways. Mineral precipitation is consistent with water vapor and carbon dioxide loss from films at very slow rates. Data collectively indicate that mineral coatings

  6. The influence of final repository relevant electrolyte on the interaction of trivalent lanthanides and actinides with calcite; Der Einfluss endlagerrelevanter Elektrolyte auf die Wechselwirkung dreiwertiger Lanthanide und Actinide mit Calcit

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Sascha

    2015-10-21

    Calcite, a naturally occurring and very abundant mineral, is considered a potential retentive geochemical barrier regarding nuclear waste disposal. In this work, the reactivity of calcite towards trivalent Ln and An has been determined by spectroscopic, microscopic and X-ray scattering techniques. This, in connection with the use of luminescent probes Eu(III) and Cm(III), allowed for the understanding of electrolyte influences on the retention potential of calcite.

  7. Isotopic tracer evidence for the amorphous calcium carbonate to calcite transformation by dissolution-reprecipitation

    Science.gov (United States)

    Giuffre, Anthony J.; Gagnon, Alexander C.; De Yoreo, James J.; Dove, Patricia M.

    2015-09-01

    Observations that some biogenic and sedimentary calcites grow from amorphous calcium carbonate (ACC) raise the question of how this mineralization process influences composition. However, the detailed pathway and geochemical consequences of the ACC to calcite transformation are not well constrained. This experimental study investigated the formation of calcite from ACC by using magnesium and calcium stable isotope labeling to directly probe the transformation pathway and controls on composition. Four processes were considered: dissolution-reprecipitation, solid state transformation, and combinations of these end-members. To distinguish between these scenarios, ACC was synthesized from natural isotope abundance solutions and subsequently transferred to spiked solutions that were enriched in 43Ca and 25Mg for the transformation to calcite. Isotope measurements by NanoSIMS determined the 43Ca/40Ca, and 25Mg/24Mg ratios of the resulting calcite crystals. Analysis of the data shows the transformation is best explained by a dissolution-reprecipitation process. We find that when a small amount of ACC is transferred, the isotopic signals in the resulting calcite are largely replaced by the composition of the surrounding spiked solution. When larger amounts of ACC are transferred, calcite compositions reflect a mixture between the ACC and initial solution end-member. Comparisons of the measurements to the predictions of a simple mixing model indicate that calcite compositions (1) are sensitive to relative amounts of ACC and the surrounding solution reservoir and (2) are primarily governed by the conditions at the time of ACC transformation rather than the initial ACC formation. Shifts in calcite composition over the duration of the transformation period reflect the progressive evolution of the local solution conditions. This dependence indicates the extent to which there is water available would change the end point composition on the mixing line. While these findings have

  8. Towards a Mechanism-Based Understanding of Vital Effects: Biomolecules Influence Mg/Ca in Calcite

    Science.gov (United States)

    Stephenson, A. E.; Nelson, E. J.; Wu, K. J.; de Yoreo, J. J.; Dove, P. M.

    2006-12-01

    Recent findings from our group suggest that the chemistry of biomolecules present at sites of mineral formation have a strong influence on the structure of water near calcite surfaces (Elhadj et al., CGD, 2006) and exercise predictable controls on the rate of calcite growth (Elhadj et al., submitted). Observing the extent to which biomolecules can mediate growth processes leads us to hypothesize that they also have measurable influence over impurity (Mg, Sr) contents. If true, this could be a significant contributor to the widely documented 'vital effects' that complicate interpretations of paleoenvironments, largely based on chemical signatures found in the skeletal remains of organisms. We use in situ AFM to measure the growth rate of calcite at the nanoscale under controlled solution compositions and at characterized chemical driving force. The relationship between the presence of carboxyl- rich peptides in solution during growth and the magnesium content in the resulting calcite was quantified using time-of-flight SIMS. This new work with tof-SIMS has validated previous compositional maps of Mg distributions collected by electron microprobe, and has yielded new insights into controls on impurity content. We are using similar methods to also determine factors that influence impurity contents of calcites grown in solutions at seawater ionic strength.

  9. Mechanism of Calcite Co-Orientation in the Sea Urchin Tooth

    Energy Technology Data Exchange (ETDEWEB)

    Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.; Olson, Ian; Aizenberg, Joanna; Politi, Yael; Wilt, Fred; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan; Gilbert, P. U. P. A.

    2009-12-01

    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.

  10. Dolomite-magnesian calcite relations at elevated temperatures and CO2 pressures

    Science.gov (United States)

    Graf, D.L.; Goldsmith, J.R.

    1955-01-01

    The equilibrium thermal decomposition curve of dolomite has been determined up to a CO2 pressure of 20,000 lb/in.2, at which pressure dolomite decomposes at 857??C. Equilibrium was approached from both directions, by the breakdown and by the solid-state synthesis of dolomite. At elevated temperatures and pressures, calcites in equilibrium with periclase as well as those in equilibrium with dolomite contain Mg in solid solution. In the former, the Mg content increases with increasing CO2 pressure, and decreases with increasing temperature. In the latter, it is a function of temperature only. The exsolution curve of dolomite and magnesian calcite has been determined between 500?? and 800??C; at 500?? dolomite is in equilibrium with a magnesian calcite containing ~6 mol per cent MgCO2; at 800??, ~22 mol per cent. There appears to be a small but real deviation from the ideal 1 : 1 Ca : Mg ratio of dolomite, in the direction of excess Ca, for material in equilibrium with magnesian calcite at high temperature. The experimental findings indicate that very little Mg is stable in the calcites of sedimentary environments, but that an appreciable amount is stable under higher-temperature metamorphic conditions, if sufficient CO2 pressure is maintained. ?? 1955.

  11. Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition.

    Science.gov (United States)

    Stanley, Steven M; Ries, Justin B; Hardie, Lawrence A

    2002-11-26

    Shifts in the MgCa ratio of seawater driven by changes in midocean ridge spreading rates have produced oscillations in the mineralogy of nonskeletal carbonate precipitates from seawater on time scales of 10(8) years. Since Cambrian time, skeletal mineralogies of anatomically simple organisms functioning as major reef builders or producers of shallow marine limestones have generally corresponded in mineral composition to nonskeletal precipitates. Here we report on experiments showing that the ambient MgCa ratio actually governs the skeletal mineralogy of some simple organisms. In modern seas, coralline algae produce skeletons of high-Mg calcite (>4 mol % MgCO(3)). We grew three species of these algae in artificial seawaters having three different MgCa ratios. All of the species incorporated amounts of Mg into their skeletons in proportion to the ambient MgCa ratio, mimicking the pattern for nonskeletal precipitation. Thus, the algae calcified as if they were simply inducing precipitation from seawater through their consumption of CO(2) for photosynthesis; presumably organic templates specify the calcite crystal structure of their skeletons. In artificial seawater with the low MgCa ratio of Late Cretaceous seas, the algae in our experiments produced low-Mg calcite (MgCO(3)), the carbonate mineral formed by nonskeletal precipitation in those ancient seas. Our results suggest that many taxa that produce high-Mg calcite today produced low-Mg calcite in Late Cretaceous seas. PMID:12399549

  12. Vorticity analysis in calcite tectonites: An example from the Attico-Cycladic massif (Attica, Greece)

    Science.gov (United States)

    Spanos, D.; Xypolias, P.; Koukouvelas, I.

    2015-11-01

    Although calcite tectonites are widespread in nature their use to quantify flow vorticity is limited. We use new (micro-)structural, petrofabric and vorticity data to analyse the kinematics of flow in outcrop-scale calcite mylonite zones. These zones are genetically related to a crustal-scale NE-directed ductile thrust (Basal Thrust) that emplaced the Blueschist over the Basal unit during the exhumation of the Attico-Cycladic Massif. Calcite microstructures reveal that the last stage of deformation occurred at temperatures 200-300 °C achieved by mild heating, which is possibly related with the reburial of the Basal Thrust's footwall. Vorticity analyses were based on the degree of asymmetry of calcite c-axis fabrics as well as on the assumption that the orientation of the long axes of calcite neoblasts within an oblique foliation delineates the direction of instantaneous stretching axis. Both methodological approaches provide consistent estimates with a simple shear component between 55% and 82% (Wn = 0.76-0.96). The use of the stress axis (σ1) orientation recorded by twin-c-axis-pairs to quantify vorticity generally gives significantly lower simple shear component. Comparison of our vorticity estimates with previous estimates inferred from quartz fabrics and rigid porphyroclasts reveals that exhumation-related deformation in the nappe pile was steady state.

  13. Model study of initial adsorption of SO2 on calcite and dolomite

    International Nuclear Information System (INIS)

    The rate of calcareous stone degradation is to a significant extent controlled by their surface chemistry with SO2. Initial surface sulphite is converted to a harmful gypsum upon, e.g. NO2 catalysed oxidation. However, it has been observed by scanning electron microscopy that the lateral distributions of gypsum crystals differ between calcitic and dolomitic marbles. The first-principles density functional theory is employed to understand the origin of these fundamentally different morphologies. Here, the stability differences of surface sulphite at calcite CaCO3 (s) and dolomite CaxMg1-xCO3 (s) are determined. A qualitative difference in surface sulphite stability, favouring the former, is reported. This is taken to imply that calcitic micro-crystals embedded in a dolomitic matrix act as sinks in the surface sulphation process, controlled by SO2 diffusion. The subsequent formation of gypsum under such conditions will not require SO42- (aq) ion transport. This explains the homogeneous distribution of gypsum observed on the calcitic micro-crystals in dolomite. In contrast, sulphation on purely calcitic marbles never reaches such high SO2 coverage. Rather, upon oxidation, SO42- (aq) transport to nucleation centres, such as grain boundaries, is required for the growth of gypsum crystals

  14. Bioleaching of cobalt and zinc from pyrite ore in relation to calcitic gangue content.

    Science.gov (United States)

    Baldi, F; Bralia, A; Riccobono, F; Sabatini, G

    1991-05-01

    Bioleaching of a pyrite ore containing high concentrations of cobalt (0.1%) and zinc (0.065%) was affected by small amounts of calcitic gangue (from 0.01 to 1.01%). Results from an air-lift percolator and from Erlenmeyer flask experiments show that a small percentage of calcite raises the pH and arrests the growth of the acidophilic bacterium Thiobacillus ferrooxidans. In percolator experiments, when calcite is completely removed by the continuous addition of small quantities of acid, and the pH of the liquor becomes acid, the micro-organism begins to grow and to bio-oxidize the pyrite ore. The growth of T. ferrooxidans shows different lag phase spans (from 13 to 190 days) depending on carbonate dissolution. The metals Fe, Zn and Co are released into the leaching solution together at different rates after a lag-time which depends on calcite concentrations in pyrite gangue. Metal ratios in the mineral bulk are different from those in the liquor, Zn dissolving 5 times more readily than Co. Bioleaching rates for metal removal from pyrite are higher in percolator (for Fe, from 5 to 15 mg/l/h) than in flask experiments (from 0.5 to 2 mg/l/h), but the lag phases are shorter (from 2 to 65 days). The differences between the two systems are related to calcite dissolution and gypsum precipitation. PMID:24425016

  15. The influence of final repository relevant electrolyte on the interaction of trivalent lanthanides and actinides with calcite

    International Nuclear Information System (INIS)

    Calcite, a naturally occurring and very abundant mineral, is considered a potential retentive geochemical barrier regarding nuclear waste disposal. In this work, the reactivity of calcite towards trivalent Ln and An has been determined by spectroscopic, microscopic and X-ray scattering techniques. This, in connection with the use of luminescent probes Eu(III) and Cm(III), allowed for the understanding of electrolyte influences on the retention potential of calcite.

  16. Mechanistic aspects of the calcite precipitation reaction and supercritical fluid movements in calcite lattice: implication for mineral storage of CO2

    International Nuclear Information System (INIS)

    The geologic sequestration of CO2 seems to be one of the most relevant strategy for the long term reduction of the atmospheric releases of this greenhouse gas. Indeed, CO2 can be stored in geologic formations in different ways. The solution which appears as the most stable is to make react fluids rich in CO2 with rocks minerals (or organic matter) of the surrounding geological formations and to produce a new carbonated solid matrix. The kinetics implied in the mineralization of CO2 have been studied. In the first part of this work is described the mechanistic aspects of the precipitation reaction of the calcite by a kinetic approach allowing to precisely obtain the velocities and the kinetic constants of the reactions as well as the data on the reactional mechanisms in making the temperature range between 5 and 70 C, as well as the composition of the solution (sur-saturation degree and inhibitor presence: Mg2+ and SO42-). The results have shown that the temperature role is not limited to a simple catalyst effect but that the kinetic mechanisms changes, that the temperature induces, determine the Mg quantities which can be incorporated into the calcite. By extension to this study, a global empirical law describing the variation of the precipitation rate in terms of the carbonate concentration and of the different physico-chemical parameters influencing the reaction of the calcite formation (PCO2, salinity, temperature, inhibitors, organic matter) has been established. It is appeared that the temperature can make the precipitation rate increase but only in the conditions of important imbalance when PCO2 has an equal influence near and far from the equilibrium in solutions however completely buffered. In the second part, the study has dealt with the movements of supercritical fluids inside a calcitic solid matrix. It has been shown that CO2 supercritical bubbles trapped into fluid inclusions contained in a calcite polycrystalline matrix could circulate until the

  17. Using 3H and 14C to constrain the degree of closed-system dissolution of calcite in groundwater

    International Nuclear Information System (INIS)

    Highlights: ► δ13C and 87Sr/86Sr in Ovens groundwater imply substantial carbonate dissolution. ► 3H vs. 14C imply negligible closed-system calcite dissolution. ► Calcite dissolution largely open-system process. ► Recognising open-system calcite dissolution important for dating deeper groundwater. - Abstract: This study uses 3H concentrations, 14C activities (a14C), 87Sr/86Sr ratios, and δ13C values to constrain calcite dissolution in groundwater from the Ovens catchment SE Australia. Taken in isolation, the δ13C values of dissolved organic C (DIC) and 87Sr/86Sr ratios in the Ovens groundwater imply that there has been significant calcite dissolution. However, the covariance of 3H and 14C and the calculated initial 14C activities (a014C) imply that most groundwater cannot have dissolved more than 20% of 14C-free calcite under closed-system conditions. Rather, calcite dissolution must have been partially an open-system process allowing 13C and 14C to re-equilibrate with CO2 in the unsaturated zone. Recognising that open-system calcite dissolution has occurred is important for dating deeper groundwater that is removed from its recharge area in this and other basins. The study is one of the first to use 14C and 3H to constrain the degree of calcite dissolution and illustrates that it is a valuable tool for assessing geochemical processes in recharge areas

  18. Strontium isotope evolution of pore water and calcite in the Topopah Spring Tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pore water in the Topopah Spring Tuff has a narrow range of (delta)87Sr values that can be calculated from the (delta)87Sr values of the rock considering advection through and reaction with the overlying nonwelded tuffs of the PTn. This model can be extended to estimate the variation of (delta)87Sr in the pore water through time; this approximates the variation of (delta)87Sr measured in calcite fracture coatings. In samples of calcite where no silica can be dated by other methods, strontium isotope data may be the only method to determine ages. In addition, other Sr-bearing minerals in the calcite and opal coatings, such as fluorite, may be dated using the same model

  19. Heterogeneous growth of cadmium and cobalt carbonate phases at the (101¯4) calcite surface

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Man; Ilton, Eugene S.; Engelhard, Mark H.; Qafoku, Odeta; Felmy, Andrew R.; Rosso, Kevin M.; Kerisit, Sebastien N.

    2015-03-01

    The ability of surface precipitates to form heteroepitaxially is an important factor that controls the extent of heterogeneous growth. In this work, the growth of cadmium and cobalt carbonate phases on (10-14) calcite surfaces is compared for a range of initial saturation states with respect to otavite (CdCO3) and sphaerocobaltite (CoCO3), two isostructural metal carbonates that exhibit different lattice misfits with respect to calcite. Calcite single crystals were reacted in static conditions for 16 hours with CdCl2 and CoCl2 aqueous solutions with initial concentrations 0.3 ≤ [Cd2+]0 ≤ 100 μM and 25 ≤ [Co2+]0 ≤ 200 μM. The reacted crystals were imaged in situ with atomic force microscopy (AFM) and analyzed ex situ with X-ray photoelectron spectroscopy (XPS). AFM images of Cd-reacted crystals showed the formation of large islands elongated along the direction, clear evidence of heteroepitaxial growth, whereas surface precipitates on Co-reacted crystals were small round islands. Deformation of calcite etch pits in both cases indicated the incorporation of Cd and Co at step edges. XPS analysis pointed to the formation of a Cd-rich (Ca,Cd)CO3 solid solution coating atop the calcite substrate. In contrast, XPS measurements of the Co-reacted crystals provided evidence for the formation of a mixed hydroxy-carbonate cobalt phase. The combined AFM and XPS results suggest that the lattice misfit between CoCO3 and CaCO3 ( 15% based on surface areas) is too large to allow for heteroepitaxial growth of a pure cobalt carbonate phase on calcite surfaces in aqueous solutions and at ambient conditions. The use of the satellite structure of the Co 2p3/2 photoelectron line as a tool for determining the nature of cobalt surface precipitates is also discussed.

  20. The effect of fluid composition, salinity, and acidity on subcritical crack growth in calcite crystals

    Science.gov (United States)

    Bergsaker, Anne Schad; Røyne, Anja; Ougier-Simonin, Audrey; Aubry, Jérôme; Renard, François

    2016-03-01

    Chemically activated processes of subcritical cracking in calcite control the time-dependent strength of this mineral, which is a major constituent of the Earth's brittle upper crust. Here experimental data on subcritical crack growth are acquired with a double torsion apparatus to characterize the influence of fluid pH (range 5-7.5) and ionic strength and species (Na2SO4, NaCl, MgSO4, and MgCl2) on the propagation of microcracks in calcite single crystals. The effect of different ions on crack healing has also been investigated by decreasing the load on the crack for durations up to 30 min and allowing it to relax and close. All solutions were saturated with CaCO3. The crack velocities reached during the experiments are in the range 10-9-10-2 m/s and cover the range of subcritical to close to dynamic rupture propagation velocities. Results show that for calcite saturated solutions, the energy necessary to fracture calcite is independent of pH. As a consequence, the effects of fluid salinity, measured through its ionic strength, or the variation of water activity have stronger effects on subcritical crack propagation in calcite than pH. Consequently, when considering the geological sequestration of CO2 into carbonate reservoirs, the decrease of pH within the range of 5-7.5 due to CO2 dissolution into water should not significantly alter the rate of fracturing of calcite. Increase in salinity caused by drying may lead to further reduction in cracking and consequently a decrease in brittle creep. The healing of cracks is found to vary with the specific ions present.

  1. Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renault, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1998-09-01

    Platy calcite crystals, which have their c axis parallel to their shortest length axis, are common components of travertine deposits found around some hot springs in the Kenya Rift Valley. They are composite crystals formed of numerous paper-thin subcrystals. Individual plates allowed to grow without obstruction develop a hexagonal motif. The Kenyan crystals typically form in hot (>75 C) waters that have a low Ca content (<10 mg/l), a high CO{sub 2} content, and a high rate of CO{sub 2} degassing. At Chemurkeu, aggregates of numerous small platy crystals collectively form lattice crystals that superficially resemble ray crystals. The walls of the lattice crystals are formed of large platy crystals that have their long and intermediate length axes aligned parallel to the plane of the long axis of the lattice crystal. Internally, the lattice crystals are formed of small platy calcite crystals arranged in a boxlike pattern that creates the appearance of a lattice when viewed in thin section. Lattice crystals are highly porous, with each pore being enclosed by platy crystals. At Lorusio, travertines are mainly formed of pseudodentrites that are constructed by numerous small platy crystals attached to a main stem which is a large platy crystal that commonly curves along its long axis. The pseudodentrites are the main construction blocks in ledges and lilypads that form in the vent pool and spring outflow channels, where the water is too hot for microbes other than hyperthermophiles. The platy calcite crystals in the Kenyan travertines are morphologically similar to platy calcite crystals that form as scale in pipes in the geothermal fields of New Zealand and hydrothermal angel wing calcite from the La Fe mine in Mexico. Comparison of the Kenyan and New Zealand crystals indicates that platy calcite crystals form from waters with a low Ca{sup 2+} content and a high CO{sub 3}/Ca ratio due to rapid rates of CO{sub 2} degassing.

  2. Characteristics of a calcite "limestone"-marble from Macedonia, used as flux material

    Directory of Open Access Journals (Sweden)

    Hristova E.

    2003-01-01

    Full Text Available The phase characteristics of calcite "limestone"-marble from Banjany area village (near Skopje, Macedonia were examined by means of XRD, SEM microscope in polarizing and reflected lights, chemical, DT/TG-analyses. It was concluded as follows: - calcite (CaCO3 is a major mineral component (cca 80-90 % prevailing in the marble over the other minerals - dolomite is generally of minor importance (cca 10-20 % in the rock - quartz, micas graphite, pyrite represent typical accessories. As result of the mentioned phase characteristics, this raw materials was for a long time (more than 30 years used as flux in the iron and steel metallurgy in Macedonia.

  3. U and Sr Isotopes in ground water and calcite, Yucca Mountain, Nevada: Evidence against upwelling water

    Science.gov (United States)

    Stuckless, J.S.; Peterman, Z.E.; Muhs, D.R.

    1991-01-01

    Hydrogenic calcite and opaline silica deposits in fault zones at Yucca Mountain, Nevada, have created considerable public and scientific controversy because of the possible development of a high-level nuclear waste repository at this location. Strontium and uranium isotopic compositions of hydrogenic materials were used to test whether the veins could have formed by upwelling of deep-seated waters. The vein deposits are isotopically distinct from ground water in the two aquifers that underlie Yucca Mountain, indicating that the calcite could not have precipitated from ground water. The data are consistent with a surficial origin for the hydrogenic deposits.

  4. Kinetic study of the thermal decomposition process of calcite particles in air and CO2 atmosphere

    OpenAIRE

    Escardino Benlloch, Agustín; García Ten, Francisco Javier; Feliu Mingarro, Carlos; Saburit Llaudis, Alejandro; Cantavella Soler, Vicente

    2013-01-01

    The thermal decomposition process of calcite particles (0.45–3.60 mm average diameter), made up of porous agglomerates of very small CaCO3 microcrystals, was studied in the 975–1216 K temperature range. The experiments were carried out under isothermal conditions in air atmosphere, in CO2 atmosphere, as well as in a gas stream comprising different concentrations of air and CO2. An equation is proposed that relates the calcite conversion degree to both reaction time and operating condition...

  5. Contribution to the interpretation of flotability characteristics of the calcite/apatite system

    International Nuclear Information System (INIS)

    Studies of morfology and determinations of chemical composition of apatite and calcite samples from Jacupiranga, (SP), Brazil, and Itataia (CE), Brazil, were compared with results of microflotation tests. The microflotation tests were carried out with pure and mixture samples. The ores samples were characterized by X ray diffraction. The behavior of the same ores from other deposits was different of these same ores during microflotation. The flotability of calcite depends on its morphology; the MgO content is a less important variable. (Author)

  6. Smaller Calcite Lattice Deformation Caused by Occluded Organic Material in Coccoliths than in Mollusk Shell

    DEFF Research Database (Denmark)

    Froelich, Simon; Sørensen, H.O.; Hakim, S.S.;

    2015-01-01

    The growth and nucleation of biominerals are directed and affected by associated biological molecules. In this paper, we investigate the influence of occluded biomolecules on biogenic calcite from the coccolithophorid Pleurochrysis carterae and from chalk, a rock composed predominantly of fossil...... suggests that the interaction between biomolecules and calcite is not as tight in the coccoliths as in the shell. Although the shape of chalk has been preserved over millions of years, no major influence on the crystal lattice was observed in the chalk samples....

  7. Thickness and structure of the water film deposited from vapour on calcite surfaces

    DEFF Research Database (Denmark)

    Bohr, Jakob; Wogelius, Roy A.; Morris, Peter M.; Stipp, Susan L.S.

    2010-01-01

    Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from......Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from...

  8. Calcite interaction with acidic sulphate solutions: a vertical scanning interferometry and energy-dispersive XRF study

    OpenAIRE

    Atanassova, Radostina; Cama, Jordi; Soler, Josep M.; Offeddu, Francesco G.; Queralt Mitjans, Ignacio; Casanova, Ignasi

    2013-01-01

    Calcite dissolution on (10 (1) over bar4) cleavage surface was investigated by means of ex situ vertical scanning interferometry (VSI) measurements using flow-through and batch experiments at ambient pCO(2), pH 1-7 and room temperature in metal (Fe(II), Zn, Cu and Cd) and metal-free chloride solutions, and metal sulphate and metal-free sulphate solutions, undersaturated with respect to calcite and undersaturated or in equilibrium with respect to gypsum.Based on the VSI measurements, surface r...

  9. Not all calcite ballast is created equal: differing effects of foraminiferan and coccolith calcite on the formation and sinking of aggregates

    Directory of Open Access Journals (Sweden)

    K. Schmidt

    2013-09-01

    Full Text Available Correlation between particulate organic carbon (POC and calcium carbonate sinking through the deep ocean has led to the idea that ballast provided by calcium carbonate is important for the export of POC from the surface ocean. While this idea is certainly to some extent true, it is worth considering in more nuance, for example, examining the different effects on the aggregation and sinking of POC of small, non-sinking calcite particles like coccoliths and large, rapidly sinking calcite like planktonic foraminiferan tests. We have done that here in a simple experiment carried out in roller tanks that allow particles to sink continuously without being impeded by container walls. Coccoliths were efficiently incorporated into aggregates that formed during the experiment, increasing their sinking speed compared to similarly sized aggregates lacking added calcite ballast. The foraminiferan tests, which sank as fast as 700 m d−1, became associated with only very minor amounts of POC. In addition, when they collided with other, larger, foraminferan-less aggregates, they fragmented them into two smaller, more slowly sinking aggregates. While these effects were certainly exaggerated within the confines of the roller tanks, they clearly demonstrate that calcium carbonate ballast is not just calcium carbonate ballast- different forms of calcium carbonate ballast have notably different effects on POC aggregation, sinking, and export.

  10. Intra-skeletal calcite in a live-collected Porites sp.: Impact on environmental proxies and potential formation process

    Science.gov (United States)

    Lazareth, Claire E.; Soares-Pereira, Caroline; Douville, Eric; Brahmi, Chloé; Dissard, Delphine; Le Cornec, Florence; Thil, François; Gonzalez-Roubaud, Cécile; Caquineau, Sandrine; Cabioch, Guy

    2016-03-01

    Geochemical proxies measured in the carbonate skeleton of tropical coral Porites sp. have commonly been used to reconstruct sea surface temperature (SST) and more recently seawater pH. Nevertheless, both reconstructed SST and pH depend on the preservation state of the skeleton, here made of aragonite; i.e., diagenetic processes and its related effects should be limited. In this study, we report on the impact of the presence of intra-skeletal calcite on the skeleton geochemistry of a live-collected Porites sp. The Porites skeleton preservation state was analyzed using X-ray diffraction and scanning electron microscopy. Sr/Ca, Mg/Ca, U/Ca, Ba/Ca, Li/Mg, and B/Ca ratios were measured at a monthly and yearly resolution using quadrupole ICP-MS and multi-collector ICP-MS. The δ11B signatures and the calcite percentages were acquired at a yearly timescale. The coral colony presents two parts, one with less than 3% calcite (referred to as "no-calcite" skeleton), the other one, corresponding to the skeleton formed during the last 4 years of growth, with calcite percentages varying from 13% to 32% (referred to as "with calcite" skeleton). This intra-skeletal calcite replaces partly or completely numerous centers of calcification (COCs). All investigated geochemical tracers are significantly impacted by the presence of calcite. The reconstructed SST decreases by about 0.1 °C per calcite-percent as inferred from the Sr/Ca ratio. Such impact reaches up to 0.26 °C per calcite-percent for temperature deduced from the Li/Mg ratio. So, less than 5% of such intra-skeletal calcite does not prevent SST reconstructions using Sr/Ca ratio, but the percentage and type of calcite have to be determined before fine SST interpretation. Seawater pH reconstruction inferred from boron isotopes drop by about -0.011 pH-unit per calcite-percent. Such sensitivity to calcite presence is particularly dramatic for fine paleo-pH reconstructions. Here we suggest that after being brought to shallow

  11. Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus;

    2012-01-01

    adsorption of arsenate onto calcite is of minor importance in most groundwater aquifers, as phosphate is often present at concentration levels sufficient to significantly reduce arsenate adsorption. The CD-MUSIC model for calcite was used successfully to model adsorption of arsenate and phosphate separately...

  12. Origin of zoning within dedolomite and calcitized gypsum of the Mississippian Arroyo Penasco Group

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, D.S.

    1985-01-01

    The Mississippian Arroyo Penasco Group carbonates are the oldest Paleozoic rocks present in north-central New Mexico. These supratidal to shallow,subtidal sediments exhibit complex diagenetic fabrics produced by periods of pre-Pennsylvanian subaerial exposure. Both extensive recrystallization of the Espiritu Santo carbonates and brecciation of the overlying Macho Member of the Tererro Formation resulted from an extended period of Mississippian subaerial exposure of broad, low-relief tidal flats. Cathodoluminescent petrography indicates that the recrystallized limestones consist of calcite pseudomorphs of dolomite and gypsum. Dedolomite and calcitized gypsum crystals, with /sup 13/C//sup 12/C ratios of -2 to +1.5% PDB, range from highly zoned to uniformly luminescent. Electron microprobe analyses reveals variable Mn and Fe contents across the pseudomorphs which are responsible for differences in observed luminosity. These features are interpreted to reflect a period of subaerial exposure after deposition of Macho Member sediments, which caused dissolution of gypsum and dolomite by sulfate and Mg depleted meteoric fluids and produced the collapse breccia. Preservation of zoning within some pseudomorphs required simultaneous dissolution of gypsum and dolomite and precipitation of calcite. C-isotope data indicates a meteoric to mixed phreatic origin for pore fluids which precipitated calcite; repetitive zoning within dolomite and gypsum pseudomorphs is indicative of interactions between marine and meteoric phreatic fluids in the intertidal environment.

  13. Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization

    DEFF Research Database (Denmark)

    Sand, K K; Yang, M; Makovicky, E; Cooke, David; Hassenkam, T; Bechgaard, K; Stipp, S L S

    2010-01-01

    The interaction of OH-containing compounds with calcite, CaCO(3), such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorp...

  14. Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica

    Science.gov (United States)

    Elster, J.; Nedbalová, L.; Vodrážka, R.; Láska, K.; Haloda, J.; Komárek, J.

    2016-01-01

    The floors of two shallow endorheic lakes, located on volcanic surfaces on James Ross Island, are covered with calcareous organosedimentary structures. Their biological and chemical composition, lake water characteristics, and seasonal variability of the thermal regime are introduced. The lakes are frozen down to the bottom for 8-9 months a year and their water chemistry is characterised by low conductivity and neutral to slightly alkaline pH. The photosynthetic microbial mat is composed of filamentous cyanobacteria and microalgae that are considered to be Antarctic endemic species. The mucilaginous black biofilm is covered by green spots formed by a green microalga and the macroscopic structures are packed together with fine material. Thin sections consist of rock substrate, soft biofilm, calcite spicules and mineral grains originating from different sources. The morphology of the spicules is typical of calcium carbonate monocrystals having a layered structure and specific surface texture, which reflect growth and degradation processes. The spicules' chemical composition and structure correspond to pure calcite. The lakes' age, altitude, morphometry, geomorphological and hydrological stability, including low sedimentation rates, together with thermal regime predispose the existence of this community. We hypothesise that the precipitation of calcite is connected with the photosynthetic activity of the green microalgae that were not recorded in any other lake in the region. This study has shown that the unique community producing biogenic calcite spicules is quite different to any yet described.

  15. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies

    Directory of Open Access Journals (Sweden)

    Silvia Frisia

    2015-01-01

    Full Text Available The systematic documentation of calcite fabrics in stalagmites and flowstones provides robustness to palaeoclimate interpretation based on geochemical proxies, but it has been neglected because it is difficult to transform crystal morphologies into numerical values, and construct fabric time series. Here, general criteria that allow for coding fabrics of calcite composing stalagmites and flowstones is provided. Being based on known models of fabric development, the coding ascribes sequential numbers to each fabric, which reflect climate-related parameters, such as changes in drip rate variability, bio-mediation or diagenetic modifications. Acronyms are proposed for Columnar types, Dendritic, Micrite, Microsparite and Mosaic fabrics, whose use could then render possible comparison of calcite fabrics in stalagmites and flowstones from diverse latitudinal and altitudinal settings. The climatic and environmental significance of similarities in the geochemical signals and trends analysed in coeval stalagmites and flowstones (or differences in the signals and trends will be more robust when compared with fabric time series. This is particularly true where, such as in the Holocene, changes in geochemical values may be subtle, yet fabrics may show changes related to variations in supersaturation, drip rate or input of detrital particles or organic compounds. The proposed microstratigraphic logging allows recognition of changes in stable isotope ratio or trace element values that can be ascribed to hydrology and diagenesis, with considerable improvement of reconstructions based on the chemical proxies of stalagmites and flowstones composed of calcite.

  16. DC CONDUCTIVITY OF CERAMICS WITH CALCITE WASTE IN THE TEMPERATURE RANGE 20 - 1050C

    Directory of Open Access Journals (Sweden)

    Jan Ondruska

    2015-06-01

    Full Text Available The temperature dependences of the electrical DC conductivity of calcite waste, kaolinite and illite based ceramics were measured in the temperature range of 20 - 1050oC. The ceramic mass that was used was a mixture of 60 wt. % kaolinitic-illitic clay, 20 - 40 wt. % of this clay was fired at 1000oC for 90 min and 0, 10 and 20 wt. % of calcite waste. During heating, several processes take place - the release of the physically bound water, the burning of organic impurities, the dehydroxylation of kaolinite and illite, the decomposition of calcite, and the creation of anorthite and mullite. All of these processes were checked by means of differential thermal analysis (DTA, derivative thermogravimetry (DTG and thermodilatometry (TDA. At low temperatures (20 - 200oC, due to the release and decomposition of physically bound water, H+ and OH- are dominant charge carriers. After completion of release of physically bound water, up to the start of dehydroxylation at the temperature of ~ 450oC, the DC conductivity is dominated by a transport of Na+, K+, and Ca2+ ions. During dehydroxylation, H+ and OH- ions, which are released from kaolinite and illite lattices, contribute to the DC conductivity. Decomposition of calcite runs between ~ 700oC and 900oC. The glassy phase has a dominant influence on the DC conductivity in the fired ceramics. Its high conductivity is determined by the high mobility of Na+, K+, and Ca2+ ions.

  17. Modelling how incorporation of divalent cations affects calcite wettability-implications for biomineralisation and oil recovery.

    Science.gov (United States)

    Andersson, M P; Dideriksen, K; Sakuma, H; Stipp, S L S

    2016-01-01

    Using density functional theory and geochemical speciation modelling, we predicted how solid-fluid interfacial energy is changed, when divalent cations substitute into a calcite surface. The effect on wettability can be dramatic. Trace metal uptake can impact organic compound adsorption, with effects for example, on the ability of organisms to control crystal growth and our ability to predict the wettability of pore surfaces. Wettability influences how easily an organic phase can be removed from a surface, either organic compounds from contaminated soil or crude oil from a reservoir. In our simulations, transition metals substituted exothermically into calcite and more favourably into sites at the surface than in the bulk, meaning that surface properties are more strongly affected than results from bulk experiments imply. As a result of divalent cation substitution, calcite-fluid interfacial energy is significantly altered, enough to change macroscopic contact angle by tens of degrees. Substitution of Sr, Ba and Pb makes surfaces more hydrophobic. With substitution of Mg and the transition metals, calcite becomes more hydrophilic, weakening organic compound adsorption. For biomineralisation, this provides a switch for turning on and off the activity of organic crystal growth inhibitors, thereby controlling the shape of the associated mineral phase. PMID:27352933

  18. Experimental study of the effect of mica on pressure solution of single crystal calcite

    Science.gov (United States)

    Karcz, Z.; Laronne, L.; Polizzotti, R. S.; Ertas, D.; Aharonov, E.

    2007-12-01

    Field and experimental studies suggest that clays and micas accelerate the rate of pressure solution in various geomaterials. It is not clear however whether the "clay effect" is purely mechanical (i.e., maintaining a thick conduit for fluids at the contact) or whether its surface chemistry plays a critical role. A case in point is the insoluble clay filling of stylolites, which are thought by some to be merely an inert byproduct of dissolution, or by others to be a necessary feature for the propagation of the seam. To study the effect of mica on carbonate pressure solution, the corner of a cleaved calcite single crystal rhomb was polished into a triangular face (edge length ~ 200micron) and pressed against either muscovite or quartz discs to yield a nominal stress of 10-20MPa. Immersing the contact in pre-saturated (with respect to microcrystalline calcite) solutions of distilled water or 0.25M NH4Cl caused axial shortening of the crystal. This axial strain was measured with a capacitance sensor (perimeter roughens. The second stage is distinguished by high axial strain rates (~40nm/h) and changes in the size and spatial position of isolated contacts (diameterfaces adjacent to it. At this point we see no significant difference between the calcite quartz and calcite muscovite experiments under similar load conditions.

  19. Modelling how incorporation of divalent cations affects calcite wettability–implications for biomineralisation and oil recovery

    Science.gov (United States)

    Andersson, M. P.; Dideriksen, K.; Sakuma, H.; Stipp, S. L. S.

    2016-01-01

    Using density functional theory and geochemical speciation modelling, we predicted how solid-fluid interfacial energy is changed, when divalent cations substitute into a calcite surface. The effect on wettability can be dramatic. Trace metal uptake can impact organic compound adsorption, with effects for example, on the ability of organisms to control crystal growth and our ability to predict the wettability of pore surfaces. Wettability influences how easily an organic phase can be removed from a surface, either organic compounds from contaminated soil or crude oil from a reservoir. In our simulations, transition metals substituted exothermically into calcite and more favourably into sites at the surface than in the bulk, meaning that surface properties are more strongly affected than results from bulk experiments imply. As a result of divalent cation substitution, calcite-fluid interfacial energy is significantly altered, enough to change macroscopic contact angle by tens of degrees. Substitution of Sr, Ba and Pb makes surfaces more hydrophobic. With substitution of Mg and the transition metals, calcite becomes more hydrophilic, weakening organic compound adsorption. For biomineralisation, this provides a switch for turning on and off the activity of organic crystal growth inhibitors, thereby controlling the shape of the associated mineral phase. PMID:27352933

  20. Calcite fracture fillings as indicators of paleohydrology at the Aspo Hard Rock Laboratory, Sweden

    International Nuclear Information System (INIS)

    Isotopic compositions of carbon (δ13C), oxygen (δ16O) strontium (δ87Sr) in calcite fracture fillings are being used to reconstruct the source and evolution of the groundwater at Aespoe and Laxemar, at the Aespoe Hard Rock Laboratory (AEHRL), south-eastern Sweden. These calcites precipitated from groundwater in the fractured crystalline rocks at some time in the past, and δ13C, δ18O and δ87Sr values of the calcites reflect those of the source waters. The fracture fillings mark the pathways of past fluid movement so an understanding of their genesis is particularly important for understanding the paleohydrology in the area. The utility in applying the multiple-isotope approach to groundwater and fracture minerals derives from the fact that the different systems represent different processes. Studies of the groundwater chemistry suggest a very complicated history, however, the isotope data demonstrate that it is possible to postulate mixing of different groundwater members to explain the isotopic systematics of the calcite fracture fillings at Aespoe and Laxemar

  1. Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke; Madsen, L.

    2001-01-01

    adsorption characteristics of selected pesticides. Investigated mineral phases included quartz, calcite, kaolinite, and alpha -alumina. Selected pesticides comprised atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine isoproturon [3-(4-isopropyl-phenyl)-1,1-dimethylurea)], mecoprop [(RS)-2...

  2. Interactions of Ni and Ca at the calcite-solution interface

    International Nuclear Information System (INIS)

    The performance assessment of repositories for spent nuclear fuel need, among other things, data describing the solubilities of radionuclides in the near field and far field. The solubility limits are often used in order to estimate the maximum concentrations of radionuclides during their possible transport to the biosphere. The solubilities used are mostly the individual solubilities for pure solids of the actual radionuclides. This way of using solubility limits represents a conservative performance assessment where the estimated nuclide concentrations are unrealistically high. This is acceptable from a performance assessment point of view but very unsatisfactory for an optimal design of the repository. In order to make the assessment more realistic, coprecipitation and solid solution formation should be taken into account. Only solids which are, in geological terms, formed in fast reactions need to be considered, which in practice restricts the number of radionuclide scavengers to calcite and iron(III)oxihydroxide. This work focuses on the Ni coprecipitation with calcite. The systems were studied under anoxic conditions and consisted of calcite-saturated 0.05 M NaCl solutions in equilibrium with synthetic calcite. The solutions were initially spiked with 63Ni and 45Ca and the concentrations of these elements were determined using liquid scintillation counting. (18 refs.)

  3. Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt

    Science.gov (United States)

    Rosengard, S. Z.; Lam, P. J.; Balch, W. M.; Auro, M. E.; Pike, S.; Drapeau, D.; Bowler, B.

    2015-07-01

    Sequestration of carbon by the marine biological pump depends on the processes that alter, remineralize, and preserve particulate organic carbon (POC) during transit to the deep ocean. Here, we present data collected from the Great Calcite Belt, a calcite-rich band across the Southern Ocean surface, to compare the transformation of POC in the euphotic and mesopelagic zones of the water column. The 234Th-derived export fluxes and size-fractionated concentrations of POC, particulate inorganic carbon (PIC), and biogenic silica (BSi) were measured from the upper 1000 m of 27 stations across the Atlantic and Indian sectors of the Great Calcite Belt. POC export out of the euphotic zone was correlated with BSi export. PIC export was not, but did correlate positively with POC flux transfer efficiency. Moreover, regions of high BSi concentrations, which corresponded to regions with proportionally larger particles, exhibited higher attenuation of > 51 μm POC concentrations in the mesopelagic zone. The interplay among POC size partitioning, mineral composition, and POC attenuation suggests a more fundamental driver of POC transfer through both depth regimes in the Great Calcite Belt. In particular, we argue that diatom-rich communities produce large and labile POC aggregates, which not only generate high export fluxes but also drive more remineralization in the mesopelagic zone. We observe the opposite in communities with smaller calcifying phytoplankton, such as coccolithophores. We hypothesize that these differences are influenced by inherent differences in the lability of POC exported by different phytoplankton communities.

  4. Mechanics, microstructure and AMS evolution of a synthetic porphyritic calcite aggregate deformed in torsion

    Czech Academy of Sciences Publication Activity Database

    Marques, F. O.; Machek, Matěj; Roxerová, Zuzana; Burg, J.-P.; Almqvist, B. S. G.

    2015-01-01

    Roč. 655, August (2015), s. 41-57. ISSN 0040-1951 Institutional support: RVO:67985530 Keywords : experimental rock deformation * porphyritic calcite aggregate * EBSD and plastic deformation Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.872, year: 2014

  5. Interaction of ethanol and water with the {1014} surface of calcite

    DEFF Research Database (Denmark)

    Cooke, David; Gray, R J; Sand, K K;

    2010-01-01

    the starting configuration consists of a complete monolayer of water at the surface. The computational results are in good agreement with the results from atomic force microscopy experiments where it is observed that a layer of ethanol remains attached to the calcite surface, decreasing its ability to...

  6. Factors controlling the growth rate, carbon and oxygen isotope variation in modern calcite precipitation in a subtropical cave, Southwest China

    Science.gov (United States)

    Pu, Junbing; Wang, Aoyu; Shen, Licheng; Yin, Jianjun; Yuan, Daoxian; Zhao, Heping

    2016-04-01

    A prerequisite for using cave speleothems to reconstruct palaeoenvironmental conditions is an accurate understanding of specific factors controlling calcite growth, in particular the isotopic partitioning of oxygen (δ18O) and carbon (δ13C) which are the most commonly used proxies. An in situ monitoring study from April 2008 to September 2009 at Xueyu Cave, Chongqing, SW China, provides insight into the controls on calcite growth rates, drip water composition, cave air parameters and δ18O and δ13C isotopic values of modern calcite precipitation. Both cave air PCO2 and drip water hydrochemical characteristics show obvious seasonality driven by seasonal changes in the external environment. Calcite growth rates also display clear intra-annual variation, with the lowest values occurring during wet season and peak values during the dry season. Seasonal variations of calcite growth rate are primarily controlled by variations of cave air PCO2 and drip water rate. Seasonal δ18O-VPDB and δ13C-VPDB in modern calcite precipitates vary, with more negative values in the wet season than in the dry season. Strong positive correlation of δ18O-VPDB vs. δ13C-VPDB is due to simultaneous enrichment of both isotopes in the calcite. This correlation indicates that kinetic fractionation occurs between parent drip water and depositing calcite, likely caused by the variations of cave air PCO2 and drip rate influenced by seasonal cave ventilation. Kinetic fractionation amplifies the equilibrium fractionation value of calcite δ18O (by ∼1.5‰) and δ13C (by ∼1.7‰), which quantitatively reflects surface conditions during the cave ventilation season. These results indicate that the cave monitoring of growth rate and δ18O and δ13C of modern calcite precipitation are necessary in order to use a speleothem to reconstruct palaeoenvironment.

  7. Ca-Mg inter-diffusion in synthetic polycrystalline dolomite-calcite aggregate at elevated temperatures and pressure

    Science.gov (United States)

    Huang, Wuu-Liang; Liu, Teh-Ching; Shen, Pouyan; Hsu, Allen

    2009-03-01

    This study measures the reaction rate of dolomite and aragonite (calcite) into Mg-calcite at 800, 850, and 900°C and 1.6 GPa. The dry synthetic dolomite-aragonite aggregate transformed very rapidly into dolomite-calcite polycrystalline aggregate while Mg-calcites formed at a relatively slow rate, becoming progressively richer in Mg with run time. We modeled the reaction progress semi-empirically by the first-order rate law. The temperature dependence of the overall transport rate of MgCO3 into calcite can be described by the kinetic parameters ( E = 231.7 kJ/mol and A o = 22.69 h-1). Extrapolation using the Arrhenius equation to the conditions during exhumation of UHPM rocks indicates that the reaction of dolomite with aragonite into Mg-saturated calcite can be completed as the P-T path enters the Mg-calcite stability field in a geologically short time period (340°C and >10 My). SEM-EDS analysis of individual calcite grains shows compositional gradients of Mg in the calcite grains. The Mg-Ca inter-diffusion coefficient at 850°C is around 1.68 × 10-14 m2/sec if diffusion is the major control of the reaction. The calculated closure temperatures for Ca-Mg inter-diffusion as a function of cooling rate and grain size reveal that Ca/Mg resetting in calcite in a dry polycrystalline carbonate aggregate (with grain size around 1 mm) may not occur at temperatures below 480°C at a geological cooling rate around 10°C/My, unless other processes, such as short-circuit interdiffusion along grain boundaries and dislocations, are involved.

  8. Visualizing Organophosphate Precipitation at the Calcite-Water Interface by in Situ Atomic-Force Microscopy.

    Science.gov (United States)

    Wang, Lijun; Qin, Lihong; Putnis, Christine V; Ruiz-Agudo, Encarnación; King, Helen E; Putnis, Andrew

    2016-01-01

    Esters of phosphoric acid constitute a large fraction of the total organic phosphorus (OP) in the soil environment and, thus, play an important role in the global phosphorus cycle. These esters, such as glucose-6-phosphate (G6P), exhibit unusual reactivity toward various mineral particles in soils, especially those containing calcite. Many important processes of OP transformation, including adsorption, hydrolysis, and precipitation, occur primarily at mineral-fluid interfaces, which ultimately governs the fate of organophosphates in the environment. However, little is known about the kinetics of specific mineral-surface-induced adsorption and precipitation of organophosphates. Here, by using in situ atomic-force microscopy (AFM) to visualize the dissolution of calcite (1014) faces, we show that the presence of G6P results in morphology changes of etch pits from the typical rhombohedral to a fan-shaped form. This can be explained by a site-selective mechanism of G6P-calcite surface interactions that stabilize the energetically unfavorable (0001) or (0112) faces through step-specific adsorption of G6P. Continuous dissolution at calcite (1014)-water interfaces caused a boundary layer at the calcite-water interface to become supersaturated with respect to a G6P-Ca phase that then drives the nucleation and growth of a G6P-Ca precipitate. Furthermore, after the introduction of the enzyme alkaline phosphatase (AP), the precipitates were observed to contain a mixture of components associated with G6P-Ca, amorphous calcium phosphate (ACP)-hydroxyapatite (HAP) and dicalcium phosphate dihydrate (DCPD). These direct dynamic observations of the transformation of adsorption- and complexation-surface precipitation and enzyme-mediated pathways may improve the mechanistic understanding of the mineral-interface-induced organophosphate sequestration in the soil environment. PMID:26636475

  9. The relationship between chemistry, texture and anisotropy of magnetic susceptibility for a set of calcite mylonites

    International Nuclear Information System (INIS)

    Complete text of publication follows. Magnetic susceptibility and its anisotropy (AMS) are sensitive indicators for trace amounts of paramagnetic impurities and second-phase minerals in rocks that display diamagnetic bulk susceptibility. To illustrate this relationship a set of highly strained calcite mylonites has been collected from the overturned limb (shear zone) of the Morcles Nappe (Helvetic Alps, southwestern Switzerland). The sample set consists of white and gray fine-grained calcite mylonites (Upper and Lower Urgonian) with less than 10 vol% of secondary phase content and varying amounts of paramagnetic Fe and Mn impurities. The AMS of these specimens are studied using a combination of low- and high-field magnetic susceptibility measurements. In addition, high-field AMS measurements are performed at 77 K. The use of these methods illustrates a strong relationship between the magnetic susceptibility, the development of crystallographic preferred orientation (CPO) of calcite and the Fe plus Mn impurity content. The bulk magnetic susceptibility and AMS varies systematically according to the amount of Fe and Mn. At room-temperature the AMS results from a combination of the diamagnetic and paramagnetic sub-fabrics, whereas at 77 K the paramagnetic sub-fabric is dominant. The k1 and k3 axes invert positions when comparing the AMS at room temperature and 77 K. The degree of anisotropy is shown to be related to bulk susceptibility, which in itself is directly dependent on the amount of Fe incorporated into the calcite's lattice, and the strength of the calcite's CPO. Our results indicate that AMS can be used as a sensitive tool for studying the relationship between trace element chemistry and deformation.

  10. Evolution of calcite growth morphology in the presence of magnesium: Implications for the dolomite problem

    Science.gov (United States)

    Hong, Mina; Xu, Jie; Teng, Henry H.

    2016-01-01

    The effect of magnesium on calcite growth morphology was known to occur as step rounding in some cases and surface segmentation in others. What remains unknown are the conditions for and the relations between the different effects, suggesting a lack of comprehensive understanding of the fundamental cause. Here we investigated the evolution of spiral hillock morphology on calcite cleavage surfaces in solutions with increasing Ca to Mg ratios and supersaturation levels using in situ atomic force microscopy. We isolated the effects of Mg and saturation by conducting experiments under conditions of constant pH, ionic strength, and Ca2+/CO32-. Our results revealed three types of morphological variations, ranging from step rounding in one direction (type I), to all directions (type II), and finally to a mosaic-like surface segmentation associated with monolayer buckling and step bunching (type III). These results suggest that the effect of magnesium on calcite growth depends upon multiple parameters including the concentration of Mg in solution, the step speed, as well as the extensiveness of Mg for Ca substitution in calcite lattice. We propose that the morphological variation may be understood by a model taken into consideration of (1) the lifespan and flux size of Mg ions at kinks in comparison to step kinetics, and (2) the diffusion and alignment of point defects created by the substitution of Mg for Ca in the crystal lattice. Stress calculations show that the maximum amount of Mg which calcite lattice can sustain before plastic deformation is ∼40%, suggesting that lattice stress due to the mismatch between MgCO3 and CaCO3 is likely the ultimate cause for the difficulty of ambient condition dolomite crystallization.

  11. Impact of trace metals on the water structure at the calcite surface

    Science.gov (United States)

    Wolthers, Mariette; Di Tommaso, Devis; De Leeuw, Nora

    2014-05-01

    Carbonate minerals play an important role in regulating the chemistry of aquatic environments, including the oceans, aquifers, hydrothermal systems, soils and sediments. Through mineral surface processes such as dissolution, precipitation and sorption, carbonate minerals affect the biogeochemical cycles of not only the constituent elements of carbonates, such as Ca, Mg, Fe and C, but also H, P and trace elements. Surface charging of the calcite mineral-water interface, and its reactivity towards foreign ions can be quantified using a surface structural model that includes, among others, the water structure at the interface (i.e. hydrogen bridging) [1,2] in accordance with the CD-MUSIC formalism [3]. Here we will show the impact of foreign metals such as Mg and Sr on the water structure around different surface sites present in etch pits and on growth terraces at the calcite (10-14) surface. We have performed Molecular Dynamics simulations of metal-doped calcite surfaces, using different interatomic water potentials. Results show that the local environment around the structurally distinct sites differs depending on metal presence, suggesting that metal substitutions in calcite affect its reactivity. The information obtained in this study will help in improving existing macroscopic surface model for the reactivity of calcite [2] and give more general insight in mineral surface reactivity in relation to crystal composition. [1] Wolthers, Charlet, & Van Cappellen (2008). Am. J. Sci., 308, 905-941. [2] Wolthers, Di Tommaso, Du, & de Leeuw (2012). Phys. Chem. Chem. Phys. 14, 15145-15157. [3] Hiemstra and Van Riemsdijk (1996) J. Colloid Interf. Sci. 179, 488-508.

  12. Calcite solubility in supercritical CO 2H 2O fluids

    Science.gov (United States)

    Fein, Jeremy B.; Walther, John V.

    1987-06-01

    An extraction-quench apparatus was used to measure calcite solubilities in supercritical CO 2H 2O mixtures. Experiments were conducted at 1 kbar and 2 kbar, between 240°C and 620°C and from XCO 2 = .02 toXCO 2 = .15 in order to determine the solubility behavior as a function of pressure, temperature and CO 2 content. The results indicate that calcite solubilities under these conditions behave similarly to previously investigated calcite solubilities at lower pressures and temperatures (SHARP and Kennedy, 1965). At constant XCO 2, the solubility increases with increasing pressure, but it decreases with increasing temperature. When the temperature and pressure are constant, the calcite solubility rises with increasing XCO 2 to a maximum value at XCO 2 between 0.02 and 0.05. For higher CO 2 contents, up to XCO 2 = .15, the calcite solubility decreases, probably due to the decrease of H 2O activities to values significantly below unity. The solubility behavior can be successfully modeled by making the assumption that Ca ++ is the dominant calcium species and that the carbon-bearing species are CO 2(aq) and HCO -3. Since for these dilute H 2OCO 2 fluids, all activity coefficients can be assumed to not differ significantly from unity, ionization constants for the reaction H 2O + CO 2(aq) H + + HCO -3 can be calculated at 1 and 2 kbar between 250°C and 550°C. These calculated values are in good agreement with the low temperature determinations of the ionization constants for this reaction determined by Read (1975). Values of the molal Gibbs free energy of CO 2(aq) obtained in our study exhibit a much greater positive departure from ideality than those calculated with the modified Redlich-Kwong equations of either Flowers (1979) or Kerrick and Jacobs (1981) for dilute CO 2 aqueous solutions.

  13. Ion exchange model for reversible sorption of divalent metals on calcite: implications for natural environments

    International Nuclear Information System (INIS)

    Most of the thermodynamic models available in the literature describing the speciation of the calcite surface do not predict a significant concentration of sorbed Ca(II), whereas previous electrokinetics studies clearly show that Ca2+ is the main cation determining the potential of the calcite surface. This study proposes a new thermodynamic model based on ion-exchange theory that is able to describe the reversible sorption of Ca2+ on calcite. To constrain the model, concentrations of Ca(II) sorbed reversibly on the mineral surface were obtained as a function of pH. Such experimental data were obtained using solutions in equilibrium with both calcite and fixed p(co2(g)) values (from 10-5 to 10-2 atm). The concentration of (de)sorbed Ca(II) is almost constant in the [7-9.5] pH range, having a value of approximately 1.2 * 10-6 ± 0.4 * 10-7 eq.g-1. Such a value agrees with total sorption site densities that were previously calculated by crystallography and is used to obtain a selectivity coefficient between H+ and Ca2+ species by fitting the experimental data. Then, selectivity coefficients between H+ and different metallic cations (Zn2+, Cd2+, Pb2+) that are able to accurately describe previously published data are proposed. Finally, the model is used to predict the contribution of calcite in the overall sorption of Cd(II) on a natural and complex solid (calcareous aquifer sand). (authors)

  14. Environmental controls for the precipitation of different fibrous calcite cement fabrics

    Science.gov (United States)

    Ritter, Ann-Christine; Wiethoff, Felix; Neuser, Rolf D.; Richter, Detlev K.; Immenhauser, Adrian

    2016-04-01

    Abiogenic calcite cements are widely used as climate archives. They can yield information on environmental change and climate dynamics at the time when the sediment was lithified in a (marine) diagenetic environment. Radiaxial-fibrous (RFC) and fascicular-optic fibrous (FOFC) calcite cements are two very common and similar pore-filling cement fabrics in Palaeozoic and Mesozoic carbonate rocks (Richter et al., 2011) and in Holocene Mg-calcitic speleothems (Richter et al., 2015). Both fabrics are characterised by distinct crystallographic properties. Current research has shown that these fabrics are often underexplored and that a careful combination of conservative and innovative proxies allows for a better applicability of these carbonate archives to paleoenvironmental reconstructions (Ritter et al., 2015). A main uncertainty in this context is that it is still poorly understood which parameters lead to the formation of either RFC or FOFC and if differential crystallographic parameters affect proxy data from these fabrics. This study aims at a better understanding of the environmental factors that may control either RFC or FOFC precipitation. Therefore, suitable samples (a stalagmite and a Triassic marine cement succession), each with clearly differentiable layers of RFC and FOFC, were identified and analysed in high detail using a multi-proxy approach. Detailed thin section and cathodoluminescence analysis of the samples allowed for a precise identification of layers consisting solely of either RFC or FOFC. Isotopic (δ13C, δ18O) as well as trace elemental compositions have been determined and the comparison of data obtained from these different carbonate archives sheds light on changes in environmental parameters during RFC or FOFC precipitation. References: Richter, D.K., et al., 2011. Radiaxial-fibrous calcites: A new look at an old problem. Sedimentary Geology, 239, 26-36 Richter, D.K., et al., 2015. Radiaxial-fibrous and fascicular-optic Mg-calcitic cave

  15. A reaction-transport model for calcite precipitation and evaluation of infiltration fluxes in unsaturated fractured rock.

    Science.gov (United States)

    Xu, Tianfu; Sonnenthal, Eric; Bodvarsson, Gudmundur

    2003-06-01

    The percolation flux in the unsaturated zone (UZ) is an important parameter addressed in site characterization and flow and transport modeling of the potential nuclear-waste repository at Yucca Mountain, NV, USA. The US Geological Survey (USGS) has documented hydrogenic calcite abundances in fractures and lithophysal cavities at Yucca Mountain to provide constraints on percolation fluxes in the UZ. The purpose of this study was to investigate the relationship between percolation flux and measured calcite abundances using reactive transport modeling. Our model considers the following essential factors affecting calcite precipitation: (1) infiltration, (2) the ambient geothermal gradient, (3) gaseous CO(2) diffusive transport and partitioning in liquid and gas phases, (4) fracture-matrix interaction for water flow and chemical constituents, and (5) water-rock interaction. Over a bounding range of 2-20 mm/year infiltration rate, the simulated calcite distributions capture the trend in calcite abundances measured in a deep borehole (WT-24) by the USGS. The calcite is found predominantly in fractures in the welded tuffs, which is also captured by the model simulations. Simulations showed that from about 2 to 6 mm/year, the amount of calcite precipitated in the welded Topopah Spring tuff is sensitive to the infiltration rate. This dependence decreases at higher infiltration rates owing to a modification of the geothermal gradient from the increased percolation flux. The model also confirms the conceptual model for higher percolation fluxes in the fractures compared to the matrix in the welded units, and the significant contribution of Ca from water-rock interaction. This study indicates that reactive transport modeling of calcite deposition can yield important constraints on the unsaturated zone infiltration-percolation flux and provide useful insight into processes such as fracture-matrix interaction as well as conditions and parameters controlling calcite deposition

  16. Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory

    Science.gov (United States)

    Coplen, T.B.

    2007-01-01

    The ??18O of ground water (-13.54 ?? 0.05 ???) and inorganically precipitated Holocene vein calcite (+14.56 ?? 0.03 ???) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 ??C of 1.02849 ?? 0.00013 (1000 ln ??calcite-water = 28.09 ?? 0.13). Using the commonly accepted value of ???(??calcite-water)/???T of -0.00020 K-1, this corresponds to a 1000 ln ??calcite-water value at 25 ??C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 ??C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a ??18O of water, from which the calcite precipitated, that is too negative by 1.5 ??? using a temperature of 33.7 ??C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order. Assuming the Devils Hole oxygen isotopic value of ??calcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a ??18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.

  17. A thermodynamic adsorption/entrapment model for selenium(IV) coprecipitation with calcite

    Science.gov (United States)

    Heberling, Frank; Vinograd, Victor L.; Polly, Robert; Gale, Julian D.; Heck, Stephanie; Rothe, Jörg; Bosbach, Dirk; Geckeis, Horst; Winkler, Björn

    2014-06-01

    Selenium is an environmentally relevant trace element, while the radioisotope 79Se is of particular concern in the context of nuclear waste disposal safety. Oxidized selenium species are relatively soluble and show only weak adsorption at common mineral surfaces. However, a possible sorption mechanism for selenium in the geosphere is the structural incorporation of selenium(IV) (selenite, SeO32-) into calcite (CaCO3). In this study we investigate the interactions between selenite and calcite by a series of experimental and computational methods with the aim to quantify selenite incorporation into calcite at standard conditions. We further seek to describe the thermodynamics of selenite-doped calcite, and selenite coprecipitation with calcite. The structure of the incorporated species is investigated using Se K-edge EXAFS (isotropic and polarization dependent) and results are compared to density functional theory (DFT) calculations. These investigations confirm structural incorporation of selenite into calcite by the substitution of carbonate for selenite, leading to the formation of a Ca(SeO3)X(CO3)(1-X) solid solution. Coprecipitation experiments at low supersaturation indicate a linear increase of the selenite to carbonate ratio in the solid with the increase of the selenite to carbonate ratio in the contact solution. This relationship can be described under the assumption of an ideal mixing between calcite and a virtual CaSeO3 endmember, whose standard Gibbs free energy (G0(CaSeO3_exp) = -953 ± 6 kJ/mol, log10(KSP(CaSeO3_exp)) = -6.7 ± 1.0) is defined by linear extrapolation of the excess free energy from the dilute Henry’s law domain to X(CaSeO3) = 1. In contrast to this experimental result, DFT and force field calculations predict the virtual bulk CaSeO3 endmember to be significantly less stable and more soluble: G0(CaSeO3 bulk) = -912 ± 10 kJ/mol and log10(KSP(CaSeO3_bulk)) = 0.5 ± 1.7. To explain this discrepancy we introduce a thermodynamic adsorption

  18. Experimental Research on Microscopic Indicators of Temperature's Returning-to-Zero in Deformation of Calcite and Discussions of Correlation Problem

    Institute of Scientific and Technical Information of China (English)

    Yao Daquan; Zhai Hongtao

    2005-01-01

    In order to determine the degree of returning-to-zero of temperatures of deformed calcite, a series of rock-breaking experiments were designed to test calcite-rich limestone samples under fixed confining pressures and different temperatures. The consolidated deformed samples in their initial state were observed under a microscope and the microscopic indicators in different zero-returning states were put forward, thus providing a microscopic foundation for evaluation of reliability of dating values of deformation in calcite. At last, the correction of dating values of deformation for samples whose temperature has not yet returned to zero is discussed.

  19. Infrared spectroscopy and density functional theory investigation of calcite, chalk, and coccoliths-do we observe the mineral surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Hem, Caroline Piper; Schultz, Logan Nicholas;

    2014-01-01

    broadening from macroscopic dielectric effects. We detect water adsorbed on the high surface area synthetic calcite, which permits observation of the chemistry of thin liquid films on calcite using transmission infrared spectroscopy. The combination of infrared spectroscopy and density functional theory also...... asymmetric for the coccoliths and the synthetic calcite prepared using the carbonation method. It can be very well fitted by two peaks: a narrow Lorenzian at lower frequency and a broader Gaussian at higher frequency. These two samples both have a high specific surface area. Density functional theory for...

  20. Adsorption and co-precipitation of metals and radionuclides at the calcite-water interface: spectroscopic observations

    International Nuclear Information System (INIS)

    Rapid kinetics of interfacial processes and moderate solubilities strongly coupled with solution properties allow for multiple, complex sorption mechanisms of metals and radionuclides at the surfaces of carbonate minerals. Calcite is the most abundant of the carbonate minerals and forms readily in a wide range of near-surface environments. For near-neutral and basic pH conditions, which are typical of many calcite-containing systems, the presence of significant amounts of dissolved carbonate allows competition between solution and surface-bound carbonate species for dissolved metals. Metal adsorption may dominate at low metal concentrations but overlaps with or gives way to precipitation and/or co-precipitation at higher concentrations. The presence of multiple surface sites and distinct preferences for uptake results in heterogeneous sorption and co-precipitation for many metals and radionuclides of environmental significance. We briefly examine results from in situ spectroscopic characterization of uptake of selected metals in calcite pre-equilibrated suspensions and in calcite-supersaturated systems. As examples, Pb(II) and Zn(II) both show a high affinity for binding at the calcite surface and both readily co-precipitate to form calcite solid solutions. At low metal concentrations in calcite-saturated systems, EXAFS spectroscopy shows that Zn(II) and Pb(II) adsorb as inner-sphere surface complexes at the calcite-water interface. Observed coordination geometries differ from the octahedral coordination of Zn or Pb substituting in a Ca site in the calcite structure. Binding at steps and/or kink sites is favored over terrace sites. At higher metal concentrations, precipitation and adsorption both occur, with the precipitate phase depending on solution conditions. In calcite-supersaturated systems, Zn shows a strong preference for uptake at distinct surface sites in steps on the common growth face of calcite, similar to the preferences observed for Sr and Ba. This

  1. Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure

    Science.gov (United States)

    Busenberg, Eurybiades; Plummer, L. Niel

    1989-01-01

    The stability of magnesian calcites was reexamined, and new results are presented for 28 natural inorganic, 12 biogenic, and 32 synthetic magnesian calcites. The magnesian calcite solid-solutions were separated into two groups on the basis of differences in stoichiometric solubility and other physical and chemical properties. Group I consists of solids of mainly metamorphic and hydrothermal origin, synthetic calcites prepared at high temperatures and pressures, and synthetic solids prepared at low temperature and very low calcite supersaturations () from artificial sea water or NaClMgCl2CaCl2solutions. Group I solids are essentially binary s of CaCO2 and MgCO2, and are thought to be relatively free of structural defects. Group II solid-solutions are of either biogenic origin or are synthetic magnesian calcites and protodolomites (0–20 and ∼ 45 mole percent MgCO3) prepared at high calcite supersaturations () from NaClNa2SO4MgCl2CaCl2 or NaClMgCl2CaCl2 solutions. Group II solid-solutions are treated as massively defective solids. The defects include substitution foreign ions (Na+ and SO42−) in the magnesian calcite lattice (point defects) and dislocations (~2 · 109 cm−2). Within each group, the excess free energy of mixing, GE, is described by the mixing model , where x is the mole fraction of the end-member Ca0.5Mg0.5CO3 in the solid-solution. The values of A0and A1 for Group I and II solids were evaluated at 25°C. The equilibrium constants of all the solids are closely described by the equation ln , where KC and KD are the equilibrium constants of calcite and Ca0.5Mg0.5CO3. Group I magnesian calcites were modeled as sub-regular solid-solutions between calcite and dolomite, and between calcite and “disordered dolomite”. Both models yield almost identical equilibrium constants for these magnesian calcites. The Group II magnesian calcites were modeled as sub-regular solid-solutions between defective calcite and

  2. Calcite and dolomite in intrusive carbonatites. II. Trace-element variations

    Science.gov (United States)

    Chakhmouradian, Anton R.; Reguir, Ekaterina P.; Couëslan, Christopher; Yang, Panseok

    2016-04-01

    The composition of calcite and dolomite from several carbonatite complexes (including a large set of petrographically diverse samples from the Aley complex in Canada) was studied by electron-microprobe analysis and laser-ablation inductively-coupled-plasma mass-spectrometry to identify the extent of substitution of rare-earth and other trace elements in these minerals and the effects of different igneous and postmagmatic processes on their composition. Analysis of the newly acquired and published data shows that the contents of rare-earth elements (REE) and certain REE ratios in magmatic calcite and dolomite are controlled by crystal fractionation of fluorapatite, monazite and, possibly, other minerals. Enrichment in REE observed in some samples (up to ~2000 ppm in calcite) cannot be accounted for by coupled substitutions involving Na, P or As. At Aley, the REE abundances and chondrite-normalized (La/Yb)cn ratios in carbonates decrease with progressive fractionation. Sequestration of heavy REE from carbonatitic magma by calcic garnet may be responsible for a steeply sloping "exponential" pattern and lowered Ce/Ce* ratios of calcite from Magnet Cove (USA) and other localities. Alternatively, the low levels of Ce and Mn in these samples could result from preferential removal of these elements by Ce4+- and Mn3+-bearing minerals (such as cerianite and spinels) at increasing f(O2) in the magma. The distribution of large-ion lithophile elements (LILE = Sr, Ba and Pb) in rock-forming carbonates also shows trends indicative of crystal fractionation effects (e.g., concomitant depletion in Ba + Pb at Aley, or Sr + Ba at Kerimasi), although the phases responsible for these variations cannot be identified unambiguously at present. Overall, element ratios sensitive to the redox state of the magma and its complexing characteristics (Eu/Eu*, Ce/Ce* and Y/Ho) are least variable and in both primary calcite and dolomite, approach the average chondritic values. In consanguineous

  3. Uranium immobilization by sulfate-reducing biofilms grown on hematite, dolomite, and calcite

    International Nuclear Information System (INIS)

    Biofilms of sulfate-reducing bacteria Desulfovibrio desulfuricans G20 were used to reduce dissolved U(VI)and subsequently immobilize U(IV) in the presence of uranium-complexing carbonates. The biofilms were grown in three identically operated fixed bed reactors, filled with three types of minerals: one noncarbonate-bearing mineral(hematite) and two carbonate-bearing minerals (calcite and dolomite). The source of carbonates in the reactors filled with calcite and dolomite were the minerals, while in the reactor filled with hematite it was a 10 mM carbonate buffer, pH 7.2, which we added to the growth medium. Our five-month study demonstrated that the sulfate-reducing biofilms grown in all reactors were able to immobilize/reduce uranium efficiently, despite the presence of uranium-complexing carbonates

  4. Arsenic uptake by gypsum and calcite: Modeling and probing by neutron and x-ray scattering

    CERN Document Server

    Fernandez-Martinez, Alejandro; Roman-Ross, Gabriela; Johnson, Mark R; Bardelli, Fabrizio; Turrillas, Xavier; Charlet, Laurent

    2006-01-01

    Here we report on two structural studies performed on As-doped gypsum (CaSO4 2H2O) and calcite (CaCO3), using neutron (D20-ILL) and x-ray (ID11-ESRF) diffraction data and EXAFS (BM8-ESRF). The aim of this study is to determine whether As gets into the bulk of gypsum and calcite structures or is simply adsorbed on the surface. Different mechanisms of substitution are used as hypotheses. The combined Rietveld analysis of neutron and x-ray diffraction data shows an expansion of the unit cell volume proportional to the As concentration within the samples. DFT-based simulations confirm the increase of the unit cell volume proportional to the amount of carbonate or sulphate groups substituted. Interpolation of the experimental Rietveld data allows us to distinguish As substituted within the structure from that adsorbed on the surface of both minerals.

  5. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    Science.gov (United States)

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; Robinson, Ian K.; Meldrum, Fiona C.

    2016-06-01

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates.

  6. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater

    DEFF Research Database (Denmark)

    Turner, B.D.; Binning, Philip John; Sloan, S.W.

    2008-01-01

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process. The...... paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride contaminated water: the impact of the groundwater chemical matrix and CO2 addition on fluoride removal. Column tests comparing pure NaF solutions, synthetic SPL solutions, and actual SPL...... leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal...

  7. A simple reactive-transport model of calcite precipitation in soils and other porous media

    Science.gov (United States)

    Kirk, G. J. D.; Versteegen, A.; Ritz, K.; Milodowski, A. E.

    2015-09-01

    Calcite formation in soils and other porous media generally occurs around a localised source of reactants, such as a plant root or soil macro-pore, and the rate depends on the transport of reactants to and from the precipitation zone as well as the kinetics of the precipitation reaction itself. However most studies are made in well mixed systems, in which such transport limitations are largely removed. We developed a mathematical model of calcite precipitation near a source of base in soil, allowing for transport limitations and precipitation kinetics. We tested the model against experimentally-determined rates of calcite precipitation and reactant concentration-distance profiles in columns of soil in contact with a layer of HCO3--saturated exchange resin. The model parameter values were determined independently. The agreement between observed and predicted results was satisfactory given experimental limitations, indicating that the model correctly describes the important processes. A sensitivity analysis showed that all model parameters are important, indicating a simpler treatment would be inadequate. The sensitivity analysis showed that the amount of calcite precipitated and the spread of the precipitation zone were sensitive to parameters controlling rates of reactant transport (soil moisture content, salt content, pH, pH buffer power and CO2 pressure), as well as to the precipitation rate constant. We illustrate practical applications of the model with two examples: pH changes and CaCO3 precipitation in the soil around a plant root, and around a soil macro-pore containing a source of base such as urea.

  8. From nanometer aggregates to micrometer crystals: Insight into the coarsening mechanism of calcite

    OpenAIRE

    Schultz L.N., Dideriksen K., Lakshtanov L., Hakim S.S., Müter D., Haußer F., Bechgaard K. and Stipp S.L.S.

    2013-01-01

    Grain size increases when crystals respond to dynamic equilibrium in a saturated solution. The pathway to coarsening is generally thought to be driven by Ostwald ripening, that is, simultaneous dissolution and reprecipitation, but models to describe Ostwald ripening neglect solid−solid interactions and crystal shapes. Grain coarsening of calcite, CaCO3, is relevant for biomineralization and commercial products and is an important process in diagenesis of ...

  9. A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils

    OpenAIRE

    Fauriel, Suzanne; Laloui, Lyesse

    2012-01-01

    Microbial Induced Calcite Precipitation (MICP) is an innovative technique for soil grouting involving a bacterial reactive grout. A comprehensive research work is carried out to better understand and consequently describe the phenomenon of multispecies reactive biogrout transport in saturated, deformable soil. A unique predictive model of behavior of the porous media during biogrout injection taking into account flow, transport, sorption, bacterial decay and chemical reaction, as well as cons...

  10. Coccolithophore responses to environmental variability in the South China Sea: species composition and calcite content

    OpenAIRE

    Jin, X. B.; C. L. Liu; Poulton, A. J.; M. H. Dai; X.H. Guo

    2016-01-01

    Coccolithophore contributions to the global marine carbon cycle are regulated by the calcite content of their scales (coccoliths), and the relative cellular levels of photosynthesis and calcification. All three of these factors vary between coccolithophore species, and with response to the growth environment. Here, water samples were collected in the northern basin of the South China Sea (SCS) during summer 2014 in order to examine how environmental variability influenced species composition ...

  11. Quantitative laboratory measurements of biogeochemical processes controlling biogenic calcite carbon sequestration.

    Energy Technology Data Exchange (ETDEWEB)

    Zendejas, Frank; Lane, Todd W.; Lane, Pamela D.

    2011-01-01

    The purpose of this LDRD was to generate data that could be used to populate and thereby reduce the uncertainty in global carbon cycle models. These efforts were focused on developing a system for determining the dissolution rate of biogenic calcite under oceanic pressure and temperature conditions and on carrying out a digital transcriptomic analysis of gene expression in response to changes in pCO2, and the consequent acidification of the growth medium.

  12. Rapid changes in water hardness and alkalinity: Calcite formation is lethal to Daphnia magna.

    Science.gov (United States)

    Bogart, Sarah J; Woodman, Samuel; Steinkey, Dylan; Meays, Cindy; Pyle, Greg G

    2016-07-15

    There is growing concern that freshwater ecosystems may be negatively affected by ever-increasing anthropogenic inputs of extremely hard, highly alkaline effluent containing large quantities of Ca(2+), Mg(2+), CO3(2-), and HCO3(-) ions. In this study, the toxicity of rapid and extreme shifts in water hardness (38-600mg/L as CaCO3) and alkalinity (30-420mg/L as CaCO3) to Daphnia magna was tested, both independently and in combination. Within these ranges, where no precipitation event occurred, shifts in water hardness and/or alkalinity were not toxic to D. magna. In contrast, 98-100% of D. magna died within 96h after exposure to 600mg/L as CaCO3 water hardness and 420mg/L as CaCO3 alkalinity (LT50 of 60h with a 95% CI of 54.2-66.0h). In this treatment, a CaCO3 (calcite) precipitate formed in the water column which was ingested by and thoroughly coated the D. magna. Calcite collected from a mining impacted stream contained embedded organisms, suggesting field streams may also experience similar conditions and possibly increased mortality as observed in the lab tests. Although further investigation is required to determine the exact fate of aquatic organisms exposed to rapid calcite precipitation in the field, we caution that negative effects may occur more quickly or at lower concentrations of water hardness and alkalinity in which we observed effects in D. magna, because some species, such as aquatic insects, are more sensitive than cladocerans to changes in ionic strength. Our results provide evidence that both calcite precipitation and the major ion balance of waters should be managed in industrially affected ecosystems and we support the development of a hardness+alkalinity guideline for the protection of aquatic life. PMID:27060657

  13. Morphological tranformation of calcite crystal growth by prismatic "acidic" polypeptide sequences.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I; Giocondi, J L; Orme, C A; Collino, J; Evans, J S

    2007-02-13

    Many of the interesting mechanical and materials properties of the mollusk shell are thought to stem from the prismatic calcite crystal assemblies within this composite structure. It is now evident that proteins play a major role in the formation of these assemblies. Recently, a superfamily of 7 conserved prismatic layer-specific mollusk shell proteins, Asprich, were sequenced, and the 42 AA C-terminal sequence region of this protein superfamily was found to introduce surface voids or porosities on calcite crystals in vitro. Using AFM imaging techniques, we further investigate the effect that this 42 AA domain (Fragment-2) and its constituent subdomains, DEAD-17 and Acidic-2, have on the morphology and growth kinetics of calcite dislocation hillocks. We find that Fragment-2 adsorbs on terrace surfaces and pins acute steps, accelerates then decelerates the growth of obtuse steps, forms clusters and voids on terrace surfaces, and transforms calcite hillock morphology from a rhombohedral form to a rounded one. These results mirror yet are distinct from some of the earlier findings obtained for nacreous polypeptides. The subdomains Acidic-2 and DEAD-17 were found to accelerate then decelerate obtuse steps and induce oval rather than rounded hillock morphologies. Unlike DEAD-17, Acidic-2 does form clusters on terrace surfaces and exhibits stronger obtuse velocity inhibition effects than either DEAD-17 or Fragment-2. Interestingly, a 1:1 mixture of both subdomains induces an irregular polygonal morphology to hillocks, and exhibits the highest degree of acute step pinning and obtuse step velocity inhibition. This suggests that there is some interplay between subdomains within an intra (Fragment-2) or intermolecular (1:1 mixture) context, and sequence interplay phenomena may be employed by biomineralization proteins to exert net effects on crystal growth and morphology.

  14. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide

    Science.gov (United States)

    Montes-Hernandez, G.; Fernández-Martínez, A.; Charlet, L.; Tisserand, D.; Renard, F.

    2008-05-01

    The hydrothermal carbonation of calcium hydroxide (Ca(OH) 2) at high pressure of CO 2 (initial P=55 bar) and moderate to high temperature (30 and 90 °C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH) 2-CaCO 3 conversion), a significant production rate (48 kg/m 3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperature and the dissolved quantity of CO 2 have a significant effect on the average particle size, specific surface area, initial rate of precipitation, and on the morphology of calcium carbonate crystals. In contrast, these PT x conditions used herein have an insignificant effect on the carbonation efficiency of Ca(OH) 2. Finally, the results presented here demonstrate that nano-calcite crystals with high specific surface area ( SBET=6-10 m 2/g) can be produced, with a high potential for industrial applications such as adsorbents and/or filler in papermaking industry.

  15. Effects of surface conductivity on the apparent zeta potential at the calcite-water interface

    OpenAIRE

    Li, Shuai; Leroy, Philippe; Devau, Nicolas

    2015-01-01

    International audience Carbonates are very reactive minerals that are used in many engineering applications like substance remediation and CO2 geological storage. Surface complexation reactions on calcite have significant effects on transport processes in carbonates. Zeta potential is a critical parameter to characterize the mineral surface electrochemical properties. The zeta potential is defined as the electrical potential at the shear plane between quasi immobile and mobile water at the...

  16. Epr of Mn2+ Impurities in Calcite: A Detailed Study Pertinent to Marble Provenance Determination

    DEFF Research Database (Denmark)

    Weihe, H.; Piligkos, S.; Barra, A.L.;

    2009-01-01

    We demonstrate that the electron paramagnetic resonance spectrum of Mn2+ impurities in calcite, and therefore also in marble, may be accurately reproduced by a traditional spin Hamiltonian formalism. The success of such a treatment, however, very much depends on the spin Hamiltonian parameters...... having the correct signs as well as magnitudes. We present data that determine the sign of the axial anisotropy parameter and thereby facilitate future quantum mechanical characterizations of marble electron paramagnetic resonance spectra that supplement provenance determination...

  17. EPR OF Mn2+ IMPURITIES IN CALCITE: A DETAILED STUDY PERTINENT TO MARBLE PROVENANCE DETERMINATION

    DEFF Research Database (Denmark)

    Weihe, H.; Piligkos, S.; Barra, A.L.;

    2009-01-01

    We demonstrate that the electron paramagnetic resonance spectrum of Mn2+ impurities in calcite, and therefore also in marble, may be accurately reproduced by a traditional spin Hamiltonian formalism. The success of such a treatment, however, very much depends on the spin Hamiltonian parameters...... having the correct signs as well as magnitudes. We present data that determine the sign of the axial anisotropy parameter and thereby facilitate future quantum mechanical characterizations of marble electron paramagnetic resonance spectra that supplement provenance determination....

  18. Kinetic parameters, bleaching and radiation response of thermoluminescence glow peaks separated by deconvolution on Korean calcite

    Science.gov (United States)

    Kim, Ki-Bum; Hong, Duk-Geun

    2014-10-01

    Calcite has been of particular interest in studies of thermoluminescence (TL) because of its geological and archeological importance. Although extensive research on the TL glow curves of calcite has been conducted, most previous works have been based on the TL intensity integrated over a particular temperature range on the glow curve, without any separation of peaks. In this paper, the physical characteristics of the overlapping peaks in the TL glow curves of a calcite sample are investigated. These properties can provide useful information for determining the radiation dose absorbed to the sample in radiation dosimetry and luminescence dating research. The Tm-Tstop method is employed to identify the number of hidden glow peaks, and the kinetic parameters of each separated glow peak, including the thermal activation energy, kinetic order, and frequency factor, are evaluated using a computerized glow curve deconvolution (CGCD) method. The Tm-Tstop method indicates that the glow curve of calcite is the superposition of at least four components (P1 - P4) in the temperature range between room temperature and 450 °C. A bleaching experiment for two separated glow peaks (P3 and P4) using a solar simulator revealed that the bleaching rates of peak P3 show two exponential decays, and after bleaching, the TL intensity of peak P3 is reduced to approximately 4% of the initial value. In contrast, peak P4 is bleached exponentially to approximately 30% of the initial TL intensity and thereafter shows no detectable change in intensity. In addition, in a study of the radiation dose response of the two peaks, both peaks have a similar pattern, exhibiting a linear increment up to the maximum dose investigated, 520 Gy.

  19. 13C/12C exchange between calcite and graphite: a possible thermometer in Grenville marbles

    International Nuclear Information System (INIS)

    The fractionation of 13C between calcite and graphite, Δ(Cc-Gr), is consistently small (2.6 to 4.8 permil) in 34 assemblages from upper amphibolite- and granulite-facies marbles of the Grenville Province. In 25 samples from the Adirondack Mountains, New York, it decreases regularly with increasing metamorphic temperature. The fractionations are independent of absolute delta13C values of calcite (- 2.9 to + 5.0). For T = 600 to 8000C, the Adirondack data are described by Δ(Cc-Gr) = - 0.00748T (0C) + 8.68. This good correlation between Δ and T suggests that carbon isotope equilibrium was attained in these high-grade marbles and that the theoretical calculations of this fractionation by Bottinga are approximately 2 permil too large in this temperature range. Because of the relatively high temperature sensitivity suggested by these results and by Bottinga's calculations, and the pressure independence of isotope fractionation, Δ(Cc-Gr) may provide a very good thermometer for high-grade marbles. Comparison of this field calibration for Δ(Cc-Gr) vs temperature with results from other terranes supports the utility of Δ(Cc-Gr) for geothermometry and suggests that graphite is much more sluggish to exchange than calcite, that exchange between calcite and graphite occurs at temperatures as low as 3000C, and that equilibrium may normally be attained only when peak metamorphic temperatures are greater than 500 to 6000C. Because 13C exchange is an unavoidable metamorphic process at temperatures above 3000C, high values of delta13C(Gr) in moderate- to high-grade carbonate-bearing rocks do not provide a sufficient criterion to infer an abiogenic origin for the graphite. (author)

  20. Microstructural Characterization of Calcite-Based Powder Materials Prepared by Planetary Ball Milling

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2013-08-01

    Full Text Available In this work, a planetary ball milling was used to modify the surface properties of calcite-based material from waste oyster shell under the rotational speed of 200–600 rpm, grinding time of 5–180 min and sample mass of 1–10 g. The milling significantly changed the microstructural properties of the calcite-based minerals (i.e., surface area, pore volume, true density, and porosity. The surface characterization of the resulting powder should be macroporous and/or nonporous based on the nitrogen adsorption/desorption isotherms. Under the optimal conditions at the rotational speed of 400 rpm, grinding time of 30 min and sample mass of 5 g, the resulting calcite-based powder had larger specific surface area (i.e., 10.64 m2·g−1 than the starting material (i.e., 4.05 m2·g−1. This finding was also consistent with the measurement of laser-diffraction (i.e., 9.7 vs. 15.0 μm of mean diameter. In addition, the results from the scanning electron microscope (SEM observation indicated that surface roughness can be enhanced as particle size decreases as a result of particle-particle attrition. Thus, grinding the aquacultural bioresource by a high-energy ball milling can create the fine materials, which may be applied in the fields of inorganic minerals like aggregate and construction material.

  1. Calcite production by Coccolithophores in the South East Pacific Ocean: from desert to jungle

    Directory of Open Access Journals (Sweden)

    L. Beaufort

    2007-09-01

    Full Text Available BIOSOPE cruise achieved an oceanographic transect from the Marquise Islands to the Peru-Chili upwelling (PCU via the centre of the South Pacific Gyre (SPG. Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks are usually low and reach maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales represent 50% of all the suspended calcite particles detected in the size range 0.1–46 μm (21% of PIC in term of the calcite weight. The latter species are found to grow preferentially in the Chlorophyll maximum zone. In the SPG their maximum concentrations was found to occur between 150 and 200 m, which is very deep for these taxa. The weight and size of coccoliths and coccospheres are correlated. Large and heavy coccoliths and coccospheres are found in the regions with relative higher fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres are found west of the PCU. This distribution may correspond to that of the concentration of calcium and carbonate ions.

  2. Calcite production by Coccolithophores in the South East Pacific Ocean: from desert to jungle

    Science.gov (United States)

    Beaufort, L.; Couapel, M.; Buchet, N.; Claustre, H.

    2007-09-01

    BIOSOPE cruise achieved an oceanographic transect from the Marquise Islands to the Peru-Chili upwelling (PCU) via the centre of the South Pacific Gyre (SPG). Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks are usually low and reach maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales) represent 50% of all the suspended calcite particles detected in the size range 0.1-46 μm (21% of PIC in term of the calcite weight). The latter species are found to grow preferentially in the Chlorophyll maximum zone. In the SPG their maximum concentrations was found to occur between 150 and 200 m, which is very deep for these taxa. The weight and size of coccoliths and coccospheres are correlated. Large and heavy coccoliths and coccospheres are found in the regions with relative higher fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres are found west of the PCU. This distribution may correspond to that of the concentration of calcium and carbonate ions.

  3. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    Science.gov (United States)

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  4. A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation.

    Science.gov (United States)

    Cuthbert, Mark O; McMillan, Lindsay A; Handley-Sidhu, Stephanie; Riley, Michael S; Tobler, Dominique J; Phoenix, Vernon R

    2013-01-01

    Microbially induced calcite precipitation (MICP) offers an attractive alternative to traditional grouting technologies for creating barriers to groundwater flow and containing subsurface contamination, but has only thus far been successfully demonstrated at the laboratory scale and predominantly in porous media. We present results of the first field experiments applying MICP to reduce fractured rock permeability in the subsurface. Initially, the ureolytic bacterium, Sporosarcina pasteurii, was fixed in the fractured rock. Subsequent injection of cementing fluid comprising calcium chloride and urea resulted in precipitation of large quantities (approximately 750 g) of calcite; significant reduction in the transmissivity of a single fracture over an area of several m(2) was achieved in around 17 h of treatment. A novel numerical model is also presented which simulates the field data well by coupling flow and bacterial and solute reactive transport processes including feedback due to aperture reduction via calcite precipitation. The results show that MICP can be successfully manipulated under field conditions to reduce the permeability of fractured rock and suggest that an MICP-based technique, informed by numerical models, may form the basis of viable solutions to aid pollution mitigation. PMID:24147737

  5. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide

    CERN Document Server

    Montes-Hernandez, German; Charlet, L; Tisserand, Delphine; Renard, F

    2008-01-01

    The hydrothermal carbonation of calcium hydroxide (Ca(OH)2) at high pressure of CO2 (initial PCO2 1/4 55 bar) and moderate to high temperature (30 and 90 1C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH)2-CaCO3 conversion), a significant production rate (48 kg/m3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperatu...

  6. Grain boundaries as microreactors during reactive fluid flow: experimental dolomitization of a calcite marble

    Science.gov (United States)

    Etschmann, B.; Brugger, J.; Pearce, M. A.; Ta, C.; Brautigan, D.; Jung, M.; Pring, A.

    2014-08-01

    Limestone dolomitization is an example of a fluid-induced mineralogical transformation that commonly affects extensive rock volumes. To understand the mechanisms enabling these efficient replacement reactions, we investigated experimentally the dolomitization of a fractured calcite marble under flow-through conditions at mild hydrothermal conditions. Contrary to most earlier studies of coupled dissolution reprecipitation reactions that were conducted using small, individual grains, in this study, the integrity of the rock was preserved, so that the experiment explored the links between flow in a fracture and fluid-rock interaction. In these experiments, grain boundaries acted as microreactors, in which a Mg-poor `protodolomite' formed initially, and then transformed into dolomite. The difficulty in nucleating dolomite played a key role in controlling the evolution of the porosity, by allowing for (1) initial dissolution along grain boundaries, and (2) formation of coarse porosity at the reaction interface. This porosity evolution not only enabled the reaction to progress efficiently, but also controlled the mineralogy of the system, as shown by brucite replacing calcite near the fracture once the fluid along calcite grain boundaries became sufficiently connected to the fluid flowing through the fracture. This study illustrates the role of grain boundaries, porosity evolution and nucleation in controlling reaction progress as well as the nature and textures of the products in pervasive mineralogical transformations.

  7. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    International Nuclear Information System (INIS)

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree–Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree–Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree–Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  8. Biomimetic synthesis of coexistence of vaterite-calcite phases controlled by histidine-grafted-chitosan

    Science.gov (United States)

    Chen, Zhangxu; Xin, Meihua; Li, Mingchun; Xu, Jianpeng; Li, Xianxue; Chen, Xiaodong

    2014-10-01

    Biomimetic synthesis vaterite is promising in improving the application of calcium carbonate and providing a novel method for controlling synthesis other biomaterials. For the first time, the histidine-grafted-chitosan (NHCS) is used as an organic matrix to biomimetic synthesis of calcium carbonate. Effect of the pH value on the morphology and polymorph is investigated. The products are characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM). The results show that the sole rhombohedral calcite phase can form in absence of NHCS, whereas the coexistence of vaterite-calcite phases is gained in the presence of NHCS. At pH=8.0, the content of vaterite reaches 93.7 wt%, but it drops to 62.2 wt% at pH 6.5. In addition, a possible mechanism is proposed to explain the formation of coexistence of vaterite-calcite phases in the study. The result indicates that NHCS is an effective template and pH responsive for biomimetic synthesis of vaterite, and offers a novel method for controlling synthesis of other biomaterials.

  9. Existence and release of fluid inclusions in bornite and its associated quartz and calcite

    Science.gov (United States)

    Deng, Jiu-shuai; Wen, Shu-ming; Wu, Dan-dan; Liu, Jian; Zhang, Xiao-lin; Shen, Hai-ying

    2013-09-01

    The existence and release of fluid inclusions in bornite and its associated minerals, namely, quartz and calcite were investigated and confirmed. The structures, forms, and phases of these large quantities of fluid inclusions were also studied. A mass of fluid inclusions with various sizes, distributions, shapes, and phases exist in bornite and its associated minerals. Their sizes vary from a few micrometers to tens of micrometers, and the forms appear as negative crystals, or elongated, elliptical, and irregular. At room temperature, fluid inclusions were mainly characterized as gas-liquid twophase. However, small amounts of fluid inclusions with pure gas phase and pure liquid single-phase were also observed in quartz and calcite. These fluid inclusions initially broke during the ore crushing and grinding process and then released into the flotation pulp in the flotation process. The quantitative analysis of fluid inclusions in the solution and the comparisons of mineral dissolution show that the amount of copper and iron released by fluid inclusions in the bornite sample is higher than the amount dissolved by the mineral; fluid inclusions in the associated gangue minerals, quartz, and calcite also make contribution.

  10. Structure in continuously cored, deep drill holes at Yucca Mountain, Nevada, with notes on calcite occurrence

    International Nuclear Information System (INIS)

    A study of more than 22,000 feet of core from five deep drill holes at Yucca Mountain, Nevada, provided data on the attitude and vertical distribution of faults and fractures, the sense of fault displacement, and the occurrence of calcite. The study was done mainly to look for evidence of fault flattening at depth, but no consistent downward decrease in dip of faults was found, and no increase in strata rotation was evident with increasing depth. In the two drill holes located near prominent faults that dip toward the holes (USW G-3 and G-2), an apparent increase in the frequency of faults occurs below the tuffs and lavas of Calico Hills. Some of this increase occurs in brittle lavas and flow breccias in the lower part of the volcanic section. In the two holes presumed to be relatively removed from the influence of important faults at depth, the vertical distribution of faults is relatively uniform. Calcite occurs mainly in two general zones, voids in welded portions of the Paintbrush Tuff, and in a deeper zone, mostly below 3,500 feet. Calcite is least abundant in USW G-4, which may reflect the fewer faults and fractures encountered in that drill hole

  11. Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1996-01-01

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In some cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.

  12. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Energy Technology Data Exchange (ETDEWEB)

    Ylikantola, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Linnanto, J., E-mail: juha.m.linnanto@gmail.com [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); University of Tartu, Institute of Physics, Riia 142, EE-51014 Tartu (Estonia); Knuutinen, J.; Oravilahti, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Toivakka, M. [Åbo Akademi University, Laboratory of Paper Coating and Converting and Center for Functional Materials, FI-20500 Turku/Åbo (Finland)

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree–Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree–Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree–Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  13. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Science.gov (United States)

    Ylikantola, A.; Linnanto, J.; Knuutinen, J.; Oravilahti, A.; Toivakka, M.

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree-Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree-Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree-Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  14. Calcite precipitation on glass substrates and active stalagmites in Katerloch Cave (Austria): Constraints from environmental monitoring

    Science.gov (United States)

    Sakoparnig, Marlene; Boch, Ronny; Wang, Xianfeng; Lin, Ke; Spötl, Christoph; Leis, Albrecht; Gollowitsch, Anna; Dietzel, Martin

    2016-04-01

    Located near Graz at the SE-rim of the Alps Katerloch is well-known for its impressive dripstone decoration, e.g. several metres tall and relatively fast growing (0.2-0.7 mm/yr on average) candle-stick-type stalagmites. In the course of an ongoing multi-annual and partially high-resolution cave monitoring program we study modern (active) sites of carbonate deposition focusing on the site-specific growth dynamics and connection of modern regional and cave environmental conditions with petrographic, chemical and stable isotopic information captured in the speleothems. Fresh calcite precipitates on artificial (glass) substrates underneath active drip sites were collected continuously from 2006 to 2014 (eight years!). The samples (up to 7 mm thick) represent cave sections of different temperature and drip sites of partially different characteristics (e.g. drip rate). We also recovered short drill cores (up to 3 cm length, 1 cm diameter) from the top of active stalagmites probably representing the last decades to centuries of calcite crystallization. Moreover, an actively growing stalagmite (K10) comprising both modern and past calcite deposition was collected. 238U-234U-230Th dating using MC-ICP-MS of K10 (71 cm long) revealed several distinct growth intervals (separated by growth interruptions) starting at 129.1 ±1.2 kyr BP (Last Interglacial) up to now, mostly reflecting warm and humid climate intervals. High-resolution (100 μm) isotope profiles micromilled from the multi-annual modern calcite precipitates on artificial substrates revealed low δ13C values of -12.8 to -8.3 ‰ (VPDB) and relatively high δ18O of -6.9 to -4.9 ‰Ṫhe δ18O curves from all collection sites (different growth rate) record a pronounced decrease during their most recent growth period most likely corresponding to a significant decrease towards lower oxygen isotope values observed in drip waters collected in the year 2014 compared with samples from 2005 to 2007. Drip water δ2H /δ18O

  15. A simplified methodology to approach the complexity of foraminiferal calcite oxygen-isotope data - model comparison

    Science.gov (United States)

    Roche, Didier; Waelbroeck, Claire

    2016-04-01

    Since the pioneering work of Epstein (Epstein et al., 1953), numerous calcite isotopic records from the ocean have been used to attempt reconstructing paleoclimatic information. Additional to the well known complexity brought by the fact that foraminiferal calcite records both temperature and isotopic composition of the surrounding oceanic waters, an additional effect for surface - dwelling foraminifers is the fact that two different species do not have the same habitat and may thus record different signals. This is obvious when comparing paleoclimatic records where different species have been measured for the isotopic composition of the calcite. The difference in habitat produces a three dimensional spatial complexity (a foraminifera living in preferred climatic conditions at a specific location, but also at a specific depth, sometimes far from the surface) but also a temporal uncertainty (foraminifers generally live for only a few weeks and their growth season may be evolving through time with climate change). While the different species habitats potentially contain a wealth of information that could be used to better understand the sequences of climate change, this has seldom been used in modeling studies, most models deriving calcite isotopic signal from surface and annual mean conditions (e.g. Roche et al., 2014). In the present work, we propose a reduced complexity approach to compute the calcite for several planktonic foraminifers from climate model simulations under pre-industrial conditions. We base our approach on simple functions describing the temperature dependence of the different species growth rates (Lombard et al., 2009) and on probability of presence based on the physical variables computed in the climate model. We present a comparison to available sediment traps and core tops data as a validation of the methodology, focusing on the possibility for future applicability towards inversion of the signal measured in oceanic sediment cores. References

  16. Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves

    Directory of Open Access Journals (Sweden)

    A. Wackerbarth

    2012-11-01

    Full Text Available Interpreting stable oxygen isotope (δ18O records from stalagmites is still one of the complex tasks in speleothem research. Here, we present a novel model-based approach, where we force a model describing the processes and modifications of δ18O from rain water to speleothem calcite (Oxygen isotope Drip water and Stalagmite Model – ODSM with the results of a state-of-the-art atmospheric general circulation model enhanced by explicit isotope diagnostics (ECHAM5-wiso. The approach is neither climate nor cave-specific and allows an integrated assessment of the influence of different varying climate variables, e.g. temperature and precipitation amount, on the isotopic composition of drip water and speleothem calcite.

    First, we apply and evaluate this new approach under present-day climate conditions using observational data from seven caves from different geographical regions in Europe. Each of these caves provides measured δ18O values of drip water and speleothem calcite to which we compare our simulated isotope values. For six of the seven caves modeled δ18O values of drip water and speleothem calcite are in good agreement with observed values. The mismatch of the remaining caves might be caused by the complexity of the cave system, beyond the parameterizations included in our cave model.

    We then examine the response of the cave system to mid-Holocene (6000 yr before present, 6 ka climate conditions by forcing the ODSM with ECHAM5-wiso results from 6 ka simulations. For a set of twelve European caves, we compare the modeled mid-Holocene-to-modern difference in speleothem calcite δ18O to available measurements. We show that the general European changes are simulated well. However, local discrepancies are found, and might be explained either by a too low model resolution, complex local soil-atmosphere interactions affecting evapotranspiration or by cave specific factors

  17. Semi-automatic determination of the carbon and oxygen stable isotope compositions of calcite and dolomite in natural mixtures

    International Nuclear Information System (INIS)

    A semi-automatic, on-line method was developed to determine the δ13C and δ18O values of coexisting calcite and dolomite. An isotopic mass balance is used to calculate the compositions of dolomite after having measured that of calcite and of the “bulk” sample. The limit of validity of this method is established by performing isotopic measurements of artificial mixtures made of precisely weighted and isotopically-characterised dolomite and calcite. The accuracy and repeatability of the calculation of dolomite δ13C and δ18O are statistically determined with a Monte-Carlo procedure of error propagation. Stable isotope ratios are determined by using an automated MultiPrep™ system on-line with an isotope-ratio mass-spectrometer (IRMS). The reaction time and the temperature of reaction were optimised by comparing the results with the isotopic composition of known mixtures. The best results were obtained by phosphoric acid digestion after 20 min at 40 °C for calcite and 45 min at 90 °C for dolomite. This procedure allows an accurate determination of the isotopic ratios from small samples (300 μg). Application of this protocol to natural mixtures of calcite and dolomite requires the accurate determination of the relative abundance of calcite and dolomite by combining Mélières manocalcimetry (MMC) and X-ray diffractometry (XRD).

  18. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity

    Energy Technology Data Exchange (ETDEWEB)

    Monchau, F., E-mail: Francine.monchau@univ-artois.fr [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Hivart, Ph.; Genestie, B. [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Chai, F. [Laboratoire Medicaments et Biomateriaux a Liberation Controlee (INSERM U 1008, Universite Lille Nord de France), Groupe de Recherche sur les Biomateriaux (Universite Lille-2), Faculte de Medecine, 1, place de Verdun, 59045 Lille cedex (France); and others

    2013-01-01

    Close to the bone mineral phase, the calcic bioceramics, such as hydroxyapatite (HA) and {beta}-tricalcium phosphate ({beta}-TCP), are commonly used as substitutes or filling materials in bone surgery. Besides, calcium carbonate (CaCO{sub 3}) is also used for their excellent biocompatibility and bioactivity. However, the problem with the animal-origin aragonite demands the new technique to synthesize pure calcite capable of forming 3D bone implant. This study aims to manufacture and evaluate a highly-pure synthetic crystalline calcite with good cytocompatibility regarding to the osteoblasts, comparing to that of HA and {beta}-TCP. After the manufacture of macroporous bioceramic scaffolds with the identical internal architecture, their cytocompatibility is studied through MC3T3-E1 osteoblasts with the tests of cell viability, proliferation, vitality, etc. The results confirmed that the studied process is able to form a macroporous material with a controlled internal architecture, and this synthesized calcite is non-cytotoxic and facilitate the cell proliferation. Indeed requiring further improvement, the studied calcite is definitely an interesting alternative not only to coralline aragonite but also to calcium phosphate ceramics, particularly in bone sites with the large bone remodelling. Highlights: Black-Right-Pointing-Pointer Macroporous calcite manufacturing with controlled architecture as bone substitute Black-Right-Pointing-Pointer Cytotoxicity: adaptation of the colony-forming method with the target cells: MC3T3-E1 osteoblasts Black-Right-Pointing-Pointer Study of osteoblast proliferation and activity on calcite, HA and TCP.

  19. Comparison of isotopic composition of different forms of calcite precipitated from fresh water

    International Nuclear Information System (INIS)

    In the karst area of NW Yugoslavia calcite is precipitated from fresh water in the form of speleothems in karst caves, as lacustrine deposits in river beds (tufa or travertine), and as lake sediments. The isotopic compositions of these forms of calcite were compared to determine conditions for calcite precipitation, i.e. whether precipitation takes place under isotopic equilibrium or not. The content of stable isotopes of carbon (13C) and oxygen (18O), as well as radiocarbon (14C) activity, were measured in calcite samples. Speleothems formed under various physicochemical conditions were collected in the Slovenian karst area, while most tufa samples and lake sediments were collected in the Plitvice Lakes area, Croatia. The δ18O of investigated young speleothems varies from -5 per mille to -7 per mille PDB and that of recent tufa and lake sediment from -8.5 to -10 per mille. The observed variations of δ13C content are much higher: δ13C of speleothems varies between -6.5 and -11 per mille, and that of tufa between -10 and -2 per mille PDB. However, the most frequent δ13C values of speleothems and tufa samples are very similar, indicating similar conditions of calcite formation. Higher δ13C values can be explained by the escape of isotopically lighter CO2 from water and by exchange with atmospheric CO2. It was observed that δ18O and δ13C values were higher for tufa deposits that were precipitated at waterfalls than those of sediments or tufa formed in lakes or under steady water flow conditions. More pronounced differences between tufa and speleothems were found in oxygen isotopic composition. The δ18O values of tufa are significantly more negative than the δ18O of speleothems owing to the different isotopic composition of water from which the calcite was precipitated. Tufa is precipitated from water with mean annual δ18O values of -10.7 per mille SMOW, while speleothems are formed from water with mean annual 6180 of -8.6 per mille (samples from caves

  20. Growing spherulitic calcite grains in saline, hyperalkaline lakes: experimental evaluation of the effects of Mg-clays and organic acids

    Science.gov (United States)

    Mercedes-Martín, R.; Rogerson, M. R.; Brasier, A. T.; Vonhof, H. B.; Prior, T. J.; Fellows, S. M.; Reijmer, J. J. G.; Billing, I.; Pedley, H. M.

    2016-04-01

    The origin of spherical-radial calcite bodies - spherulites - in sublacustrine, hyperalkaline and saline systems is unclear, and therefore their palaeoenvironmental significance as allochems is disputed. Here, we experimentally investigate two hypotheses concerning the origin of spherulites. The first is that spherulites precipitate from solutions super-saturated with respect to magnesium-silicate clays, such as stevensite. The second is that spherulite precipitation happens in the presence of dissolved, organic acid molecules. In both cases, experiments were performed under sterile conditions using large batches of a synthetic and cell-free solution replicating waters found in hyperalkaline, saline lakes (such as Mono Lake, California). Our experimental results show that a highly alkaline and highly saline solution supersaturated with respect to calcite (control solution) will precipitate euhedral to subhedral rhombic and trigonal bladed calcite crystals. The same solution supersaturated with respect to stevensite precipitates sheet-like stevensite crystals rather than a gel, and calcite precipitation is reduced by ~ 50% compared to the control solution, producing a mixture of patchy prismatic subhedral to euhedral, and minor needle-like, calcite crystals. Enhanced magnesium concentration in solution is the likely the cause of decreased volumes of calcite precipitation, as this raised equilibrium ion activity ratio in the solution. On the other hand, when alginic acid was present then the result was widespread development of micron-size calcium carbonate spherulite bodies. With further growth time, but falling supersaturation, these spherules fused into botryoidal-topped crusts made of micron-size fibro-radial calcite crystals. We conclude that the simplest tested mechanism to deposit significant spherical-radial calcite bodies is to begin with a strongly supersaturated solution that contains specific but environmentally-common organic acids. Furthermore, we found

  1. Rare Earth element (REE) incorporation in natural calcite. Upper limits for actinide uptake in a secondary phase

    Energy Technology Data Exchange (ETDEWEB)

    Stipp, S.L.S.; Christensen, J.T.; Waight, T.E. [Geological Inst., Univ. of Copenhagen (Denmark); Lakshtanov, L.Z. [Geological Inst., Univ. of Copenhagen (Denmark); Inst. of Experimental Mineralogy, Russian Academy of Science, Chernogolovka (Russian Federation); Baker, J.A. [School of Earth Sciences, Victoria Univ. of Wellington (New Zealand)

    2006-07-01

    Secondary minerals have the potential to sequester escaped actinides in the event of a radioactive waste repository failure, but currently, data to define their maximum uptake capacity are generally lacking. To estimate a maximum limit for solid solution in calcite, we took advantage of the behavioural similarities of the 4f-orbital lanthanides with some of the 5f-orbital actinides and used rare Earth element (REE) concentration as an analogue. A suite of 65 calcite samples, mostly pure single crystals, was assembled from a range of geological settings, ages and locations and analysed by isotope dilution MC-ICP-MS (multiple-collector inductively-coupled plasma mass spectroscopy). All samples were shown to contain significant lanthanide concentrations. The highest were in calcite formed from hydrothermal solutions and from carbonatite magma. Maximum total mole fraction of REE was 4.72 x 10{sup -4}, which represents one substituted atom for about 2000 Ca sites. In comparison, synthetic calcite, precipitated at growth rates slow enough to insure solid solution formation, incorporated 7.5 x 10{sup -4} mole fraction Eu(III). For performance assessment, we propose that 7.5 mmole substitution/kg calcite should be considered the upper limit for actinide incorporation in secondary calcite. The largest source of uncertainty in this estimate results from extrapolating lanthanide data to actinides. However, the data offer confidence that for waters in the hydrothermal temperature range, such as in the near-field, or at groundwater temperatures, such as in the far-field, if calcite formation is favoured and actinides are present, those with behaviour like the trivalent lanthanides, especially Am{sup 3+} and Cm{sup 3+}, will be incorporated. REE are abundant and widely distributed, and they have remained in calcite for millions of years. Thus, one can be certain that incorporated actinides will also remain immobilised in calcite formed in fractures and pore spaces, as long as

  2. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    Science.gov (United States)

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  3. Reconstructing Cambro-Ordovician Seawater Composition using Clumped Isotope Paleothermometry on Calcitic and Phosphatic Brachiopods

    Science.gov (United States)

    Bergmann, K.; Robles, M.; Finnegan, S.; Hughes, N. C.; Eiler, J. M.; Fischer, W. W.

    2012-12-01

    A secular increase in δ18O values of marine fossils through early Phanerozoic time raises questions about the evolution of climate and the water cycle. This pattern suggests two end-member hypotheses 1) surface temperatures during early Paleozoic time were very warm, in excess of 40°C (tropical MAT), or 2) the isotopic composition of seawater increased by up to 7-8‰. It has been difficult to evaluate these hypotheses because the δ18O composition of fossils depends on both temperature and the δ18O of water. Furthermore, primary isotopic signatures can be overprinted by diagenetic processes that modify geological materials. This too could explain the decrease in δ18O values of marine fossils with age. Carbonate clumped isotope thermometry can constrain this problem by providing an independent measure of crystallization temperature and, when paired with classical δ18O paleothermometry, can determine the isotopic composition of the fluid the mineral last equilibrated with. Combined with traditional tools, this method has the potential to untangle primary isotopic signatures from diagenetic signals. We measured the isotopic ordering of CO3 groups (Δ47) substituted into the phosphate lattice of phosphatic brachiopods in Cambrian strata. Phosphatic fossils are generally less soluble than carbonates in surface and diagenetic environments, and so are hypothesized to provide a more robust record of primary growth conditions. They also provide an archive prior to the rise of thick shelled calcitic fossils during the Ordovician Radiation. Additionally, measurements of the δ18O of the CO3 groups can be compared with the δ18O of PO4 groups to test whether their mutual fractionation is consistent with primary growth and the apparent temperature recorded by carbonate clumped isotope measurements. We are constructing a phosphatic brachiopod calibration for carbonate clumped isotope thermometry, and Δ47 values of CO2 extracted from modern phosphatic brachiopods suggest

  4. Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC

    Science.gov (United States)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus; Larsen, Flemming

    2012-09-01

    The competitive adsorption of arsenate and phosphate onto calcite was studied in batch experiments using calcite-equilibrated solutions. The solutions had circum-neutral pH (7-8.3) and covered a wide span in the activity of Ca2+ and CO32-. The results show that the adsorption of arsenate onto calcite is strongly reduced by the presence of phosphate, whereas phosphate adsorption is only slightly reduced by arsenate addition. Simultaneous and sequential addition (3 h apart) yields the same reduction in adsorption, underlining the high reversibility of the system. The reduction in adsorption of both arsenate and phosphate is most likely due to competition for the same sorption sites at the calcite surface, considering the similarity in sorption edges, pKa's and geometry of the two anions. The strong reduction in arsenate adsorption by competition with phosphate suggests that adsorption of arsenate onto calcite is of minor importance in most groundwater aquifers, as phosphate is often present at concentration levels sufficient to significantly reduce arsenate adsorption. The CD-MUSIC model for calcite was used successfully to model adsorption of arsenate and phosphate separately. By combining the models for single sorbate systems the competitive adsorption of phosphate and arsenate onto calcite in the binary system could be predicted. This is in contrast to the constant capacitance model (CCM) which under-predicted the competition when combining the models for single sorbate systems. This study clearly shows the importance of performing competitive adsorption studies for validation of multi-component models and for estimating the mobility of an ion in the environment.

  5. Calcite/opal deposits at Yucca Mountain, Nevada: Pedogenic or hypogene?

    International Nuclear Information System (INIS)

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this paper is to consider all of the geological and geochemical data available for the calcite/opal deposits at Yucca Mountain and to ascertain whether this data favors a pedogenic or hyogene origin for these deposits. Far from being of esoteric concern, this subject is of paramount importance to the debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site. It is also the purpose of this paper to serve as a foundation for a lengthy feature article to be submitted for publication in 1994. In addition, a stand has been taken by the National Research Council of the National Academy of Sciences against the upwelling-water model (a vote of 17 to 0 against), and this same panel report has concluded that open-quotes there is no compelling evidence for the repetitive flooding of the environment by expulsion of groundwaterclose quotes and that open-quotes instead, the evidence strongly supports the idea that the near-surface mineral deposits resulted from percolating rainwater, which carried soil minerals down into rock fracturesclose quotes. Based on such information the Department of Energy has stated that it open-quotes finds no basis to continue to study the origin of these specific depositsclose quotes. This study, based upon many different independent lines of evidence, reaches the opposite conclusion and instead favors a hypogene spring-travertine origin for the controversial calcite/opal deposits at Yucca Mountain. This study recognizes a pedogenic carbonate component at Yucca Mountain, but argues that this component is distinct from, and sometimes intermixed with, the calcite/opal deposits

  6. Climate proxies from Sr/Ca of coccolith calcite: calibrations from continuous culture of Emiliania huxleyi

    Science.gov (United States)

    Stoll, Heather M.; Rosenthal, Yair; Falkowski, Paul

    2002-03-01

    Continuous culture of the coccolithophorid Emiliania huxleyi reveals that coccolith Sr/Ca ratios depend on temperature and growth rate. At a constant temperature of 18°C, coccolith Sr/Ca ratios increased nearly 15% as growth rate increased from 0.1 to 1.5 divisions per day and calcification rate increased from 1.5 to 50 pg calcite per cell per day. When temperature increased from 7 to 26°C, Sr/Ca ratios increased by more than 25% (i.e., 1%/1°C), although the range in growth and calcification rates was the same as for experiments at constant temperature. The temperature dependence of Sr/Ca ratios in coccoliths is consistent with that observed in planktonic foraminifera and abiogenic calcites, suggesting that it is controlled by thermodynamic processes. However, the positive correlation of coccolith Sr/Ca with temperature contrasts with field studies in the equatorial Pacific, where Sr/Ca ratios are highest at the locus of maximum upwelling and productivity despite depressed temperatures. This paradox may reflect different calcification rate effects between E. huxleyi and the other species dominating assemblages in the equatorial Pacific sediments, which may be resolved by new techniques for separation of monospecific coccolith samples from sediments. Models of crystal growth indicate that kinetic effects on Sr partitioning in calcite due to surface enrichment could explain the Sr/Ca variations observed in constant temperature experiments but not the larger amplitude calcification rate effects observed in equatorial Pacific sediments. Despite the dual influence of temperature and growth rate on coccolith Sr/Ca, coccolith Sr/Ca correlates with "b," the slope of the dependence of carbon isotope fractionation in biomarkers (ɛ p) on CO 2(aq) at a range of growth rates and temperatures. Consequently, using coccolith Sr/Ca in combination with alkenone ɛ p may improve paleo-CO 2 determinations.

  7. Influence of temperature and CO2 on the strontium and magnesium composition of coccolithophore calcite

    Directory of Open Access Journals (Sweden)

    M. N. Müller

    2013-10-01

    Full Text Available Marine calcareous sediments provide a fundamental basis for paleoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths in the euphotic zone and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis. Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr was positively correlated with both carbon dioxide (pCO2 and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. The results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite. The partition coefficient of magnesium (DMg displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These results give an extended insight into the driving factors that lead to variations in the coccolith Mg / Ca ratio and can be used for Sr / Ca and Mg / Ca

  8. Calcite/opal deposits at Yucca Mountain, Nevada: Pedogenic or hypogene?

    Energy Technology Data Exchange (ETDEWEB)

    Hill, C.A.; Schluter, C.M.; Harmon, R.S. [and others

    1994-01-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this paper is to consider all of the geological and geochemical data available for the calcite/opal deposits at Yucca Mountain and to ascertain whether this data favors a pedogenic or hyogene origin for these deposits. Far from being of esoteric concern, this subject is of paramount importance to the debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site. It is also the purpose of this paper to serve as a foundation for a lengthy feature article to be submitted for publication in 1994. In addition, a stand has been taken by the National Research Council of the National Academy of Sciences against the upwelling-water model (a vote of 17 to 0 against), and this same panel report has concluded that {open_quotes}there is no compelling evidence for the repetitive flooding of the environment by expulsion of groundwater{close_quotes} and that {open_quotes}instead, the evidence strongly supports the idea that the near-surface mineral deposits resulted from percolating rainwater, which carried soil minerals down into rock fractures{close_quotes}. Based on such information the Department of Energy has stated that it {open_quotes}finds no basis to continue to study the origin of these specific deposits{close_quotes}. This study, based upon many different independent lines of evidence, reaches the opposite conclusion and instead favors a hypogene spring-travertine origin for the controversial calcite/opal deposits at Yucca Mountain. This study recognizes a pedogenic carbonate component at Yucca Mountain, but argues that this component is distinct from, and sometimes intermixed with, the calcite/opal deposits.

  9. Distribution of vesicular-arbuscular mycorrhizal fungi in coal, lignite and calcite mine spoils of India

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, V.; Ragupathy, S.; Parthipan, B.; Rani, D.B.R.; Mahadevan, A.

    1991-12-31

    Vesicular-arbuscular mycorhizzal (VAM) status was assessed for coal, lignite and calcite mine spoils. The three study sites were: The Kothagudem coal field in the south central region where waste materials are piled 1 to 2 m high on the soil surface. Samples were collected from plants growing on the waste. Neyveli, on the southeastern coast, is a lignite coal mine where the spoil is piled 70 to 100 m high on the soil surface. Samples were collected from recently revegetated mine spoil and from 25 year old revegetated sites. The calcite mine at Thazhaiyuthu in the south where the spoil is piled up 2 to 3 m on the soil surface. Samples were collected from 4 to 7 year old reclaimed sites. The wastes generally supported different plant species. The level of VAM infection of plants was markedly different in each mine spoil, with the maximum infection in the coal and calcite spoils, and the least in the lignite spoil. There was more infection in the 25 year old lignite spoil than in the newly revegetated spoil. There were different VAM species in each spoil, and no one species was present in all of the samples. The authors conclude that one of the factors leading to the differences between spoils is the amount of topsoil contained in the spoil (least in the lignite spoils which are very deep). The other is age of the spoils. Unfortunately the authors concluded that the best approach is to enrich the spoils with VAM rather than salvaging and replacing topsoil

  10. An explanation for the 18O excess in Noelaerhabdaceae coccolith calcite

    Science.gov (United States)

    Hermoso, M.; Minoletti, F.; Aloisi, G.; Bonifacie, M.; McClelland, H. L. O.; Labourdette, N.; Renforth, P.; Chaduteau, C.; Rickaby, R. E. M.

    2016-09-01

    Coccoliths have dominated the sedimentary archive in the pelagic environment since the Jurassic. The biominerals produced by the coccolithophores are ideally placed to infer sea surface temperatures from their oxygen isotopic composition, as calcification in this photosynthetic algal group only occurs in the sunlit surface waters. In the present study, we dissect the isotopic mechanisms contributing to the "vital effect", which overprints the oceanic temperatures recorded in coccolith calcite. Applying the passive diffusion model of carbon acquisition by the marine phytoplankton widely used in biogeochemical and palaeoceanographic studies, our results suggest that the oxygen isotope offsets from inorganic calcite in fast dividing species Emiliania huxleyi and Gephyrocapsa oceanica originates from the legacy of assimilated 18O-rich CO2 that induces transient isotopic disequilibrium to the internal dissolved inorganic carbon (DIC) pool. The extent to which this intracellular isotopic disequilibrium is recorded in coccolith calcite (1.5 to +3‰ over a 10 to 25 °C temperature range) is set by the degree of isotopic re-equilibration between CO2 and water molecules before intracellular mineralisation. We show that the extent of re-equilibration is, in turn, set by temperature through both physiological (dynamics of the utilisation of the DIC pool) and thermodynamic (completeness of the re-equilibration of the relative 18O-rich CO2 influx) processes. At the highest temperature, less ambient aqueous CO2 is present for algal growth, and the consequence of carbon limitation is exacerbation of the oxygen isotope vital effect, obliterating the temperature signal. This culture dataset further demonstrates that the vital effect is variable for a given species/morphotype, and depends on the intricate relationship between the environment and the physiology of biomineralising algae.

  11. The evolution of Carbon isotopes in calcite in the presence of cyanobacteria

    Science.gov (United States)

    Grimm, Christian; Mavromatis, Vasileios; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2016-04-01

    Stable isotopic compositions in carbonates are widely used as indicators of environmental conditions prevailing during mineral formation. This reconstruction is substantially based on the assumption that there is no change in the mineral composition over geological time. However, recent experimental studies have shown that carbon and magnesium isotopes in hydrous Mg-carbonates undergo continuous re-equilibration with the ambient solution even after mineral precipitation stopped ([1] and [2], respectively). To verify whether this holds true for anhydrous Ca-bearing carbonates which readily form at earth's surface environments, a series of batch system calcite precipitation experiments were performed in the presence of actively growing cyanobacteria Synechococcus sp. The bacteria were grown at ambient temperature in a BG11 culture medium (SIGMA C3061) and continuous stirring, air-bubbling and illumination. Calcite precipitation was initiated by the addition of 8.5mM CaCl2 and 0-50 mM NaHCO3 or NaHCO3-Na2CO3 mixtures. The presence of cyanobacteria is on one hand promoting CaCO3 formation due to increasing pH resulting from photosynthesis. On the other hand, actively growing cyanobacteria drastically change carbon isotope signature of the aqueous fluid phase by preferably incorporating the lighter 12C isotope into biomass [1]. This study explores the effect of continuously changing carbon isotope compositions in dissolved inorganic carbon (DIC) on precipitated calcite which is in chemical equilibrium with the ambient fluid phase. [1] Mavromatis et al. (2015). The continuous re-equilibration of carbon isotope compositions of hydrous Mg-carbonates in the presence of cyanobacteria. Chem. Geol. 404, 41-51 [2] Mavromatis et al. (2012). Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochim. Cosmochim. Acta 76, 161-174

  12. Structure and dynamics of microbe-exuded polymers and their interactions with calcite surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, Randall Timothy; Mitchell, Ralph (Harvard University, Cambridge, MA); Perry, Thomas D. (Harvard University, Cambridge, MA)

    2005-12-01

    Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these organo-cation interactions are well suited to predictive molecular modeling studies for investigating the roles of conformation and configuration of polysaccharides on cation binding. In this study, alginic acid was chosen as a model polymer and representative disaccharide and polysaccharide subunits were modeled. The ability of disaccharide subunits to bind calcium and to associate with the surface of calcite was investigated. The findings were extended to modeling polymer interactions with calcium ions.

  13. Is there a reversible step in 45Ca sorption onto pure calcite?

    International Nuclear Information System (INIS)

    Complete text of publications follows: Metal sorption onto carbonate minerals have been intensively interpreted in literature by two reaction steps: (1) a first one rapid and completed within few hours and (2) a second one slower, eventually irreversible and occurring at a constant rate (Davis et al., 1987; Zachara et al., 1991; Mevellec, 2000). The first step is often attributed to an ion exchange process, but its reversibility is rarely investigated. Consequently, discrimination of the global sorption phenomenon into two different mechanisms is not always justified. Therefore, we have investigate both sorption and desorption of Ca, radio-traced with isotope 45Ca, onto synthetic pure calcite in aqueous solutions saturated with respect to calcite and in equilibrium with the atmospheric CO2. Batch experiments were performed as a function of time and at different pH using anionic chemical buffers having no affinity towards calcite. The distribution coefficient of 45Ca was calculated from radiochemical measurements of the supernatants before and after sorption, and the total Ca aqueous concentration was measured by ion - chromatography. As mentioned by previously cited authors, our results show that whatever the pH, Kd's of 45Ca increase with time without reaching a stationary state within two weeks. Moreover, Kd's calculated with desorption experimental data are systematically higher than those calculated with the sorption ones. In order to test the occurrence of a first reversible ion exchange step, we applied the approach of Badillo-Almaraz and Ly (2003) put forward for the interpretation of Ca sorption onto hydroxyapatite. More specifically, on the basis of isotopic equilibrium principle and from the knowledge of the isotopic ratios (45Ca/Catot), it is possible to calculate 'reversible' Kd's of 45Ca for both sorption and desorption steps. Doing this, we observe that both calculated Kd's values are similar, whatever the time and pH. In these conditions, we are able

  14. Calcite fabric development during the spatial and temporal evolution of a high-strain zone

    Science.gov (United States)

    Buchan, C.; Reddy, S.

    2003-04-01

    High-strain zones commonly have complex deformation histories because of the spatial and temporal localisation of deformation during their development. Linking microstructural development to particular stages of this progressive deformation may provide a significant advance in our understanding of how high-strain zones develop but such studies are difficult unless the temporal framework of deformation can be constrained. The Gressoney Shear Zone (GSZ) in the Italian Alps is a kilometre-wide, calcite-dominated high strain zone characterised by top-SE movement related to crustal extension. Rb-Sr dating of micas within different fabrics recrystallised below their blocking temperature thus recording the time of deformation, show that the GSZ developed between c. 45 -- 36 Ma ago. This well constrained temporal and kinematic framework provides an excellent opportunity to investigate the microstructural evolution of high strain rocks. Electron Backscatter Diffraction (EBSD) has been utilised to: 1) characterise the effects of grain size on crystallographic preferred orientations (CPO); 2) establish the relationship of calcite deformation mechanisms to misorientations; and 3) compare deformation processes in naturally-deformed samples with experimental data. In most cases, samples record a similar CPO with (0001) lying parallel to the shear zone boundary. Coarser grains (>200 μm) record e-twinning but also the development of low-angle boundaries and core/mantle structures indicative of sub-grain rotation. Smaller grains (10--200 μm) show no evidence of twinning and generally record similar (0001) CPO to coarser grains. The samples with older mica ages exhibit more variability with significant differences in CPO. Within all samples, r- and f- planes show no preferred orientation and slip directions associated with these calcite slip planes are randomly distributed. Our data indicates considerably more complexity than experimentally deformed calcite and are not readily

  15. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Sakuma, Hiroshi; Stipp, Susan Louise Svane

    2014-01-01

    -fluid interface, and into the second layer of the solid. This information can be used as an indicator for cation substitution in the bulk phase, such as for the uptake of toxic metals from the environment and the growth of secondary phases. In both the surface and in the second layer, Ni(2+), Cd(2+), and Pb(2...... is favored at the mineral-fluid interface compared with bulk substitution, which also agrees with experimental data. Our results predict that Ni(2+), Cd(2+), and Pb(2+) form a stable solid solution with calcite. Successful prediction of the experimental results gives us confidence in our ability to...

  16. Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1982-08-01

    A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12 refs.)

  17. The influence of solution composition and grain boundaries on the replacement of calcite by dolomite

    Science.gov (United States)

    Moraila Martinez, Teresita de Jesus; Putnis, Christine V.; Putnis, Andrew

    2016-04-01

    Dolomite formation is a mineral replacement reaction that affects extensive rock volumes and comprises a large fraction of oil and gas reservoirs [1,2]. The most accepted hypothesis is the 'dolomitization' of limestone by Mg-rich fluids [3]. The objective of this research is to study the replacement mechanism of calcite by dolomite, the role of grain boundaries, highlighted by Etschmann et al. (2014), and the possible influence of solutions in dolomite formation under the presence of ions that are normally in crustal aqueous fluids. To accomplish this purpose, we performed hydrothermal experiments using Carrara marble cubes of ~1.5 mm size and 7-9 mg weight as starting material, reacted with 1M (Mg,Ca)Cl2 aqueous solutions, with Mg/Ca ratios of 3 and 5 at 200°C, for different reaction times. Additional experiments were performed adding 1mM of Na2SO4, NaCl or NaF to the previous solutions. After the reaction, the product phases were identified using Raman spectroscopy, X-Ray powder diffraction (XRD), electron microprobe analysis (EMPA), and the textural evolution was studied by scanning electron microscopy (SEM). Samples reacted with aqueous solutions resulted in the replacements of the calcite rock into magnesite and dolomite. The amount and type of reaction strongly depends on the Mg/Ca ratio. Samples reacted with a Mg/Ca ratio of 5 resulted in an almost complete replacement reaction and more favorable for magnesite formation than for dolomite. When the Mg/Ca ratio was 3 dolomite formed but the replacement was located in the core of the sample. We show that grain boundaries are very important for the infiltration of solution and the progress of a replacement reaction, acting as fluid pathways. Solution composition controls the nature of the replacement product. Acknowledgment: This work is funded within a Marie Curie EU Initial Training Network- CO2-React. 1. Etschmann B., Brugger J., Pearce M.A., Ta C., Brautigan D., Jung M., Pring A. (2014). Grain boundaries as

  18. Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke; Madsen, L.

    2001-01-01

    adsorption characteristics of selected pesticides. Investigated mineral phases included quartz, calcite, kaolinite, and alpha -alumina. Selected pesticides comprised atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine isoproturon [3-(4-isopropyl-phenyl)-1,1-dimethylurea)], mecoprop [(RS)-2...... due to formation of Ca-pesticide-surface complexes. Adsorption of the uncharged pesticides (atrazine and isoproturon) was detected only on kaolinite. The lack of adsorption on alpha -alumina indicates that the uncharged pesticides have a greater affinity for the silanol surface sites (= SiOH) than for...

  19. DECARBONATION AND ATTRITION OF CALCITE IN A PLASMA SPOUTED BED REACTOR

    OpenAIRE

    G. Flamant; Chraibi, M. (Mohamede); Vallbona, G.; Bertrand, C

    1990-01-01

    The mechanical power and the thermal energy for the processing of calcite are the main part of the energy consumption in cement industry. Experimental results about particle size reduction and calcination of CaCO3 in a plasma spouted bed reactor are presented in this paper. The main parameter seems to be the specific enthalpy of the plasma jet, it ranges between 3 kWh.m-3 20 kWh.m-3. The variations of the attrition rate, decomposition rate and particle size distribution are discussed.

  20. Microstructural analysis of calcite-filled fractures inherited from basement structures, southern Ontario, Canada: long term instability of the craton?

    Science.gov (United States)

    Spalding, Jennifer; Schneider, David

    2016-04-01

    Intra-cratonic regions are generally characterized by tectonic stability and low seismicity. In southern Ontario, Canada, moderate levels of seismicity have been recorded over the last few decades reaching magnitudes of 5 MN, indicating that the geosphere is not as stable as predicted. The stratigraphy of the region consists of Ordovician limestone with a thickness of ~200 m that unconformably overlays the Mesoproterozoic crystalline Grenville Province. Subsequent tectonism including repeated Paleozoic orogenies and rifting along the east coast of North America has reactivated Proterozoic structures that have propagated into the overlying carbonate platform forming mesoscopic-scale brittle structures. Exposed along the shores of Lake Ontario are decameter-scale fracture zones, with a fracture spacing of 0.5 to 10 meters. The dominant fracture set trends E-W, and often forms conjugate sets with less prominent NNE-oriented fractures. More locally, an older NW-oriented fracture set is cross cut by the E-W and NNE oriented fractures. Regionally, there have been six directions of maximum horizontal stress in southern Ontario since the Precambrian, with the current orientation of maximum stress oriented ENE as a consequence of far field Atlantic ridge-push forces generated at distant plate boundaries. Calcite mineralization along fractured surfaces locally form sub-horizontal slickenside fabrics which are covered by a layer of euhedral calcite crystals, suggesting that fracture dilation (and fluid flow) occurred after fracture slip to allow the growth of calcite crystals. Due to the proximity of the carbonate units to the crystalline basement, we expect the calcitic veins to be enriched in rare earth elements and are presently conducting geochemical analyses. The calcite veins and surfaces vary from 2.5 cm to 1 mm thicknesses, often with larger calcite crystals in the center of the vein and smaller crystals at the vein boundaries, likely representing nucleation on small

  1. Preservation state of metastable magnesian calcite in periplatform sediments from the Caribbean Sea over the last million years

    Science.gov (United States)

    Sepulcre, Sophie; Tachikawa, Kazuyo; Vidal, Laurence; Thouveny, Nicolas; Bard, Edouard

    2009-11-01

    Carbonate-rich periplatform sediments represent an active carbon reservoir containing metastable aragonite and magnesian calcite (Mg-calcite, > 4 mol % MgCO3). Since Mg-calcite is highly soluble, the preservation state of this mineral provides information on past carbonate systems at water depths shallower than the lysocline. The mineralogy and geochemistry of the carbonate-rich fine fraction (MgCO3) during interglacials. Glacial Mg/Ca ratios were approximately 8 mol % MgCO3 for the period from 940 ka to 400 ka, and approximately 10 mol % MgCO3 for the last 400 ka. The Mg/Ca shift is concomitant with a preferential loss of Mg-calcite relative to aragonite. The preservation state of Mg-calcite revealed that the bottom water mass of the studied site was slightly more corrosive for the earlier period, possibly relating to a composition change in intermediate water and/or to the ventilation rate in the Atlantic Ocean.

  2. Adsorption of arsenic and phosphate onto the surface of calcite as revealed by batch experiments and surface complexation modelling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt

    eleven different calcite-equilibrated solutions that varied in pH, PCO2, ionic strength and activity of Ca2+, CO3 2- and HCO3 -. To avoid the precipitation of phosphate or arsenic-containing minerals the experiments were conducted using a short reaction time (generally 3 h) and a low concentration of...... phosphate (≤ 50 μM) and arsenic (≤ 33 μM). The results show that little or no arsenite adsorbs onto calcite within 24 h at initial arsenite concentration of 0.67 μM. In contrast, both arsenate and phosphate adsorbs readily and quickly onto calcite, with arsenate adsorbing faster than phosphate (adsorption...... similarity in sorption edges, pKa’s and geometry of the two anions. The adsorption of arsenate and phosphate in the single sorbate systems was modelled successfully using either the constant capacitance model (CCM) for calcite or the CD-MUSIC model for calcite. Generally the models capture the variation in...

  3. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells

    Energy Technology Data Exchange (ETDEWEB)

    Du Yang; Lian Fei [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Zhu Lingyan, E-mail: zhuly@nankai.edu.cn [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2011-07-15

    The potential of using mollusk shell powder in aragonite (razor clam shells, RCS) and calcite phase (oyster shells, OS) to remove Pb{sup 2+}, Cd{sup 2+} and Zn{sup 2+} from contaminated water was investigated. Both biogenic sorbents displayed very high sorption capacities for the three metals except for Cd on OS. XRD, SEM and XPS results demonstrated that surface precipitation leading to crystal growth took place during sorption. Calcite OS displayed a remarkably higher sorption capacity to Pb than aragonite RCS, while the opposite was observed for Cd. However, both sorbents displayed similar sorption capacities to Zn. These could be due to the different extent of matching in crystal lattice between the metal bearing precipitate and the substrates. The initial pH of the solution, sorbent's dosage and grain size affected the removal efficiency of the heavy meals significantly, while the organic matter in mollusk shells affected the removal efficiency to a lesser extent. - Highlights: > Mollusk shells display high removal efficiency to heavy metals in contaminated water. > Surface precipitation leading to crystal growth takes place during the sorption. > Crystal structure similarity between precipitates and substrates affects the sorption. > pH, sorbent dosage and grain size of adsorbent affects the removal efficiency. > Organic matter in mollusk shells affects the removal efficiency to a less extent. - Mollusk shells display high sorption ability to heavy metals and crystal structure similarity between precipitates and substrates affects the sorption.

  4. Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada

    International Nuclear Information System (INIS)

    Oxygen-18 (δ18O) variations in a 36-centimeter-long core (DH-11) of vein calcite from Devils Hole, Nevada, yield an uninterrupted 500,000-year paleotemperature record that closely mimics all major features in the Vostok (Antarctica) paleotemperature and marine δ18O ice-volume records. The chronology for this continental record is based on 21 replicated mass-spectrometric uranium-series dates. Between the middle and latest Pleistocene, the duration of the last four glacial cycles recorded in the calcite increased from 80,000 to 130,000 years; this variation suggests that major climate changes were aperiodic. The timing of specific climatic events indicates that orbitally controlled variations in solar insolation were not a major factor in trigering deglaciations. Interglacial climates lasted about 20,000 years. Collectively, these observations are inconsistent with the Milankovitch hypothesis for the origin of the Pleistocene glacial cycles but they are consistent with the thesis that these cycles originated from internal nonlinear feedbacks within the atmosphere-ice sheet-ocean system

  5. Characterization of Shock Effects in Calcite by Raman Spectroscopy: Results of Experiments

    Science.gov (United States)

    Bell, M. S.

    2016-01-01

    Carbonates comprise approx. 20% by volume of present day Earth's sedimentary rocks and store most of the terrestrial CO2 inventory. Some of the oldest meta-sedimentary rocks found on Earth contain abundant carbonate from which impact-induced release of CO2 could have played a role in the formation and evolution of the atmosphere. Carbonates are also present in the target materials for approx. 30% of all terrestrial impact structures including large impacts such as Chicxulub which happened to occur at a location with extraordinarily thick platform carbonate 3-6 km deep. The impact release of CO2 from carbonates can cause global warming as a result of the well-known greenhouse effect and have subsequent effects on climate and biota. Therefore, the shock behavior of calcite is important in understanding the Cretaceous-Paleogene event and other impacts with carbonate-bearing sediments in their target(s) such as Mars and some asteroids. A comprehensive survey utilizing a variety of techniques to characterize the effects manifest in Calcite (Iceland Spar) experimentally shocked to 60.8 GPa has been completed. Results of analysis by Raman Spectroscopy are reported here.

  6. Hydroxyapatite coatings for marble protection: Optimization of calcite covering and acid resistance

    Science.gov (United States)

    Graziani, Gabriela; Sassoni, Enrico; Franzoni, Elisa; Scherer, George W.

    2016-04-01

    Hydroxyapatite (HAP) has a much lower dissolution rate and solubility than calcite, especially in an acidic environment, so it has been proposed for the protection of marble against acidic rain corrosion. Promising results were obtained, but further optimization is necessary as the treated layer is often incomplete, cracked and/or porous. In this paper, several parameters were investigated to obtain a coherent, uncracked layer, and to avoid the formation of metastable, soluble phases instead of HAP: the role of the pH of the starting solution; the effect of organic and inorganic additions, and in particular that of ethanol, as it is reported to adsorb on calcite, hence possibly favoring the growth of the HAP layer. Finally, a double application of the treatment was tested. Results were compared to those obtained with ammonium oxalate treatment, widely investigated for marble protection. Results indicate that adding small amounts of ethanol to the formulation remarkably increases the acid resistance of treated samples, and yields better coverage of the surface without crack formation. The effectiveness of the treatment is further enhanced when a second treatment is applied. The efficacy of ethanol-doped DAP mixtures was found to be remarkably higher than that of ammonium oxalate based treatments.

  7. The rehabilitation of monitoring wells clogged by calcite precipitation and drilling mud

    International Nuclear Information System (INIS)

    Based on aquifer performance tests, 13 out of 15 wells situated at the Mixed Waste Disposal (MWD) area located at the Savannah River site, South Carolina, exhibited high skin factors and low well efficiencies indicative of severely damaged wells. The use of damaged wells in aquifer testing can lead to inaccurate determinations of aquifer properties, and such wells are unusable in future remediation programs. Moreover, damaged wells can go dry during purging, thus compromising sample collection. Pump tests, chemical analyses, and biological investigations revealed that the poor well performance at MWD was attributable to calcite precipitation on the well screen and drilling mud in the filter pack. The calcite problem resulted from improper well installation, and the drilling mud in the filter pack was due to inadequate well development. Experimental rehabilitation procedures employed on two wells, MWD 5A and 1A, included acidification, swabbing, introduction of surfactants, and surging. Treatment of the wells substantially improved well yields, skin factors, and well efficiencies. Moreover, well rehabilitation was determined to be a reasonable alternative to drilling new wells at the MWD wellfield

  8. Assessing the potential for using biogenic calcites as dosemeters for luminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Duller, G.A.T. [Institute of Geography and Earth Sciences, Aberystwyth University, Ceredigion, SY23 3DB (United Kingdom)], E-mail: ggd@aber.ac.uk; Penkman, K.E.H. [BioArCh, Department of Chemistry, University of York, YO10 5DD (United Kingdom); Wintle, A.G. [Institute of Geography and Earth Sciences, Aberystwyth University, Ceredigion, SY23 3DB (United Kingdom)

    2009-05-15

    Calcium carbonate emits an intense thermoluminescence (TL) signal and previous work has explored the potential of using this signal to date both inorganic carbonates such as limestones and stalagmites and biogenic calcite produced by marine organisms. Luminescence analysis of biogenic calcites directly dates the secretion of the mineral by the organism and is therefore not reliant upon exposure of the sample to daylight. A method is outlined for using the TL signals from slug plates, from the Limacidae family, and opercula from the snail Bithynia tentaculata to construct a single-aliquot regenerative-dose growth curve. Analysis of slug plates from a number of Quaternary sites show that the equivalent dose (D{sub e}) of a late Holocene sample is close to zero and that the D{sub e} increases with age over the last 500 ka. The TL signal from snail opercula is shown to increase up to doses over 4000 Gy. Replicate measurements from 16 opercula from a site {approx}220 ka show a broad distribution. Potential causes of this scatter are discussed along with recommendations about how it could be reduced. The major challenge which remains to be solved before slug plates or snail opercula could be used to calculate ages is to develop methods for calculating the dose rate received during burial.

  9. Assessment of the potential for dating secondary calcite and quartz in fault zones

    International Nuclear Information System (INIS)

    Calcite and quartz occur frequently as secondary minerals in faults. In many instances these minerals are not deformed. Calcite, for example, often exhibits an undisturbed fibrous habit or appears as euhedral crystals. Direct dating of euhedral crystals would provide a minimum age of the last movement along a fault, whereas dating of fibrous crystals would furnish the real age of the last movement. This information would be essential in the evaluation and selection of sites for both nuclear power reactors and nuclear waste disposal. In the Canadian context, to be successful, the technique should be able to date minerals as old as tens of millions of years. In this study both isotopic and radioactive damage techniques were considered. It was found that thermoluminescence, thermally stimulated current, and electron spin resonance offer possibilities. Recent electron spin resonance studies of ancient flints have yielded dates of several hundred million years. It is anticipated that in the near future a combination of the above techniques will be extensively used in the field of geochronology

  10. Environmentally acceptable effect of hydrogen peroxide on cave 'lamp-flora', calcite speleothems and limestones

    International Nuclear Information System (INIS)

    Hydrogen peroxide plus limestone fragments allows removal of organisms without corrosion of limestone and speleothem. - Mosses, algae, and cyanobacteria (lamp-flora) colonize illuminated areas in show caves. This biota is commonly removed by a sodium hypochlorite solution. Because chlorine and other deleterious compounds are released into a cave environment during lamp-flora cleansing, hydrogen peroxide was tested as an alternative agent. In a multidisciplinary study conducted in the Katerinska Cave (Moravian Karst, Czech Republic), 12 algae- and cyanobacteria taxons and 19 moss taxons were detected. The threshold hydrogen peroxide concentration for the destruction of this lamp-flora was found to be 15 vol.%. Based on laboratory experiments in stirred batch reactors, the dissolution rates of limestones and calcite speleothems in water were determined as 3.77x10-3 and 1.81x10-3 mol m-2 h-1, respectively. In the 15% peroxide solution, the limestone and speleothem dissolution rates were one order of magnitude higher, 2.00x10-2 and 2.21x10-2 mol m-2 h-1, respectively. So, the peroxide solution was recognised to attack carbonates somewhat more aggressively than karst water. In order to prevent the potential corrosion of limestone and speleothems, the reaching of preliminary peroxide saturation with respect to calcite is recommended, for example, by adding of few limestone fragments into the solution at least 10 h prior to its application

  11. Pyrite Formation in Organic-rich Clay, Calcitic and Coal-Forming Environments

    Institute of Scientific and Technical Information of China (English)

    Gordana DEVI(C); Petar PFENDT; Branimir JOVAN(C)I(C)EVI(C); Zoran POPOVIC

    2006-01-01

    The early diagenetic characteristics of pyrite formation processes in a Miocene freshwater sequence of mixed sediments (coal fragments in clays, sandstones or shales) alternating with continuous brown coal layers was investigated. Based on abundant minerals, the following main sedimentary environments were distinguished: the illite-montmorillonitic (I-M), calcitic (Ct) and coal-forming environment (CL). For these hydrogeochemically differing environments the effects of limiting factors on the pyrite formation process (availability of sulphate and Fe, amount of organic matter and participation of organic sulphur) were assessed by correlation analysis. Significant differences in the effects of these limiting factors in the particular environments were observed. These differences were explained taking in account the different oxidative activity, Fe-complex and surface complex forming properties of hnmic substances in dependence of pH of environment and the abundance of sorptionally active clay minerals. In environments having a relatively low pH and containing clay minerals (I-Mand CL-environments) the oxidative activity of humic substances (Hs) on pyrite precursors was greatly prevented however pyrite formation depended on reactive Fe availability as the consequence of complex formation. On the contrary, in environments with a relatively high pH, as it was the calcitic,the oxidative activity of Hs was greatly enhanced, thus oxidizing the sulfur precursors of pyrite. The oxidation degree of organic matter was probably also a consequence of the differing activity of the humic electron-acceptors.

  12. Two-dimensional X-ray diffraction as a tool for the rapid, nondestructive detection of low calcite quantities in aragonitic corals

    Science.gov (United States)

    Smodej, Jörg; Reuning, Lars; Wollenberg, Uwe; Zinke, Jens; Pfeiffer, Miriam; Kukla, Peter A.

    2015-10-01

    Paleoclimate reconstructions based on reef corals require precise detection of diagenetic alteration. Secondary calcite can significantly affect paleotemperature reconstructions at very low amounts of ˜1%. X-ray powder diffraction is routinely used to detect diagenetic calcite in aragonitic corals. This procedure has its limitations as single powder samples might not represent the entire coral heterogeneity. A conventional and a 2-D X-ray diffractometer were calibrated with gravimetric powder standards of high and low magnesium calcite (0.3% to 25% calcite). Calcite contents advantage of 2-D-XRD over convenient 1-D-XRD methods is the nondestructive and rapid detection of calcite with relatively high spatial resolution directly on coral slabs. The calcite detection performance of the 2-D-XRD setup was tested on thin sections from fossil Porites sp. samples that, based on powder XRD measurements, showed sampling. In this way, areas affected by diagenetic calcite can be avoided and alternative sampling tracks can be defined. Alternatively, individual sampling positions that show dubious proxy results can later be checked for the presence of calcite. The presented calibration and quantification method can be transferred to any 2-D X-ray diffractometer.

  13. The Uptake of Eu(III) and Th(IV) by Calcite under Hyperalkaline Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tits, J.; Wieland, E.; Bradbury, M.H.; Eckert, P.; Schaible, A

    2002-10-01

    Calcite is an important component of Valanginian marl, a potential host rock for a low and intermediate level radioactive waste (L/ILW) repository in Switzerland. This mineral also forms an important component of the disturbed zone around a repository, as it remains largely unaffected by the hyperalkaline waters migrating out of the cementitious repository . The sorption behaviour of Eu(III) and Th(IV) on Merck calcite in an artificial cement pore water (ACW) at pH 13.3 has been studied in batch-type sorption experiments. In addition, the effect of {alpha}-isosaccharinic acid (ISA) and gluconic acid (GLU) on the sorption of these two cations has been investigated. In the absence of ISA and GLU, a strong interaction of Eu(III) and Th(IV) with Merck calcite was observed. Eu(III) and Th(IV) sorption kinetics were fast and the isotherms indicated a linear adsorption behaviour over the experimentally accessible concentration range. In the case of Eu(III), a decrease of the R{sub d} value with increasing solid to liquid (S:L) ratio was observed indicating that, along with adsorption, other processes might influence the immobilisation of this cation by Merck calcite under ACW conditions. In the case of Th(IV), however, changes in the S:L ratio had no effect on the sorption behaviour . High ISA and GLU concentrations in solution significantly affected the sorption of both Eu(III) and Th(IV): R{sub d} values for Eu(III) decreased significantly at ISA concentrations higher than 10{sup -5} M and at GLU concentrations higher than 10{sup -7} M. The sorption of Th(IV) was reduced at ISA concentrations above 2.10{sup -5} M and at GLU concentrations above 10{sup -6} M. The effects of ISA and GLU on the immobilisation of Eu(III) and Th(IV) were interpreted in terms of complex formation in solution. In the case of Eu(III) the metal ligand complexes were found to have a 1 : 1 stoichiometry. Complexation constants derived for the aqueous Eu(III)-ISA. and Eu(III)GLU complexes were

  14. The Uptake of Eu(III) and Th(IV) by Calcite under Hyperalkaline Conditions

    International Nuclear Information System (INIS)

    Calcite is an important component of Valanginian marl, a potential host rock for a low and intermediate level radioactive waste (L/ILW) repository in Switzerland. This mineral also forms an important component of the disturbed zone around a repository, as it remains largely unaffected by the hyperalkaline waters migrating out of the cementitious repository . The sorption behaviour of Eu(III) and Th(IV) on Merck calcite in an artificial cement pore water (ACW) at pH 13.3 has been studied in batch-type sorption experiments. In addition, the effect of α-isosaccharinic acid (ISA) and gluconic acid (GLU) on the sorption of these two cations has been investigated. In the absence of ISA and GLU, a strong interaction of Eu(III) and Th(IV) with Merck calcite was observed. Eu(III) and Th(IV) sorption kinetics were fast and the isotherms indicated a linear adsorption behaviour over the experimentally accessible concentration range. In the case of Eu(III), a decrease of the Rd value with increasing solid to liquid (S:L) ratio was observed indicating that, along with adsorption, other processes might influence the immobilisation of this cation by Merck calcite under ACW conditions. In the case of Th(IV), however, changes in the S:L ratio had no effect on the sorption behaviour . High ISA and GLU concentrations in solution significantly affected the sorption of both Eu(III) and Th(IV): Rd values for Eu(III) decreased significantly at ISA concentrations higher than 10-5 M and at GLU concentrations higher than 10-7 M. The sorption of Th(IV) was reduced at ISA concentrations above 2.10-5 M and at GLU concentrations above 10-6 M. The effects of ISA and GLU on the immobilisation of Eu(III) and Th(IV) were interpreted in terms of complex formation in solution. In the case of Eu(III) the metal ligand complexes were found to have a 1 : 1 stoichiometry. Complexation constants derived for the aqueous Eu(III)-ISA. and Eu(III)GLU complexes were determined to be logβ0EulSA = -31.1±O.2 and

  15. Calcite Precipitation at an Arctic Geothermal Spring Leads to Endolith Colonization and Ecological Succession

    Science.gov (United States)

    Starke, V.; Fogel, M. L.; Steele, A.

    2012-12-01

    A critical question in microbial ecology concerns how environmental conditions affect community makeup. Troll Springs, a geothermal spring at 79°23'N, 13°26'E on Svalbard in the high Arctic, provides an opportunity to study microbial communities and succession along steep environmental gradients that impose strong selective pressures. At Troll, warm water is released into cold, dry climate conditions. Precipitation of calcite from the spring's waters has built terraces that host a range of microbial communities. Microorganisms exist in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll therefore has two distinct ecosystems, aquatic and terrestrial, in close proximity, with different underlying environmental factors shaping their microbial communities. We use microscopic and phylogeny-based molecular methods to study microbial community makeup at Troll Springs. Periphyton are entrapped by precipitation of calcite, becoming precursors for endolithic communities. Much of the pore space originally occupied by periphyton becomes inhabited either by organisms that were already present in minor quantities in the periphyton, or by new organisms that colonized an environment for which they were well suited. This process differs from most endolith colonization, where rock predates the communities that colonize it. In the aquatic environments, the strongest dependence of community makeup is on pH and temperature, with gradual changes in community makeup along a pH/temperature gradient among the pools. Illumination (as limited by calcite precipitation) and thermal stability also appear to exert influence. In contrast, in the granular and endolithic terrestrial environments, where water is scarce and therefore exerts selective pressure, there is a strong relationship between community makeup and water content. The richness, evenness, and diversity of microbial taxa are all strongly correlated at Troll Springs. These parameters all

  16. An 8.1Ma calcite record of Asian summer monsoon evolution on the Chinese central Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbonates in loess-red clay sequences consist mainly of calcite and dolomite. The EDTA analysis of carbonates in different size fractions and magnetic susceptibility reveal that calcite is a sensitive index of summer monsoon. The chemical analysis of carbonates and calcite from an 8.1 Ma loess-red clay sequence at Chaona on the Chinese central Loess Plateau shows that the evolution of the Asian summer monsoon experienced four stages, namely 8.1―5.5 Ma, 5.5―2.8 Ma, 2.8―1.5 Ma and 1.5―0 Ma, with increasing intensification and fluctuation, suggesting a possible combining impacts of uplift of the Tibetan Plateau and global changes on the Asian summer monsoon.

  17. A model for trace metal sorption processes at the calcite surface: Adsorption of Cd2+ and subsequent solid solution formation

    Science.gov (United States)

    Davis, J.A.; Fuller, C.C.; Cook, A.D.

    1987-01-01

    The rate of Cd2+ sorption by calcite was determined as a function of pH and Mg2+ in aqueous solutions saturated with respect to calcite but undersaturated with respect to CdCO3. The sorption is characterized by two reaction steps, with the first reaching completion within 24 hours. The second step proceeded at a slow and nearly constant rate for at least 7 days. The rate of calcite recrystallization was also studied, using a Ca2+ isotopic exchange technique. Both the recrystallization rate of calcite and the rate of slow Cd2+ sorption decrease with increasing pH or with increasing Mg2+. The recrystallization rate could be predicted from the number of moles of Ca present in the hydrated surface layer. A model is presented which is consistent with the rates of Cd2+ sorption and Ca2+ isotopic exchange. In the model, the first step in Cd2+ sorption involves a fast adsorption reaction that is followed by diffusion of Cd2+ into a surface layer of hydrated CaCO3 that overlies crystalline calcite. Desorption of Cd2+ from the hydrated layer is slow. The second step is solid solution formation in new crystalline material, which grows from the disordered mixture of Cd and Ca carbonate in the hydrated surface layer. Calculated distribution coefficients for solid solutions formed at the surface are slightly greater than the ratio of equilibrium constants for dissolution of calcite and CdCO3, which is the value that would be expected for an ideal solid solution in equilibrium with the aqueous solution. ?? 1987.

  18. Common Ion Effects In Zeoponic Substrates: Dissolution And Cation Exchange Variations Due to Additions of Calcite, Dolomite and Wollastonite

    Science.gov (United States)

    Beiersdorfer, R. E.; Ming, D. W.; Galindo, C., Jr.

    2003-01-01

    c1inoptilolite-rich tuff-hydroxyapatite mixture (zeoponic substrate) has the potential to serve as a synthetic soil-additive for plant growth. Essential plant macro-nutrients such as calcium, phosphorous, magnesium, ammonium and potassium are released into solution via dissolution of the hydroxyapatite and cation exchange on zeolite charged sites. Plant growth experiments resulting in low yield for wheat have been attributed to a Ca deficiency caused by a high degree of cation exchange by the zeolite. Batch-equilibration experiments were performed in order to determine if the Ca deficiency can be remedied by the addition of a second Ca-bearing, soluble, mineral such as calcite, dolomite or wollastonite. Variations in the amount of calcite, dolomite or wollastonite resulted in systematic changes in the concentrations of Ca and P. The addition of calcite, dolomite or wollastonite to the zeoponic substrate resulted in an exponential decrease in the phosphorous concentration in solution. The exponential rate of decay was greatest for calcite (5.60 wt. % -I), intermediate for wollastonite (2.85 wt.% -I) and least for dolomite (1.58 wt.% -I). Additions of the three minerals resulted in linear increases in the calcium concentration in solution. The rate of increase was greatest for calcite (3.64), intermediate for wollastonite (2.41) and least for dolomite (0.61). The observed changes in P and Ca concentration are consistent with the solubilities of calcite, dolomite and wollastonite and with changes expected from a common ion effect with Ca. Keywords: zeolite, zeoponics, common-ion effect, clinoptilolite, hydroxyapatite

  19. Calcite deposits in drill cores USW G-2 and USW GU-3/G-3 at Yucca Mountain, Nevada: Preliminary report

    International Nuclear Information System (INIS)

    Yucca Mountain is being studied as a potential site for deep geologic disposal of high-level radioactive waste. Should a repository be developed at Yucca Mountain, the preferred location is within the upper unsaturated tuffaceous volcanic rocks. In this location, one factor of concern is the amount and rate of aqueous transport through the unsaturated rocks toward the underlying saturated intervals. Calcite, one of the most recently-formed minerals at Yucca Mountain, is of minor abundance in the unsaturated rocks but is widely distributed. Studies of calcite ages, isotopic systematics, chemistry and petrography could lead to a better understanding of transport processes at Yucca Mountain

  20. Strontium Co-precipitation During Biomineralization of Calcite in Porous Media Using Differing Treatment Strategies

    Science.gov (United States)

    Lauchnor, E. G.; Schultz, L.; Mitchell, A.; Cunningham, A. B.; Gerlach, R.

    2013-12-01

    The process of ureolytically-induced calcium carbonate mineralization has been shown in laboratory studies to be effective in co-precipitation of heavy metals and radionuclides. During this process, the microbially catalyzed hydrolysis of urea increases alkalinity and pH, thus promoting CaCO3 precipitation in the presence of dissolved calcium. One proposed application of biomineralization includes the remediation of radionuclides such as strontium, which can be co-precipitated in situ within calcite. Strontium is of concern at several US DOE sites where it is a radioactive product of uranium fission and groundwater contaminant. Our research focuses on promoting attached bacteria, or biofilms, in subsurface environments where they serve as immobilized catalysts in biomineralization and can aide in co-precipitation of some contaminants. In this work, flat plate reactors with 1 mm etched flow channels designed to mimic a porous medium environment were used. Reactors were inoculated with the model ureolytic bacterium Sporosarcina pasteurii and addition of urea, calcium and strontium containing fluid was performed to induce biomineralization. Continuous flow and stopped-flow injection strategies were investigated to evaluate differences in strontium co-precipitation efficiency. During stopped-flow experiments, injection of cementation fluid containing urea, Ca2+ and Sr2+ was alternated with growth nutrients for stimulation of microbial activity. Control parameters such as urea and calcium concentration and injection flow rate are currently being varied to optimize rate and efficiency of strontium co-precipitation. Ureolytically induced calcite precipitation and strontium incorporation in the calcite was verified by chemical and mineralogical analyses, including X-ray diffraction and ICP-MS. Strontium co-precipitation efficiency was similar under different injection strategies. Alternating calcium-containing fluid with growth nutrients allowed for continued viability of

  1. Effect of annealing on natural calcitic crystals—A thermostimulated luminescence (TSL) study

    International Nuclear Information System (INIS)

    The quality crystals (Calcitic limestone) were selected using the UV–visible methylene blue adsorption method. The thermostimulated luminescence (TSL) glow curve characteristics of six well crystallized limestone samples were analyzed. The glow curves of unannealed sample show only one peak in the range 320–330 °C. The sample irradiated with a gamma dose of 100 Gy shows two additional peaks in the range of 113–125 °C and 242–260 °C when recorded with linear heating rate of 10 °C/s. The annealed sample also shows the same trend as that of irradiated sample. Annealing treatment above 250 °C increases the sensitivity of all TSL peaks except 320 °C. On the other hand, annealing at 750 °C caused a collapse in the TSL sensitivity. The enhancement in TSL sensitivity was found to depend on the annealing temperature and time. Annealing treatment at 650 °C for 4 h followed by quenching in air is the optimum condition for TSL sensitization. The response to gamma irradiation is linear in the range from 0.5 Gy to 104 Gy. The emission spectra of all the samples show an emission at around 610 nm but with different intensities for each TSL peak. With reference to earlier work, it may be assumed that the recombination site always involves Mn2+ ions. The observation made through infra-red (IR) and X-ray diffraction (XRD) studies with thermal treatment shows the structural changes of calcite from D3h to Cs symmetry at 750 °C. The Thermogravimetric-Differential Thermal Analysis (TG-DTA) analysis shows the calcite gets disordered at 760 °C. Hence, the collapse in the TSL sensitivity at 750 °C is due to structural change or structural disorderedness. - Highlights: ►Normally, the synthetic material was used as radiation dosimeter but the natural material can also be used for the same application. ► A wide dose linear response to gamma radiation is observed in the range of 0.5–104 Gy. ► The natural material is not harmful to human body and more eco-friendly so

  2. Effect of annealing on natural calcitic crystals-A thermostimulated luminescence (TSL) study

    Energy Technology Data Exchange (ETDEWEB)

    Ponnusamy, V., E-mail: ponnu@mitindia.edu [Department of Physics, Division of Applied Sciences and Humanities, M.I.T. Campus, Anna University, Chennai 600044, Tamilnadu (India); Ramasamy, V. [Department of Physics, Annamalai University, Annamalainagar 608002, Tamilnadu (India); Jose, M.T. [Radiological Safety Division, IGCAR, Kalpakkam, Tamilnadu (India); Anandalakshmi, K. [Department of Physics, Annamalai University, Annamalainagar 608002, Tamilnadu (India)

    2012-04-15

    The quality crystals (Calcitic limestone) were selected using the UV-visible methylene blue adsorption method. The thermostimulated luminescence (TSL) glow curve characteristics of six well crystallized limestone samples were analyzed. The glow curves of unannealed sample show only one peak in the range 320-330 Degree-Sign C. The sample irradiated with a gamma dose of 100 Gy shows two additional peaks in the range of 113-125 Degree-Sign C and 242-260 Degree-Sign C when recorded with linear heating rate of 10 Degree-Sign C/s. The annealed sample also shows the same trend as that of irradiated sample. Annealing treatment above 250 Degree-Sign C increases the sensitivity of all TSL peaks except 320 Degree-Sign C. On the other hand, annealing at 750 Degree-Sign C caused a collapse in the TSL sensitivity. The enhancement in TSL sensitivity was found to depend on the annealing temperature and time. Annealing treatment at 650 Degree-Sign C for 4 h followed by quenching in air is the optimum condition for TSL sensitization. The response to gamma irradiation is linear in the range from 0.5 Gy to 10{sup 4} Gy. The emission spectra of all the samples show an emission at around 610 nm but with different intensities for each TSL peak. With reference to earlier work, it may be assumed that the recombination site always involves Mn{sup 2+} ions. The observation made through infra-red (IR) and X-ray diffraction (XRD) studies with thermal treatment shows the structural changes of calcite from D{sub 3h} to C{sub s} symmetry at 750 Degree-Sign C. The Thermogravimetric-Differential Thermal Analysis (TG-DTA) analysis shows the calcite gets disordered at 760 Degree-Sign C. Hence, the collapse in the TSL sensitivity at 750 Degree-Sign C is due to structural change or structural disorderedness. - Highlights: Black-Right-Pointing-Pointer Normally, the synthetic material was used as radiation dosimeter but the natural material can also be used for the same application. Black

  3. Analyses IR quantitatives des sédiments. Exemple du dosage du quartz et de la calcite Quantitative Ir Analysis of Sediments. Example of Quartz and Calcite Determination

    Directory of Open Access Journals (Sweden)

    Pichard C.

    2006-11-01

    Full Text Available Plus généralement utilisée pour l'étude des phases fluides, la spectrophotométrie d'absorption infrarouge a trouvé un important champ d'application dans l'analyse minéralogique quantitative globale des roches sédimentaires. En s'appuyant sur deux exemples précis de constituants importants des sédiments (quartz et calcite, on montre ici les différentes possibilités analytiques avec échantillon seul, compensation du diluant pur, compensation d'un minéral pur et compensation d'un minéral en mélange artificiel et naturel (roche sédimentaire. On décrit les modifications subies par les spectres et des courbes d'étalonnages sont dressées dans chaque cas. Les données recueillies permettent de vérifier l'utilisation légitime de la loi d'absorption pour ces analyses infrarouges de phases solides impliquant une compensation, et donc un traitement des spectres originaux, l'erreur relative maximale expérimentale ne dépassant pas quelques pourcents dans les cas les plus défavorables. Dans les limites du dosage de minéraux à composition chimique et structure cristalline fixes, l'analyse d'un minéral par sa compensation partielle peut être d'un grand intérêt pour des constituants majeurs de roches, car autorisant l'analyse là où une concentration trop élevée l'aurait interdite. Cette méthode de compensation est plus délicate, voire impossible, pour les solutions solides ou tout minéral à formule chimique variable. D'une manière générale, les principaux constituants des roches sédimentaires peuvent être ainsi quantifiés sur un seul spectre par l'analyse IR qui offre donc la possibilité d'une définition numérique des faciès. Although it is more generally used for analyzing fluid phases, infrared absorption spectrophotometry has found an important area of application in the bulk quantitative mineralogical analysis of sedimentary rocks. On the basis of two specific examples of important constituents of sediments

  4. The Last Interglacial and Holocene in SW Turkey: Evidence from Calcite-Aragonite Speleothems

    Science.gov (United States)

    Wickens, L.; Rowe, P.; Marca, A.; Noble, S. R.; Millar, I. L.; Chilvers, G.; Dennis, P.; Leze, B.; Özkul, M.; Baykara, O.; Andrews, J.

    2011-12-01

    Speleothems may incorporate several geochemical climatic and environmental proxies, and can be precisely and accurately dated, making them valuable tools for palaeoclimate reconstruction. We analysed a speleothem from Dim Cave, ~130km east of Antalya in the Middle Taurus Mountains, close to the Mediterranean coast of Southwest Turkey. Today, speleothems in the cave are forming of aragonite rather than calcite. DIM-1 is a toppled stalagmite collected 150m from the cave entrance, which grew at the beginning of MIS 5e. After the stalagmite fell, growth resumed in the Holocene on the side of DIM-1 as a small "hump", identified here as DIM-3. Multi-proxy analyses of DIM-1 and DIM-3 enable interpretation of climatic conditions in the Bay of Antalya during early MIS 5e and the Holocene. DIM-1 began forming at ~130 kyr BP, and grew very rapidly. From ~130 kyr BP to ~128 kyr BP, DIM-1 grew as calcite, and δ18O and δ13C show small-scale variability. At 128.6 kyr BP, growth rate increases, both δ18O and δ13C show strong excursions to more negative values, and 87Sr/86Sr becomes less radiogenic. This period is interpreted as the warm, wet interval associated with the Eemian interglacial, which correlates well with similar trends in the Soreq Cave [1] and Antro del Corchia [2] records. At ~128 kyr BP, both δ18O and δ13C show abrupt and pronounced increases (~2% and ~9% respectively), Sr concentration increases, 87Sr/86Sr becomes more radiogenic, and mineralogy switches from calcite to aragonite, before growth ceases and a hiatus occurs. This period is interpreted as an abrupt and brief arid phase lasting a few decades or centuries. A possible analogous arid event exists in a speleothem record from SW France, at 128.2-127.9 kyr BP [3]. After the hiatus, growth continues as calcite, with more negative δ18O and δ13C, signalling the return to wet conditions. DIM-3 is aragonite throughout, and grew from ~8-7 kyr BP at a much slower rate than DIM-1, and with average δ18O and

  5. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    Directory of Open Access Journals (Sweden)

    J. Kimball

    2015-12-01

    Full Text Available Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near constant temperature, salinity and pH, and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop "clumped" isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly-substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp. and calcitic gorgonian (Isididae and Coralliidae deep-sea corals, and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than calcitic gorgonian corals and the two groups of coral produce statistically different relationship between Δ47-temperature calibrations. These data are significant in the interpretation of all carbonate "clumped" isotope calibration data as they show that distinct Δ47-temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset

  6. A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite

    DEFF Research Database (Denmark)

    Mbamba, Christian Kazadi; Batstone, Damien J.; Flores Alsina, Xavier;

    2015-01-01

    value be nominally selected where insufficient process data is available. Zero seed (self nucleating) conditions were effectively represented by including arbitrarily small amounts of mineral phase in the initial conditions. Both of these aspects are important for wastewater modelling, where knowledge......, as appropriate) should be selected without corrections to kcryst. Where accuracy is required (e.g., in mechanistic studies), machine estimation of kcryst should be performed with robust process data and kcryst should at least be corrected for temperature....... of the mineral particulate state (Xcryst) and, for calcite, have a 2nd order dependency (exponent n ¼ 2.05 ± 0.29) on thermodynamic supersaturation (s). Parameter analysis indicated that the model was more tolerant to a fast kinetic coefficient (kcryst) and so, in general, it is recommended that a large kcryst...

  7. Study of Pickering emulsions stabilized by mixed particles of silica and calcite

    Institute of Scientific and Technical Information of China (English)

    Sha Wang; Yongjun He; Yong Zou

    2010-01-01

    Picketing emulsions were prepared using mixed particles of silica and calcite as emulsifiers.The effects of the silica content in the mixed particles on the stability and the drop size of the Pickering emulsions were investigated.The results showed that the Pickering emulsions were of the oil-in-water type.With increasing silica content in the mixed particles,the stability and the drop size of the Pickering emulsions decreased.Larger silica particles had more influence on the stability of the emulsions,while smaller ones had more influence on the drop size of the emulsions.The effect of the silica particles on the emulsions was attributed to their adsorptive behavior at the oil-water interfaces of the Pickering emulsions.

  8. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    Science.gov (United States)

    Kimball, J.; Tripati, R. E.; Dunbar, R.

    2015-12-01

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near constant temperature, salinity and pH, and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop "clumped" isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly-substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and calcitic gorgonian (Isididae and Coralliidae) deep-sea corals, and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than calcitic gorgonian corals and the two groups of coral produce statistically different relationship between Δ47-temperature calibrations. These data are significant in the interpretation of all carbonate "clumped" isotope calibration data as they show that distinct Δ47-temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset between the

  9. Flux Growth and Crystal Structure Refinement of Calcite Type Borate GaBO3

    Directory of Open Access Journals (Sweden)

    Shichao Wang

    2015-05-01

    Full Text Available A single crystal of gallium borate, GaBO3, 4 × 4 × 0.2 mm3 in size has been grown by spontaneous crystallization with a molten flux based on a Bi2O3-3B2O3 solvent. From single crystal X-ray diffraction measurement, GaBO3 was found to crystallize in the trigonal calcite type, space group R-3c, with cell dimensions a = 4.56590(10 and c = 14.1764(4 Å, Z = 6. Layers of distorted [GaO6] octahedra are interleaved by layers of triangular planar [BO3] unites. The transmission spectrum on a single crystal indicated that the band gap of GaBO3 is 3.62 eV.

  10. Dating historical calcite mortar by blue OSL: results from known age samples

    International Nuclear Information System (INIS)

    The study investigates whether blue OSL, known as a dating tool for partially bleached materials, can also be used for dating calcite mortar from young constructions. Starting from samples of known age the aim of the study is to determine appropriate evaluation methods for dose distributions. Using a model-calculation we first try to answer the question of how far a mortar sample can possibly be bleached during the manufacturing process. We then deal with the question of optimizing the analytical process, especially in view of the most suitable grain size. In the focus of our investigations we have tested several methods of evaluating frequency distributions based on single aliquot/multiple grain measurements. Depending on grain size, two methods have proved sufficiently successful; optimal equivalent doses may be obtained either from radial plots or from maxima of weighted histograms. The comparison is based on measurements of 14 mortar samples from the last millennium

  11. Separation of deviatoric stress tensors from heterogeneous calcite twin data using a statistical mixture model

    Science.gov (United States)

    Yamaji, Atsushi

    2016-04-01

    It is essential for the techniques of paleostress analysis to separate stresses from heterogeneous data (e.g., Tikoff et al., 2013). A statistical mixture model is shown in this paper to be effective for calcite twinning paleopiezometry: Given the orientations of twinned e-planes and their gliding directions, the present inverse method based on the mixture model determines not only deviatoric stress tensors, but also estimates the number of tensors that should be read from a data set using Bayesian information criterion. The present method is based on the fact that mechanical twinning occurs on an e-plane if the resolved shear stress along its gliding direction, τ, is greater than a critical value, τc (e.g., Lacombe, 2010). The orientation data from e-planes corresponds to points on a 5-dimensional unit sphere, a spherical cap on which indicates a deviatoric stress tensor. The twinning condition, τ > τc, is identical with the condition that the points corresponding to the orientation data are distributed upon the spherical cap (Yamaji, 2015a). It means that the paleostress analysis of calcite twins comes down to the problem of fitting a spherical cap to data points on the sphere (Yamaji, 2015b). Given a heterogeneous data set, two or more spherical caps should be fitted to the data point on the sphere. A statistical mixture model is employed for this fitting in the present work. Such a statistical model enables us to evaluate the number of stresses recorded in the data set. The present method was tested with artificial data sets and a natural data set obtained from a Miocene graben in central Japan. From the former type of data sets, the method determined the deviatoric stress tensors that were assumed to generate the data sets. The natural data were inverted to give two stresses that appeared appropriate for the tectonic setting of the area where the data were obtained.

  12. Direct Experimental Evidence for Differing Reactivity Alterations of Minerals following Irradiation: The Case of Calcite and Quartz

    Science.gov (United States)

    Pignatelli, Isabella; Kumar, Aditya; Field, Kevin G.; Wang, Bu; Yu, Yingtian; Le Pape, Yann; Bauchy, Mathieu; Sant, Gaurav

    2016-01-01

    Concrete, used in the construction of nuclear power plants (NPPs), may be exposed to radiation emanating from the reactor core. Until recently, concrete has been assumed immune to radiation exposure. Direct evidence acquired on Ar+-ion irradiated calcite and quartz indicates, on the contrary, that, such minerals, which constitute aggregates in concrete, may be significantly altered by irradiation. More specifically, while quartz undergoes disordering of its atomic structure resulting in a near complete lack of periodicity, calcite only experiences random rotations, and distortions of its carbonate groups. As a result, irradiated quartz shows a reduction in density of around 15%, and an increase in chemical reactivity, described by its dissolution rate, similar to a glassy silica. Calcite however, shows little change in dissolution rate - although its density noted to reduce by ≈9%. These differences are correlated with the nature of bonds in these minerals, i.e., being dominantly ionic or covalent, and the rigidity of the mineral’s atomic network that is characterized by the number of topological constraints (nc) that are imposed on the atoms in the network. The outcomes have major implications on the durability of concrete structural elements formed with calcite or quartz bearing aggregates in nuclear power plants.

  13. An Exercise on Calibration: DRIFTS Study of Binary Mixtures of Calcite and Dolomite with Partially Overlapping Spectral Features

    Science.gov (United States)

    De Lorenzi Pezzolo, Alessandra

    2013-01-01

    Unlike most spectroscopic calibrations that are based on the study of well-separated features ascribable to the different components, this laboratory experience is especially designed to exploit spectral features that are nearly overlapping. The investigated system consists of a binary mixture of two commonly occurring minerals, calcite and…

  14. Origin of epigenetic calcite in coal from Antarctica and Ohio based on isotope compositions of oxygen, carbon and strontium

    International Nuclear Information System (INIS)

    This study discusses the conditions of formation and provenance of calcite cleats in coal deposits of Antarctica and Ohio, based on their isotope compositions of oxygen, carbon and strontium. The paper gives some data of the relative radioisotope abundance of 87Sr. (Auth.)

  15. Chemical Compositions of Calcites in Carbonatites from Panxi Region Implications for Genesis of Carbonatites and Associated REE Deposits

    Institute of Scientific and Technical Information of China (English)

    XU Cheng; HUANG Zhi-long

    2008-01-01

    @@ The Panxi region is important REE mineralization belt in China. Chemical compositions of calcites in carbon-atites from Daluxiang and Maoniuping REE deposits are analyzed by LA-ICPMS. At Maoniuping the reserve of REE2O3 is estimated to be more than 1.45 million tons.

  16. Study of wettability of calcite surfaces using oil-brine-enzyme systems for enhanced oil recovery applications

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Nielsen, Sidsel Marie; Pedersen, Hanne Høst;

    2015-01-01

    Enzymes have recently been considered as possible agents for enhanced oil recovery (EOR) acting at the liquid-solid interface. One way to assess this is via measuring the wettability of calcite surfaces, important for EOR methods in carbonaceous reservoirs. In the present work, we have experiment...

  17. Palaeotemperature reconstruction during the Last Glacial from δ18O of earthworm calcite granules from Nussloch loess sequence, Germany

    Science.gov (United States)

    Prud'homme, Charlotte; Lécuyer, Christophe; Antoine, Pierre; Moine, Olivier; Hatté, Christine; Fourel, François; Martineau, François; Rousseau, Denis-Didier

    2016-05-01

    The Nussloch loess-palaeosol sequence (Rhine Valley, Germany) is considered to be one of the most complete records of the last glacial period in Western Europe due to its very high sedimentation rate and its good chronological control. This sequence is therefore a good framework in which to develop new proxies for palaeoenvironmental reconstructions. In this study, we explore, for the first time, the potential of earthworm calcite granules as a new bio-indicator and climatic proxy of absolute air and soil temperature in the context of Last Glacial loess. These granules are composed of rhomboedric calcite crystals, organized in a radial crystalline structure. As these granules are individually generated by earthworms at a relative fast rate, they are expected to record intra-annual variations in the available sources of oxygen: percolating waters of meteoric origin. We extracted thirty earthworm calcite granules from 11 of 5 cm layers thick from tundra gley and brown soil horizons previously, dated at 45 to 23 ka. Oxygen isotope ratios were measured on each individual granule. The δ18O of calcite granules and interlinked transfer functions between water cycle, air and soil temperatures allowed us to estimate air temperatures ranging from 10 to 12 ± 4°C, which most likely reflect the warm periods of the year when earthworms were the most active.

  18. The calcite/water interface II. Effect of added lattice ions on the charge properties and adsorption of sodium polyacrylate.

    Science.gov (United States)

    Eriksson, Rasmus; Merta, Juha; Rosenholm, Jarl B

    2008-10-15

    The origin of the surface potential of calcium carbonate in aqueous dispersions and the dissolution of calcite in systems containing excess Ca(2+) and CO(3)(2-) have been the subjects of this study. In addition, stabilization of calcite particles with an anionic polyelectrolyte (sodium polyacrylate (NaPA)) and the effect on surface potential and dissolution of calcite have been studied. Preferential dissolution of either Ca(2+) or CO(3)(2-) from the surface, which is governed by the partial pressure of CO(2) in solution and the pH of the solution, mainly determines the surface potential. Both lattice ions (Ca(2+) and CO(3)(2-)) adsorb onto the surface and thus alter the surface potential. NaPA adsorbs strongly onto the calcite surface regardless of background electrolyte concentration, and reverses the surface potential to negative values. Chelation of the surface due to NaPA can be partly prevented by adding Ca(2+) to the dispersion. PMID:18675424

  19. Calcite microcrystals in the pineal gland of the human brain: second harmonic generators and possible piezoelectric transducers

    International Nuclear Information System (INIS)

    Full text: A new form of biomineralization in the pineal gland of the human brain has been studied. It consists of small crystals that are less than 20 μm in length and that are completely distinct from the often-observed mulberry-type hydroxyapatite concretions. Cubic, hexagonal and cylindrical morphologies have been identified using scanning electron microscopy. Energy dispersive spectroscopy, selected-area electron diffraction and near infrared Raman spectroscopy established that the crystals were calcite. Experiments at the European Synchrotron Radiation Facility (ESRF) to study the biomineralization showed the presence of sulfur originating from both sugars and proteins. Other studies at the ESRF furnished information on the complex texture crystallization of the calcite. With the exception of the otoconia structure of the inner ear, this is the only known non-pathological occurrence of calcite in the human body. The calcite microcrystals are believed to be responsible for the previously observed second harmonic generation (SHG) in pineal tissue sections. There is a strong possibility that the complex twinned structure of the crystals may lower their symmetry and permit the existence of a piezoelectric effect

  20. Cryogenic and non-cryogenic pool calcites indicating permafrost and non-permafrost periods: a case study from the Herbstlabyrinth-Advent Cave system (Germany

    Directory of Open Access Journals (Sweden)

    D. K. Richter

    2010-11-01

    Full Text Available Weichselian cryogenic calcites collected in what is referred to as the Rätselhalle of the Herbstlabyrinth-Advent Cave system are structurally classified as rhombohedral crystals and spherulitic aggregates. The carbon and oxygen isotopic composition of these precipitates (δ13C = +0.6 to −7.3‰ δ18O = −6.9 to −18.0‰ corresponds to those of known slowly precipitated cryogenic cave calcites under conditions of isotopic equilibrium between water and ice of Central European caves. The carbon and oxygen isotopic composition varies between different caves which is attributed to the effects of cave air ventilation before the freezing started.

    By petrographic and geochemical comparisons of Weichselian cryogenic calcite with recent to sub-recent precipitates as well as Weichselian non-cryogenic calcites of the same locality, a model for the precipitation of these calcites is proposed. While the recent and sub-recent pool-calcites isotopically match the composition of interglacial speleothems (stalagmites, etc., isotope ratios of Weichselian non-cryogenic pool-calcites reflect cooler conditions. Weichselian cryogenic calcites show a trend towards low δ18O values with higher carbon isotope ratios reflecting slow freezing of the precipitating solution. In essence, the isotope geochemistry of the Weichselian calcites reflects the climate history changing from overall initial permafrost conditions to permafrost-free and subsequently to renewed permafrost conditions. Judging from the data compiled here, the last permafrost stage in the Rätselhalle is followed by a warm period (interstadial and/or Holocene. During this warmer period, the cave ice melted and cryogenic and non-cryogenic Weichselian calcite precipitates were deposited on the cave ground or on fallen blocks, respectively.

  1. Calcite Twins, a Tool for Tectonic Studies in Thrust Belts and Stable Orogenic Forelands Les macles de la calcite, un outil pour les études tectoniques dans les chaînes plissées et les avant-pays peu déformés des orogènes

    OpenAIRE

    Lacombe O.

    2010-01-01

    Calcite twins have been used for a long time as indicators of stress/strain orientations and magnitudes. Recent developments during the last 15 years point toward significant improvements of existing techniques as well as new applications of calcite twin analysis in thrust belts and forelands. This paper summarizes the principles of the most common techniques in this tectonic field and illustrates some aspects of the use of calcite twins to constrain not only stress/strain orientations a...

  2. Origin of epigenetic calcite in coal from Antarctica and Ohio based on isotope compositions of oxygen, carbon and strontium

    Science.gov (United States)

    Faure, G.; Botoman, G.

    1984-01-01

    Isotopic compositions of oxygen, carbon and strontium of calcite cleats in coal seams of southern Victoria Land, Antarctica, and Tuscarawas County, Ohio, contain a record of the conditions a the time of their formation. The Antarctic calcites (?? 18O(SMOW) = +9.14 to +11.82%0) were deposited from waters enriched in 16O whose isotopic composition was consistent with that of meteoric precipitation at low temperature and high latitude. The carbon of the calcite cleats (?? 13C(PDB) = -15.6 to -16.9%0) was derived in part from the coal (?? 13C(PDB) = -23.5 to -26.7%0) as carbon dioxide and by oxidation of methane or other hydrocarbon gases. The strontium ( 87Sr 86Sr = 0.71318-0.72392) originated primarily from altered feldspar grains in the sandstones of the Beacon Supergroup. Calcite cleats in the Kittaning No. 6 coal seam of Ohio (?? 18O(SMOW) = +26.04 to +27.79%0) were deposited from waters that had previously exchanged oxygen, possibly with marine carbonate at depth. The carbon (?? 13C(PDB) = 0.9 to +2.4%0) is enriched in 13C even though that cleats were deposited in coal that is highly enriched in 12C and apparently originated from marine carbonates. Strontium in the cleats ( Sr 87 0.71182-0.71260) is not of marine origin but contains varying amounts of radiogenic 87Sr presumably derived from detrital Rb-bearing minerals in the adjacent sedimentary rocks. The results of this study suggest that calcite cleats in coal of southern Victoria Land, Antarctica, were deposited after the start of glaciation in Cenozoic time and that those in Ohio precipitated from formation waters derived from the underlying marine carbonate rocks, probably in the recent geologic past. ?? 1984.

  3. Hydrocarbon-water interactions during brine migration: Evidence from hydrocarbon inclusions in calcite cements from Danish North Sea oil fields

    Science.gov (United States)

    Jensenius, Jørgen; Burruss, Robert C.

    1990-03-01

    Crude oils in primary and secondary fluid inclusions in calcite from fractures in seven offshore oil fields associated with diapiric salt structures in the Danish sector of the North Sea were analyzed by capillary column gas chromatography and compared with crude oils produced from the same reservoirs. Oils from fluid inclusions in all fields show evidence of biodegradation (decreased n- C17/pristane and n- C18/phytane ratios and loss of n-C 7, 2-methyl hexane, and 3-methyl hexane relative to methyl cyclohexane) and water washing (absence of benzene and depletion of toluene). Some oils in inclusions are extremely enriched in C 6 and C 7 cyclic alkanes suggesting that these samples contain hydrocarbons exsolved from ascending, hotter formation waters. Compared to inclusion oils the produced oils are less biodegraded, but are water washed, indicating that both types of oil interacted with large volumes of formation water. The carbon isotopic composition of the calcite host of the fluid inclusions in the Dagmar and Skjold fields is as light as -16.5%. PDB and the sulfur isotopic composition of pyrite in and adjacent to the calcite veins in the Skjold field is as light as -39.6%. CDT, indicating that biodegradation of the oils was a source of some of the carbon in the calcite and sulfate reduction was the source of sulfur for the pyrite. The evidence for microbial degradation of petroleum is consistent with present-day reservoir temperatures (65°-96°C) but is not consistent with previous estimates of the temperatures of calcite vein filling (95°-130°C) which are much higher than the temperatures of known occurrences of biodegraded oil.

  4. A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite.

    Science.gov (United States)

    Mbamba, Christian Kazadi; Batstone, Damien J; Flores-Alsina, Xavier; Tait, Stephan

    2015-01-01

    Process simulation models used across the wastewater industry have inherent limitations due to over-simplistic descriptions of important physico–chemical reactions, especially for mineral solids precipitation. As part of the efforts towards a larger Generalized Physicochemical Modelling Framework, the present study aims to identify a broadly applicable precipitation modelling approach. The study uses two experimental platforms applied to calcite precipitating from synthetic aqueous solutions to identify and validate the model approach. Firstly, dynamic pH titration tests are performed to define the baseline model approach. Constant Composition Method (CCM) experiments are then used to examine influence of environmental factors on the baseline approach. Results show that the baseline model should include precipitation kinetics (not be quasi-equilibrium), should include a 1st order effect of the mineral particulate state (Xcryst) and, for calcite, have a 2nd order dependency (exponent n = 2.05 ± 0.29) on thermodynamic supersaturation (σ). Parameter analysis indicated that the model was more tolerant to a fast kinetic coefficient (kcryst) and so, in general, it is recommended that a large kcryst value be nominally selected where insufficient process data is available. Zero seed (self nucleating) conditions were effectively represented by including arbitrarily small amounts of mineral phase in the initial conditions. Both of these aspects are important for wastewater modelling, where knowledge of kinetic coefficients is usually not available, and it is typically uncertain which precipitates are actually present. The CCM experiments confirmed the baseline model, particularly the dependency on supersaturation. Temperature was also identified as an influential factor that should be corrected for via an Arrhenius-style correction of kcryst. The influence of magnesium (a common and representative added impurity) on kcryst was found to be significant but was considered

  5. Two-dimensional X-ray diffraction as a tool for the rapid, nondestructive detection of low calcite quantities in aragonitic corals

    Science.gov (United States)

    Smodej, Jörg; Reuning, Lars; Wollenberg, Uwe; Zinke, Jens; Pfeiffer, Miriam; Kukla, Peter A.

    2015-10-01

    Paleoclimate reconstructions based on reef corals require precise detection of diagenetic alteration. Secondary calcite can significantly affect paleotemperature reconstructions at very low amounts of ˜1%. X-ray powder diffraction is routinely used to detect diagenetic calcite in aragonitic corals. This procedure has its limitations as single powder samples might not represent the entire coral heterogeneity. A conventional and a 2-D X-ray diffractometer were calibrated with gravimetric powder standards of high and low magnesium calcite (0.3% to 25% calcite). Calcite contents analysis showed very similar results. This enables spot measurements with diameters of ˜4 mm, as well as systematic line scans along potential tracks previous to geochemical proxy sampling. In this way, areas affected by diagenetic calcite can be avoided and alternative sampling tracks can be defined. Alternatively, individual sampling positions that show dubious proxy results can later be checked for the presence of calcite. The presented calibration and quantification method can be transferred to any 2-D X-ray diffractometer.

  6. Strontium geochemistry and carbon and oxygen isotopic compositions of Lower Proterozoic dolomite and calcite marbles from the Marmorilik Formation, West Greenland

    International Nuclear Information System (INIS)

    The Marmorilik Formation, Rinkian mobile belt, West Greenland, is a large, Lower Proterozoic carbonate-rock sequence, deformed and metamorphosed under greenschist to amphibolite facies conditions. The pre-deformation thickness of the sequence is at least 2000 m, with about 1400 m of dolomite marble and 350 m of calcite marble. Strontium contents of forty-two dolomite and calcite marbles range from 30 to 100 ppm and 300 to 800 ppm, respectively, whereas samples with calcite of secondary origin have strontium contents between 80 ppm and 200 ppm. Carbon and oxygen isotope ratios were determined for forty calcite and dolomite marbles as -0.2+-1.0 per 1000 delta13C and -9.9+-1.5 per 1000 delta18O (vs. PDB) and are compatible with the isotopic compositions of unmetamorphosed carbonates of similar age. Calcite from eight calciumsilicate rocks, breccias and calcite veins is significantly more negative in delta13C and delta18O. Five 13C analyses of graphite in marble range from -9.6 to -14 per 1000. Possible post-depositional changes in the strontium content and carbon and oxygen isotope compositions are discussed. It is concluded that (a) the calcite marbles are not dedolomites and are therefore of primary origin, (b) the delta 13C and delta 18O values of the marbles are primary or diagenetic (i.e., pre-metamorphic), and (c) the isotopic composition of the graphite is compatible with, though not necessarily evidence for, a biogenic origin. (Auth.)

  7. Carbon isotope and x-ray diffraction studies on calcite-graphite system in calc-granulites around Usilampatti area, Madurai, Tamil Nadu

    International Nuclear Information System (INIS)

    Carbon isotope studies on calcite-graphite system yield narrow Δ Cal-Gr values, varying from 3.9 to 4.3, indicating equilibrium between coexisting calcite and graphite. Calcite-graphite geothermometry has assigned temperatures ranging from 630 deg to 700 deg C for the cal-granulites found to the NE of Usilampatti area. The inferred temperatures correspond to the retrograde temperatures obtained by cation exchange thermometry on the granulites from other areas in the Madurai Block. These temperatures may correspond to the late isobaric cooling event. X-ray diffraction studies indicate well ordered nature of these graphites and corroborate the findings of isotope geothermometric influences. (author)

  8. Experimental determination of calcite solubility in H2O-KCl-NaCl-LiCl solutions at 700 °C and 8 kbar

    OpenAIRE

    Eguchi, James Hiro

    2014-01-01

    Understanding the interactions between calcite and aqueous solutions is important when studying the deep carbon cycle. The present study investigates the solubility of calcite in salt-H2O fluids at 700 °C and 8 kbar. The investigated salts included NaCl, KCl, LiCl, and CsCl. All experiments were conducted in a piston cylinder apparatus. The results show that calcite solubility increases with increasing concentration of any individual salt. The data were successfully fit to simple functions of...

  9. The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave

    Science.gov (United States)

    Sanchez-Moral, S.; Portillo, M. C.; Janices, I.; Cuezva, S.; Fernández-Cortés, A.; Cañaveras, J. C.; Gonzalez, J. M.

    2012-02-01

    Bacteria are able to induce carbonate precipitation although the participation of microbial or chemical processes in speleothem formation remains a matter of debate. In this study, the origin of carbonate depositions such as moonmilk, an unconsolidated microcrystalline formation with high water content, and the consolidation of carbonate precipitates into hard speleothems were analyzed. The utilized methods included measurements of the composition of stable isotopes in these precipitates, fluorimetric determinations of RNA/DNA ratios and respirometric estimations in Altamira Cave. Results from isotope composition showed increases of the δ 18O and δ 13C ratios from moonmilk in the very first stages of formation toward large speleothems. Estimates of RNA/DNA ratios suggested an inactivation of microorganisms from incipient moonmilk toward consolidated deposits of calcium carbonate. Respiratory activity of microorganisms also showed a significant decrease in samples with accumulated calcite. These results suggest that bacterial activity induces the conditions required for calcium carbonate precipitation, initiating the first stages of deposition. Progressive accumulation of carbonate leads towards a less favorable environment for the development of bacteria. On consolidated speleothems, the importance of bacteria in carbonate deposition decreases and chemical processes gain importance in the deposition of carbonates.

  10. Study of adsorption behaviors of Cs+ and Yb3+ on calcite, kaolinite, montmorillonite, chlorite and glauconite

    International Nuclear Information System (INIS)

    The adsorption behaviors of Cs+ and Yb3+ on five minerals including calcite, kaolinite, montmorillonite, chlorite and glauconite are simultaneously investigated by the static equilibrium batch experiments with radioactive tracer technique. The experimental results indicate that under same experimental conditions (initial solution acidity, initial ion concentration and liquid-solid phase ratio), the adsorption capacity (Q) in unit of mmol/g of montmorillonite towards Cs+ and/or Yb3+ are stronger than other 4 minerals, which display no evident difference of Q values. The Rd of Cs+ and Yb3+ on the five minerals decrease with increasing of their initial concentrations in solution. The uptakes of Cs+ are ordinary lower than Ya3+ except for the high c0. The adsorption isotherms of Cs+ and Yb3+ are all in fairly agreement with the Freundlich's equation. The adsorption mechanism of Cs+ and Yb3+ in the systems of kaolinite, montmorillonite and chlorite at the experimental pH range is likely attributed to the process of ion exchange

  11. Coccolithophores and calcite saturation state in the Baltic and Black Seas

    Directory of Open Access Journals (Sweden)

    T. Tyrrell

    2007-10-01

    Full Text Available The Baltic and Black Seas are both brackish, that is to say both have salinities intermediate between freshwater and seawater. The coccolithophore Emiliania huxleyi is abundant in one, the Black Sea, but absent from the other, the Baltic Sea. Here we present summertime coccolithophore measurements confirming this difference, as well as data on the calcium carbonate saturation state of the Baltic Sea. We find that the Baltic Sea becomes undersaturated (or nearly so in winter, with respect to both the aragonite and calcite mineral forms of CaCO3. Data for the Black Sea are more limited, but it appears to remain strongly supersaturated year-round. The absence of E. huxleyi from the Baltic Sea could therefore potentially be explained by dissolution of their coccoliths in winter, suggesting that minimum annual (wintertime saturation states could be most important in determining future ocean acidification impacts. In addition to this potential importance of winter saturation state, alternative explanations are also possible, either related to differences in salinity or else to differences in silicate concentrations.

  12. Distortions of the calcite and aragonite atomic structures from interstitial water

    International Nuclear Information System (INIS)

    Amorphous calcium carbonate (ACC), as observed by diffraction or infra-red spectroscopy, is especially significant as a precursor in biomineralization. The atomic structure and mechanisms for transformation to the crystalline phases are still unknown. It is conceivable that insertion of water molecules could give rise to distortions that result in the observed diffraction patterns and infrared spectra. We use the VASP density functional theory code to relax model supercells with 24 formula units of CaCO3 where we have inserted up to 5 water molecules, corresponding to 3.75 wt%. The main effect is tilting of the carbonate planes, which can be as high as 50°. This leads to a range of Ca–O distances that are consistent with the observed changes in the IR spectra in ACC. The spread in cation–cation distances is not enough to destroy coherent diffraction from regions 70 nm across, and so does not explain amorphous diffraction profiles. - Highlights: • Low concentrations of water in the calcite or aragonite structures lead to tilting of the carbonate planes. • This is consistent with IR observations from amorphous calcium carbonate. • It does not explain amorphous diffraction patterns

  13. Pyrite-pyrrhotite intergrowths in calcite marble from Bistriški Vintgar, Slovenia

    Science.gov (United States)

    Zavašnik, J.

    2016-02-01

    Roman marble quarry in Bistrica gorge in southern Pohorje Mt. (north-eastern Slovenia) is situated in a 20 m thick lens of layered marble, at the contact zone between granodiorite and metamorphites. Grey and yellowish non-homogenous calcite marble is heavily included by mica, quartz, feldspars, zoisite, pyrite and amphiboles. In the present research, we have studied numerous pyrite (FeS2) crystals associated with yellowish-bronze non-stoichiometric pyrrhotite (Fe1-xS), not previously reported from this locality. SEM investigation revealed unusual sequence of crystallisation: primary skeletal pyrrhotite matrix is sparsely overgrown by well-crystalline pyrite, both being overgrown by smaller, well-developed hexagonal pyrrhotite crystals of the second generation. With TEM we identify the pyrrhotite as 5T-Fe1-xS phase, where x is about 0.1 and is equivalent to Fe9S10. The pyrite-pyrrhotite coexistence allows us a construction of fO2-pH diagram of stability fields, which reflects geochemical conditions at the time of marble re-crystallisation.

  14. Carbon and oxygen isotopes of hydrothermal calcite associated with the 'Lavas Ocoiticas' between Copiapo and Illapel

    International Nuclear Information System (INIS)

    In northern Chile, between latitudes 27o and 33oS, the Lower Cretaceous is characterized by an arc / back-arc basin system (Mpodozis and Ramos, 1989). In its first stage (Late Jurassic to Early Cretaceous) the arc was part of an island arc system of weakly continental character, which evolved into a continental arc (Vergara et al., 1995). The volcanic arc was associated with a marginal back-arc which terminated its development in the Aptian to Albian times (Vergara and Nystrom, 1996; Cisternas et al., 1999a). A sequence of porphyritic lavas, know as the 'Lavas Ocoiticas' extruded at the end of the Neocomian. In the area of Copiapo the 'Lavas Ocoiticas' host numerous metallic deposits and occurrences and has been designated as the Metallotect 'Ocoita Pabellon' (Cisternas et al., 1999b). This metallotect is characterized by the occurrence of 'migrabitumen' (both in veinlets and in vesicles) and copper sulfides. The genesis of the deposits in the Metallotect 'Ocoita Pabellon' has been studied by Cisternas et al. (1999b).and Hermosilla (2001). They conclude that hydrothermal fluid events mobilized and emplaced both the hydrocarbons and the metallic contents in the lavas. In this communications we presents new C and S isotope data obtained from hydrothermal calcite in both the norhtern area (Copiapo), where it is associated with bitumen; and in the southern area (Illapel) where hydrothermal alteration or metamorphism seems to have obliterated the bitumen (au)

  15. Verification of the causes of glaciations and sea level changes using the records of calcite speleothems.

    Directory of Open Access Journals (Sweden)

    Shopov Yavor Y.

    2000-01-01

    Full Text Available The luminescence of calcite speleothems displays an exponential dependence on soil temperature unless there is a dense cover of forest over the cave to dampen it. This relationship is determined primarily by the strength of solar visible and infrared radiation. It is suggested that, as a consequence, the microzonal variations of luminescence often found in speleothems can be used as a proxy index of Solar Insolation. The luminescence solar insolation proxy record of a speleothem from Jewel Cave, South Dakota, USA, was found to display millenial and centennial cycles in the record. It exhibits a rapid increase in solar insolation at 139 ± 5.5 kyrs. This increase precedes that suggested by the Orbital theory by about 10,000 years and is due to superimposition of the most powerful cycle in solar luminosity of 11.5 kyrs, upon the curve of orbital variations. The record from a speleothem in Duhlata Cave, Bulgaria matches that of South Dakota within the limits of dating error, indicating that both of these records (which are 10,000 km apart measure global solar insolation controls rather than local paleotemperature variations.

  16. On Pore Dynamics and Calcite Solubility in Carbonaceous Aquifers used in Energy Storage Applications

    Science.gov (United States)

    Tilley, Bs; Brady, Ds; Ueckert, M.; Baumann, T.

    2015-11-01

    Geothermal energy harvesting applications use deep groundwater aquifers to store harvested energy. The impact of this additional energy to the aquifer chemistry is crucial for long-term operation. Gaseous CO2 is added to the injected water to compensate potential precipitates of carbonates and to prevent structural changes to the aquifer. Both of these effects affect the local chemical equilibrium of the aquifer, and we consider a long-wave model of this process for a single axisymmetric pore where gaseous CO2 concentration, temperature, fluid flow and hydrochemistry modify the pore radius in space and time. Substrates are composed of calcite and dolomite, whose composition evolution is part of the full pore problem. During oscillatory flow conditions, concentration levels of the dissolved species can be sufficient to overcome elevated temperature levels and promote pore closure for sufficiently thin pores. We identify the conditions under which this pore closure takes place. Support from the Bavarian State Ministry for the Economy is gratefully acknowledged.

  17. Thermoluminescence studies of calcite extracted from natural sand used in making roasted chickpea

    International Nuclear Information System (INIS)

    In this study, thermoluminescence (TL) properties of the calcite extracted from natural sand which is used in making roasted chickpeas were investigated. And also the effects of different thermal treatments on thermoluminescence glow curve were observed. Two distinct TL peaks were observed at ∼130 °C and ∼230 °C. The annealing of sample, especially at 900 °C, causes a huge enhancement in sensitization of TL. Linearity in dose response is observed for the values up to 0.6 kGy and above 0.6 kGy linearity is not preserved and dose response becomes sublinear. The best reproducibility is obtained when the samples are annealed between 400°C and 600 °C. - Highlights: • The natural sand sample used in making roasted chickpea shows thermoluminescence properties. • Annealing at 900 °C for about 15 min gives best TL output. • A good sensitization of about 70 factor was observed in annealed samples when they were compared with no annealed samples. • At doses lower than 0.6 kGy, dose response is linear and sublinear at doses higher than 0.6 kGy. • The best reproducibility is obtained when the samples are annealed between 400 °C and 600 °C

  18. Thermoluminescence studies of calcite extracted from natural sand used in making roasted chickpea

    Energy Technology Data Exchange (ETDEWEB)

    Toktamiş, Hüseyin, E-mail: toktamis@gantep.edu.tr; Toktamiş, Dilek; Necmeddin Yazici, A.

    2014-09-15

    In this study, thermoluminescence (TL) properties of the calcite extracted from natural sand which is used in making roasted chickpeas were investigated. And also the effects of different thermal treatments on thermoluminescence glow curve were observed. Two distinct TL peaks were observed at ∼130 °C and ∼230 °C. The annealing of sample, especially at 900 °C, causes a huge enhancement in sensitization of TL. Linearity in dose response is observed for the values up to 0.6 kGy and above 0.6 kGy linearity is not preserved and dose response becomes sublinear. The best reproducibility is obtained when the samples are annealed between 400°C and 600 °C. - Highlights: • The natural sand sample used in making roasted chickpea shows thermoluminescence properties. • Annealing at 900 °C for about 15 min gives best TL output. • A good sensitization of about 70 factor was observed in annealed samples when they were compared with no annealed samples. • At doses lower than 0.6 kGy, dose response is linear and sublinear at doses higher than 0.6 kGy. • The best reproducibility is obtained when the samples are annealed between 400 °C and 600 °C.

  19. Calcite scale prediction at the near-well region: A radiotracer approach

    Directory of Open Access Journals (Sweden)

    Bjørnstad T.

    2013-05-01

    Full Text Available Effective prediction of calcite scaling requires a reliable thermodynamic model for the prediction of the scaling tendency, a kinetic model for the prediction of scaling rate and a transport model to simulate flow in a porous medium. The accurate prediction of the scale deposition can warn the engineers to “treat” the formation around the wellbore in time. In addition, the prediction of the distribution of the scale deposition can direct the engineers to ensure the placement of the inhibitors into the formation zones where the deposition is expected, thus maximizing the probability of successful prevention of formation damage and minimizing at the same time the amount of the required inhibitors. In this contribution, we present a geochemical computational model that combines existing thermodynamic and kinetic models for CaCO3 precipitation, with treatments of flow and diffusion in electrolyte systems, in an one-dimensional porous medium. The geochemical model has the ability to predict the distribution of scale deposition along and around the production wells, as well as the distribution of formation damage (pore blocking, permeability reduction around the wells.

  20. Distortions of the calcite and aragonite atomic structures from interstitial water

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S.; Rez, P., E-mail: Peter.Rez@asu.edu

    2015-05-01

    Amorphous calcium carbonate (ACC), as observed by diffraction or infra-red spectroscopy, is especially significant as a precursor in biomineralization. The atomic structure and mechanisms for transformation to the crystalline phases are still unknown. It is conceivable that insertion of water molecules could give rise to distortions that result in the observed diffraction patterns and infrared spectra. We use the VASP density functional theory code to relax model supercells with 24 formula units of CaCO{sub 3} where we have inserted up to 5 water molecules, corresponding to 3.75 wt%. The main effect is tilting of the carbonate planes, which can be as high as 50°. This leads to a range of Ca–O distances that are consistent with the observed changes in the IR spectra in ACC. The spread in cation–cation distances is not enough to destroy coherent diffraction from regions 70 nm across, and so does not explain amorphous diffraction profiles. - Highlights: • Low concentrations of water in the calcite or aragonite structures lead to tilting of the carbonate planes. • This is consistent with IR observations from amorphous calcium carbonate. • It does not explain amorphous diffraction patterns.

  1. Stability of Basalt plus Anhydrite plus Calcite at HP-HT: Implications for Venus, the Earth and Mars

    Science.gov (United States)

    Martin, A. M.; Righter, K.; Treiman, A. H.

    2010-01-01

    "Canali" observed at Venus surface by Magellan are evidence for very long melt flows, but their composition and origin remain uncertain. The hypothesis of water-rich flow is not reasonable regarding the temperature at Venus surface. The length of these channels could not be explained by a silicate melt composition but more likely, by a carbonate-sulfate melt which has a much lower viscosity (Kargel et al 1994). One hypothesis is that calcite CaCO3 and anhydrite CaSO4 which are alteration products of basalts melted during meteorite impacts. A famous example recorded on the Earth (Chicxulub) produced melt and gas rich in carbon and sulfur. Calcite and sulfate evaporites are also present on Mars surface, associated with basalts. An impact on these materials might release C- and S-rich melt or fluid. Another type of planetary phenomenon (affecting only the Earth) might provoke a high pressure destabilization of basalt+anhydrite+calcite. Very high contents of C and S are measured in some Earth s magmas, either dissolved or in the form of crystals (Luhr 2008). As shown by the high H content and high fO2 of primary igneous anhydrite-bearing lavas, the high S content in their source may be explained by subduction of an anhydrite-bearing oceanic crust, either directly (by melting followed by eruption) or indirectly (by release of S-rich melt or fluid that metasomatize the mantle) . Calcite is a major product of oceanic sedimentation and alteration of the crust. Therefore, sulfate- and calcite-rich material may be subducted to high pressures and high temperatures (HP-HT) and release S- and C-rich melts or fluids which could influence the composition of subduction zone lavas or gases. Both phenomena - meteorite impact and subduction - imply HP-HT conditions - although the P-T-time paths are different. Some HP experimental/theoretical studies have been performed on basalt/eclogite, calcite and anhydrite separately or on a combination of two. In this study we performed piston

  2. Experiment Study on the Removal of Phosphorus in Eutrophic Water Bodies by the Utilization of Mineral Calcite

    Science.gov (United States)

    Xu, Hong; Zhang, Jing; Gao, Yiming

    For seeking a new method to solve the problem of eutrophication, we have made the experiments of removing phosphorus in eutropic water by use of mineral calcite. The results indicate that the mineral calcite can remove phosphorus from the solution, and that the initial phosphorus concentration may influence the efficiency of phosphorus removal. The dephosphorization rate is high when the initial phosphorus concentration is 5 mg/L, and phosphorus can be removed by 88.48%; the dephosphorization rate may reach 69.94% when the initial phosphorus concentration is 3 mg/L; at 1.2 mg/L initial concentration only 12.68% phosphorus can be removed. Increasing temperature can also raise the efficiency of phosphorus removal. The result of TEM shows that the Ca-P precipitation is not in crystalline state.

  3. Biomineralisation in the Palaeozoic oceans: evidence for simultaneous crystallisation of high and low magnesium calcite by phacopine trilobites

    OpenAIRE

    Lee, M.; Torney, C.; Owen, A. W.

    2012-01-01

    The chemical composition and microstructure of the calcite cuticles of eleven species of phacopine trilobites have been investigated by electron beam imaging, diffraction, and microanalysis, and results reveal that the lenses of their schizochroal eyes differed significantly in chemical composition from the rest of the cuticle in vivo. Apart from the eye lenses, most cuticles are inferred to have escaped extensive recrystallisation because their constituent crystals are sub-micrometre in size ...

  4. Cyclic growth and branching phenomena of calcite grown in Mg(2+) containing solutions and in natural systems

    Science.gov (United States)

    Wiethoff, Felix; Richter, Detlef K.; Neuser, Rolf D.; Immenhauser, Adrian; Gies, Hermann; Schreuer, Jürgen

    2016-04-01

    Undulosity in calcites (radiaxial fibrous calcite (RFC) and fascicular-optic fibrous calcite (FOFC)) is a common phenomenon in paleozoic and mesozoic limestones. Despite their importance as archives for climate reconstruction the underlying mechanisms and processes of their formation are still poorly understood [1]. To improve the application of such archives for climate reconstruction a better knowledge of their formation and possible alteration scenarios is necessary. In Mg2+ containing gel based growth experiments calcite crystals develop pathological morphologies. The morphology can be described as a product of a geometrical selective branching process at the rhombohedral crystal faces. Multiple sheet like building blocks evolve at the branching crystal face; each slightly tilted in respect to their substrate. The product is a crystal aggregate consisting out of several misoriented sub domains. In polarized light thin section microscopy the extinction behaviour of these sub units resemble the optical undulosity of radiaxial fibrous cements. In a multi method approach the local Mg2+ concentration was measured using EMPA and compared with maps of the local crystal orientation (via electron backscatter diffraction (EBSD)) and thin section microscopy. We found that Mg2+ is enriched at the sub-domain boundaries and deduced that lattice misfit as a consequence of impurity incorporation causes the crystal branching. We propose that this process is cyclic and each new misoriented sheet represents a growth period after a phase of inhibited growth caused by crystal faces covered by Mg2+‑ions. In comparison to natural systems we found that radiaxial-fibrous cave cements show a pathological morphology based on the same formation principles. [1] Richter et al. (2011) Sediment. Geol. 239, 23-36 [2] Reeder & Paquette (1989) Sediment. Geol. 65, 239-247 [3] Davis et al. (2004) Am. Min. 89, 714-720

  5. Empirical equations for the temperature dependence of calcite-water oxygen isotope fractionation from 10 to 70°C.

    Science.gov (United States)

    Demény, Attila; Kele, Sándor; Siklósy, Zoltán

    2010-12-30

    Although the temperature dependence of calcite-water oxygen isotope fractionation seems to have been well established by numerous empirical, experimental and theoretical studies, it is still being discussed, especially due to the demand for increased accuracy of paleotemperature calculations. Experimentally determined equations are available and have been verified by theoretical calculations (considered as representative of isotopic equilibrium); however, many natural formations do not seem to follow these relationships implying either that existing fractionation equations should be revised, or that carbonate deposits are seriously affected by kinetic and solution chemistry effects, or late-stage alterations. In order to test if existing fractionation-temperature relationships can be used for natural deposits, we have studied calcite formations precipitated in various environments by means of stable isotope mass spectrometry: travertines (freshwater limestones) precipitating from hot and warm waters in open-air or quasi-closed environments, as well as cave deposits formed in closed systems. Physical and chemical parameters as well as oxygen isotope composition of water were monitored for all the investigated sites. Measuring precipitation temperatures along with oxygen isotope compositions of waters and calcites yielded empirical environment-specific fractionation-temperature equations: [1] 1000 · lnα = 17599/T - 29.64 [for travertines with a temperature range of 30 to 70°C] and [2] 1000 · lnα = 17500/T - 29.89 [for cave deposits for the range 10 to 25°C]. Finally, based on the comparison of literature data and our results, the use of distinct calcite-water oxygen isotopic fractionation relationships and application strategies to obtain the most reliable paleoclimate information are evaluated. PMID:21080503

  6. Strength, stability, and microstructure of simulated calcite faults sheared under laboratory conditions spanning the brittle-plastic transition

    OpenAIRE

    Verberne, B.A.

    2015-01-01

    Destructive earthquakes are commonplace in tectonically-active carbonate-bearing terrains, often leading to severe economic damage and major loss of life (e.g. the Apennines, Italy). Efforts to improve seismic risk assessment in such terrains require a quantitative understanding of the slip behaviour of faults in carbonate rocks. In this thesis I report the results of an experimental investigation of the mechanisms controlling slip of simulated fault rocks composed of calcite (CaCO3). Shear (...

  7. Carbonated hydroxyapatite starting from calcite and different orthophosphates under moderate hydrothermal conditions: Synthesis and surface reactivity in simulated body fluid

    International Nuclear Information System (INIS)

    Highlights: • Carbonated apatite (CAP) could be easily obtained from CaCO3 and orthophosphates. • Highest CaCO3 dissolution and apatitic carbonate content were obtained with H3PO4. • A-B-type CAP was formed. • The synthesized CAP was thermally stable up to 1000 °C. • This CAP showed high biomineralization activity before and after thermal treatment. - Abstract: The one-step synthesis of carbonated hydroxyapatite (CAP) using calcite and different orthophosphates was investigated in a closed batch reactor. Only orthophosphoric acid could lead to the complete decomposition of calcite particles, when the reaction temperature was set at 80 °C. On the other hand, the reaction time and the dilution of the initial calcite suspension had no significant influence on the formation of the solid products. CAP was formed as the main crystalline calcium phosphate with the carbonate content in the range of 4.2–4.6 wt.%. The thermal decarbonation of the synthesized CAP started at 750 °C but it was only significant at 1000 °C under air atmosphere. This thermal decarbonation was total at 1200 °C or above. All CAP samples and products following thermal treatments were found bioactive in the test using simulated body fluid (SBF) solution

  8. Iron oxide and calcite associated with Leptothrix sp. biofilms within an estavelle in the upper Floridan aquifer

    Directory of Open Access Journals (Sweden)

    Florea Lee J.

    2011-07-01

    Full Text Available In Thornton’s Cave, an estavelle in west-central Florida, SEM, EDS, and XRD data reveal biofilms that are predominantly comprisedof FeOOH-encrusted hollow sheaths that are overgrown and intercalated with calcite. Fragments of this crystalline biofilm adhereto the walls and ceiling as water levels vary within the cave. Those on the wall have a ‘cornflake’ appearance and those affixed tothe ceiling hang as fibrous membranes. PCR of DNA in the active biofilm, combined with morphologic data from the tubes in SEMmicrographs, point to Leptothrix sp., a common Fe-oxidizing bacteria, as the primary organism in the biofilm. Recent discoveries of‘rusticles’ in other Florida caves suggest that Fe-oxidizing bacteria may reside elsewhere in Florida groundwater and may play a rolein the mobility of trace metals in the Upper Florida aquifer. SEM micrographs from two marble tablets submerged for five months, oneexposed to microbial activity and a second isolated from microbial action, revealed no visible etchings or borings and very limited lossof mass. EDS data from the electron micrographs of the unfiltered tablet document the same FeOOH-encrusted hollow sheaths andsimilar deposits of calcite as seen in the ‘cornflakes’. These results, combined with water chemistry data imply that the biofilm mayfocus or even promote calcite precipitation during low-water level conditions when CO2 degasses from the cave pools.

  9. Carbonated hydroxyapatite starting from calcite and different orthophosphates under moderate hydrothermal conditions: Synthesis and surface reactivity in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Pham Minh, Doan, E-mail: doan.phamminh@mines-albi.fr; Nzihou, Ange; Sharrock, Patrick

    2014-12-15

    Highlights: • Carbonated apatite (CAP) could be easily obtained from CaCO{sub 3} and orthophosphates. • Highest CaCO{sub 3} dissolution and apatitic carbonate content were obtained with H{sub 3}PO{sub 4}. • A-B-type CAP was formed. • The synthesized CAP was thermally stable up to 1000 °C. • This CAP showed high biomineralization activity before and after thermal treatment. - Abstract: The one-step synthesis of carbonated hydroxyapatite (CAP) using calcite and different orthophosphates was investigated in a closed batch reactor. Only orthophosphoric acid could lead to the complete decomposition of calcite particles, when the reaction temperature was set at 80 °C. On the other hand, the reaction time and the dilution of the initial calcite suspension had no significant influence on the formation of the solid products. CAP was formed as the main crystalline calcium phosphate with the carbonate content in the range of 4.2–4.6 wt.%. The thermal decarbonation of the synthesized CAP started at 750 °C but it was only significant at 1000 °C under air atmosphere. This thermal decarbonation was total at 1200 °C or above. All CAP samples and products following thermal treatments were found bioactive in the test using simulated body fluid (SBF) solution.

  10. Endolithic Microbial Communities in Fractures: Insights Gleaned from Mineralized Filaments in Cretaceous-age Calcite Veins in Serpentinized Peridotites, Iberia Abyssal Plain

    Science.gov (United States)

    Milliken, K. L.

    2001-03-01

    The occurrence of diverse mineralized microbial features in calcitized fractures in serpentinized peridotite, Iberia Abyssal Plain, suggests that mineralized fractures are of particular interest in the search for fossil or extant life on Mars.

  11. Calcite Twinning in the Ordovician Martinsburg Formation, Delaware Water Gap, New Jersey, USA: Implications for Cleavage Formation and Tectonic Shortening in the Appalachian Piedmont Province

    Directory of Open Access Journals (Sweden)

    John P. Craddock

    2016-02-01

    Full Text Available A traverse across the Stone Church syncline in the Ordovician Martinsburg turbidites reveals an axial planar cleavage (N40°E, SE dips in regional thrust-related folds (N40°E, shallow plunges and five phases of sparry calcite. Calcite fillings are bedding-parallel, cleavage-parallel, and one vein set cross-cuts both earlier phases; the youngest calcite filling is a bedding-parallel fault gouge that crosscuts the cleavage and preserves top-down-to-the-southeast normal fault kinematics. Calcite veins unique to disharmonically-folded calcareous siltstones (Maxwell, 1962 were also analyzed. Stable isotopic analysis (O, C of all of the calcite phases indicates a uniform fluid source (δ13C −2.0, δ18O −13.3 VPDB and, potentially, a similar precipitation and mechanical twinning age. The twinning strains (n = 1341; average Δσ = −32 MPa; average ε1 = −2.9% in the calcite suite are consistent with SE-NW thrust shortening, and sub-horizontal shortening perpendicular to evolving axial planar cleavage planes in the Stone Church syncline. Calcareous siltstone layers within the Martinsburg Fm. turbidites share concordant bedding planes and are unique, chemically (XRF, but folded and cleaved differently than the surrounding clay-rich Martinsburg turbidites. Neither sediment type yielded detrital zircons. Electron backscatter X-ray diffraction (EBSD and calcite twinning results in a folded calcareous siltstone layer preserving a layer-normal SE-NW shortening strain and Lattice Preferred Orientation (LPO. Shortening axes for the five-phase calcite suite trends ~N40°W, consistent with tectonic transport associated with crystalline nappe emplacement of the Reading Prong within the Piedmont province.

  12. [Study on Mineralogical Characteristics of Quartz and Calcite from Feieling Skarn-Type Pb-Zn Deposit in Southwest Margin of Yunkai Massif].

    Science.gov (United States)

    Zeng, Chang-yu; Zhao, Ming-zhen; Li, Hong-zhong; Niu, Jia; Zhang, Jie-tang; He, Jun-guo; Zhou, Yong-zhang; Yang, Zhi-jun

    2015-09-01

    The Feieling Pb-Zn deposit of skarn-type is located the in Southwest margin of Yunkai massif, China. This ore deposit can be divided into wall rock near ore, concealed rock mass, endoskarn, exoskarn and orebody. The Raman and FTIR spectrum are conducted to study the mineralogical characteristics of quartz and calcite from five types of rocks from Feieling skarn-type deposit. The analysis shows that the quartz included in the near ore wall rock, endoskarn and exoskarn, comparing with recrystallized quartz of concealed rock mass, has a tend to change into low symmetry quartz in varying degrees. The crystalinity and order degree of quartz from near ore wall rock to concealed rock mass and to endoskarn are becoming higher, but that of quartz from different exoskarn samples display no regular. The origin or the quartz microstructure changes may be related to the multi-stage evolution of skarn mineralization process. The quartz, included in near ore wall rock, endoskarn and exoskarn, become easier to recrystallize and adjust microstructure under the influence of the multi-stage hydrothermal and temperature effect. In anyone sample, the earlier crystalline calcite, showing subhedral-euhedral crystal, display higher crystalinity and order degree. On the contrary, the later crystalline calcite, showing xenomorphic crystal, display lower crystalinity and order degree. Calcite crystal of exoskarn rock contains some silica impurity, while endoskarn and orebody rock is pure. The purity of calcite crystal may relate to Multi-stage evolution of skarn mineralization process. At the early and late skarn stage, active silica-containing fluid is easier to join into calcite, which is under higher temperature environments. On the contrary, at the late quartz-surfide stage, the later crystalized calcite displays higher purity, which is under lower temperature environments. Therefore, spectral characteristics of quartz and calcite reflect multi-stage evolution of skarn mineralization

  13. A novel salinity proxy based on Na incorporation into foraminiferal calcite

    Directory of Open Access Journals (Sweden)

    J. C. Wit

    2013-10-01

    Full Text Available Salinity and temperature determine seawater density, and differences in both thereby control global thermohaline circulation. Whereas numerous proxies have been calibrated and applied to reconstruct temperature, a direct and independent proxy for salinity is still missing. Ideally, a new proxy for salinity should target one of the direct constituents of dissolved salt, such as [Na+] or [Cl−]. This study investigates the impact of salinity on foraminiferal Na/Ca values by laser ablation ICP-MS analyses of specimens of the benthic foraminifer Ammonia tepida cultured at a range of salinities (30.0–38.6. Foraminifera at lower salinities (30.0 and 32.5 added more chambers (10–11 to their test over the course of the culturing experiment than those maintained at higher salinities (36.1, 7–8 chambers, and 38.6, 6–7 chambers, suggesting that growth rates in this species are promoted by lower salinities. The Na/Ca of cultured specimens correlates significantly with seawater salinity (Na/Ca = 0.22S–0.75, R2 = 0.96, p DNa vary between 5.17 and 9.29 mmol mol−1 and 0.12–0.16 × 10−3, which are similar to values from inorganic precipitation experiments. The significant correlation between test size and Na/Ca results from co-variation with salinity. This implies that foraminiferal Na/Ca could serve as a robust and independent proxy for salinity, enabling salinity reconstructions independent of calcitic δ18O.

  14. Ca and S K-edge XANES studies of calcite-acid mine water interactions

    International Nuclear Information System (INIS)

    Heavy metal-rich acidic waters (SO42-, AsO43-, SeO42-, Fe2+, Fe3+, Al3+, Cu2+, Zn2+, Cd2+) and related ochreous coatings are common around abandoned sulfide and coal mine sites. This is mainly caused by the natural weathering of pyrite (FeS2), arsenopyrite (FeAsS), and other metal sulfide containing shales. Acid generation in the case of pyrite can be explained by a general reaction: FeS2 + 3.5 O2 + H2O ↔ Fe2+ + SO42- + 2H+. Also, these low pH waters interact with the soils, and mobilize their soluble elements. One of the common remediation strategies is to allow these acid waters to react with limestone (CaCO3-rich rock) and neutralize the pH and precipitate out soluble metals. Yet, the associated problem is the precipitation of Fe and Al oxides and hydroxy sulfate coatings on limestone surfaces, which block calcite reactive sites, and make them ineffective a few hours after initiation of treatment. The main objectives of this research are to examine: (1) the chemistry of limestone surface coatings, and (2) their toxic metal uptake and the conditions that inhibit their formation. Previous molecular studies using X-ray diffraction, and vibrational spectroscopy on limestone surface coatings (sampled from Athens, OH) indicate that the surface-most layer (the layer in contact with water) is composed of schwertmannite (Fe(III)-hydroxy sulfate) like phases. However, white, X-ray amorphous; Al-, sulfate- and carbonate-rich; and Ca-poor phases appeared at the interface between the limestone and the iron oxide coatings. The structure, morphology, and coordination chemistry of component major and trace elements of these white precipitate phases have not previously been examined

  15. Numerical investigation of microbially induced calcite precipitation as a leakage mitigation technology

    Science.gov (United States)

    Hommel, Johannes; Cunningham, Alfred; Helmig, Rainer; Ebigbo, Anozie; Class, Holger

    2013-04-01

    One of the key issues of carbon capture and storage (CCS) is the long term security of the storage site, i.e. the permanent enclosure of the stored carbon dioxide (CO2) in the target reservoir. Amongst the different storage mechanisms, cap rock integrity is crucial for preventing leakage of CO2. Leakage to shallower regions or back to the atmosphere would reduce the efficiency and pose a threat to the environment, for example to groundwater resources or human residence areas. Ureolysis-driven microbially induced calcite precipitation (MICP) is one of the technologies in the current focus of research aiming at mitigation of potential leakage by sealing high permeability zones in cap rocks. In our current work, a numerical model has been developed and validated using MICP experiments in sand filled columns under atmospheric pressure conditions [1]. Based on new experimental data under reservoir pressure conditions in sandstone rock cores [2] the model will be improved and optimized. The focus is on extending the model to 3-D radial flow and the validation of the model under conditions relevant for field scale CCS. The improved numerical model will be used to design field scale MICP experiments and evaluate the results of those experiments to get a better understanding of the potential of MICP as a sealing technology. [1] Ebigbo A., Phillips A., Gerlach R., Helmig R., Cunningham A.B., Class H., and Spangler L. H. (2012), Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns, Water Resour. Res., 48 [2] Phillips A., Lauchnor E., Eldring J., Esposito R., Mitchell A.C., Gerlach R., Cunningham A.B., and Spangler L. H. (2013), Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation, Environ. Sci. Technol., 47(1)

  16. The nature of unusual luminescence in natural calcite, CaCO3

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M.; Nagli, L.; Panczer, G.; Waychunas, G.; Porat, N.

    2008-11-01

    The unusual luminescence of particular varieties of natural pink calcite (CaCO{sub 3}) samples was studied by laser-induced time-resolved luminescence spectroscopy at different temperatures. The luminescence is characterized by intense blue emission under short-wave UV lamp excitation with an extremely long decay time, accompanied by pink-orange luminescence under long wave UV excitation. Our investigation included optical absorption, natural thermostimulated luminescence (NTL) and Laser-Induced Breakdown Spectroscopy (LIBS) studies. Two luminescence centers were detected: a narrow violet band, with {lambda}{sub max} = 412 nm, {Delta} = 45 nm, two decay components of {tau}{sub 1} = 5 ns and {tau}{sub 2} = 7.2 ms, accompanied by very long afterglow, and an orange emission band with {lambda}{sub max} = 595 nm, {Delta} = 90 nm and {tau} = 5 ns. Both luminescence centers are thermally unstable with the blue emission disappearing after heating at 500 C, and the orange emission disappearing after heating at different temperatures starting from 230 C, although sometimes it is stable up to 500 C in different samples. Both centers have spectral-kinetic properties very unusual for mineral luminescence, which in combination with extremely low impurity concentrations, prevent their identification with specific impurity related emission. The most likely explanation of these observations may be the presence of radiation-induced luminescence centers. The long violet afterglow is evidently connected with trapped charge carrier liberation, with their subsequent migration through the valence band and ultimate recombination with a radiation-induced center responsible for the unusual violet luminescence.

  17. Estimation of unknown parameters to improve modeling of Microbially Induced Calcite Precipitation

    Science.gov (United States)

    Hommel, Johannes; Cunningham, Alfred B.; Helmig, Rainer; Ebigbo, Anozie; Class, Holger

    2014-05-01

    One of the key issues of underground gas storage is the long-term security of the storage site. Amongst the different storage mechanisms, cap-rock integrity is crucial for preventing leakage of the stored gas due to buoyancy into shallower aquifers or, ultimately, the atmosphere. This leakage would reduce the efficiency of underground gas storage and pose a threat to the environment. Ureolysis-driven, Microbially Induced Calcite Precipitation (MICP) is one of the technologies in the current focus of current research aiming at mitigation of potential leakage by sealing high-permeability zones in cap rocks. Previously, a numerical model, capable of simulating two-phase flow and MICP processes, was developed and validated against MICP experiments [1]. The model has been improved based on new experimental findings of our collaborators at MSU with respect to the microbial ureolysis kinetics as well as the impact of biomineralization on permeability. The number of fitting parameters used in the model has been reduced and the remaining ones have been refitted by inverse modeling. With the improved implementation of those processes relevant for modeling MICP, simulation results are expected to better match the observed features of a variety of MICP experiments in different porous media, flow regimes and under varying injection schemes conducted by our collaborators at MSU. References [1] A. Ebigbo, A.J. Phillips, R. Gerlach, R. Helmig, A.B. Cunningham, H. Class, L.H. Spangler. Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns. Water Resources Research, 48, (2012)

  18. The surface reactivity of chalk (biogenic calcite) with hydrophilic and hydrophobic functional groups

    Science.gov (United States)

    Okhrimenko, D. V.; Dalby, K. N.; Skovbjerg, L. L.; Bovet, N.; Christensen, J. H.; Stipp, S. L. S.

    2014-03-01

    The surface properties of calcium carbonate minerals play an important role in a number of industrial and biological processes. Properties such as wettability and adsorption control liquid-solid interface behaviour and thus have a strong influence on processes such as biomineralisation, remediation of aquifers and oil recovery. We investigated how two model molecules of different polarity, namely water and ethanol, interact with reservoir and outcrop chalk samples and we compared their behaviour with that of pure, inorganically precipitated calcite. Thermodynamic quantities, such as the work of wetting, surface energy and isosteric adsorption enthalpy, were determined from vapour adsorption isotherms. The chalks were studied fresh and after extraction of organic residues that were originally present in these samples. The work of wetting correlates with the amount of organic matter present in the chalk samples but we observed a fundamental difference between the adsorption properties of chalk and pure, inorganically precipitated calcite toward the less polar, ethanol molecule. Further analysis of the chemical composition of the organic matter extracted from the chalk samples was made by gas chromatography (GC-MS). Monitoring surface composition by X-ray photoelectron spectroscopy (XPS) before and after extraction of the organic material, and with atomic force microscopy (AFM), showed that nanometer sized clay crystals observed on the chalk particle surfaces could be an important part of the reason for the differences. Removal of the extractable portion of the hydrocarbons liberates adsorption sites that have different wetting properties than the rest of the chalk and these have an energy distribution that is similar to clays. Thus, the results exemplify the complexity of biogenic calcite adsorption behaviour and demonstrate that chalk wetting in drinking water aquifers as well as oil reservoirs is controlled partly by the nanoparticles of clay that have grown on the

  19. Studies on cyanobacterial extracellular polymeric substances: functional groups, calcite biomineralization and formation of capsular polymeric substances

    Science.gov (United States)

    Dittrich, M.; Sibler, S.; Matsko, N.

    2006-12-01

    Extracellular polymeric substances (EPS) of microbial origin are an important class of polymeric materials which have been involved in different processes such as biofilm development or mineral precipitation. Cyanobacteria have been known as potential EPS producers for a long time. Despite their ubiquitous distribution, there is still a great lack of knowledge concerning the diversity of EPS binding sites of different picocyanobacterial strains on the one hand and the specific components of EPS which are responsible for calcite precipitation and crystal morphology on the other hand. It is generally accepted that capsular extracellular polymeric substances are the main components of biofilm matrixes. In this context, it is important to understand under which conditions cyanobacteria produce surface polysaccharides. In a recent study, we characterized the binding sites of EPS of three unicellular autotrophic picocyanobacterial strains of the Synechococcus-type. Potentiometric titrations were conducted to determine different types of functional groups present at the various sites. Precipitation experiments with EPS of different strains allowed for estimating the potential of EPS to precipitate calcium carbonate and the impact of functional groups composition on crystal morphology. In order to clarify the conditions under which cyanobacteria formed capsular EPS, we performed growth experiments in nutrients medium with different phosphorus concentrations (0.4, 4.1, 8.2 and 41 mgP/l). Cyanobacterial cells produced capsular EPS under phosphorus concentrations of 0.4, 4.1 and 8.2 mgP/l, while no capsular EPS were observed for the highest P concentration (41 mgP/l). At this concentration, however, calcium rich storage products were detected in the cells. The results thus suggest that both extracellular and intracellular products are regulated through phosphorus concentrations in growth solutions. Titrations reveal five or six distinct sites on surfaces of picocyanobacterial

  20. Ca and S K-edge XANES studies of calcite-acid mine water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Myneni, S.C.B.; Perera, R.C.C. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Heavy metal-rich acidic waters (SO{sub 4}{sup 2{minus}}, AsO{sub 4}{sup 3{minus}}, SeO{sub 4}{sup 2{minus}}, Fe{sup 2+}, Fe{sup 3+}, Al{sup 3+}, Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}) and related ochreous coatings are common around abandoned sulfide and coal mine sites. This is mainly caused by the natural weathering of pyrite (FeS{sub 2}), arsenopyrite (FeAsS), and other metal sulfide containing shales. Acid generation in the case of pyrite can be explained by a general reaction: FeS{sub 2} + 3.5 O{sub 2} + H{sub 2}O {leftrightarrow} Fe{sup 2+} + SO{sub 4}{sup 2{minus}} + 2H{sup +}. Also, these low pH waters interact with the soils, and mobilize their soluble elements. One of the common remediation strategies is to allow these acid waters to react with limestone (CaCO{sub 3}-rich rock) and neutralize the pH and precipitate out soluble metals. Yet, the associated problem is the precipitation of Fe and Al oxides and hydroxy sulfate coatings on limestone surfaces, which block calcite reactive sites, and make them ineffective a few hours after initiation of treatment. The main objectives of this research are to examine: (1) the chemistry of limestone surface coatings, and (2) their toxic metal uptake and the conditions that inhibit their formation. Previous molecular studies using X-ray diffraction, and vibrational spectroscopy on limestone surface coatings (sampled from Athens, OH) indicate that the surface-most layer (the layer in contact with water) is composed of schwertmannite (Fe(III)-hydroxy sulfate) like phases. However, white, X-ray amorphous; Al-, sulfate- and carbonate-rich; and Ca-poor phases appeared at the interface between the limestone and the iron oxide coatings. The structure, morphology, and coordination chemistry of component major and trace elements of these white precipitate phases have not previously been examined.

  1. Nanoscale observations of the effect of citrate on calcium oxalate precipitation on calcite surfaces.

    Science.gov (United States)

    Burgos-Cara, Alejandro; Ruiz-Agudo, Encarnacion; Putnis, Christine V.

    2016-04-01

    Calcium oxalate (CaC2O4ṡxH2O) minerals are naturally occurring minerals found in fossils, plants, kidney stones and is a by-product in some processes such as paper, food and beverage production [1,2]. In particular, calcium oxalate monohydrate phase (COM) also known as whewellite (CaC2O4ṡH2O), is the most frequently reported mineral phase found in urinary and kidney stones together with phosphates. Organic additives are well known to play a key role in the formation of minerals in both biotic and abiotic systems, either facilitating their precipitation or hindering it. In this regard, recent studies have provided direct evidence demonstrating that citrate species could enhance dissolution of COM and inhibit their precipitation. [3,4] The present work aims at evauate the influence of pH, citrate and oxalic acid concentrations in calcium oxalate precipitation on calcite surfaces (Island Spar, Chihuahua, Mexico) through in-situ nanoscale observation using in situ atomic force microscopy (AFM, Multimode, Bruker) in flow-through experiments. Changes in calcium oxalate morphologies and precipitated phases were observed, as well as the inhibitory effect of citrate on calcium oxalate precipitation, which also lead to stabilization an the amorphous calcium oxalate phase. [1] K.D. Demadis, M. Öner, Inhibitory effects of "green"additives on the crystal growth of sparingly soluble salts, in: J.T. Pearlman (Ed.), Green Chemistry Research Trends, Nova Science Publishers Inc., New York, 2009, pp. 265-287. [2] M. Masár, M. Zuborová, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci. 26 (2003) 647-652. [3] Chutipongtanate S, Chaiyarit S, Thongboonkerd V. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. Eur J Pharmacol 2012;689:219-25. [4] Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ

  2. Speleothem calcite farmed in situ: Modern calibration of δ 18O and δ 13C paleoclimate proxies in a continuously-monitored natural cave system

    Science.gov (United States)

    Tremaine, Darrel M.; Froelich, Philip N.; Wang, Yang

    2011-09-01

    Understanding the relationships between speleothem stable isotopes (δ 13C δ 18O) and in situ cave forcing mechanisms is important to interpreting ancient stalagmite paleoclimate records. Cave studies have demonstrated that the δ 18O of inorganically precipitated (low temperature) speleothem calcite is systematically heavier than the δ 18O of laboratory-grown calcite for a given temperature. To understand this apparent offset, rainwater, cave drip water, groundwater, and modern naturally precipitated calcite (farmed in situ) were grown at multiple locations inside Hollow Ridge Cave in Marianna, Florida. High resolution micrometeorological, air chemistry time series and ventilation regimes were also monitored continuously at two locations inside the cave, supplemented with periodic bi-monthly air gas grab sample transects throughout the cave. Cave air chemistry and isotope monitoring reveal density-driven airflow pathways through Hollow Ridge Cave at velocities of up to 1.2 m s -1 in winter and 0.4 m s -1 in summer. Hollow Ridge Cave displays a strong ventilation gradient in the front of the cave near the entrances, resulting in cave air that is a mixture of soil gas and atmospheric CO 2. A clear relationship is found between calcite δ 13C and cave air ventilation rates estimated by proxies pCO 2 and 222Rn. Calcite δ 13C decreased linearly with distance from the front entrance to the interior of the cave during all seasons, with a maximum entrance-to-interior gradient of Δδ 13C CaCO3 = -7‰. A whole-cave "Hendy test" at multiple contemporaneous farming sites reveals that ventilation induces a +1.9 ± 0.96‰ δ 13C offset between calcite precipitated in a ventilation flow path and calcite precipitated on the edge or out of flow paths. This interpretation of the "Hendy test" has implications for interpreting δ 13C records in ancient speleothems. Calcite δ 13C CaCO3 may be a proxy not only for atmospheric CO 2 or overlying vegetation shifts but also for

  3. Mechanism for calcite dissolution and its contribution to development of reservoir porosity and permeability in the Kela 2 gas field,Tarim Basin,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This study is undertaken to understand how calcite precipitation and dissolution contributes to depth-related changes in porosity and permeability of gas-bearing sandstone reservoirs in the Kela 2 gas field of the Tarim Basin, Northwestern China. Sandstone samples and pore water samples are col-lected from well KL201 in the Tarim Basin. Vertical profiles of porosity, permeability, pore water chem-istry, and the relative volume abundance of calcite/dolomite are constructed from 3600 to 4000 m below the ground surface within major oil and gas reservoir rocks. Porosity and permeability values are in-versely correlated with the calcite abundance, indicating that calcite dissolution and precipitation may be controlling porosity and permeability of the reservoir rocks. Pore water chemistry exhibits a sys-tematic variation from the Na2SO4 type at the shallow depth (3600-3630 m), to the NaHCO3 type at the intermediate depth (3630―3695 m),and to the CaCl2 type at the greater depth (3728―3938 m). The geochemical factors that control the calcite solubility include pH, temperature, pressure, Ca2+ concen-tration, the total inorganic carbon concentration (ΣCO2), and the type of pore water. Thermodynamic phase equilibrium and mass conservation laws are applied to calculate the calcite saturation state as a function of a few key parameters. The model calculation illustrates that the calcite solubility is strongly dependent on the chemical composition of pore water, mainly the concentration difference between the total dissolved inorganic carbon and dissolved calcium concentration (i.e., [ΣCO2] -[Ca2+]). In the Na2SO4 water at the shallow depth, this index is close to 0, pore water is near the calcite solubility. Calcite does not dissolve or precipitate in significant quantities. In the NaHCO3 water at the intermedi-ate depth, this index is greater than 0, and pore water is supersaturated with respect to calcite. Massive calcite precipitation was observed at this depth

  4. Correcting for initial Th in speleothems to obtain the age of calcite nucleation after a growth hiatus

    Science.gov (United States)

    Richards, D. A.; Nita, D. C.; Moseley, G. E.; Hoffmann, D. L.; Standish, C. D.; Smart, P. L.; Edwards, R.

    2013-12-01

    In addition to the many U-Th dated speleothem records (δ18O δ13C, trace elements) of past environmental change based on continuous phases of calcite growth, discontinuous records also provide important constraints for a wide range of past states of the Earth system, including sea levels, permafrost extent, regional aridity and local cave flooding. Chronological information about human activity or faunal evolution can also be obtained where calcite can be seen to overlie cave art or mammalian bones, for example. Among the important considerations when determining the U-Th age of calcite that nucleates on an exposed surface are (1) initial 230Th/232Th, which can be elevated and variable in some settings, and (2) growth rate and sub-sample density, where extrapolation is required. By way of example, we present sea level data based on U-Th ages of vadose speleothems (i.e. formed above the water table and distinct from 'phreatic' examples) from caves of the circum-Caribbean , where calcite growth was interrupted by rising sea levels and then reinitiated after regression. These estimates demand large corrections and derived sea level constraints are compared with alternative data from coral reef terraces, phreatic overgrowths on speleothems or indirect, proxy evidence from oxygen isotopes to constrain rates of ice volume growth. Flowstones from the Bahamas provide useful sea level constraints because they present the longest and most continuous records in such settings (a function of preservation potential in addition to hydrological routing) and also earliest growth post-emergence after sea level fall. We revisit estimates for sea level regression at the end of MIS 5 at ~ 80 ka (Richards et al, 1994; Lundberg and Ford, 1994) and make corrections for non-Bulk Earth initial Th contamination (230Th/232Th activity ratio > 10), based on isochron analysis of alternative stalagmites from the same settings and recent high resolution analysis. We also present new U-Th ages for

  5. New inversion of calcite twin data for paleostress tested and calibrated on numerically-generated and natural data

    Science.gov (United States)

    Parlangeau, Camille; Lacombe, Olivier; Schueller, Sylvie; Daniel, Jean-Marc

    2016-04-01

    The inversion of calcite twin data is a powerful tool to reconstruct paleostresses sustained by carbonate rocks during their geological history. Following Etchecopar's (1984) pioneering work, this study presents a new technique of inversion of calcite twin data, which allows reconstructing the 5 parameters of the deviatoric stress tensor. In order to determine the applicability domain of the technique as well as to estimate the uncertainties on the reconstructed stress tensors, we first carried out tests on numerically generated calcite twin data and tested the separability of superimposed stress tensors with various degrees of similarity and the influence of optical bias, heterogeneities and occurrence of different grain size classes as met in natural samples. For monophase datasets with homogeneous grain size, the errors on the different stress parameters (orientation of principal stress axes, stress ratio and differential stresses) are negligible except for the differential stress (error of 5%). In cases displaying distinct grain sizes, misfits remain negligible but may reach 20% for the differential stress if the differential stress applied is greater than 60-65 MPa. Incorporation of optical bias slightly increases uncertainties up to 25% for the differential stress, 5% for the stress ratio and 8° for the orientation of the principal stress axes. For polyphase datasets with homogeneous grain size, the misfit on the orientation of the principal stress axes increases up to 10°, the stress ratio remains well constrained and the misfit on differential stress reaches 20% (applied differential stress > 70 MPa). Incorporation of optical bias increases the misfit of the orientation of the principal stress axes (average misfit: 6-8°; maximum: 17°), the misfit on stress ratio (average misfit: 2%; maximum: 26%) and the misfit on the differential stress (average misfit: 15%; maximum: 30%) These tests demonstrate that it is better to analyze twin data from subsets of

  6. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens

    2016-04-01

    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  7. Thermal quenching in calcite and evaluation of quenching parameters from composite glow curve by a computerized resolved peak technique

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, J.M., E-mail: jitukalita09@gmail.com; Wary, G.

    2015-04-15

    Thermoluminescence (TL) glow curves of X-ray irradiated micro-grain calcite mineral were recorded at various heating rates (2, 4, 6, 8 and 10 K/s) under same linear temperature profile from 300 to 520 K. By using a Computerized Glow Curve Deconvolution technique, all composite glow curves of calcite were analyzed and the glow curves were found to be a combination of three distinct overlapping peaks. Activation energies corresponding to these three peaks were found to be 0.70, 0.60 and 1.30 eV respectively. For each set of computerized resolved peak, variation of peak maximum temperature, FWHM and peak area with heating rate were studied. Entire glow curves were found to be influenced by thermal quenching. Thermal quenching activation energy, W and the pre-exponential unitless constant, C were evaluated from each resolved peak individually. Thermal quenching activation energies for the three peaks were found to be 1.36±0.54, 1.14±0.73 and 1.38±0.40 eV respectively. The significance of determining the individual value of quenching parameters related to each peak for a composite glow curve is reported. - Highlights: • TL of X-ray irradiated calcite mineral was recorded at various heating rates. • Composite glow curves were found to be a combination of three overlapping peaks. • Glow curves were found to be influenced by thermal quenching. • Thermal quenching parameters were evaluated from the composite glow curves.

  8. Iodine-129 and Iodine-127 speciation in groundwater at the Hanford Site, U.S.: iodate incorporation into calcite

    International Nuclear Information System (INIS)

    The Hanford Site, the most contaminated nuclear site in the United States, has large radioactive waste plumes containing high 129I levels. The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounts for up to 84%, followed by organo-iodine and minimal levels of iodide. The relatively high pH and oxidizing environment may have prevented iodate reduction. Our results identified that calcite precipitation caused by degassing of CO2 during deep groundwater sampling incorporated between 7 to 40% of dissolved iodine (including 127I and 129I) that was originally in the groundwater, transforming dissolved to particulate iodate during sampling. In order to understand the mechanisms underlying iodine incorporation by calcite, laboratory experiments were carried out to replicate this iodine sequestering processes. Two methods were utilized in this study, 1) addition of sodium carbonate; 2) addition of calcium chloride followed by sodium carbonate where the pH was well controlled at ~8.2, which is close to the average pH of Hanford Site groundwater. It was demonstrated that iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevated pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of 129I at the Hanford Site and reveals a potential means for improved remediation strategies of 129I

  9. Investigation of Strontium Incorporation into Biotically and Abiotically Precipitated-Calcium Calcite Using Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Ingram, J.; Fujita, Y.

    2001-12-01

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) complex. A possible approach to their remediation is in situ immobilization by co-precipitation of these elements in authigenic calcite and calcite overgrowths. Microorganisms are known to facilitate the precipitation of calicite; hence the stimulation of biogenic calcite production may offer a means to accelerate co-precipitation of contaminant metals. Strontium is well-known to substitute for Ca in calcium carbonate minerals, and consequently , the uranium fission product 90Sr is a prime candidate for this type of remediation approach. In order to predict the extent and stability of Sr incorporation into calcite precipitated under this bioremediation strategy, it is necessary to understand how much Sr is being incorporated. In these studies, secondary ion mass spectrometry (SIMS) was utilized to characterize the surface chemistry of carbonates generated by bacterial activity in synthetic groundwater containing Ca and Sr. SIMS with sputter depth profiling allows the determination of changes in Sr to Ca ratios with depth in particulate carbonate samples. The sputter depth profiling results can be compared with analysis of the bulk composition by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Results of analyses on carbonates generated by B. pasteurii in synthetic groundwater with initial Ca and Sr concentrations of 80 ppm and 10 ppm, respectively, showed that SIMS could successfully measure ion ratios on the surface and within these particles. ICP-AES data indicated a bulk Sr:Ca ratio of 0.11, and sputtering SIMS data approached this value with increasing depth into the particle. The Sr:Ca ratio however, contrary to what would be expected from precipitation under batch conditions, was lower at the surface of the particles (ca. 0.05) and increased with depth. One possible reason for this phenomenon is re

  10. Polygenetic Karsted Hardground Omission Surfaces in Lower Silurian Neritic Limestones: a Signature of Early Paleozoic Calcite Seas

    Science.gov (United States)

    James, Noel P.; Desrochers, André; Kyser, Kurt T.

    2015-04-01

    Exquisitely preserved and well-exposed rocky paleoshoreline omission surfaces in Lower Silurian Chicotte Formation limestones on Anticosti Island, Quebec, are interpreted to be the product of combined marine and meteoric diagenesis. The different omission features include; 1) planar erosional bedding tops, 2) scalloped erosional surfaces, 3) knobs, ridges, and swales at bedding contacts, and 4) paleoscarps. An interpretation is proposed that relates specific omission surface styles to different diagenetic-depositional processes that took place in separate terrestrial-peritidal-shallow neritic zones. Such processes were linked to fluctuations in relative sea level with specific zones of diagenesis such as; 1) karst corrosion, 2) peritidal erosion, 3) subtidal seawater flushing and cementation, and 4) shallow subtidal deposition. Most surfaces are interpreted to have been the result of initial extensive shallow-water synsedimentary lithification that were, as sea level fell, altered by exposure and subaerial corrosion, only to be buried by sediments as sea level rose again. This succession was repeated several times resulting in a suite of recurring polyphase omission surfaces through many meters of stratigraphic section. Synsedimentary cloudy marine cements are well preserved and are thus interpreted to have been calcitic originally. Aragonite components are rare and thought to have to have been dissolved just below the Silurian seafloor. Large molluscs that survived such seafloor removal were nonetheless leached and the resultant megamoulds were filled with synsedimentary calcite cement. These Silurian inner neritic-strandline omission surfaces are temporally unique. They are part of a suite of marine omission surfaces that are mostly found in early Paleozoic neritic carbonate sedimentary rocks. These karsted hardgrounds formed during a calcite-sea time of elevated marine carbonate saturation and extensive marine cement precipitation. The contemporaneous greenhouse

  11. Seasonal dynamics of stable isotopes and element ratios in authigenic calcites during their precipitation and dissolution, Sacrower See (northeastern Germany

    Directory of Open Access Journals (Sweden)

    Bernd ZOLITSCHKA

    2009-08-01

    Full Text Available The seasonal evolution of chemical and physical water properties as well as particle fluxes was monitored in Sacrower See (northeastern Germany during two consecutive years (Oct 2003 - Oct 2005. Additonally, we measured δ18O and δ13C as well as Sr:Ca and Mg:Ca ratios of authigenic calcites that were collected in sequencing sediment traps in order to disentangle environmental and climatic factors controlling these parameters. In particular, our aim was to find out if element ratios and the isotopic composition of calcites reflect changes in water and air temperatures. Lake water is highly enriched in 18O (-1.3 to -2.5‰ VSMOW with an evaporative increase of 0.6‰ during summer. Values are 5-6‰ more positive than groundwater values and 4-5‰ more positive than long-term weighted annual means of precipitation. During spring and summer, high amounts of dissolved phosphate cause eutrophic conditions and calcite precipitation in isotopic disequilibrium. Measured values are depleted in 18O by 2 to 10‰ compared to calculated equilibrium values. Resuspension and partial dissolution of calcite in the water column contribute to this isotopic divergence in summer and autumn as δ18Oca and δ13C values increased in the hypolimnion during this time. Mg:Ca and Sr:Ca ratios are altered by dissolution as well. In the hypolimnion these ratios were higher than in the epilimnion. Another reason for the huge deviation between measured and theoretical δ18Oca values during summer is the occurrence of large amounts of Phacotus lenticularis in the carbonate fraction. High amounts of Phacotus lead to more negative δ18Oca and more positive δ13C values. Several characteristics of δ18Oca and δ13C are also reflected by Mg:Ca and Sr:Ca ratios and isotopic composition of oxygen and carbon were influenced by the onset and stability of stratification. Especially the earlier onset of stratification in 2005 caused higher sediment fluxes and more positive carbon and

  12. Absorption mechanism study of benzoic acid on calcite. Influence on the wettability; Etude du mecanisme d`absorption de l`acide benzoique sur la calcite. Incidence sur la mouillabilite

    Energy Technology Data Exchange (ETDEWEB)

    Legens, Ch.

    1997-12-03

    A pure carbonate rock is strongly water-wet whereas oil accumulations study shows that most of carbonate reservoirs are oil-wet or of mixed-wettability. This is one of the main difficulties to extract crude oil. This change of behavior is due to the adsorption of some crude oil compounds on the mineral surface. We have mainly studied the interactions between acid molecules by adsorption on a calcite powder in an organic phase (benzoic acid and lauric acid) and in an aqueous phase (benzoic acid and lauric sodium salt). The technics which enabled us to define and characterize adsorption are thermogravimetry infrared diffuse reflection and thermal analysis with controlled kinetic linked to a mass spectrometer. Molecular modelling calculations have completed these analysis. It has been showed that when crude oil fills the biggest pores of the reservoir rock, the aqueous film is unstable and acids adsorb via ionic bonds on mineral calcium ions. Wettability is evaluated thanks to contact angle measurements of a water droplet deposited on a compacted powder pellet. Calcite wettability changes were all the greater as hydro-carbonated chains were longer, as it confers molecule hydrophobia. It has been also investigated acid molecules diffusion from the organic to the aqueous phase which saturates the smallest pores. Molecules which are able to diffuse from the first to the second medium do not adsorb on the surface. As a consequence, carbonate rock wettability changes require a direct contact between crude oil and mineral that involves aqueous film instability. (author) 128 refs.

  13. Improvement Of The U-Th Method For Dating Of Impure Calcite Having A Large Amount Of Clay And Very Low Uranium Content

    Directory of Open Access Journals (Sweden)

    Samer Farkh

    2015-01-01

    Full Text Available Abstract The U-Th method also called series method of uranium is improved by a new experimental protocol and successfully applied to the impure calcite with uranium concentration 005 dpmg which was previously difficult to be dated accurately. Our experiments performed on 15 calcite samples taken from France and Morocco have highlighted the importance of this methodological improvement by enabling i the elimination of 100 of clay residues ii the reduction of calcite quantity necessary to the chemical manipulation from 20g to 5g iii the analysis of calcite samples poor in uranium and on the other hand rich with clay and iiii the reduction of the lower limit of the U-Th method from 10 Kyrs to 6 Kyrs. The optimization of U-Th method in this work provided a better dating of the accurate age of calcite. Thus this technique is important for the chemical analysis of stalagmite floors of different caves in the region of the Near East.

  14. Modification of streaming potential by precipitation of calcite in a sand-water system: laboratory measurements pH range from 4 to 12

    CERN Document Server

    Guichet, X; Catel, N; Guichet, Xavier; Jouniaux, Laurence; Catel, Nicole

    2006-01-01

    Spontaneous Potentials associated with volcanic activity are often interpreted by means of the electrokinetic potential, which is usually positive in the flow direction (i.e. Zeta potential of the rock is negative). The water-rock interactions in hydrothermal zones alter the primary minerals leading to the formation of secondary minerals. This work addresses the study of calcite precipitation in a sand composed of 98% quartz and 2% calcite using streaming potential measurements. The precipitation of calcite as a secondary mineral phase, inferred by high calcite saturation indices and by a fall in permeability, has a significant effect on the electrokinetic behaviour, leading to a significant reduction in the Zeta potential (in absolute value) and even a change in sign. The measured decrease in Zeta potential from -16 mV to -27±4 mV takes place as the pH rises from 4 to 7, while it remains constant at -25±1 mV as the pH increases from 8 to 10.5. For pH higher than 10.5, calcite precipitat...

  15. TO STUDY THE MECHANICAL BEHAVIOUR OF CHANGE IN CONCENTRATION OF CALCITE FLUORIDE OF METAL CORED WELDING ELECTRODES

    Directory of Open Access Journals (Sweden)

    Sandeep

    2012-07-01

    Full Text Available Mild steels are the most common type of steels used in various engineering applications. Mild steels are widely used in various structural and fabrication applications like Bridges, buildings, machineries etc. Being very common and general purpose structural steel, it is widely applied to welding all over the world. A variety of electrodes are available globally for welding of mild steel, but the development of new electrodes is always a necessity.Dissertation aims to find out the mechanical behavior of change in concentration of Calcite Fluoride in the flux composition on the various characteristics of metal cored coated electrodes for the purpose of developing efficient and better rutile electrodes for structural mild steel. The information about the effects of CaF2 on the electrodes characteristics is scarce in international welding literature. In this work five rutile metal cored coated electrodes were prepared by increasing Calcium Fluoride (CaF2, at the expense of cellulose and Si-bearing components like Mica and Calcite in the fluxes. Various mechanical properties like micro hardness, tensileproperties and Impact toughness were measured and metallographic studies were undertaken. Qualitative measurements of operational properties like porosity, slag detachability, arc stability and smoke level were also carried out.

  16. Determination of the tectonic evolution from fractures, faults, and calcite twins on the southwestern margin of the Indochina Block

    Science.gov (United States)

    Arboit, Francesco; Amrouch, Khalid; Collins, Alan S.; King, Rosalind; Morley, Christopher

    2015-08-01

    In polyphase tectonic zones, integrating a study of fault and fracture with calcite twin analysis can determine the evolving paleostress magnitudes and principle stress directions that affected the area. This paper presents the results of the analyses of fractures, striated faults, and calcite twins collected within the Khao Khwang Fold-Thrust Belt in central Thailand (SE Asia). Here we attempt to reconstruct the orientation of the principal stresses that developed during the tectonic evolution of this highly deformed, polyphase orogen. Tectonic data were collected in the Permian carbonates of the Khao Khad Formation of the Saraburi Group, and five successive tectonic stages are determined that are interpreted to have developed before, during, and after, the Triassic Indosinian Orogeny. The first three stages predate the main deformation event: the first stage is interpreted as a pre-Indosinian N-S extensional stage, the second stage described a N-S strike-slip and compressional regime, largely perpendicular to the fold axes of the main structures, while the third stage is associated with an E-W compressional strike-slip phase. A further two stages took place after, or during, the main folding event and correspond to N-S compression and to an E-W composite strike-slip/contractional stage, the latter which is interpreted to represent Cenozoic deformation related to the India-Asia collision.

  17. X-ray dose response of calcite-A comprehensive analysis for optimal application in TL dosimetry

    Science.gov (United States)

    Kalita, J. M.; Wary, G.

    2016-09-01

    The effect of various annealing treatments on dosimetric characteristics of orange calcite (CaCO3) mineral has been studied in detail. Quantitative analysis on the dose response shows that the 573 K annealed sample showed sublinear dose response from 10 mGy to 1 Gy. The fading and reproducibility of this sample are also good enough for dosimetric application. However, a specific annealing treatment after irradiation shows some significant improvements in the dosimetric characteristics of the sample. The 773 K pre-annealed sample, after X-ray irradiation post-annealing at 340 K for 6 min provides linear dose response from 10 mGy to 3.60 Gy, very less fading and good reproducibility. Moreover, this sample after post-annealing at 380 K for 6 min shows linear dose response from 10 mGy to 5.40 Gy when analyzed from the ∼408 K thermoluminescence (TL) glow peak. Analysis of TL glow curves confirmed that the 1.30 eV trap center in calcite crystal is the most effective trapping site for dosimetric application.

  18. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: Role of high Mg-calcites

    Science.gov (United States)

    Morse, John W.; Andersson, Andreas J.; Mackenzie, Fred T.

    2006-12-01

    Carbonate-rich sediments at shoal to shelf depths (MgCO 3. The only valid relationship that one can provisionally use for the metastable stabilities for Mg-calcite based on composition is that for the synthetically produced phases where metastable equilibrium has been achieved from both under- and over-saturation. Biogenic Mg-calcites exhibit a large offset in solubility from that of abiotic Mg-calcite and can also exhibit a wide range of solubilities for biogenic Mg-calcites of similar Mg content. This indicates that factors other than the Mg content can influence the solubility of these mineral phases. Thus, it is necessary to turn to observations of natural sediments where changes in the saturation state of surrounding waters occur in order to determine their likely responses to the changing saturation state in upper oceanic waters brought on by increasing pCO 2. In the present study, we investigate the responses of Mg-calcites to rising pCO 2 and "ocean acidification" by means of a simple numerical model based on the experimental range of biogenic Mg-calcite solubilities as a function of Mg content in order to bracket the behavior of the most abundant Mg-calcite phases in the natural environment. In addition, observational data from Bermuda and the Great Bahama Bank are also presented in order to project future responses of these minerals. The numerical simulations suggest that Mg-calcite minerals will respond to rising pCO 2 by sequential dissolution according to mineral stability, progressively leading to removal of the more soluble phases until the least soluble phases remain. These results are confirmed by laboratory experiments and observations from Bermuda. As a consequence of continuous increases in atmospheric CO 2 from burning of fossil fuels, the average composition of contemporary carbonate sediments could change, i.e., the average Mg content in the sediments may slowly decrease. Furthermore, evidence from the Great Bahama Bank indicates that the

  19. Impacts of cave air ventilation and in-cave prior calcite precipitation on Golgotha Cave dripwater chemistry, southwest Australia

    Science.gov (United States)

    Treble, Pauline C.; Fairchild, Ian J.; Griffiths, Alan; Baker, Andy; Meredith, Karina T.; Wood, Anne; McGuire, Elizabeth

    2015-11-01

    Speleothem trace element chemistry is an important component of multi-proxy records of environmental change but a thorough understanding of hydrochemical processes is essential for its interpretation. We present a dripwater chemistry dataset (PCO2, alkalinity, Ca, SIcc, Mg and Sr) from an eight-year monitoring study from Golgotha Cave, building on a previous study of hydrology and dripwater oxygen isotopes (Treble et al., 2013). Golgotha Cave is developed in Quaternary aeolianite and located in a forested catchment in the Mediterranean-type climate of southwest Western Australia. All dripwaters from each of the five monitored sites become supersaturated with respect to calcite during most of the year when cave ventilation lowers PCO2 in cave air. In this winter ventilation mode, prior calcite precipitation (PCP) signals of increased Mg/Ca and Sr/Ca in dripwater are attributed to stalactite deposition. A fast-dripping site displays less-evolved carbonate chemistry, implying minimal stalactite growth, phenomena which are attributed to minimal degassing because of the short drip interval (30 s). We employ hydrochemical mass-balance modelling techniques to quantitatively investigate the impact of PCP and CO2 degassing on our dripwater. Initially, we reverse-modelled dripwater solutions to demonstrate that PCP is dominating the dripwater chemistry at our low-flow site and predict that PCP becomes enhanced in underlying stalagmites. Secondly, we forward-modelled the ranges of solution Mg/Ca variation that potentially can be caused by degassing and calcite precipitation to serve as a guide to interpreting the resulting stalagmite chemistry. We predict that stalagmite trace element data from our high-flow sites will reflect trends in original dripwater solutes, preserving information on biogeochemical fluxes within our system. By contrast, stalagmites from our low-flow sites will be dominated by PCP effects driven by cave ventilation. Our poorly karstified system allows us

  20. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite

    DEFF Research Database (Denmark)

    Ploug, H.; Iversen, M.H.; Koski, Marja; Buitenhuis, E.T.

    2008-01-01

    sp., T. weissflogii, and E. huxleyi, respectively. The average carbon-specific respiration rate was 0.15 d(-1) independent on diet (range: 0.08-0.21 d(-1)). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +/- 169 m d......Production, oxygen uptake, and sinking velocity of copepod fecal pellets egested by Temora longicornis were measured using a nanoflagellate (Rhodomonas sp.), a diatom (Thalassiosira weissflogii), or a coccolithophorid (Emiliania huxleyi) as food sources. Fecal pellet production varied between 0......(-1)) and E. huxleyi (200 +/- 93 m d(-1)) than on Rhodomonas sp. (35 +/- 29 m d(-1)). Preservation of carbon was estimated to be approximately 10-fold higher in fecal pellets produced when T. longicornis was fed E. huxleyi or T. weissflogii rather than Rhodomonas sp. Our study directly demonstrates...

  1. Calcite Twins, a Tool for Tectonic Studies in Thrust Belts and Stable Orogenic Forelands Les macles de la calcite, un outil pour les études tectoniques dans les chaînes plissées et les avant-pays peu déformés des orogènes

    Directory of Open Access Journals (Sweden)

    Lacombe O.

    2010-10-01

    Full Text Available Calcite twins have been used for a long time as indicators of stress/strain orientations and magnitudes. Recent developments during the last 15 years point toward significant improvements of existing techniques as well as new applications of calcite twin analysis in thrust belts and forelands. This paper summarizes the principles of the most common techniques in this tectonic field and illustrates some aspects of the use of calcite twins to constrain not only stress/strain orientations and magnitudes, but also to some extent paleotemperature or paleoburial in orogenic forelands. This review is based in a large part on the studies that I conducted in various geological settings such as the forelands of Taiwan, Pyrenees, Zagros, Rockies and Albanides orogens. The contribution of calcite twin analysis to the understanding of the intraplate stress transmission away from plate boundaries is also emphasized. Les macles de la calcite sont utilisees depuis longtemps comme indicateurs de paleocontraintes et comme marqueurs de la deformation finie, en orientations comme en grandeurs. Au cours des 15 dernieres annees, des ameliorations importantes des methodes d’analyses existantes ont ete realisees et ont donne lieu a de nouvelles applications dans les chaines plissees et les avant-pays peu deformes des orogenes. Cet article resume le principe des methodes les plus utilisees en tectonique et illustre quelques apports de l’analyse des macles de la calcite pour la caracterisation non seulement des orientations et des grandeurs des paleocontraintes et de la deformation finie, mais egalement dans une certaine mesure de la paleotemperature et du paleoenfouissement. Cette revue se fonde en grande partie sur les etudes regionales que j’ai effectuees dans des contextes geologiques varies, comme les avant-pays des chaines de Taiwan, des Pyrenees, du Zagros, des Rocheuses et des Albanides. Cet article discutera egalement la contribution de l’etude des

  2. Structure and interactions of calcite spherulites with {alpha}-chitin in the brown shrimp (Penaeus aztecus) shell

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico); Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Aguilar-Franco, M. [Instituto de Fisica, Depto de Fisicoquimica, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Magana, C. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Flores, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Pina, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Velazquez, R. [Centro de Fisica Aplicada Tecnologia Avanzada, UNAM, Km. 15 Carretera Queretaro-San Luis Potosi, C.P. 76230, Queretaro, Qro. (Mexico); Schaeffer, T.E. [Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Bucio, L. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico)

    2007-01-15

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous {alpha}-chitin matrix. We studied mechanisms of interaction of amorphous {alpha}-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of {alpha}-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 {mu}m in diameter). Our models of crystal-biopolymer interaction found high affinity of CO{sub 3} {sup 2-} anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca{sup 2+} cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering.

  3. Photoinduced synthesis of single-digit micrometer-size spheroidal calcite composites in the presence of partially hydrolyzed poly(vinyl alcohol)

    Science.gov (United States)

    Nishio, Takashi; Naka, Kensuke

    2015-06-01

    Photoinduced crystallization of calcium carbonate (CaCO3), which was based on the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphyenyl)propionic acid) under alkaline conditions of pH 8.4 and 10 was studied for preparation of CaCO3 composite particles in single-digit micrometer-sizes. In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol%) was used as a precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. After the UV irradiation for 50 min, calcite spheroids in single-digit micrometer-sizes were obtained as major products at pH 8.4. The obtained calcite spheroids contained organic components of about 10 wt%. The comparison of the characteristics of the CaCO3 obtained at pH 8.4 and 10 suggests that the nucleation and crystallization of both vaterite and calcite continuously took place in a moderated supersaturation owing to the CO2 hydration equilibrium as long as the photodecarboxylation of KP continued. Consequently, the aggregation-based crystal growth in the presence of PVAPS seemed to enable the formation of the spheroidal composites of calcite in single-digit micrometer-sizes.

  4. Stable carbon isotopes and lipid biomarkers provide new insight into the formation of calcite and siderite concretions in organic-matter rich deposits

    Science.gov (United States)

    Baumann, Lydia; Birgel, Daniel; Wagreich, Michael; Peckmann, Jörn

    2015-04-01

    Carbonate concretions from two distinct settings have been studied for their petrography, stable carbon and oxygen isotopes, and lipid biomarker content. Carbonate concretions are in large part products of microbial degradation of organic matter, as for example by sulfate-reducing bacteria, iron-reducing bacteria, and methanogenic archaea. For these prokaryotes certain lipid biomarkers such as hopanoids, terminally-branched fatty acids (bacteria) and isoprenoids (archaea) are characteristic. Two different types of concretions were studied: a) Upper Miocene septarian calcite concretions of the southern Vienna Basin embedded in brackish sediments represented by partly bituminous calcareous sands, silts and clays; b) Paleocene-Eocene siderite concretions enclosed in marine, sandy to silty turbidites with varying carbonate contents and marl layers from the Upper Gosau Subgroup in northern Styria. Calcite concretions consist of abundant calcite microspar (80-90 vol.%), as well as detrital minerals and iron oxyhydroxides. The septarian cracks show beginning cementation with dog-tooth calcite to varying degrees. Framboidal pyrite occurs in some of the calcite concretions, pointing to bacterial sulfate reduction. Siderite concretions consist of even finer carbonate crystals, mainly siderite (40-70 vol.%) but also abundant ferroan calcite, accompanied by iron oxyhydroxides and detrital minerals. The δ13C values of the calcite concretions (-6.8 to -4.1o ) most likely reflect a combination of bacterial organic matter oxidation and input of marine biodetrital carbonate. The δ18O values range from -8.9 to -7.8o agreeing with a formation within a meteoric environment. The surrounding host sediment shows about 1-2o higher δ13C and δ18O values. The siderite δ13C values (-11.1 to -7.5o ) point to microbial respiration of organic carbon and the δ18O values (-3.5 to +2.2o ) agree with a marine depositional environment. In contrast to the calcite concretions, the stable isotope

  5. Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas and its effects on marine biological calcification

    Directory of Open Access Journals (Sweden)

    J. B. Ries

    2010-09-01

    Full Text Available Synchronized transitions in the polymorph mineralogy of the major reef-building and sediment-producing calcareous marine organisms and abiotic CaCO3 precipitates (ooids, marine cements throughout Phanerozoic time are believed to have been caused by tectonically induced variations in the Mg/Ca ratio of seawater (molar Mg/Ca>2="aragonite seas", <2="calcite seas". Here, I assess the geological evidence in support of secular variation in seawater Mg/Ca and its effects on marine calcifiers, and review a series of recent experiments that investigate the effects of seawater Mg/Ca (1.0–5.2 on extant representatives of calcifying taxa that have experienced variations in this ionic ratio of seawater throughout the geologic past.

    Secular variation in seawater Mg/Ca is supported by synchronized secular variations in (1 the ionic composition of fluid inclusions in primary marine halite, (2 the mineralogies of late stage marine evaporites, abiogenic carbonates, and reef- and sediment-forming marine calcifiers, (3 the Mg/Ca ratios of fossil echinoderms, molluscs, rugose corals, and abiogenic carbonates, (4 global rates of tectonism that drive the exchange of Mg2+ and Ca2+ along zones of ocean crust production, and (5 additional proxies of seawater Mg/Ca including Sr/Mg ratios of abiogenic carbonates, Sr/Ca ratios of biogenic carbonates, and Br concentrations in marine halite.

    Laboratory experiments have revealed that aragonite-secreting bryopsidalean algae and scleractinian corals and calcite-secreting coccolithophores exhibit higher rates of calcification and growth in experimental seawaters formulated with seawater Mg/Ca ratios that favor their skeletal mineral. These results support the assertion that seawater Mg/Ca played an important role in determining which hypercalcifying marine organisms were the major reef-builders and sediment-producers throughout Earth history. The observation that primary

  6. U-Th dating of calcitic corals from the Gulf of Aqaba indicates freshwater activity during sapropels S5 and S4

    Science.gov (United States)

    Yehudai, M.; Lazar, B.; BAR (KOHN), N.; Agnon, A.; Shaked, Y.; Stein, M.

    2014-12-01

    Most of the fossil corals in the uplifted reef terraces along the Gulf of Aqaba (GOA, which is currently one of ‎the most hyper-arid regions on Earth) were extensively altered to calcite. This observation indicates extensive interaction with freshwater, possibly when the terraces were uplifted through a coastal aquifer that existed along the shores of the GOA, implying a wetter climate during time of recrystallization from aragonite to calcite. Thus, dating of the recrystallization events should yield timing of past wet conditions in the current hyper-arid area of the GOA. In the current study 16 samples of aragonitic and calcitic corals were collected from several uplifted coral terraces off the coast south to the city of Aqaba. While aragonite corals were dated with the conventional closed system (with no initial Th) age equation, the dating of the calcitic corals required the development of adequate equations that allow the calculation of both the initial cystallization age of the coral and time of recrystallization to calcite. The two age calculations were based on the assumptions that each reef terrace went through a single major recrystallization event and that the pristine aragonite corals had an initial U concentration in the range of 2.5-3 ppm (typical for pristine modern corals). Two recrystallization events were identified: at 124±30 ka BP and 106±7 ka BP, which coincide with the timing of sapropel events S5 and S4 when the African monsoon induced enhanced wetness in the desert area (e.g. Torfstein et al., 2014). The original reef deposition ages were calculated to be: ~ 129-127±8 ka BP, 112±3 ka BP and 5.7±0.3 ka BP, matching the interglacial peaks of global sea level high stands MIS5e, MIS5c and the mid-Holocene high stand.

  7. Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification

    Science.gov (United States)

    Ries, J. B.

    2010-09-01

    Synchronized transitions in the polymorph mineralogy of the major reef-building and sediment-producing calcareous marine organisms and abiotic CaCO3 precipitates (ooids, marine cements) throughout Phanerozoic time are believed to have been caused by tectonically induced variations in the Mg/Ca ratio of seawater (molar Mg/Ca>2="aragonite seas", red algae, reef-dwelling animals (crustacea, urchins, calcareous tube worms), bacterial biofilms, scleractinian corals, and bryopsidalean algae declined with reductions in seawater Mg/Ca. Notably, Mg fractionation in autotrophic organisms was more strongly influenced by changes in seawater Mg/Ca than in heterotrophic organisms, a probable consequence of autotrophic organisms inducing a less controlled mode of calcification simply through the removal of CO2 via photosynthesis. These results indicate that biomineralogical control can be partially overridden by ambient seawater Mg/Ca and suggest that modern aragonite-secreting organisms may have secreted a mixture of aragonite and low Mg calcite, and that modern high Mg calcite-secreting organisms probably secreted low Mg calcite, in calcite seas of the past. These effects of seawater Mg/Ca on the polymorph mineralogy and calcite Mg/Ca ratio of calcareous skeletons should be accounted for in thermal-chemical reconstructions of seawater that are based upon skeletal Mg/Ca. Lastly, by identifying how marine calcifiers respond to changes in seawater Mg/Ca and absolute Ca2+ concentration, this work should enhance our interpretation of parallel studies investigating the effects of anthropogenic CO2-induced ocean acidification on marine calcification.

  8. The influence of normal stress and sliding velocity on the frictional behaviour of calcite at room temperature: insights from laboratory experiments and microstructural observations

    Science.gov (United States)

    Carpenter, B. M.; Collettini, C.; Viti, C.; Cavallo, A.

    2016-04-01

    The presence of calcite in and near faults, as the dominant material, cement, or vein fill, indicates that the mechanical behaviour of carbonate-dominated material likely plays an important role in shallow- and mid-crustal faulting. To better understand the behaviour of calcite, under loading conditions relevant to earthquake nucleation, we sheared powdered gouge of Carrara Marble, >98 per cent CaCO3, at constant normal stresses between 1 and 100 MPa under water-saturated conditions at room temperature. We performed slide-hold-slide tests, 1-3000 s, to measure the amount of static frictional strengthening and creep relaxation, and velocity-stepping tests, 0.1-1000 μm s-1, to evaluate frictional stability. We observe that the rates of frictional strengthening and creep relaxation decrease with increasing normal stress and diverge as shear velocity is increased from 1 to 3000 μm s-1 during slide-hold-slide experiments. We also observe complex frictional stability behaviour that depends on both normal stress and shearing velocity. At normal stresses less than 20 MPa, we observe predominantly velocity-neutral friction behaviour. Above 20 MPa, we observe strong velocity-strengthening frictional behaviour at low velocities, which then evolves towards velocity-weakening friction behaviour at high velocities. Microstructural analyses of recovered samples highlight a variety of deformation mechanisms including grain size reduction and localization, folding of calcite grains and fluid-assisted diffusion mass transfer processes promoting the development of calcite nanograins in the highly deformed portions of the experimental fault. Our combined analyses indicate that calcite fault gouge transitions from brittle to semi-brittle behaviour at high normal stress and slow sliding velocities. This transition has important implications for earthquake nucleation and propagation on faults in carbonate-dominated lithologies.

  9. Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions

    Science.gov (United States)

    Pippinger, T.; Miletich, R.; Merlini, M.; Lotti, P.; Schouwink, P.; Yagi, T.; Crichton, W. A.; Hanfland, M.

    2015-01-01

    High-pressure phase transformations between the polymorphic forms I, II, III, and IIIb of CaCO3 were investigated by analytical in situ high-pressure high-temperature experiments on oriented single-crystal samples. All experiments at non-ambient conditions were carried out by means of Raman scattering, X-ray, and synchrotron diffraction techniques using diamond-anvil cells in the pressure range up to 6.5 GPa. The composite-gasket resistive heating technique was applied for all high-pressure investigations at temperatures up to 550 K. High-pressure Raman spectra reveal distinguishable characteristic spectral differences located in the wave number range of external modes with the occurrence of band splitting and shoulders due to subtle symmetry changes. Constraints from in situ observations suggest a stability field of CaCO3-IIIb at relatively low temperatures adjacent to the calcite-II field. Isothermal compression of calcite provides the sequence from I to II, IIIb, and finally, III, with all transformations showing volume discontinuities. Re-transformation at decreasing pressure from III oversteps the stability field of IIIb and demonstrates the pathway of pressure changes to determine the transition sequence. Clausius-Clapeyron slopes of the phase boundary lines were determined as: Δ P/Δ T = -2.79 ± 0.28 × 10-3 GPa K-1 (I-II); +1.87 ± 0.31 × 10-3 GPa K-1 (II/III); +4.01 ± 0.5 × 10-3 GPa K-1 (II/IIIb); -33.9 ± 0.4 × 10-3 GPa K-1 (IIIb/III). The triple point between phases II, IIIb, and III was determined by intersection and is located at 2.01(7) GPa/338(5) K. The pathway of transition from I over II to IIIb can be interpreted by displacement with small shear involved (by 2.9° on I/II and by 8.2° on II/IIIb). The former triad of calcite-I corresponds to the [20-1] direction in the P21/ c unit cell of phase II and to [101] in the pseudomonoclinic C setting of phase IIIb. Crystal structure investigations of triclinic CaCO3-III at non-ambient pressure

  10. Effects of increased pCO2 and geographic origin on purple sea urchin (Strongylocentrotus purpuratus calcite elemental composition

    Directory of Open Access Journals (Sweden)

    J. D. Hosfelt

    2012-12-01

    Full Text Available Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (such as Mg and Sr into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore the effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2 on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus. We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low to high magnesium calcites. Mg/Ca and Sr/Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions along the US west coast (Oregon, Northern California, Central California, and Southern California. Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg/Ca and Sr/Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg/Ca or Sr/Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 ppm; pH = 8.02 ± 0.03 1 SD; Ωcalcite = 3.3 ± 0.2 1 SD. However, when reared under elevated CO2 (900 ppm; pH = 7.72 ± 0.03; Ωcalcite = 1.8 ± 0.1, skeletal Sr/Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California did not exhibit differences in Mg or Sr incorporation under elevated CO2

  11. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 87016 CO-PRECIPITATION OF TRACE METALS IN GROUNDWATER AND VADOSE ZONE CALCITE: IN SITU CONTAINMENT AND STABILIZATION OF STRONTIUM-90 AND OTHER DIVALENT METALS AND RADIONUCLIDES AT ARID WESTERN DOE SITES

    International Nuclear Information System (INIS)

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) weapons complex. In situ containment and stabilization of these contaminants in vadose zones or groundwater is a cost-effective treatment strategy. Our facilitated approach relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal coprecipitation) by increasing groundwater pH and alkalinity (Fujita et al., 2000; Warren et al., 2001). Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation processes are irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from groundwater. The rate at which trace metals are incorporated into calcite is a function of calcite precipitation kinetics, adsorption interactions between the calcite surface and the trace metal in solution (Zachara et al., 1991), solid solution properties of the trace metal in calcite (Tesoriero and Pankow, 1996), and also the surfaces upon which the calcite is precipitating. A fundamental understanding of the coupling of calcite precipitation and trace metal partitioning, and how this occurs in aquifers and vadose environments is lacking. This report summarizes work undertaken during the second year of this project

  12. Dialogs by Yuri V. Dublyansky regarding ''Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, tuffs: Environment of formation''. Special report number 15, Contract number 94/96.0003

    International Nuclear Information System (INIS)

    This report is a review of a paper published in the 5th Annual International Conference on High Level Radioactive Wastes. The paper dealt with fluid inclusion studies of calcite veins from Yucca Mountain. This paper is included with this report. The author of this report analyzes the paper's theory of the origin of these calcite deposits as dissolution and precipitation of carbonate materials from simple rainwater infiltration. The author reviews some of the methods utilized in the original research and the problems with thermometry of fluid inclusions in calcite. The author also expresses concerns over other laboratory procedures utilized to calculate various compositional values

  13. The Influence Of Calcite On The Ash Flow Temperature For Semi-Anthracite Coal From Donbas District

    Directory of Open Access Journals (Sweden)

    Čarnogurská Mária

    2014-12-01

    Full Text Available This paper presents the results of research focused on the lowering of ash flow temperature at semianthracite coal from Donbas district by means of additive (calcite dosing. Ash fusion temperatures were set for two coal samples (A, B and for five various states (samples of ash without any additives, with 1%, with 3%, with 5% and with 7% of the additive in total. The macroscopicphotographic method was used for identifying all specific temperatures. Obtained outputs prove that A type coal has a lower value of sphere temperature than B type coal in the whole scope of percentage representation of the additive. The flow temperature dropped in total from 1489 °C to 1280 °C, i.e. by 14% during the test of coal of type A with 7% of the additive; while it was near 10% for coal of type B (from 1450 °C to 1308 °C. Numerical simulations of the process showed that it is not effective to add an additive with a grain size lower than 280 μm by means of wastevapour burners.

  14. Effect of Magnesium as Substitute Material in Enzyme-Mediated Calcite Precipitation for Soil-Improvement Technique

    Science.gov (United States)

    Putra, Heriansyah; Yasuhara, Hideaki; Kinoshita, Naoki; Neupane, Debendra; Lu, Chih-Wei

    2016-01-01

    The optimization of enzyme-mediated calcite precipitation was evaluated as a soil-improvement technique. In our previous works, purified urease was utilized to bio-catalyze the hydrolysis of urea, which causes the supplied Ca2+ to precipitate with CO32− as calcium carbonate. In the present work, magnesium chloride was newly added to the injecting solutions to delay the reaction rate and to enhance the amount of carbonate precipitation. Soil specimens were prepared in PVC cylinders and treated with concentration-controlled solutions composed of urea, urease, calcium, and magnesium chloride. The mechanical properties of the treated soil specimens were examined through unconfined compressive strength (UCS) tests. A precipitation ratio of the carbonate up to 90% of the maximum theoretical precipitation was achieved by adding a small amount of magnesium chloride. Adding magnesium chloride as a delaying agent was indeed found to reduce the reaction rate of the precipitation, which may increase the volume of the treated soil if used in real fields because of the slower precipitation rate and the resulting higher injectivity. A mineralogical analysis revealed that magnesium chloride decreases the crystal size of the precipitated materials and that another carbonate of aragonite is newly formed. Mechanical test results indicated that carbonate precipitates within the soils and brings about a significant improvement in strength. A maximum UCS of 0.6 MPa was obtained from the treated samples. PMID:27200343

  15. 14C-analyses of calcite coatings in open fractures from the Klipperaas study site, Southern Sweden

    International Nuclear Information System (INIS)

    Carbonate samples from open fractures in crystalline rock from the Klipperaas study site have been analysed for their 14C contents using accelerator mass spectrometry. This technique makes it possible to analyse very small carbonate samples (c. 1 mg C). The analyses show low but varying contents of 14C. However, contamination by CO2 have taken place affecting small samples more than others. Attempts have been made to quantify the contamination and thus evaluate the analyses of the fracture samples. The obtained low 14C values can be due to: 1. An effective retention of 14C by sorption/fractionation forcing 14C onto the calcite surfaces in the near-surface zone which means that the 14C contribution to the deeper levels is diminished or 2. the penetration depth of surface groundwater is very shallow. The former is suggested as more probable based on evaluations of the hydrochemical conditions and the fracture mineral studies. (10 figs., 3 tabs., 9 refs.) (authors)

  16. Constraints on quaternary unsaturated- and saturated-zone hydrology from geochronological and isotopic studies of calcite and silica, Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Both unsaturated- and saturated-zone aqueous solutions are capable of precipitating secondary mineral deposits that document the history and origins of past water flux. Calcite and opal occur as thin coatings on open fractures and cavity floors within the thick unsaturated zone at Yucca Mountain. Outermost surfaces of calcite have 14C ages of between 44,000 and 16,000 radiocarbon years; however, the same surfaces have 230Th/U ages from 28 ka to more than 500 ka. This discordance, along with negative covariance between conventionally calculated 230Th/U ages and initial 234U/238U is best explained by very slow rates of mineral growth where discrete depositional layers are too fine to separate and measure individually. Therefore, isotopic analyses and resulting ages represent mixtures between the deepest and shallowest layers incorporated within a given sub-sample. (author)

  17. Early diagenetic high-magnesium calcite and dolomite indicate that coal balls formed in marine or brackish water: Stratigraphic and paleoclimatic implications

    Science.gov (United States)

    Raymond, Anne

    2016-04-01

    Coal balls are carbonate and pyrite permineralizations of peat that contain three-dimensional plant fossils preserved at the cellular level. Coal balls, which occur in Pennsylvanian and earliest Permian equatorial coals, provide a detailed record of terrestrial ecology and tropical climate during the Late Paleozoic Ice Age; yet their depositional environment remains controversial. The exquisite preservation of some coal-ball fossils, e.g. pollen with pollen tubes and leaves with mesophyll, indicates rapid formation. The presence of abundant, cement-filled, void spaces within and between the plant debris in most coal balls indicates that they formed in uncompacted peat, near the surface of the mire. Botanical, taphonomic and isotopic evidence point to a freshwater origin for coal balls. The nearest living relatives of coal ball plants (modern lycopsids, sphenopsids, marratialean ferns and conifers) grow in fresh water. Coal-ball peat contains a high percentage of aerial debris, similar to modern freshwater peat. The stable oxygen isotopes of coal-ball carbonate (δ18O = 16 to 3 per mil) suggest a freshwater origin. However, the widespread occurrence of marine invertebrates and early diagenetic framboidal pyrite in coal balls suggests that many formed in close proximity to marine water. Indeed, carbonate petrology points to a marine or brackish water origin for the first-formed carbonate cements in coal balls. Petrographic and geochemical (microprobe) analysis of coal-ball carbonates in Pennsylvanian coals from the midcontinent of North America (Western Interior Basin, West Pangaea) and the Ruhr and Donets Basins (East Pangaea) indicate that the first formed carbonate is either radaxial, nonstochiometric dolomite or high magnesium calcite (9 - 17 mol % MgCO3, indicating precipitation in marine or brackish water. Although both primary dolomite and high magnesium calcite can form in lacustrine settings, the lakes in which these minerals form occur in carbonate terranes

  18. Overview of calcite/opal deposits at or near the proposed high-level nuclear waste site, Yucca Mountain, Nevada, USA: Pedogenic, hypogene, or both?

    Science.gov (United States)

    Hill, C. A.; Dublyansky, Y. V.; Harmon, R. S.; Schluter, C. M.

    1995-09-01

    Calcite/opal deposits (COD) at Yucca Mountain were studied with respect to their regional and field geology, petrology and petrography, chemistry and isotopic geochemistry, and fluid inclusions. They were also compared with true pedogenic deposits (TPD), groundwater spring deposits (GSD), and calcite vein deposits (CVD) in the subsurface. Some of the data are equivocal and can support either a hypogene or pedogenic origin for these deposits. However, Sr-, C-, and O-isotope, fluid inclusion, and other data favor a hypogene interpretation. A hypothesis that may account for all currently available data is that the COD precipitated from warm, CO2-rich water that episodically upwelled along faults during the Pleistocene, and which, upon reaching the surface, flowed downslope within existing alluvial, colluvial, eluvial, or soil deposits. Being formed near, or on, the topographic surface, the COD acquired characteristics of pedogenic deposits. This subject relates to the suitability of Yucca Mountain as a high-level nuclear waste site.

  19. Geochemical signatures of fluid paleo-transfer in fracture filling calcite from low permeability rock masses: examples taken from Bure's and Tournemire's site in France and northern Switzerland; Signatures geochimiques de paleocirculations aqueuses dans la calcite de remplissage de fracture de massifs argileux peu permeables et de leurs encaissants: exemples pris sur les sites de Bure, Tournemire et Suisse du nord

    Energy Technology Data Exchange (ETDEWEB)

    Lecocq, D

    2002-12-15

    Fractures in rock masses represent preferential path for fluid transfer and, as such, are the most efficient way for migration of radionuclides at a regional scale. The impact of fracturing on hydrogeological system is a major challenge for underground radioactive waste storage projects. In this context, geochemistry of fracture-filling calcite is used to better understand physical and chemical properties of palaeo-fluids. A new methodology has been developed to analyze Mg, Mn, Fe, Sr and Rare Earth Elements REE (La, Ce, Nd, Sm, Eu, Dy and Yb) in calcite by Secondary Ion Mass Spectrometry. Analyses of calcite crystals have been performed in fractures from Jurassic clays and limestones in France (Bure and Tournemire sites) and northern Switzerland (Mt Terri's tunnel and deep borehole). On each case, several geochemical signatures are observed, according to REE partitioning and Mn and Fe concentrations. In the Bure site, a dependence of calcite geochemistry from fracture host rock has been evidenced. On the other hand, speciation of REE in solution equilibrated with clayey or calcareous rocks at circum-neutral pH (7 to 8) is not significantly influenced by the media: speciation is dominated by carbonate species in both cases and phosphate complexes can modify heavy REE availability in relatively to light REE. These results point out that in fractures in clays, calcite crystallizes at equilibrium with a fluid expulsed during diagenesis from clay minerals, recording the effect of clays and accessory phases. In limestone fractures, calcite records a later event related to the past functioning of the present aquifer, and the fluid has reached equilibrium with the rock minerals. In secondary filling calcite from Toarcian Argilites faults close to Tournemire's tunnel, three successive generations of calcite are observed in an extensive fault, and a fourth in a compressive one. In Aalenian Opalinus Clays veins, comparison between existing isotopic data and Mn, Fe

  20. Petrographic description of calcite/opal samples collected on field trip of December 5-9, 1992. Special report No. 7

    International Nuclear Information System (INIS)

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed analysis and assessment of the water-deposited minerals of Yucca Mountain and adjacent regions. Forty-three separate stops were made and 203 samples were collected during the five days of the field trip. This report describes petrographic observations made on the calcite/opal samples

  1. Two new solid solutions in calcite-magnesite system identified in a sample from coral reefs in the northern Perth basin

    International Nuclear Information System (INIS)

    Full text: Dolomite, CaMg(CO3)2, is an economically important mineral, being of particular significance in petroleum geology. Carbonate rocks have long been a focus of investigation because these rocks contain an estimated 60 percent of the world's recoverable petroleum, and include most of the world's largest reservoirs. Correct phase identification in carbonates has concerned sedimentologists and petroleum geologists for decades. A new type of solid solution in the calcite (CaCO3) - magnesite (MgCO3) system has been identified at Curtin University by Rietveld XRD and neutron diffraction data analysis in a sample from late Pleistocene reefs in the northern Perth Basin. It is known that the structure of calcite (space group R3C) will be transformed to dolomite (R3), which has an ordered distribution of Ca and Mg in the structure, if 50% of its Ca atoms are substituted by Mg in terms of the Ca-Mg atomic ratio. However, the upper limit of Mg substitution for Ca in calcite under sedimentary-geological conditions without there being a change in structure to dolomite is still unknown. Two carbonates examined at Curtin showed Mg substitution for Ca in calcite under coral reef sedimentary conditions of 18.1% and 37.7%, whereas Bragg peak shifts for a 'dolomite, line for these samples were interpreted by geologists as indicative of dolomite with a certain extent of order-disorder distribution between Ca and Mg atoms. The observations have provided an opportunity to re-examine the origins of dolomite and aspects of dolomitization in a coral reef environment in the Quaternary

  2. The passivation of calcite by acid mine water. Column experiments with ferric sulfate and ferric chloride solutions at pH 2

    International Nuclear Information System (INIS)

    Column experiments, simulating the behavior of passive treatment systems for acid mine drainage, have been performed. Acid solutions (HCl or H2SO4, pH 2), with initial concentrations of Fe(III) ranging from 250 to 1500 mg L-1, were injected into column reactors packed with calcite grains at a constant flow rate. The composition of the solutions was monitored during the experiments. At the end of the experiments (passivation of the columns), the composition and structure of the solids were measured. The dissolution of calcite in the columns caused an increase in pH and the release of Ca into the solution, leading to the precipitation of gypsum and Fe-oxyhydroxysulfates (Fe(III)-SO4-H+ solutions) or Fe-oxyhydroxychlorides (Fe(III)-Cl-H+ solutions). The columns worked as an efficient barrier for some time, increasing the pH of the circulating solutions from 2 to ∼6-7 and removing its metal content. However, after some time (several weeks, depending on the conditions), the columns became chemically inert. The results showed that passivation time increased with decreasing anion and metal content of the solutions. Gypsum was the phase responsible for the passivation of calcite in the experiments with Fe(III)-SO4-H+ solutions. Schwertmannite and goethite appeared as the Fe(III) secondary phases in those experiments. Akaganeite was the phase responsible for the passivation of the system in the experiments with Fe(III)-Cl-H+ solutions

  3. The relative merits of dolomitic and calcitic limestone in detoxifying and revegetating acidic, nickel- and copper-contaminated soils in the Sudbury mining and smelting region of Canada

    Energy Technology Data Exchange (ETDEWEB)

    McHale, D.; Winterhalder, K. [Laurentian Univ., Sudbury, Ontario (Canada)

    1996-12-31

    Soils in the Sudbury mining and smelting region have been rendered phytotoxic and barren by acidification and Particulate metal contamination, but can be detoxified revegetated by the surface application of an growth is better on soil treated ground limestone. On certain barren sites, plant growth is better on soil treated with dolomitic limestone than with calcitic limestone and greenhouse experiments using mung beans (Vigna radiata) have shown superior root and shoot growth on certain contaminated soils when the limestone is dolomitic rather than calcitic. Results of experiments with species used in revegetation (Agrostis gigantea and Lotus corniculatus) suggest that leguminous species are more sensitive to Ca:Mg ratio than grasses, that the plant response to this ratio is greater at lowering liming levels, and that the response is more marked on more toxic soils. The effects of calcium:magnesium ratio of the limestone used in revegetating acidic, metal-contaminated soils are clearly complex, interactive and difficult to interpret. Further studies are needed, but meanwhile it is recommended that the practice of using dolomitic limestone to detoxify barren Sudbury soils be continued, since there is a risk of induced magnesium deficiency at certain sites when calcitic limestone is used.

  4. The difference between surface ocean carbonate chemistry and calcite dissolution in deep sea sediments as observed in tests of Globorotalia menardii

    Science.gov (United States)

    Russo, M.; Mekik, F.

    2010-12-01

    The Globorotalia menardii Fragmentation Index (MFI) was developed to trace deep sea calcite dissolution within sediments. While this proxy has a multi-basin core top calibration ranging the tropical and subtropical world ocean, the effect of the surface ocean [CO32-] on thickness of whole G. menardii shells has not been previously tested. If the size-normalized shell weight (SNSW) of G. menardii tests were affected by the [CO32-] of ambient habitat waters, this would put constraints on the applicability of MFI as a reliable bulk sediment calcite dissolution proxy. We present new SNSW data from G. menardii shells within core tops in the eastern equatorial Pacific where there is both a strong gradient to surface ocean [CO32-] and calcite dissolution in the sediments. We compare our G.menardii SNSW data with that of other species in the region, such as Neogloboquadrina dutertrei and Pulleniatina obliquiloculata. While SNSW of both N. dutertrei and P. obliquiloculata have clear relationships with surface ocean [CO32-], we do not find a similar relationship between G. menardii SNSW and surface ocean parameters, particularly [CO32-]. This bolsters our confidence in the reliability of MFI as a deep sea carbonate dissolution tracer.

  5. Inversion of calcite twin data, paleostress reconstruction and multiphase weak deformation in cratonic interior - Evidence from the Proterozoic Cuddapah basin, India

    Science.gov (United States)

    Tripathy, Vikash; Saha, Dilip

    2015-08-01

    Paleostress orientations from mechanically twinned calcite in carbonate rocks and veins in the neighborhood of large faults were investigated to comment on the nature of weak upper crustal stresses affecting sedimentary successions within the Proterozoic Cuddapah basin, India. Application of Turner's P-B-T method and Spang's Numerical dynamic analysis on Cuddapah samples provided paleostress orientations comparable to those derived from fault-slip inversion. Results from the neighborhood of E-W faults cutting through the Paleoproterozoic Papaghni and Chitravati groups and the Neoproterozoic Kurnool Group in the western Cuddapah basin, reveal existence of multiple deformation events - (1) NE-SW σ3 in strike-slip to extensional regime along with an additional event having NW-SE σ3, for lower Cuddapah samples; (2) compressional/transpressional event with ESE-WNW or NNE-SSW σ1 mainly from younger Kurnool samples. Integrating results from calcite twin data inversion, fault-slip analysis and regional geology we propose that late Mesoproterozoic crustal extension led to initial opening of the Kurnool sub-basin, subsequently influenced by weak compressional deformation. The dynamic analysis of calcite twins thus constrains the stress regimes influencing basin initiation in the southern Indian cratonic interior and subsequent basin inversion in relation to craton margin mobile belts and plausible global tectonic events in the Proterozoic.

  6. Lithofacies palaeogeography and sedimentology Beef and cone-in-cone calcite fibrous cements associated with the end-Permian and end-Triassic mass extinctions:Reassessment of processes of formation

    Institute of Scientific and Technical Information of China (English)

    Stephen Kershaw; Li Guo

    2016-01-01

    This paper reassesses published interpretation that beef and cone-in-cone (B-CIC) fibrous calcite cements were precipitated contemporaneously just below the sea floor in uncon-solidated sediment, in limestones associated with the end-Permian (P/T) and end-Triassic (T/J) mass extinctions. That interpretation introduced the concept of a sub-seafloor car-bonate factory associated with ocean acidification by raised carbon dioxide driven by volcanic eruption, coinciding with mass extinction. However, our new fieldwork and petrographic analysis, with literature comparison, reveals several problems with this concept. Two key points based on evidence in the T/J transition of the UK are:(1) that B-CIC calcite deposits form thin scattered layers and lenses at several horizons, not a distinct deposit associated with volcanic activity; and (2) B-CIC calcite is more common in Early Jurassic sediments after the extinction and after the end of the Central Atlantic Magmatic Province volcanism proposed to have supplied the carbon dioxide required. Our samples from Late Triassic, Early Jurassic and Early Cretaceous limestones in southern UK show that B-CIC calcite occurs in both marine and non-marine sediments, therefore ocean processes are not mandatory for its formation. There is no proof that fibrous calcite was formed before lithification, but our Early Jurassic samples do prove fibrous calcite formed after compaction, thus interpretation of crystal growth in uncon-solidated sediment is problematic. Furthermore, B-CIC crystals mostly grew both upwards and downwards equally, contradicting the interpretation of the novel carbonate factory that they grew preferentially upwards in soft sediment. Finally, Early Jurassic and Early Cretaceous examples are not associated with mass extinction. Three further key points derived from the literature include: (1) B-CIC calcite is wide-spread geographically and stratigraphically, not clustered around mass extinctions or the Paleocene

  7. Final report for DOE Grant No. DE-SC0006609 - Persistence of Microbially Facilitated Calcite Precipitation as an in situ Treatment for Strontium-90

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W [University of Idaho; Fujita, Yoshiko [Idaho National Laboratory

    2013-11-15

    Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE's greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent ions, such as the short-lived radionuclide Sr-90, is co-precipitation in calcite. We have previously found that nutrient addition can stimulate microbial ureolytic activity, that this activity accelerates calcite precipitation and co-precipitation of Sr, and that higher calcite precipitation rates can result in increased Sr partitioning. We have conducted integrated field, laboratory, and computational research to evaluate the relationships between ureolysis and calcite precipitation rates and trace metal partitioning under environmentally relevant conditions, and investigated the coupling between flow/flux manipulations and precipitate distribution. A field experimental campaign conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO was based on a continuous recirculation design; water extracted from a down-gradient well was amended with urea and molasses (a carbon and electron donor) and re-injected into an up-gradient well. The goal of the recirculation design and simultaneous injection of urea and molasses was to uniformly accelerate the hydrolysis of urea and calcite precipitation over the entire inter-wellbore zone. The urea-molasses recirculation phase lasted, with brief interruptions for geophysical surveys, for 12 days and was followed by long-term monitoring which continued for 13 months. A post experiment core located within the inter-wellbore zone was collected on day 321 and characterized with respect to cation exchange capacity, mineral carbonate content, urease activity, ureC gene abundance, extractable ammonium (a urea hydrolysis product) content, and the C-13 isotopic composition of solid carbonates. It was also subjected to selective extractions for strontium and uranium. Result of the core

  8. Petrography, mineralogy, and chemistry of calcite-silica deposits at Exile Hill, Nevada, compared with local spring deposits

    International Nuclear Information System (INIS)

    Chemical, mineralogic, and petrographic analyses of siliceous calcretes from Exile Hill east of Yucca Mountain, Nevada, indicate that pedogenic processes alone account for the formation of the calcretes. These calcretes have been interpreted by some observers as evidence of seismically triggered eruptions of deep water. Such an origin could have important consequences if Yucca Mountain is developed as an unsaturated site for the disposal of high-level nuclear waste. At odds with this hypothesis are the absence of features that should be present at fault-fed springs (e.g., fissure-ridge mounds with microterraces) and the preservation within root casts of delicate pedogenic microfossils, such as calcified filaments and needle-fiber calcites. Mineral-chemical evidence of pedogenic origin is found in heavy-mineral concentrations, reflected in Fe and Sc enrichments. These concentrations, which occur in the most massive of the vein calcretes, require derivation of detritus from a mixture of weathered and eolian materials that occur in the overlying B soil horizons, as opposed to direct incorporation of adjacent unweathered bedrock. Carbonate and silica abundances and accumulation rates are well within the scope of pedogenic processes. Calcium is derived from rainwater or eolian sources, whereas silica is derived in part by dissolution of local volcanic glasses or from dissolution of unstable silica minerals that are abundant in the local tuffs. In contrast with local deposits that are of spring or seep origin, the siliceous calcretes at Yucca Mountain are pedogenic in origin as well as evolution and provide no evidence in support of conjectured spring activity

  9. Vital effects in coccolith calcite: Cenozoic climate-pCO2 drove the diversity of carbon acquisition strategies in coccolithophores?

    Science.gov (United States)

    Bolton, Clara T.; Stoll, Heather M.; Mendez-Vicente, Ana

    2012-12-01

    Coccoliths, calcite plates produced by the marine phytoplankton coccolithophores, have previously shown a large array of carbon and oxygen stable isotope fractionations (termed "vital effects"), correlated to cell size and hypothesized to reflect the varying importance of active carbon acquisition strategies. Culture studies show a reduced range of vital effects between large and small coccolithophores under high CO2, consistent with previous observations of a smaller range of interspecific vital effects in Paleocene coccoliths. We present new fossil data examining coccolithophore vital effects over three key Cenozoic intervals reflecting changing climate and atmospheric partial pressure of CO2 (pCO2). Oxygen and carbon stable isotopes of size-separated coccolith fractions dominated by different species from well preserved Paleocene-Eocene thermal maximum (PETM, ˜56 Ma) samples show reduced interspecific differences within the greenhouse boundary conditions of the PETM. Conversely, isotope data from the Plio-Pleistocene transition (PPT; 3.5-2 Ma) and the last glacial maximum (LGM; ˜22 ka) show persistent vital effects of ˜2‰. PPT and LGM data show a clear positive trend between coccolith (cell) size and isotopic enrichment in coccolith carbonate, as seen in laboratory cultures. On geological timescales, the degree of expression of vital effects in coccoliths appears to be insensitive topCO2 changes over the range ˜350 ppm (Pliocene) to ˜180 ppm (LGM). The modern array of coccolith vital effects arose after the PETM but before the late Pliocene and may reflect the operation of more diverse carbon acquisition strategies in coccolithophores in response to decreasing Cenozoic pCO2.

  10. TESTING THE SPECIFICITY OF PRIMERS TO ENVIRONMENTAL AMMONIA MONOOXYGENASE (AMOA) GENES IN GROUNDWATER TREATED WITH UREA TO PROMOTE CALCITE PRECIPITATION

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie Freeman; David Reed; Yoshiko Fujita

    2006-12-01

    The diversity of bacterial ammonia monooxygenase (amoA) genes in DNA isolated from microorganisms in groundwater was characterized by amplification of amoA DNA using polymerase chain reaction (PCR), Restriction Fragment Length Polymorphism (RFLP) analysis, and sequencing. The amoA gene is characteristic of ammonia oxidizing bacteria (AOB). The DNA extracts were acquired from an experiment where dilute molasses and urea were sequentially introduced into a well in the Eastern Snake River Plain Aquifer (ESRPA) in Idaho to examine whether such amendments could stimulate enhanced ureolytic activity. The hydrolysis of urea into ammonium and carbonate serves as the basis for a potential remediation technique for trace metals and radionuclide contaminants that co-precipitate in calcite. The ammonium ion resulting from ureolysis can promote the growth of AOB. The goal of this work was to investigate the effectiveness of primers designed for quantitative PCR of environmental amoA genes and to evaluate the effect of the molasses and urea amendments upon the population diversity of groundwater AOB. PCR primers designed to target a portion of the amoA gene were used to amplify amoA gene sequences in the groundwater DNA extracts. Following PCR, amplified gene products were cloned and the clones were characterized by RFLP, a DNA restriction technique that can distinguish different DNA sequences, to gauge the initial diversity. Clones exhibiting unique RFLP patterns were subjected to DNA sequencing. Initial sequencing results suggest that the primers were successful at specific detection of amoA sequences and the RFLP analyses indicated that the diversity of detected amoA sequences in the ESRPA decreased with the additions of molasses and urea.

  11. Petrography, mineralogy, and chemistry of calcite-silica deposits at Exile Hill, Nevada, compared with local spring deposits

    Energy Technology Data Exchange (ETDEWEB)

    Vaniman, D.T.; Chipera, S.J.; Bish, D.L.

    1995-12-01

    Chemical, mineralogic, and petrographic analyses of siliceous calcretes from Exile Hill east of Yucca Mountain, Nevada, indicate that pedogenic processes alone account for the formation of the calcretes. These calcretes have been interpreted by some observers as evidence of seismically triggered eruptions of deep water. Such an origin could have important consequences if Yucca Mountain is developed as an unsaturated site for the disposal of high-level nuclear waste. At odds with this hypothesis are the absence of features that should be present at fault-fed springs (e.g., fissure-ridge mounds with microterraces) and the preservation within root casts of delicate pedogenic microfossils, such as calcified filaments and needle-fiber calcites. Mineral-chemical evidence of pedogenic origin is found in heavy-mineral concentrations, reflected in Fe and Sc enrichments. These concentrations, which occur in the most massive of the vein calcretes, require derivation of detritus from a mixture of weathered and eolian materials that occur in the overlying B soil horizons, as opposed to direct incorporation of adjacent unweathered bedrock. Carbonate and silica abundances and accumulation rates are well within the scope of pedogenic processes. Calcium is derived from rainwater or eolian sources, whereas silica is derived in part by dissolution of local volcanic glasses or from dissolution of unstable silica minerals that are abundant in the local tuffs. In contrast with local deposits that are of spring or seep origin, the siliceous calcretes at Yucca Mountain are pedogenic in origin as well as evolution and provide no evidence in support of conjectured spring activity.

  12. Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile

    Science.gov (United States)

    Rech, Jason A.; Quade, Jay; Hart, William S.

    The origin of pedogenic salts in the Atacama Desert has long been debated. Possible salt sources include in situ weathering at the soil site, local sources such as aerosols from the adjacent Pacific Ocean or salt-encrusted playas (salars), and extra-local atmospheric dust. To identify the origin of Ca and S in Atacama soil salts, we determined δ 34S and 87Sr/ 86Sr values of soil gypsum/anhydrite and 87Sr/ 86Sr values of soil calcite along three east-west trending transects. Our results demonstrate the strong influence of marine aerosols on soil gypsum/anhydrite development in areas where marine fog penetrates inland. Results from an east-west transect located along a breach in the Coastal Cordillera show that most soils within 90 km of the coast, and below 1300 m in elevation, are influenced by marine aerosols and that soils within 50 km, and below 800 m in elevation, receive >50% of Ca and S from marine aerosols (δ 34S values > 14‰ and 87Sr/ 86Sr values >0.7083). In areas where the Coastal Cordillera is >1200 m in elevation, however, coastal fog cannot penetrate inland and the contribution of marine aerosols to soils is greatly reduced. Most pedogenic salts from inland soils have δ 34S values between +5.0 to +8.0‰ and 87Sr/ 86Sr ratios between 0.7070 and 0.7076. These values are similar to average δ 34S and 87Sr/ 86Sr values of salts from local streams, lakes, and salars (+5.4 ±2‰ δ 34S and 0.70749 ± 0.00045 87Sr/ 86Sr) in the Andes and Atacama, suggesting extensive eolian reworking of salar salts onto the surrounding landscape. Ultimately, salar salts are precipitated from evaporated ground water, which has acquired its dissolved solutes from water-rock interactions (both high and low-temperature) along flowpaths from recharge areas in the Andes. Therefore, the main source for Ca and S in gypsum/anhydrite in non-coastal soils is indirect and involves bedrock alteration, not surficially on the hyperarid landscape, but in the subsurface by ground water

  13. An Investigation Into the Influences of Temperature and Growth Rate on the Mg/Ca Ratio of Mytilus edulis Calcite

    Science.gov (United States)

    Kluender, M. H.; Hippler, D.; Frei, D.; Witbaard, R.; Immenhauser, A.; Eisenhauer, A.

    2008-12-01

    The common blue mussel Mytilus edulis is a fast-growing bivalve with a lifespan of up to 20 years. The fast shell growth in this species makes it possible to obtain LA-ICP-MS analyses of the trace element chemistry of the outer calcite shell layer with weekly to daily resolution. M. edulis shells could therefore have potential as basis for proxies for seasonal environmental variations. There are, however, difficulties in the use of bivalve shell carbonate for environmental proxies. Even within a single species, calcification is dependant on internal as well as external conditions. The development and application of proxies based on bivalve shell trace element chemistry thus face several challenges. Though the uptake of magnesium in M. edulis appears to be influenced by ambient water temperature, factors such as ontogeny and growth rate may also influence the inclusion of magnesium into the shell. An investigation into the influence of ontogeny, growth rate and ambient temperature on the magnesium uptake in the shells of juvenile and adult M. edulis has been carried out. Data from LA-ICP-MS analyses of shell material from a field-based aquaculture experiment carried out in the Dutch Wadden Sea in 2005 and 2006 show that there is a marked difference between the Mg/Ca ratios of shell material deposited right after settlement, and shell deposited after the first few months of life. While there is a clear difference in shell chemistry between early juvenile and later juvenile shell, no obvious differences between the chemistry of the later juvenile and adult shell have been observed. This difference causes an Mg/Ca ratio - temperature relationship found in later juvenile and adult shell to be incorrect for shell formed while a specimen is very young. By measuring the shell lengths of the specimens during the experiment, linear extension growth rates could be calculated. The relationship between growth rate and size of a specimen is in no way straightforward, but two

  14. Pore fluid in experimental calcite-bearing faults: Abrupt weakening and geochemical signature of co-seismic processes

    Science.gov (United States)

    Violay, M.; Nielsen, S.; Spagnuolo, E.; Cinti, D.; Di Toro, G.; Di Stefano, G.

    2013-01-01

    While it is widely recognized that fluids influence fault strength and earthquake nucleation, propagation and arrest, their effects on co-seismic sliding friction are only conjectured. To shed light on these effects, 55 high velocity (>1 m s-1) friction experiments were conducted at room temperature on Carrara marble samples in the presence of pore fluid (up to 15 MPa pore pressure), room-humidity and "vacuum" (10-4 mbar) conditions. In all the experiments, the friction coefficient evolved from a peak value of 0.6-0.8 to a steady-state value of 0.1 in about 1-1.5 m of slip. However, experiments performed in the presence of pore fluid had a large and more abrupt decrease in friction at the initiation of sliding (65% after 20 mm of slip), whereas experiments performed under vacuum and room humidity conditions showed initial velocity-strengthening behavior followed by a more gradual reduction in friction. This indicates that calcite-bearing rocks are more prone to slip in the presence of water. Under room-humidity conditions, CO2 was detected during the entire duration of the experiment. In the presence of pore fluid, HCO3- and Ca2+ were detected for slips >0.1 m. The lack of decarbonation products (HCO3- and Ca2+) in pore fluid experiments for slip <0.1 m implies that the abrupt weakening is not related to decarbonation (or that the abundance of the reaction products is below the resolution of the analytical methods). Given the modest thermal expansion of water, the estimated thermal pressurization during the abrupt weakening appears to be negligible. Instead, we suggest that abrupt weakening is due to subcritical crack-growth, hydrolytic weakening and brittle failure of the asperities on the sliding surfaces. Modeling shows that the occurrence in nature of co-seismic (water-present) decarbonation reactions similar to those triggered in the laboratory could yield sufficient reaction product to be detected in aquifers located in the proximity of active faults.

  15. Total individual ion activity coefficients of calcium and carbonate in seawater at 25°C and 35%. salinity, and implications to the agreement between apparent and thermodynamic constants of calcite and aragonite

    Science.gov (United States)

    Plummer, L. Neil; Sundquist, Eric T.

    1982-01-01

    We have calculated the total individual ion activity coefficients of carbonate and calcium,  and , in seawater. Using the ratios of stoichiometric and thermodynamic constants of carbonic acid dissociation and total mean activity coefficient data measured in seawater, we have obtained values which differ significantly from those widely accepted in the literature. In seawater at 25°C and 35%. salinity the (molal) values of  and  are 0.038 ± 0.002 and 0.173 ± 0.010, respectively. These values of  and  are independent of liquid junction errors and internally consistent with the value . By defining  and  on a common scale (), the product  is independent of the assigned value of  and may be determined directly from thermodynamic measurements in seawater. Using the value  and new thermodynamic equilibrium constants for calcite and aragonite, we show that the apparent constants of calcite and aragonite are consistent with the thermodynamic equilibrium constants at 25°C and 35%. salinity. The demonstrated consistency between thermodynamic and apparent constants of calcite and aragonite does not support a hypothesis of stable Mg-calcite coatings on calcite or aragonite surfaces in seawater, and suggests that the calcite critical carbonate ion curve of Broecker and Takahashi (1978,Deep-Sea Research25, 65–95) defines the calcite equilibrium boundary in the oceans, within the uncertainty of the data.

  16. Uncertainty in geochemical modelling of CO2 and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases

    International Nuclear Information System (INIS)

    Highlights: • CO2 and calcite dissolution is calculated. • The codes PHREEQC, Geochemist’s Workbench, EQ3/6, and FactSage are used. • Comparison with Duan and Li (2008) shows lowest deviation using phreeqc.dat and wateq4f.dat. • Using Pitzer databases does not improve accurate calculations. • Uncertainty in dissolved CO2 is largest using the geochemical models. - Abstract: A prognosis of the geochemical effects of CO2 storage induced by the injection of CO2 into geologic reservoirs or by CO2 leakage into the overlaying formations can be performed by numerical modelling (non-invasive) and field experiments. Until now the research has been focused on the geochemical processes of the CO2 reacting with the minerals of the storage formation, which mostly consists of quartzitic sandstones. Regarding the safety assessment the reactions between the CO2 and the overlaying formations in the case of a CO2 leakage are of equal importance as the reactions in the storage formation. In particular, limestone formations can react very sensitively to CO2 intrusion. The thermodynamic parameters necessary to model these reactions are not determined explicitly through experiments at the total range of temperature and pressure conditions and are thus extrapolated by the simulation code. The differences in the calculated results lead to different calcite and CO2 solubilities and can influence the safety issues. This uncertainty study is performed by comparing the computed results, applying the geochemical modelling software codes The Geochemist’s Workbench, EQ3/6, PHREEQC and FactSage/ChemApp and their thermodynamic databases. The input parameters (1) total concentration of the solution, (2) temperature and (3) fugacity are varied within typical values for CO2 reservoirs, overlaying formations and close-to-surface aquifers. The most sensitive input parameter in the system H2O–CO2–NaCl–CaCO3 for the calculated range of dissolved calcite and CO2 is the fugacity of CO2

  17. Marine biogeochemistries of Be and Al: A study based on cosmogenic 10Be, Be and Al in marine calcite, aragonite, and opal

    Indian Academy of Sciences (India)

    Weiquan Dong; Devendra Lal; Barbara Ransom; Wolfgang Berger; Marc W Caffee

    2001-06-01

    The geochemical behaviors of Be and Al in ocean waters have been successfully studied in recent years using natural, cosmogenic, radioactive 10Be and 26Al as tracers. The present day dissolved concentrations and distribution of the stable and radioactive isotopes of Be and Al in ocean waters have revealed their short residence times and appreciable effects of exchange uxes at the coastal and ocean-sediment interfaces. It follows that concentrations of these particle-active elements must have varied in the past with temporal changes in climate, biological productivity and aeolian ux of continental detritus to the oceans. We therefore investigated the feasibility of extending the measurements of Be and Al isotope concentrations in marine systems to the 103-106 BP time scale. We report here the discovery of significant amounts of intrinsic Be and Al in marine foraminiferal calcite and coral aragonite, and of Al in opal (radiolarians) and aragonite (coral), which makes it possible to determine 10Be/Be and 26Al/Al in oceans in the past. We also report measured 10Be/9Be in foraminiferal calcite in Pacific Ocean cores, which reveal that the concentrations and ratios of the stable and cosmogenic isotopes of Be and Al have varied significantly in the past 30 ky. The implications of these results are discussed.

  18. Calcite veins as an indicator of fracture dilatancy and connectivity during strike-slip faulting in Toarcian shale (Tournemire tunnel, Southern France)

    Science.gov (United States)

    Lefèvre, Mélody; Guglielmi, Yves; Henry, Pierre; Dick, Pierre; Gout, Claude

    2016-02-01

    The reactivation of faults induced by natural/human induced fluid pressure increases is a major concern to explain subsurface fluid migration and to estimate the risk of losing the integrity of reservoir/seal systems. This study focusses on paleo-fluid migration in a strike slip fault with >100 m long, affecting a Toarcian shale (Causses Basin, France). A high calcite concentration is observed in a 5 cm thick zone at the boundary between the fault core and damage zone. Cumulated displacements in this zone are of millimeter-to-centimeter-scale offsets and different dilatant deformation textures are observed. The zone is affected by thin slip planes containing gouge. Cathodo-luminescence observations indicate that two phases of vein formation occurred. The first phase coincides with the fluid migration along this centimeter thick dilatant zone. The second one is associated to re-shear along the millimeter thick slip planes that results in more localized mineralization, but also in a better hydrologic connection through the shale formation. These results show that in shales fluids may migrate off a slipping surface in centimeter scale dilatant volumes, at first controlled by the intact shale anisotropy related to bedding and then favored by brecciating, structures re-orientation and strengthening processes induced by calcite sealing effects.

  19. Study of the sorption of actinide analogues on calcite and smectite as a model to predict the evolution of radioactive waste disposal in geological sites

    International Nuclear Information System (INIS)

    In the framework of the problem of the radioactive waste disposal in deep geological sites, the purpose of this study is to predict the sorption of radionuclides on minerals within the geological barrier, after the rupture of the containers and the release of the radionuclides into underground water. Neodymium labelled by 147Nd was used as an analogue of trivalent actinides. Calcite and smectite were used as examples of altered minerals of granitic sites. In simple media, neodymium is retained with a high affinity on both minerals. Fast kinetics of fixation, high distribution coefficients and sorption capacities are favorable factors for the slowing down of radionuclide migration in underground water. Fixation on calcite is quasi irreversible. A second kinetic step was observed, leading to an increase of the retention capacity. In the first step, this is probably a superficial sorption, but with a non-homogeneous affinity for sorption sites. An exchange mechanism of Nd3+ with Na+ et Ca2+ ions of smectite occurs. The Freundlich isotherm observed for both minerals can be used for predicting the retention of radioelements as a function of their concentration and introducing these data in a migration model after comparison with the results of dynamic and field experiments. (author)

  20. Late Pleistocene cryogenic calcite spherolites from the Malachitdom Cave (NE Rhenish Slate Mountains, Germany: Origin, unusual internal structure and stable C-O isotope composition.

    Directory of Open Access Journals (Sweden)

    Detlev Konrad Richter

    2008-07-01

    Full Text Available Cryogenic calcites yielded U-series ages in the range from 15.61±0.20 ka to 14.48±0.12 ka, which is the youngest age obtained so far for this type of cryogenic cave carbonates in Europe. Most of these particles of the Malachitdom Cave (NE Brilon, Sauerland, North Rhine-Westphalia are complex spherolites usually smaller than 1 cm. They show δ13C-values between –1 and –5 ‰ VPDB and δ18O-values ranging from –7 to –16 ‰ VPDB, the δ13C-values increase and the δ18O-values decrease from centre to border. The complex spherolites are interpreted to be formed in slowly freezing pools of residual water on ice, a situation that repeatedly occurred during the change of glacial to interglacial periods in the periglacial areas of Central Europe. After the melting of the cave-ice, the complex spherolites make up one type of cryogenic calcite particles in the arenitic to ruditic sediment.

  1. Composite Magnetite and Protein Containing CaCO3 Crystals. External Manipulation and Vaterite → Calcite Recrystallization-Mediated Release Performance.

    Science.gov (United States)

    Sergeeva, Alena; Sergeev, Roman; Lengert, Ekaterina; Zakharevich, Andrey; Parakhonskiy, Bogdan; Gorin, Dmitry; Sergeev, Sergey; Volodkin, Dmitry

    2015-09-30

    Biocompatibility and high loading capacity of mesoporous CaCO3 vaterite crystals give an option to utilize the polycrystals for a wide range of (bio)applications. Formation and transformations of calcium carbonate polymorphs have been studied for decades, aimed at both basic and applied research interests. Here, composite multilayer-coated calcium carbonate polycrystals containing Fe3O4 magnetite nanoparticles and model protein lysozyme are fabricated. The structure of the composite polycrystals and vaterite → calcite recrystallization kinetics are studied. The recrystallization results in release of both loaded protein and Fe3O4 nanoparticles (magnetic manipulation is thus lost). Fe3O4 nanoparticles enhance the recrystallization that can be induced by reduction of the local pH with citric acid and reduction of the polycrystal crystallinity. Oppositely, the layer-by-layer assembled poly(allylamine hydrochloride)/poly(sodium styrenesulfonate) polyelectrolyte coating significantly inhibits the vaterite → calcite recrystallization (from hours to days) most likely due to suppression of the ion exchange giving an option to easily tune the release kinetics for a wide time scale, for example, for prolonged release. Moreover, the recrystallization of the coated crystals results in formulation of multilayer capsules keeping the feature of external manipulation. This study can help to design multifunctional microstructures with tailor-made characteristics for loading and controlled release as well as for external manipulation. PMID:26348458

  2. Sorption of the Rare Earth Elements and Yttrium (REE-Y) in calcite: the mechanism of a new effective tool in identifying paleoearthquakes on carbonate faults

    Science.gov (United States)

    Moraetis, Daniel; Mouslopoulou, Vasiliki; Pratikakis, Alexandros

    2015-04-01

    A new tool for identifying paleoearthquakes on carbonate faults has been successfully tested on two carbonate faults in southern Europe (the Magnola Fault in Italy and the Spili Fault in Greece): the Rare Earth Element and Yttrium (REE-Y) method (Manighetti et al., 2010; Mouslopoulou et al., 2011). The method is based on the property of the calcite in limestone scarps to absorb the REE and Y from the soil during its residence beneath the ground surface (e.g. before its exhumation due to earthquakes). Although the method is established, the details of the enrichment mechanism are poorly investigated. Here we use published data together with new information from pot-experiments to shed light on the sorption mechanism and the time effectiveness of the REE-Y method. Data from the Magnola and Spili faults show that the average chemical enrichment is ~45%, in REE-Y while the denudation rate of the enriched zones is ~1% higher every 400 years due to exposure of the fault scarp in weathering. They also show that the chemical enrichment is significant even for short periods of residence time (e.g., ~100 years). To better understand the enrichment mechanism, we performed a series of pot experiments, where carbonate tiles extracted from the Spili Fault were buried into soil collected from the hanging-wall of the same fault. We irrigated the pots with artificial rain that equals 5 years of rainfall in Crete and at temperatures of 15oC and 25oC. Following, we performed sorption isotherm, kinetic and pH-edge tests for the europium (Eu), the cerium (Ce) and the ytterbium (Yt) that occur in the calcite minerals. The processes of adsorption and precipitation in the batch experiments are simulated by the Mineql software. The pot experiments indicate incorporation of the REE and Y into the surface of the carbonate tile which is in contact with the soil. The pH of the leached solution during the rain application range from 7.6 to 8.3. Nutrient release like Ca is higher in the leached

  3. Chemical and physical evolution of dolomite precipitation at 180°C and 220°C from calcite and aragonite seeds

    Science.gov (United States)

    Kell-Duivestein, Isaac; Dietzel, Martin; Mavromatis, Vasileios

    2016-04-01

    In this present study an experimental approach is taken to gain a better understanding of secondary dolomite formation under diagenetic hydrothermal conditions. A series of 60 experiments were set up in closed bomb reactors with Teflon inserts to simulate exposure of calcium carbonate materials of (i) aragonite and (ii) calcite to hydrothermal conditions. 30 reactors were prepared using calcite as a seed material and 30 using aragonite. In each experiment 330mg of the seed calcium carbonate was placed in 30mL of 0.2M MgCl2 solution along with 252mg NaHCO3 to balance charges. 15 of each the calcite and aragonite prepared reactors were placed in an oven at 180°C and 15 of each at 220°C. Samples were then progressively removed from the ovens beginning in short time intervals and increasing the time apart as the phase transformations became less rapid (ie. after 3, 6, 13, 21, 31, 56 days *ongoing*). Samples were separated into fluid and solid phases by filtration for separate analysis. Fluids were analysed by titration for alkalinity and ICP-OES for elemental concentrations of major cations to determine the migration of major cations between the calcium carbonate seed material and the reaction fluid. Solid samples were analysed with FTIR-spectroscopy and X-ray diffraction of powdered smears on glass loading slides to identify the present mineral phases. Rietveld analysis was conducted on the XRD patterns to quantify the mineral phases and to determine the stoichiometry and the superstructure of the formed magnesite and dolomite. Although experiments are still running, several trends have been identified. Transformation of the aragonite seed material occurs at a much faster rate than transformation of the calcite seed material, with each precursor material first transforming into a Ca-rich magnesite. With increased reaction time the Ca-rich magnesite recrystallizes to purer phases of magnesite, the Ca concentration of the fluid increases as the Ca is liberated into

  4. A Non-Electrostatic Surface Complexation Approach to Modeling Radionuclide Migration at the Nevada Test Site: I. Iron Oxides and Calcite

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M; Bruton, C J

    2004-12-17

    Reliable quantitative prediction of contaminant transport in subsurface environments is critical to evaluating the risks associated with radionuclide migration. As part of the Underground Test Area (UGTA) project, radionuclide transport away from various underground nuclear tests conducted in the saturated zone at the Nevada Test Site (NTS) is being examined. In the near-field environment, reactive transport simulations must account for changes in water chemistry and mineralogy as a function of time and their effect on radionuclide migration. Unlike the K{sub d} approach, surface complexation (SC) reactions, in conjunction with ion exchange and precipitation, can be used to describe radionuclide reactive transport as a function of changing environmental conditions. They provide a more robust basis for describing radionuclide retardation in geochemically dynamic environments. The interaction between several radionuclides considered relevant to the UGTA project and iron oxides and calcite are examined in this report. The interaction between these same radionuclides and aluminosilicate minerals is examined in a companion report (Zavarin and Bruton, 2004). Selection criteria for radionuclides were based on abundance, half-life, toxicity to human and environmental health, and potential mobility at NTS (Tompson et al., 1999). Both iron oxide and calcite minerals are known to be present at NTS in various locations and are likely to affect radionuclide migration from the near-field. Modeling the interaction between radionuclides and these minerals was based on surface complexation. The effectiveness of the most simplified SC model, the one-site Non-Electrostatic Model (NEM), to describe sorption under various solution conditions is evaluated in this report. NEM reactions were fit to radionuclide sorption data available in the literature, as well as sorption data recently collected for the UGTA project, and a NEM database was developed. For radionuclide-iron oxide sorption

  5. Use of multiple attributes decision-making Technique for Order Preference by Similarity to Ideal Solution (TOPSIS for Ghare-Gheshlagh calcite in determination of optimum geochemical sampling sites

    Directory of Open Access Journals (Sweden)

    Mansour Rezaei Azizi

    2015-04-01

    Full Text Available Introduction Several valuable calcite deposits are located in Ghare-Gheshlagh, south basin of Urmia Lake, NW Iran. Ghare-Gheshlagh area is situated in the northern part of tectono-sedimentary unit, forming NW part of Tertiary Sanandaj-Sirjan geological belt (Stocklin and Nabavi, 1972. The predominant rock types of the area include light color limestones (Qom Formation and Quaternary alluviums and underlined dolomite in depth (Eftekharnejhad, 1973. The thickness of these units varies between 10 cm and 6 meters and up to some hundred meters in length. In the present study, the effect of geochemical parameters responsible for precipitating calcite from the carbonate aqueous fluids is interpreted by the TOPSIS method to find the most preferable sampling sites and geochemical data. Materials and Methods A total of 20 samples were taken from a NE-SW trending profile including 15 calcites of fresh surface outcrops (5 samples per each colored calcite units in order to determine the nature of the rocks. The mineral assemblages were analyzed by optical methods in combination with XRD powder diffraction analysis. Major elements were determined by X-Ray Fluorescence Spectrometry (XRF, trace and rare earth elements were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS in Geological Survey of Iran. Results The abundances of trace elements were normalized to the continental crust values (Taylor and McLennan, 1981. The green calcite revealed enrichment in Rb and Sr, while green and white calcite were enriched in U. The U enrichment in the green calcite indicates the reduction condition of deposition. Incompatible elements such as Ba, Th, Nb and P depleted in all calcites. Varying the Sr/Ba value between 3.18 and 5.21% indicates the continental deposition environment and non-magmatic waters as well (Cheng et al., 2013. The Sr2+ content of calcites varies from 123 to 427 ppm, indicates suitable condition for calcite precipitation. Eu anomalies

  6. Paleostress reconstruction from calcite twin and fault-slip data using the multiple inverse method in the East Walanae fault zone: Implications for the Neogene contraction in South Sulawesi, Indonesia

    Science.gov (United States)

    Jaya, Asri; Nishikawa, Osamu

    2013-10-01

    A new approach for paleostress analysis using the multiple inverse method with calcite twin data including untwinned e-plane was performed in the East Walanae fault (EWF) zone in South Sulawesi, Indonesia. Application of untwinned e-plane data of calcite grain to constrain paleostress determination is the first attempt for this method. Stress states caused by the collision of the south-east margin of Sundaland with the Australian microcontinents during the Pliocene were successfully detected from a combination of calcite-twin data and fault-slip data. This Pliocene NE-SW-to-E-W-directed maximum compression activated the EWF as a reverse fault with a dextral component of slip with pervasive development of secondary structures in the narrow zone between Bone Mountain and Walanae Depression.

  7. Modification of calcite crystal morphology by designed phosphopeptides and primary structures and substrate specifities of the cysteine proteases mexicain and chymomexicain

    Science.gov (United States)

    Lian, Zhirui

    In order to better understand the mechanism of biomineralization, we have undertaken to synthesize polypeptide model compounds of well-defined structure that can interact with specific faces of calcite and alter its crystal morphology. These peptides were designed based on the structure of alpha-helical winter flounder antifreeze polypeptide HPLC-6. In these peptides, from one to three of the threonine residues in HPLC-6 were substituted by phosphoserine or phosphotyrosine. CD spectra show that all the peptides have virtually the same alpha-helicity, i.e., about 90% at 4°C and 50% at 25°C. However, only peptides which contain at least two phosphate groups spaced 16.8-A apart can modify the crystal morphology of the calcite. The newly developed surface has been tentatively identified as the (001) basal face. Molecular modeling indicates that the spacing of phosphate groups allows for a good match with crystal lattice ions on the (001) plane. Another peptide, CBP-3D, in which the three threonine residues in HPLC-6 were substituted by aspartic acids, appears to bind only to {104} rhombohedral faces of calcite. These experiments suggest that conformation and orientation of the binding ligands in the peptide are important factors governing the mutual recognition of crystal surface and proteins. The complete amino acid sequences of the cysteine proteases mexicain and chymomexicain, isolated from the latex of the plant Pileus mexicanus , were determined by Edman degradation of proteolytic fragments. Mexicain and chymomexicain show-high sequence homology to the papain family of cysteine protease. Mexicain and chymomexicain are monomeric polypeptides, with molecular masses of 23,762 Da and 23,694 Da, respectively, and both contain three deduced disulfide bonds. The proteolytic substrate specificities of mexicain and chymomexicain were studied by digesting a series of synthetic peptides and analyzing the fragments by mass spectrometry. The two proteases showed virtually

  8. Evidence of a Biological Control over Origin, Growth and End of the Calcite Prisms in the Shells of Pinctada margaritifera (Pelecypod, Pterioidea

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Cuif

    2014-12-01

    Full Text Available Consistently classified among the references for calcite simple prisms, the microstructural units that form the outer layer of the Pinctada margaritifera have been investigated through a series of morphological, crystallographical and biochemical characterizations. It is often said that the polygonal transverse shape of the prisms result from the competition for space between adjacent crystals. In contrast to this classical scheme the Pinctada prisms appear to be composed of four successive developmental stages from the concentrically growing disks on the internal side of the periostracum to the morphological, structural and compositional changes in both envelopes and mineral components at the end of the prisms. These latest structural and compositional changes predate nacre deposition, so that the end of prism growth is not caused by occurrence of nacre, but by metabolic changes in the secretory epithelium. This sequence makes obvious the permanent biological control exerted by the outer cell layer of the mantle in both organic envelopes and mineralizing organic phases.

  9. Commentary on the state of knowledge of the origins of the Yucca Mountain calcite veins. Special report number 17, Contract number 94/96.0003

    International Nuclear Information System (INIS)

    This report is a compilation of papers and a letter providing technical information on the origin and geochemistry of calcite veins and calcretes in the vicinity of the Yucca Mountain repository. The information is presented to demonstrate that these deposits may be ''thermogenic'' in origin with some alteration by pedogenic processes. The papers present isotope ratios of uranium, strontium, and carbon to support the claims for a hydrothermal source. The letter provides a critical review of a previous paper presented at the 64th Advisory Committee on Nuclear Waste. The report makes an attempt to emphasize the need to review this possible origin because it has dramatic implications on the geologic history, paleo-ground water levels, and integrity of the repository

  10. Mechanism of O and C isotope fractionation in magnesian calcite skeletons of Octocorallia corals and an implication on their calcification response to ocean acidification

    Directory of Open Access Journals (Sweden)

    T. Yoshimura

    2015-01-01

    Full Text Available Coral calcification is strongly dependent on both the pH and the dissolved inorganic carbon (DIC of the calcifying fluid. Skeletal oxygen and carbon isotope fractionation of high-Mg calcite skeletons of \\textit{Octocorallia} corals directly record the biological manipulation on sources of DIC in response to environmental changes. The coral skeletons were enriched in light isotopes (16O and 12C relative to the expected values based on habitat environmental parameters and Mg/Ca of the skeletons. The differences between the expected and observed values ranged from −4.66 to −1.53 for δ18O and from −7.34 to −1.75 for δ13C. The large variability cannot be explained by the ambient environment, the contribution of metabolic carbon, or the precipitation rate of the skeleton. Therefore, the most plausible explanation for the observed O and C isotope differences in high-Mg calcite coral skeletons is the existence of two carbon sources, aqueous carbon dioxide in the calcifying fluid and dissolved inorganic carbon in seawater. Positive correlations of B/Ca with δ18O and δ13C suggest that skeletal isotopic compositions are enriched in light isotopes when conditions are less alkaline. Therefore, the relative contribution of isotopically heavy DIC from seawater through the skeleton and pericellular channels decreases under the reduced pH of the extracytoplasmic calcifying fluid. Our data suggest an even stronger biological effect under lower pH. Skeletal δ18O and δ13C values record the response of the sources of DIC in the coral calcifying fluids to ambient seawater pH. These changes give insight into how ocean acidification impacts the physiological mechanisms as well as the pH offset between calcifying fluid and seawater in response to ocean acidification.

  11. Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany

    Directory of Open Access Journals (Sweden)

    T. Kluge

    2013-02-01

    Full Text Available The geochemical signature of many speleothems used for reconstruction of past continental climates is affected by kinetic isotope fractionation. This limits quantitative paleoclimate reconstruction and, in cases where the kinetic fractionation varies with time, also affects relative paleoclimate interpretations. In carbonate archive research, clumped isotope thermometry is typically used as proxy for absolute temperatures. In the case of speleothems, however, clumped isotopes provide a sensitive indicator for disequilibrium effects. The extent of kinetic fractionation co-varies in Δ47 and δ18O so that it can be used to account for disequilibrium in δ18O and to extract the past drip-water composition. Here we apply this approach to stalagmites from Bunker Cave (Germany and calculate drip-water δ18Ow values for the Eemian, MIS3, and the Holocene, relying on independent temperature estimates and accounting for disequilibrium. Applying the co-variation method to modern calcite precipitates yields drip-water δ18Ow values in agreement with modern cave drip-water δ18Ow of −7.9 ± 0.3‰, despite large and variable disequilibrium effects in both calcite δ18Oc and Δ47. Reconstructed paleo-drip-water δ18Ow values are lower during colder periods (e.g., MIS3: −8.6 ± 0.4‰ and the early Holocene at 11 ka: −9.7 ± 0.2‰ and show higher values during warmer climatic periods (e.g., the Eemian: −7.6 ± 0.2‰ and the Holocene Climatic Optimum: −7.2 ± 0.3‰. This new approach offers a unique possibility for quantitative climate reconstruction including the assessment of past hydrological conditions while accounting for disequilibrium effects.

  12. Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany

    Directory of Open Access Journals (Sweden)

    A. Wackerbarth

    2012-07-01

    Full Text Available The geochemical signature of many speleothems used for reconstruction of past continental climates is affected by kinetic isotope fractionation. This limits quantitative paleoclimate reconstruction and, in cases where the kinetic fractionation varies with time, also affects relative paleoclimate interpretations. In carbonate archive research, clumped isotope thermometry is typically used as proxy for absolute temperatures. In the case of speleothems, however, clumped isotopes provide a sensitive indicator for disequilibrium effects. The extent of kinetic fractionation co-varies in Δ47 and δ18O so that it can be used to account for disequilibrium in δ18O and to extract the past drip-water composition. Here we apply this approach to stalagmites from Bunker Cave (Germany and calculate drip-water δ18Ow values for the Eemian, Marine Isotope Stage (MIS 3, and the Holocene, relying on independent temperature estimates and accounting for disequilibrium. Applying the co-variation method to modern calcite precipitates yields drip-water δ18Ow values in agreement with modern cave drip-water δ18Ow of −7.9 ± 0.3‰, despite large and variable disequilibrium effects in both calcite δ18Oc and Δ47. Reconstructed paleo-drip-water δ18Ow values are lower during colder periods (e.g., MIS 3: −8.5 ± 0.4‰ and the early Holocene at 11 kyr: −9.3 ± 0.1‰ and show higher values during warmer climatic periods (e.g., the Eemian: −7.5 ± 0.2‰ and the Holocene Climatic Optimum: −7.2 ± 0.3‰. This new approach offers a unique possibility for quantitative climate reconstruction including the assessment of past hydrological conditions while accounting for disequilibrium effects.

  13. Unusual carbon and oxygen isotropic ratios of ostracodal calcite from last interglacial (Sangamon episode) lacustrine sediment in Raymond Basin, Illinois, USA

    Science.gov (United States)

    Curry, B. Brandon; Anderson, T.F.; Lohmann, K.C.

    1997-01-01

    The stable isotopic records of ostracode valves deposited during the last interglaciation in Raymond Basin, Illinois, have ??13C and ??18O values as high as +16.5??? and +9.2??? respectively, the highest values yet reported from continental ostracodal calcite. Located in south-central Illinois, Raymond, Pittsburgh, Bald Knob, and Hopwood Farm basins collectively have yielded important long pollen and ostracode records that date from about 130 000 years ago to the present. Although fossils from the present-day interglaciation are not well preserved, these records constitute the only described, conformable, fossiliferous successions of this age from the interior of glaciated North America. The high ??13C values from Raymond Basin are attributed to the residual effects of methane loss either by ebullition or by emission through the stems of senescent emergent aquatic vegetation. A mass balance model suggests that an increase in ??13C of dissolved inorganic carbon on the order of +15??? is possible within a few hours given modest rates of methanogenesis of about 0.02 mol m-2 d-1. The ??13C records from other studies of ostracode valves have values approaching, but not exceeding about +14??? suggesting a limiting value to ???13C enrichment due to simultaneous inputs and outputs of dissolved inorganic carbon. Values of ??18O in ostracodal calcite are quite variable (-4 to +9???) in sediment from the late Sangamon subepisode. A model of isotopic enrichment in a desiccating water body implies that a reduction in reservoir volume of 20% could produce this range of isotopic values. High humidity and evaporation probably account for most of the ??18O variability.

  14. Mechanism of O and C isotope fractionation in magnesian calcite skeletons of Octocorallia corals and an implication on their calcification response to ocean acidification

    Science.gov (United States)

    Yoshimura, T.; Suzuki, A.; Iwasaki, N.

    2015-01-01

    Coral calcification is strongly dependent on both the pH and the dissolved inorganic carbon (DIC) of the calcifying fluid. Skeletal oxygen and carbon isotope fractionation of high-Mg calcite skeletons of Octocorallia corals directly record the biological manipulation on sources of DIC in response to environmental changes. The coral skeletons were enriched in light isotopes (16O and 12C) relative to the expected values based on habitat environmental parameters and Mg/Ca of the skeletons. The differences between the expected and observed values ranged from -4.66 to -1.53 for δ18O and from -7.34 to -1.75 for δ13C. The large variability cannot be explained by the ambient environment, the contribution of metabolic carbon, or the precipitation rate of the skeleton. Therefore, the most plausible explanation for the observed O and C isotope differences in high-Mg calcite coral skeletons is the existence of two carbon sources, aqueous carbon dioxide in the calcifying fluid and dissolved inorganic carbon in seawater. Positive correlations of B/Ca with δ18O and δ13C suggest that skeletal isotopic compositions are enriched in light isotopes when conditions are less alkaline. Therefore, the relative contribution of isotopically heavy DIC from seawater through the skeleton and pericellular channels decreases under the reduced pH of the extracytoplasmic calcifying fluid. Our data suggest an even stronger biological effect under lower pH. Skeletal δ18O and δ13C values record the response of the sources of DIC in the coral calcifying fluids to ambient seawater pH. These changes give insight into how ocean acidification impacts the physiological mechanisms as well as the pH offset between calcifying fluid and seawater in response to ocean acidification.

  15. The relation between glauconitization and calcite cementation with the relative sea level changes in the mixed silisiclastic- carbonate sediments of Aitamir Formation (Mid-Cretaceous, Kopet-Dagh basin

    Directory of Open Access Journals (Sweden)

    M., Sharafi,

    2012-01-01

    Full Text Available Two diagenetic processes of glauconitization and calcite cementation and relation those to sea level changes in the siliciclastic-carbonate sediments of the Aitamir Formation (Albian-Cenomanian in Kopet-Dagh basin have studied. The lower sandstone unit consists of mainly sandstone intercalated with shale and limestone and the upper shale units are two major sediments of this formation. The sandstone of the lower unit based on composition and their relations with sea level change subdivided into two transgressive and regressive facies and in this relation, show different pathways of the diagenesis. In the transgressive facies display by high content of the shell remains, with development in diagenesis shows extensive cementation and a little compaction during burial stage. In the regressive sandstone, characterized by little skeletal elements, display little calcite cements and high burial compaction. The glauconitic grains and calcite cementation in the Aitamir Formation concentrated in the transgressive facies and especially in the maximum flooding surface and transgresive surface. Whereas, in the regressive facies the glauconitic grains and calcite cementation is principally low. Moreover, the transgressive system tract and maximum flooding surface is characterized by mature and high mature glauconitic grains.

  16. Geochemistry of sapphirine-apatite-calcite-bearing gabbroic dykes from the Finero Phlogopite Peridotite (Ivrea-Verbano Zone): evidence for multistage interaction with the ambient peridotite

    Science.gov (United States)

    Tommaso, Giovanardi; Alberto, Zanetti; Maurizio, Mazzucchelli; Tomoaki, Morishita; Antonio, Langone

    2016-04-01

    The Finero Phlogopite-Peridotite (FPP) is a mantle unit outcropping in the northernmost tip of the Ivrea-Verbano Zone (IVZ, Southern Alps). It shows a virtually complete recrystallization due to pervasive to channelled melt migration. The pervasive metasomatism formed a main lithologic association constituted by phlogopite harzburgites associated to phlogopite pyroxenites (mainly olivine-websterites, websterites and orthopyroxenites). These lithologies are also rich in amphibole and do not show significant chemical gradients among them (Zanetti et al., 1999). The channelled migration stages formed dunite bodies, which sometimes contain stratiform chromitites and, more rarely, pyroxenite layers similar to those associated to phlogopite harzburgite. The FPP also shows a discrete number of other, subordinate rock-types, which are characterised by the presence of apatite usually associated to carbonates (i.e. calcite or dolomite) and exhibit marked modal and chemical gradients with respect to the host phlogopite harzburgite. Examples of these lithologies are apatite-dolomite-bearing wehrlites and harzburgites (e.g. Zanetti et al. 1999; Morishita et al., 2008), apatite-calcite zircon-syenites and hornblendites. Ar-Ar amphibole analysis and U-Pb zircon and apatite data return Triassic ages for these rocks, which have been considered to document the time of melt/fluid injection. Notwithstanding the apparent mineralogical and chemical differences with the main lithologic sequences, apatite-carbonates-bearing rocks have been frequently interpreted as cogenetic to phlogopite harzburgites. To debate the petrogenesis of these rocks, a detailed field, petrological and geochemical investigation has been carried out on a swarm of apatite-calcite-bearing gabbroic veins that randomly cut the main lithologic association. Preliminary investigation evidenced as these veins show complex metasomatic haloes and a symmetric internal layering, characterised by crystallisation of magmatic

  17. Stable isotopic composition of soil calcite (O, C) and gypsum (S) overlying Cu deposits in the Atacama Desert, Chile: Implications for mineral exploration, salt sources, and paleoenvironmental reconstruction

    International Nuclear Information System (INIS)

    Highlights: ► We collected soils overlying two porphyry copper deposits and a pampa, Atacama Desert, Chile. ► δ18O for calcite over fracture zones at the Spence deposit suggests involvement of earthquake-induced groundwater. ► S isotopes in gypsum at Spence also indicates involvement of groundwater, consistent with elevated Cu, Se, I. ► At Gaby Sur and Tamarugal, S isotopes cannot distinguish sulfur of porphyry from redeposited sulfate from interior salars. ► The three sites studied have had different histories of salt accumulation and display variable influence of groundwater. - Abstract: Soils overlying two porphyry Cu deposits (Spence, Gaby Sur) and the Pampa del Tamarugal, Atacama Desert, Northern Chile were collected in order to investigate the extent to which saline groundwaters influence “soil” chemistry in regions with thick Miocene and younger sediment cover. Soil carbonate (calcite) was analyzed for C and O isotopes and pedogenic gypsum for S isotopes. Soil calcite is present in all soils at the Spence deposit, but increases volumetrically above two fracture zones that cut the Miocene gravels, including gravels that overlie the deposit. The C isotope composition of carbonate from the soils overlying fracture zones is indistinguishable from pedogenic carbonate elsewhere at the Spence deposit; all δ13CVPDB values fall within a narrow range (1.40–4.23‰), consistent with the carbonate having formed in equilibrium with atmospheric CO2. However, δ18OVPDB for carbonate over both fracture zones is statistically different from carbonate elsewhere (average δ18OVPDB = 0.82‰ vs. −2.23‰, respectively), suggesting involvement of groundwater in their formation. The composition of soils at the Tamarugal anomaly has been most strongly affected by earthquake-related surface flooding and evaporation of groundwater; δ13CVPDB values (−4.28‰ to −2.04‰) are interpreted to be a mixture of dissolved inorganic C (DIC) from groundwater and

  18. The elemental composition of purple sea urchin (Strongylocentrotus purpuratus calcite and potential effects of pCO2 during early life stages

    Directory of Open Access Journals (Sweden)

    M. LaVigne

    2013-06-01

    Full Text Available Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (e.g. magnesium into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2 on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus. We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low- to high-Mg calcites. Mg / Ca and Sr / Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions spanning a range of carbonate chemistry conditions (Oregon, Northern California, Central California, and Southern California. Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg / Ca and Sr / Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg / Ca or Sr / Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 μatm; pHT = 8.02 ± 0.03 1 SD; Ωcalcite = 3.3 ± 0.2 1 SD. However, when reared under elevated pCO2 (900 μatm; pHT = 7.73 ± 0.03; Ωcalcite = 1.8 ± 0.1, skeletal Sr / Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California did not exhibit differences in Mg or Sr

  19. The elemental composition of purple sea urchin (Strongylocentrotus purpuratus) calcite and potential effects of pCO2 during early life stages

    Science.gov (United States)

    LaVigne, M.; Hill, T. M.; Sanford, E.; Gaylord, B.; Russell, A. D.; Lenz, E. A.; Hosfelt, J. D.; Young, M. K.

    2013-06-01

    Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (e.g. magnesium) into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2) on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus). We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low- to high-Mg calcites. Mg / Ca and Sr / Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions spanning a range of carbonate chemistry conditions (Oregon, Northern California, Central California, and Southern California). Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg / Ca and Sr / Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg / Ca or Sr / Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 μatm; pHT = 8.02 ± 0.03 1 SD; Ωcalcite = 3.3 ± 0.2 1 SD). However, when reared under elevated pCO2 (900 μatm; pHT = 7.73 ± 0.03; Ωcalcite = 1.8 ± 0.1), skeletal Sr / Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California) did not exhibit differences in Mg or Sr

  20. Differences in the rheological properties of calcitic and dolomitic lime slurries: influence of particle characteristics and practical implications in lime-based mortar manufacturing

    Directory of Open Access Journals (Sweden)

    Arizzi, A.

    2012-06-01

    Full Text Available The study of the rheological properties of lime suspensions is a useful means to evaluate the workability of lime mortars. In this work, we studied the flow behaviour of two industrial hydrated limes, one of calcitic and the other of dolomitic composition, by means of two types of rheometer with different geometry and setup mode. The obtained results were interpreted taking into account the differences in microstructure and surface properties of the suspended particles. Calcitic lime dry particles are formed by angular and polydisperse clusters and, once dispersed in water, they behave like thixotropic materials. On the other hand, the dolomitic lime is formed by nanoparticles and small round cluster and it shows a pronounced plastic behaviour in suspension. This fundamental difference between the two materials explains the traditional preference for dolomitic lime mortars for plastering and rendering applications.

    El estudio de las propiedades reológicas de suspensiones de cal es una herramienta muy útil para evaluar la trabajabilidad de morteros de cal. En este trabajo se ha estudiado el comportamiento en suspensión de dos cales hidratadas, de composición calcítica y dolomítica, mediante dos tipos de reómetros con geometría y modalidades distintas de medida. Los resultados obtenidos se han interpretado teniendo en cuenta las diferencias en la microestructura y las propiedades de superficie de las partículas en suspensión. Las partículas de cal calcítica están formadas por aglomerados angulares y polidispersos y, una vez dispersadas en agua, presentan un comportamiento tixotrópico. Por su parte, la cal dolomítica está formada por nanopartículas y pequeños agregados redondeados y muestra en suspensión un pronunciado comportamiento plástico. Esta importante diferencia entre las dos cales explica la preferencia tradicional de morteros de cal dolomítica para aplicaciones en revocos.

  1. Hydrologic and climatic implications of stable isotope and minor element analyses of authigenic calcite silts and gastropod shells from a mid-Pleistocene pluvial lake, Western Desert, Egypt

    Science.gov (United States)

    Kieniewicz, Johanna M.; Smith, Jennifer R.

    2007-11-01

    Authigenic calcite silts at Wadi Midauwara in Kharga Oasis, Egypt, indicate the prolonged presence of surface water during the Marine Isotope Stage 5e pluvial phase recognized across North Africa. Exposed over an area of ˜ 4.25 km 2, these silts record the ponding of water derived from springs along the Libyan Plateau escarpment and from surface drainage. The δ 18O values of these lacustrine carbonates (- 11.3‰ to - 8.0‰ PDB), are too high to reflect equilibrium precipitation with Nubian aquifer water or water of an exclusively Atlantic origin. Mg/Ca and Sr/Ca of the silts have a modest negative covariance with silt δ 18O values, suggesting that the water may have experienced the shortest residence time in local aquifers when the water δ 18O values were highest. Furthermore, intra-shell δ 18O, Sr/Ca, and Ba/Ca analyses of the freshwater gastropod Melanoides tuberculata are consistent with a perennially fresh water source, suggesting that strong evaporative effects expected in a monsoonal climate did not occur, or that dry season spring flow was of sufficient magnitude to mute the effects of evaporation. The input of a second, isotopically heavier water source to aquifers, possibly Indian Ocean monsoonal rain, could explain the observed trends in δ 18O and minor element ratios.

  2. Inferring surface water equilibrium calcite δ18O during the last deglacial period from benthic foraminiferal records: Implications for ocean circulation

    Science.gov (United States)

    Amrhein, Daniel E.; Gebbie, Geoffrey; Marchal, Olivier; Wunsch, Carl

    2015-11-01

    The ocean circulation modifies mixed layer (ML) tracer signals as they are communicated to the deep ocean by advection and mixing. We develop and apply a procedure for using tracer signals observed "upstream" (by planktonic foraminifera) and "downstream" (by benthic foraminifera) to constrain how tracer signals are modified by the intervening circulation and, by extension, to constrain properties of that circulation. A history of ML equilibrium calcite δ18O (δ18Oc) spanning the last deglaciation is inferred from a least-squares fit of eight benthic foraminiferal δ18Oc records to Green's function estimated for the modern ocean circulation. Disagreements between this history and the ML history implied by planktonic records would indicate deviations from the modern circulation. No deviations are diagnosed because the two estimates of ML δ18Oc agree within their uncertainties, but we suggest data collection and modeling procedures useful for inferring circulation changes in future studies. Uncertainties of benthic-derived ML δ18Oc are lowest in the high-latitude regions chiefly responsible for ventilating the deep ocean; additional high-resolution planktonic records constraining these regions are of particular utility. Benthic records from the Southern Ocean, where data are sparse, appear to have the most power to reduce uncertainties in benthic-derived ML δ18Oc. Understanding the spatiotemporal covariance of deglacial ML δ18Oc will also improve abilities of δ18Oc records to constrain deglacial circulation.

  3. Fingerprinting stress: stylolite and calcite twinning paleopiezometry reveal the complexity of stress distribution during the growth of the Monte Nero anticline (Apennines, Italy).

    Science.gov (United States)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Lecouty, Alexandre; Billi, Andrea; Aharonov, Einat; Parlangeau, Camille

    2016-04-01

    This contribution presents for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a structure part of a complex fold and thrust belts. We report a high-resolution deformation and stress history that was experienced by Meso-Cenozoic limestone strata in the overturned Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). New methodological development enables an easier use for the inversion technique of sedimentary and tectonic stylolite roughness. A stylolite-fracture network developed during layer-parallel shortening (LPS), as well as syn- and post-folding. Stress fingerprinting shows how stress builds up in the sedimentary strata during LPS with variations of differential stress before folding around a value of 50 MPa. The stress regime oscillated between strike-slip and compressional during LPS and became transiently extensional in limbs of developing fold due to a coeval increase of vertical stress related to local burial and decrease of maximum horizontal stress related to hinge development, before ultimately becoming strike-slip again during late stage fold tightening. Our case study shows that stress fingerprinting is possible and that this novel method can be used to unravel complex temporal relationships that relate to local variations within evolving regional orogenic stresses. Beyond regional implication, this study validates our approach as a new exciting toolbox to high-resolution stress fingerprinting in basins and orogens.

  4. First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO 3 and calcite CaCO 3

    Science.gov (United States)

    Brik, M. G.

    2011-02-01

    Detailed ab initio calculations of the structural, electronic, optical and elastic properties of two crystals - magnesite (MgCO 3) and calcite (CaCO 3) - are reported in the present paper. Both compounds are important natural minerals, playing an important role in the carbon dioxide cycling. The optimized crystal structures, band gaps, density of states diagrams, elastic constants, optical absorption spectra and refractive indexes dependence on the wavelength all have been calculated and compared, when available, with literature data. Both crystals are indirect band compounds, with calculated band gaps of 5.08 eV for MgCO 3 and 5.023 eV for CaCO 3. Both values are underestimated by approximately 1.0 eV with respect to the experimental data. Although both crystals have the same structure, substitution of Mg by Ca ions leads to certain differences, which manifest themselves in noticeable change in the electronic bands profiles and widths, shape of the calculated absorption spectra, and values of the elastic constants. Response of both crystals to the applied hydrostatic pressure was analyzed in the pressure range of phase stability, variations of the lattice parameters and characteristic interionic distances were considered. The obtained dependencies of lattice constants and calculated band gap on pressure can be used for prediction of properties of these two hosts at elevated pressures that occur in the Earth's mantle.

  5. Rhombohedral calcite precipitation from CO2-H2O-Ca(OH)2 slurry under supercritical and gas CO2 media

    CERN Document Server

    Montes-Hernandez, German; Geoffroy, Nicolas; Charlet, Laurent; Pironon, Jacques

    2008-01-01

    The formation of solid calcium carbonate (CaCO3) from aqueous solutions or slurries containing calcium and carbon dioxide (CO2) is a complex process of considerable importance in the ecological, geochemical and biological areas. Moreover, the demand for powdered CaCO3 has increased considerably recently in various fields of industry. The aim of this study was therefore to synthesize fine particles of calcite with controlled morphology by hydrothermal carbonation of calcium hydroxide at high CO2 pressure (initial PCO2=55 bar) and at moderate and high temperature (30 and 90 degrees C). The morphology of precipitated particles was identified by transmission electron microscopy (TEM/EDS) and scanning electron microscopy (SEM/EDS). In addition, an X-ray diffraction analysis was performed to investigate the carbonation efficiency and purity of the solid product. Carbonation of dispersed calcium hydroxide in the presence of supercritical (PT=90 bar, T=90 degrees C) or gaseous (PT=55 bar, T=30 degrees C) CO2 led to t...

  6. How well do we know VPDB? Variability of delta13C and delta18O in CO2 generated from NBS19-calcite.

    Science.gov (United States)

    Brand, Willi A; Huang, Lin; Mukai, Hitoshi; Chivulescu, Alina; Richter, Jürgen M; Rothe, Michael

    2009-03-01

    In order to generate a local daughter scale from the material defining the international delta13C and delta18O stable isotope ratio scales (NBS19-calcite),1,2 the carbon and oxygen must be liberated to the gas phase, usually as CO2, using acid digestion of the calcite with H3PO4. It is during this conversion step that systematic errors can occur, giving rise to commonly observed discrepancies in isotopic measurements between different stable isotope laboratories. Scale consistency is of particular importance for air-CO2 isotope records where very small differences in isotopic composition have to be reliably compared between different laboratories and quantified over long time periods.3 The information is vital for estimating carbon budgets on regional and global scales and for understanding their variability under the conditions of climate change. Starting from this requirement a number of CO2 preparations from NBS19 were made at Environment Canada (EC) and analyzed in our laboratories together with Narcis II, a set of well-characterized CO2 samples in sealed tubes available from the National Institute for Environmental Studies (NIES).4,5 Narcis II is very homogeneous in delta13C and delta18O with the isotopic composition close to NBS19-CO2. Among our laboratories the results for delta13C agreed to within +/-0.004 per thousand. The same level of agreement in delta13C was obtained when CO2 was generated from NBS19-calcite using different experimental procedures and conditions in the other two laboratories. For delta18O, the corresponding data were +/-0.011 per thousand when using NBS19-CO2 produced at EC, but discrepancies were enhanced by almost one order of magnitude when NBS19-CO2 was prepared by the other laboratories using slightly different reaction conditions (range=0.13 per thousand).In a second series of experiments, larger amounts of CO2 prepared from NBS19 at the Max-Planck-Institut für Biogeochemie (MPI-BGC) were analyzed together with Narcis II and

  7. An ˜1500 year history of El Niño Southern Oscillation rainfall anomalies and land use for the Isthmus of Panama from speleothem calcite

    Science.gov (United States)

    Lachniet, M. S.; Burns, S. J.; Piperno, D. R.; Asmerom, Y.; Polyak, V. P.

    2003-12-01

    The history of the El Niño Southern Oscillation (ENSO) over the past two millennia remains poorly constrained. To document further the tropical paleoclimatic response to ENSO, we present a precisely-dated (180 B.C. to 1310 A.D.), high-resolution ( ˜3 yr / sample), cave calcite isotopic time series from the Isthmus of Panama, a region that experiences ENSO-forced rainfall anomalies. We show evidence for rapid and dramatic rainfall variation in southern Central America, as inferred from stalagmite δ 18O isotope stratigraphy. Isthmian convective rainfall from 550 A.D. to 1300 A.D. was both less intense and more variable than the period 180 B.C. to 550 A.D. Speleothem growth spanned the interval of the Classic Maya Collapse (750 - 950 A.D.), and provides additional evidence for dry anomalies at this time. Carbon isotopes document changing vegetation from native rainforest to grasslands and/or maize, a period of soil erosion associated with pre-Colombian agriculture, and final forest recovery. We suggest that ENSO-forced sea surface temperature anomalies in the eastern equatorial Pacific Ocean resulted in isthmian rainfall anomalies over much of the past two millennia. Our data suggest that El Niño events are associated with decreased isthmian rainfall, and that increased ENSO activity results in generally drier and more variable conditions.

  8. Physico-chemical investigation of cement carbonation in aqueous solution in equilibrium with calcite and with a controlled CO2 partial pressure at 25 and 50 deg. C

    International Nuclear Information System (INIS)

    In the framework of radioactive waste geological disposal, structural concretes have to be adapted to underground chemical conditions. For concrete in water saturated medium, it is believed that carbonation will have a major impact on the interaction between concrete and the geological medium. So, to understand the complex degradation of the cement paste in that context, it is interesting to study a simplified system such as degradation in carbonated water solution. This solution must be at equilibrium with a CO2 partial pressure 30 times higher than the atmospheric pCO2, to reproduce underground natural conditions of Callovo-Oxfordian clayey rock of Bure (France). In this study, the behaviour of a new low pH material (CEM I + silica fume + fly ashes) is compared with a CEM I cement paste, both of them being submitted to carbonation in aqueous solution in equilibrium with calcite and with a pCO2 equal to 1.32 kPa (1.3 10-2 atm). Two different temperatures, 25 and 50 C, are considered. To realize these experiments, two different original types of devices were developed

  9. Effect of the interaction between bovine serum albumin Langmuir monolayer and calcite on the crystallization of CaCO3 nanoparticles

    International Nuclear Information System (INIS)

    Calcium carbonate nanoparticles were generated beneath the Langmuir monolayer of bovine serum albumin (BSA) via templated mineralization. The BSA monolayer and calcium carbonate nanoparticles were characterized based on the measurement of surface pressure-area (π-A) isotherms and area-time curve, and analyses of transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and X-ray diffraction (XRD) as well. The interaction mechanisms between BSA and calcium carbonate and the role of amorphous calcium carbonate (abridged as ACC) and lattice match in controlling the morphologies and microstructures of the target Calcium carbonate (CaCO3) crystals were discussed, and a model was suggested to illustrate the formation of CaCO3 crystals in the presence of the BSA monolayer. Results indicated that the calcium carbonate nanoparticles were formed through a multi-step process in the presence of the BSA monolayer. Both the amorphous calcium carbonate and lattice match played important roles in terms of the controlled biomineralization and organic matrix-mediated synthesis of CaCO3 nanoparticles. The transformation of amorphous calcium carbonate phase to calcite crystal phase could provide direct evidences to the multistep crystallization process in biomineralization. And the present approach could be used to guide the synthesis of advanced inorganic nanomaterials via simulated biomineralization under mild conditions

  10. Neutralization of calcite in mineral aerosols by acidic sullur species collected in China and Japan studied by ca K-edge X-ray absorption near-edge structure.

    Science.gov (United States)

    Takahashi, Yoshio; Miyoshi, Takuro; Higashi, Masayuki; Kamioka, Hikari; Kanai, Yutaka

    2009-09-01

    Calcium species in mineral aerosols collected simultaneously in Aksu (near the Taklimakan Desert), Qingdao (eastern China), and Tsukuba (Japan) during dust and nondust periods were determined using Ca K-edge X-ray absorption near-edge structure (XANES). From the fitting of XANES spectra, it was found that (i) calcite and gypsum were the main Ca species in the aerosol samples, and (ii) the gypsum fraction versus total Ca minerals [Gyp]/[Ca2+]t increased progressively in the order Aksu aerosols for all the samples except for that taken in Aksu during the dust period. The decrease of the [Gyp]/[Ca2+]t ratio with an increase in particle size showed that the neutralization effect proceeds from the particle surface. For the Aksu sample in the dust period, however, (i) the [Gyp]/[Ca2+]t ratios obtained by XANES measured in the fluorescence (FL; regarded as bulk analysis) and CEY modes were similar and (ii) size dependence was not found, showing that neutralization is not important for the sample because of the large supply of mineral aerosol with little neutralization effect in Aksu. It was also found that the pH of the aerosol and the ratio of (NH4)2SO4 to gypsum were positively and negatively correlated with the Ca (or calcite) content, respectively. The speciation of Ca by XANES revealed the neutralization processes of acidic sulfur species by calcite during the long-range transport of mineral aerosols. PMID:19764213

  11. Exploring the influence of loading geometry on the plastic flow properties of geological materials: Results from combined torsion + axial compression tests on calcite rocks

    Science.gov (United States)

    Covey-Crump, S. J.; Xiao, W. F.; Mecklenburgh, J.; Rutter, E. H.; May, S. E.

    2016-07-01

    For technical reasons, virtually all plastic deformation experiments on geological materials have been performed in either pure shear or simple shear. These special case loading geometries are rather restrictive for those seeking insight into how microstructure evolves under the more general loading geometries that occur during natural deformation. Moreover, they are insufficient to establish how plastic flow properties might vary with the 3rd invariant of the deviatoric stress tensor (J3) which describes the stress configuration, and so applications that use those flow properties (e.g. glaciological and geodynamical modelling) may be correspondingly compromised. We describe an inexpensive and relatively straightforward modification to the widely used Paterson rock deformation apparatus that allows torsion experiments to be performed under simultaneously applied axial loads. We illustrate the performance of this modification with the results of combined stress experiments performed on Carrara marble and Solnhofen limestone at 500°-600 °C and confining pressures of 300 MPa. The flow stresses are best described by the Drucker yield function which includes J3-dependence. However, that J3-dependence is small. Hence for these initially approximately isotropic calcite rocks, flow stresses are adequately described by the J3-independent von Mises yield criterion that is widely used in deformation modelling. Loading geometry does, however, have a profound influence on the type and rate of development of crystallographic preferred orientation, and hence of mechanical anisotropy. The apparatus modification extends the range of loading geometries that can be used to investigate microstructural evolution, as well as providing greater scope for determining the shape of the yield surface in plastically anisotropic materials.

  12. First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO{sub 3} and calcite CaCO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Brik, M.G., E-mail: brik@fi.tartu.e [Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Tartu (Estonia)

    2011-02-15

    Detailed ab initio calculations of the structural, electronic, optical and elastic properties of two crystals - magnesite (MgCO{sub 3}) and calcite (CaCO{sub 3}) - are reported in the present paper. Both compounds are important natural minerals, playing an important role in the carbon dioxide cycling. The optimized crystal structures, band gaps, density of states diagrams, elastic constants, optical absorption spectra and refractive indexes dependence on the wavelength all have been calculated and compared, when available, with literature data. Both crystals are indirect band compounds, with calculated band gaps of 5.08 eV for MgCO{sub 3} and 5.023 eV for CaCO{sub 3}. Both values are underestimated by approximately 1.0 eV with respect to the experimental data. Although both crystals have the same structure, substitution of Mg by Ca ions leads to certain differences, which manifest themselves in noticeable change in the electronic bands profiles and widths, shape of the calculated absorption spectra, and values of the elastic constants. Response of both crystals to the applied hydrostatic pressure was analyzed in the pressure range of phase stability, variations of the lattice parameters and characteristic interionic distances were considered. The obtained dependencies of lattice constants and calculated band gap on pressure can be used for prediction of properties of these two hosts at elevated pressures that occur in the Earth's mantle. -- Research highlights: {yields} Ab initio calculations of physical properties of MgCO{sub 3} and CaCO{sub 3} were performed. {yields} Changes of the calculated properties with replacement of Mg by Ca were followed. {yields} Pressure dependence of the structural and electronic properties was analyzed. {yields} Good agreement with experimental data was demonstrated.

  13. Testing the Specificity of Primers to Environmental Ammonia Monooxygenase (amoA) Genes in Groundwater Treated with Urea to Promote Calcite Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, S.; Reed, D.W.; Fujita, Y.

    2006-01-01

    Bacterial ammonia monooxygenase (amoA) genes in DNA isolated from microorganisms in groundwater were characterized by amplification of amoA DNA using polymerase chain reaction (PCR), Restriction Fragment Length Polymorphism (RFLP) analysis, and sequencing. The amoA gene is characteristic of ammonia oxidizing bacteria (AOB). The DNA extracts were acquired from an experiment where dilute molasses and urea were sequentially introduced into a well in the Eastern Snake River Plain Aquifer (ESRPA) in Idaho to examine whether such amendments could stimulate enhanced ureolytic activity. The hydrolysis of urea into ammonium and carbonate serves as the basis for a potential remediation technique for trace metals and radionuclide contaminants that can co-precipitate in calcite. The ammonium ion resulting from ureolysis can promote the growth of AOB. The goal of this work was to investigate the effectiveness of primers designed for quantitative PCR of environmental amoA genes and to evaluate the effect of the molasses and urea amendments upon the population diversity of groundwater AOB. PCR primers designed to target a portion of the amoA gene were used to amplify amoA gene sequences in the groundwater DNA extracts. Following PCR, amplified gene products were cloned and the clones were characterized by RFLP, a DNA restriction technique that can distinguish different DNA sequences, to gauge the initial diversity. Clones exhibiting unique RFLP patterns were subjected to DNA sequencing. Initial sequencing results suggest that the primers were successful at specific detection of amoA sequences and the RFLP analyses indicated that the diversity of detected amoA sequences in the ESRPA decreased with the additions of molasses and urea.

  14. Quantitative analyse of trace elements with HR-ICP-MS Element2 : an example of application in calcite shell of the Great Scallop Pecten Maximus.

    Science.gov (United States)

    Richard, M.; Chauvaud, L.; Benoit, M.; Thebault, J.; L'Helguen, S.; Hemond, C.; Maguer, J.; Sinquin, G.

    2008-12-01

    Carbonate minerals are abundant on the Earth's surface, and they are produced by a number of processes, including precipitation from hydrothermal fluids or synthesis by organisms like coral, foraminifera, molluscs, or bacteria. Consequently, they are found in a large variety of environments. Their isotopic compositions (Sr, C, or O ) and trace element concentrations are widely used to understand or reconstruct biological, geological or biogeochimical processes. A large scientific community define the elemental composition of bivalve shells a promising tool as a recorder of environmental parameters like sea surface temperature, salinity and primary productivity. But we have compile evidences that trace elements variation within shells can be species dependant or change in a complex network of environmental interactions. In this context, a better understanding of the incorporation of elements from seawater into biogenic carbonate is necessary to generalize the use of these proxies. Daily shell growth in the calcitic bivalve Pecten maximus has been extensively measured and these daily growth marks can be used to date each subsequent sample of calcium carbonate. In this study, micro- sampling of carbonate powder along the shell was carried out with a high-resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS, Finnigan Element2). This method led to a quantitative detection of trace element in biocaronates and to the accurate reconstruction of ontogenetic profiles of elemental ratios with a 3-day temporal resolution. Repeated analyses of different growth layers sections on the same valve showed that the trace elements are homogeneously distributed along the shell. Mo concentration was reproducible for several scallop individuals from a same location over different years and from different coastal temperate environments. Each profile was characterised by a background level punctuated by sharp episodic peaks occurring in spring (may). Some hypotheses will be

  15. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size

    Science.gov (United States)

    de Bodt, C.; van Oostende, N.; Harlay, J.; Sabbe, K.; Chou, L.

    2010-05-01

    The impact of ocean acidification and increased water temperature on marine ecosystems, in particular those involving calcifying organisms, has been gradually recognised. We examined the individual and combined effects of increased pCO2 (180 ppmV CO2, 380 ppmV CO2 and 750 ppmV CO2 corresponding to past, present and future CO2 conditions, respectively) and temperature (13 °C and 18 °C) during the exponential growth phase of the coccolithophore E. huxleyi using batch culture experiments. We showed that cellular production rate of Particulate Organic Carbon (POC) increased from the present to the future CO2 treatments at 13 °C. A significant effect of pCO2 and of temperature on calcification was found, manifesting itself in a lower cellular production rate of Particulate Inorganic Carbon (PIC) as well as a lower PIC:POC ratio at future CO2 levels and at 18 °C. Coccosphere-sized particles showed a size reduction with both increasing temperature and CO2 concentration. The influence of the different treatments on coccolith morphology was studied by categorizing SEM coccolith micrographs. The number of well-formed coccoliths decreased with increasing pCO2 while temperature did not have a significant impact on coccolith morphology. No interacting effects of pCO2 and temperature were observed on calcite production, coccolith morphology or on coccosphere size. Finally, our results suggest that ocean acidification might have a larger adverse impact on coccolithophorid calcification than surface water warming.

  16. Trace Metals in Groundwater and the Vadose Zone Calcite: In Situ Containment and Stabilization of Strontium-90 and Other Divalent Metals and Radionuclides at Arid West DOE

    International Nuclear Information System (INIS)

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption)

  17. Final report for DOE Grant No. DE-FG02-07ER64404 - Field Investigations of Microbially Facilitated Calcite Precipitation for Immobilization of Strontium-90 and Other Trace Metals in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W; Fujita, Yoshiko; Ginn, Timothy R; Hubbard, Susan S

    2012-10-12

    Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE's greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent ions, such as the short-lived radionuclide 90Sr, is co-precipitation in calcite. We have previously found that that nutrient addition can stimulate microbial ureolytic activity that this activity accelerates calcite precipitation and co-precipitation of Sr, and that higher calcite precipitation rates can result in increased Sr partitioning. We have conducted integrated field, laboratory, and computational research to evaluate the relationships between ureolysis and calcite precipitation rates and trace metal partitioning under environmentally relevant conditions, and investigated the coupling between flow/flux manipulations and precipitate distribution. A field experimental campaign conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO was based on a continuous recirculation design; water extracted from a down-gradient well was amended with urea and molasses (a carbon and electron donor) and re-injected into an up-gradient well. The goal of the recirculation design and simultaneous injection of urea and molasses was to uniformly accelerate the hydrolysis of urea and calcite precipitation over the entire inter-wellbore zone. The urea-molasses recirculation phase lasted, with brief interruptions for geophysical surveys, for 12 days followed by long-term monitoring which continued for 13 months. Following the recirculation phase we found persistent increases in urease activity (as determined from 14C labeled laboratory urea hydrolysis rates) in the upper portion of the inter-wellbore zone. We also observed an initial increase (approximately 2 weeks) in urea concentration associated with injection activities followed by decreasing urea concentration and associated increases in ammonium and dissolved inorganic carbon

  18. Armouring of well cement in H2S–CO2 saturated brine by calcite coating – Experiments and numerical modelling

    International Nuclear Information System (INIS)

    The active acid gas (H2S–CO2 mixture) injection operations in North America provide practical experience for the operators in charge of industrial scale CO2 geological storage sites. Potential leakage via wells and their environmental impacts make well construction durability an issue for efficiency/safety of gas geological storage. In such operations, the well cement is in contact with reservoir brines and the injected gas, meaning that gas–water–solid chemical reactions may change the physical properties of the cement and its ability to confine the gas downhole. The cement-forming Calcium silicate hydrates carbonation (by CO2) and ferrite sulfidation (by H2S) reactions are expected. The main objective of this study is to determine their consequences on cement mineralogy and transfer ability. Fifteen and 60 days duration batch experiments were performed in which well cement bars were immersed in brine itself caped by a H2S–CO2 phase at 500 bar–120 °C. Scanning electron microscopy including observations/analyses and elemental mapping, mineralogical mapping by micro-Raman spectroscopy, X-ray diffraction and water porosimetry were used to characterize the aged cement. Speciation by micro-Raman spectroscopy of brine trapped within synthetic fluid inclusions were also performed. The expected calcium silicate hydrates carbonation and ferrite sulfidation reactions were evidenced. Furthermore, armouring of the cement through the fast creation of a non-porous calcite coating, global porosity decrease of the cement (clogging) and mineral assemblage conservation were demonstrated. The low W/R ratio of the experimental system (allowing the cement to buffer the interstitial and external solution pH at basic values) and mixed species diffusion and chemical reactions are proposed to explain these features. This interpretation is confirmed by reactive transport modelling performed with the HYTEC code. The observed cement armouring, clogging and mineral assemblage

  19. Final Technical Report for DOE Award DE-FG02-07ER64403 [Modeling of Microbially Induced Calcite Precipitation for the Immobilization of Strontium-90 Using a Variable Velocity Streamtube Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Ginn, Timothy R. [University of California, Davis; Weathers, Tess [University of California, Davis

    2013-08-26

    Biogeochemical modeling using PHREEQC2 and a streamtube ensemble approach is utilized to understand a well-to-well subsurface treatment system at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. Treatment involves in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. Reaction kinetics, equilibrium phases, and cation exchange are used within PHREEQC2 to track pH and levels of calcium, ammonium, urea, and calcite precipitation over time, within a series of one-dimensional advective-dispersive transport paths creating a streamtube ensemble representation of the well-to-well transport. An understanding of the impact of physical heterogeneities within this radial flowfield is critical for remediation design; we address this via the streamtube approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is spatially-variable in a common way, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance in the case of ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized radial non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized

  20. 华庆地区长6油层组方解石胶结物特征%Characteristics of calcite cements of Chang 6 oil reservoir set in Huaqing area

    Institute of Scientific and Technical Information of China (English)

    张莹莹; 黄思静

    2012-01-01

    The Triassic Chang 6 oil reservoir set in Huaqing area is the main hydrocarbon reservoir and producing formation of Mesozoic in Ordao Basin.The cementation of calcite cements is a major factor for the tight reservoir.The analyses on thin section,cathodoluminescence,elemental composition and carbon isotope show that most of the calcites cemented in granular and poecilitic texture,and a few cemented in micrite texture which are the matrix of syndepositional lake facies.There are several different genetic mechanisms for the granular and poecilitic calcite cements formed during post sedimentary stages,and the calcite cements deposited during the early diagenetic A stage are in connection with the hydration of aluminum silicate minerals,metamorphic rocks and magmatic rocks.The ferrocalcite cements filled not only in the primary pore,but also in secondary pores.The formation of ferrocalcite cements are closely related to the aluminum silicate minerals and the transformation of clay mineral and occurred during the early diagenetic B stage.The most cementation of the calcites and ferrocalcite are disadvantageous for the reservoir properties.%华庆地区长6油层组是鄂尔多斯盆地中生界主要的油气储层和产层,方解石胶结物是导致储层致密的重要因素之一。薄片、扫描电镜、阴极发光、元素组分及碳、氧同位素分析表明,方解石胶结物除常见的粒状胶结物和嵌晶式胶结物外,还存在较少泥微晶结构方解石。泥微晶结构方解石是同沉积的湖相内杂基;沉积期后形成的粒状和嵌晶式方解石胶结物具多种成因机制,其中在早成岩阶段A期沉淀的方解石胶结物与铝硅酸盐矿物和变质岩、岩浆岩岩屑的水化作用有关;铁方解石胶结物充填于原生孔隙的同时,还充填于骨架颗粒溶蚀形成的次生孔隙中,其形成与有机酸对长石等铝硅酸盐矿物的溶蚀作用和黏土矿物的转化作用有关,为早成岩阶段B期沉淀

  1. 自修复混凝土中微生物矿化方解石的形成机理%Mechanism of Microbially Induced Calcite Precipitation in Self-healing Concrete

    Institute of Scientific and Technical Information of China (English)

    钱春香; 罗勉; 潘庆峰; 李瑞阳

    2013-01-01

    分别从矿化产物、pH值、O2、底物4个方面对用于混凝土裂缝自修复的微生物矿化形成方解石机理进行了研究.结果表明:混凝土裂缝自修复细菌矿化产物为方解石型CaCO3,矿化过程需要O2参与;细菌生长过程中pH值从7.0逐渐升高到8.3,碱性环境在细菌矿化过程中起重要作用;CaCO3不是由底物在胞外酶作用下直接分解而得,而是需要经过细菌一系列代谢转换,代谢过程中产生CO2,底物既提供矿化所需的Ca2+源,也提供CO2=来源,其他有机营养物质也可提供CO32-.同时,对该菌株的矿化机理进行了分析,结果表明:细菌生长繁殖过程中创造碱性环境,产生CO2,细菌细胞表面带负电荷,能够吸附Ca2+并作为成核位点,在碱性环境下CO2与Ca2+反应形成CaCO3晶体.%The process of microbially induced calcite precipitation was investigated via the control of mineralization production, pH value, O2 and substrate, respectively. The experimental results show that the mineral precipitation induced by bacteria is calcite crystal, and the mineralization process needs O2. The pH value of bacteria liquid increased from 7.0 to 8.3 gradually when the bacteria grew, which plays an important role in the bacteria mineralization process. Calcite was formed due to the bacterial metabolic conversions rather than the direct decomposition of substrate under the action of extracellular enzymes. The metabolic process produced CO2, the substrate provided Ca2+ and CO32-, and other organic nutrients could also provide CO32-. The possible mechanism of bacterial induced mineral precipitation was analyzed. The results show that the growth of bacteria creates an alkaline environment and produces CO2 through various physiological activities. The cell wall of bacteria was negatively charged, affecting calcium carbonate precipitation by acting as sites of nucleation or calcium enrichment. The produced CO2 molecules reacted with Ca2+ to form calcite

  2. Scientific results from the deepened Lopra-1 borehole, Faroe Islands: A reconnaissance study of fluid inclusions in fracture-filling quartz and calcite from the Lopra-1/1A well, Faroe Islands

    Directory of Open Access Journals (Sweden)

    Konnerup-Madsen, Jens

    2006-07-01

    Full Text Available Fracture-filling calcite and quartz from the Lopra-1/1A well (at 2380 m and 3543 m depth contains both aqueous low-salinity fluid inclusions and hydrocarbon-dominated fluid inclusions. Microthermometry indicates that the aqueous fluids contain 0.2 to 1.4 equivalent weight% NaCl and occasionally contain traces of hydrocarbons. Homogenisation to liquid occurred between 90°C and 150°C. Modelling based on these fluid inclusion observations indicates that during burial the basaltic section was subjected to temperatures of 160°C and 170°C, occasional pressures of 600–700 bars and the simultaneous percolation of aqueous and hydrocarbon fluids. These fluid conditions may also be relevant to the formation of zeolite observed in the Lopra-1/1A well.

  3. Ages of sediment-hosted Himalayan Pb-Zn-Cu-Ag polymetallic deposits in the Lanping basin, China: Re-Os geochronology of molybdenite and Sm-Nd dating of calcite

    Science.gov (United States)

    Zhang, Jinrang; Wen, Hanjie; Qiu, Yuzhuo; Zhang, Yuxu; Li, Chao

    2013-09-01

    The Lanping basin is a significant Pb-Zn-Cu-Ag mineralization belt of the Sanjiang Tethyan metallogenic province in China. Over 100 thrust-controlled, sediment-hosted, Himalayan base metal deposits have been discovered in this basin, including the largest sandstone-hosted Pb-Zn deposit in the world (Jinding), and several Cu ± Ag ± Co deposits (Baiyangping, Baiyangchang and Jinman). These deposits, with total reserves of over 16.0 Mt Pb + Zn, 0.6 Mt Cu, and 7000 t Ag, are mainly hosted in Meso-Cenozoic mottled clastic rocks, and strictly controlled by two Cenozoic thrust systems developed in the western and eastern segments of the Lanping basin. To define the metallogenic history of the study area, we dated nine calcite samples associated with copper sulfides from the Jinman Cu deposit by the Sm-Nd method and five molybdenite samples from the Liancheng Cu-Mo deposit by the Re-Os method. The calcite Sm-Nd age for the Jinman deposit (58 ± 5 Ma) and the molybdenite Re-Os age for the Liancheng deposit (48 ± 2 Ma), together with previously published chronological data, demonstrate (1) the Cu-Ag mineralization in the western Lanping basin mainly occurred in three episodes (i.e., ∼56-54, 51-48, and 31-29 Ma), corresponding to the main- and late-collisional stages of the Indo-Asian orogeny; and (2) the Pb-Zn-Ag (±Cu) mineralization in the eastern Lanping basin lacked precise and direct dating, however, the apatite fission track ages of several representative deposits (21 ± 4 Ma to 32 ± 5 Ma) may offer some constraints on the mineralization age.

  4. 盐酸盐溶液中温度对方解石和白云石溶解度的影响%Influence of temperature on dissolving degrees of calcite and dolomite in hydrochloride solution

    Institute of Scientific and Technical Information of China (English)

    梁冰; 陈楠; 姜利国

    2011-01-01

    为了更好的防止岩溶灾害的发生,研究了不同温度条件下盐酸盐溶液对石灰岩和白云岩侵蚀规律.应用美国地质调查所开发的水化学模拟软件Phreeqc对在不同CO2分压下,不同浓度的NaCl和MgCl2溶液中的方解石和白云石的溶解度和温度的关系进行了水化学模拟并进行了实验验证.研究结果显示,在NaC1溶液中,方解石和白云石溶解度均大于在纯水中的溶解度;方解石在MgCl2溶液中的溶解度大于在同条件下NaCl溶液中的溶解度;无CO2分压的情况下,在同浓度的盐溶液中,方解石和白云石的溶解度随着温度的升高迅速升高;在P∞2=10-4.5MPa时,方解石和白云石溶解度随着温度的升高而降低,然而始终大于在无CO2分压时的溶解度.在岩溶塌陷区,在与大气联系非常小的地下水系统中,温度的升高能够增强对岩体的侵蚀,从而使塌陷的危险增大;在与大气联系非常紧密的地下水系统中,温度降低(大于0℃)能够增强对岩体的侵蚀,从而使塌陷的危险增大.%In order to prevent karst disaster, the paper researched the influence of dissolving degrees of limestone and dolomite caused by temperature in hydrochloride solution. A water chemistry simulation software - phreeqc developed by American Geological Investigation Institute was used, the relation model between temperature and dissolving degrees of calcite and dolomite was simulated under different CO2 pressure and different concentration NaCl and MgCl2 solution,which was tested by experiment. The results indicated that dissolving degrees of calcite and dolomite in NaCl solution is larger than that in pure water; The dissolving degrees of calcite in MgCl2 solution is larger than that in NaCl solution under same condition; without CO2 pressure, in the same concentration salt solution, the dissolving degrees of limestone and dolomite increased rapidly with temperature; While pco2 = 10-4.5 Mpa the reverse

  5. Reciclagem do resíduo da serragem de calcário laminado para produção de blocos cerâmicos Recycling of laminated calcite tile sawing waste for the production of ceramic bricks

    Directory of Open Access Journals (Sweden)

    Romualdo R. Menezes

    2010-12-01

    Full Text Available As indústrias da mineração e beneficiamento de calcário laminado representam um importante segmento econômico do Estado do Ceará, entretanto produzem uma grande quantidade de resíduos, que poluem e agridem o meio ambiente. Assim, esse trabalho tem por objetivo a caracterização do resíduo da serragem da Pedra Cariri e a avaliação de sua aplicabilidade como matéria-prima cerâmica alternativa para a produção de telhas e blocos cerâmicos. O resíduo foi caracterizado através da determinação de sua composição química e mineralógica, por difração de raios X, análise térmica diferencial, distribuição de tamanho de partículas e análise morfológica por microscopia eletrônica de varredura. Foram formuladas composições contendo o resíduo e confeccionados corpos-de-prova por prensagem. Os corpos-de-prova foram queimados e, em seguida, foram determinados a absorção de água e o módulo de ruptura à flexão. Pode-se concluir que o resíduo é constituído por calcita e dolomita, que apresenta elevada finura e que é possível a incorporação de até 10% de resíduo em formulações para a produção de telhas e blocos cerâmicos.The mining and processing industries of laminated calcite tile are an important economic sector in the State of Ceará. However, they generate a large amount of wastes, which are a source of contamination and environmental pollution. This study aimed to characterize the laminated calcite tile sawing waste and evaluate its suitability as an alternative ceramic raw material for the production of bricks and roof tiles. The waste was characterized by chemical composition determination, X-ray diffraction, differential thermal analyses, particle size distribution determination, and morphological analysis by electronic scanning microscopy. Several formulations were prepared and sample bodies were prepared by uniaxial pressing. The sample bodies were fired at different temperatures. Sintered samples

  6. Trace Metals in Groundwater and Vadose Zone Calcite: In Situ Containment and Stabilization of Stronthium-90 and Other Divalent Metals and Radionuclides at Arid Western DOE Sites: Final Report for Award Number DE-FG07-02ER63486 to the University of Idaho (RW Smith) Environmental Management Science Program Project Number 87016

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W.; Fujita, Yoshiko

    2007-11-07

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers’ exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadose zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the

  7. Trace Metals in Groundwater and Vadose Zone Calcite: In Situ Containment and Stabilization of Strontium-90 and Other Divalent Metals and Radionuclides at Arid Western DOE Sites: Final Report for Award Number DE-FG07-02ER63486 to the University of Idaho (RW Smith) Environmental Management Science Program Project Number 87016

    International Nuclear Information System (INIS)

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadose zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the

  8. Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia shell calcite precipitated at constant temperature

    Directory of Open Access Journals (Sweden)

    H. Kennedy

    2009-01-01

    Full Text Available Small-scale heterogeneity of biogenic carbonate elemental composition can be a significant source of error in the accurate use of element/Ca ratios as geochemical proxies. In this study ion microprobe (SIMS profiles showed significant small-scale variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in new shell calcite of the marine bivalves P. maximus and Mytilus edulis that was precipitated during a constant-temperature culturing experiment. Elevated Mg/Ca, Sr/Ca and Mn/Ca ratios were found to be associated with the deposition of elaborate shell features, i.e. a shell surface stria in P. maximus and surface shell disturbance marks in both species, the latter a common occurrence in bivalve shells. In both species the observed small-scale elemental heterogeneity most likely was not controlled by variable transport of ions to the extra-pallial fluid, but by factors such as shell Mg content influencing Sr and Mn heterogeneity, the influence of shell organic content and/or conditions at the shell crystal-solution interface. Invariant Mg/Ca ratios observed in the mid and innermost regions of the P. maximus shell suggests a potential application as a palaeotemperature proxy.

  9. Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia shell calcite precipitated at constant temperature

    Directory of Open Access Journals (Sweden)

    P. S. Freitas

    2009-07-01

    Full Text Available Small-scale heterogeneity of biogenic carbonate elemental composition can be a significant source of error in the accurate use of element/Ca ratios as geochemical proxies. In this study ion microprobe (SIMS profiles showed significant small-scale variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in new shell calcite of the marine bivalves Pecten maximus and Mytilus edulis that was precipitated during a constant-temperature culturing experiment. Elevated Mg/Ca, Sr/Ca and Mn/Ca ratios were found to be associated with the deposition of elaborate shell features, i.e. a shell surface stria in P. maximus and surface shell disturbance marks in both species, the latter a common occurrence in bivalve shells. In both species the observed small-scale elemental heterogeneity most likely was not controlled by variable transport of ions to the extra-pallial fluid, but by factors such as the influence of shell organic content and/or crystal size and orientation, the latter reflecting conditions at the shell crystal-solution interface. In the mid and innermost regions of the P. maximus shell the lack of significant small-scale variation of Mg/Ca ratios, which is consistent with growth at constant temperature, suggest a potential application as a palaeotemperature proxy. Cross-growth band element/Ca ratio profiles in the interior of bivalve shells may provide more promising palaeo-environmental tools than sampling from the outer region of bivalve shells.

  10. Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia) shell calcite precipitated at constant temperature

    Science.gov (United States)

    Freitas, P. S.; Clarke, L. J.; Kennedy, H.; Richardson, C. A.

    2009-07-01

    Small-scale heterogeneity of biogenic carbonate elemental composition can be a significant source of error in the accurate use of element/Ca ratios as geochemical proxies. In this study ion microprobe (SIMS) profiles showed significant small-scale variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in new shell calcite of the marine bivalves Pecten maximus and Mytilus edulis that was precipitated during a constant-temperature culturing experiment. Elevated Mg/Ca, Sr/Ca and Mn/Ca ratios were found to be associated with the deposition of elaborate shell features, i.e. a shell surface stria in P. maximus and surface shell disturbance marks in both species, the latter a common occurrence in bivalve shells. In both species the observed small-scale elemental heterogeneity most likely was not controlled by variable transport of ions to the extra-pallial fluid, but by factors such as the influence of shell organic content and/or crystal size and orientation, the latter reflecting conditions at the shell crystal-solution interface. In the mid and innermost regions of the P. maximus shell the lack of significant small-scale variation of Mg/Ca ratios, which is consistent with growth at constant temperature, suggest a potential application as a palaeotemperature proxy. Cross-growth band element/Ca ratio profiles in the interior of bivalve shells may provide more promising palaeo-environmental tools than sampling from the outer region of bivalve shells.

  11. Using presence of calcite cap rock in shales to predict occurrence of reservoirs composed of leached secondary porosity in the geopressured zone. Annual report, June 1, 1980-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, W.R.; Magara, K.; Milliken, K.L.; Richmann, D.L.

    1981-01-01

    The distribution of high-resistivity shale in the Frio Formation between hydropressured and geopressured strata has been mapped along the Texas Gulf Coast. Two high-resistivity intervals more than 1000 ft thick have been mapped, one in Brazoria and Galveston Counties and the other in Kenedy County. They coincide with Frio delta systems and may be related to extraordinary quantities of CO/sub 2/ produced by deltaic sediments rich in woody and herbaceous matter. Beyond being calcareous, the nature of the high-resistivity interval is enigmatic and its relationship to deep secondary porosity problematic. Most of the contained carbonate is microscopically and isotopically skeletal in origin, revealing no evidence of diagenetic modification. Minor rhombs of iron-bearing carbonate tens of microns in size were identified. Detrital feldspar compositions are being established to test subsequent changes in feldspar composition resulting from progressive burial and albitization. Hydrolysis reactions for authigenic minerals and reactions between key pairs of minerals have been written. Thermodynamic functions for complex phyllosilicates at temperatures up to 200/sup 0/C have been calculated. From thermodynamic calculations it was predicted that ferroan calcite would be the favored authigenic carbonate in shales.

  12. Combined δ11B, δ13C, and δ18O analyses of coccolithophore calcite constrains the response of coccolith vesicle carbonate chemistry to CO2-induced ocean acidification

    Science.gov (United States)

    Liu, Yi-Wei; Tripati, Robert; Aciego, Sarah; Gilmore, Rosaleen; Ries, Justin

    2016-04-01

    Coccolithophorid algae play a central role in the biological carbon pump, oceanic carbon sequestration, and in marine food webs. It is therefore important to understand the potential impacts of CO2-induced ocean acidification on these organisms. Differences in the regulation of carbonate chemistry, pH, and carbon sources of the intracellular compartments where coccolith formation occurs may underlie the diverse calcification and growth responses to acidified seawater observed in prior experiments. Here we measured stable isotopes of boron (δ11B), carbon (δ13C) and oxygen (δ18O) within coccolith calcite, and δ13C of algal tissue to constrain carbonate system parameters in two strains of Pleurochrysis carterae (P. carterae). The two strains were cultured under variable pCO2, with water temperature, salinity, dissolved inorganic carbon (DIC), and alkalinity monitored. Notably, PIC, POC, and PIC/POC ratio did not vary across treatments, indicating that P. carterae is able to calcify and photosynthesize at relatively constant rates irrespective of pCO2 treatment. The δ11B data indicate that mean pH at the site of coccolith formation did not vary significantly in response to elevated CO2. These results suggest that P. carterae regulates calcifying vesicle pH, even amidst changes in external seawater pH. Furthermore, δ13C and δ18O data suggest that P. carterae may utilize carbon from a single internal DIC pool for both calcification and photosynthesis, and that a greater proportion of dissolved CO2 relative to HCO3‑ enters the internal DIC pool under acidified conditions. These results suggest that P. carterae is able to calcifyand photosynthesize at relatively constant rates across pCO2 treatments by maintaining pH homeostasis at their site of calcification and utilizing a greater proportion of aqueous CO2.

  13. Precipitation kinetics of calcite in the system CaCO 3H2OC02: The conversion to CO 2 by the slow process H ++HCO 3- → CO 2+H 2O as a rate limiting step

    Science.gov (United States)

    Dreybrodt, W.; Eisenlohr, L.; Madry, B.; Ringer, S.

    1997-09-01

    Precipitation rates of CaCO 3 from supersaturated solutions in the H 2OCO 2CaCO 3 system are controlled by three rate-determining processes: the kinetics of precipitation at the mineral surface, mass transport of the reaction species involved to and from the mineral surface, and the slow kinetics of the overall reaction HCO 3-+H + → CO 2+H 2O. A theoretical model by Buhmann and Dreybrodt (1985a,b) taking these processes into account predicts that, due to the slow kinetics of this reaction, precipitation rates to the surface of CaC0 3 minerals depend critically on the ratio V/A of the volume V of the solution to the surface area A of the mineral in contact with it, for both laminar and turbulent flow. We have performed measurements of precipitation rates in a porous medium of sized particles of marble, limestone, and synthetic calcite, with V/A ratios ranging from 3·10 -4 to 1.2·10 -2 cm at 10°C. Calcite was precipitated from supersaturated solutions with [Ca 2+] ≈ 4 mmol/L and an initial PCO2 of 5·10 -3 or 1·10 -3 atm, respectively, using experimental conditions which prevented exchange of CO 2 with the atmosphere, i.e., closed system. The results are in qualitative agreement with the theoretical predictions. Agreement with the observed data, however, is obtained by modifying the rate law of Plummer et al. (1978) to take into account surface-controlled inhibition effects. Experiments with supersaturated solutions containing carbonic anhydrase, an enzyme which enhances the conversion of HCO 3- into CO 2, yield rates increased by a factor of up to 15. This provides for the first time unambiguous experimental evidence that this reaction is rate limiting. We have also measured precipitation rates in batch experiments, stirring sized mineral particles in a solution with V/A ranging from 0.03 to 0.75 cm. These experiments also give clear evidence on the importance of the conversion of HCO 3- into CO 2 as rate limiting step. Taken together our experiments

  14. Isotopic and elemental proxies in mollusc and brachiopod calcite

    DEFF Research Database (Denmark)

    Ullmann, Clemens Vinzenz

    composition of the oceans have changed. These changes of environmental conditions and seawater composition are primarily caused by plate tectonic processes, the cyclic variations of the Earth’s orbital parameters and living organisms, actively causing, and passively adapting to shifting conditions in their...

  15. ESR experiments on quaternary calcites and bones for dating purposes

    International Nuclear Information System (INIS)

    A series of experiments and measurements regarding sample preparation, peak intensity estimation, annealing, signal identification, dose determination and dose-rate estimation was carried out in order to explore the technique of ESR for dating speleothemes and bones. Anthropological remains from a cave were used for this study. The results indicate the existence of four peaks, two organic and two radiation induced ones. The bone samples were found to have absorbed large amounts of uranium from the environment making their dating impossible. A range of ages 20-45x103 years was calculated for the travertines of the cave. (author) 15 refs.; 10 figs

  16. Grain coarsening of calcite: Fundamental mechanisms and biogenic inhibition

    DEFF Research Database (Denmark)

    Schultz, Logan Nicholas

    coarsening – small grains coarsen by aggregation at high temperatures, followed by Ostwald ripening. Alginate, a model for the acidic polysaccharides produced by coccolithiphores, inhibited coarsening at a steady rate. A Pseudomonas aeruginosa biofilm preserved particles for at least 60 days before a...

  17. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    OpenAIRE

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V.; Hewson, John C.; Muylaert, Koenraad

    2015-01-01

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 1...

  18. Role of Fungi in the Biomineralization of Calcite

    OpenAIRE

    Saskia Bindschedler; Guillaume Cailleau; Eric Verrecchia

    2016-01-01

    In the field of microbial biomineralization, much of the scientific attention is focused on processes carried out by prokaryotes, in particular bacteria, even though fungi are also known to be involved in biogeochemical cycles in numerous ways. They are traditionally recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of organic acids such as oxalic acid for instance, an activity leading to the genesis of various meta...

  19. The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave

    OpenAIRE

    Sánchez-Moral, Sergio; Portillo Guisado, María del Carmen; Janices, Inés; Cuezva, Soledad; Fernández Cortés, A.; Cañaveras, Juan Carlos; González Grau, Juan Miguel

    2011-01-01

    Bacteria are able to induce carbonate precipitation although the participation of microbial or chemical processes in speleothem formation remains a matter of debate. In this study, the origin of carbonate depositions such as moonmilk, an unconsolidated microcrystalline formation with high water content, and the consolidation of carbonate precipitates into hard speleothems were analyzed. The utilized methods included measurements of the composition of stable isotopes in these precipitates, flu...

  20. Strong Calcite-Like Spectra Cathodoluminescence Emission from Allende Meteorite Cai Phases

    OpenAIRE

    García Guinea, Javier; Tornos Arroyo, Fernando; Azumendi García, Oscar; Ruiz Pérez, Javier; Correcher Delgado, Virgilio

    2011-01-01

    Calcium–aluminum-rich inclusions (CAIs) of Allende CV3 chondrite were studied by Environmental Scanning Electron Microscopy (ESEM), Energy Dispersive Spectrometry (EDS), Backscattering (BS), and Spectra Cathodoluminescence (CL). CAI minerals show spectra CL curves exceeding the 450,000 a.u. with a large homogeneity along the white inclusions. CL curve features fit perfectly with terrestrial patterns of stressed specimens of weathered marble and limestone in which hydroxyl gr...

  1. Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica

    OpenAIRE

    Elster, J.; L. Nedbalová; R. Vodrážka; Láska, K.; J. Haloda; J. Komárek

    2015-01-01

    The floors of two shallow endorheic lakes, located on volcanic surfaces on James Ross Island, are covered with calcareous organosedimentary structures. Their biological and chemical composition, lake water characteristics, and seasonal variability of the thermal regime are introduced. The lakes are frozen down to the bottom eight-nine months per year and their water chemistry is characterized by low conductivity and neutral to slightly alkaline pH. The photosynthetic microbi...

  2. Atomic modifications by synchrotron radiation at the calcite-ethanol interface

    DEFF Research Database (Denmark)

    Pasarín, I. S.; Bovet, Nicolas Emile; Glyvradal, Magni;

    2012-01-01

    -mineral interfaces where the polar OH group, as present in ethanol, plays a key role in their molecular structure and bonding. Also, the chemical evolution observed in the interface provides new insight into the behavior of some complex organic molecules involved in biomineralization processes....

  3. Evidence of a bacterial carbonate coating on plaster samples subjected to the Calcite Bioconcept biomineralization technique

    OpenAIRE

    Anne, Séverinne; Rozenbaum, Olivier; Andreazza, Pascal; Rouet, Jean-Louis

    2010-01-01

    International audience Degradation of historical buildings is mainly due to the intrusion of water which is the main vector of pollutants. Different types of surface treatment have been proposed to avoid or limit this effect. One alternative to chemical treatments is the use of the carbonatogenesis property of some bacteria. This bacterial production has been evidenced on concrete and on limestone samples in an aqueous environment. However, the carbonate production was measured indirectly ...

  4. A New foodweb based on microbes in calcitic caves: The Cansiliella (Beetles) case in Northern Italy

    OpenAIRE

    Paoletti Maurizio G.; Beggio Mattia; Dreon Angelo Leandro; Pamio Alberto; Gomiero Tiziano; Brilli Mauro; Dorigo Luca; Concheri Giuseppe; Squartini Andrea; Summers Engel Annette

    2011-01-01

    The troglobitic beetle, Cansiliella servadeii (Leptodirini), has specialized mouthparts modified for browsing and feeding under percolating water on moonmilk, a speleothem formation in Grotta della Foos, Italy. Results from analyses of stable isotopes of carbon and nitrogen suggest thatacquires and assimilates dissolved allochthonous organic carbon, inorganic nitrogen, and possibly phosphorus and other nutrients from the microbial fauna associated with moonmilk.

  5. Cold seeps in Monterey Bay, California: Geochemistry of pore waters and relationship to benthic foraminiferal calcite

    Energy Technology Data Exchange (ETDEWEB)

    Gieskes, Joris, E-mail: jgieskes@ucsd.edu [Scripps Institution of Oceanography, IOD-0208, 9500 Gilman Drive, La Jolla, CA 92093-0208 (United States); Rathburn, Anthony E. [Scripps Institution of Oceanography, IOD-0208, 9500 Gilman Drive, La Jolla, CA 92093-0208 (United States)] [Indiana State University, Department of Earth and Environmental Systems, Terre Haute, IN 47809 (United States); Martin, Jonathan B. [University of Florida, Department of Geological Sciences, Gainesville, FL 32611-2120 (United States); Perez, M. Elena [Indiana State University, Department of Earth and Environmental Systems, Terre Haute, IN 47809 (United States)] [The Natural History Museum, Department of Palaeontology, Cromwell Road, London SW7 5BD (United Kingdom); Mahn, Chris [Scripps Institution of Oceanography, IOD-0208, 9500 Gilman Drive, La Jolla, CA 92093-0208 (United States); Bernhard, Joan M. [Woods Hole Oceanographic Institution, Geology and Geophysics Department, MS52, Woods Hole, MA 02543 (United States); Day, Shelley [University of Florida, Department of Geological Sciences, Gainesville, FL 32611-2120 (United States)

    2011-05-15

    Highlights: > We describe the geochemistry of pore waters in the Clam Flats area of Monterey Bay. > The geochemical data are compared with the {delta}{sup 13}C chemistry of benthic foraminifera. > Living foraminifera indicate little effects of pore water low {delta}{sup 13}C (DIC) in the clam bed. > This phenomenon and its implications are discussed in detail. > Implications with regards to paleo-methane seepage are discussed. - Abstract: An extensive geochemical and biogeochemical examination of CH{sub 4} seeps in the Clam Flats area of Monterey Bay provides insight into the character of relationships between seep geochemistry and benthic foraminiferal geochemistry. The area is characterized by sulfide-rich fluids. Sulfide increases are associated with large increases in alkalinity, as well as small decreases in dissolved Ca and Mg. In addition, only small increases in NH{sub 4} are observed, but values of {delta}{sup 13}C of dissolved inorganic C are as low as -60 per mille at shallow depths (<3 cm). These observations indicate that all these processes are related to the bacterial oxidation of CH{sub 4}, which is transported upward by slow seepage of pore fluids. The geochemistry of the pore fluids should be relevant to the geochemistry of the carbonate tests of living and dead foraminifera. However, a profound disequilibrium of approximately an order of magnitude occurs between the {delta}{sup 13}C values of stained (cytoplasm-containing) foraminiferal carbonate and the C isotope values of ambient pore water dissolved inorganic C. Reasons are unclear for this isotopic disequilibrium, but have important implications for interpretations of foraminiferal carbonate as a paleoenvironmental proxy. Much fine scale work is needed to fully understand the relationships between the biogeochemistry of benthic foraminifera and the geochemistry of the pore waters where they live.

  6. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    Science.gov (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  7. Possible factors that control calcite dissolution in the western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.; Naidu, P.D

    can be caused due to acidification of pore water 2. It is shown that shell weights of the foraminifera species Pulleniatina obliquiloculata indicate that this intense dissolution observed at 3900m was caused due to undersaturation of CO3= in the bottom...

  8. Treatment Of Metal-Mine Effluents By Limestone Neutralization And Calcite Co-Precipitation

    Science.gov (United States)

    The U.S. Geological Survey - Leetown Science Center and the Colorado School of Mines have developed a remediation process for the treatment of metals in circumneutral mining influenced waters. The process involves treatment with a pulsed limestone bed (PLB) system, followed by c...

  9. Calcite dissolution along a transect in the western tropical Indian Ocean: A multiproxy approach

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.; Naidu, P.D.

    . Three planktonic foraminifera species, Globigerinoides sacculifer, Pulleniatina obliquiloculata, and Neogloboquadrina dutertrei, show wide variability in shell weights from core top sediments in the depth range of 3300 to 3400 m bathed by similar bottom...

  10. First discovery of unicue calcite-fluorapatite permineralisation of petrified tree in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Řehoř, M.; Schmidt, P.; Šašek, Petr

    Vol. 1. Sofia : STEF92 Technology, 2013, s. 55-62. ISBN 978-954-91818-7-6. [International Multidisciplinary Scientific Geoconference SGEM 2013 /13./. Albena (BG), 16.06.2013-22.06.2013] Institutional support: RVO:68378297 Keywords : research * geology * petrified tree * fluorapatite Subject RIV: DB - Geology ; Mineralogy http://sgem.org/sgemlib/spip.php?article2569&lang=en

  11. Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin; Versteeg, R.; Slater, L.; LaBrecque, D.

    2009-06-01

    Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO{sub 3} and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO{sub 3} as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO{sub 3} dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO{sub 3} forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO{sub 3} precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation.

  12. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation.

    Science.gov (United States)

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L; Steele, Andrew

    2013-10-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples. PMID:24115614

  13. A kinetic study of the replacement of calcite marble by fluorite

    Science.gov (United States)

    Trindade Pedrosa, Elisabete; Boeck, Lena; Putnis, Christine V.; Putnis, Andrew

    2016-04-01

    Replacement reactions are relevant in any situation that involves the reequilibration between a solid and an aqueous fluid phase and are commonly controlled by an interface-coupled dissolution-precipitation mechanism (Putnis and Putnis, 2007). These reactions control many large-scale Earth processes whenever aqueous fluids are available, such as during metamorphism, metasomatism, and weathering. An important consequence of coupled dissolution-precipitation is the generation of porosity in the product phase that then allows the infiltration of the fluid within the mineral being replaced. Understanding the mechanism and kinetics of the replacement of carbonates by fluorite has application in earth sciences and engineering. Fluorite (CaF2) occurs in all kinds of rocks (igneous, sedimentary, and metamorphic) and its origin is commonly associated with hydrothermal fluids. Moreover, calcium carbonate has been suggested as a successful seed material for the sequestration of fluoride from contaminated waters (Waghmare and Arfin, 2015). The aim of the present work is to investigate aspects of the replacement of calcium carbonate by fluorite to better understand the mechanism and kinetics of this reaction. Small cubes (˜ 3 × 3 × 3 mm) of Carrara marble (CaCO3 > 99 %) were cut and reacted with a 4 M ammonium fluoride (NH4F) solution for different times (1 to 48 hours) and temperatures (60, 80, 100, and 140 ° C). The microstructure of the product phases was analysed using SEM. The kinetics of replacement was monitored from the Rietveld analysis of X-ray powder diffraction patterns of the products as a function of temperature and reaction time. After reaction, all samples preserved their size and external morphology (a pseudomorphic replacement) and the product phase (fluorite) was highly porous. The activation energy Ea (kJ/mol) of the replacement reaction was empirically determined by both model-fitting and model-free methods. The isoconversional method yielded an empirical activation energy of 41 kJ/mol, and a statistical approach applied to the model-fitting method revealed that the replacement of Carrara marble by fluorite is better fitted to a diffusion-controlled process. This is consistent with ion diffusion through the fluid phase. These results suggest that the replacement reaction is dependent on the fluid migration rate through the newly formed porosity. Putnis, A., Putnis C.V., 2007. The mechanism of reequilibration of solids in the presence of a fluid phase. Journal of Solid State Chemistry, 180, 1783-1786. Waghmare, S.S., Arfin, T. (2015). Fluoride removal from water by calcium materials: A state-of-the-art review. Int. J. Innov. Res. Sci. Eng. Technol. 4, 8090-8102.

  14. Determination of trace elements in calcite using solution and laser ablation ICP-MS: calibration to NIST SRM glass and USGS MACS carbonate, and application to real landfill calcite

    Czech Academy of Sciences Publication Activity Database

    Strnad, L.; Ettler, V.; Mihaljevič, M.; Hladil, Jindřich; Chrastný, V.

    2009-01-01

    Roč. 33, č. 3 (2009), s. 347-355. ISSN 1639-4488 R&D Projects: GA AV ČR IAA300130702 Institutional research plan: CEZ:AV0Z30130516 Keywords : trace elements * carbonate * reference material * MACS-1 MACS-2 * laser ablation ICP-MS Subject RIV: DD - Geochemistry Impact factor: 2.061, year: 2009

  15. Strength, stability, and microstructure of simulated calcite faults sheared under laboratory conditions spanning the brittle-plastic transition

    NARCIS (Netherlands)

    Verberne, B.A.

    2015-01-01

    Destructive earthquakes are commonplace in tectonically-active carbonate-bearing terrains, often leading to severe economic damage and major loss of life (e.g. the Apennines, Italy). Efforts to improve seismic risk assessment in such terrains require a quantitative understanding of the slip behaviou

  16. Fine Formation During Brine-Crude Oil-Calcite Interaction in Smart Water Enhanced Oil Recovery for Caspian Carbonates

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    Modified sea water has been shown to affect the oil recovery fraction considerably during secondary and tertiary waterfloods. Available soluble potential ions (i.e. Ca2+, Mg2+ & SO42-) in the interacting waterflood (ITW) are suggested to play a key role in increasing the displacement efficiency...... of oil. In previous studies, compositions of injected waterfloods (IJW) have been correlated to the observed oil recovery. This study highlights differences between IJW and ITW for different studies reported in literature....

  17. C and S isotope characteristics of bitumen, calcite, Fe and Cu sulfides in the metallogenic analysis of the Ocoita metallotec

    International Nuclear Information System (INIS)

    As a result of a significant increase in the rate of convergence of the Phoenix and South American plates during the Early Cretaceous (120 -100 Ma.), a basin, defined by Aberg et al., (1984) as an 'Aborted Marginal Basin', developed in Central Chile. In the late stages of this back-arc marine basin, submarine lava flows extruded through the thinned continental crust underlying the bottom of the shallow sea. The porphyritic lavas of the Pabellon Formation are the northernmost units of this event and are very similar to those of the Ocoa member in the Veta Negra Formation (Cisternas et al. 1999). The lava sequence lies conformably above calcareous rocks of the Pabellon Formation (Barremian-Aptian) and average 70 meters of thickness. The whole sequence dips to the east with a north-south directed strike. A notable characteristic of these lavas are the abundant (>40%) centimeter-size plagioclase phenocrysts, which can be associated with the 'lavas ocoiticas' or 'ocoitas' of the Ocoa member in the Veta Negra Formation of Central Chile. Geochemical analysis of the Pabellon formation lavas indicates that these lavas were derived from K-rich calc-alkaline to transitional magmas, typical of a continental margin subduction, however with an important component of intra-plate contamination (Galindo 1998; Cisternas et al., 1999). The basal rocks are cut by intrusives (119-93 ma.), the same age as the lavas. These intrusives are believed to be the source of heat needed for the thermal maturation of organic matter in the underlying beds. The organic matter rich limestones of the Nantoco formation are the most probable source of the hydrocarbons, which were mobilized by hydrothermal fluids and deposited in veinlets and voids in the lavas (au)

  18. Early- to late-Holocene contrast in productivity, OMZ intensity and calcite dissolution in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.; Godad, S.P.; Naidu, P.D.; Tiwari, M.; Paropkari, A.L.

    –527. Agnihotri R, Siby K, Fernandes M, Reshma K, D’Souza W and Naqvi SWA (2008) Variability of subsurface denitrification and surface productivity in the coastal eastern Arabian Sea over the past seven centuries. Holocene 18(5): 755–764. Altabet MA, Murray DW... and Prell WL (1999) Climatically linked oscillations in Arabian Sea denitrification over the past lm.y. : Implications for the marine N cycle. Paleoceanography 14(6): 732-743. Altabet MA, Francois R, Murray DW and Prell WL (1995) Climate...

  19. Detection limit improvement for Mg in marine foraminiferal calcite by using helium induced X-ray emission

    International Nuclear Information System (INIS)

    New efforts focus on tools which enable the reconstruction of past climates. For example, the Mg/Ca atomic ratio in marine Foraminifera starts to be used as a proxy for ocean water mass temperature. Because both, Mg content is very low (3 samples by using helium ions instead of protons to induce X-ray emission. We determine the Mg/Ca concentration ratio of standard CaCO3 powders and Globigerinoides ruber Foraminifera collected in the Equatorial Atlantic Ocean. The results show a decrease in the Mg/Ca ratio with the water depth indicating that the temperature record is partially altered by dissolution processes which should be taken into account in a future calibration model

  20. Cryogenic fracturing of calcite flowstone in caves: theoretical considerations and field observations in Kents Cavern, Devon, UK

    Directory of Open Access Journals (Sweden)

    Lundberg Joyce

    2012-07-01

    Full Text Available Several caves in Devon, England, have been noted for extensive cracking of substantial flowstone floors. Conjectural explanations have included earthquake damage, local shock damage from collapsing cave passages, hydraulic pressure, and cryogenic processes. Here we present a theoretical model to demonstrate that frost-heaving and fracture of flowstone floors that overlie wet sediments is both a feasible and likely consequence of unidirectional air flow or cold-air ponding in caves, and argue that this is the most likely mechanism for flowstone cracking in caves located in Pleistocene periglacial environments outside of tectonically active regions. Modeled parameters for a main passage in Kents Cavern, Devon, demonstrate that 1 to 6 months of -10 to -15° C air flow at very modest velocities will result in freezing of 1 to 3 m of saturated sediment fill. The resultant frost heave increases with passage width and depth of frozen sediments. In the most conservative estimate, freezing over one winter season of 2 m of sediment in a 6-m wide passage could fracture flowstone floors up to ~13 cm thick, rising to ~23 cm in a 12-m wide passage. Natural flaws in the flowstone increase the thickness that could be shattered. These numbers are quite consistent with the field evidence.

  1. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite

    DEFF Research Database (Denmark)

    Ploug, H.; Iversen, M.H.; Koski, Marja; Buitenhuis, E.T.

    2008-01-01

    were measured directly with a spatial resolution of 2 mu m at the interface of copepod fecal pellets and the surrounding water. Averaged volume-specific respiration rates were 4.12 fmol O-2 mu m(-3) d(-1), 2.86 fmol O-2 mu m(-3) d(-1), and 0.73 fmol O-2 mu m(-3) d(-1) in pellets produced on Rhodomonas...

  2. Predicting Calcite (CaCO3) Requirements of Sphagnum Peat Moss from pH Titration Curves

    Science.gov (United States)

    Liming materials are required to neutralize acidity in peat moss to make it a suitable substrate for growing container crops. A series of time-consuming incubations of peat:lime mixtures are typically used to determine the liming rate to achieve a desired pH. Our objective was to evaluate the util...

  3. Not all calcite ballast is created equal: Differing effects of foraminiferan tests and coccoliths on the aggregation and sinking of diatoms

    Science.gov (United States)

    De La Rocha, C. L.; Schmidt, K.; Gallinari, M.; Cortese, G.

    2011-12-01

    There is a strong correlation between sinking fluxes of CaCO3 biominerals and particulate organic carbon (POC), leading to suggestions that sinking fluxes of CaCO3 might control the amount of POC reaching the deep sea. Research has shown that CaCO3 (which is considerably denser than both seawater and particulate organic matter), in the form of coccoliths produced by coccolithophores, can be incorporated into phytoplankton aggregates, reducing their size and POC content but significantly increasing their sinking velocity (W, in m d-1). Coccoliths are, however, not the only form of CaCO3 common in the water column. The tests of foraminiferans represent roughly half of the global flux of CaCO3 to the seafloor and it is unclear what role they play in "carrying" POC to depth. Tests of foraminiferans are commonly large and heavily calcified enough to sink with velocities of 1 km per day. Foraminiferan tests should not accumulate organic matter, as the resulting aggregate should fall apart when subject to the hydrodynamic shear associated with such rapid sinking. To investigate this, thick cultures of the marine diatom Chaetoceros gracilis were placed into 4.5 L cylindrical tanks. Added to the tanks was either no CaCO3, 4.5 mg L-1 of coccoliths, or 4.5 mg L-1 of foraminiferan tests > 250 μm. The tanks were then placed on roller tables to simulate sinking through the water column. Incubation was done in the dark at 16°C for 2 days. Aggregates formed in all treatments. Aggregates in the Chaetoceros-only tanks were the largest and contained the most POC per aggregate. Aggregates in the coccolith tanks were smaller but had higher sinking velocities for their equivalent spherical diameter (ESD, in mm) (W = 678(ESD) + 173; r2 = 0.52) Foraminiferan tests in the foraminiferan tanks absorbed visible but minor amounts of organic matter and sank extremely rapidly (400-700 m d-1). However, most of the POC in the foraminiferan tanks occurred in aggregates that did not contain foraminiferan tests. These aggregates were smaller than the aggregates in the Chaetoceros-only tanks, although since they too were "Chaetoceros-only", they fell along the same trendline for sinking velocity versus ESD (W = 678(ESD) - 6; r2 = 0.87). The smaller size of the "Chaetoceros-only" aggregates in the foraminiferan tanks compared to in the Chaetoceros-only tanks was caused by frequent collisions with the faster sinking foraminiferan tests that resulted in fragmentation of the aggregates involved. Had there been a lower number of foraminiferan tests in the foraminiferan tanks (and therefore a lesser incidence of collisions), the "Chaetoceros-only" aggregates formed therein would likely have been larger. This experiment demonstrates that while some forms of CaCO3 could enhance the export of POC in the ocean, other forms of it will inhibit the formation of the large, rapidly sinking particles necessary to remove POC to the deep sea.

  4. Formation of Anhydrite due to Interaction Between Water Soluble CO2 (aq) and Calcite Mineral During Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    In the Low Salinity based EOR method, formation and migration of fines have proved to have profound effect on the displacement efficiency of residual oil. Salinity variations of injected brines have also been shown to affect oil recovery for WAG-CO2 processes. But the effect of fines in EOR durin...... mineral dissolution and the observed increase in permeability. Copyright: 2015. Society of Petroleum Engineers...

  5. Experimentally determined Mg/Ca and Sr/Ca ratios in juvenile bivalve calcite for Mytilus edulis: implications for paleotemperature reconstructions

    Science.gov (United States)

    Wanamaker, Alan D., Jr.; Kreutz, Karl J.; Wilson, Tiffany; Borns, Harold W., Jr.; Introne, Douglas S.; Feindel, Scott

    2008-10-01

    To further evaluate the potential use of Mg/Ca and Sr/Ca ratios as a paleothermometer in the shell carbonate of the blue mussel Mytilus edulis, we grew juvenile mussels (˜15 mm shell height; edulis to reconstruct paleotemperatures in estuarine settings (salinity below 24) with a corresponding RMSE (root mean squared error; 95% confidence interval) of ±2.4°C and ±2.8°C, respectively. In order for this methodology to be statistically meaningful, water temperature changes must be rather large, as the errors associated with using Mg/Ca and Sr/Ca ratios from the shell material of M. edulis are substantial. Further work is required to determine if the findings presented here can be duplicated, and if the potential salinity effect is pervasive.

  6. Trace elements in landfill calcite: a comparison of solution & laser ablation ICP-MS and calibration to different standard material (SRM NIST glass and USGS MACS carbonate)

    Czech Academy of Sciences Publication Activity Database

    Strnad, L.; Ettler, V.; Mihaljevič, M.; Hladil, Jindřich

    2008-01-01

    Roč. 9, - (2008), s. 235-236. ISSN 1885-7264. [Reunión de la Sociedad Española de Mineralogía /28./ ; Reunión de la Sociedad Española de Arcillas /21./. Zaragoza, 16.09.2008-19.09.2008] R&D Projects: GA AV ČR IAA300130702 Institutional research plan: CEZ:AV0Z30130516 Keywords : trace elements * reference material * carbonate * ICP-MS * laser ablation Subject RIV: DB - Geology ; Mineralogy http://www.ehu.es/sem/macla_pdf/macla9/macla9_235.pdf

  7. Compressibility systematics of calcite-type borates : An experimental and theoretical structural study on ABO3 (A = Al, Sc, Fe and In)

    OpenAIRE

    Santamaría Pérez, David; Gomis Hilario, Oscar; Sans, Juan Ángel; Ortiz, H. M.; Vegas, Ángel; Errandonea, Daniel; Ruiz-Fuertes, Javier; Martínez-García, Domingo; García-Domene, B.; Pereira, ALJ; Manjón Herrera, Francisco Javier; Rodríguez-Hernández, Placida; Muñoz, A.; Piccinelli, F.; Bettinelli, M.

    2014-01-01

    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C , copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp4124259

  8. Impact of seawater pCO2 changes on calcification and on Mg/Ca and Sr/Ca in benthic foraminifera calcite (Ammonia tepida: results from culturing experiments

    Directory of Open Access Journals (Sweden)

    J. Bijma

    2009-04-01

    Full Text Available Evidence is accumulating of increasing concentrations of dissolved carbon dioxide in the ocean and associated acidification impacts on calcifying organisms. Among these organisms, benthic and planktonic foraminifera are responsible for a large amount of the globally precipitated calcium carbonate. Therefore, their response to an acidifying ocean may have important consequences for future inorganic carbon cycling. To assess the sensitivity of benthic foraminifera to changing carbon dioxide levels and subsequent alteration in seawater carbonate chemistry, we cultured specimens of the shallow water species Ammonia tepida at two concentrations of atmospheric CO2 (120 and 2000 ppm and two temperatures (10°C and 15°C. Shell weights and elemental compositions were determined. Results indicate that shell weights decrease with decreasing [CO32−], and increase with decreasing temperature. Changes in [CO32−] or total dissolved inorganic carbon do not affect the Mg partition coefficient. On the contrary, Sr incorporation is enhanced under increasing [CO32−]. Implications of these results for the paleoceanographic application of foraminifera are also discussed.

  9. Processes affecting the stable isotope composition of calcite during precipitation on the surface of stalagmites: Laboratory experiments investigating the isotope exchange between DIC in the solution layer on top of a speleothem and the CO2 of the cave atmosphere

    Science.gov (United States)

    Dreybrodt, Wolfgang; Hansen, Maximilian; Scholz, Denis

    2016-02-01

    We present a theoretical derivation of the exchange time, τex, needed to establish isotopic equilibrium between atmospheric CO2 in a cave and HCO3- dissolved in a thin water film covering the surface of a speleothem. The result is τex = τredex · [HCO3-]/ (KH · pCO2 cave) , where τredex depends on the depth, a, of the water film and on temperature. [HCO3-] is the concentration of bicarbonate, pCO2 cave the partial pressure of CO2, and KH is Henry's constant. To test the theory we prepared stagnant or flowing thin films of a NaHCO3 solution and exposed them at 20 °C to an CO2 containing atmosphere of pCO2 500, 12,500, or 25,000 ppmV and defined isotope composition. The δ13C and δ18O values of the DIC in the solution were measured as a function of the exposure time. For stagnant films with depths between 0.06 and 0.2 cm the δ13C values exhibit an exponential approach towards isotope equilibrium with the atmospheric CO2 with exchange time, τex. The δ18O values first evolve towards isotopic equilibrium with atmospheric CO2, reach a minimum value and then drift away from the isotopic equilibrium with atmospheric CO2 approaching a steady state caused by isotopic exchange of oxygen with water. The experimental findings are in satisfactory agreement with the theoretical predictions. To further investigate isotope evolution in cave analogue conditions, a water film containing 5 mmol/L of NaHCO3 with a depth of 0.013 cm flowing down an inclined borosilicate glass plate was exposed to an atmosphere with pCO2 = 500 ppmV at a temperature of 20 °C. The δ13C and δ18O values were measured as a function of flow (exposure) time, t. The isotope compositions in the DIC of the water film decrease linear in time by δDIC (t) =δDIC (0) - (δDIC (0) -δDIC (∞)) · t /τex where δDIC (0) is the initial isotope composition of dissolved inorganic carbon (DIC) in the water film and δDIC (∞) its final value. From these data an exchange time τex of ca. 7000 s was obtained, in satisfactory agreement with the theoretical predictions. The exchange times can be calculated by τex = τredex · [HCO3-]/ (KH ·pCO2 cave) , where τredex is given by the theory as function of temperature and the depth, a, of the water film. This way it is possible to obtain exchange times for various conditions of stalagmite growth as they occur in caves.

  10. Potential of bacteria-based repair solution as healing agent for porous network concrete

    OpenAIRE

    Wiktor, V.A.C.; Sangadji, S.; Jonkers, H.M.; Schlangen, H.E.J.G.

    2013-01-01

    Bacterially induced calcium carbonate precipitation has received considerable attention for its potential application in enforcing or repairing construction material. The mechanism of bacterially mediated calcite precipitation in those studies is primarily based on the enzymatic hydrolysis of urea. Besides calcite precipitation, this reaction mechanism leads also to the production of ammonium ions which may result in excessive environmental pressure. More recently, bacterially mediated calcit...

  11. In-situ observation of ettringite crystals

    Science.gov (United States)

    Komatsu, Ryuichi; Mizukoshi, Norihiro; Makida, Koji; Tsukamoto, Katsuo

    2009-01-01

    In-situ observation of growing ettringite crystals in solution has been carried out and the morphology change of ettringite has been investigated under various conditions. In particular, the acceleration behavior of ettringite growth in the presence of calcite, the cause of which is not yet understood, is examined. Spherulite with calcite in its core is formed first followed by the generation of acicular crystals. Compared with the in-situ observation result of crystal growth in a solution with no calcite, the effect of added calcite can be explained as a decrease in the activation energy of nucleation for ettringite around calcite.

  12. Aspartic Acid-rich Proteins in Insoluble Orgaic Matrix Play a Key Role in the Growth of Calcitic Sclerites in Alcyonarian Coral%不溶性基质中天冬氨酸丰富的蛋白在珊瑚的钙质骨片形成中的重要作用

    Institute of Scientific and Technical Information of China (English)

    M. Azizur Rahman; Tamotsu Oomori

    2008-01-01

    一般认为,酸性蛋白在控制矿物的形成和发展中发挥重要作用.因此,在不溶性有机基质中鉴定酸性蛋白对于理解珊瑚中个体蛋白的功能是非常重要的一步.在短指多型软珊瑚(sinularia polydactyla)的可溶性和不溶性基质层中分析蛋白组分表明,在不溶性基质和可溶性基质层中天冬氨酸的含量分别是61%和29%.利用体外分析法发现,基质蛋白诱导碳酸钙形成非晶态析出相先于其形成钙质的结晶态.利用X-射线衍射来鉴定骨片上结晶态的碳酸钙,结果表明钙质的多晶态呈现强反射.傅利叶变换红外光谱分析表明珊瑚基质中富含天冬氨酸的蛋白和多醣的结构.在不溶性基质组分中用钙离子结合分析显示一个分子量为109 kD的蛋白质可以与形成骨片的钙离子结合,这一过程对骨片形成非常重要.在对生物钙化过程中起重要作用的碳酸酐酶的分析中显示了此酶的新颖的活性.以上结果显示珊瑚中不溶性基质内的富含天冬氨酸的蛋白在生物矿化调控过程中起重要作用.

  13. Origin, distribution and transformation of authigenic carbonates in loessic soils

    Directory of Open Access Journals (Sweden)

    Martin Kolesár

    2015-01-01

    Full Text Available Processes of authigenic carbonates formation are component part of terrestrial biogeochemical cycle of carbon, which starts with co-accumulation of oxalic acid and Ca in Ca- oxalates. After plant decay are these biominerals slowly transformed under the influence of microbial processes into authigenic carbonates (calcites, depending on soil condition. The formation of authigenic calcites runs over in soil system where is rather high Ca and Mg concentration, presence of oxalomorphic plants and sufficient oxalotrophic stability of microorganisms. In addition to Ca-oxalates, Ca and Mg ions necessary for carbonate formation comes also from air (precipitation, dust, mineral weathering, subsurface water flow and decaying organic matter. The distribution pattern of authigenic calcites with depth, the size and shape of individual forms of calcites on loessic soils of SW Slovakia, as it is resulted from micromorphological study indicate that through the historical development of that soils as landscape units, soil water regime has played decisive role at vertical redistribution of forms (size, shape of authigenic calcites. To this witness the depth of variation of needle calcite zones and horizons of micritic calcites occurrence depending on soil types (leaching. Needle shape calcite zones which approach closest to the soil surface, gradually coalescence to the horizons of micritic calcites with the depth. Micritic calcites are without, or with microsparitic domains. Our study concurrently support the ideas of their inorganic origin depending on evaporitic soil regime. This formations have its own historic dynamics on which depends also the preservation of calcaric nature of soils.

  14. Anorganická sekvestrácia uhlíka v autigénnych karbonátoch a ich distribúcia v pôdach na spraši: mikromorfologické aspekty

    Directory of Open Access Journals (Sweden)

    Martin Kolesár

    2014-12-01

    Full Text Available The presented paper is dealing with inorganic carbon sequestration into soil authigenic carbonates. Processes of authigenic carbonates formation are part of terrestrial biogeochemical cycle of carbon, which starts with co-accumulation of Ca and oxalic acid in plants. The Ca-oxalates produced by decay of plant debris are transformed into authigenic carbonates (calcites, and represent long term sink of carbon into the soil. In addition to Ca-oxalates, Ca and Mg ions necessary for carbonate formation comes also from air (precipitation, dust, decaying organic matter, subsurface water flow and mineral weathering. The distribution pattern of calcites with depth on loessic soils of SW Slovakia indicate that soil water regime has played a decisive role at vertical redistribution of individual forms of calcites. This is based on results of the micromorphological study. In the paper we also support inorganic origin of needle calcites zones and formation of micritic calcite horizons due to gradual coalescing of needle calcites.

  15. Application of Fluid Inclusions and Mineral Textures in Exploration for Epithermal Precious Metals Deposits

    OpenAIRE

    Moncada de la Rosa, Jorge Daniel

    2008-01-01

    Fluid inclusion and mineralogical features indicative of boiling have been characterized in 855 samples from epithermal precious metals deposits along the Veta Madre at Guanajuato, Mexico. Features associated with boiling that have been identified at Guanajuato include colloform texture silica, plumose texture silica, moss texture silica, ghost-sphere texture silica, lattice-bladed calcite, lattice-bladed calcite replaced by quartz and pseudo-acicular quartz after calcite and coexisting liqu...

  16. Extended chronologies of aqueous alteration in the CM2 carbonaceous chondrites: evidence from carbonates in Queen Alexandra Range 93005

    OpenAIRE

    Lee, M.; Lindgren, P.; Sofe, M.; Alexander, C.; Wang, J.

    2012-01-01

    The Antarctic CM2 carbonaceous chondrite QUE 93005 contains four compositionally distinct carbonates, namely breunnerite, calcite, dolomite and a Ca-poor dolomite. These carbonates can form monomineralic grains, or may be intergrown as bimineralic grains consisting of dolomite plus breunnerite and dolomite plus calcite, or polymineralic grains containing an intergrowth of breunnerite, Ca-poor dolomite and calcite. Carbonates in all grain types have inclusions of Fe,Ni sulphides and/or Mg-Fe p...

  17. Texture asymmetries as shear sense indicators in naturally deformed mono- and polyphase carbonate rocks

    OpenAIRE

    Leiss, B.; Siegesmund, S.; Weber, K.

    1999-01-01

    The microstructural and quantitative texture analyses of a naturally deformed calcite mylonite, a dolomite mylonite and a dolomitic calcite mylonite reveal different texture asymmetries for comparable deformation conditions. Calcite shows a c-axis maximum rotated against the shear sense with regard to the main shear plane. In contrast, the dolomite shows a c-axis maximum rotated with the shear sense. In accordance with the experimental and simulated textures from the literature, this differen...

  18. Diagenesis of the Lisburne Group, northeastern Brooks Range, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.C.; Goldstein, R.H.; Enos, P. [and others

    1995-05-01

    Petrographic cathodoluminescence studies of the cement stratigraphy of the Lisburne Group yield insights on its diagenetic history. Crosscutting relationships between features of subaerial exposure and calcite cements show that early generations of nonferroan, nonluminescent and multibanded-luminescent calcites are synchronous with or postdated by subaerial exposure surfaces within the Lisburne. Surfaces of subaerial exposure occur at 18 horizons within the Lisburne and are distinguished by features as laminated crusts, rhizoliths, autoclastic breccia, fissure fills, mud cracks, and erosional surfaces. Crosscutting relationships also occur between calcite cements and clasts in karst breccias and conglomerates that formed along the sub-Permian unconformity at the top of the Lisburne. The sub-Permian unconformity postdates later generations of calcite cement. These cements formed in the following sequence: nonferroan to low-ferroan, dully luminescent calcite; ferroan, very-dully luminescent calcite; and second generation of nonferroan, multibanded calcite. The crosscutting relationships not only constrain the timing of cement precipitation, but also suggest that the cements probably were precipitated from meteoric groundwaters introduced during subaerial exposure of the Lisburne platform. Late cements in the Lisburne postdate the Permian Echooka Formation. These cements are low-ferroan, moderately-bright to dully luminescent calcite, followed by a second generation of ferroan, very-dully luminescent calcite. Features of compaction and pressure solution are coincident with the precipitation of the late ferroan calcite and further constrain its timing to deep burial of the Lisburne. The youngest phase of calcite cement precipitated in the Lisburne Group is nonferroan, very-dully luminescent calcite. It commonly fills tectonically-induced shear fractures, indicating precipitation after the onset of Cretaceous (and/or Cenozoic) tectonism in the northeastern Brooks Range.

  19. Differential dissolution of a Pleistocene reef in the groundwater mixing zone of coastal Yucatan, Mexico.

    Science.gov (United States)

    Back, W.; Hanshaw, B.B.; Herman, J.S.; Van Driel, J. N.

    1986-01-01

    Mixing of fresh groundwater with subterranean Caribbean seawater generates a highly reactive geochemical zone that enhances aragonite and calcite dissolution and permits neomorphism of aragonite.-from Authors

  20. Evolución diagenética de la plataforma carbonatada Aptiense superior del sector Benicàssim-Orpesa. Cuenca del Maestrat. Cadena Ibérica

    OpenAIRE

    S. Tomás; Parcerisa, David; Travé i Herrero, Anna

    2006-01-01

    The upper Aptian carbonate platform of Benicàssim-Orpesa area contains reefal facies that are affected by a complex diagenetic evolution including: (1) Calcite 1, (2) Calcite 2, (3) Calcite 3, (4) Silica and dolomite, and (5) Dedolomite and Calcite 4. Cc1 with low Fe content indicates an early marine environment in which the replacement of the coral walls occurred together with precipitation of this cement in the primary porosity. Cc2 with high Fe content and cross-cutting mosa...

  1. 78 FR 10601 - Endangered and Threatened Wildlife; 90-Day Finding on a Petition to List 44 Species of Corals as...

    Science.gov (United States)

    2013-02-14

    ... and pennatulaceans) are related at the Class level. Most importantly, the biomineralization processes... calcite. The biomineralization mechanisms that produce these compounds are very different (Lowenstam...

  2. Nano sized clay detected on chalk particle surfaces

    DEFF Research Database (Denmark)

    Skovbjerg, Lone; Hassenkam, Tue; Makovicky, Emil;

    2012-01-01

    that in calcite saturated water, both the polar and the nonpolar functional groups adhere to the nano sized clay particles but not to calcite. This is fundamentally important information for the development of conceptual and chemical models to explain wettability alterations in chalk reservoirs...

  3. Depressing effect of phenoxyl acetic acids on flotation of minerals containing Ca2+/Mg2+ gangues

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Phenoxyl acetic acids were applied to determine their depressing effect on minerals containing Ca2+/Mg2+ gangues. Calcite,mixture of calcite and fluorite, and nickel ore were used in the flotation. And the depression mechanism was studied by the determination of contact angle, zeta potential, adsorptive capacity of collector, and IR analysis as well. It is found that 0.1 mmol/L of phenoxyl acetic acid derived from pyrogallol or gallic acid exhibits strong depressing ability on calcite in almost zero yields at pH value of 9.8, and calcite can be depressed in the flotation of calcite/fluorite mixture for approximate 87% yield of fluorite. The flotation result of practical nickel ore containing serpentine indicates that these two depressants may also show better depression performance to serpentine than traditional depressants such as sodium fluosilicate and carboxylmethyl cellulose. Analysis for the depression mechanism reveals that there exists strong chemical interaction between the depressants and minerals.

  4. Selective silicification of fossils by syntaxial overgrowths on quartz sand, Oriskany Sandstone (Lower Devonian), New York

    Science.gov (United States)

    Maliva, Robert G.

    1992-07-01

    Some fossil fragments in the Oriskany Sandstone (Lower Devonian) of New York were partially replaced by syntaxial quartz overgrowths. These replacive overgrowths are significant in that they provide insights into the mechanism and controls of quartz replacement of calcite. The susceptibility of the different calcite types of quartz replacement was governed by their microstructural complexity. Fossil fragments with finely crystalline microstructures, such as brachiopods, ostracods, and bryozoans, were partially replaced by quartz, whereas echinoderm ossicles, which consist of single large calcite crystals, were not replaced. Calcite cement was also immune to replacement. Brachiopod, bryozoan, and ostracod bioclasts (with minor exceptions) underwent partial replacement by quartz (with its concomitant shell calcite dissolution) only where the shell fragments were in contact with detrital quartz grains. Proximity to authigenic crystal nucleation sites (i.e., quartz sand grains) was thus the prime control over whether host mineral dissolution occurred, which is a situation unique to the force of crystallization-driven replacement mechanism.

  5. Biomineralization

    DEFF Research Database (Denmark)

    Sand, K. K.; Pedersen, C. S.; Sjöberg, S.;

    2014-01-01

    Our results demonstrate that in addition to being used for controlling morphology during calcite growth, polysaccharide (PS) that has been designed for biomineralization is also extremely robust, influencing calcite reactions even after millions of years. We investigated calcite (CaCO3) behavior in...... solutions with very small concentrations of PS that was produced ∼70 Ma ago by coccolithophorids. We used atomic force microscopy (AFM) and the constant composition method to monitor calcite growth in the presence of this ancient PS. The ancient PS is still very active and has a high affinity for calcite...... step edges. Adsorption, even at extremely low concentrations (0.5 μg/mL), results in decreased growth rate and dramatic morphology changes during growth and dissolution. The experimental results are complemented with surface complexation modeling for adsorption of components of polysaccharide from a...

  6. Effects Of Various Parameters On The Thickening Of Softening Plant Sludges

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Baumann, E. R.; Larson, M. A.

    1989-01-01

    Spectroscopic and thermal data for sludges from full-scale softening plants showed calcium and magnesium precipitated as calcite and an amorphous hydrated hydroxide, respectively. Magnesium ions were not incorporated into the calcium lattice to form a magnesian calcite. Scanning electron photomic......Spectroscopic and thermal data for sludges from full-scale softening plants showed calcium and magnesium precipitated as calcite and an amorphous hydrated hydroxide, respectively. Magnesium ions were not incorporated into the calcium lattice to form a magnesian calcite. Scanning electron...... photomicrographs indicated that only the calcium carbonate precipitate has a well-defined crystal structure. The shift of the crystal size distribution (CSD) to greater sizes, observed by comparing the different sludges, may be due to bigger calcite crystals rather than to crystal size changes caused...... by the magnesium hydroxide. The settling rate of the sludges is related to the CSD. Higher fluxes were achieved with an upflow contact clarifier....

  7. Influence of stress and strain on dolomite rim growth: a comparative study

    Science.gov (United States)

    Helpa, V.; Rybacki, E.; Morales, L. F. G.; Dresen, G.

    2015-08-01

    Triaxial compression and torsion experiments were performed to investigate the influence of non-isostatic stress and strain on dolomite reaction rim growth using orientated natural calcite and magnesite single crystals at a temperature of 750 °C, 400 MPa confining pressure, stresses between 7 and 38 MPa, and test durations up to 171 h. Reaction products were composed of a polycrystalline magnesio-calcite layer, palisade-shaped dolomite, and granular dolomite grains. In all experiments, inelastic deformation was partitioned into calcite and reaction products, while magnesite remained undeformed. Calcite deformed by twinning and dislocation creep, where the activation of additional glide systems at high stress allowed high strain. Depending on grain size, magnesio-calcite deformed by diffusion creep and/or grain boundary sliding, twinning, and dislocation creep. Dolomite deformed mainly by diffusion creep, assisted by enhanced dislocation activity allowing Ca enrichment in the granular rim. A weak crystallographic preferred orientation of the reaction products was observed. In triaxial compression, dolomite rim growth was diffusion-controlled and showed no influence of axial stresses up to 38 MPa on the reaction kinetics. At high strain (>0.1), the magnesio-calcite layer is wider suggesting faster growth kinetics. This may be related to additional diffusion pathways provided by enhanced dislocation activity. At very high strain (>0.3-0.6), twisted samples showed a gradual decrease in layer thickness of dolomite and magnesio-calcite with increasing strain (-rate).

  8. The 2008 Emiliania huxleyi bloom along the Patagonian Shelf: Ecology, biogeochemistry, and cellular calcification

    Science.gov (United States)

    Poulton, Alex J.; Painter, Stuart C.; Young, Jeremy R.; Bates, Nicholas R.; Bowler, Bruce; Drapeau, Dave; Lyczsckowski, Emily; Balch, William M.

    2013-12-01

    blooms are significant contributors to the global production and export of calcium carbonate (calcite). The Patagonian Shelf is a site of intense annual coccolithophore blooms during austral summer. During December 2008, we made intensive measurements of the ecology, biogeochemistry, and physiology of a coccolithophore bloom. High numbers of Emiliania huxleyi cells and detached coccoliths (>1 × 103 mL-1 and >10 × 103 mL-1, respectively), high particulate inorganic carbon concentrations (>10 mmol C m-2), and high calcite production (up to 7.3 mmol C m-2 d-1) all characterized bloom waters. The bloom was dominated by the l