WorldWideScience

Sample records for calcite crystal orientation

  1. Mechanism of Calcite Co-Orientation in the Sea Urchin Tooth

    Energy Technology Data Exchange (ETDEWEB)

    Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.; Olson, Ian; Aizenberg, Joanna; Politi, Yael; Wilt, Fred; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan; Gilbert, P. U. P. A.

    2009-12-01

    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.

  2. Monoclinic deformation of calcite crystals at ambient conditions

    Science.gov (United States)

    Przeniosło, R.; Fabrykiewicz, P.; Sosnowska, I.

    2016-09-01

    High resolution synchrotron radiation powder diffraction shows that the average crystal structure of calcite at ambient conditions is described with the trigonal space group R 3 bar c but there is a systematic hkl-dependent Bragg peak broadening. A modelling of this anisotropic peak broadening with the microstrain model from Stephens (1999) [15] is presented. The observed lattice parameters' correlations can be described by assuming a monoclinic-type deformation of calcite crystallites. A quantitative model of this monoclinic deformation observed at ambient conditions is described with the space group C 2 / c . The monoclinic unit cell suggested at ambient conditions is related with the monoclinic unit cell reported in calcite at high pressure (Merrill and Bassett (1975) [10]).

  3. Microstructure and thermal change of texture of calcite crystals in ostrich eggshell Struthio camelus

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, A. [Instituto de Ciencias Nucleares, UNAM. Circuito Exterior, Ciudad Universitaria, Coyoacan C.P. 04510 Mexico D.F. (Mexico) and Instituto de Fisica, UNAM. Apartado Postal 20-364, 01000 Mexico D.F. (Mexico)]. E-mail: heredia@fisica.unam.mx; Rodriguez-Hernandez, A.G. [Instituto de Fisica, UNAM. Apartado Postal 20-364, 01000 Mexico D.F. (Mexico); Lozano, L.F. [Instituto de Fisica, UNAM. Apartado Postal 20-364, 01000 Mexico D.F. (Mexico); Pena-Rico, M.A. [Instituto de Fisica, UNAM. Apartado Postal 20-364, 01000 Mexico D.F. (Mexico); Velazquez, R. [Instituto de Fisica, UNAM. Apartado Postal 20-364, 01000 Mexico D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, UNAM. Circuito Exterior, Ciudad Universitaria, Coyoacan C.P. 04510 Mexico D.F. (Mexico); Bucio, L. [Instituto de Fisica, UNAM. Apartado Postal 20-364, 01000 Mexico D.F. (Mexico)

    2005-01-01

    Eggshell from ostrich Struthio camelus, pristine and thermally treated in the range from room temperature to 550 deg. C, was investigated with low vacuum scanning electron microscopy (LVSEM), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray powder diffractometry (XRD). Different zones of the eggshell were analysed, including the protein-related, non-crystalline, inner organic membrane. After the high-temperature treatment (>500 deg. C), only crystallised calcite phase was found showing two main textures depending on the shell zone and the treatment temperature. In the crystal layer of the untreated samples, nanosized calcite crystals are organized with their c crystallographic axes highly aligned normal to eggshell surface (a very sharp gaussian angular distribution, {sigma}=0.14, was obtained by using the Rietveld method to model the preferred orientation function in the X-ray powder diffraction pattern). Elemental analysis revealed more Mg{sup 2+} in the crystal layer than in cone layer of the eggshell. A high nitrogen content in the organic membrane is associated to a proteinaceous phase. The cone and palisade layers are composed of needle-shaped calcite crystals, which are more crystallized than in the crystal layer and in average with their c crystallographic axes oriented in all directions except for the one perpendicular to the eggshell surface. Due to the complex structure and the amorphous/crystal phase interactions, the heating at about 500 deg. C texturizes the crystals orienting them mainly along the c-axes normal to the inner eggshell surface.

  4. On the origin of fiber calcite crystals in moonmilk deposits.

    Science.gov (United States)

    Cañaveras, Juan Carlos; Cuezva, Soledad; Sanchez-Moral, Sergio; Lario, Javier; Laiz, Leonila; Gonzalez, Juan Miguel; Saiz-Jimenez, Cesareo

    2006-01-01

    In this study, we show that moonmilk subaerial speleothems in Altamira Cave (Spain) consist of a network of fiber calcite crystals and active microbial structures. In Altamira moonmilks, the study of the typology and distribution of fiber crystals, extracellular polymeric substances, and microorganisms allowed us to define the initial stages of fiber crystal formation in recent samples as well as the variations in the microstructural arrangement in more evolved stages. Thus, we have been able to show the existence of a relationship among the different types of fiber crystals and their origins. This allowed us to outline a model that illustrates the different stages of formation of the moonmilk, developed on different substrata, concluding that microbes influence physicochemical precipitation, resulting in a variety of fiber crystal morphologies and sizes. PMID:16240102

  5. Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renault, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1998-09-01

    Platy calcite crystals, which have their c axis parallel to their shortest length axis, are common components of travertine deposits found around some hot springs in the Kenya Rift Valley. They are composite crystals formed of numerous paper-thin subcrystals. Individual plates allowed to grow without obstruction develop a hexagonal motif. The Kenyan crystals typically form in hot (>75 C) waters that have a low Ca content (<10 mg/l), a high CO{sub 2} content, and a high rate of CO{sub 2} degassing. At Chemurkeu, aggregates of numerous small platy crystals collectively form lattice crystals that superficially resemble ray crystals. The walls of the lattice crystals are formed of large platy crystals that have their long and intermediate length axes aligned parallel to the plane of the long axis of the lattice crystal. Internally, the lattice crystals are formed of small platy calcite crystals arranged in a boxlike pattern that creates the appearance of a lattice when viewed in thin section. Lattice crystals are highly porous, with each pore being enclosed by platy crystals. At Lorusio, travertines are mainly formed of pseudodentrites that are constructed by numerous small platy crystals attached to a main stem which is a large platy crystal that commonly curves along its long axis. The pseudodentrites are the main construction blocks in ledges and lilypads that form in the vent pool and spring outflow channels, where the water is too hot for microbes other than hyperthermophiles. The platy calcite crystals in the Kenyan travertines are morphologically similar to platy calcite crystals that form as scale in pipes in the geothermal fields of New Zealand and hydrothermal angel wing calcite from the La Fe mine in Mexico. Comparison of the Kenyan and New Zealand crystals indicates that platy calcite crystals form from waters with a low Ca{sup 2+} content and a high CO{sub 3}/Ca ratio due to rapid rates of CO{sub 2} degassing.

  6. Orientation with a Viking sun-compass, a shadow-stick, and two calcite sunstones under various weather conditions.

    Science.gov (United States)

    Bernáth, Balázs; Blahó, Miklós; Egri, Adám; Barta, András; Kriska, György; Horváth, Gábor

    2013-09-01

    It is widely accepted that Vikings used sun-compasses to derive true directions from the cast shadow of a gnomon. It has been hypothesized that when a cast shadow was not formed, Viking navigators relied on crude skylight polarimetry with the aid of dichroic or birefringent crystals, called "sunstones." We demonstrate here that a simple tool, that we call "shadow-stick," could have allowed orientation by a sun-compass with satisfying accuracy when shadows were not formed, but the sun position could have reliably been estimated. In field tests, we performed orientation trials with a set composed of a sun-compass, two calcite sunstones, and a shadow-stick. We show here that such a set could have been an effective orientation tool for Vikings only when clear, blue patches of the sky were visible.

  7. Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1996-01-01

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In some cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.

  8. Accurate measurement of the main refractive indices and thermo-optical coefficients of the calcite crystal

    Institute of Scientific and Technical Information of China (English)

    Shuang Zhao; Fuquan Wu; Haifeng Wang; Weigang Zhong; Xiuzhen Li; Hengjing Tang; Meng Shi; Hongyan Deng

    2007-01-01

    The main refractive indices of calcite crystal are measured by the means of auto-collimation, and the thermo-optical coefficients are calculated. The coefficient expression of Sellmeier equation is obtained by solving Sellmeier equation strictly and the refractive indices of different wavelengths are calculated, which accord with experimental esultsery well. The measured main refractive indices of calcite at 488-nm wavelength are identical with the values obtained by Sellmeier equation.

  9. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product.

  10. Morphological and mechanical characterization of composite calcite/SWCNT-COOH single crystals.

    Science.gov (United States)

    Calvaresi, Matteo; Falini, Giuseppe; Pasquini, Luca; Reggi, Michela; Fermani, Simona; Gazzadi, Gian Carlo; Frabboni, Stefano; Zerbetto, Francesco

    2013-08-01

    A growing number of classes of organic (macro)molecular materials have been trapped into inorganic crystalline hosts, such as calcite single crystals, without significantly disrupting their crystalline lattices. Inclusion of an organic phase plays a key role in enhancing the mechanical properties of the crystals, which are believed to share structural features with biogenic minerals. Here we report the synthesis and mechanical characterization of composite calcite/SWCNT-COOH single crystals. Once entrapped into the crystals SWCNT-COOH appeared both as aggregates of entangled bundles and nanoropes. Their observation was possible only after crystal etching, fracture or FIB (focused ion beam) cross-sectioning. SWCNT-COOHs occupied a small volume fraction and were randomly distributed into the host crystal. They did not strongly affect the crystal morphology. However, although the Young's modulus of composite calcite/SWCNT-COOH single crystals was similar to that of pure calcite their hardness increased by about 20%. Thus, SWCNT-COOHs provide an obstacle against the dislocation-mediated propagation of plastic deformation in the crystalline slip systems, in analogy with the well-known hardness increase in fiber-reinforced composites.

  11. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers.

    Science.gov (United States)

    Ihli, Johannes; Clark, Jesse N; Côté, Alexander S; Kim, Yi-Yeoun; Schenk, Anna S; Kulak, Alexander N; Comyn, Timothy P; Chammas, Oliver; Harder, Ross J; Duffy, Dorothy M; Robinson, Ian K; Meldrum, Fiona C

    2016-01-01

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates. PMID:27302863

  12. In situ AFM crystal growth and dissolution study of calcite in the presence of aqueous fluoride

    Science.gov (United States)

    Vavouraki, A.; Putnis, C. V.; Putnis, A.; Koutsoukos, P. G.

    2009-04-01

    Fluoride is naturally abundant, encountered in rocks, soil and fresh and ocean water. Calcite crystals, during crystal growth may incorporate fluoride ions into their lattice (Okumura et al., 1983). In situ atomic force microscopy (AFM) has been used to study the growth and dissolution of calcite {104} surfaces in aqueous solutions in the presence of fluoride, using a fluid cell in which the supersaturated and the understaturated solutions respectively, flow over a freshly cleaved calcite crystal. For growth experiments, supersaturation index (S.I.) with respect to calcite was equal to 0.89 and the initial solution pH 10.2. The crystal growth rates were measured from the closure of the rhombohedral etch pits along the [010] direction induced by an initial dissolution step using pure water. The spreading rate of 2-dimensional nuclei was also measured along the same direction. In the presence of low fluoride concentrations (≤0.33 mM), the crystal growth rate of calcite was unaffected. At higher concentrations (up to 5 mM) growth rate decreased substantially to 50% of the rate in the absence of fluoride. Potential fluoride sorption over the calcite surface may ascribe the decrease of growth rates. Dissolution experiments were conducted at pH= 7.2 and dissolution rates of calcite were measured from the spreading of rhombohedral etch pits along both [010] and [42] directions. The presence of low concentrations of fluoride (≤1.1 mM) in the undersaturated solutions enhanced the dissolution rate along the [42] direction by 50% in comparison with pure water. The morphology of rhombohedral etch pits changed to hexagonal in the presence of fluoride in the undersaturated solutions. The AFM dissolution experiments suggested that the fluoride ions adsorbed onto the calcite surface. Further increase of fluoride concentrations (up to 1.6 mM) resulted in the decrease of the calcite dissolution rate by 60% in both [010] and [42] directions. Reference: Okumura, M, Kitano, Y

  13. Study on vibrational modes by group theory and infrared spectra by D FT for calcite crystal

    Institute of Scientific and Technical Information of China (English)

    Danhua Lou; Fengjiu Sun; Lijuan Li

    2007-01-01

    The factor group symmetry analysis (FSA) method and position symmetry analysis (PSA) method are used to analyze the vibrational modes of calcite (CaCO3) crystal, respectively. With the activated results of infrared and Raman spectra presented, strong points of each method are concluded. The infrared spectra are studied by using dynamics calculations based on density-functional theory (DFT) with the supercell model of calcite crystal. The frequencies of 27 normal modes are achieved, which are consistent with that by the group symmetry analysis very well, and fit with the experimental results better than the lattice dynamical methods.

  14. From nanometer aggregates to micrometer crystals: Insight into the coarsening mechanism of calcite

    OpenAIRE

    Schultz L.N., Dideriksen K., Lakshtanov L., Hakim S.S., Müter D., Haußer F., Bechgaard K. and Stipp S.L.S.

    2013-01-01

    Grain size increases when crystals respond to dynamic equilibrium in a saturated solution. The pathway to coarsening is generally thought to be driven by Ostwald ripening, that is, simultaneous dissolution and reprecipitation, but models to describe Ostwald ripening neglect solid−solid interactions and crystal shapes. Grain coarsening of calcite, CaCO3, is relevant for biomineralization and commercial products and is an important process in diagenesis of ...

  15. Morphological tranformation of calcite crystal growth by prismatic "acidic" polypeptide sequences.

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I; Giocondi, J L; Orme, C A; Collino, J; Evans, J S

    2007-02-13

    Many of the interesting mechanical and materials properties of the mollusk shell are thought to stem from the prismatic calcite crystal assemblies within this composite structure. It is now evident that proteins play a major role in the formation of these assemblies. Recently, a superfamily of 7 conserved prismatic layer-specific mollusk shell proteins, Asprich, were sequenced, and the 42 AA C-terminal sequence region of this protein superfamily was found to introduce surface voids or porosities on calcite crystals in vitro. Using AFM imaging techniques, we further investigate the effect that this 42 AA domain (Fragment-2) and its constituent subdomains, DEAD-17 and Acidic-2, have on the morphology and growth kinetics of calcite dislocation hillocks. We find that Fragment-2 adsorbs on terrace surfaces and pins acute steps, accelerates then decelerates the growth of obtuse steps, forms clusters and voids on terrace surfaces, and transforms calcite hillock morphology from a rhombohedral form to a rounded one. These results mirror yet are distinct from some of the earlier findings obtained for nacreous polypeptides. The subdomains Acidic-2 and DEAD-17 were found to accelerate then decelerate obtuse steps and induce oval rather than rounded hillock morphologies. Unlike DEAD-17, Acidic-2 does form clusters on terrace surfaces and exhibits stronger obtuse velocity inhibition effects than either DEAD-17 or Fragment-2. Interestingly, a 1:1 mixture of both subdomains induces an irregular polygonal morphology to hillocks, and exhibits the highest degree of acute step pinning and obtuse step velocity inhibition. This suggests that there is some interplay between subdomains within an intra (Fragment-2) or intermolecular (1:1 mixture) context, and sequence interplay phenomena may be employed by biomineralization proteins to exert net effects on crystal growth and morphology.

  16. Liquid crystal orientation control in photonic liquid crystal fibers

    Science.gov (United States)

    Chychlowski, M. S.; Nowinowski-Kruszelnicki, E.; Woliński, T. R.

    2011-05-01

    Similarly to liquid crystal displays technology in photonic liquid crystal fibers (PLCFs) a molecular orientation control is a crucial issue that influences proper operation of PLCF-based devices. The paper presents two distinct configurations: planar and radial escaped orientation of the LC molecules inside capillaries as well as methods of their application to photonic liquid crystal fibers. Possibilities of LC orientation control influence both: attenuation and transmitting spectra of the PLCF The orienting method is based on creation of an additional orienting layer on the inner surface of the capillary or air hole of the photonic liquid crystal fiber. Aligning materials used in the experiment are commercially available polyimides SE1211 and SE130 which induce liquid crystal homeotropic and planar anchoring conditions. The orienting layer increase an order parameter of the liquid crystal improving propagation properties and stability of photonic liquid crystal fiber-based devices.

  17. Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions

    Science.gov (United States)

    Pippinger, T.; Miletich, R.; Merlini, M.; Lotti, P.; Schouwink, P.; Yagi, T.; Crichton, W. A.; Hanfland, M.

    2015-01-01

    High-pressure phase transformations between the polymorphic forms I, II, III, and IIIb of CaCO3 were investigated by analytical in situ high-pressure high-temperature experiments on oriented single-crystal samples. All experiments at non-ambient conditions were carried out by means of Raman scattering, X-ray, and synchrotron diffraction techniques using diamond-anvil cells in the pressure range up to 6.5 GPa. The composite-gasket resistive heating technique was applied for all high-pressure investigations at temperatures up to 550 K. High-pressure Raman spectra reveal distinguishable characteristic spectral differences located in the wave number range of external modes with the occurrence of band splitting and shoulders due to subtle symmetry changes. Constraints from in situ observations suggest a stability field of CaCO3-IIIb at relatively low temperatures adjacent to the calcite-II field. Isothermal compression of calcite provides the sequence from I to II, IIIb, and finally, III, with all transformations showing volume discontinuities. Re-transformation at decreasing pressure from III oversteps the stability field of IIIb and demonstrates the pathway of pressure changes to determine the transition sequence. Clausius-Clapeyron slopes of the phase boundary lines were determined as: Δ P/Δ T = -2.79 ± 0.28 × 10-3 GPa K-1 (I-II); +1.87 ± 0.31 × 10-3 GPa K-1 (II/III); +4.01 ± 0.5 × 10-3 GPa K-1 (II/IIIb); -33.9 ± 0.4 × 10-3 GPa K-1 (IIIb/III). The triple point between phases II, IIIb, and III was determined by intersection and is located at 2.01(7) GPa/338(5) K. The pathway of transition from I over II to IIIb can be interpreted by displacement with small shear involved (by 2.9° on I/II and by 8.2° on II/IIIb). The former triad of calcite-I corresponds to the [20-1] direction in the P21/ c unit cell of phase II and to [101] in the pseudomonoclinic C setting of phase IIIb. Crystal structure investigations of triclinic CaCO3-III at non-ambient pressure

  18. Semiconductor monolayer assemblies with oriented crystal faces

    KAUST Repository

    Ma, Guijun

    2012-01-01

    Fabrication of two-dimensional monolayers of crystalline oxide and oxynitride particles was attempted on glass plate substrates. X-Ray diffraction patterns of the assemblies show only specific crystal facets, indicative of the uniform orientation of the particles on the substrate. The selectivity afforded by this immobilization technique enables the organization of randomly distributed polycrystalline powders in a controlled manner.

  19. Characteristic crystal orientation of folia in oyster shell, Crassostrea gigas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Woo [Department of Chemical and Biomolecular Engineering, Sogang University, Seoul (Korea, Republic of); Kim, Gyeung Ho [Nano-Materials Reserch Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Choi, Cheong Song [Department of Chemical and Biomolecular Engineering, Sogang University, Seoul (Korea, Republic of)], E-mail: cschoi@sogang.ac.kr

    2008-03-10

    The thin sheets of calcite, termed folia, that make up much of the shell of an oyster are composed of foliated lath. Folia of the giant Pacific oyster (Crassostrea gigas) were examined using TEM (transmission electron microscopy) and tested using microindentation and nanoindentation techniques. Analysis of the Kikuchi patterns obtained from the folia showed that there are two types (type I and type II) of preferred orientation, with an angle of around 70{sup o} between them. Nanoindentation tests showed that the folia exhibit a hardness of about 3 GPa and elastic modulus of about 73 GPa. Microcracks were generated using a microindenter in order to study the fracture mechanisms of the folia. Following on from these investigations, fracture mechanisms are discussed in conjunction with the correlation between preferred orientation and structural characteristics during cracking of the folia. Comparing the morphology and the polymorphism with nacre (also known as mother of pearl), the advantages of the relatively fast crystal growth and less amount of organic matrix in folia may have interesting implications for the development of sophisticated synthetic materials.

  20. Control of liquid crystal molecular orientation using ultrasound vibration

    Science.gov (United States)

    Taniguchi, Satoki; Koyama, Daisuke; Shimizu, Yuki; Emoto, Akira; Nakamura, Kentaro; Matsukawa, Mami

    2016-03-01

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5-25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distribution of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.

  1. Magnetostriction of Fe81Ga19 oriented crystals

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Bin; Liu Jing-Hua; Jiang Cheng-Bao

    2010-01-01

    The effect of the orientation on the magnetostrietion in Fe81Ga19 alloy has been investigated experimentally and theoretically. The Fe81Ga19[001]and[110]oriented crystals were prepared and the magnetostriction was measured under different pre-stress. The saturation magnetostriction of the[001]oriented crystal increases from 170x10-6 to 330x 10-6 under the pre-stress from O to 50 Mpa. The[110]oriented crystal has a saturation magnetostriction from 20x10-6 to 140x10-6 with the compressive pre-stress from O to 40 Mpa. The magnetostriction of[001]and[110]oriented crystals has been simulated based on the phenomenological theory. The domain rotation path has been determined and the resultant magnetostrietion calculated under different pre-stress. The experimental and simulated results both show that the[001]oriented crystal exhibits better magnetostriction than[110]oriented crystal. The enhancement of the saturation magnetostriction by the compressive pre-stress in the[110]oriented crystal is higher than that in the[001]oriented crystal.

  2. Orientation-dependent impurity partitioning of colloidal crystals

    Science.gov (United States)

    Nozawa, Jun; Uda, Satoshi; Hu, Sumeng; Fujiwara, Kozo; Koizumi, Haruhiko

    2016-04-01

    Impurity partitioning during colloidal crystallization was investigated for grains with different orientations. Particles of various sizes were doped as impurities during the growth of colloidal polycrystals. The effective partition coefficient, keff, which is the impurity concentration in the solid (CS) divided by that in initial solution (CL), was measured for grains oriented in the [111] and [100] directions normal to the growth direction. The [111]-oriented grains were found to have a larger keff than [100]-oriented grains. This was analyzed by using the Thurmond and Struthers model. Though both [111]- and [100]-oriented grains were face centered cubic (fcc) structures, within several layers of crystals, the volume fraction of [111]-oriented grains was larger than that of [100]-oriented grains, yielding a larger driving force for nucleation, ΔGTr, and thus a larger equilibrium partition coefficient, k0, for [111]-oriented grains.

  3. Investigation on the Orientation Transition of Oriented Magnetostrictive TbDyFe Crystals

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; JIANG Cheng-bao

    2006-01-01

    and TbDyFe magnetostrictive oriented crystals were prepared by the zone-melting unidirectional solidification method at 240 mm/h and 720 mm/h respectively. oriented crystals were also obtained with oriented seeds with the same technique as for growing the oriented crystals. It is confirmed that this technique is stable for growing the oriented crystals in the TbDyFe alloys. Meanwhile, the variation of orientation, the solidification morphology and the magnetostriction were studied during the transition from oriented seeds to the oriented crystal growth. As the growth speeds up, the preferred orientation changed from to , and its morphology develops from of initial cellular to dendritic gradually. When an axial compressive pre-stress of 10 MPa is applied, the magnetostriction at the bottom, the middle and the top are 972×10-6, 918×10-6 and 900×10-6 at 100 mT respectively. The middle sections with mixed orientations have the same high magnetostriction performance as those with a single preferred orientation, which may be due to its celluar-dendritic morphology.

  4. Sea urchin tooth mineralization: calcite present early in the aboral plumula.

    Science.gov (United States)

    Stock, Stuart R; Veis, Arthur; Xiao, Xianghui; Almer, Jonathan D; Dorvee, Jason R

    2012-11-01

    In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: when and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron X-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth.

  5. Preparing polished crystal slices with high precision orientation

    DEFF Research Database (Denmark)

    Mathiesen, S. Ipsen; Gerward, Leif; Pedersen, O.

    1974-01-01

    A polishing procedure is described which utilizes a high precision Laue technique for crystal orientation. Crystal slices with their final polished surfaces parallel to a crystallographic plane within 0.02° can be prepared. ©1974 The American Institute of Physics......A polishing procedure is described which utilizes a high precision Laue technique for crystal orientation. Crystal slices with their final polished surfaces parallel to a crystallographic plane within 0.02° can be prepared. ©1974 The American Institute of Physics...

  6. CRYSTALLIZATION BEHAVIOR OF POLYLACTIDE ON HIGHLY ORIENTED POLYETHYLENE THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    Yu-kuan An; Shi-dong Jiang; Shou-ke Yan; Jing-ru Sun; Xue-si Chen

    2011-01-01

    The crystalline structure and morphology of the PLA crystallized isothermally from the glassy state on highly oriented PE substrates at 130℃ were investigated by means of optical microscopy, AFM and X-ray diffraction. The results indicate that the PE substrate influences the crystallization behavior of PLA remarkably, which leads to the growth of PLA crystals on PE substrate always in edge-on form rather than the twisted lamellar crystals from edge-on to flat-on when crystallizing the PLA on glass surface under the same condition. The edge-on PLA lamellae on the PE substrate are preferentially arranged with their long axes in the chain direction of the PE substrate crystals. It is further demonstrated that except for the different crystal orientation, the PE does not influence the crystalline modification and crystallinity of the PLA.

  7. Calcite sealing in a fractured geothermal reservoir: Insights from combined EBSD and chemistry mapping

    Science.gov (United States)

    McNamara, David D.; Lister, Aaron; Prior, Dave J.

    2016-09-01

    Fractures play an important role as fluid flow pathways in geothermal resources hosted in indurated greywacke basement of the Taupo Volcanic Zone, New Zealand, including the Kawerau Geothermal Field. Over time, the permeability of such geothermal reservoirs can be degraded by fracture sealing as minerals deposit out of transported geothermal fluids. Calcite is one such fracture sealing mineral. This study, for the first time, utilises combined data from electron backscatter diffraction and chemical mapping to characterise calcite vein fill morphologies, and gain insight into the mechanisms of calcite fracture sealing in the Kawerau Geothermal Field. Two calcite sealing mechanisms are identified 1) asymmetrical syntaxial growth of calcite, inferred by the presence of single, twinned, calcite crystals spanning the entire fracture width, and 2) 3D, interlocking growth of bladed vein calcite into free space as determined from chemical and crystallographic orientation mapping. This study also identifies other potential uses of combined EBSD and chemical mapping to understand geothermal field evolution including, potentially informing on levels of fluid supersaturation from the study of calcite lattice distortion, and providing information on a reservoir's history of stress, strain, and deformation through investigation of calcite crystal deformation and twinning patterns.

  8. Unified rotational dynamics of molecular crystals with orientational phase transition

    NARCIS (Netherlands)

    Michel, K.H.; Raedt, H. De

    1976-01-01

    A unified theory for the rotational dynamics of molecular crystals with orientational phase transitions is given. As basic secular variables one takes symmetry adapted functions, which describe the molecular orientations, and the angular momenta of the molecules. Using Mori’s projection operator tec

  9. Crystal-Orientation Dependent Evolution of Edge Dislocations from a Void in Single Crystal Gu

    Institute of Scientific and Technical Information of China (English)

    SONG Zhen-Fei; ZHU Wen-Jun; DENG Xiao-Liang; HE Hong-Liang

    2006-01-01

    @@ The micro-void growth by dislocation emission under tensile loading is explored with focus on the influence of crystal orientations. Based on the elastic theory, a dislocation emission criterion is formulated. It is predicted that the preferential location of dislocation nucleation and its threshold stress are dependent on the crystal orientation.Large-scale molecular dynamics (MD) simulations are also performed for single crystal copper to illustrate the dislocation evolution pattern associated with a nano-void growth. The results are in line with those given by the theoretical prediction. As revealed by MD simulations, the characteristics of void growth at micro-scale depend greatly on the crystal-orientation.

  10. The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization.

    Science.gov (United States)

    Gong, Xiuqing; Wang, Yun-Wei; Ihli, Johannes; Kim, Yi-Yeoun; Li, Shunbo; Walshaw, Richard; Chen, Li; Meldrum, Fiona C

    2015-12-01

    A "crystal hotel" microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals. PMID:26479157

  11. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Science.gov (United States)

    Zhu, Aibin; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-01

    The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[-211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[-211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  12. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2013-02-06

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature of the laser deposition process on LaAlO3 (100) substrates. The change in surface termination of the LaAlO3 substrate with temperature induces a change in AZO film orientation. The anisotropic nature of electrical conductivity and Seebeck coefficient of the AZO films showed a favored thermoelectric performance in c-axis oriented films. These films gave the highest power factor of 0.26 W m−1 K−1 at 740 K.

  13. Director orientation of nematic liquid crystal using orientated nanofibers obtained by electrospinning

    Science.gov (United States)

    Toan, Duong Quoc; Ozaki, Ryotaro; Moritake, Hiroshi

    2014-01-01

    Nanofibers with diameters less than 1000 nm assembled by electrospinning and with a large surface area per unit mass have been attracting considerable attention and are expected to affect the orientation of liquid crystals (LCs). Firstly, to determine the orientated nanofibers on an indium-tin-oxide (ITO) glass surface, the spectral analysis technique of using fast Fourier transform is applied. Optical observation is performed to confirm the orientation of LC molecules in a twisted nematic LC cell. Finally, optical measurement of an LC cell is carried out to estimate the threshold voltage of the LC in two types of twisted nematic LC cell: one with rubbed polyimide and the other with orientated nanofibers as the alignment layer. A twisted nematic LC is oriented in the cell using orientated nanofibers as the alignment layer and the threshold voltage of this cell agrees with that of the conventional polyimide rubbed cell.

  14. Crystal orientation effects on wurtzite quantum well electromechanical fields

    DEFF Research Database (Denmark)

    Duggen, Lars; Willatzen, Morten

    2010-01-01

    A one-dimensional continuum model for calculating strain and electric field in wurtzite semiconductor heterostructures with arbitrary crystal orientation is presented and applied to GaN/AlGaN and ZnO/MgZnO heterostructure combinations. The model is self-consistent involving feedback couplings of...

  15. Deformation microstructure and orientation of F.C.C. crystals

    DEFF Research Database (Denmark)

    Liu, Q.; Hansen, N.

    1995-01-01

    The effect of crystallographic orientation on the microstructural evolution in f.c.c. metals with medium to high stacking fault energy is analyzed. This analysis is based on a literature review of the behaviour of single crystals and polycrystals supplemented with an experimental study of cold...

  16. Direction-specific interactions control crystal growth by oriented attachment

    DEFF Research Database (Denmark)

    Li, Dongsheng; Nielsen, Michael H; Lee, Jonathan R.I.;

    2012-01-01

    The oriented attachment of molecular clusters and nanoparticles in solution is now recognized as an important mechanism of crystal growth in many materials, yet the alignment process and attachment mechanism have not been established. We performed high-resolution transmission electron microscopy...... using a fluid cell to directly observe oriented attachment of iron oxyhydroxide nanoparticles. The particles undergo continuous rotation and interaction until they find a perfect lattice match. A sudden jump to contact then occurs over less than 1 nanometer, followed by lateral atom-by-atom addition...... initiated at the contact point. Interface elimination proceeds at a rate consistent with the curvature dependence of the Gibbs free energy. Measured translational and rotational accelerations show that strong, highly direction-specific interactions drive crystal growth via oriented attachment....

  17. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment

    Science.gov (United States)

    Li, Dongsheng; Nielsen, Michael H.; Lee, Jonathan R. I.; Frandsen, Cathrine; Banfield, Jillian F.; De Yoreo, James J.

    2012-05-01

    The oriented attachment of molecular clusters and nanoparticles in solution is now recognized as an important mechanism of crystal growth in many materials, yet the alignment process and attachment mechanism have not been established. We performed high-resolution transmission electron microscopy using a fluid cell to directly observe oriented attachment of iron oxyhydroxide nanoparticles. The particles undergo continuous rotation and interaction until they find a perfect lattice match. A sudden jump to contact then occurs over less than 1 nanometer, followed by lateral atom-by-atom addition initiated at the contact point. Interface elimination proceeds at a rate consistent with the curvature dependence of the Gibbs free energy. Measured translational and rotational accelerations show that strong, highly direction-specific interactions drive crystal growth via oriented attachment.

  18. The Effect of Orientation Relaxation on Polymer Melt Crystallization Studied by Monte Carlo Simulations

    Institute of Scientific and Technical Information of China (English)

    WANG Mao-Xiang

    2009-01-01

    We use dynamic Monte Carlo simulations to study the athermal relaxation of bulk extended chains and the isothermal crystallization in intermediately relaxed melts. It is found that the memory of chain orientations in the melt can significantly enhance the crystallization rates. The crystal orientation and lamellar thickness essentially depend on the orientational relaxation. Moreover, there is a transition of the nucleation mechanism during the isothermal crystallization from the intermediately relaxed melts. These results explain the mechanism of the self-nucleation by orientation and suggest that in flow-induced polymer crystallization, the orientational relaxation of chains decides the crystal orientation.

  19. Uncertainty in Ice Crystal Orientation Distributions in Ice Sheets

    Science.gov (United States)

    Hay, Michael; Waddington, Edwin

    2016-04-01

    Crystal-orientation fabrics in polar ice sheets have a strong influence on ice flow due to the plastic anisotropy of ice. Crystal orientations evolve primarily in response to applied strain, but are also affected by temperature, impurities, interactions with neighbors, and other factors. While the evolution of each ice crystal is physically deterministic, in limited samples, such as those from ice-core thin sections, measured samples are stochastic due to sampling error. Even in continuum representations from models, crystal orientation distribution functions (ODFs) can be treated as stochastic due to uncertainties in how they developed. Here, we present results on the statistics of crystal orientation fabrics. We show a first-order estimate of the sampling distribution of fabric eigenvalues and fabric eigenvectors from ice-core thin sections. We also analyze uncertainty in electron backscatter diffraction measurements. In addition to sampling error, the strain histories of fabrics are generally poorly constrained, and may have varied in unknown ways through time. Nearby layers in ice sheets can also experience different strain histories due to inherent variabilities such as transient flow, or differences in impurities. This means that the continuum ODF itself can be treated as stochastic, because it depends on an effectively-stochastic unknown strain-history. To explore this, we analyze the effects of strain and vorticity variability on the evolution of the continuum ice-crystal ODF. We recast Jeffery's equation for the evolution of the ODF as a stochastic differential equation, with vorticity and strain perturbed by Gaussian processes. From this, we run a Monte-Carlo ensemble to determine likely bounds of true continuum ODF variability in response to random perturbations of strain and vorticity.

  20. Composite Magnetite and Protein Containing CaCO3 Crystals. External Manipulation and Vaterite → Calcite Recrystallization-Mediated Release Performance.

    Science.gov (United States)

    Sergeeva, Alena; Sergeev, Roman; Lengert, Ekaterina; Zakharevich, Andrey; Parakhonskiy, Bogdan; Gorin, Dmitry; Sergeev, Sergey; Volodkin, Dmitry

    2015-09-30

    Biocompatibility and high loading capacity of mesoporous CaCO3 vaterite crystals give an option to utilize the polycrystals for a wide range of (bio)applications. Formation and transformations of calcium carbonate polymorphs have been studied for decades, aimed at both basic and applied research interests. Here, composite multilayer-coated calcium carbonate polycrystals containing Fe3O4 magnetite nanoparticles and model protein lysozyme are fabricated. The structure of the composite polycrystals and vaterite → calcite recrystallization kinetics are studied. The recrystallization results in release of both loaded protein and Fe3O4 nanoparticles (magnetic manipulation is thus lost). Fe3O4 nanoparticles enhance the recrystallization that can be induced by reduction of the local pH with citric acid and reduction of the polycrystal crystallinity. Oppositely, the layer-by-layer assembled poly(allylamine hydrochloride)/poly(sodium styrenesulfonate) polyelectrolyte coating significantly inhibits the vaterite → calcite recrystallization (from hours to days) most likely due to suppression of the ion exchange giving an option to easily tune the release kinetics for a wide time scale, for example, for prolonged release. Moreover, the recrystallization of the coated crystals results in formulation of multilayer capsules keeping the feature of external manipulation. This study can help to design multifunctional microstructures with tailor-made characteristics for loading and controlled release as well as for external manipulation.

  1. Orientational bistability in ferronematic liquid crystals with negative diamagnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Zakhlevnykh, A.N., E-mail: anz@psu.ru; Petrov, D.A.

    2015-11-01

    In the framework of continuum theory we study magnetic field induced orientational transitions in a ferronematic, i.e. suspension of single-domain magnetic particles in a nematic liquid crystal. We consider the case of negative diamagnetic susceptibility anisotropy of a liquid crystal and soft planar coupling of impurity particles with a liquid crystal matrix. We found tricritical behavior of the threshold transition in a magnetic field from perturbed state into uniform planar state. This transition can be the first or second order, depending on the parameter of the magnetic phase segregation. We analytically derive the expression for the tricritical segregation parameter that determines the character of a transition. We show that ferronematic has a large magneto-optical non-linearity which is the result of the director reorientation under external field. Comparison of results of numerical calculations with experimental data has been carried out. - Highlights: • We study orientational and magnetooptical properties of ferronematics. • We obtain the phase diagram for soft coupling of nanoparticles and liquid crystal. • We examine the character of magnetic field induced orientational transitions. • We found tricritical behavior of the transition from perturbed to uniform state. • We study the optical phase lag and the capacity of ferronematic cell.

  2. Effect of the Surface Affinity of Liquid Crystals and Monomers on the Orientation of Polymer-Dispersed Liquid Crystal

    Science.gov (United States)

    Lee, Ji-Hoon; Yoon, Tae-Hoon

    2013-09-01

    We investigated the effect of the surface affinity of liquid crystals and reactive monomers on liquid crystal orientation. Liquid crystals and monomers having different contact angles with the vertical alignment polyimide were mixed and photo-polymerized using a UV light. Liquid crystals with smaller contact angles and reactive monomers with greater contact angles promoted a uniform vertical orientation of liquid crystals with a vertical polymer morphology. On the other hand, liquid crystals with greater contact angles and monomers with smaller contact angles resulted in a deformed liquid crystal orientation with an elliptical polymer structure.

  3. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    Science.gov (United States)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  4. Calcite growth kinetics: Modeling the effect of solution stoichiometry

    NARCIS (Netherlands)

    Wolthers, M.; Nehrke, G.; Gustafsson, J.P.; Van Cappellen, P.

    2012-01-01

    Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth rat

  5. Oriented growth and assembly of zeolite crystals on substrates

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ming; ZHANG BaoQuan; LIU XiuFeng

    2008-01-01

    The aligned array and thin film of zeolites and molecular sieves possess a variety of potential applica-tions in membrane separation and catalysis, chemical sensors, and microelectronic devices. There are two main synthesis methods for manufacturing the aligned arrays and thin films of zeolites and mo-lecular sieves, i.e. in situ hydrothermal reaction and self-assembly of crystal grains on substrates. Both of them have attracted much attention in the scientific community worldwide. A series of significant progress has been made in recent years. By the in situ hydrothermal synthesis, the oriented nucleation and growth of zeolite and molecular sieve crystals can be achieved by modifying the surface properties of substrates or by changing the composition of synthesis solutions, leading to the formation of uni-formly oriented multicrystal-aligned arrays or thin films. On the other hand, the crystal grains of zeo-lites and molecular sieves can be assembled onto the substrate surface in required orientation using different bondages, for instance, the microstructure in the array or thin film can be controlled. This review is going to summarize and comment the significant results and progress reported recently in manufacturing highly covered and uniformly aligned arrays or thin films of zeolites and molecular sieves. It involves (1) in situ growth of highly aligned zeolite arrays and thin films via embedding func-tional groups on the substrate surface, modifying the surface microstructure of substrates, as well as varying the composition of synthesis solutions; (2) assembly of zeolite and molecular sieve crystals on various substrates to form aligned arrays and thin films with full coverage by covalent, ionic, and in-termolecular coupling interactions between crystals and substrates; (3) coupling surface assembly with microcontact printing or photoetching technique to produce patterned zeolite arrays and thin films. Finally, the functionality and applications of zeolite

  6. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    Science.gov (United States)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  7. Micromechanical Behavior of Single-Crystal Superalloy with Different Crystal Orientations by Microindentation

    Directory of Open Access Journals (Sweden)

    Jinghui Li

    2015-01-01

    Full Text Available In order to investigate the anisotropic micromechanical properties of single-crystal nickel-based superalloy DD99 of four crystallographic orientations, (001, (215, (405, and (605, microindentation test (MIT was conducted with different loads and loading velocities by a sharp Berkovich indenter. Some material parameters reflecting the micromechanical behavior of DD99, such as microhardness H, Young’s modulus E, yield stress σy, strain hardening component n, and tensile strength σb, can be obtained from load-displacement relations. H and E of four different crystal planes evidently decrease with the increase of h. The reduction of H is due to dislocation hardening while E is related to interplanar spacing and crystal variable. σy of (215 is the largest among four crystal planes, followed by (605, and (001 has the lowest value. n of (215 is the lowest, followed by (605, and that of (001 is the largest. Subsequently, a simplified elastic-plastic material model was employed for 3D microindentation simulation of DD99 with various crystal orientations. The simulation results agreed well with experimental, which confirmed the accuracy of the simplified material model.

  8. Simulation of lattice orientation effects on void growth and coalescence by crystal plasticity

    Institute of Scientific and Technical Information of China (English)

    Mei YANG; Xianghuai DONG

    2009-01-01

    A three dimensional rate-dependent crystal plasticity model is applied to study the influence of crystal orientation and grain boundary on the void growth and coales- cence. The 3D computational model is a unit cell including one sphere void or two sphere voids. The results of three different orientations for single crystal and bicrystals are compared. It is found that crystallographic orientation has noticeable influences on the void growth directionvoid shape, and void coalescence of single crystal. The void growth rate of bicrystals depends on the crystallographic orientations and grain bounldary direction.

  9. Surface-induced and oriented textures of smectic liquid crystals: effect of thin films

    International Nuclear Information System (INIS)

    In this work, the effect of YBa2Cu3O7-x complex compound thin films on the morphological, thermotropical, optical and orientational properties of smectic liquid crystals have been studied. The peculiarities of surface-induced textures and dynamics of their temperature transformations have been investigated. Stable, homogeneous and reproducible oriented textures of smectic liquid crystals have been obtained

  10. Orientation of crystals in alanine dosimeter assessed by DRS, as seen in EPR spectra evaluation

    International Nuclear Information System (INIS)

    The alanine dosimeter made for evaluation by diffuse light reflection spectrophotometry (ALA/DRS) does not show the effect of orientation of crystals. Supposed deviation from random orientation has been investigated by EPR spectroscopy. EPR investigation shows that in spite of the very fine size of L-alanine crystals, they are oriented in thin layers of the polyethylene matrix. Specially prepared films with deliberately well oriented crystals have confirmed this observation. Our ALA/DRS dosimeter can be evaluated by the EPR method for the concentration of free radicals, providing that the dominating crystal orientation in the dosimetric film is indicated on it as an arrow, and the sample is inserted into the magnetic cavity always in the same orientation as has been done during the calibration operation. (author). 6 refs., 2 figs

  11. Microstructural analysis of calcite-filled fractures inherited from basement structures, southern Ontario, Canada: long term instability of the craton?

    Science.gov (United States)

    Spalding, Jennifer; Schneider, David

    2016-04-01

    Intra-cratonic regions are generally characterized by tectonic stability and low seismicity. In southern Ontario, Canada, moderate levels of seismicity have been recorded over the last few decades reaching magnitudes of 5 MN, indicating that the geosphere is not as stable as predicted. The stratigraphy of the region consists of Ordovician limestone with a thickness of ~200 m that unconformably overlays the Mesoproterozoic crystalline Grenville Province. Subsequent tectonism including repeated Paleozoic orogenies and rifting along the east coast of North America has reactivated Proterozoic structures that have propagated into the overlying carbonate platform forming mesoscopic-scale brittle structures. Exposed along the shores of Lake Ontario are decameter-scale fracture zones, with a fracture spacing of 0.5 to 10 meters. The dominant fracture set trends E-W, and often forms conjugate sets with less prominent NNE-oriented fractures. More locally, an older NW-oriented fracture set is cross cut by the E-W and NNE oriented fractures. Regionally, there have been six directions of maximum horizontal stress in southern Ontario since the Precambrian, with the current orientation of maximum stress oriented ENE as a consequence of far field Atlantic ridge-push forces generated at distant plate boundaries. Calcite mineralization along fractured surfaces locally form sub-horizontal slickenside fabrics which are covered by a layer of euhedral calcite crystals, suggesting that fracture dilation (and fluid flow) occurred after fracture slip to allow the growth of calcite crystals. Due to the proximity of the carbonate units to the crystalline basement, we expect the calcitic veins to be enriched in rare earth elements and are presently conducting geochemical analyses. The calcite veins and surfaces vary from 2.5 cm to 1 mm thicknesses, often with larger calcite crystals in the center of the vein and smaller crystals at the vein boundaries, likely representing nucleation on small

  12. Below-bandgap second harmonic generation in GaAs photonic crystal cavites in (111)B and (001) crystal orientations

    CERN Document Server

    Buckley, Sonia; Petykiewicz, Jan; Lagoudakis, Konstantinos G; Kang, Ju-Hyung; Brongersma, Mark; Biermann, Klaus; Vuckovic, Jelena

    2014-01-01

    We demonstrate second harmonic generation in photonic crystal cavities in (001) and (111)B oriented GaAs. The fundamental resonance is at 1800 nm, leading to second harmonic below the GaAs bandgap. Below-bandgap operation minimizes absorption of the second harmonic and two photon absorption of the pump. Photonic crystal cavities were fabricated in both orientations at various in-plane rotations of the GaAs substrate. The rotation dependence and farfield patterns of the second harmonic match simulation. We observe similar maximum efficiencies of 1.2 %/W in (001) and (111)B oriented GaAs.

  13. Influence of surfactant tail branching and organization on the orientation of liquid crystals at aqueous-liquid crystal interfaces.

    Science.gov (United States)

    Lockwood, Nathan A; de Pablo, Juan J; Abbott, Nicholas L

    2005-07-19

    We have examined the influence of two aspects of surfactant structure--tail branching and tail organization--on the orientational ordering (so-called anchoring) of water-immiscible, thermotropic liquid crystals in contact with aqueous surfactant solutions. First, we evaluated the influence of branches in surfactant tails on the anchoring of nematic liquid crystals at water-liquid crystal interfaces. We compared interfaces that were laden with one of three linear surfactants (sodium dodecyl sulfate, sodium dodecanesulfonate, and isomerically pure linear sodium dodecylbenzenesulfonate) to interfaces laden with branched sodium dodecylbenzenesulfonate. We carried out these experiments at 60 degrees C, above the Krafft temperatures of all the surfactants studied, and used the liquid crystal TL205 (a mixture of cyclohexane-fluorinated biphenyls and fluorinated terphenyls), which forms a nematic phase at 60 degrees C. Linear surfactants caused TL205 to assume a perpendicular orientation (homeotropic anchoring) above a threshold concentration of surfactant and parallel orientation (planar anchoring) at lower concentrations. In contrast, branched sodium dodecylbenzenesulfonate caused planar anchoring of TL205 at all concentrations up to the critical micelle concentration of the surfactant. Second, we used sodium dodecanesulfonate and a commercial linear sodium dodecylbenzenesulfonate to probe the influence of surfactant tail organization on the orientations of liquid crystals at water-liquid crystal interfaces. Commercial linear sodium dodecylbenzenesulfonate, which comprises a mixture of ortho and para isomers, has been previously characterized to form less ordered monolayers than sodium dodecanesulfonate at oil-water interfaces at room temperature. We found sodium dodecanesulfonate to cause homeotropic anchoring of both TL205 and 4'-pentyl-4-cyanobiphenyl (5CB, nematic at room temperature), whereas commercial linear sodium dodecylbenzenesulfonate caused predominantly

  14. Modeling of Crystal Orientations in Laser Powder Deposition of Single Crystal Material

    Science.gov (United States)

    Qi, Huan; Liu, Zhaoyang

    This paper presents a numerical model which simulates the dynamic molten pool formation and the crystal orientations of solidified SX alloy in a multi-layer laser powder deposition process. Based on the mathematical model of coaxial laser direct deposition, the effect of parameters (laser power, scanning speed, powder feed rate) on the tendency to form [001] direction expitaxial grains during solidification was evaluated. In the transient three- dimensional model, physical phenomena including heat transfer, melting, grain formation during solidification, mass addition, and fluid flow in the melt pool, were modeled in a self-consistent manner. The temperature fields, fluid flow velocity, clad geometry (width, height and melt pool depth) and grain formation in melting pool of single layer are predicted.

  15. Crystal orientation mapping via ion channeling: An alternative to EBSD

    International Nuclear Information System (INIS)

    A new method, which we name ion CHanneling ORientation Determination (iCHORD), is proposed to obtain orientation maps on polycrystals via ion channeling. The iChord method exploits the dependence between grain orientation and ion beam induced secondary electron image contrast. At each position of the region of interest, intensity profiles are obtained from a series of images acquired with different orientations with respect to the ion beam. The profiles are then compared to a database of theoretical profiles of known orientation. The Euler triplet associated to the most similar theoretical profile gives the orientation at that position. The proof-of-concept is obtained on a titanium nitride sample. The potentialities of iCHORD as an alternative to EBSD are then discussed. - Highlights: • A new method is proposed to obtain orientation maps via ion channeling. • This method exploits the dependence between grain orientation and SE image contrast. • Intensity profiles are obtained from images acquired with different orientations. • The profiles are then compared to a database of theoretical profiles of known orientation. • The potentialities of this method as an alternative to EBSD are discussed

  16. Crystal orientation mapping via ion channeling: An alternative to EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, C.; Douillard, T.; Yuan, H. [University of Lyon – INSA de Lyon – CNRS, MATEIS, UMR 5510, Bât. Blaise Pascal, 20 Avenue Albert Einstein, 69621 Villeurbanne (France); Blanchard, N.P. [University of Lyon – CNRS, ILM, UMR 5306, Université Lyon I, Bât. A. Kastler, 10 rue A. Byron, 69622 Villeurbanne (France); Descamps-Mandine, A. [University of Lyon – CNRS, INL, UMR 5510, Bât. B. Pascal, INSA de Lyon/Université Lyon I, 69621 Villeurbanne (France); Van de Moortèle, B. [Ecole Normale Supérieure de Lyon – CNRS, LGL, 46 allée d’Italie, 69364 Lyon (France); Rigotti, C. [University of Lyon – INSA de Lyon – CNRS, LIRIS, UMR 5205, INRIA, Bât. Blaise Pascal, 20 Avenue Albert Einstein, 69621 Villeurbanne (France); Epicier, T. [University of Lyon – INSA de Lyon – CNRS, MATEIS, UMR 5510, Bât. Blaise Pascal, 20 Avenue Albert Einstein, 69621 Villeurbanne (France)

    2015-10-15

    A new method, which we name ion CHanneling ORientation Determination (iCHORD), is proposed to obtain orientation maps on polycrystals via ion channeling. The iChord method exploits the dependence between grain orientation and ion beam induced secondary electron image contrast. At each position of the region of interest, intensity profiles are obtained from a series of images acquired with different orientations with respect to the ion beam. The profiles are then compared to a database of theoretical profiles of known orientation. The Euler triplet associated to the most similar theoretical profile gives the orientation at that position. The proof-of-concept is obtained on a titanium nitride sample. The potentialities of iCHORD as an alternative to EBSD are then discussed. - Highlights: • A new method is proposed to obtain orientation maps via ion channeling. • This method exploits the dependence between grain orientation and SE image contrast. • Intensity profiles are obtained from images acquired with different orientations. • The profiles are then compared to a database of theoretical profiles of known orientation. • The potentialities of this method as an alternative to EBSD are discussed.

  17. Surface Tension Drives the Orientation of Crystals at the Air-Water Interface.

    Science.gov (United States)

    Chevalier, Nicolas R; Guenoun, Patrick

    2016-07-21

    The fabrication of oriented crystalline thin films is essential for a range of applications ranging from semiconductors to optical components, sensors, and catalysis. Here we show by depositing micrometric crystal particles on a liquid interface from an aerosol phase that the surface tension of the liquid alone can drive the crystallographic orientation of initially randomly oriented particles. The X-ray diffraction patterns of the particles at the interface are identical to those of a monocrystalline sample cleaved along the {104} (CaCO3) or {111} (CaF2) face. We show how this orientation effect can be used to produce thin coatings of oriented crystals on a solid substrate. These results also have important implications for our understanding of heterogeneous crystal growth beneath amphiphile monolayers and for 2D self-assembly processes at the air-liquid interface. PMID:27389283

  18. Influence of some crystal orientations in mechanical behaviour of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Zircaloy-4 tubing used in water cooled reactors work under biaxial loading due primarily to the circunferencial swelling of the fuel elements approximating a plane-strain behaviour. The tube is produced to have crystal orientations with high yield strengths under biaxial loading and principally in transverse plane strain. The contribution of individual crystal orientations to that specific yield strength is analysed based on crystallographic lower bound yield loci. (Author)

  19. Orientation dependence of shock induced dislocations in tantalum single crystals

    International Nuclear Information System (INIS)

    A planar shock wave with a peak pressure of 6.2 GPa and duration of 1.7 μs followed by a lateral release wave generates profuse dislocations in single crystalline tantalum. Three orientations [100], [110], [111] were tested to examine the orientation dependence of the dislocation generation. The dislocations were characterised by transmission electron microscopy. The Burgers vectors and morphology of the primary dislocations in the specimens with different orientations showed a distinct orientation dependence and will be discussed in light of the model of slip behaviour in one-dimensional strain of C.S. Smith [1

  20. Plasmonic Photopatterning of Complex Molecular Orientations in Liquid Crystals

    Science.gov (United States)

    Guo, Yubing; Jiang, Miao; Peng, Chenhui; Sun, Kai; Yaroshchuk, Oleg; Lavrentovich, Oleg; Wei, Qi-Huo

    Aligning liquid crystal (LC) molecules in spatially non-uniform patterns are highly demanded for applications such as programmable origami and liquid crystal enabled nonlinear electrokinetics. We developed a high resolution projection photoalignment technique for patterning arbitrary LC alignment fields. The photoalignment is based on carefully engineered metasurfaces, or dubbed as plasmonic metamasks (PMMs). When illuminated by light, the PMMs generate patterns of both light intensity and polarization. By projecting the light transmitted through the PMMs onto liquid crystal cells coated with photosensitive materials, alignment patterns predesigned in polarization patterns of the PMMs can be imposed in liquid crystals. This technique makes the liquid crystal alignment a repeatable and scalable process similar to conventional photolithography, promising various applications. National Science Foundation CMMI-1436565.

  1. Fracture calcites at Olkiluoto. Evidence from quaternary infills for palaeohydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Gehoer, S.; Kaerki, A.; Taikina-aho, O. [Kivitieto Oy (Finland); Karhu, J. [Helsinki Univ. (Finland); Loefman, J. [VTT Processes, Espoo (Finland); Pitkaenen, P. [VTT Building and Transport, Espoo (Finland); Ruotsalainen, P. [TUKES, Helsinki (Finland)

    2002-02-01

    Recently formed secondary minerals, predominantly calcite, occur in varying amounts as fracture infills, and the calcite types, their chemical compositions and isotope ratios reflect the compositions and physicochemical factors of the groundwater system in which they were formed. Fluid inclusions trapped in calcites give direct evidence of trapping temperatures and past salinities and of the chemical compositions of the palaeo fluids. A wide range of mineralogical and geochemical examinations were carried out within the EQUIP project to examine features of this kind. The fracture calcites at the Olkiluoto site are of various origins and represent several textural types. The exact number of calcite-producing events is unknown, but the duration of the period that was appropriate for the precipitation of low temperature calcite is estimated to have exceeded 1000 Ma. Thus the number of genetically related calcite units is assumed to be considerable. This study was focused on the petrogenesis of calcites crystallized in fractures of high water conductivity during the latest stages of geological evolution. The majority of these late stage calcites form physically homogeneous, scaly layers, and in a few cases thin layers composed of idiomorphic crystals. Chemically these are almost stoichiometric calcites (CaCO{sub 3}). The MnO content may exceed 1%, while the amounts of other elements present are minor, although the trace element concentrations, particularly those of large ionic trace elements, can be used as distinguishing features for the recognition of individual precipitates representing different calcite generations. Evidence from fluid inclusions, or more correctly from the absence of these in the late stage calcites, can be interpreted as an indication of slow rates of crystallization under cool conditions. Many chemical variables, e.g. oxygen isotope ratios, demonstrate an equilibrium between the latest calcites and water similar to the present groundwater. Older

  2. Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon.

    Science.gov (United States)

    Jiang, Lan; Han, Weina; Li, Xiaowei; Wang, Qingsong; Meng, Fantong; Lu, Yongfeng

    2014-06-01

    It is widely believed that laser-induced periodic surface structures (LIPSS) are independent of material crystal structures. This Letter reports an abnormal phenomenon of strong dependence of the anisotropic formation of periodic ripples on crystal orientation, when Si (100) is processed by a linearly polarized femtosecond laser (800 nm, 50 fs, 1 kHz). LIPSS formation sensitivity with a π/2 modulation is found along different crystal orientations with a quasi-cosinusoid function when the angle between the crystal orientation and polarization direction is changed from 0° to 180°. Our experiments indicate that it is much easier (or more difficult) to form ripple structures when the polarization direction is aligned with the lattice axis [011]/[011¯] (or [001]). The modulated nonlinear ionization rate along different crystal orientations, which arises from the direction dependence of the effective mass of the electron is proposed to interpret the unexpected anisotropic LIPSS formation phenomenon. Also, we demonstrate that the abnormal phenomenon can be applied to control the continuity of scanned ripple lines along different crystal orientations.

  3. Calcite twin morphology : a low-temperature deformation geothermometer

    OpenAIRE

    Ferrill, David A.; Morris, Alan P.; Evans, Mark A; Burkhard, Martin; Groshong Jr., Richard H.; Onasch, Charles M.

    2005-01-01

    Twinning of the e-plane is the dominant crystal–plastic deformation mechanism in calcite deformed below about 400 °C. Calcite in a twin domain has a different crystallographic orientation from the host calcite grain. So-called thin twins appear as thin black lines when viewed parallel to the twin plane at 200–320× magnification under a petrographic microscope. Thick twins viewed in the same way have a microscopically visible width of twinned material between black lines. Calcite e-twin width ...

  4. Effect of orientation stability on recrystallization textures of deformed aluminium single crystals

    International Nuclear Information System (INIS)

    High purity Al single crystals of the Cube (0 0 1)[1 0 0] and rotated Cube (0 1 1)[0 1 1-bar] orientations have been deformed in plane strain compression in a channel die. Deformation was carried out at temperatures between 25 and 600 deg. C up to strains of 1.2. The as-deformed microstructure has been characterised using electron microscopy and electron backscattered diffraction (EBSD). Annealing was carried out for various times and temperatures. The recrystallized microstructure has been studied using electron microscopy, and the orientation of recrystallized grains determined using EBSD. After cold deformation and annealing both orientations exhibited a random recrystallization texture component. After hot deformation both orientations retained a similar annealing texture to their starting deformation texture. The annealing texture of deformed single crystals was found to be more sensitive to the temperature of deformation than the stability of the orientation

  5. Investigating the orientational order in smectic liquid crystals

    Science.gov (United States)

    Wang, Shun

    This thesis is composed of two projects. The first one is the investigation of a reversed phase sequence, which subsequently leads to the discovery of a novel Smectic-C liquid crystal phase. The 10OHFBBB1M7 (10OHF) compound shows a reversed phase sequence with the SmC*d4 phase occurring at a higher temperature than the SmC* phase. This phase sequence is stabilized by moderate doping of 9OTBBB1M7 (C9) or 11OTBBB1M7 (C11). To further study this unique phase sequence, the mixtures of 10OHFBBB1M7 and its homologs have been characterized by optical techniques. In order to perform the resonant X-ray diffraction experiment, we have added C9 and C11 compounds to the binary mixtures and pure 10OHF. In two of the studied mixtures, a new smectic-C* liquid crystal phase with six-layer periodicity has been discovered. Upon cooling, the new phase appears between the SmC*a phase having a helical structure and the SmC*d4 phase with four-layer periodicity. The SmC*d6 phase shows a distorted clock structure. Three theoretical models have predicted the existence of a six-layer phase. However, our experimental findings are not consistent with the theories. The second project involves the mixtures of liquid crystals with different shapes. The role of different interactions in stabilizing the antiferroelectric smectic liquid crystal phases have been a long-standing questions in the community. By mixing the antiferroelectric smectic liquid crystal with achiral liquid crystal molecules with rod and hockey-stick shapes, distinct different behaviors are obtained. In the case of the mixtures of chiral smectic liquid crystals with rod-like molecules, all the smectic-C* variant phases vanish with a small amount of doping. However, the hockey-stick molecule is much less destructive compared to the rod-like molecule. This suggests that the antiferroelectric smectic liquid crystal molecules may have a shape closer to a hockey-stick rather than a rod.

  6. Automated determination of crystal orientations from electron backscattering patterns

    DEFF Research Database (Denmark)

    Lassen, Niels Christian Krieger

    1994-01-01

    determination of crystallographic orientations from EBSPs is accurate knowledge of three calibration parameters which describe the position of the point from which the patterns are emitted relative to the phosphor screen on which they are recorded. This thesis will describe a novel method by which...

  7. Effect of YBa2Cu3O7-x thin films on the textures and orientational properties of liquid crystals

    International Nuclear Information System (INIS)

    In the present work, the effect of thin films of YBa2Cu3O7-x complex compound on the mesomorphic and orientational properties of thermotropic nematic liquid crystals has been studied. Homogeneous, stable and reproducible homeotropic and tilted oriented textures of nematic liquid crystals were obtained. The effect of YBa2Cu3O7-x thin films on the morphologic, orientational and optical properties of thermotropic nematic liquid crystals are discussed. (orig.)

  8. Characterization of preferential orientation of martensitic variants in a single crystal of NiMnGa

    Science.gov (United States)

    Liu, Guodong; Chen, Jinglan; Cui, Yuting; Liu, Zhuhong; Zhang, Ming; Wu, Guangheng; Brück, E.; de Boer, F. R.; Meng, Fanbin; Li, Yangxian; Qu, Jingping

    2004-06-01

    We report the detailed observation of martensitic variants in NiMnGa single crystals. The variants that are twinned with each other in different ways can be clearly identified in our single crystals by optical observation. We also investigated the preferential orientation of the martensitic variants in NiMnGa single crystals. We observed the motion of the variant boundary in response to application of a magnetic field. This observation can be used to explain phenomenologically the magnetic-field-induced strain. In the single crystal with composition Ni 52Mn 24Ga 24, martensite with seven modulated layers (7M) shows preferentially oriented variants. A completely recoverable two-way shape-memory behavior was also observed by measuring the free sample in three different directions during a complete temperature cycle. It was found that the largest strains in the [001] and [010] directions occur in different temperature ranges.

  9. Crystal orientation mapping applied to the Y-TZP/WC composite

    CERN Document Server

    Faryna, M; Sztwiertnia, K

    2002-01-01

    Crystal orientation measurements made by electron backscattered diffraction (EBSD) in the scanning electron microscope (SEM) and microscopic observations provided the basis for a quantitative investigation of microstructure in an yttria stabilized, tetragonal zirconia-based (Y-TZP) composite. Automatic crystal orientation mapping (ACOM) in a SEM can be preferable to transmission electron microscopy (TEM) for microstructural characterization, since no sample thinning is required, extensive crystal data is already available, and the analysis area is greatly increased. A composite with a 20 vol.% tungsten carbide (WC) content was chosen since it revealed crystal relationships between the matrix and carbide phase already established by TEM analysis. However, this composite was difficult to investigate in the EBSD/ SEM since it is non-conductive, the Y-TZP grain size is of the order of the system resolution, and the sample surface, though carefully prepared, reveals a distinctive microtopography. In this paper, so...

  10. Influence of strain rate on the orientation dependence of microstructure in nickel single crystals

    Science.gov (United States)

    Zheng, X. H.; Zhang, H. W.; Huang, X.; Hansen, N.; Lu, K.

    2016-02-01

    The deformation microstructures of nickel single crystals (99.945 wt.%) during dynamic plastic deformation and quasi-static compression to a true strain of 0.20 were comparatively investigated. The deformation microstructures are orientation dependent, forming cell structure, slip plane aligned or not slip plane aligned extended boundaries. It is found that the orientation spread decreases, remains unchanged and becomes enhanced when loading along , and , respectively, as strain rate increases.

  11. Faraday rotator based on TSAG crystal with orientation.

    Science.gov (United States)

    Yasuhara, Ryo; Snetkov, Ilya; Starobor, Aleksey; Mironov, Evgeniy; Palashov, Oleg

    2016-07-11

    A Faraday isolator (FI) for high-power lasers with kilowatt-level average power and 1-µm wavelength was demonstrated using a terbium scandium aluminum garnet (TSAG) with its crystal axis aligned in the direction. Furthermore, no compensation scheme for thermally induced depolarization in a magnetic field was used. An isolation ratio of 35.4 dB (depolarization ratio γ of 2.9 × 10-4) was experimentally observed at a maximum laser power of 1470 W. This result for room-temperature FIs is the best reported, and provides a simple, practical solution for achieving optical isolation in high-power laser systems. PMID:27410823

  12. Aluminum induced crystallization of strongly (111) oriented polycrystalline silicon thin film and nucleation analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and α-Si layers were deposited by magnetron sputtering respectively and annealed at 480°C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between γ-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of γ-Al2O3, which was formed at the early stage of annealing.

  13. Cyclic growth and branching phenomena of calcite grown in Mg(2+) containing solutions and in natural systems

    Science.gov (United States)

    Wiethoff, Felix; Richter, Detlef K.; Neuser, Rolf D.; Immenhauser, Adrian; Gies, Hermann; Schreuer, Jürgen

    2016-04-01

    Undulosity in calcites (radiaxial fibrous calcite (RFC) and fascicular-optic fibrous calcite (FOFC)) is a common phenomenon in paleozoic and mesozoic limestones. Despite their importance as archives for climate reconstruction the underlying mechanisms and processes of their formation are still poorly understood [1]. To improve the application of such archives for climate reconstruction a better knowledge of their formation and possible alteration scenarios is necessary. In Mg2+ containing gel based growth experiments calcite crystals develop pathological morphologies. The morphology can be described as a product of a geometrical selective branching process at the rhombohedral crystal faces. Multiple sheet like building blocks evolve at the branching crystal face; each slightly tilted in respect to their substrate. The product is a crystal aggregate consisting out of several misoriented sub domains. In polarized light thin section microscopy the extinction behaviour of these sub units resemble the optical undulosity of radiaxial fibrous cements. In a multi method approach the local Mg2+ concentration was measured using EMPA and compared with maps of the local crystal orientation (via electron backscatter diffraction (EBSD)) and thin section microscopy. We found that Mg2+ is enriched at the sub-domain boundaries and deduced that lattice misfit as a consequence of impurity incorporation causes the crystal branching. We propose that this process is cyclic and each new misoriented sheet represents a growth period after a phase of inhibited growth caused by crystal faces covered by Mg2+‑ions. In comparison to natural systems we found that radiaxial-fibrous cave cements show a pathological morphology based on the same formation principles. [1] Richter et al. (2011) Sediment. Geol. 239, 23-36 [2] Reeder & Paquette (1989) Sediment. Geol. 65, 239-247 [3] Davis et al. (2004) Am. Min. 89, 714-720

  14. Cyclic growth and branching phenomena of calcite grown in Mg(2+) containing solutions and in natural systems

    Science.gov (United States)

    Wiethoff, Felix; Richter, Detlef K.; Neuser, Rolf D.; Immenhauser, Adrian; Gies, Hermann; Schreuer, Jürgen

    2016-04-01

    Undulosity in calcites (radiaxial fibrous calcite (RFC) and fascicular-optic fibrous calcite (FOFC)) is a common phenomenon in paleozoic and mesozoic limestones. Despite their importance as archives for climate reconstruction the underlying mechanisms and processes of their formation are still poorly understood [1]. To improve the application of such archives for climate reconstruction a better knowledge of their formation and possible alteration scenarios is necessary. In Mg2+ containing gel based growth experiments calcite crystals develop pathological morphologies. The morphology can be described as a product of a geometrical selective branching process at the rhombohedral crystal faces. Multiple sheet like building blocks evolve at the branching crystal face; each slightly tilted in respect to their substrate. The product is a crystal aggregate consisting out of several misoriented sub domains. In polarized light thin section microscopy the extinction behaviour of these sub units resemble the optical undulosity of radiaxial fibrous cements. In a multi method approach the local Mg2+ concentration was measured using EMPA and compared with maps of the local crystal orientation (via electron backscatter diffraction (EBSD)) and thin section microscopy. We found that Mg2+ is enriched at the sub-domain boundaries and deduced that lattice misfit as a consequence of impurity incorporation causes the crystal branching. We propose that this process is cyclic and each new misoriented sheet represents a growth period after a phase of inhibited growth caused by crystal faces covered by Mg2+-ions. In comparison to natural systems we found that radiaxial-fibrous cave cements show a pathological morphology based on the same formation principles. [1] Richter et al. (2011) Sediment. Geol. 239, 23-36 [2] Reeder & Paquette (1989) Sediment. Geol. 65, 239-247 [3] Davis et al. (2004) Am. Min. 89, 714-720

  15. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    Science.gov (United States)

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials. PMID:27223050

  16. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    Science.gov (United States)

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials.

  17. Structural Correspondence of the Oriented Attachment Growth Mechanism of Crystals of the Pharmaceutical Dirithromycin.

    Science.gov (United States)

    Liang, Zuozhong; Wang, Yuan; Wang, Wei; Han, Xianglong; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2015-12-29

    The oriented attachment (OA) mechanism is promising for designing novel nanomaterials, yet an intensive understanding of the relationship between the crystal structure and attachment orientation is still lacking. In this work, we report layered hexagonal crystals of the pharmaceutical dirithromycin (DIR) containing multiple layers fabricated via a solvothermal method for a certain period of time at 40 °C. These elongated hexagonal crystals experience an OA that is preferentially on the face (001) of the initial crystals to assemble the final crystals into layered stacks. Through agreement with molecular modeling calculations, we predicted the final crystal growth morphology and confirmed the favored attachment surface based on the energy change ΔE following an OA event. These simulation results at the molecular level yielded good agreement with the crystal growth experiments. This study demonstrates the critical importance of combining experiments with a computational approach to understand the intrinsic molecular details of the OA growth mechanism of other compounds and to design nanomaterials with a desirable morphology and physical and chemical properties. PMID:26632998

  18. Preferential {100} grain orientation in 10 micrometer-thick laser crystallized multicrystalline silicon on glass

    Energy Technology Data Exchange (ETDEWEB)

    Kühnapfel, S., E-mail: sven.kuehnapfel@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Institut für Silizium-Photovoltaik, Kekuléstr. 5, 12489 Berlin (Germany); Nickel, N.H.; Gall, S. [Helmholtz-Zentrum Berlin für Materialien und Energie, Institut für Silizium-Photovoltaik, Kekuléstr. 5, 12489 Berlin (Germany); Klaus, M.; Genzel, C. [Helmholtz-Zentrum Berlin für Material und Energie, Abteilung Mikrostruktur- und Eigenspannungsanalyse, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Rech, B.; Amkreutz, D. [Helmholtz-Zentrum Berlin für Materialien und Energie, Institut für Silizium-Photovoltaik, Kekuléstr. 5, 12489 Berlin (Germany)

    2015-02-02

    Liquid phase crystallization of 10 μm thin silicon layers on glass substrates was performed with a line-shaped continuous wave laser beam. The process window was investigated in terms of the scanning velocity of the laser, the pre-heating of the specimens and the applied laser intensity. We have identified the entire process window, in which large-scale crystallization without deformation or destruction of the substrate and cracking of the silicon layer can be obtained. The grain orientations of the resulting Si layers were analyzed using both electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). The influence of the critical crystallization parameters on the grain orientation of the silicon film was examined. EBSD and XRD measurements show that a preferential {100} surface texture and {100} and {101} orientations in scanning direction of the laser can be achieved if appropriate crystallization parameters are used. This texture formation is accompanied with a substantial decrease of high angle grain boundaries. - Highlights: • Zone melting of thin silicon films (10 μm) directly on glass substrates. • The process window was examined in dependence of all process parameters. • A preferential {100} orientation was obtained within a specific parameter range. • A reduction of high angle boundaries is accompanied with the texture formation.

  19. Preferential {100} grain orientation in 10 micrometer-thick laser crystallized multicrystalline silicon on glass

    International Nuclear Information System (INIS)

    Liquid phase crystallization of 10 μm thin silicon layers on glass substrates was performed with a line-shaped continuous wave laser beam. The process window was investigated in terms of the scanning velocity of the laser, the pre-heating of the specimens and the applied laser intensity. We have identified the entire process window, in which large-scale crystallization without deformation or destruction of the substrate and cracking of the silicon layer can be obtained. The grain orientations of the resulting Si layers were analyzed using both electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). The influence of the critical crystallization parameters on the grain orientation of the silicon film was examined. EBSD and XRD measurements show that a preferential {100} surface texture and {100} and {101} orientations in scanning direction of the laser can be achieved if appropriate crystallization parameters are used. This texture formation is accompanied with a substantial decrease of high angle grain boundaries. - Highlights: • Zone melting of thin silicon films (10 μm) directly on glass substrates. • The process window was examined in dependence of all process parameters. • A preferential {100} orientation was obtained within a specific parameter range. • A reduction of high angle boundaries is accompanied with the texture formation

  20. Influence of Substrate on Crystal Orientation of Large-Grained Si Thin Films Formed by Metal-Induced Crystallization

    Directory of Open Access Journals (Sweden)

    Kaoru Toko

    2015-01-01

    Full Text Available Producing large-grained polycrystalline Si (poly-Si film on glass substrates coated with conducting layers is essential for fabricating Si thin-film solar cells with high efficiency and low cost. We investigated how the choice of conducting underlayer affected the poly-Si layer formed on it by low-temperature (500°C Al-induced crystallization (AIC. The crystal orientation of the resulting poly-Si layer strongly depended on the underlayer material: (100 was preferred for Al-doped-ZnO (AZO and indium-tin-oxide (ITO; (111 was preferred for TiN. This result suggests Si heterogeneously nucleated on the underlayer. The average grain size of the poly-Si layer reached nearly 20 µm for the AZO and ITO samples and no less than 60 µm for the TiN sample. Thus, properly electing the underlayer material is essential in AIC and allows large-grained Si films to be formed at low temperatures with a set crystal orientation. These highly oriented Si layers with large grains appear promising for use as seed layers for Si light-absorption layers as well as for advanced functional materials.

  1. Orientation dependence of deformation and penetration behavior of tungsten single-crystal rods

    International Nuclear Information System (INIS)

    This paper reports on the performance of tungsten single crystals as kinetic energy penetrator materials that was investigated in a high length-to-diameter (L/D) rod geometry at sub-scale (1/4 geometric scale). The [111]. [110], and [100] crystal orientations were tested in this 74-g LD = 15 geometry penetrator (6.90-mm diameter x 102.5-mm length). Several 93% tungsten alloy and uranium 3/4 titanium rod geometries were also tested to baseline expected performance of typical penetrator material/geometry combinations. Performance was determined for semi-infinite penetration into RHA steel and finite penetration into 76.20-mm RHA steel. Of the orientation tested, the [100] orientation provided the best ballistic results, with superior performance to mass and geometric equivalent 93% tungsten alloy rods. The [100] orientation also provided similar performance to geometric equivalent uranium 3/4 titanium rods. Favorable slip/cleavage during the compressive loading of the penetration process to allow penetrator material flow without large scale plastic deformation, and final shear localization at a favorable angle for easy material flow away from the penetration interface, contribute to the [100] orientation crystals' excellent performance. The net result was less energy expenditure during penetrator flow and, therefore, more energy for deformation of RHA

  2. Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance

    Directory of Open Access Journals (Sweden)

    Pablo Docampo

    2014-08-01

    Full Text Available Perovskite solar cells are emerging as serious candidates for thin film photovoltaics with power conversion efficiencies already exceeding 16%. Devices based on a planar heterojunction architecture, where the MAPbI3 perovskite film is simply sandwiched between two charge selective extraction contacts, can be processed at low temperatures (<150 °C, making them particularly attractive for tandem and flexible applications. However, in this configuration, the perovskite crystals formed are more or less randomly oriented on the surface. Our results show that by increasing the conversion step temperature from room temperature to 60 °C, the perovskite crystal orientation on the substrate can be controlled. We find that films with a preferential orientation of the long axis of the tetragonal unit cell parallel to the substrate achieve the highest short circuit currents and correspondingly the highest photovoltaic performance.

  3. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    International Nuclear Information System (INIS)

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare

  4. Single-contact pressure solution creep on calcite monocrystals

    CERN Document Server

    Zubtsov, Sergei; Gratier, Jean-Pierre; Dysthe, Dag; Traskine, Vladimir

    2005-01-01

    Pressure solution creep rates and interface structures have been measured by two methods on calcite single crystals. In the first kind of experiments, calcite monocrystals were indented at 40 degrees C for six weeks using ceramic indenters under stresses in the 50-200 MPa range in a saturated solution of calcite and in a calcite-saturated aqueous solution of NH4Cl. The deformation (depth of the hole below the indenter) is measured ex-situ at the end of the experiment. In the second type of experiment, calcite monocrystals were indented by spherical glass indenters for 200 hours under stresses in the 0-100 MPa range at room temperature in a saturated aqueous solution of calcite. The displacement of the indenter was continuously recorded using a specially constructed differential dilatometer. The experiments conducted in a calcite-saturated aqueous solution of NH4Cl show an enhanced indentation rate owing to the fairly high solubility of calcite in this solution. In contrast, the experiments conducted in a calc...

  5. Determination of crystal grain orientations by optical microscopy at textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lausch, D.; Gläser, M.; Hagendorf, C. [Team Mikrostrukturdiagnostik und Analytik, Fraunhofer-Center für Silizium-Photovoltaik CSP, Walter-Hülse-Straße 1 Halle (Saale), Sachsen-Anhalt D-06120 (Germany)

    2013-11-21

    In this contribution, a new method to determine the crystal orientation with the example of chemical treated silicon wafers by means of optical microscopy has been demonstrated. The introduced procedure represents an easy method to obtain all relevant parameters to describe the crystal structure of the investigated material, i.e., the crystal grain orientation and the grain boundary character. The chemical treatment is a standard mono-texture for solar cells, well known in the solar industry. In general, this concept can also be applied to other crystalline materials, i.e., GaAs, SiC, etc., the only thing that needs to be adjusted is the texturing method to reveal specific crystal planes and the calculation model. In conclusion, an application of this method is shown with the example of the defect classification of recombination active defects in mc-Si solar cell. The introduced method demonstrates a simple and quick opportunity to improve the crystallization process and the quality of electronic devices by means of an optical microscope and a chemical treatment of the material.

  6. Determination of the Crystal Axis Orientations of Ge detectors for the Majorana Demonstrator

    Science.gov (United States)

    Xu, Wenqin; Busch, Matthew; Elliott, Steven; Green, Matthew; Hegai, Alex; Henning, Reyco; Ronquest, Michael; Snavely, Kyle; Zitin, Ari

    2013-04-01

    High purity germanium (HPGe) crystals will be used for the Majorana Demonstrator, where they serve as both the source and the detector for neutrinoless double beta decays. Sophisticated pulse shape analysis (PSA) is crucial in distinguishing certain background events in the energy region of interest. It is also well known that the charge-carrier mobility in Ge crystals has considerable dependence on the crystallographic axes, resulting in a crystal axis dependence of the PSA. Meanwhile, as within the Peccei-Quinn solution to the strong CP problem and as a dark matter candidate, axions have been searched for in many experiments. It has been suggested that the postulated solar axions could coherently covert to photons by the Primakeoff effect in a periodic lattice, such as that found in the Ge crystals used by the Demonstrator, with conversion rates depending on the crystal axis orientation. In order to use the Demonstrator to search for solar axions, the Ge crystal axes need to be measured. In this talk, we will present our experimental measurements to characterize crystal axes with P-type point contact (PPC) HPGe detectors, which are cylindrical in shape with point contacts at the bottom.

  7. Characterization of the influence of polarization orientation on bulk damage in KDP crystals at different wavelengths

    Science.gov (United States)

    Zheng, YinBo; Ding, Lei; Zhou, XinDa; Ba, RongSheng; Yuan, Jing; Xu, HongLei; Na, Jin; Li, YaJun; Yang, XiaoYu; Chai, Liqun; Chen, Bo; Zheng, WanGuo

    2016-08-01

    The investigation of polarization orientation on damage performance of type I doubler KDP crystals under different wavelengths pulses irradiation is presented in this work. Pinpoints densities (PPD) and the size distribution of pinpoints are extracted through light scattering pictures captured by microscope. The obtained results indicate that the measured PPD as a function of the fluence is both wavelength and polarization dependent, although neither fluence nor polarization have impact on the size distribution of pinpoints. We also find that the damage performances can separate into three groups depending on the wavelength, which suggests the existence of different categories of precursors and different mechanisms responsible for bulk damage initiation in SHG KDP crystals.

  8. Nondispersion polaritons on symmetrically oriented surfaces of two-axis crystals

    International Nuclear Information System (INIS)

    One derived system of dispersion equations describing surface polaritons in optic two-axis crystals on surfaces parallel to symmetry planes of ε permittivity tensor. One analyzes ranges of occurrence, value and orientation of sectors of propagation directions of nondispersion surface polaritons occurring at positive values of ε tensor components. For slightly anisotropic crystals one determined three noncrossing values of dielectric anisotropy parameters where nondispersion polariton may occur. One traced evolution of configuration of optic axis at variation of anisotropy parameters within ranges of occurrence of polaritons

  9. Optical properties of planar nematic liquid crystals samples which are parallel oriented by nanofibers

    Science.gov (United States)

    Yusuf, Yusril; Kusumasari, Ervanggis Minggar; Ula, Nur Mufidatul; Jahidah, Khannah; Triyana, Kuwat; Sosiati, Harini; Harsojo

    2016-04-01

    Optical properties of two nematic liquid crystals, i.e., 4-methoxybenzylidene-4-butylaniline (MBBA) and 4-cyano-4'-pentylbiphenyl (5 CB) which are parallel oriented by nanofibers has been successfully performed. Planar samples of liquid crystals were made using polyvinyl alcohol (PVA) nanofiber from electrospinning process. Electrospinning method was modified using copper (Cu) as gap collector. These planar samples area are 15 mm x 25 mm. Optical characteristic of these samples were studied by using optical polarizing microscope. The optical intensity changes by a rotationof crossed polarizers is observed. The sinusoidal intensity change was observedin these samples as such as in the planar sample prepared by the rubbing method.

  10. Grain coarsening of calcite: Fundamental mechanisms and biogenic inhibition

    DEFF Research Database (Denmark)

    Schultz, Logan Nicholas

    In a saturated solution, submicrometer calcite (CaCO3) crystals recrystallize and coarsen to minimize surface area. The thermodynamic driving force is described by the Gibbs-Thomson equation, but the rates and mechanism are poorly understood. Calcite grain coarsening has many implications...... grain diameter: The small particle size was similar to coccolith elements in chalk. Calcite was aged in saturated solutions for up to 261 days at temperatures up to 200 °C. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and BET surface area data showed fundamental insight into grain...

  11. Homeotropic orientation of a nematic liquid crystal by bent-core molecules adsorbed on its surface

    Science.gov (United States)

    Hwang, Jiyong; Yang, Seungbin; Lee, Hyojin; Kim, Jongyoon; Lee, Ji-Hoon; Kang, Shin-Woong; Choi, E.-Joon

    2015-06-01

    We reported the promotion of a homeotropic alignment of a nematic liquid crystal (NLC) by bent-core liquid-crystal (BLC) Molecules adsorbed its surface. The BLC was mixed at various concentrations with the NLC, and the mixtures were injected into an empty cell with a cell gap of 13 μm. Although the pure NLC showed a heterogeneous orientation, the BLC-NLC mixture was gradually transformed to a homeotropic alignment with increasing concentration of the BLC. We investigated the surface topography of the samples by using an atomic force microscopy (AFM) and found that the BLC molecules were segregated into a polyimide (PI) surface and formed protrusion domains with diameters of 50-100 nm. The BLC protrusions might promote the homeotropic orientation of the NLC molecules.

  12. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    International Nuclear Information System (INIS)

    Strategies are described for optimizing the signal-to-noise of diffraction data, and for combining data from multiple crystals. One challenge that must be overcome is the non-random orientation of crystals with respect to one another and with respect to the surface that supports them. X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies

  13. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Alexei S., E-mail: soares@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Mullen, Jeffrey D. [Brookhaven National Laboratory, Upton, NY 11973 (United States); University of Oregon, Eugene, OR 97403-1274 (United States); Parekh, Ruchi M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Suffolk County Community College, Selden, NY 11784 (United States); McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Orville, Allen M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States); Allaire, Marc [Brookhaven National Laboratory, Upton, NY 11973 (United States); Sweet, Robert M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-10-09

    Strategies are described for optimizing the signal-to-noise of diffraction data, and for combining data from multiple crystals. One challenge that must be overcome is the non-random orientation of crystals with respect to one another and with respect to the surface that supports them. X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.

  14. Orientational dynamics and energy landscape features of thermotropic liquid crystals: An analogy with supercooled liquids

    Indian Academy of Sciences (India)

    Biman Jana; Biman Bagchi

    2007-09-01

    Recent optical kerr effect (OKE) studies have revealed that orientational relaxation of rodlike nematogens near the isotropic-nematic (I-N) phase boundary and also in the nematic phase exhibit temporal power law decay at intermediate times. Such behaviour has drawn an intriguing analogy with supercooled liquids. Here, we have investigated the single-particle and collective orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I-N phase boundary, the system behaves like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system.

  15. Early oriented isothermal crystallization of polyethylene studied by high-time-resolution SAXS/WAXS.

    Science.gov (United States)

    Stribeck, N; Almendarez Camarillo, A; Nöchel, U; Bösecke, P; Bayer, R K

    2007-01-01

    During cooling from the quiescent melt of a highly oriented polyethylene rod, highly oriented proto-lamellae are formed first, which are not crystalline. This is shown in scattering data which are recorded on two-dimensional detectors with a cycle time of 1 s and an exposure of 0.1 s. In the experiments small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) are registered simultaneously during the first 3 min after quenching to a crystallization temperature. A non-uniform thickness between 20 and 100 nm is characteristic for the ensemble of proto-lamellae. During the first minute of isothermal treatment the number of proto-lamellae slowly increases without a change of the thickness distribution. As crystallization starts, the crystallites are not oriented in contrast to the proto-lamellae. During crystallization the layer thickness distribution narrows. The number of lamellae rapidly increases during the following 2 min of isothermal treatment (at 128 degrees C and 124 degrees C). The results are obtained by interpretation of the WAXS and of the multidimensional chord distribution function (CDF), a model-free real-space visualization of the nanostructure information contained in the SAXS data. PMID:17089099

  16. Direct evidence for radar reflector originating from changes in crystal-orientation fabric

    Directory of Open Access Journals (Sweden)

    O. Eisen

    2007-06-01

    Full Text Available The origin of a strong continuous radar reflector observed with airborne radio-echo sounding (RES at the EPICA deep-drilling site in Dronning Maud Land, Antarctica, is identified as a transition in crystal fabric orientation from a vertical girdle- to increased single-pole orientation seen along the ice core. The reflector is observed with a 60 ns and 600 ns long pulse at a frequency of 150 MHz, spans one pulse length, is continuous over 5 km, and occurs at a depth of about 2020–2030 m at the drill site. Changes in conductivity as reflector origin are excluded by investigating the ice-core profile and synthetic RES data. Our observations allow to extrapolate the crystal orientation feature along the reflector in space, with implications for ice-sheet dynamics. As the conductivity profile of the EPICA shows no distinctive peak at this depths, we exclude changes in conductivity as the reflector origin. This is supported by application of numerical forward modelling of electromagnetic wave propagation, based on the conductivity profile, which is able to reproduce nearby reflections, but fails to reproduce this one. Because of background noise, the permittivity profile based on dielectric does not show prominent signals at these depths. We therefore interpret the observed reflector to originate from this change in crystal fabric.

  17. Orientation dependence of secondary reaction zones in surface modified Ni-based single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, H.; Kuroda, S. [National Institute for Materials Science, Ibaraki (Japan). Thermal Spray Group, Materials Engineering Lab.; Sakai, T. [National Institute for Materials Science, Ibaraki (Japan). Thermal Spray Group, Materials Engineering Lab.]|[Tokyo Univ. (Japan). Dept. of Materials Engineering, Graduate School of Engineering; Shibata, M. [National Institute for Materials Science, Ibaraki (Japan). Thermal Spray Group, Materials Engineering Lab.]|[Chiba Institute of Technology, Narashino (Japan). Dept. of Mechanical Science and Engineering, Graduate School of Engineering; Yamaguchi, A. [National Institute for Materials Science, Ibaraki (Japan). Thermal Spray Group, Materials Engineering Lab.]|[Shibaura Institute of Technology, Tokyo (Japan). Dept. of Materials Science and Engineering, Faculty of Engineering

    2006-07-01

    Effects of surface treatments and coating conditions on microstructure changes of Ni-based superalloy substrates were investigated, with special attention to the orientation dependence. CoNiCrAlY (AMDRY 9954) powder was coated on Ni-based single crystal superalloy TMS-82+ by low pressure plasma spraying (LPPS). It was found that grit-blasted treatment drastically distorted the coherent {gamma}/{gamma}' microstructure of substrates, which accordingly promoted the uniform and accelerated the formation of secondary reaction zones (SRZ) by the post heat treatment at 1273 K for 30 min, where precipitation of topologically closed-packed (TCP) phases was observed. On the other hand, specimens without the grit-blast treatment had less amount of TCP precipitates, but showed preferred precipitation orientation along left angle 011 right angle {l_brace}100{r_brace} direction. Similar orientation dependence of SRZ formation was observed in the aluminized single crystal superalloy TMS-75. This orientation dependence of SRZ can occur in associate with the recrystallization of the substrate surface and subsequent interdiffusion of alloying elements. (orig.)

  18. Calculation of inelastic scattering processes of relativistic electrons in oriented crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hinderks, Dieter; Kohl, Helmut

    2015-04-15

    The inelastic scattering of electrons in oriented crystals has been used to determine the positions of atoms within a crystal, to obtain site-dependent electron energy loss spectra and, more recently, to obtain an energy loss signal corresponding to the circular dichroism in X-ray absorption spectroscopy. The theoretical approaches currently used for the description of these processes are based on the nonrelativistic Schrödinger equation. Nowadays many experiments, however, are conducted with incident energies of 200 or 300 keV. Therefore it is indispensable to use a relativistic description for such processes based on the Dirac equation. Using the Coulomb gauge it is shown, that the fully relativistic cross sections for plane wave scattering are given by the modulus square of a sum of two terms: one describing the electrostatic interactions similar to the nonrelativistic theory plus one additional term describing the interaction of the specimen with the magnetic field produced by the incident electron. In crystals both terms can interfere leading to large deviations from nonrelativistic theory. - Highlights: • Inelastic scattering of relativistic electrons in oriented crystals is described. • We have derived equations for relativistic Bloch waves. • Strong deviations from nonrelativistic theory have been demonstrated.

  19. Offset-free Measurement of Dipolar Couplings in a Single Crystal and Determination of Molecular Orientation

    CERN Document Server

    Jayanthi, S

    2010-01-01

    Dipolar couplings are an important source of structure as they provide site specific dipolar splittings for aligned samples and hence are extensively used for the study of membrane proteins in lipid bilayers, liquid crystals and single crystals. Of the many Separated Local Field (SLF) techniques existing to avail this information for static oriented systems, PISEMA (Polarization Inversion Spin Exchange at Magic Angle) has found to have wide application due to its many favorable characteristics. However the pulse sequence suffers from its inherent sensitivity to proton resonance frequency offset. We have recently proposed a sequence named DAPT (Dipolar Assisted Polarization Transfer: S. Jayanthi et al. Chem. Phys. Lett. 439, 407, 2007.) for dipolar coupling measurement which is found to be insensitive to proton offsets over wide range. In this presentation, we report the first implementation of the sequence on rigid systems. Experiments were done on a single crystal of N-Acetyl DL-Valine (NAV). Dipolar couplin...

  20. Protein crystal structure from non-oriented, single-axis sparse X-ray data

    Directory of Open Access Journals (Sweden)

    Jennifer L. Wierman

    2016-01-01

    Full Text Available X-ray free-electron lasers (XFELs have inspired the development of serial femtosecond crystallography (SFX as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that are kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using the EMC algorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ∼200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using the EMC algorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. This suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of the EMC algorithm even in cases

  1. Studies on Crystal Orientation of ZnO Film on Sapphire Using High-throughout X-ray Diffraction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The orientation of the nano-columnar ZnO films grown on sapphire using the technique of metal-organic chemical vapor deposition (MOCVD) exhibits deviation because of the mismatch between the crystal lattices of the films and the sapphire substrate. A high-throughout X-ray diffraction method was employed to determine the crystal orientation of the ZnO films at a time scale of the order of minutes based on the general area detection diffraction system (GADDS). This rapid, effective, and ready method, adapted for characterizing the orientation of the nano-columnar crystals is used to directly explain the results of observation of the X-ray diffraction images, by the measurements of the orientations of the crystal columns of the ZnO films along c-axis and in parallel to ab plane.

  2. Polarization orientation dependence of the far infrared spectra of oriented single crystals of 1,3,5,-trinitro-s-triazine (RDX) using terahertz-time-domain spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Whitley, Von H [Los Alamos National Laboratory; Hooks, Dan E [Los Alamos National Laboratory; Ramos, Kyle J [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Azad, A K [Los Alamos National Laboratory; Taylor, A J [Los Alamos National Laboratory; Barber, J [NON LANL; Averitt, R D [BOSTON UNIV

    2008-01-01

    The far infrared spectra of (100), (010), and (001)-oriented RDX single crystals were measured as the crystal was rotated about the axis perpendicular to the polarization plane of the incident radiation. Absorption measurements were taken at temperatures of both 20 K and 295 K for all rotations using terahertz time-domain spectroscopy. A number of discrete absorptions were found ranging from 10-100 cm(-1) (0.3-3 THz). The absorptions are highly dependent on the orientation of the terahertz polarization with respect to crystallographic axes.

  3. Orientation dependent oxygen exchange kinetics on single crystal SrTiO3 surfaces.

    Science.gov (United States)

    Kerman, Kian; Ko, Changhyun; Ramanathan, Shriram

    2012-09-14

    The perovskite SrTiO(3) is arguably one of the most important oxide systems in condensed matter research. In this study, we report measurement of the orientation dependence of oxygen exchange on SrTiO(3) single crystal surfaces by dynamic conductivity measurements under electrochemical perturbations. Activation energy for electrical conduction in the 923-1223 K range at an oxygen partial pressure of ∼10(-11) Pa of (100), (111), and (110) single crystals was found to be 2.6 eV, 2.7 eV, and 3.1 eV, respectively. The equilibration kinetics show profound dependence on the surface orientation and are modelled using a heterogeneous relaxation process. All surfaces show similar cationic sub-lattice limited rate behavior with (111), (100), and (110) having the fastest, intermediate, and slowest rates, respectively. We discuss the orientation dependence and its relation to local atomic structure in light of previous experimental and theoretical studies. PMID:22850487

  4. Unusual calcite stromatolites and pisoids from a landfill leachate collection system

    Science.gov (United States)

    Maliva, Robert G.; Missimer, Thomas M.; Leo, Kevin C.; Statom, Richard A.; Dupraz, Christophe; Lynn, Matthew; Dickson, J. A. D.

    2000-10-01

    Low-magnesium calcite stromatolites and pisoids were found to have precipitated within the leachate collection system piping of a Palm Beach County, Florida, landfill. The stromatolites and pisoids formed in an aphotic and anoxic environment that was at times greatly supersaturated with calcite. The stromatolites are composed of branching cylindrical bundles of concentrically laminated radial fibrous crystals. The pisoids consist of concentric layers of radial fibrous and microcrystalline calcite. Bacteria, likely sulfate reducing, appear to have acted as catalysts for calcite crystal nucleation, and thus the formation of the stromatolites and pisoids. The leachate system stromatolites provide a recent example of stromatolites that formed largely by cement precipitation. By acting as catalysts for calcite nucleation, bacteria may cause more rapid cementation than would have occurred under purely abiotic conditions. Rapid calcite precipitation catalyzed by bacteria has interfered with the operation of the Palm Beach County landfill leachate collection by obstructing pipes and may be an unrecognized problem at other landfill sites.

  5. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt.

    Science.gov (United States)

    Soares, Alexei S; Mullen, Jeffrey D; Parekh, Ruchi M; McCarthy, Grace S; Roessler, Christian G; Jackimowicz, Rick; Skinner, John M; Orville, Allen M; Allaire, Marc; Sweet, Robert M

    2014-11-01

    X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.

  6. The Crystallization of Poly (3-dodecylthiophene) in an Oriented Solidification Environment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The crystallization behaviors of poly (3-dodecylthiophene) (P3DDT) under two different oriented solidification conditions, I.e., two different relative relations (90° and 180°) between the directions of gravity and solidification, were investigated. X-ray diffraction results reveal that although similar layered structures are formed, under the condition of the relative relation 180°, temperature gradient has greater effects on the perfect degree of the layered structures of P3DDT. It also can be concluded that after recrystallization, the layered structures of P3DDT can be improved at relative relation 90o, but the orderly degree of the arrangements of alkyl side chains are not improved yet, even is reduced for both of the oriented solidification conditions.

  7. Recording of polarization holograms in a liquid crystal cell with a photosensitive chalcogenide orientation layer [Invited].

    Science.gov (United States)

    Sheremet, Nina; Kurioz, Yuriy; Slyusarenko, Kostyantyn; Trunov, Michael; Reznikov, Yuriy

    2013-08-01

    Polarization gratings have been recorded in a combined liquid crystal (LC) cell made of a substrate covered with a photosensitive chalcogenide orientation layer and a reference substrate covered with a rubbed polyimide film. The gratings are formed due to the spatially modulated light-induced easy orientation axis on the chalcogenide surface recorded by two beams with opposite circular polarizations. The gratings are permanent, but they can be erased by one of the recording beams and re-recorded. The diffraction intensity of the circularly polarized light is achromatic and does not depend on the birefringence of the LC. The diffraction efficiency of the grating is of the order of a few percents. Application of an ac field causes a strong increase of the diffraction efficiency up to 45%. PMID:23913086

  8. Graphite edge controlled registration of monolayer MoS2 crystal orientation

    International Nuclear Information System (INIS)

    Transition metal dichalcogenides such as the semiconductor MoS2 are a class of two-dimensional crystals. The surface morphology and quality of MoS2 grown by chemical vapor deposition are examined using atomic force and scanning tunneling microscopy techniques. By analyzing the moiré patterns from several triangular MoS2 islands, we find that there exist at least five different superstructures and that the relative rotational angles between the MoS2 adlayer and graphite substrate lattices are typically less than 3°. We conclude that since MoS2 grows at graphite step-edges, it is the edge structure which controls the orientation of the islands, with those growing from zig-zag (or armchair) edges tending to orient with one lattice vector parallel (perpendicular) to the step-edge

  9. The method and equipment for the investigation of ions orienting transmission through thin single crystals

    CERN Document Server

    Soroka, V Y; Maznij, Y O

    2003-01-01

    A new approach is proposed to solve the task of angular distribution measurement of intensity strongly differentiated ions fluxes. Channeling effect makes this problem a regular feature of experimental study of ions orientating transmission through thin single crystals. The approach is based on the use of ions additional scattering by an amorphous (polycrystalline) target after passing through single crystal. The additional target manipulator is joined with the principal target chamber equipment with three-axis goniometer. The manipulator allows to move an additional target in the vicinity of the accelerator beam within the limits of +- 3 sup 0 in all directions and allows to measure the angular distribution of scattered ions with the accuracy of 1 min. The method and equipment were tested at the single ended electrostatic accelerator (EG-5) using a proton beam. At present the measurements have been resumed at the tandem accelerator (EG-10) of the Institute for Nuclear Research of the Academy of Sciences of U...

  10. Shape-controlled orientation and assembly of colloids with sharp edges in nematic liquid crystals.

    Science.gov (United States)

    Beller, Daniel A; Gharbi, Mohamed A; Liu, Iris B

    2015-02-14

    The assembly of colloids in nematic liquid crystals via topological defects has been extensively studied for spherical particles, and investigations of other colloid shapes have revealed a wide array of new assembly behaviors. We show, using Landau-de Gennes numerical modeling, that nematic defect configurations and colloidal assembly can be strongly influenced by fine details of colloid shape, in particular the presence of sharp edges. For cylinder, microbullet, and cube colloid geometries, we obtain the particles' equilibrium alignment directions and effective pair interaction potentials as a function of simple shape parameters. We find that defects pin at sharp edges, and that the colloid consequently orients at an oblique angle relative to the far-field nematic director that depends on the colloid's shape. This shape-dependent alignment, which we confirm in experimental measurements, raises the possibility of selecting self-assembly outcomes for colloids in liquid crystals by tuning particle geometry. PMID:25523158

  11. A positron source using an axially oriented crystal associated to a granular amorphous converter

    Institute of Scientific and Technical Information of China (English)

    XU Cheng-Hai; Robert Chehab; Peter Sievers; Xavier Artru; Michel Chevallier; Olivier Dadoun; PEI Guo-Xi; Vladimir M. Strakhovenko; Alessandro Variola

    2012-01-01

    A non-conventional positron source using the intense γ radiation from an axially oriented monocrystal which materializes into e+e- pairs in a granular amorphous converter is described.The enhancement of photon radiation by multi-GeV electrons crossing a tungsten crystal along its 〈111〉 axis is reported.The resulting enhancement of pair production in an amorphous converter placed 2 meters downstream,is also reported.Sweeping off the charged particles from the crystal by a bending magnet upstream of the converter allows a significant reduction of the deposited energy density.Substituting a granular target made of small spheres for the usual compact one,makes the energy dissipation easier.The deposited energy and corresponding heating are analyzed and solutions for cooling are proposed.The configurations studied here for this kind of positron source allow its consideration for unpolarized positrons for the ILC.

  12. Liquid crystal orientation on solution processed zinc oxide inorganic films according to molecular concentration

    Science.gov (United States)

    Lee, Jong-Jin; Han, Jae-Jun; Park, Hong-Gyu; Kim, Dai-Hyun; Byun, Sang-Un; Seo, Dae-Shik

    2013-10-01

    In this paper we present the characteristics of molar concentration-dependent zinc oxide (ZnO) inorganic films deposited by the solution process for application in liquid crystal displays. ZnO surfaces supported homogeneously aligned liquid crystal (LC) molecules based on an ion-beam (IB) irradiation system. Uniform LC alignment was obtained at ZnO molar concentrations greater than 0.25 mol l-1. X-ray photoelectron spectroscopic (XPS) analysis revealed that changes in the orientation of LC molecules occurred on the ZnO layer. The electro-optic characteristics of the aligned homogenous LCs and twisted nematic (TN) mode based on the ZnO layer were comparable to those based on polyimide, which showed good potential as ZnO surfaces as an alignment layer.

  13. Surface-assisted unidirectional orientation of ZnO nanorods hybridized with nematic liquid crystals.

    Science.gov (United States)

    Kubo, Shoichi; Taguchi, Rei; Hadano, Shingo; Narita, Mamiko; Watanabe, Osamu; Iyoda, Tomokazu; Nakagawa, Masaru

    2014-01-22

    Inorganic semiconductor nanorods are regarded as the primary components of optical and electrical nanoscale devices. In this paper, we demonstrate the unidirectional alignment of monolayered and dispersed ZnO nanorods on a rubbed polyimide alignment layer, which was achieved by a conventional liquid crystal alignment technique. The outermost surfaces of the ZnO nanorods (average diameter 7 nm; length 50 nm) were modified by polymerization initiator moieties, and nematic liquid crystalline (LC) methacrylate polymers were grown by atom transfer radical polymerization. By regulating the densities of the polymerization initiator moieties, we successfully hybridized LC-polymer-grafted ZnO nanorods and small nematic LC molecules. The LC-polymer-modified ZnO nanorods were hierarchically aligned on the substrate via cooperative molecular interactions among the liquid crystal mesogens, which induced molecular orientation on the rubbed polyimide alignment layer. PMID:24299205

  14. A positron source using an axially oriented crystal associated to a granular amorphous converter

    CERN Document Server

    Xu, Cheng-Hai; Sievers, Peter; Artru, Xavier; Chevallier, Michel; Dadoun, Olivier; Pei, Guo-Xi; Strakhovenko, Vladimir M; Variola, Alessandro

    2012-01-01

    A non-conventional positron source using the intense l radiation from an axially oriented monocrystal which materializes into e(+)e(-') pairs in a granular amorphous converter is described. The enhancement of photon radiation by multi-GeV electrons crossing a tungsten crystal along its axis is reported. The resulting enhancement of pair production in an amorphous converter placed 2 meters downstream, is also reported. Sweeping off the charged particles from the crystal by a bending magnet upstream of the converter allows a significant reduction of the deposited energy density. Substituting a granular target made of small spheres for the usual compact one, makes the energy dissipation easier. The deposited energy and corresponding heating are analyzed and solutions for cooling are proposed. The configurations studied here for this kind of positron source allow its consideration for unpolarized positrons for the ILC.

  15. Chaotic orientational behavior of a nematic liquid crystal subjected to a steady shear flow.

    Science.gov (United States)

    Rienäcker, Götz; Kröger, Martin; Hess, Siegfried

    2002-10-01

    Based on a relaxation equation for the second rank alignment tensor characterizing the molecular orientation in liquid crystals, we report on a number of symmetry-breaking transient states and simple periodic and irregular, chaotic out-of-plane orbits under steady flow. Both an intermittency route and a period-doubling route to chaos are found for this five-dimensional dynamic system in a certain range of parameters (shear rate, tumbling parameter at isotropic-nematic coexistence, and reduced temperature). A link to the corresponding rheochaotic states, present in complex fluids, is made. PMID:12443167

  16. Molecular flexibility and orientational statistics of liquid crystals: Raman study of 7-CB and 8-OCB

    Science.gov (United States)

    Prasad, S. N.; Venugopalan, S.

    1981-09-01

    The Raman depolarization ratios of the -C≡N vibrational band of 7-CB and 8-OCB have been measured in the aligned liquid crystal and isotropic phases. The temperature dependence of the absolute orientational order parameters and have been evaluated for the mesophases of both compounds. A comparison of their values in the nematic phase with those determined by Miyano for 5-CB suggests that molecular flexibility is an importnant factor that serves to lower well below the predictions of mean field theories.

  17. Transfer of the in-plane molecular orientation of polyimide film surface to liquid crystal monolayer

    OpenAIRE

    Usami, Kiyoaki; Sakamoto, Kenji; Uehara, Yoichi; Ushioda, Sukekatsu

    2005-01-01

    We have determined the relationship between the in-plane molecular orientations of a polyimide film and the liquid crystal (LC) monolayer in contact with it. A photoaligned film of polyimide, containing azobenzene in the backbone structure, was used, because its in-plane molecular order can be varied over a wide range without change in the morphology and the chemical nature of the film surface. The in-plane order parameter of the LC molecule was found to be almost equal to that of the polyimi...

  18. Unoccupied electronic structure and molecular orientation of rubrene; from evaporated films to single crystals

    Science.gov (United States)

    Ueba, T.; Park, J.; Terawaki, R.; Watanabe, Y.; Yamada, T.; Munakata, T.

    2016-07-01

    Two-photon photoemission (2PPE) spectroscopy and ultraviolet photoemission spectroscopy (UPS) have been performed for rubrene single crystals and evaporated thin films on highly oriented pyrolytic graphite (HOPG). The changes in the 2PPE intensity from the single crystals by the polarization of the light and by the angle of the light incident plane against the crystalline axes indicate that the molecular arrangement on the surface is similar to that in the bulk crystal. On the other hand, in the case of evaporated films, the polarization dependence of 2PPE indicates that the tetracene backbone becomes standing upright as the thickness increases. In spite of the alignment of molecules, the broadened 2PPE spectral features for thick films suggest that the films are amorphous and molecules are in largely different environments. The film structures are confirmed by scanning tunneling microscopy (STM). The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) derived levels of the single crystal are shifted by + 0.18 and - 0.20 eV, respectively, from those of the 0.8 ML film. The shifts are attributed to the packing density of molecules. It is shown that the unoccupied electronic structure is more sensitively affected by the film structure than the occupied electronic structure.

  19. Oxygen isotope fractionation in synthetic magnesian calcite

    Science.gov (United States)

    Jiménez-López, Concepción; Romanek, Christopher S.; Huertas, F. Javier; Ohmoto, Hiroshi; Caballero, Emilia

    2004-08-01

    Mg-bearing calcite was precipitated at 25°C in closed system free-drift experiments from solutions containing NaHCO 3, CaCl 2 and MgCl 2. The chemical and isotope composition of the solution and precipitate were investigated during time course experiments of 24-h duration. Monohydrocalcite and calcite precipitated early in the experiments (95%) thereafter. Solid collected at the end of the experiments displayed compositional zoning from pure calcite in crystal cores to up to 23 mol% MgCO 3 in the rims. Smaller excursions in Mg were superimposed on this chemical record, which is characteristic of oscillatory zoning observed in synthetic and natural solid-solution carbonates of differing solubility. Magnesium also altered the predominant morphology of crystals over time from the {104} to {100} and {110} growth forms. The oxygen isotope fractionation factor for the magnesian-calcite-water system (as 10 3lnα Mg-cl-H 2O ) displayed a strong dependence on the mol% MgCO 3 in the solid phase, but quantification of the relationship was difficult due to the heterogeneous nature of the precipitate. Considering only the Mg-content and δ 18O values for the bulk solid, 10 3lnα Mg-cl-H 2O increased at a rate of 0.17 ± 0.02 per mol% MgCO 3; this value is a factor of three higher than the single previous estimate (Tarutani T., Clayton R.N., and Mayeda T. K. (1969) The effect of polymorphims and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim. Cosmochim. Acta 33, 987-996). Nevertheless, extrapolation of our relationship to the pure calcite end member yielded a value of 27.9 ± 0.02, which is similar in magnitude to published values for the calcite-water system. Although no kinetic effect was observed on 10 3lnα Mg-cl-H 2O for precipitation rates that ranged from 10 3.21 to 10 4.60 μmol · m -2 · h -1, it was impossible to disentangle the potential effect(s) of precipitation rate and Mg-content on 10 3lnα Mg-cl-H 2O due to

  20. Molecular Dynamics Simulations of the Orientation Effect on the Initial Plastic Deformation of Magnesium Single Crystals

    Institute of Scientific and Technical Information of China (English)

    Qun Zu; Ya-Fang Guo; Shuang Xu; Xiao-Zhi Tang; Yue-Sheng Wang

    2016-01-01

    Molecular dynamics simulation is employed to study the tension and compression deformation behaviors of magnesium single crystals with different orientations.The angle between the loading axis and the basal direction ranges from 0° to 90°.The simulation results show that the initial defects usually nucleate at free surfaces,but the initial plastic deformation and the subsequent microstructural evolutions are various due to different loading directions.The tension simulations exhibit the deformation mechanisms of twinning,slip,crystallographic reorientation and basal/prismatic transformation.The twinning,crystallographic reorientation and basal/prismatic transformation can only appear in the crystal model loaded along or near the a-axis or c-axis.For the compression simulations,the basal,prismatic and pyramidal slips are responsible for the initial plasticity,and no twinning is observed.Moreover,the plastic deformation models affect the yield strengths for the samples with different orientations.The maximum yield stresses for the samples loaded along the c-axis or a-axis are much higher than those loaded in other directions.

  1. Orientation dependence of deformation and penetration behavior of tungsten single crystal rods

    International Nuclear Information System (INIS)

    This paper reports on deformation and flow at a target/penetrator interface that occurs under conditions of high hydrostatic pressure and associated heat generation. To further elucidate the role of material structure in the penetration process, oriented single crystals of tungsten have been launched into steel targets and the residual penetrators recovered and analyzed. Both the penetration depth and the deformation characteristics were strongly influenced by the crystallographic orientation. Deformation modes for the left-angle 100 right-angle rod, which exhibited the best performance, appeared to involve considerable localized slip/cleavage and relatively less plastic working; the residual penetrator was extensively cracked and the eroded penetrator material was extruded in a smooth tube lined with an oriented array of discrete particle exhibiting cleavage fractures. Deformation appeared to be much less localized and to involve more extensive plastic working in the left-angle 011 right-angle rod, which exhibited the poorest penetration, while the left-angle 111 right-angle behaved in an intermediate fashion

  2. Orientations of Chromonic Liquid Crystals by Imprinted or Rubbed Polymer Films

    Science.gov (United States)

    Yi, Youngwoo; McGuire, Aya; Clark, Noel

    2014-03-01

    A variety of novel alignment effects of chromonic liquid crystal phases of sunset yellow (SSY)/water, disodium cromoglycate (DSCG)/water, and their mixtures by thiol-ene polymer films topographically imprinted with linear channels are observed using polarizing optical microscopy. Nematic DSCG and SSY at low concentration and their nematic mixtures orient with the long axes of stacked chromonic aggregates on average parallel to the channels, that is, with the molecular planes normal to the channel axis. On the contrary, nematic SSY in contact with the rubbed polyimide films orients with the long axes on average in-plane perpendicular to the rubbing direction, arguably, due to a tongue-groove interaction between SSY and the stretched PI chains. Furthermore, multi-stable alignments are observed in SSY solutions of sufficiently high concentration, including preferential in-plane orientation of the long axes of the aggregates parallel to, perpendicular to, and 45° rotated from the channels. This work was supported by NSF grant DMR 1207606, NSF MRSEC grant DMR 0820579, and NSF Research Experience for Undergraduate programs.

  3. On the complex conductivity signatures of calcite precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

    2009-11-01

    Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl{sub 2} and Na{sub 2}CO{sub 3} solutions. The experiment continued for 12 days with a constant precipitation rate of {approx}0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

  4. Molecular orientation of hydrogen-bonded liquid crystal (6BA)2-(BPy)x as Studied by 2H NMR

    International Nuclear Information System (INIS)

    The thermal properties of hydrogen-bonded liquid crystal (6BA)2-(BPy)x (6BA: 4-n-hexylbenzoicacid, BPy: 4,4’-bipyridine) were investigated by DSC. Two liquid crystal phases (LCI, LCII) were found for (6BA)2-(BPy)0.5. In LCII, the distribution of the orientation of molecules was larger than in LCI. The order parameter S of molecular orientation in the liquid crystal phase was estimated from a 2H NMR spectrum. S decreased rapidly around the LCI-LCII phase transition. The increase in orientational fluctuation of the 6BA dimer with an open dimer structure is predicted to cause the rapid decrease of S

  5. Assessment of crystal quality and unit cell orientation in epitaxial Cu₂ZnSnSe₄ layers using polarized Raman scattering.

    Science.gov (United States)

    Krämmer, Christoph; Lang, Mario; Redinger, Alex; Sachs, Johannes; Gao, Chao; Kalt, Heinz; Siebentritt, Susanne; Hetterich, Michael

    2014-11-17

    We use polarization-resolved Raman spectroscopy to assess the crystal quality of epitaxial kesterite layers. It is demonstrated for the example of epitaxial Cu₂ZnSnSe₄ layers on GaAs(001) that "standing" and "lying" kesterite unit cell orientations (c'-axis parallel / perpendicular to the growth direction) can be distinguished by the application of Raman tensor analysis. From the appearance of characteristic intensity oscillations when the sample is rotated one can distinguish polycrystalline and epitaxial layers. The method can be transferred to kesterite layers oriented in any crystal direction and can shed light on the growth of such layers in general. PMID:25402065

  6. Optical Dispersion Parameters with Different Orientations for SrLaAlO4 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The different optical dispersion parameters of SrLaAlO4 single crystals have been studied by the transmission andreflection measurements at normal incidence for the three orientations 001, 100 and 101 in the spectral range400 nm~2500 nm.The optical absorption data revealed the existance of allowed indirect and direct transition. Therefractive index has abnormal behaviour in the spectral region 400~900 nm, but has a normal one in the higherwavelength region. The optical dispersion parameters, the single oscillator energy Eo and the dispersion energy Edwere determined and indicated the ionic structure of the material. The high-frequency dielectric constant, the latticedielectric constant and the electronic polarizability were determined by the free carriers and the lattice vibrationmodes. The real dielectric constant e1, the dielectric loss tangent (tanδ), the volume (VELF) and the surface energyloss function (SELF) have also been discussed.

  7. Shape Memory Behavior of [111]-Oriented NiTi Single Crystals After Stress-Assisted Aging

    Institute of Scientific and Technical Information of China (English)

    Irfan Kaya; Hirobumi Tobe; Haluk Ersin Karaca; Emre Acar; Yuriy Chumlyakov

    2016-01-01

    The shape memory behavior of [111]-oriented NistTi49 (at.%) single crystals was investigated after stressassisted aging at 500 ℃ for 1.5 h under a compressive stress of-150 MPa.It was found that a single family of Ni4Ti3 precipitates with two crystallographically equivalent variants was formed after aging under compressive stress.Stressassisted aging resulted in tensile two-way shape memory effect strain of 1.56% under-5 MPa.Thermal cycling under -600 MPa resulted in a transformation strain of-2.15%,while the subsequent thermal cycling under-5 MPa resulted in a tensile two-way shape memory effect strain of 2.2%.

  8. Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations.

    Science.gov (United States)

    Zhao, Haiming; Lin, Yung-Chang; Yeh, Chao-Hui; Tian, He; Chen, Yu-Chen; Xie, Dan; Yang, Yi; Suenaga, Kazu; Ren, Tian-Ling; Chiu, Po-Wen

    2014-10-28

    Understanding the growth mechanism of graphene layers in chemical vapor deposition (CVD) and their corresponding Raman properties is technologically relevant and of importance for the application of graphene in electronic and optoelectronic devices. Here, we report CVD growth of single-crystal trilayer graphene (TLG) grains on Cu and show that lattice defects at the center of each grain persist throughout the growth, indicating that the adlayers share the same nucleation site with the upper layers and these central defects could also act as a carbon pathway for the growth of a new layer. Statistics shows that ABA, 30-30, 30-AB, and AB-30 make up the major stacking orientations in the CVD-grown TLG, with distinctive Raman 2D characteristics. Surprisingly, a high level of lattice defects results whenever a layer with a twist angle of θ = 30° is found in the multiple stacks of graphene layers. PMID:25295851

  9. Biotic control of skeletal growth by scleractinian corals in aragonite-calcite seas.

    Directory of Open Access Journals (Sweden)

    Tomihiko Higuchi

    Full Text Available Modern scleractinian coral skeletons are commonly composed of aragonite, the orthorhombic form of CaCO3. Under certain conditions, modern corals produce calcite as a secondary precipitate to fill pore space. However, coral construction of primary skeletons from calcite has yet to be demonstrated. We report a calcitic primary skeleton produced by the modern scleractinian coral Acropora tenuis. When uncalcified juveniles were incubated from the larval stage in seawater with low mMg/Ca levels, the juveniles constructed calcitic crystals in parts of the primary skeleton such as the septa; the deposits were observable under Raman microscopy. Using scanning electron microscopy, we observed different crystal morphologies of aragonite and calcite in a single juvenile skeleton. Quantitative analysis using X-ray diffraction showed that the majority of the skeleton was composed of aragonite even though we had exposed the juveniles to manipulated seawater before their initial crystal nucleation and growth processes. Our results indicate that the modern scleractinian coral Acropora mainly produces aragonite skeletons in both aragonite and calcite seas, but also has the ability to use calcite for part of its skeletal growth when incubated in calcite seas.

  10. Effect of (1010) crystal orientation on electronic properties of wurtzite GaN/AlGaN quantum-well

    CERN Document Server

    Park, S H

    2000-01-01

    The electronic properties of a (1010)-oriented wurtzite (WZ) GaN/AlGaN quantum well (QW) are investigated using the multiband effective-mass theory. These results are compared with those of a (0001)-oriented WZ GaN/AlGaN QW with the piezoelectric (PZ) effect taken into account. For the (0001)-oriented structure, the optical matrix element is significantly reduced with increasing the well thickness due to the PZ electric field. This means that, in the (0001)-oriented structure, a QW structure with a thinner well thickness is desirable to obtain better laser characteristics. For the (1010)-oriented structure, it is found that the average hole effective masses are largely reduced compared to those for the (0001)-oriented structure. Also, the (1010)-oriented structure shows a much larger optical matrix element for g'-polarization due to the crystal orientation effect. These results suggest that the (1010)-oriented QW structures show improved characteristic compared to the (0001)-oriented QW structure with the PZ ...

  11. Influence of specific anions on the orientational ordering of thermotropic liquid crystals at aqueous interfaces.

    Science.gov (United States)

    Carlton, Rebecca J; Ma, C Derek; Gupta, Jugal K; Abbott, Nicholas L

    2012-09-01

    We report that specific anions (of sodium salts) added to aqueous phases at molar concentrations can trigger rapid, orientational ordering transitions in water-immiscible, thermotropic liquid crystals (LCs; e.g., nematic phase of 4'-pentyl-4-cyanobiphenyl, 5CB) contacting the aqueous phases. Anions classified as chaotropic, specifically iodide, perchlorate, and thiocyanate, cause 5CB to undergo continuous, concentration-dependent transitions from planar to homeotropic (perpendicular) orientations at LC-aqueous interfaces within 20 s of addition of the anions. In contrast, anions classified as relatively more kosmotropic in nature (fluoride, sulfate, phosphate, acetate, chloride, nitrate, bromide, and chlorate) do not perturb the LC orientation from that observed without added salts (i.e., planar orientation). Surface pressure-area isotherms of Langmuir films of 5CB supported on aqueous salt solutions reveal ion-specific effects ranking in a manner similar to the LC ordering transitions. Specifically, chaotropic salts stabilized monolayers of 5CB to higher surface pressures and areal densities (12.6 mN/m at 27 Å(2)/molecule for NaClO(4)) and thus smaller molecular tilt angles (30° from the surface normal for NaClO(4)) than kosmotropic salts (5.0 mN/m at 38 Å(2)/molecule with a corresponding tilt angle of 53° for NaCl). These results and others reported herein suggest that anion-specific interactions with 5CB monolayers lead to bulk LC ordering transitions. Support for the proposition that these ion-specific interactions involve the nitrile group was obtained by using a second LC with nitrile groups (E7; ion-specific effects similar to 5CB were observed) and a third LC with fluorine-substituted aromatic groups (TL205; weak dipole and no ion-specific effects were measured). Finally, we also establish that anion-induced orientational transitions in micrometer-thick LC films involve a change in the easy axis of the LC. Overall, these results provide new insights

  12. Characterization of the crystal orientation in mono-oriented films of HDPE/LLDPE blends by IR dichroism

    Science.gov (United States)

    Canevarolo, Sebastião V.; Elias, Marcelo; Ravazzi, Camila; Silva, Jorge

    2016-03-01

    Polyethylene films are a common packaging material. The level and type of chain orientation in these films are a very important property which is of great care and concern of the converter personnel during the conformation process. Usually bi-orientation is the conventional procedure but when easy tear in one direction is needed mono-orientation is sought. This paper deal with the characterization of the crystalline orientation in films of polyethylene blends (HDPE/LLDPE) which have being oriented in two steps: initially the polymer was bi-oriented via extrusion-blown, cooled, and then in a second process hot stretched along the machine direction in order to produce mono-oriented films. In order to evaluate the orientation of the film, the polarization of the FT-IR beam was rotated 360° in steps of 5° by rotating the polarizer. In each step the absorbance spectrum was recorded and the corresponding dichroic ratio (DR) calculated after subtracting the baseline. With differential scanning calorimetry (DSC) was possible to infer about the changes in the morphology caused by the stretching.

  13. Robustness of the periodic and chaotic orientational behavior of tumbling nematic liquid crystals.

    Science.gov (United States)

    Heidenreich, Sebastian; Ilg, Patrick; Hess, Siegfried

    2006-06-01

    The dynamical behavior of molecular alignment strongly affects physical properties of nematic liquid crystals. A theoretical description can be made by a nonlinear relaxation equation of the order parameter and leads to the prediction that rather complex even chaotic orientational behavior occur. Here the influence of fluctuating shear rates on the orientational dynamics especially on chaotic solutions is discussed. With the help of phase portraits and time evolution diagrams, we investigated the influence of different fluctuation strengths on the flow aligned, isotropic, and periodic solutions. To explore the effect of fluctuations on the chaotic behavior, we calculated the largest Lyapunov exponent for different fluctuation strengths. We found in all cases that small fluctuations of the shear rate do not affect the basic features of the dynamics of tumbling nematics. Furthermore, we present an amended potential modeling the isotropic to nematic transition and discuss the equivalence and difference to the commonly used Landau-de Gennes potential. In contrast to the Landau-de Gennes potential, our potential has the advantage to restrict the order parameter to physically admissible values. In the case of extensional flow, we show that the amended potential leads for increasing extensional rate to a better agreement with experimental results. PMID:16906852

  14. Robustness of the periodic and chaotic orientational behavior of tumbling nematic liquid crystals

    International Nuclear Information System (INIS)

    The dynamical behavior of molecular alignment strongly affects physical properties of nematic liquid crystals. A theoretical description can be made by a nonlinear relaxation equation of the order parameter and leads to the prediction that rather complex even chaotic orientational behavior occur. Here the influence of fluctuating shear rates on the orientational dynamics especially on chaotic solutions is discussed. With the help of phase portraits and time evolution diagrams, we investigated the influence of different fluctuation strengths on the flow aligned, isotropic, and periodic solutions. To explore the effect of fluctuations on the chaotic behavior, we calculated the largest Lyapunov exponent for different fluctuation strengths. We found in all cases that small fluctuations of the shear rate do not affect the basic features of the dynamics of tumbling nematics. Furthermore, we present an amended potential modeling the isotropic to nematic transition and discuss the equivalence and difference to the commonly used Landau-de Gennes potential. In contrast to the Landau-de Gennes potential, our potential has the advantage to restrict the order parameter to physically admissible values. In the case of extensional flow, we show that the amended potential leads for increasing extensional rate to a better agreement with experimental results

  15. Control of the spatial distribution and crystal orientation of self-organized Au nanoparticles

    Science.gov (United States)

    Yasukawa, Yukiko; Liu, Xiaoxi; Shirsath, Sagar E.; Suematsu, Hisayuki; Kotaki, Yukio; Nemoto, Yoshihiro; Takeguchi, Masaki; Morisako, Akimitsu

    2016-09-01

    Ordered, two-dimensional, self-organized Au nanoparticles were fabricated using radiofrequency (RF) magnetron sputtering. The particles were uniformly spherical in shape and ultrafine in size (3–7 nm) and showed an ultrahigh density in the order of ∼1012 inch–2. A custom-developed sputtering apparatus that employs low sputtering power density and a minimized sputtering time (1 min) was used to markedly simplify the preparation conditions for Au nanoparticle fabrication. The spatial distribution of Au nanoparticles was rigorously controlled by placing a Ta interfacial layer between the Au nanoparticles and substrate as well as by post-annealing samples in an Ar atmosphere after the formation of Au nanoparticles. The interfacial layer and the post-annealing step caused approximately 40% of the Au nanoparticles on the substrate surface to orient in the (111) direction. This method was shown to produce ultrafine Au nanoparticles showing an ultrahigh surface density. The crystal orientation of the nanoparticles can be precisely controlled with respect to the substrate surface. Therefore, this technique promises to deliver tunable nanostructures for applications in the field of high-performance electronic devices.

  16. Role of orientation of nucleus of crystal during the process of synthesis of fine crystalline oxides at high temperatures and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Panasyuk, G P; Belan, V N; Voroshilov, I L; Shabalin, D G [IGIC RAS, N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences (Russian Federation)], E-mail: Panasyuk@igic.ras.ru

    2008-07-15

    The structural transformations of hydrargillite Al(OH){sub 3} and boehmite AlOOH were studied on thermovaporous autoclaving and on heat treatment. A special attention was paid to the morphology of initial flocculated and loose hydrargillite crystals, of the again segregating flocculi boehmite intermediate phase, and to the morphology of the end product - corundum single - or polycrystals. It is shown that on thermovaporous autoclaving the intraflocculi orientation of the boehmite crystals is decisive in the corundum single crystals formation. The degree of identity of the boehmite crystals orientation qualifies the sizes of the growing corundum crystals. It is shown, that after heat treatment in air at <1200 deg. C alpha-alumina forms, the habitus of the initial crystals remains unchanged, but at 1400-1500 deg. C in vacuum it alters, and equally oriented alumina grains sinter. Influence of the mutual crystals orientation at different stages of structural transformations is explored. Keywords: autoclaving, hydrargillite, boehmite, corundum.

  17. Zinc isotope fractionation during adsorption on calcite

    Science.gov (United States)

    Dong, S.; Wasylenki, L. E.

    2013-12-01

    Zinc is an important element as a nutrient in the marine biosphere. However, our understanding of its biogeochemical cycling in the oceans is relatively limited. The Zn stable isotope system holds the promise of providing novel insights, since published Zn isotopic values for various natural samples reveal significant fractionations in the marine environment. Surface seawater, basalts, shales, deep-sea clay sediments, sediment trap material, bulk plankton and zooplankton samples, and eolian dust fall within a tight range (δ66/64Zn from -0.1 to 0.5‰), but modern ferromanganese crusts (δ66/64Zn from 0.5 to 1.2‰), as well as carbonates (δ66/64Zn from 0.3 to 1.4‰), are notably enriched in heavy Zn isotopes [1-4]. In this study we seek to constrain the mechanism by which carbonates are enriched in heavier isotopes. In particular, we have conducted experiments to quantify isotope fractionation during adsorption of Zn onto the surfaces of calcite crystals that are in equilibrium with solution. The adsorption experiments were carried out in a series of small-volume batch reactions in a clean laboratory environment, using high-purity reagents and calcite seed crystals. The calcite was equilibrated with the solution prior to addition of Zn at atmospheric CO2 pressure (i.e., in air) for 5 days until a stable pH of 8.3 was reached. Later, a small aliquot of dissolved ZnCl2 was added such that the solution remained undersaturated with respect to hydrozincite. Experimental duration varied among the replicates from 6 to 144 hours, and then all solids and solutions were separated by filtration, purified by ion exchange chromatography, and analyzed by MC-ICP-MS. Zn adsorbed on calcite is isotopically heavier than in the co-existing solutions, with Δ68/66Zncalcite-solution of approximately 0.3‰. The variation of Δ68/66Zncalcite-solution beyond 24 hours is insignificant, so we infer that isotopic equilibrium is reached by this time. Previous work strongly suggests that a

  18. Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy

    Science.gov (United States)

    Wood, Sebastian; Rigas, Grigorios-Panagiotis; Zoladek-Lemanczyk, Alina; Blakesley, James C.; Georgakopoulos, Stamatis; Mas-Torrent, Marta; Shkunov, Maxim; Castro, Fernando A.

    2016-09-01

    Charge transport in organic semiconductors is strongly dependent on the molecular orientation and packing, such that manipulation of this molecular packing is a proven technique for enhancing the charge mobility in organic transistors. However, quantitative measurements of molecular orientation in micrometre-scale structures are experimentally challenging. Several research groups have suggested polarised Raman spectroscopy as a suitable technique for these measurements and have been able to partially characterise molecular orientations using one or two orientation parameters. Here we demonstrate a new approach that allows quantitative measurements of molecular orientations in terms of three parameters, offering the complete characterisation of a three-dimensional orientation. We apply this new method to organic semiconductor molecules in a single crystal field-effect transistor in order to correlate the measured orientation with charge carrier mobility measurements. This approach offers the opportunity for micrometre resolution (diffraction limited) spatial mapping of molecular orientation using bench-top apparatus, enabling a rational approach towards controlling this orientation to achieve optimum device performance.

  19. Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy

    Science.gov (United States)

    Wood, Sebastian; Rigas, Grigorios-Panagiotis; Zoladek-Lemanczyk, Alina; Blakesley, James C.; Georgakopoulos, Stamatis; Mas-Torrent, Marta; Shkunov, Maxim; Castro, Fernando A.

    2016-01-01

    Charge transport in organic semiconductors is strongly dependent on the molecular orientation and packing, such that manipulation of this molecular packing is a proven technique for enhancing the charge mobility in organic transistors. However, quantitative measurements of molecular orientation in micrometre-scale structures are experimentally challenging. Several research groups have suggested polarised Raman spectroscopy as a suitable technique for these measurements and have been able to partially characterise molecular orientations using one or two orientation parameters. Here we demonstrate a new approach that allows quantitative measurements of molecular orientations in terms of three parameters, offering the complete characterisation of a three-dimensional orientation. We apply this new method to organic semiconductor molecules in a single crystal field-effect transistor in order to correlate the measured orientation with charge carrier mobility measurements. This approach offers the opportunity for micrometre resolution (diffraction limited) spatial mapping of molecular orientation using bench-top apparatus, enabling a rational approach towards controlling this orientation to achieve optimum device performance. PMID:27619423

  20. EFFECT OF AUSTENITIC CRYSTAL ORIENTATION IN A MULTIPHASE STEEL ANALYZED BY A DISCRETE DISLOCATION-TRANSFORMATION MODEL

    NARCIS (Netherlands)

    Shi, J.; Turteltaub, S.; Van der Giessen, E.

    2009-01-01

    A discrete dislocation-transformation model is used to analyze the response of an aggregate of ferritic and austenitic grains that can transform into martensite. In particular, the influence of the crystal orientation of the austenitic grains on the plastic and transformation behavior is studied. It

  1. Tuning hardness in calcite by incorporation of amino acids

    Science.gov (United States)

    Kim, Yi-Yeoun; Carloni, Joseph D.; Demarchi, Beatrice; Sparks, David; Reid, David G.; Kunitake, Miki E.; Tang, Chiu C.; Duer, Melinda J.; Freeman, Colin L.; Pokroy, Boaz; Penkman, Kirsty; Harding, John H.; Estroff, Lara A.; Baker, Shefford P.; Meldrum, Fiona C.

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit--mineral single crystals containing embedded macromolecules--remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  2. Influence of crystal-orientation effects on pulse-shape-based identification of heavy-ions stopped in silicon detectors

    Science.gov (United States)

    Bardelli, L.; Bini, M.; Casini, G.; Pasquali, G.; Poggi, G.; Barlini, S.; Becla, A.; Berjillos, R.; Borderie, B.; Bougault, R.; Bruno, M.; Cinausero, M.; D'Agostino, M.; de Sanctis, J.; Dueñas, J. A.; Edelbruck, P.; Geraci, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lavergne, L.; Marini, P.; Nannini, A.; Negoita, F.; Olmi, A.; Ordine, A.; Piantelli, S.; Rauly, E.; Rivet, M. F.; Rosato, E.; Scian, C.; Stefanini, A. A.; Vannini, G.; Velica, S.; Vigilante, M.; Fazia Collaboration

    2009-07-01

    Current and charge signals have been collected for Se ions at 408 MeV, S at 160 MeV and Ni at 703 MeV, all stopped in silicon detectors. Some detectors were cut 0∘ off the axis and some off the axis. Important effects on the shape of the silicon current and charge signals have been observed, depending on the orientation of the impinging ion relative to the crystal axes and planes. A degradation of the energy and risetime resolution of about a factor ˜3 with respect to the measured optimal values (for example 7∘ off-axis orientation) is observed for ion impinging directions close to crystal axes and/or planes, i.e. the common scenario for normal incidence on 0∘ cut detectors. For Pulse Shape Analysis applications, the necessity of using such "random" oriented silicon detectors is demonstrated.

  3. Influence of crystal-orientation effects on pulse-shape-based identification of heavy-ions stopped in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bardelli, L. [University of Florence (Italy); I.N.F.N. Sezione di Firenze (Italy)], E-mail: bardelli@fi.infn.it; Bini, M. [University of Florence (Italy); I.N.F.N. Sezione di Firenze (Italy); Casini, G. [I.N.F.N. Sezione di Firenze (Italy); Pasquali, G.; Poggi, G. [University of Florence (Italy); I.N.F.N. Sezione di Firenze (Italy); Barlini, S. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Becla, A. [Jagiellonian University, Institute of Physics, Reymonta 4, 30-059 Krakow (Poland); Berjillos, R. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Borderie, B. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Bougault, R. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Bruno, M. [University of Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Cinausero, M. [I.N.F.N. Laboratori Nazionali di Legnaro (Italy); D' Agostino, M.; De Sanctis, J. [University of Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Duenas, J.A. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Edelbruck, P. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Geraci, E. [University of Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Gramegna, F. [I.N.F.N. Laboratori Nazionali di Legnaro (Italy); Kordyasz, A. [Heavy Ion Laboratory, Warsaw University, Pasteura 5a, 02-093 Warsaw (Poland); Kozik, T. [Jagiellonian University, Institute of Physics, Reymonta 4, 30-059 Krakow (Poland)] (and others)

    2009-07-01

    Current and charge signals have been collected for Se ions at 408 MeV, S at 160 MeV and Ni at 703 MeV, all stopped in silicon detectors. Some detectors were cut 0 deg. off the <111> axis and some off the <100> axis. Important effects on the shape of the silicon current and charge signals have been observed, depending on the orientation of the impinging ion relative to the crystal axes and planes. A degradation of the energy and risetime resolution of about a factor {approx}3 with respect to the measured optimal values (for example 7 deg. off-axis orientation) is observed for ion impinging directions close to crystal axes and/or planes, i.e. the common scenario for normal incidence on 0 deg. cut detectors. For Pulse Shape Analysis applications, the necessity of using such 'random' oriented silicon detectors is demonstrated.

  4. Nickel adsorption on chalk and calcite

    DEFF Research Database (Denmark)

    Belova, Dina Alexandrovna; Lakshtanov, Leonid; Carneiro, J.F.;

    2014-01-01

    Nickel uptake from solution by two types of chalk and calcite was investigated in batch sorption studies. The goal was to understand the difference in sorption behavior between synthetic and biogenic calcite. Experiments at atmospheric partial pressure of CO2, in solutions equilibrated with calcite...... = - 1.12 on calcite and log KNi = - 0.43 and - 0.50 on the two chalk samples. The study confirms that synthetic calcite and chalk both take up nickel, but Ni binds more strongly on the biogenic calcite than on inorganically precipitated, synthetic powder, because of the presence of trace amounts...

  5. Preferred orientation of n-hexane crystallized in silicon nanochannels: A combined x-ray diffraction and sorption isotherm study

    CERN Document Server

    Henschel, Anke; Hofmann, Tommy; Knorr, Klaus; Huber, Patrick; 10.1103/PhysRevE.79.032601

    2009-01-01

    We present an x-ray diffraction study on n-hexane in tubular silicon channels of approximately 10 nm diameter both as a function of the filling fraction f of the channels and as a function of temperature. Upon cooling, confined n-hexane crystallizes in a triclinic phase typical of the bulk crystalline state. However, the anisotropic spatial confinement leads to a preferred orientation of the confined crystallites, where the crystallographic direction coincides with the long axis of the channels. The magnitude of this preferred orientation increases with the filling fraction, which corroborates the assumption of a Bridgman-type crystallization process being responsible for the peculiar crystalline texture. This growth process predicts for a channel-like confinement an alignment of the fastest crystallization direction parallel to the long channel axis. It is expected to be increasingly effective with the length of solidifying liquid parcels and thus with increasing f. In fact, the fastest solidification front...

  6. Processing of X-ray snapshots from crystals in random orientations

    Energy Technology Data Exchange (ETDEWEB)

    Kabsch, Wolfgang, E-mail: kabsch@mpimf-heidelberg.mpg.de [Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, D-69120 Heidelberg (Germany)

    2014-08-01

    A new method for the treatment of partial reflections from X-ray snapshots is implemented in the program package nXDS, which yields intensity data of almost the same quality as those obtained by the classical rotation method. A functional expression is introduced that relates scattered X-ray intensities from a still or a rotation snapshot to the corresponding structure-factor amplitudes. The new approach was implemented in the program nXDS for processing monochromatic diffraction images recorded by a multi-segment detector where each exposure could come from a different crystal. For images containing indexable spots, the intensities of the expected reflections and their variances are obtained by profile fitting after mapping the contributing pixel contents to the Ewald sphere. The varying intensity decline owing to the angular distance of the reflection from the surface of the Ewald sphere is estimated using a Gaussian rocking curve. This decline is dubbed ‘Ewald offset correction’, which is well defined even for still images. Together with an image-scaling factor and other corrections, an explicit expression is defined that predicts each recorded intensity from its corresponding structure-factor amplitude. All diffraction parameters, scaling and correction factors are improved by post-refinement. The ambiguous case of a lower point group than the lattice symmetry is resolved by a method reminiscent of the technique of ‘selective breeding’. It selects the indexing alternative for each image that yields, on average, the highest correlation with intensities from all other images. Processing a test set of rotation images by XDS and treating the same images by nXDS as snapshots of crystals in random orientations yields data of comparable quality, clearly indicating an anomalous signal from Se atoms.

  7. On the stability of homogenous orientation in a plane-parallel cell of a liquid crystal doped with nanoparticles

    International Nuclear Information System (INIS)

    The problems of molecules homogenous orientations stability of nematic liquid crystal (NLC) doped with small amount of cholesteric LC are considered. The LC cell with homeotropic orientation on the wall and the cell with a twist-oriented molecules on the boundaries are studied. The problems are solved using the Noether theorem for LC. The invariance of the form of free energy to translation according to the Noether theorem leads to conservation of the momentum flux, and invariance with respect to the rotation group leads to conservation of the angular momentum flux. These conservation laws are used to get thresholds of molecules homogenous orientation stability of mentioned mixture and the influence of nanoparticles on this thresholds

  8. Origin of authigenic calcite and aragonite in pelagic sediments of the Mendeleev Ridge (Arctic Ocean) and their paleoceanographicimplications

    Science.gov (United States)

    Woo, K. S.; Ji, H. S.; Nam, S.; Stein, R. H.; Mackensen, A.; Matthiessen, J. J.

    2013-12-01

    Carbonate minerals were discovered from the giant box core (PS72/410-1) of the pelagic sediments recovered from the Canadian Arctic across the central Mendeleev Ridge (Station location= Lat. 80°30.37"N, Long. 175°44.38"W) during the Arctic cruise by Polarstern in 2008. The core was 39 cm long and was collected from the water depth of 1802 meters. The sediments show various colours from grey to brown as previously reported in other Arctic pelagic sediments. The sediments include planktonic foraminifers together with carbonate minerals. The contents of planktonic foraminifers and carbonate minerals vary with core depth, however these carbonate minerals are present through the whole sequence except for a few centimetres. After wet sieving, coarse fractions were texturally examined with binocular microscope and SEM, and stable isotope and trace element contents were obtained. Mineralogy of carbonate minerals were determined using crystal shapes and qualitative Sr contents by EDAX together with trace element analysis. The carbonates are composed of high Mg-calcite, low Mg-calcite and aragonite. Aragonite crystals show (1) radiating fibrous texture, (2) randomly oriented fibrous texture, (3) spherulitic fibrous texture, and (4) bladed texture, and calcite crystals show (1) foliated texture, (2) randomly bladed texture, (3) spherulitic fibrous texture, and (4) equant texture. Various crystal shapes of aragonite and calcite together with clear growth shapes of the crystals suggest that they are inorganic in origin. Highly enriched carbon isotope compositions (δ13C = 0 ~ +5‰ vs. PDB) strongly indicate that they formed in methanogenic zone below sediment/water interface by the reaction between anoxic pore fluids and host sediments induced by methanogenic bacteria. However, a wide range of oxygen isotope values (δ18O = -5 ~ +5‰ vs. PDB) may indicate that porewater has been changed due to reaction between residual seawater and volcanic sediments. Four types of stable

  9. Computational modeling of intrinsically induced strain gradients during compression of c-axis-oriented magnesium single crystal

    International Nuclear Information System (INIS)

    A finite-deformation strain gradient crystal plasticity model is implemented in a three-dimensional finite-element framework in order to analyze the deformation behavior and the stress–strain response of magnesium single crystals under c-axis orientation. The potential-based and thermodynamically consistent material model is formulated in a non-local and non-linear inelastic context in which dislocation densities are introduced via plastic strain gradients. Experiments have shown that the internal length scale of the microstructure starts to affect the overall stress–strain response when the sample size decreases to the micron scale. As a consequence, strain gradients develop, leading to an additional energetic-like hardening effect which results in an increase of the macroscopic strength with decreasing crystal size. In the case of uniaxial compression of c-axis-oriented single-crystal micropillars, the model is able to predict the discrete dislocation glide in terms of a band-shaped slip zone. Two different pillar sample sizes are taken into account in order to investigate the intrinsic size effect during plastic deformation where the crystallographic orientation leads to the activation of pyramidal {112¯2}〈112¯3〉 slip systems as reported in various experimental studies. The interaction of those slip systems is expressed in terms of latent hardening and excess dislocation development. A comparison between numerical results and corresponding experimental data is presented

  10. Calcite formation in soft coral sclerites is determined by a single reactive extracellular protein.

    Science.gov (United States)

    Rahman, M Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-09-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called "calcite and aragonite seas." Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that -OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106

  11. Utilization of oriented crystal growth for screening of aromatic carboxylic acids cocrystallization with urea

    Science.gov (United States)

    Przybyłek, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław; Mroczyńska, Karina; Cysewski, Piotr

    2016-01-01

    The possibility of molecular complex formation in the solid state of urea with benzoic acid analogues was measured directly on the crystallite films deposited on the glass surface using powder X-ray diffractometry (PXRD). Obtained solid mixtures were also analyzed using Fourier transform infrared spectroscopy (FTIR). The simple droplet evaporation method was found to be efficient, robust, fast and cost-preserving approach for first stage cocrystal screening. Additionally, the application of orientation effect to cocrystal screening simplifies the analysis due to damping of majority of diffraction signals coming from coformers. During validation phase the proposed approach successfully reproduced both positive cases of cocrystallization (urea:salicylic acid and urea:4-hydroxy benzoic acid) as well as pairs of co-formers immiscible in the solid state (urea:benzoic acid and urea:acetylsalicylic acids). Based on validated approach new cocrystals of urea were identified in complexes with 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 3,5-dihydroxybenzoic acid. In all cases formation of multicomponent crystal phase was confirmed by the appearance of new reflexes on the diffraction patterns and FTIR absorption band shifts of O-H and N-H groups.

  12. Near-Field Birefringence Response of Liquid Crystal Molecules in Thickness Direction of Liquid Crystal Thin Film Orientated by Shear Force

    Institute of Scientific and Technical Information of China (English)

    Jing QIN; Norihiro UMEDA

    2007-01-01

    Information of molecular orientation in nematic liquid crystal (LC) is attractive and important for applications in the field of display devices. We demonstrate a novel method using a birefringence scanning near-field optical microscope (Bi-SNOM) with a probe which is inserted into the LC thin film to detect the molecular orientation from its birefringence responses in the thickness direction of the LC thin film. The probe is laterally vibrated when going forward into the LC thin film, and the retardation and azimuth angle are recorded as the probe going down. Firstly, the thickness of the LC thin film is measured by the shear force detection. Since the shear force acts as a stimulation to reorientate the LC molecules above the substrate surface, we can detect the molecular orientation caused by a polyimide alignment substrate and the effect to molecular orientation caused by vibration of fibre probe. As a result, the orientation profiling of the LC film in depth direction is obtained in both the cases that the direction of probe vibrating is vertical/parallel to the rubbing direction of the alignment film.Furthermore, the thickness of completely orientated layers just above the substrate surface can also be obtained by either vibrating probe or no-vibrating probe. Ultimately, the LC thin film can be modelled in thickness direction from all the results using this method.

  13. Analysis of the variation in nanohardness of pearlitic steel: Influence of the interplay between ferrite crystal orientation and cementite morphology

    International Nuclear Information System (INIS)

    The influence of the relative orientation of the ferrite crystallite lattice and the cementite lamellae on the hardness of pearlitic steel has been investigated by a combination of nanoindentation and electron microscopy (electron back scatter diffraction (EBSD) and scanning electron microscopy (SEM)). Three pearlitic samples, each with a different interlamellar spacing, and one ferritic sample were nanoindented. Although the hardness of the ferritic sample is very similar at different spots on the sample, a large variation in hardness is obtained on each of the pearlitic samples. It has been found that this variation cannot be accounted for solely by the variation in interlamellar spacing and is related to differences in ferrite crystal orientation. As to explain the observed large variation in hardness, the ferrite crystal orientation was considered relative to the cementite lamellae orientation by calculation of the distance dislocations can glide between adjacent lamellae in the slip direction. However, no clear correlation was found for a scaling of this orientation factor with the hardness. Possible interpretations of this discrepancy are suggested

  14. Analysis of the variation in nanohardness of pearlitic steel: Influence of the interplay between ferrite crystal orientation and cementite morphology

    Energy Technology Data Exchange (ETDEWEB)

    Debehets, Jolien, E-mail: jolien.debehets@mtm.kuleuven.be [Department of Materials Engineering, KU Leuven, University of Leuven, Kasteelpark Arenberg 44 bus 2450, B-3001 Leuven (Belgium); Tacq, Jeroen [Department of Materials Engineering, KU Leuven, University of Leuven, Kasteelpark Arenberg 44 bus 2450, B-3001 Leuven (Belgium); Favache, Audrey; Jacques, Pascal [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2 L5.02.02, 1348 Louvain-la-Neuve (Belgium); Seo, Jin Won; Verlinden, Bert; Seefeldt, Marc [Department of Materials Engineering, KU Leuven, University of Leuven, Kasteelpark Arenberg 44 bus 2450, B-3001 Leuven (Belgium)

    2014-10-20

    The influence of the relative orientation of the ferrite crystallite lattice and the cementite lamellae on the hardness of pearlitic steel has been investigated by a combination of nanoindentation and electron microscopy (electron back scatter diffraction (EBSD) and scanning electron microscopy (SEM)). Three pearlitic samples, each with a different interlamellar spacing, and one ferritic sample were nanoindented. Although the hardness of the ferritic sample is very similar at different spots on the sample, a large variation in hardness is obtained on each of the pearlitic samples. It has been found that this variation cannot be accounted for solely by the variation in interlamellar spacing and is related to differences in ferrite crystal orientation. As to explain the observed large variation in hardness, the ferrite crystal orientation was considered relative to the cementite lamellae orientation by calculation of the distance dislocations can glide between adjacent lamellae in the slip direction. However, no clear correlation was found for a scaling of this orientation factor with the hardness. Possible interpretations of this discrepancy are suggested.

  15. Conductivity type and crystal orientation of GaAs nanocrystals fabricated in silicon by ion implantation and flash lamp annealing

    International Nuclear Information System (INIS)

    The integration of III–V semiconductor material within silicon technology is crucial for performance of advanced electronic devices. This paper presents the investigations of microstructural and opto-electronic properties of GaAs quantum dots (QDs) formed in silicon by means of sequential ion implantation and flash lamp annealing (FLA). Formation of crystalline GaAs QDs with well-defined crystal orientation and conductivity type was confirmed by high resolution transmission electron microscopy and μ-Raman spectroscopy. The influence of the post implantation millisecond-range annealing on the evolution of the nanoparticles size, shape, crystallographic orientation and doping type of GaAs QDs is discussed

  16. Orientational bonding of phases accompanying directed crystallization of the eutectic of the system Si-TiSi2

    Science.gov (United States)

    Derevyagina, L. S.; Butkevich, L. M.

    1987-09-01

    The characteristic features of structure formation in cast and direct crystallized alloys of the system Si-TiSi2 were studied. It is shown that the predominant orientation of the bonding of the phases in directionally crystallized eutectics (DE) of the system Si-TiSi2, observed at the stage of steady-state growth, already appears on the surface of nucleation, which apparently indicates that the nucleation of the phases in the alloys of this system is of an epitaxial character.

  17. In situ crystallization of b-oriented MFI films on plane and curved substrates coated with a mesoporous silica layer

    KAUST Repository

    Deng, Zhiyong

    2013-05-01

    A simple and reproducible method is presented for preparing b-oriented MFI films on plane (disc) and curved (hollow fiber) supports by in situ hydrothermal synthesis. A mesoporous silica (sub-)layer was pre-coated on the supports by dip coating followed by a rapid thermal calcination step (973 K during 1 min) to reduce the number of grain boundaries while keeping the hydrophilic behavior of silica. The role of the silica sub-layer is not only to smoothen the substrate surface, but also to provide a silica source to promote the nucleation and growth of zeolite crystals via a heterogeneous nucleation mechanism (zeolitization), and adsorb zeolite moieties generated in the synthesis solution via a homogeneous nucleation mechanism. A monolayer of b-oriented MFI crystals was obtained on both supports after 3 h synthesis time with a moderate degree of twinning on the surface. © 2013 Elsevier Ltd.

  18. Smectic C liquid crystal growth through surface orientation by ZnxCd1–xSe thin films

    International Nuclear Information System (INIS)

    A smectic C liquid crystal (LC) texture, consisting of distinct local single crystals (DLSCs) was grown using predefined orientation of ternary nanocrystalline thin films of ZnxCd1−xSe. The surface morphology and orientation features of the ZnxCd1−xSe films were investigated by AFM measurements and micro-texture polarization analysis. The ZnxCd1−xSe surface causes a substantial enlargement of the smectic C DLSCs and induction of a surface bistable state. The specific character of the morphology of this coating leads to the decrease of the corresponding anchoring energy. Two new chiral states, not typical for this LC were indicated. The physical mechanism providing these new effects is presented.

  19. Quasicharacteristic radiation of relativistic electrons at orientation motion in lithium halides crystals along charged planes and axes

    Science.gov (United States)

    Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.

    2016-07-01

    The paper deals with the investigation of the orientation motion of relativistic electrons in charged (111) planes and charged [110] axes of lithium halides ionic crystals of LiF, LiCl, LiBr and LiI. On the basis of these investigations the spectra of quasicharacteristic radiation for the electron beams with various Lorentz-factors both in planar and axial cases have been calculated numerically.

  20. (U-Th)/He dating and He diffusion in calcite from veins and breccia

    Science.gov (United States)

    Gautheron, C.; Cros, A.; Pagel, M.; Berthet, P.; Tassan-Got, L.; Douville, E.; Pinna-Jamme, R.; Sarda, P.

    2013-12-01

    Knowledge of He retention in crystalline calcite is mandatory to estimate the possibility of (U-Th)/He dating of calcite. To this aim, fault-filling calcite crystals from the Eocene/Oligocene Gondrecourt graben, Paris Basin, Eastern France, have been sampled, based on their relatively old, Eocene-Oligocene, precipitation age and cold thermal history (agreement with the He-retentive character of calcite as determined by Copeland et al. (2007), and these ages were obtained for the most recently precipitated crystals. To better understand the large He-age scatter and why calcites precipitated earlier show younger ages, He diffusion experiments have been conducted on 10 Gondrecourt calcite fragments from 3 samples with He ages of 0.2 to 6 Ma. In addition, a crystallographic investigation by X-Ray Diffraction (XRD) performed on similar samples reveals that the crystal structure evolves with increasing temperature, showing with micro-cracks and cleavage opening. These XRD results indicate that, in fault-filling calcite, He retention is controlled by multiple diffusion domains (MDD, Lovera et al., 1991) with various sizes, and therefore, evolves through time with strong consequences on (U-Th)/He age. We thus interpret the Gondrecourt calcite (U-Th)/He age scatter of older samples as a consequence of cleavage opening due to a succession of calcite crystallization phases related to the deformation history. Finally, we propose that the crystallization age of a calcite crystal with a known thermal history can nevertheless be retrieved by the (U-Th)/He method provided the He diffusion pattern can be measured by careful step-heating degassing analysis. Copeland, P., Watson, E.B., Urizar, S.C., Patterson, D., Lapen, T.J., 2007. Alpha thermochronology of carbonates. Geochim. Cosmochim. Acta, 71: 4488-4511. Cros, A. Gautheron, C., Pagel, M., Berthet, P., Tassan-Got, L., Douville, E., Pinna-Jamme, R., Sarda, P., submitted GCA, He behavior in calcite filling viewed by (U

  1. Influences of ruthenium and crystallographic orientation on creep behavior of aluminized nickel-base single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Latief, F.H., E-mail: fahamsyah78@gmail.com [Department of Mechanical Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo 192-0397 (Japan); Kakehi, K. [Department of Mechanical Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo 192-0397 (Japan); An-Chou Yeh, H. [Department of Materials Science and Engineering, National TsingHua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Murakami, H. [Hybrid Materials Center, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2014-01-13

    The influences of ruthenium and surface orientation on creep behavior of aluminized Ni-base single crystal superalloys were investigated by comparing two different types of NKH superalloys. The aluminized coated specimens were then subjected to creep rupture tests at a temperature of 900 °C and a stress of 392 MPa. The coating treatment resulted in a significant decrease in creep rupture lives for both superalloys. The diffusion zones between the coating and substrate led to changes in microstructure, which diminished the creep behavior of the aluminized superalloys. Because of the interdiffusion of Ru, Al and Ni, the solubility of some of the refractory elements, such as W, Re. Mo, Co and Cr decreased in the diffusion zone; the precipitation of topologically close-packed (TCP) phases was thus inevitable. In the present study, the addition of Ru increased the degree of Re and Cr supersaturation in the γ matrix. Consequently, the addition of Ru indirectly promoted the precipitation of TCP phases in aluminized Ni-base single crystal superalloys. Furthermore, the growth of TCP precipitates was greatly influenced by the specific surface orientations of the Ni-base single crystal superalloys. In conclusion, the {110} specimens showed shorter creep rupture life than the {100} specimens, this was due to the difference in the crystallographic geometry of {111}〈101〉 slip system and TCP precipitates between the two side-surface orientations of the specimens.

  2. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    Science.gov (United States)

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  3. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite

    Science.gov (United States)

    Wombacher, F.; Eisenhauer, A.; Böhm, F.; Gussone, N.; Regenberg, M.; Dullo, W.-Chr.; Rüggeberg, A.

    2011-10-01

    activation energy required for cation incorporation, which probably reflects the dehydration of the cation and the crystal surface and bond formation at the incorporation site. This kinetic incorporation model predicts (i) no intrinsic dependence on growth rate, unless significant back reaction upon slow growth reduces the isotope fractionation towards that characteristic for equilibrium isotope partitioning (this may be observed for Ca isotopes in calcites), (ii) a small decrease of isotope fractionation with increasing temperature that may be amplified if higher temperatures promote back reaction and (iii) a sensitivity to changes in the activation barrier caused by additives such as anions or biomolecules or by the initial formation of amorphous CaCO 3.

  4. 57Fe Moessbauer investigation of oriented single-crystal and polycrystalline PbFe12O19

    International Nuclear Information System (INIS)

    57Fe Moessbauer spectra of PbFe12O19 have been obtained at 295 K on polycrystalline and single-crystal thin sections oriented with the c-axis parallel and perpendicular, respectively, to the γ-ray propagation direction. Due to the lower Neel temperature, the internal magnetic fields (Heff) in PbFe12O19 are lower than those in BaFe12O19 and SrFe12O19 but the systematics of the hyperfine interactions are similar to those in other hexaferrites. For example, the relative values of Heff exhibit the following sequence: 2b 1 2 and the isomer shifts (δ) exhibit the following ordering: 4f1 2. The large dynamic displacement of the 2b Fe3+ ion parallel to the c-axis is clearly demonstrated by the relative intensity of the 2b site for the two oriented single crystals, being negligible for the crystal perpendicular to the c-axis, and equal to its population fraction for the crystal parallel to the c-axis. The lower value for the electric quadrupole splitting of the 2b site is believed to be related to the larger dynamic displacements at this site compared to other hexaferrites

  5. Incorporation of Eu(III) into Calcite under Recrystallization conditions.

    Science.gov (United States)

    Hellebrandt, S E; Hofmann, S; Jordan, N; Barkleit, A; Schmidt, M

    2016-01-01

    The interaction of calcite with trivalent europium under recrystallization conditions was studied on the molecular level using site-selective time-resolved laser fluorescence spectroscopy (TRLFS). We conducted batch studies with a reaction time from seven days up to three years with three calcite powders, which differed in their specific surface area, recrystallization rates and impurities content. With increase of the recrystallization rate incorporation of Eu(3+) occurs faster and its speciation comes to be dominated by one species with its excitation maximum at 578.8 nm, so far not identified during previous investigations of this process under growth and phase transformation conditions. A long lifetime of 3750 μs demonstrates complete loss of hydration, consequently Eu must have been incorporated into the bulk crystal. The results show a strong dependence of the incorporation kinetics on the recrystallization rate of the different calcites. Furthermore the investigation of the effect of different background electrolytes (NaCl and KCl) demonstrate that the incorporation process under recrystallization conditions strongly depends on the availability of Na(+). These findings emphasize the different retention potential of calcite as a primary and secondary mineral e.g. in a nuclear waste disposal site.

  6. Incorporation of Eu(III) into Calcite under Recrystallization conditions

    Science.gov (United States)

    Hellebrandt, S. E.; Hofmann, S.; Jordan, N.; Barkleit, A.; Schmidt, M.

    2016-09-01

    The interaction of calcite with trivalent europium under recrystallization conditions was studied on the molecular level using site-selective time-resolved laser fluorescence spectroscopy (TRLFS). We conducted batch studies with a reaction time from seven days up to three years with three calcite powders, which differed in their specific surface area, recrystallization rates and impurities content. With increase of the recrystallization rate incorporation of Eu3+ occurs faster and its speciation comes to be dominated by one species with its excitation maximum at 578.8 nm, so far not identified during previous investigations of this process under growth and phase transformation conditions. A long lifetime of 3750 μs demonstrates complete loss of hydration, consequently Eu must have been incorporated into the bulk crystal. The results show a strong dependence of the incorporation kinetics on the recrystallization rate of the different calcites. Furthermore the investigation of the effect of different background electrolytes (NaCl and KCl) demonstrate that the incorporation process under recrystallization conditions strongly depends on the availability of Na+. These findings emphasize the different retention potential of calcite as a primary and secondary mineral e.g. in a nuclear waste disposal site.

  7. Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization

    DEFF Research Database (Denmark)

    Sand, K K; Yang, M; Makovicky, E;

    2010-01-01

    adsorption on calcite relative to OH from water and the consequences of the differences in interaction on crystal growth and dissolution. A combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations showed that EtOH attachment on calcite is stronger than HOH binding...... transport to and from the mineral surface, confining it to specific locations, thus providing the organism with control for biomineral morphology....

  8. Fracture-aperture alteration induced by calcite precipitation

    Science.gov (United States)

    Jones, T.; Detwiler, R. L.

    2013-12-01

    Mineral precipitation significantly alters the transport properties of fractured rock. Chemical solubility gradients that favor precipitation induce mineral growth, which decreases the local aperture and alters preferential flow paths. Understanding the resulting development of spatial heterogeneities is necessary to predict the evolution of transport properties in the subsurface. We present experimental results that quantify the relationship between mineral precipitation and aperture alteration in a transparent analog fracture, 7.62cm x 7.62cm, with a uniform aperture of ~200 μm. Prior to flow experiments, a pump circulated a super-saturated calcite solution over the bottom glass, coating the glass surface with calcite. This method of seeding resulted in clusters of calcite crystals with large reactive surface area and provided micro-scale variability in the aperture field. A continuous flow syringe pump injected a reactive fluid into the fracture at 0.5 ml/min. The fluid was a mixture of sodium bicarbonate (NaHCO3, 0.02M) and calcium chloride (CaCl2 0.0004M) with a saturation index, Ω, of 8.51 with respect to calcite. A strobed LED panel backlit the fracture and a high-resolution CCD camera monitored changes in transmitted light intensity. Light transmission techniques provided a quantitative measurement of fracture aperture over the flow field. Results from these preliminary experiments showed growth near the inlet of the fracture, with decreasing precipitation rates in the flow direction. Over a period of two weeks, the fracture aperture decreased by 17% within the first 4mm of the inlet. Newly precipitated calcite bridged individual crystal clusters and smoothed the reacting surface. This observation is an interesting contradiction to the expectation of surface roughening induced by mineral growth. Additionally, the aperture decreased uniformly across the width of the fracture due to the initial aperture distribution. Future experiments of precipitation

  9. Surface chemistry of the preferred (111) and (220) crystal oriented microcrystalline Si films by radio-frequency plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, Daisuke; Koshino, Hideto; Tang, Zeguo; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, Sakura (Japan)

    2011-10-15

    The surface chemistry of the preferentially (111) and (220) crystal orientated chlorinated hydrogenated microcrystalline silicon ({mu}c-Si:H:Cl) films was studied using a rf PE-CVD of a dichlorosilane (SiH{sub 2}Cl{sub 2}) and H{sub 2} mixture. The growing surface for the preferentially (220) crystal oriented {mu}c-Si:H:Cl films included much voids and dangling bonds, whereas the growing surface with the preferential (111) crystal orientation was chemically stable relatively. These findings suggest that the sticking process of deposition precursors and/or the reconstruction of Si clusters within the sub-surface determine the preferential crystal orientation. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. High orientation Al films growth on LiNbO3 single crystal and its adhesion

    Institute of Scientific and Technical Information of China (English)

    LI Dong-mei; CHEN Jing-jing; PAN Feng

    2004-01-01

    High orientation Al films were deposited on 64°Y-XLiNbO3 substrate by DC magnetron sputtering and the influence of deposition temperature on microstructure and adhesion properties of Al films were investigated. The results show that crystallographic orientation of films varies with substrate temperature and the adhesion strength between LiNbO3 and Al films strongly depends on crystallographic orientation of Al films. The (111) orientated Al films shows stronger adhesion strength to LiNbO3 substrate than (100) orientated films. There is an optimum substrate temperature of 60 ℃ and hardening temperature of 200 ℃ for obtaining high (111) orientated Al films with good surface structure and adhesion property. Using this Al film, we have successfully fabricated the SAW filters with high frequency of about 1.89 GHz.

  11. Effects of Mircostructure and Crystallographic Orientation on the Deformation Behavior of Ni/Ni{sub 3}Al Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Song, Seong Hun; Wee, Dang Moon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kishida, Kyosuke [Kyoto Univ., Kyoto (Japan); Demura, Masahiko; Hirano, Toshiyuki [National Institute for Materials Science, Ibaraki (Japan); Kim, Min Chul [KAERI, Daejeon (Korea, Republic of); Oh, Myung Hoon [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2007-02-15

    In order to study the deformation behavior depending on the initial crystallographic orientations and the morphology of Ni{sub 3}Al precipitates, the plane strain compression tests were carried out on the single crystals of Ni/Ni{sub 3}Al (Ni-18at.%Al) two-phase alloys. Flow behaviors were strongly dependent on the initial crystallographic orientations in DS18-3 alloys with rods and plates of Ni{sub 3}Al precipitates rather than DS18-1 alloys with Ni{sub 3}Al cuboids. For all orientations of DS18-1 alloys, and (110)[001]- and (110)[112]-oriented specimens of DS18-3 alloys, the flow behavior was thought to have a similar tendency at least up to strain level in this study, whereas the flow stresses were much lower for (100)[011]-, (100)[012]- and (210)[001]- oriented specimens in DS18-3 alloys. Such flow behavior is considered to be closely related to morphology of Ni3Al precipitates and cross-slip within Ni matrix which was related to the operative slip systems.

  12. Calcite Twins, a Tool for Tectonic Studies in Thrust Belts and Stable Orogenic Forelands Les macles de la calcite, un outil pour les études tectoniques dans les chaînes plissées et les avant-pays peu déformés des orogènes

    OpenAIRE

    Lacombe O.

    2010-01-01

    Calcite twins have been used for a long time as indicators of stress/strain orientations and magnitudes. Recent developments during the last 15 years point toward significant improvements of existing techniques as well as new applications of calcite twin analysis in thrust belts and forelands. This paper summarizes the principles of the most common techniques in this tectonic field and illustrates some aspects of the use of calcite twins to constrain not only stress/strain orientations a...

  13. Effect of crystal plane orientation on the friction-induced nanofabrication on monocrystalline silicon

    OpenAIRE

    Yu, Bingjun; Qian, Linmao

    2013-01-01

    Although monocrystalline silicon reveals strong anisotropic properties on various crystal planes, the friction-induced nanofabrication can be successfully realized on Si(100), Si(110), and Si(111) surfaces. Under the same loading condition, the friction-induced hillock produced on Si(100) surface is the highest, while that produced on Si(111) surface is the lowest. The formation mechanism of hillocks on various silicon crystal planes can be ascribed to the structural deformation of crystal ma...

  14. Fabrication of well ordered Zn nanorod arrays by ion irradiation method at room temperature and effect on crystal orientations

    International Nuclear Information System (INIS)

    Highly oriented and densely packed one-dimensional (1D) polycrystalline Zn nanorods were fabricated on zinc plate without any catalyst at room temperature by bombardment with obliquely incident Ar+ ion via ion irradiation method. The sputtered surfaces were fully covered with Zn nanostructures with diameter and the length around 60 nm and 1.3 μm, respectively, confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The crystal orientation of the Zn plate was investigated by electron back scattering pattern method (EBSP). The numerical density and morphology of Zn nanostructures (nanoneedle or nanorods) were found to be 2.1 x 106 to 9 x 106/mm2 depending upon the crystal orientation and the atomic density on different crystallographic faces. (21-bar 1-bar 0) faces of Zn polycrystal tended to form more dense nanostructures compared to (0001-bar) faces. This is because of lower atomic density on (21-bar 1-bar 0) faces in comparison with (0001-bar) faces. This indicates that lower atomic density on any crystallographic faces is favorable to form nanostructure of higher density. The outstanding feature of this growth technique is that it provides a new direction for the controllable growth of desired nanostructures of variable density at room temperature without any catalyst. These well-aligned arrays of Zn nanorods/nanoneedle might be a promising material for the future application in nanodevices.

  15. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    Science.gov (United States)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    signals occur with characteristics consistent with phosphate monoesters. The results of this study indicate that trace- to minor concentrations of dissolved organic molecules can be effectively taken up during calcite precipitation and incorporated in the structure, leaving a resilient record of materials present during crystallization.

  16. Application of orientation imaging to the study of substructural development in cold deformed Al-0.3%Mn single crystal of {l_brace}110{r_brace}<112> orientation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, H; Miszczyk, M [Polish Academy of Sciences, Institute of Metallurgy and Materials Science, ul. Reymonta 25, PL-30059 Krakow (Poland); Maurice, C; Driver, J H, E-mail: nmpaul@imim-pan.krakow.pl [Ecole Nationale Superieure des Mines de Saint Etienne, Centre SMS, 158 Cours Fauriel, FR-42023 Saint Etienne (France)

    2010-02-15

    A systematic study of the deformation microstructures over 3 perpendicular surfaces was carried out in the present work in order to correlate better the substructure with slip patterns, initial and final crystal orientation, and the macroscopic coordinate system. The microstructure and texture evolution of high purity Al-0.3 wt% Mn alloy of initial near brass {l_brace}110{r_brace}<112> (or Bs) orientation, channel-die compressed to the strain level of 1.5, were studied by TEM (including TEM orientation mapping) and high-resolution FEG-SEM/EBSD techniques to observe crystal subdivision deformation patterns at the microscopic scale. The grain orientation dependent structures were analyzed in terms of active slip systems focussing on the crystallography of extended planar boundaries. It was concluded that the type of dislocation structure (one or two sets of microbands) in {l_brace}110{r_brace}<112> oriented crystallites, at moderate strains (< 1.5) depended strongly on the crystallographic grain orientation. In this non-ideal initial crystal orientation the applied deformation mode activates a double slip, of which one system predominates and leads to further rotation away from Bs. A general rotation combined with a wide orientation spread is observed after a strain up to 1.5. The microband boundary alignment corresponds very well to the traces of crystallographic {l_brace}111{r_brace} planes, on which most of the slip occurs.

  17. Study of Orientational Order of Liquid Crystal 8 OCB Doped with Perylene-like Dyes by Means of Polarized Optical Spectroscopy

    Science.gov (United States)

    Bauman, Danuta; Wolarz, Eryk

    1996-12-01

    Measurements of the polarized absorption and fluorescence spectra for perylene-like dyes dis-solved in a liquid crystal 8 OCB have been used to study the long-range orientational order in the smectic A and nematic phases. The temperature dependence of the order parameters and has been investigated and the orientational distribution function has been determined. On the basis of the experimental order parameter values some information about the orientation of molecules in guest-host mixtures has been obtained.

  18. Direct nanoscale observations of the coupled dissolution of calcite and dolomite and the precipitation of gypsum

    Directory of Open Access Journals (Sweden)

    Francesco G. Offeddu

    2014-08-01

    Full Text Available In-situ atomic force microscopy (AFM experiments were performed to study the overall process of dissolution of common carbonate minerals (calcite and dolomite and precipitation of gypsum in Na2SO4 and CaSO4 solutions with pH values ranging from 2 to 6 at room temperature (23 ± 1 °C. The dissolution of the carbonate minerals took place at the (104 cleavage surfaces in sulfate-rich solutions undersaturated with respect to gypsum, by the formation of characteristic rhombohedral-shaped etch pits. Rounding of the etch pit corners was observed as solutions approached close-to-equilibrium conditions with respect to calcite. The calculated dissolution rates of calcite at pH 4.8 and 5.6 agreed with the values reported in the literature. When using solutions previously equilibrated with respect to gypsum, gypsum precipitation coupled with calcite dissolution showed short gypsum nucleation induction times. The gypsum precipitate quickly coated the calcite surface, forming arrow-like forms parallel to the crystallographic orientations of the calcite etch pits. Gypsum precipitation coupled with dolomite dissolution was slower than that of calcite, indicating the dissolution rate to be the rate-controlling step. The resulting gypsum coating partially covered the surface during the experimental duration of a few hours.

  19. Orientation-dependent hardness and nanoindentation-induced deformation mechanisms of WC crystals

    International Nuclear Information System (INIS)

    The orientation dependence of hardness and nanoindentation-induced deformation mechanisms of differently orientated tungsten carbide (WC) grains in WC–Co hardmetal were studied. Electron backscatter diffraction, atomic force microscopy and scanning electron microscopy investigations were performed to determine the grain orientation, and to study the surface morphology and the resulting deformation fields around the indents. The hardness of the differently orientated WC grains showed significant angle dependence from the basal towards the prismatic directions, but there was only a slight change in hardness between the two types of prismatic orientations ((101¯0) and (21¯1¯0)). Sink-in and pile-up effects, together with highly deformed regions and dislocation steps, were revealed around the imprints in the case of basal and prismatic orientations, respectively. A theoretical model is proposed in which the critical force for slip activation is determined as a function of orientation, based on the possible slip systems of WC. The predictions of the present model concerning the measured hardness values and the deformation field around the indents together with the sink-in effect are in good agreement with the experimental results

  20. Influence of surface conductivity on the apparent zeta potential of calcite.

    Science.gov (United States)

    Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-04-15

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model.

  1. Birefringence imaging and orientation of laser patterned β-BaB{sub 2}O{sub 4} crystals with bending and curved shapes in glass

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Kazuki; Honma, Tsuyoshi; Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp

    2013-11-15

    Nonlinear optical β-BaB{sub 2}O{sub 4} crystals (β-BBO) with bending and curved shapes were patterned at the surface of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by laser irradiations (Yb:YVO{sub 4} laser with a wavelength of 1080 nm, power of 0.8 W, and scanning speed of 4 μm/s), and the orientation state of β-BBO crystals was examined from the birefringence imaging obtained by polarization optical microscope (POM) observations. The formation (crystallization) of β-BBO crystals follows along laser scanning direction even if the laser scanning direction changes at a certain point within the bending angle of 60°. The birefringence images indicate that the formation of highly c-axis oriented β-BBO crystals follows along laser scanning direction even if the laser scanning direction changes, and in particular the direction of the c-axis of β-BBO crystals changes gradually at the bending point. The model for the orientation of the c-axis of β-BBO near the bending point is proposed. The present study proposes that the laser-induced crystallization opens a new door for the science and technology in crystal growth engineering. - Graphical abstract: This figure shows the birefringence images obtained by the Abrio IM imaging system (λ=546 nm) for the laser-patterned β-BaB{sub 2}O{sub 4} crystal line with the bending angle of 45° in the glass. The relation between the direction of slow axis and color is also shown. It is demonstrated that the formation (crystallization) of highly c-axis oriented β-BaB{sub 2}O{sub 4} crystals follows along laser scanning direction even if the laser scanning direction changes. Display Omitted - Highlights: • β-BaB{sub 2}O{sub 4} crystals with bending and curved shapes were patterned by laser irradiations. • The orientation was examined from the birefringence imaging. • Highly c-axis oriented crystals follows along laser scanning direction. • The c-axis direction changes gradually at the bending point. • The

  2. Magnetocrystalline Anisotropy and Magnetoelasticity of Preferentially Oriented Martensitic Variants in Ni52Mn24Ga24 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    曲静萍; 王文洪; 孟凡斌; 刘宝丹; 柳祝红; 陈京兰; 李养贤; 吴光恒

    2002-01-01

    The magnetocrystalline anisotropy and magnetoelasticity of preferentially oriented martensitic variants in an off-stoichiometric Nis2Mn24Ga24 single crystal have been investigated. We found that the easy magnetization direction of the martensite phase is the [110] direction, and the hard magnetization exhibited in [001], the growth direction of single crystals. The temperature dependence of the anisotropy fields and constants of Ni52Mn24 Ga24 have been determined. It was found that, at the martensite phase, the anisotropy field increases monotonically with decreasing temperature, but the anisotropy constant first increases rapidly and then the increasing rate becomes smaller and smaller. Based on a previous model, the present results suggest that the competition between the Zeeman energy and the magnetocrystalline anisotropy energy is mainly responsible for the magnitude of magnetic-field-induced strain in this material.

  3. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF$_{3}$ crystals

    CERN Document Server

    Pietroni, P; Lebeau, M; Majni, G; Rinaldi, D

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser- generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix.

  4. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation.

    Science.gov (United States)

    Kment, Stepan; Schmuki, Patrik; Hubicka, Zdenek; Machala, Libor; Kirchgeorg, Robin; Liu, Ning; Wang, Lei; Lee, Kiyoung; Olejnicek, Jiri; Cada, Martin; Gregora, Ivan; Zboril, Radek

    2015-07-28

    Hematite, α-Fe2O3, is considered as one of the most promising materials for sustainable hydrogen production via photoelectrochemical water splitting with a theoretical solar-to-hydrogen efficiency of 17%. However, the poor electrical conductivity of hematite is a substantial limitation reducing its efficiency in real experimental conditions. Despite of computing models suggesting that the electrical conductivity is extremely anisotropic, revealing up to 4 orders of magnitude higher electron transport with conduction along the (110) hematite crystal plane, synthetic approaches allowing the sole growth in that direction have not been reported yet. Here, we present a strategy for controlling the crystal orientation of very thin hematite films by adjusting energy of ion flux during advanced pulsed reactive magnetron sputtering technique. The texture and effect of the deposition mode on the film properties were monitored by XRD, conversion electron Mössbauer spectroscopy, XPS, SEM, AFM, PEC water splitting, IPCE, transient photocurrent measurements, and Mott-Schottky analysis. The precise control of the synthetic conditions allowed to fabricate hematite photoanodes exhibiting fully textured structures along (110) and (104) crystal planes with huge differences in photocurrents of 0.65 and 0.02 mA cm(-2) (both at 1.55 V versus RHE), respectively. The photocurrent registered for fully textured (110) film is among record values reported for thin planar films. Moreover, the developed fine-tuning of crystal orientation having a huge impact on the photoefficiency would induce further improvement of thin hematite films mainly if cation doping will be combined with the controllable texture. PMID:26083741

  5. Cryogenic and non-cryogenic pool calcites reflect alternating permafrost and interglacial periods (Breitscheid-Erdbach Cave, Germany

    Directory of Open Access Journals (Sweden)

    D. K. Richter

    2010-07-01

    Full Text Available Weichselian cryogenic calcites collected in what is referred to as the "Rätselhalle" of the Breitscheid-Erdbach Cave were structurally classified as rhombohedral crystal and spherulitic crystal sinters. The carbon and oxygen isotopic composition of these precipitates corresponds to those of known cryogenic calcites of slow genesis of Central European caves (δ13C=+0.6 and −7.3‰; δ18O=−6.9 to −18.0‰. The variant carbon and oxygen isotope pattern differing between different caves is attributed to cave specific ventilation. Particularly, Breitscheid cryogenic calcites reflect mean levels of cave ventilation. By petrographic and geochemical comparisons of Weichselian cryogenic calcite with recent to sub-recent precipitates as well as Weichselian non-cryogenic calcites of the same locality, a model for the precipitation of these calcites is proposed. While the recent and sub-recent pool-calcites isotopically match the geochemistry of interglacial speleothems (stalagmites, etc., isotope ratios of Weichselian non-cryogenic pool-calcites reflect cooler conditions. Weichselian cryogenic calcites show a trend towards 18O-depleted values with higher carbon isotope ratios reflecting slow freezing of the precipitating solution. In essence, the isotope geochemistry of the Weichselian calcites reflects the climate history changing from overall initial permafrost (glacial conditions to an interglacial and subsequently to renewed permafrost conditions. The last stage then grades into the present-day warm period. Judging from the data compiled here, the last permafrost stage is followed by only one interglacial. During this interglacial, the cave ice melted and non-cryogenic Weichselian calcite precipitates were deposited on the cave ground or on fallen blocks, respectively.

  6. Low-magnesium uranium-calcite with high degree of crystallinity and gigantic luminescence emission

    Energy Technology Data Exchange (ETDEWEB)

    Valle-Fuentes, Francisco-Jose [Instituto de Ceramica y Vidrio, CSIC. Cantoblanco, 28049 Madrid (Spain); Garcia-Guinea, Javier [Museo Nacional Ciencias Naturales, CSIC, 28006 Madrid (Spain)]. E-mail: guinea@mncn.csic.es; Cremades, Ana [Departmento Fisica de Materiales, Facultad de Fisicas, University Complutense de Madrid, 28040 Madrid (Spain); Correcher, Virgilio [CIEMAT, Laboratory Dosimetria de Radiaciones, 28040 Madrid (Spain); Sanchez-Moral, Sergio [Museo Nacional Ciencias Naturales, CSIC, 28006 Madrid (Spain); Gonzalez-Martin, Rafael [Museo Nacional Ciencias Naturales, CSIC, 28006 Madrid (Spain); Sanchez-Munoz, Luis [CIEMAT, Laboratory Dosimetria de Radiaciones, 28040 Madrid (Spain); Lopez-Arce, Paula [Getty Conservation Institute, 1200 Getty Center Drive, Suite 700, Los Angeles, CA 90049 (United States)

    2007-01-15

    Cabrera (Madrid) low-Mg calcites exhibit: (i) an unusual twofold elevation in X-ray diffraction pattern intensity; (ii) a 60-fold elevation of luminescence emission, compared to six common natural calcites selected for comparison purposes; (iii) a natural relatively high radiation level of circa 200 nSv h{sup -1} not detected in 1300 other calcites from the Natural History Museum of Madrid. Calcites were analysed by the X-ray diffraction powder method (XRD), cathodo-luminescence spectroscopy in scanning electron microscopy (CL-SEM), thermoluminescence (TL), differential thermal analysis (DTA), X-ray fluorescence spectrometry (XRF) and particle size distribution (PSD). The Cabrera calcite study shows: (i) helicoidally distributed steps along the (0 0 0 1) orientation; (ii) protuberance defects onto the (0 0 0 1) surface, observed by SEM; (iii) XRF chemical contents of 0.03% MgO, 0.013% of Y{sub 2}O{sub 3}, and 0.022% of U{sub 3}O{sub 8}, with accessory amounts of rare earth elements (REE); (iv) DTA dissociation temperature of 879 {sup o}C; (v) TL maxima peaks at 233 and 297 {sup o}C whose areas are 60 times compared to other calcites; (vi) spectra CL-SEM bands at 2.0 and 3.4 eV in the classic structure of Mn{sup 2+} activators; (vii) a twofold XRD pattern explained given that sample is a low-Mg calcite. The huge TL and CL emissions of the Cabrera calcite sample must be linked with the uranyl group presence. This intense XRD pattern in low-Mg calcites could bring into being analytical errors.

  7. Effect of Second-phase Particles on Static Adjustment of Calcite Grain Boundaries in Carbonate Mylonites

    Science.gov (United States)

    Ree, J.; Lee, S.; Jung, H.

    2010-12-01

    Static adjustment of grain boundaries during the waning stage of deformation with sustained heat (e.g. at the end of an orogeny) has not been studied much, although it is important for the interpretation of microstructural status during the main stage of deformation. We report here that static adjustment of calcite grain boundaries is dependent on second-phase particles in carbonate mylonites from the Geounri Shear Zone in the Taebaeksan Basin of South Korea. The carbonate mylonites consist of relic (porphyroclastic) calcites (120-400 μm) and dynamically recrystallized calcites (30-35 μm) with second-phase particles (15-20 μm) of quartz and phyllosilicates. Both calcite grains contain mechanical twins and the twins are wider (10-20 μm thick) in the relic calcites than in the dynamically recrystallized ones (1-3 μm thick). In the layers of carbonate mylonite with less than 3% of second phases, grain boundaries of calcites are straight with triple junctions. In contrast, calcite grain boundaries are lobate to wavy in the layers with more than 3% of second phases, suggesting dynamic grain boundary migration. Calcite grains in both layers show a strong lattice preferred orientation indicating dominant slip system of basal with minor one of rhomb . We interpret that the foam texture of calcite in the mylonite layers with less than 3% of second phases was produced during the waning stage of the main deformation with a sustained heat since both syntectonic and posttectonic chloritoid porphyroblasts occur in adjacent phyllonite layers in the shear zone. 3% volume fraction of second-phase particles might be a critical value above which deformation microstructures of the main phase were ‘frozen’ without static adjustment in our carbonate mylonites.

  8. The potential for phosphorus pollution remediation by calcite precipitation in UK freshwaters

    Directory of Open Access Journals (Sweden)

    C. Neal

    2001-01-01

    Full Text Available This paper examines the potential for calcium carbonate to reduce phosphate pollution in freshwaters by co-precipitation, a process known as a "self cleansing mechanism". Calcium carbonate saturation levels and phosphate concentrations (SRP - soluble reactive phosphate across the major eastern UK river basins are examined to test for solubility controls. The study shows that calcite saturation varies for each catchment as a function of flow and biological activity rather than by direct regulation by SRP. Indeed, there is no evidence, for any of the rivers studied, that calcite solubility controls hold. However, for groundwater and groundwater-fed springs in the Chalk of the Thames basin, calcite saturation is observed with associated low SRP levels. A self-cleansing mechanism may well be operative within the Chalk due to two factors. Firstly, there is a high potential for nucleation on the calcite micro-crystals in the aquifer. Secondly, there are within aquifer reactions that remove the calcite nucleating inhibitors (SRP and dissolved organic carbon, DOC to levels lower than those occurring within the rivers do. These inhibitors enter the catchment at very high concentrations in association with agricultural pollution (fertilizer application and animal slurry and household contamination (e.g. sewage sources from septic tanks. Under low flow conditions, when the saturation index for calcite is at its highest, so too is the concentration of the nucleation inhibitor SRP. Companion work shows that calcite precipitation can occur at the water-sediment interface of the river and this may involve SRP removal. The data, as a whole, define an apparent bound for calcite solubility control where in the presence of nucleating centres, SRP must be less than 4 mM-P l-1 and DOC must be less than 150 mM-C l-1: a condition that does not seem to pertain within most UK rivers. Keywords: calcite, calcium carbonate, phosphate, soluble reactive phosphate, dissolved

  9. Birefringence imaging and orientation of laser patterned β-BaB2O4 crystals with bending and curved shapes in glass

    Science.gov (United States)

    Ogawa, Kazuki; Honma, Tsuyoshi; Komatsu, Takayuki

    2013-11-01

    Nonlinear optical β-BaB2O4 crystals (β-BBO) with bending and curved shapes were patterned at the surface of 8Sm2O3-42BaO-50B2O3 glass by laser irradiations (Yb:YVO4 laser with a wavelength of 1080 nm, power of 0.8 W, and scanning speed of 4 μm/s), and the orientation state of β-BBO crystals was examined from the birefringence imaging obtained by polarization optical microscope (POM) observations. The formation (crystallization) of β-BBO crystals follows along laser scanning direction even if the laser scanning direction changes at a certain point within the bending angle of 60°. The birefringence images indicate that the formation of highly c-axis oriented β-BBO crystals follows along laser scanning direction even if the laser scanning direction changes, and in particular the direction of the c-axis of β-BBO crystals changes gradually at the bending point. The model for the orientation of the c-axis of β-BBO near the bending point is proposed. The present study proposes that the laser-induced crystallization opens a new door for the science and technology in crystal growth engineering.

  10. Investigation of design parameters and choice of substrate resistivity and crystal orientation for the CMS silicon microstrip detector

    CERN Document Server

    Braibant, S

    2000-01-01

    The electrical characteristics ( interstrip and backplane capacitance, leakage current, depletion and breakdown voltage) of silicon microstrip detectors were measured for strip pitches between 60 um and 240 um and various strip implant and metal widths on multi-geometry devices. Both AC and DC coupled devices wereinvestigated. Measurements on detectors were performed before and after irradiation with 24 GeV/c protons up to a fluence of 4.1x10E14 cm-2. We found that the total strip capacitance can be parametrized as a linear function of the ratio of the implant width over the read-out pitch only. We found a significant increase in the interstrip capacitance after radiation on detectors with standard <111> crystal orientation but not on sensors with <100> crystal orientation. We analyzed the measured depletion voltages as a function of the detector geometrical parameters ( read-out pitch, strip width and substrate thickness) found in the literature and we found a linear dependence in...

  11. The effect of crystal orientation on the aluminum anodes of the aluminum-air batteries in alkaline electrolytes

    Science.gov (United States)

    Fan, Liang; Lu, Huimin; Leng, Jing; Sun, Zegao; Chen, Chunbo

    2015-12-01

    Recently, aluminum-air (Al-air) batteries have received attention from researchers as an exciting option for safe and efficient batteries. The electrochemical performance of Aluminum anode remains an active area of investigation. In this paper, the electrochemical properties of polycrystalline Al, Al (001), (110) and (111) single crystals are investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 4 M NaOH and KOH. Hydrogen corrosion rates of the Al anodes are determined by hydrogen collection. Battery performance using the anodes is tested by constant current discharge at 10 mA cm-2. This is the first report showing that the electrochemical properties of Al are closely related to the crystallographic orientation in alkaline electrolytes. The (001) crystallographic plane has good corrosion resistance but (110) is more sensitive. Al (001) single crystals display higher anode efficiency and capacity density. Controlling the crystallographic orientation of the Al anode is another way to improve the performance of Al-air batteries in alkaline electrolytes.

  12. ARTICLES: Orientation in Nematic Liquid Crystals Doped with Orange Dyes and Effect of Carbon Nanoparticles

    Science.gov (United States)

    Alicilar, Ahmet; Akkurt, Fatih; Kaya, Nihan

    2010-06-01

    Some properties of nematic liquid crystal E7 doped with two disperse orange dyes used together and effect of addition of carbon nanoparticles (single walled carbon nanotube or fullerene C60) on them were studied. Two dyes (disperse orange 11 and 13) having high solubility and order parameter were used as co-dopants. A notable increase in order parameter was obtained comparing to that of liquid crystal doped with single dye. When carbon nanoparticles were used as dopant, a decrease in order parameter was observed at low temperatures while it increased at high temperatures. When applied voltage changed, the order parameter abruptly increased in its threshold value and saturated in higher voltages as expected. An appreciable change in textures was not observed with addition of dopants. This addition gave rise to an increase in nematic-isotropic phase transition temperatures compared with that of pure liquid crystal.

  13. Heterogeneous growth of cadmium and cobalt carbonate phases at the (101¯4) calcite surface

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Man; Ilton, Eugene S.; Engelhard, Mark H.; Qafoku, Odeta; Felmy, Andrew R.; Rosso, Kevin M.; Kerisit, Sebastien N.

    2015-03-01

    The ability of surface precipitates to form heteroepitaxially is an important factor that controls the extent of heterogeneous growth. In this work, the growth of cadmium and cobalt carbonate phases on (10-14) calcite surfaces is compared for a range of initial saturation states with respect to otavite (CdCO3) and sphaerocobaltite (CoCO3), two isostructural metal carbonates that exhibit different lattice misfits with respect to calcite. Calcite single crystals were reacted in static conditions for 16 hours with CdCl2 and CoCl2 aqueous solutions with initial concentrations 0.3 ≤ [Cd2+]0 ≤ 100 μM and 25 ≤ [Co2+]0 ≤ 200 μM. The reacted crystals were imaged in situ with atomic force microscopy (AFM) and analyzed ex situ with X-ray photoelectron spectroscopy (XPS). AFM images of Cd-reacted crystals showed the formation of large islands elongated along the direction, clear evidence of heteroepitaxial growth, whereas surface precipitates on Co-reacted crystals were small round islands. Deformation of calcite etch pits in both cases indicated the incorporation of Cd and Co at step edges. XPS analysis pointed to the formation of a Cd-rich (Ca,Cd)CO3 solid solution coating atop the calcite substrate. In contrast, XPS measurements of the Co-reacted crystals provided evidence for the formation of a mixed hydroxy-carbonate cobalt phase. The combined AFM and XPS results suggest that the lattice misfit between CoCO3 and CaCO3 ( 15% based on surface areas) is too large to allow for heteroepitaxial growth of a pure cobalt carbonate phase on calcite surfaces in aqueous solutions and at ambient conditions. The use of the satellite structure of the Co 2p3/2 photoelectron line as a tool for determining the nature of cobalt surface precipitates is also discussed.

  14. Nucleation, growth and evolution of calcium phosphate films on calcite.

    Science.gov (United States)

    Naidu, Sonia; Scherer, George W

    2014-12-01

    Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence. PMID:25233226

  15. Seismic Anisotropy in Salt Structures Due to Preferred Crystal Orientation Anisotropie sismique dans les structures salifères due à l'orientation préférentielle des cristaux

    OpenAIRE

    Raymer D. G.; Kendall J. M.

    2006-01-01

    Texture analysis of natural rock salt and experimentally deformed halite have shown that lattice preferred orientation of halite crystals does occur. The elastic parameters for a range of halite polycrystalline aggregates are calculated using orientation distribution functions. These are used to construct seismic models which are ray-traced through to investigate the potential effects of seismic anisotropy in salt structures. Anisotropic salt models show significant variation in travel time f...

  16. Pyroelectric and electrocaloric effect of <1 1 1>-oriented 0.9PMN-0.1PT single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Luo Laihui, E-mail: llhsic@126.com [Department of Physics, Ningbo University, Ningbo 315211 (China); Chen Hongbing [Institute of Materials Science and Engineering, Ningbo University, Ningbo 315211 (China); Zhu Yuejin; Li Weiping [Department of Physics, Ningbo University, Ningbo 315211 (China); Luo Haosu [Shanghai Institute of ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang Yuepin [Department of Physics, Ningbo University, Ningbo 315211 (China)

    2011-08-11

    Highlights: > Here, we use indirect method to measure pyroelectric and electrocaloric effect. > The largest temperature change achieves {approx}1 deg. C with a small field change. > The mechanism of electrocaloric effect of PMN-PT is explained. > The largest ({partial_derivative}P/{partial_derivative}T){sub E} value achieves -0.5 {mu}C/cm{sup 2} K. > PMN-PT has excellent pyroelectric effect. - Abstract: In this paper, the polarization vs. electric field hysteresis loops of <1 1 1>-oriented 0.9PbMg{sub 1/3}Nb{sub 2/3}O{sub 3}-0.1PbTiO{sub 3} (0.9PMN-0.1PT) single crystal at different temperatures (20-110 deg. C) were measured. The adiabatic temperature change {Delta}T of <1 1 1>-oriented 0.9PMN-0.1PT single crystal due to the application or withdraw of electric field were calculated through the thermodynamic relation. The largest temperature change {Delta}T achieves {approx}1 K with only a change of 40 kV/cm electric field, the mechanism of the electrocaloric effect (ECE) is discussed for 0.9PMN-0.1PT crystal. The pyroelectric coefficient of 0.9PMN-0.1PT under bias field was calculated according to the data of hysteresis loop. The result shows that 0.9PMN-0.1PT have large pyroelectric coefficient under bias field, the largest ({partial_derivative}P/{partial_derivative}T){sub E} value achieves -0.5 {mu}C/cm{sup 2} K.

  17. Crystal orientation dependence of Young’s modulus in Ti-Nb-based β-titanium alloy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The paper investigated the texture evolution of a biomedical β-titanium alloy (Ti-28Nb-13Zr-2Fe) under 15%-85% cold rolling reduction and 700°C-900°C recrystallization annealing treatment,and clarified the effects of crystal orientation on Young’s modulus of the alloy.Orientation distribution function (ODF) maps and electron backscatter diffraction (EBSD) analysis revealed that the rolling texture type changed with the increase of reduction according to the sequence:α-fiber texture→γ-fiber texture→α-rotated cubic texture.Young’s modulus exhibited the lowest value 54 GPa under 15% reduction.Strong {111}<112> γ-fiber texture was developed after rolling 85% reduction and annealing at 700°C,which was favorable to decreasing Young’s modulus in comparison with randomly orientated microstructure.Cyclic loading-unloading tensile test proved that the gradual rotation of {110} slip plane during plastic deformation promoted the development of {001}<110> texture component,leading to the marked decrease of Young’s modulus.

  18. Liquid crystal quenched orientational disorder at an AFM-scribed alignment surface.

    Science.gov (United States)

    Pendery, J S; Atherton, T J; Nobili, M; Petschek, R G; Lacaze, E; Rosenblatt, C

    2015-03-21

    A polyimide substrate was scribed using the stylus of an atomic force microscope, then covered with a nematic liquid crystal. The fiber from a near field scanning optical microscope was immersed into the liquid crystal and rastered approximately 80 nm above the surface, thereby obviating smearing effects that occur in thicker samples. By appropriate averaging of multiple data sets, a histogram of the "frozen-in" director deviation Δφ from the average easy axis was obtained, having a full-width-half-maximum of ∼0.02 rad. Additionally, the spatial autocorrelation function of Δφ was extracted, where the primary correlation length was found to be comparable to, but larger than, the liquid crystal's extrapolation length. A secondary characteristic length scale of a few μm was observed, and is thought to be an artifact due to material ejection during the scribing process. Our results demonstrate the utility of nanoscale imaging of the interface behavior inside the liquid crystal. PMID:25643289

  19. Crystal orientation effects on the piezoelectric field of strained zinc-blende quantum-well structures

    DEFF Research Database (Denmark)

    Duggen, Lars; Willatzen, Morten; Lassen, Benny

    2008-01-01

    A three-layered zinc-blende quantum-well structure is analyzed subject to both static and dynamic conditions for different crystal growth directions taking into account piezoelectric effects and lattice mismatch. It is found that the strain component Szz in the quantum-well region strongly depend...

  20. Simulating Succinate-Promoted Dissolution at Calcite {104} Steps

    Science.gov (United States)

    Mkhonto, D.; Sahai, N.

    2008-12-01

    Organic molecules of a wide range of molecular weights from small organic acids, amino-acids, acidic peptides and acidic proteins to humic and fulvic acids play a key role in modulating nucleation, crystal growth and dissolution of calcium carbonate polymorphs. In general, these acidic molecules inhibit calcite growth and, promote dissolution preferentially along specific crystallographic directions, in the process, regulating crystal shape and size, and even whether a metastable polymorph (e.g., vaterite or aragonite) is nucleated first. For example, chiral faces of calcite are selected by chiral amino-acids and the unusual {hk0} faces are expressed in the presence of amino-acids [Orme et al., 2001], and unusual heptagonal dissolution etch-pit are seen in the presence of succinate compared to the normal rhombohedral pits in water alone [Teng et al., 2006]. Thus, the presence of unusual crystal morphologies may indicate organic-mediated growth, thus serving as a biosignature. We have conducted the Molecular Dynamics (MD) simulations using the Consistent Valence Force Field (CVFF) as implemented in the FORCITE© module of the Materials Studio © software package (Accelrys, Inc. TM) to model the adsorption of succinate, a dicarboxylic acid, and charge- balancing Na+ ions on dry and hydrated steps in different directions on the {104} cleavage face of calcite [Mkhonto and Sahai, in prep.]. At the site of succinate adsorption, we find elongation of the interatomic distances (Ca-OCO3,i) between surface Ca2+ cation and the oxygen of the underlying inorganic CO32- anion the first surface layer of calcite, compared to the corresponding distances in the presence of water alone, suggesting greater ease of surface Ca2+ detachment. This result is consistent with the empirically observed increase in overall dissolution rate with succinate [Teng et al., 2006]. Furthermore, succinate adsorption lowers the step energies, which explains the appearance of steps in the unsusual [42

  1. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films

    International Nuclear Information System (INIS)

    The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO3 films. The increase of compressive strain will dramatically enhance the Curie temperature TC of (110)-oriented BaTiO3 films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics

  2. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huaping, E-mail: wuhuaping@gmail.com, E-mail: hpwu@zjut.edu.cn [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Ma, Xuefu; Zhang, Zheng; Zeng, Jun; Chai, Guozhong [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Wang, Jie [Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO{sub 3} films. The increase of compressive strain will dramatically enhance the Curie temperature T{sub C} of (110)-oriented BaTiO{sub 3} films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  3. Adsorption of arsenic and phosphate onto the surface of calcite as revealed by batch experiments and surface complexation modelling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt

    is complete after 1 and 2-3 hours, respectively). Also desorption is fast and complete for both ions within 0.5 h. The reversibility of the sorption process indicates that neither arsenate nor phosphate is readily incorporated into the calcite crystal lattice under our experimental conditions. The phosphate....... The primary effect of the ionic strength on phosphate sorption onto calcite is its influence on the activity of the different aqueous phosphate species. For the adsorption of arsenate onto calcite, the effect of the ionic strength is more pronounced and cannot fully be accounted for by changes in the aqueous...... in sorption edges, pKa’s and geometry of the two anions. The adsorption of arsenate and phosphate in the single sorbate systems was modelled successfully using either the constant capacitance model (CCM) for calcite or the CD-MUSIC model for calcite. Generally the models capture the variation in arsenate...

  4. Molecular orientation of hydrogen-bonded liquid crystal (6BA){sub 2}-(BPy){sub x} as Studied by {sup 2}H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, M., E-mail: mizuno@se.kanazawa-u.ac.jp; Higashima, Y.; Yamashita, A.; Ishida, Y.; Miyatou, T.; Kumagai, Y.; Ohashi, R.; Ida, T. [Kanazawa University, Kakuma, Department of Chemistry, Graduate School of Natural Science & Technology (Japan)

    2015-04-15

    The thermal properties of hydrogen-bonded liquid crystal (6BA){sub 2}-(BPy){sub x} (6BA: 4-n-hexylbenzoicacid, BPy: 4,4’-bipyridine) were investigated by DSC. Two liquid crystal phases (LC{sub I}, LC{sub II}) were found for (6BA){sub 2}-(BPy){sub 0.5}. In LC{sub II}, the distribution of the orientation of molecules was larger than in LC{sub I}. The order parameter S of molecular orientation in the liquid crystal phase was estimated from a {sup 2}H NMR spectrum. S decreased rapidly around the LC{sub I}-LC{sub II} phase transition. The increase in orientational fluctuation of the 6BA dimer with an open dimer structure is predicted to cause the rapid decrease of S.

  5. Preferred Ice Crystal Orientation Fabric Measurements within the Greenland Ice Sheet Using Multi-Polarization Radar Data

    Science.gov (United States)

    Velez-Gonzalez, J. A.; JiLu, L.; Leuschen, C.; Gogineni, P.; Van der Veen, C. J.; Tsoflias, G. P.; Drews, R.; Harish, A. R.

    2013-12-01

    Discharge of ice from the Greenland Ice Sheet to the ocean has increased significantly over the last 25 years due to the acceleration of important outlet glaciers. It was reported that the Greenland Ice Sheet contributed about 2.5 m out of about 6 m of sea-level rise during the Eemian interglacial period. The temperatures during Eemian were reported to be about 8o×4o C higher than the mean of the past millennium. Laboratory measurements have shown that glacial ice, characterized by preferred crystal orientation fabric (COF), is three times more deformable than ice with randomly oriented crystalline structures. Layers characterized by preferred ice COF can influence the flow behavior of a glacier or ice sheet. However, COF measurements are typically obtained from ice cores, and thus are very spatially limited and mostly constrained to areas with little ice flow. A more efficient technique to map the extent of ice fabric over larger regions of ice sheets is needed to better understand the effects on large scale ice flow processes. Radar measurements are capable of discriminating between reflections caused by changes in density, electrical permittivity and COF by exploiting the anisotropic and birefringent properties of ice crystals. For this investigation two radar datasets were collected during the survey of the Greenland Eemian Ice Drilling Site (77.45°N 51.06°W) in August 2008, using a ground-based and chirped-pulse Multi-Channel Radar Depth Sounder (MCRDS) developed by the Center for Remote Sensing of Ice Sheets (CReSIS). The radar used two transmit and eight receive antennas at the center frequency of 150 MHz with a bandwidth of 30 MHz. The first data set consisted of polarimatric measurements acquired in a circular pattern (radius: 35 m) with two co-polarized antenna orientations (one transmitter and four receivers oriented with 90° offsets in the directions of the incident H-Field and E-Field, respectively). Analysis of the circular data shows a periodic

  6. Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear

    Science.gov (United States)

    Signorelli, Javier; Tommasi, Andréa

    2015-11-01

    Homogenization models are widely used to predict the evolution of texture (crystal preferred orientations) and resulting anisotropy of physical properties in metals, rocks, and ice. They fail, however, in predicting two main features of texture evolution in simple shear (the dominant deformation regime on Earth) for highly anisotropic crystals, like olivine: (1) the fast rotation of the CPO towards a stable position characterized by parallelism of the dominant slip system and the macroscopic shear and (2) the asymptotical evolution towards a constant intensity. To better predict CPO-induced anisotropy in the mantle, but limiting computational costs and use of poorly-constrained physical parameters, we modified a viscoplastic self-consistent code to simulate the effects of subgrain rotation recrystallization. To each crystal is associated a finite number of fragments (possible subgrains). Formation of a subgrain corresponds to introduction of a disorientation (relative to the parent) and resetting of the fragment strain and internal energy. The probability of formation of a subgrain is controlled by comparison between the local internal energy and the average value in the polycrystal. A two-level mechanical interaction scheme is applied for simulating the intracrystalline strain heterogeneity allowed by the formation of low-angle grain boundaries. Within a crystal, interactions between subgrains follow a constant stress scheme. The interactions between grains are simulated by a tangent viscoplastic self-consistent approach. This two-level approach better reproduces the evolution of olivine CPO in simple shear in experiments and nature. It also predicts a marked weakening at low shear strains, consistently with experimental data.

  7. Experimental observation of the strong influence of crystal orientation on Electron Rutherford Backscattering Spectra

    Science.gov (United States)

    Vos, Maarten; Aizel, Koceila; Winkelmann, Aimo

    2010-06-01

    In Electron Rutherford Backscattering Spectroscopy (ERBS) energetic electrons (in our case up to 40 keV) impinge on a target and one measures the energy of elastically scattered electrons. This energy depends on the mass of the scattering atom, due to the recoil effect. This technique thus provides information about the sample composition. For single crystals the interaction of the projectile electron with the crystal potential modifies the angular intensity distribution of the scattered electrons. This leads, for example, to the well-known Kikuchi patterns. Here we investigate if such modified angular distribution has any influence on the intensity ratio of the observed elastic peaks in ERBS. Dramatic effects are found. Implications of these observations for quantitative surface analysis using energetic electrons are discussed.

  8. Properties of boron-doped epitaxial diamond layers grown on (110) oriented single crystal substrates

    OpenAIRE

    Mortet, Vincent; Pernot, J.; Jomard, F.; Soltani, A; Remes, Zdenek; Barjon, Julien; D'Haen, J; Haenen, Ken

    2015-01-01

    Boron doped diamond layers have been grown on (110) single crystal diamond substrates with B/C ratios up to 20 ppm in the gas phase. The surface of the diamond layers observed by scanning electron microscopy consists of (100) and (113) micro-facets. Fourier Transform Photocurrent Spectroscopy indicates substitutional boron incorporation. Electrical properties were measured using Hall effect from 150 to 1000 K. Secondary ion mass spectrometry analyses are consistent with the high incorporation...

  9. Relationship between crystal growth mode, preferred orientation and magnetostriction of (Tb0.3Dy0.7)Fe1.95 alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shirong; LI Kuoshe; YU Dunbo; LI Yongsheng; YANG Hongchuan; LI Hongwei; TU Ganfeng

    2008-01-01

    The relationship between crystal growth mode, preferred orientation and magnetostrictive properties of (Tb0.3Dy0.7)Fe1.95 alloys was investigated at different directional solidification rates. The results showed that preferred orientation had a strong influence on the characteristics of (Tb0.3Dy0.7)Fe1.95 alloys. At lower solidification rates, the sample with preferred orientation showed larger low-field magnetostriction and apparent compressive stress effect. The excessive solidification rate resulted in failure of preferred orientation and a poor magnetostrictive performance. With an increase in solidification rates, the crystal growth modes changed gradually from cellular and primary dendrite morphology to developed dendritic morphology. In addition, domain configurations were observed using magnetic force microscopy, and the change of magnetostrictive properties was interpreted in terms of revealing the domain configurations.

  10. Interaction of alcohols with the calcite surface

    DEFF Research Database (Denmark)

    Bovet, Nicolas Emile; Yang, Mingjun; Javadi, Meshkat Sadat;

    2015-01-01

    A clearer understanding of calcite interactions with organic molecules would contribute to a range of fields including harnessing the secrets of biomineralisation where organisms produce hard parts, increasing oil production from spent reservoirs, remediating contaminated soils and drinking water...

  11. High temperature oxidation behavior of aluminide on a Ni-based single crystal superalloy in different surface orientations

    Institute of Scientific and Technical Information of China (English)

    Fahamsyah H.Latief; Koji Kakehi; El-Sayed M.Sherif

    2014-01-01

    An investigation on oxidation behavior of coated Ni-based single crystal superalloy in different surface orientations has been carried out at 1100 1C. It has been found that the {100} surface shows a better oxidation resistance than the {110} one, which is attributed that the {110}surface had a slightly higher oxidation rate when compared to the {100} surface. The experimental results also indicated that the anisotropic oxidation behavior took place even with a very small difference in the oxidation rates that was found between the two surfaces. The differences of the topologically close packed phase amount and its penetration depth between the two surfaces, including the ratio of α-Al2O3 after 500 h oxidation, were responsible for the oxidation anisotropy.

  12. Vertical Liquid Crystal Orientation on Amorphous Tantalum Pentoxide Surfaces Depending on Anisotropic Dipole-Dipole Interaction via Ion Beam Irradiation

    Science.gov (United States)

    Lee, Jong-Jin; Kim, Hyung-Jun; Kang, Young-Gu; Kim, Young-Hwan; Park, Hong-Gyu; Kim, Byoung-Yong; Seo, Dae-Shik

    2011-03-01

    We achieved vertically aligned (VA) liquid crystals (LCs) on amorphous tantalum pentoxide (Ta2O5) alignment films deposited by radio frequency (rf) magnetron sputtering using ion beam (IB) irradiation. By analyzing measurements by X-ray photoelectron spectroscopy (XPS), we confirmed the bond breaking, as detected from the O 1s spectra, which caused an isotropic dipole-dipole interaction between the LC molecules and the Ta2O5 alignment film to uniformly align the vertical LC molecular orientation as a function of IB energy density. Moreover, by examining the electro-optical (EO) characteristics of the Ta2O5 surfaces compared with those of the polyimide (PI) alignment layer, we confirmed that Ta2O5 has a low threshold voltage and a low power consumption when used as an LC alignment layer.

  13. Microbially Induced Calcite Precipitation Employing Environmental Isolates

    OpenAIRE

    Gunjo Kim; Heejung Youn

    2016-01-01

    In this study, five microbes were employed to precipitate calcite in cohesionless soils. Four microbes were selected from calcite-precipitating microbes isolated from calcareous sand and limestone cave soils, with Sporosarcina pasteurii ATCC 11859 (standard strain) used as a control. Urease activities of the four microbes were higher than that of S. pasteurii. The microbes and urea–CaCl2 medium were injected at least four times into cohesionless soils of two different relative densities (60% ...

  14. Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?

    Directory of Open Access Journals (Sweden)

    S. Bindschedler

    2014-01-01

    Full Text Available Calcitic nanofibres are ubiquitous habits of secondary calcium carbonate (CaCO3 accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enigmatic. Three possible mechanisms fuel the debate: (i purely physicochemical processes, (ii mineralization of rod-shaped bacteria, and (iii crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic or organic in nature. They are very often observed in association with Needle Fibre Calcite (NFC, another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent association is likely to be an important fact to help understanding the origin of nanofibres. In this manuscript the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothesis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morphological resemblance when compared to their natural counterparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hypothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically-influenced mineralization process, generating calcitic nanofibres. This highlights the possible involvement of Fungi in CaCO3 biomineralization processes, a role still poorly documented at

  15. Domain Rotation Simulation of the Magnetostriction Jump Effect of 〈110〉 Oriented TbDyFe Crystals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chang-Sheng; MA Tian-Yu; PAN Xing-Wen; YAN Mi

    2012-01-01

    The compressive pre-stress induced magnetostriction jump effect of an [-110] oriented TbDyFe crystal is simulated by tracking the initial redistribution of magnetic domains and their volume fraction evolutions under external magnetic fields. Through searching for the free energy minima within both (-110) and (110) planes, it is found that the axial compressive pre-stress not only switches magnetizations of the 35° domains toward the perpendicular plane, but also switches magnetizations of the 90° domains approaching the [110] direction. When increasing the stress magnitude, the volume fraction for 35° domains decreases and the one for the [110] domain increases rapidly. However, the volume fraction for the four 90° domains within the perpendicular plane first increases to a maximum under a certain stress magnitude and further decreases. The stress-induced anisotropy thereafter changes the volume fraction evolutions during the magnetization process, which explains well the magnetostriction jump effect.%The compressive pre-stress induced magnetostriction jump effect of an [(-1) 10] oriented TbDyFe crystal is simulated by tracking the initial redistribution of magnetic domains and their volune fraction evolutions under external magnetic fields.Through searching for the free energy minima within both ((-1) 10) and (110) planes,it is found that the axial compressive pre-stress not only switches magnetizations of the 35° domains toward the perpendicular plane,but also switches magnetizations of the 90° domains approaching the [110] direction.When increasing the stress magnitude,the volume fraction for 35° domains decreases and the one for the [110] domain increases rapidly.However,the volume fraction for the four 90° domains within the perpendicular plane first increases to a maximum under a certain stress magnitude and further decreases.The stress-induced anisotropy thereafter changes the volume fraction evolutions during the magnetization process,which explains

  16. Macroscopic shape effect due to quadrupole orientation in single crystals of Mg with heavy RE impurities

    International Nuclear Information System (INIS)

    The magnetostriction of dilute MgTb, MgDy, MgHo and MgTm alloys was measured at 4.2 K and found to be comparable, per RE ion, to that of concentrated RE systems. The contribution of these impurities to the low-temperature thermal expansion of Mg was also measured between 1.5 and 15 K. Quadrupole orientation accounts only for the results on MgTb; in MgHo we find very strong indications for an effect of higher-order multipoles. (orig.)

  17. Surface-Controlled Orientational Transitions in Elastically Strained Films of Liquid Crystal That Are Triggered by Vapors of Toluene.

    Science.gov (United States)

    Bedolla Pantoja, Marco A; Abbott, Nicholas L

    2016-05-25

    We report the fabrication of chemically patterned microwells that enable the rapid and facile preparation (by spin coating and patterned dewetting) of thin films of liquid crystals (LCs) that have precise thicknesses (0.7-30 μm), are supported on chemically defined substrates, and have free upper surfaces. We use these microwells to prepare elastically strained nematic LC films supported on silica glass, gold, or polystyrene substrates and thereby characterize the response of the strained LC films to vapors of toluene. We report that low concentrations of toluene vapor (film to drive the LC films through an orientational transition. The central role of the toluene-induced change in surface anchoring energy is supported by additional experiments in which the response of the nematic LC to changes in film thickness and substrate identity are quantified. A simple thermodynamic model captures these trends and yielded estimates of anchoring energies (8-22 μJ/m(2)). Significantly, the orientational transitions observed in these strained LC thin films occur at concentrations of toluene vapor that are almost 1 order of magnitude below those which lead to bulk phase transitions, and they are not triggered by exposure to water vapor. Overall, these results hint at principles for the design of responsive LC-based materials that can be triggered by concentrations of aromatic, volatile organic compounds that are relevant to human health. PMID:27070511

  18. Molecular Dynamics Simulation of the Crystal Orientation and Temperature Influences in the Hardness on Monocrystalline Silicon

    Directory of Open Access Journals (Sweden)

    Hongwei Zhao

    2014-01-01

    Full Text Available A nanoindentation simulation using molecular dynamic (MD method was carried out to investigate the hardness behavior of monocrystalline silicon with a spherical diamond indenter. In this study, Tersoff potential was used to model the interaction of silicon atoms in the specimen, and Morse potential was used to model the interaction between silicon atoms in the specimen and carbon atoms in the indenter. Simulation results indicate that the silicon in the indentation zone undergoes phase transformation from diamond cubic structure to body-centred tetragonal and amorphous structure upon loading of the diamond indenter. After the unloading of the indenter, the crystal lattice reconstructs, and the indented surface with a residual dimple forms due to unrecoverable plastic deformation. Comparison of the hardness of three different crystal surfaces of monocrystalline silicon shows that the (0 0 1 surface behaves the hardest, and the (1 1 1 surface behaves the softest. As for the influence of the indentation temperature, simulation results show that the silicon material softens and adhesiveness of silicon increases at higher indentation temperatures.

  19. Molecular simulation of oligomer inhibitors for calcite scale

    Institute of Scientific and Technical Information of China (English)

    Qiuyu Zhang; Hua Ren; Wenwen Wang; Junping Zhang; Hepeng Zhang

    2012-01-01

    Molecular simulation was performed to study the interaction between CaCO3 crystal and several oligomer inhibitors,by using the equilibrium morphology method to calculate the growth morphology of CaCO3 without inhibitors.The calculated morphology agreed well with SEM photographs.Then,a double-layer model was built to investigate the interaction between calcite crystal and oligomer inhibitors containing maleic anhydride (MA) and acrylic acid (AA).Interaction energy per gram of an oligomer inhibitor was introduced as a scale of inhibition efficiency of different monomers.The results indicated that,for calcite scale inhibition,acrylamide (AM) and vinyl phosphonic acid (VPA) were the most efficient monomers,while allylsulfonic acid (AS) was the poorest.Increasing proportion of AM in dimer inhibitor molecule would improve the inhibition efficiency of MA,though,for a trimer,such as MA-AA-AM,certain sequence of monomers in the inhibitor molecule was necessary besides higher proportion of AM.

  20. Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianlei [ORNL; Gao, Yanfei [ORNL; Bei, Hongbin [ORNL; George, Easo P [ORNL

    2011-01-01

    Instrumented nanoindentation techniques have been widely used to characterize the small-scale mechanical behavior of materials. The elastic-plastic transition during nanoindentation is often indicated by a sudden displacement burst (pop-in) in the measured load-displacement curve. In defect-free single crystals, the pop-in is believed to be the result of homogeneous dislocation nucleation because the maximum shear stress corresponding to the pop-in load approaches the theoretical strength of the materials and because the statistical distribution of pop-in stresses is consistent with what is expected for a thermally activated process of homogeneous dislocation nucleation. This paper investigates whether this process is affected by crystallography and stress components other than the resolved shear stress. A Stroh formalism coupled with the two-dimensional Fourier transformation is used to derive the analytical stress fields in elastically anisotropic solids under Hertzian contact, which allows the determination of an indentation Schmid factor, namely, the ratio of maximum resolved shear stress to the maximum contact pressure. Nanoindentation tests were conducted on B2-structured NiAl single crystals with different surface normal directions. This material was chosen because it deforms at room temperature by {110}<001> slip and thus avoids the complexity of partial dislocation nucleation. Good agreement is obtained between the experimental data and the theoretically predicted orientation dependence of pop-in loads based on the indentation Schmid factor. Pop-in load is lowest for indentation directions close to <111> and highest for those close to <001>. In nanoindentation, since the stress component normal to the slip plane is typically comparable in magnitude to the resolved shear stress, we find that the pressure sensitivity of homogeneous dislocation nucleation cannot be determined from pop-in tests. Our statistical measurements generally confirm the thermal

  1. Performance Analysis of Silicon and Germanium Nanowire Transistor using Crystal Orientation and Oxide Thickness

    Directory of Open Access Journals (Sweden)

    P.Theres Mary

    2014-09-01

    Full Text Available Nanowire Transistors have attracted attention due to the probable high performance and excellent controllability of device current. In this paper, we investigate the performance analysis of nanowire transistors made of silicon and germanium materials. The nanowire transistor has a 3D distribution of electron density and electrostatic potential, therefore self-consistent 3D simulations are used. Nanowire (tool is 3D Poisson self-consistent simulator which can study the 3D transport in nanowire transistor considering phonon scattering based on the effective-mass approximation. The output characteristics of the nanowire transistors are studied in detail for both Si and Ge materials for different transport orientation (i.e., 100,110,111 and varying the oxide thickness.

  2. Effects of dopant concentration, crystallographic orientation, and crystal morphology on secondary electron emission from diamond

    International Nuclear Information System (INIS)

    Secondary electron emission properties from crystalline and polycrystalline diamond films containing different boron concentrations were measured. The secondary electron yields δ were high. Yields were independent of incident beam angle and crystallographic orientation. The secondary electron yields were greatest for boron concentrations of 1019 endash 1020 cm-3. The angular distribution was peaked about the surface normal with a half width at half maximum of 37±7 degree. The secondary electron yield decreased with prolonged energetic electron beam bombardment. The energy distribution of the emitted electrons contained a large, relatively narrow, low energy peak that disappeared with extended electron beam bombardment. The large secondary electron yields and narrow energy distributions of the emitted electrons were consistent with nearly thermalized electron emission from negative electron affinity states. copyright 1997 American Institute of Physics

  3. Orientational order and translational dynamics of magnetic particle assemblies in liquid crystals.

    Science.gov (United States)

    Peroukidis, Stavros D; Klapp, Sabine H L

    2016-08-10

    Implementing extensive molecular dynamics simulations we explore the organization of magnetic particle assemblies (clusters) in a uniaxial liquid crystalline matrix comprised of rodlike particles. The magnetic particles are modelled as soft dipolar spheres with diameter significantly smaller than the width of the rods. Depending on the dipolar strength coupling the magnetic particles arrange into head-to-tail configurations forming various types of clusters including rings (closed loops) and chains. In turn, the liquid crystalline matrix induces long range orientational ordering to these structures and promotes their diffusion along the director of the phase. Different translational dynamics are exhibited as the liquid crystalline matrix transforms either from isotropic to nematic or from nematic to smectic state. This is caused due to different collective motion of the magnetic particles into various clusters in the anisotropic environments. Our results offer a physical insight for understanding both the structure and dynamics of magnetic particle assemblies in liquid crystalline matrices. PMID:27460190

  4. The role of grain boundary structure and crystal orientation on crack growth asymmetry in aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Adlakha, I. [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Tschopp, M.A. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Solanki, K.N., E-mail: kiran.solanki@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States)

    2014-11-17

    Atomistic simulations have shown that the grain boundary (GB) structure affects a number of physical, mechanical, thermal, and chemical properties, which can have a profound effect on macroscopic properties of polycrystalline materials. The research objective herein is to use atomistic simulations to explore the role that GB structure and the adjacent crystallographic orientations have on the directional asymmetry of an intergranular crack (i.e. cleavage behavior is favored along one direction, while ductile behavior along the other direction of the interface) for aluminum grain boundaries. Simulation results from seven 〈110〉 symmetric tilt grain boundaries (STGBs) show that the GB structure and the associated free volume directly influence the stress–strain response, crack growth rate, and crack tip plasticity mechanisms for middle-tension (M(T)) crack propagation specimens. In particular, the structural units present within the GB promote whether a dislocation or twinning-based mechanism operates at the crack tip during intergranular fracture along certain GBs (e.g., the ‘E’ structural unit promotes twinning at the crack tip in Al). Furthermore, the crystallography of the adjacent grains, and therefore the available slip planes, can significantly affect the crack growth rates in both directions of the crack – this creates a strong directional asymmetry in the crack growth rate in the Σ11 (113) and the Σ27 (552) STGBs. Upon comparing these results with the theoretical Rice criterion, it was found that certain GBs in this study (Σ9 (221), Σ11 (332) and Σ33 (441)) show an absence of directional asymmetry in the observed crack growth behavior, in conflict with the Rice criterion. The significance of the present research is that it provides a physical basis for the role of GB character and crystallographic orientation on intergranular crack tip deformation behavior.

  5. Determination of the orientation of pieces of zigzag-Bloch walls in bulk FeSi-single crystals by neutron small-angle scattering

    International Nuclear Information System (INIS)

    Small-angle scattering of neutrons allows the determination of the orientation of Bloch walls in the interior of bulk single crystals. The zigzag angle psi=280 of the 900 Bloch wall and its field dependence are measured. We also observe walls or wall pieces with psi=00. With 1800 walls we measure zigzag angles of psi approximately equal to 300. (orig.)

  6. Do organic ligands affect calcite dissolution rates?

    Science.gov (United States)

    Oelkers, Eric H.; Golubev, Sergey V.; Pokrovsky, Oleg S.; Bénézeth, Pascale

    2011-04-01

    Steady state Iceland-spar calcite dissolution rates were measured at 25 °C in aqueous solutions containing 0.1 M NaCl and up to 0.05 M dissolved bicarbonate at pH from 7.9 to 9.1 in the presence of 13 distinct dissolved organic ligands in mixed-flow reactors. The organic ligands considered in this study include those most likely to be present in either (1) aquifers at the conditions pertinent to CO 2 sequestration or (2) soil/early diagenetic environments: acetate, phthalate, citrate, EDTA 4-, succinate, D-glucosaminate, L-glutamate, D-gluconate, 2,4-dihydroxybenzoate, 3,4-dihydroxybenzoate, fumarate, malonate, and gallate. Results show that the presence of extract, humic acid, pectin, and gum xanthan. In no case did the presence of <100 ppm of these organics change calcite dissolution rates by more than a factor of 2.5. Results obtained in this study suggest that the presence of aqueous organic anions negligibly affects calcite forward dissolution rates in most natural environments. Some effect on calcite reactivity may be observed, however, by the presence of organic anions if they change substantially the chemical affinity of the fluid with respect to calcite.

  7. Magnetoelectric effect in FeCo/PMN-PT/FeCo trilayers prepared by electroless deposition of FeCo on PMN-PT crystals with various orientations

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H.Q.; Wang, Y.G., E-mail: yingang.wang@nuaa.edu.cn; Xie, D.; Cheng, J.H.

    2014-10-15

    Highlights: • The composites FeCo/PMN-PT/FeCo were prepared by electroless deposition. • The influence of the crystal cut of PMN-PT on ME coupling is discussed. • Optimizing the crystal cut of the piezoelectric substrate, proper resonant frequency and ME effect could be obtained. - Abstract: The magnetoelectric (ME) effect was studied in the FeCo/PMN-PT/FeCo trilayer composites prepared by electroless deposition of the FeCo layers on the single crystal PMN-PT substrates with various crystal cuts. X-ray diffraction reveals that the orientation of PMN-PT substrate has no effect on the growth of FeCo layer. The structures with PMN-PT crystals of various orientations have different acoustic resonance frequencies. FeCo/PMN-PT/FeCo composites with PMN-PT of 〈0 0 1〉{sup L} × 〈01{sup ‾}1〉{sup W} × 〈0 1 1〉{sup T} crystal cut shows superior ME performance, which is due to the highest piezoelectric module of PMN-PT.

  8. Structural point defects in 'Iceland spar' calcite

    International Nuclear Information System (INIS)

    Trace element concentrations by micro-PIXE, cathodoluminescence (CL) emission spectra and electron spin resonance (ESR) spectra of Mn2+ in 'Iceland spar' calcite have been measured. The average rare earth elements (REE) abundances of the Iceland spar calcite revealed a concave shape with positive Eu and Tb anomalies. All samples show comparable average REE abundances compared to average chondrites standard. The REE signal in hydrothermal solution seems to be similar for the different locations and age of formation although the absolute REE concentration in the solution was certainly different. The CL-properties of investigated Iceland spar varied from orange to green. The orange luminescence is based on Mn2+ in Ca-position of calcite while this uncommon green luminescence is most likely attributed to UO22+ complex ions associated with electron-hole centres

  9. Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality

    Science.gov (United States)

    Hazen, R. M.; Filley, T. R.; Goodfriend, G. A.

    2001-01-01

    The emergence of biochemical homochirality was a key step in the origin of life, yet prebiotic mechanisms for chiral separation are not well constrained. Here we demonstrate a geochemically plausible scenario for chiral separation of amino acids by adsorption on mineral surfaces. Crystals of the common rock-forming mineral calcite (CaCO(3)), when immersed in a racemic aspartic acid solution, display significant adsorption and chiral selectivity of d- and l-enantiomers on pairs of mirror-related crystal-growth surfaces. This selective adsorption is greater on crystals with terraced surface textures, which indicates that d- and l-aspartic acid concentrate along step-like linear growth features. Thus, selective adsorption of linear arrays of d- and l-amino acids on calcite, with subsequent condensation polymerization, represents a plausible geochemical mechanism for the production of homochiral polypeptides on the prebiotic Earth.

  10. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule.

    Science.gov (United States)

    Politi, Yael; Metzler, Rebecca A; Abrecht, Mike; Gilbert, Benjamin; Wilt, Fred H; Sagi, Irit; Addadi, Lia; Weiner, Steve; Gilbert, P U P A; Gilbert, Pupa

    2008-11-11

    Sea urchin larval spicules transform amorphous calcium carbonate (ACC) into calcite single crystals. The mechanism of transformation is enigmatic: the transforming spicule displays both amorphous and crystalline properties, with no defined crystallization front. Here, we use X-ray photoelectron emission spectromicroscopy with probing size of 40-200 nm. We resolve 3 distinct mineral phases: An initial short-lived, presumably hydrated ACC phase, followed by an intermediate transient form of ACC, and finally the biogenic crystalline calcite phase. The amorphous and crystalline phases are juxtaposed, often appearing in adjacent sites at a scale of tens of nanometers. We propose that the amorphous-crystal transformation propagates in a tortuous path through preexisting 40- to 100-nm amorphous units, via a secondary nucleation mechanism.

  11. Silver as Seed-Particle Material for GaAs Nanowires—Dictating Crystal Phase and Growth Direction by Substrate Orientation

    Science.gov (United States)

    2016-01-01

    Here we investigate the feasibility of silver as seed-particle material to synthesize GaAs nanowires and show that both crystal phase and growth direction can be controlled by choice of substrate orientation. A (111)B substrate orientation can be used to form vertically aligned wurtzite GaAs nanowires and a (100) substrate orientation to form vertically aligned zinc blende GaAs nanowires. A 45–50% yield of vertical nanowire growth is achieved on the (100) substrate orientation without employing any type of surface modification or nucleation strategy to promote a vertical growth direction. In addition, photoluminescence measurements reveal that the photon emission from the silver seeded wurtzite GaAs nanowires is characterized by a single and narrow emission peak at 1.52 eV. PMID:26998550

  12. Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition.

    Science.gov (United States)

    Stanley, Steven M; Ries, Justin B; Hardie, Lawrence A

    2002-11-26

    Shifts in the MgCa ratio of seawater driven by changes in midocean ridge spreading rates have produced oscillations in the mineralogy of nonskeletal carbonate precipitates from seawater on time scales of 10(8) years. Since Cambrian time, skeletal mineralogies of anatomically simple organisms functioning as major reef builders or producers of shallow marine limestones have generally corresponded in mineral composition to nonskeletal precipitates. Here we report on experiments showing that the ambient MgCa ratio actually governs the skeletal mineralogy of some simple organisms. In modern seas, coralline algae produce skeletons of high-Mg calcite (>4 mol % MgCO(3)). We grew three species of these algae in artificial seawaters having three different MgCa ratios. All of the species incorporated amounts of Mg into their skeletons in proportion to the ambient MgCa ratio, mimicking the pattern for nonskeletal precipitation. Thus, the algae calcified as if they were simply inducing precipitation from seawater through their consumption of CO(2) for photosynthesis; presumably organic templates specify the calcite crystal structure of their skeletons. In artificial seawater with the low MgCa ratio of Late Cretaceous seas, the algae in our experiments produced low-Mg calcite (MgCO(3)), the carbonate mineral formed by nonskeletal precipitation in those ancient seas. Our results suggest that many taxa that produce high-Mg calcite today produced low-Mg calcite in Late Cretaceous seas. PMID:12399549

  13. Morphology and orientation of β-BaB{sub 2}O{sub 4} crystals patterned by laser in the inside of samarium barium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, Akihito; Shinozaki, Kenji; Honma, Tsuyoshi; Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp

    2015-01-15

    Nonlinear optical β-BaB{sub 2}O{sub 4} crystal lines (β-BBO) were patterned in the inside of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by irradiations of continuous-wave Yb:YVO{sub 4} lasers with a wavelength of 1080 nm (power: P=0.8–1.0 W, scanning speed: S=0.2–2.5 μm/s), in which the laser focal position was moved gradually from the surface to the inside. The morphology, size, and orientation of β-BBO crystals were examined from polarization optical microscope and birefringence imaging observations. It was demonstrated that c-axis oriented β-BBO crystals with long lengths (e.g., 20 mm) were patterned in the inside of the glass. The morphology of β-BBO in the cross-section of lines was a rectangular shape with rounded corners, and the volume of β-BBO formed increased with increasing laser power and with decreasing laser scanning speed. The maximum depth in the inside from the surface for β-BBO patterning increased with increasing laser power, e.g., D{sub max}∼100 μm at P=0.8 W, D{sub max}∼170 μm at P=0.9 W, and D{sub max}∼200 μm at P=1 W. The present study proposes that the laser-induced crystallization opens a new door for applied engineering in glassy solids. - Graphical abstract: This figure shows the POM photographs for β-BaB{sub 2}O{sub 4} crystal lines patterned by cw Yb:YVO{sub 4} fiber laser irradiations with a laser power of P=0.8 W and a laser scanning speed S=2 μm/s in the glass. The laser focal point was moved gradually from the surface into the inside. The results shown in Fig. 1 demonstrate that it is possible to pattern highly oriented β-BaB{sub 2}O{sub 4} crystals even in the inside of glasses. - Highlights: • β-BaB{sub 2}O{sub 4} crystal lines were patterned in the inside of a glass by lasers. • Laser focal position was moved gradually from the surface to the inside. • Birefringence imaging was observed. • Morphology, size, and orientation of crystals were clarified. • Crystal lines with long lengths

  14. Upscaling Calcite Growth Rates From the Mesoscale to the Macroscale

    Energy Technology Data Exchange (ETDEWEB)

    Bracco, Jacquelyn N [ORNL; Stack, Andrew G [ORNL; Steefel, Carl I [Lawrence Berkeley National Laboratory (LBNL)

    2013-01-01

    Quantitative prediction of mineral reaction rates in the subsurface remains a daunting task partly because a key parameter for macroscopic models, the reactive site density, is poorly constrained. Here we report atomic force microscopy (AFM) measurements on the calcite surface of monomolecular step densities, treated as equivalent to the reactive site density, as a function of aqueous calcium-to-carbonate ratio and saturation index. Data for the obtuse step orientation are combined with existing step velocity measurements to generate a model that predicts overall macroscopic calcite growth rates. The model is quantitatively consistent with several published macroscopic rates under a range of alkaline solution conditions, particularly for two of the most comprehensive data sets without the need for additional fit parameters. The model reproduces peak growth rates and its functional form is simple enough to be incorporated into reactive transport or other macroscopic models designed for predictions in porous media. However, it currently cannot model equilibrium, pH effects, and may overestimate rates at high aqueous calcium-to-carbonate ratios. The discrepancies in rates at high calcium-to-carbonate ratios may be due to differences in pre-treatment, such as exposing the seed material to SI 1.0 to generate/develop growth hillocks, or other factors.

  15. Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, A. [Agence Nationale pour la gestion des Déchets RAdioactifs, 1-7 rue J. Monnet, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex (France); Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); CEA/DEN, Saclay, 91191 Gif sur Yvette (France); Lomenech, C. [Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Jordan, N. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Barkleit, A. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); and others

    2014-08-01

    This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO{sub 3}). Calcite powders or single crystals (some mm sized) were put into contact with Eu or Ni solutions at concentrations ranging from 10{sup −3} to 10{sup −5} mol L{sup −1} for Eu and 10{sup −3} mol L{sup −1} for Ni. The sorption durations ranged from 1 week to 1 month. Rutherford Backscattering Spectrometry (RBS) well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance), has been carried out. Moreover, using the fluorescence properties of europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage were also performed. Results showed that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.

  16. Discovery of room-temperature spin-glass behaviors in two-dimensional oriented attached single crystals

    Science.gov (United States)

    Ma, Ji; Chen, Kezheng

    2016-05-01

    In this study, room-temperature spin-glass behaviors were observed in flake-like oriented attached hematite (α-Fe2O3) and iron phosphate hydroxide hydrate (Fe5(PO4)4(OH)3·2H2O) single crystals. Remarkably, their coercivity (HC) values were found to be almost invariable at various given temperatures from 5 to 300 K. The spin topographic map in these flakes was assumed as superparamagnetic (SPM) "islands" isolated by spin glass (SG)-like "bridges". A spin-glass model was then proposed to demonstrate the spin frustration within these "bridges", which were formed by the staggered atomic planes in the uneven surfaces belonging to different attached nanoparticles. Under the spatial limitation and coupling shield of these "bridges", the SPM "islands" were found to be collectively frozen to form a superspin glass (SSG) state below 80 K in weak applied magnetic fields; whereas, when strong magnetic fields were applied, the magnetic coupling of these "islands" would become superferromagnetic (SFM) through tunneling superexchange, so that, these SFM spins could antiferromagnetically couple with the SG-like "bridges" to yield pronounced exchange bias (EB) effect.

  17. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. II - Low cycle fatigue behavior

    Science.gov (United States)

    Gabb, T. P.; Gayda, J.; Miner, R. V.

    1986-01-01

    The low cycle fatigue (LCF) properties of a single-crystal nickel-base superalloy Rene N4, have been examined at 760 and 980 C in air. Specimens having crystallographic orientations near the 001, 011, -111, 023, -236, and -145 lines were tested in fully reversed, total-strain-controlled LCF tests at a frequency of 0.1 Hz. At 760 C, this alloy exhibited orientation dependent tension-compression anisotropies of yielding which continued to failure. Also at 760 C, orientations exhibiting predominately single slip exhibited serrated yielding for many cycles. At 980 C, orientation dependencies of yielding behavior were smaller. In spite of the tension-compression anisotropies, cyclic stress range-strain range behavior was not strongly orientation dependent for either test temperature. Fatigue life on a total strain range basis was highly orientation dependent at 760 and 980 C and was related chiefly to elastic modulus, low modulus orientations having longer lives. Stage I crack growth on 111 planes was dominant at 760 C, while Stage II crack growth occurred at 980 C. Crack initiation generally occurred at near-surface micropores, but occasionally at oxidation spikes in the 980 C tests.

  18. Carbon isotope fractionation in synthetic magnesian calcite

    Science.gov (United States)

    Jimenez-Lopez, Concepción; Romanek, Christopher S.; Caballero, Emilia

    2006-03-01

    Mg-calcite was precipitated at 25 °C in closed system, free-drift experiments, from solutions containing NaHCO 3, CaCl 2 and MgCl 2. The carbon stable isotope composition of bulk solid and solution were analyzed from subsamples collected during time course experiments of 24 h duration. Considering only the Mg-content and δ 13C values for the bulk solid, the carbon isotope fractionation factor for the Mg-calcite-HCO 3(aq)- system (as 103lnα) increased with average mol percentage of Mg (X Mg) in the solid at a rate of (0.024 ± 0.011) per mol% MgCO 3. Extrapolation of this relationship to the pure calcite end member yields a value of 0.82 ± 0.09, which is similar to published values for the calcite-HCO 3(aq)- system. Although 103lnα did not vary for precipitation rates that ranged from 10 3.21 to 10 4.60 μmol m -2 h -1, it was not possible to hold Mg-content of the solid constant, so kinetic effect on 10 3 ln α could not be evaluated from these experiments.

  19. Growing spherulitic calcite grains in saline, hyperalkaline lakes: experimental evaluation of the effects of Mg-clays and organic acids

    Science.gov (United States)

    Mercedes-Martín, R.; Rogerson, M. R.; Brasier, A. T.; Vonhof, H. B.; Prior, T. J.; Fellows, S. M.; Reijmer, J. J. G.; Billing, I.; Pedley, H. M.

    2016-04-01

    The origin of spherical-radial calcite bodies - spherulites - in sublacustrine, hyperalkaline and saline systems is unclear, and therefore their palaeoenvironmental significance as allochems is disputed. Here, we experimentally investigate two hypotheses concerning the origin of spherulites. The first is that spherulites precipitate from solutions super-saturated with respect to magnesium-silicate clays, such as stevensite. The second is that spherulite precipitation happens in the presence of dissolved, organic acid molecules. In both cases, experiments were performed under sterile conditions using large batches of a synthetic and cell-free solution replicating waters found in hyperalkaline, saline lakes (such as Mono Lake, California). Our experimental results show that a highly alkaline and highly saline solution supersaturated with respect to calcite (control solution) will precipitate euhedral to subhedral rhombic and trigonal bladed calcite crystals. The same solution supersaturated with respect to stevensite precipitates sheet-like stevensite crystals rather than a gel, and calcite precipitation is reduced by ~ 50% compared to the control solution, producing a mixture of patchy prismatic subhedral to euhedral, and minor needle-like, calcite crystals. Enhanced magnesium concentration in solution is the likely the cause of decreased volumes of calcite precipitation, as this raised equilibrium ion activity ratio in the solution. On the other hand, when alginic acid was present then the result was widespread development of micron-size calcium carbonate spherulite bodies. With further growth time, but falling supersaturation, these spherules fused into botryoidal-topped crusts made of micron-size fibro-radial calcite crystals. We conclude that the simplest tested mechanism to deposit significant spherical-radial calcite bodies is to begin with a strongly supersaturated solution that contains specific but environmentally-common organic acids. Furthermore, we found

  20. Modelling how incorporation of divalent cations affects calcite wettability–implications for biomineralisation and oil recovery

    Science.gov (United States)

    Andersson, M. P.; Dideriksen, K.; Sakuma, H.; Stipp, S. L. S.

    2016-01-01

    Using density functional theory and geochemical speciation modelling, we predicted how solid-fluid interfacial energy is changed, when divalent cations substitute into a calcite surface. The effect on wettability can be dramatic. Trace metal uptake can impact organic compound adsorption, with effects for example, on the ability of organisms to control crystal growth and our ability to predict the wettability of pore surfaces. Wettability influences how easily an organic phase can be removed from a surface, either organic compounds from contaminated soil or crude oil from a reservoir. In our simulations, transition metals substituted exothermically into calcite and more favourably into sites at the surface than in the bulk, meaning that surface properties are more strongly affected than results from bulk experiments imply. As a result of divalent cation substitution, calcite-fluid interfacial energy is significantly altered, enough to change macroscopic contact angle by tens of degrees. Substitution of Sr, Ba and Pb makes surfaces more hydrophobic. With substitution of Mg and the transition metals, calcite becomes more hydrophilic, weakening organic compound adsorption. For biomineralisation, this provides a switch for turning on and off the activity of organic crystal growth inhibitors, thereby controlling the shape of the associated mineral phase. PMID:27352933

  1. Modelling how incorporation of divalent cations affects calcite wettability-implications for biomineralisation and oil recovery.

    Science.gov (United States)

    Andersson, M P; Dideriksen, K; Sakuma, H; Stipp, S L S

    2016-01-01

    Using density functional theory and geochemical speciation modelling, we predicted how solid-fluid interfacial energy is changed, when divalent cations substitute into a calcite surface. The effect on wettability can be dramatic. Trace metal uptake can impact organic compound adsorption, with effects for example, on the ability of organisms to control crystal growth and our ability to predict the wettability of pore surfaces. Wettability influences how easily an organic phase can be removed from a surface, either organic compounds from contaminated soil or crude oil from a reservoir. In our simulations, transition metals substituted exothermically into calcite and more favourably into sites at the surface than in the bulk, meaning that surface properties are more strongly affected than results from bulk experiments imply. As a result of divalent cation substitution, calcite-fluid interfacial energy is significantly altered, enough to change macroscopic contact angle by tens of degrees. Substitution of Sr, Ba and Pb makes surfaces more hydrophobic. With substitution of Mg and the transition metals, calcite becomes more hydrophilic, weakening organic compound adsorption. For biomineralisation, this provides a switch for turning on and off the activity of organic crystal growth inhibitors, thereby controlling the shape of the associated mineral phase. PMID:27352933

  2. Modelling how incorporation of divalent cations affects calcite wettability–implications for biomineralisation and oil recovery

    Science.gov (United States)

    Andersson, M. P.; Dideriksen, K.; Sakuma, H.; Stipp, S. L. S.

    2016-06-01

    Using density functional theory and geochemical speciation modelling, we predicted how solid-fluid interfacial energy is changed, when divalent cations substitute into a calcite surface. The effect on wettability can be dramatic. Trace metal uptake can impact organic compound adsorption, with effects for example, on the ability of organisms to control crystal growth and our ability to predict the wettability of pore surfaces. Wettability influences how easily an organic phase can be removed from a surface, either organic compounds from contaminated soil or crude oil from a reservoir. In our simulations, transition metals substituted exothermically into calcite and more favourably into sites at the surface than in the bulk, meaning that surface properties are more strongly affected than results from bulk experiments imply. As a result of divalent cation substitution, calcite-fluid interfacial energy is significantly altered, enough to change macroscopic contact angle by tens of degrees. Substitution of Sr, Ba and Pb makes surfaces more hydrophobic. With substitution of Mg and the transition metals, calcite becomes more hydrophilic, weakening organic compound adsorption. For biomineralisation, this provides a switch for turning on and off the activity of organic crystal growth inhibitors, thereby controlling the shape of the associated mineral phase.

  3. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    Energy Technology Data Exchange (ETDEWEB)

    Roedder, E. [Harvard Univ., Cambridge, MA (United States); Whelan, J.F. [Geological Survey, Denver, CO (United States); Vaniman, D.T. [Los Alamos National Lab., NM (United States)

    1994-12-31

    Calcite vein and vug fillings at four depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid raitos: Most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at <100{degrees}C. The vapor-filled inclusions provide evidence that a separate vapor phase was present in the fluid during crystallization. Studies of these vapor-filled inclusions on the microscope crushing stage were interpreted in an earlier paper as indicating trapping of an air-water-CO{sub 2} vapor phase at ``<100{degrees}C``. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface.

  4. Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure

    Science.gov (United States)

    Busenberg, Eurybiades; Plummer, L. Niel

    1989-01-01

    protodolomite. Group I and II solid-solutions differ significantly in stability. The rate of crystal growth and the chemical composition of the aqueous solutions from which the solids were formed are the main factors controlling stoichiometric solubility of the magnesian calcites and the density of crystal defects. The literature on the occurrence and behavior of magnesian calcites in sea water and other aqueous solutions is also examined.

  5. in situ Calcite Precipitation for Contaminant Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiko Fujita; Robert W. Smith

    2009-08-01

    in situ Calcite Precipitation for Contaminant Immobilization Yoshiko Fujita (Yoshiko.fujita@inl.gov) (Idaho National Laboratory, Idaho Falls, Idaho, USA) Robert W. Smith (University of Idaho-Idaho Falls, Idaho Falls, Idaho, USA) Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE’s greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide strontium-90, is co-precipitation in calcite. Calcite, a common mineral in the arid western U.S., can form solid solutions with trace metals. The rate of trace metal incorporation is susceptible to manipulation using either abiotic or biotic means. We have previously demonstrated that increasing the calcite precipitation rate by stimulating the activity of urea hydrolyzing microorganisms can result in significantly enhanced Sr uptake. Urea hydrolysis causes the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity, and also by liberating the reactive cations from the aquifer matrix via exchange reactions involving the ammonium ion derived from urea: H2NCONH2 + 3H2O ? 2NH4+ + HCO3- + OH- urea hydrolysis >X:2Ca + 2NH4+ ? 2>X:NH4 + Ca2+ ion exchange Ca2+ + HCO3- + OH- ? CaCO3(s) + H2O calcite precipitation where >X: is a cation exchange site on the aquifer matrix. This contaminant immobilization approach has several attractive features. Urea hydrolysis is catalyzed by the urease enzyme, which is produced by many indigenous subsurface microorganisms. Addition of foreign microbes is unnecessary. In turn the involvement of the native microbes and the consequent in situ generation of reactive components in the aqueous phase (e.g., carbonate and Ca or Sr) can allow dissemination of the reaction over a larger volume and/or farther away from an amendment injection point, as compared to direct addition of the reactants at

  6. Molecular ordering of ethanol at the calcite surface

    DEFF Research Database (Denmark)

    Pasarín, I. S.; Yang, M.; Bovet, Nicolas Emile;

    2012-01-01

    dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH 3-CH2-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol...

  7. Molecular orientation behavior of chiral nematic liquid crystals based on the presence of blue phases using polarized microscopic FT-IR spectroscopy

    Science.gov (United States)

    Matsumura, Masanori; Katayama, Norihisa

    2016-07-01

    Study on molecular orientation behavior of highly twisted chiral nematic liquid crystals (N∗LCs) expressing blue phases (BPs) is important for developing new devices. This study examines the change of molecular orientation of N∗LCs due to the presence of BPs. Polarized microscopic FT-IR spectroscopy was used to study the in- and out-of-plane molecular orientations of N∗LCs that undergo a phase transition involving BPs. The band intensity ratio of CN to CH2 stretching modes (CN/CH2) in the IR spectra was used to determine the orientation of N∗LC molecules. The measured spectra indicated that the helical axis of N∗LC molecules was perpendicular to the substrate before heating and inclined on the substrate after cooling the sample which has phase transition from BP I to chiral nematic (N∗). The N∗LC molecule in the cell of rubbed orientation film exhibited the in-plane anisotropy after a heating-cooling ramp only in samples that passed through BP I. These results indicate that the changes of molecular orientation of N∗LC by phase transition are affected by BP I.

  8. Calcite-forming bacteria for compressive strength improvement in mortar.

    Science.gov (United States)

    Park, Sung-Jin; Park, Yu-Mi; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl

    2010-04-01

    Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of concrete mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of concrete mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and x-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the CaCO3 crystals. We used the isolates to improve the compressive strength of concrete mortar cubes and found that KNUC403 offered the best improvement in compressive strength.

  9. The influence of substrate orientation on the density of silicon nanowires grown on multicrystalline and single crystal substrates by electron cyclotron resonance chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ball, J., E-mail: balljb@lsbu.ac.uk; Reehal, H.S.

    2012-01-31

    The Au catalysed, vapour-liquid-solid growth of Si nanowires on Si substrates of different orientations has been studied using electron cyclotron resonance plasma-assisted chemical vapour deposition (ECRCVD). ECRCVD plasma excitation is found to strongly promote wire growth rate and density with wire diameters in excess of 200 nm under the conditions used. Substrate orientation and nanowire density are strongly correlated. This has been studied using multicrystalline as well as single crystal Si substrates. It is suggested that the Gibbs-Thomson effect can account for the behaviour of wire density with orientation. The application of an RF generated, DC self-bias of - 5 V on the substrate during growth strongly enhances wire density without affecting growth rate or diameter. A tentative model for wire growth has been proposed which is based on an initial incubation/crystallisation step, followed by silicon incorporation at the vapour-liquid interface being rate-limiting.

  10. Morphology and orientation of β-BaB2O4 crystals patterned by laser in the inside of samarium barium borate glass

    Science.gov (United States)

    Nishii, Akihito; Shinozaki, Kenji; Honma, Tsuyoshi; Komatsu, Takayuki

    2015-01-01

    Nonlinear optical β-BaB2O4 crystal lines (β-BBO) were patterned in the inside of 8Sm2O3-42BaO-50B2O3 glass by irradiations of continuous-wave Yb:YVO4 lasers with a wavelength of 1080 nm (power: P=0.8-1.0 W, scanning speed: S=0.2-2.5 μm/s), in which the laser focal position was moved gradually from the surface to the inside. The morphology, size, and orientation of β-BBO crystals were examined from polarization optical microscope and birefringence imaging observations. It was demonstrated that c-axis oriented β-BBO crystals with long lengths (e.g., 20 mm) were patterned in the inside of the glass. The morphology of β-BBO in the cross-section of lines was a rectangular shape with rounded corners, and the volume of β-BBO formed increased with increasing laser power and with decreasing laser scanning speed. The maximum depth in the inside from the surface for β-BBO patterning increased with increasing laser power, e.g., Dmax~100 μm at P=0.8 W, Dmax~170 μm at P=0.9 W, and Dmax~200 μm at P=1 W. The present study proposes that the laser-induced crystallization opens a new door for applied engineering in glassy solids.

  11. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Science.gov (United States)

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  12. Magnesian calcite sorbent for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Mabry, J.C.; Mondal, K. [Southern Illinois University, Carbondale, IL (United States)

    2011-07-01

    Magnesian calcite with controlled properties was synthesized for the removal of carbon dioxide. The results from characterization, reactivity and CO{sub 2} capture capacity for different synthesis conditions are reported. The magnesian calcite samples (CaCO{sub 3}:MgCO{sub 3}) were synthesized by the coprecipitation of specific amounts of commercially available CaO and MgO by carbon dioxide. Characterization was done with BET, SEM/EDS, particle size analysis and XRD. The capacity was measured using TGA cycles at 800 {sup o}C and compared for different preparation conditions. The effects of CaO, MgO and surfactant loading on the physical properties and carbonation activity were studied to determine the optimal synthesis condition. A long-term carbonation-calcination cycling test was conducted on the optimal sample. It was observed that the sample maintained its capacity to 86% of its original uptake even after 50 cycles.

  13. Recovery of crystallinity in ground calcite

    Energy Technology Data Exchange (ETDEWEB)

    Gammage, R.B.; Glasson, D.R.

    1976-01-01

    Recovery processes by thermal treatment and recrystallization are examined in a calcite specimen severely disordered by ball milling. As the annealing temperature is increased, restructuring in the bulk lags behind the recovery of crystalline perfection in the surface regions. Surface reordering is significant at temperatures as low as 150 to 175/sup 0/C and is rapidly completed at 400/sup 0/C. Annealing at 600/sup 0/C is required for removal of all lattice strain. Before loss of surface can occur by sintering, the temperature needs to exceed 300/sup 0/C. The corresponding temperature for a high-area precipitated calcite is 400/sup 0/C. Recovery of crystallinity is also promoted by light-etching with aqueous acid when extensive whisker growth occurs. Aging over a period of twelve years has led to loss of the ultrareactive characteristics.

  14. Evolution of calcite growth morphology in the presence of magnesium: Implications for the dolomite problem

    Science.gov (United States)

    Hong, Mina; Xu, Jie; Teng, Henry H.

    2016-01-01

    The effect of magnesium on calcite growth morphology was known to occur as step rounding in some cases and surface segmentation in others. What remains unknown are the conditions for and the relations between the different effects, suggesting a lack of comprehensive understanding of the fundamental cause. Here we investigated the evolution of spiral hillock morphology on calcite cleavage surfaces in solutions with increasing Ca to Mg ratios and supersaturation levels using in situ atomic force microscopy. We isolated the effects of Mg and saturation by conducting experiments under conditions of constant pH, ionic strength, and Ca2+/CO32-. Our results revealed three types of morphological variations, ranging from step rounding in one direction (type I), to all directions (type II), and finally to a mosaic-like surface segmentation associated with monolayer buckling and step bunching (type III). These results suggest that the effect of magnesium on calcite growth depends upon multiple parameters including the concentration of Mg in solution, the step speed, as well as the extensiveness of Mg for Ca substitution in calcite lattice. We propose that the morphological variation may be understood by a model taken into consideration of (1) the lifespan and flux size of Mg ions at kinks in comparison to step kinetics, and (2) the diffusion and alignment of point defects created by the substitution of Mg for Ca in the crystal lattice. Stress calculations show that the maximum amount of Mg which calcite lattice can sustain before plastic deformation is ∼40%, suggesting that lattice stress due to the mismatch between MgCO3 and CaCO3 is likely the ultimate cause for the difficulty of ambient condition dolomite crystallization.

  15. Mineral Chemistry of Melanite from Calcitic Ijolite, the Oka Carbonatite Complex, Canada:Implications for Multi-Pulse Magma Mixing

    Institute of Scientific and Technical Information of China (English)

    Wei Chen; Weiqi Zhang; Antonio Simonetti; Shaoyong Jiang

    2016-01-01

    Ti-rich garnet is found within calcitic ijolite from the Oka carbonatite complex in Can-ada, which is characterized by 58%–73% andradite component (2.12 wt.%–4.18 wt.% TiO2) and classi-fied as melanite. The garnet displays complex zoning and contains abundant high field strength ele-ments (HFSEs) and rare earth elements (REEs). Three groups (I, II, III) have been identified based on their petrographic nature. Compared to groups II and III, Group I garnet cores contain higher TiO2, MgO, HFSE, and REE and lower SiO2 abundances. The distinct chemical and petrographic signatures of the investigated garnets cannot be attributed to simple closed system crystallization, but they are consistent with the multi-pulse magma mixing. Combined with previously reported U-Pb ages for apa-tite from the calcitic ijolite, at least three stages of magma evolution and subsequent mixing have been involved in the generation of calcitic ijolite at Oka. The early-formed melt that generated Group I gar-net core was later mixed with at least two small-volume, more evolved melts. The intermediate stage melt formed the remaining garnet along with some pyroxene, calcite, nepheline, and apatite at 127±3.6 Ma. The youngest, most evolved melt generated the majority of pyroxene, calcite, nepheline, and apatite within the calcitic ijolite at 115±3.1 Ma.

  16. Ice crystal c-axis orientation and mean grain size measurements from the Dome Summit South ice core, Law Dome, East Antarctica

    Science.gov (United States)

    Treverrow, Adam; Jun, Li; Jacka, Tim H.

    2016-06-01

    We present measurements of crystal c-axis orientations and mean grain area from the Dome Summit South (DSS) ice core drilled on Law Dome, East Antarctica. All measurements were made on location at the borehole site during drilling operations. The data are from 185 individual thin sections obtained between a depth of 117 m below the surface and the bottom of the DSS core at a depth of 1196 m. The median number of c-axis orientations recorded in each thin section was 100, with values ranging from 5 through to 111 orientations. The data from all 185 thin sections are provided in a single comma-separated value (csv) formatted file which contains the c-axis orientations in polar coordinates, depth information for each core section from which the data were obtained, the mean grain area calculated for each thin section and other data related to the drilling site. The data set is also available as a MATLAB™ structure array. Additionally, the c-axis orientation data from each of the 185 thin sections are summarized graphically in figures containing a Schmidt diagram, histogram of c-axis colatitudes and rose plot of c-axis azimuths. All these data are referenced by doi:10.4225/15/5669050CC1B3B and are available free of charge at https://data.antarctica.gov.au" target="_blank">https://data.antarctica.gov.au.<

  17. Ice crystal c-axis orientation and mean grain size measurements from the Dome Summit South ice core, Law Dome, East Antarctica

    Science.gov (United States)

    Treverrow, Adam; Jun, Li; Jacka, Tim H.

    2016-06-01

    We present measurements of crystal c-axis orientations and mean grain area from the Dome Summit South (DSS) ice core drilled on Law Dome, East Antarctica. All measurements were made on location at the borehole site during drilling operations. The data are from 185 individual thin sections obtained between a depth of 117 m below the surface and the bottom of the DSS core at a depth of 1196 m. The median number of c-axis orientations recorded in each thin section was 100, with values ranging from 5 through to 111 orientations. The data from all 185 thin sections are provided in a single comma-separated value (csv) formatted file which contains the c-axis orientations in polar coordinates, depth information for each core section from which the data were obtained, the mean grain area calculated for each thin section and other data related to the drilling site. The data set is also available as a MATLAB™ structure array. Additionally, the c-axis orientation data from each of the 185 thin sections are summarized graphically in figures containing a Schmidt diagram, histogram of c-axis colatitudes and rose plot of c-axis azimuths. All these data are referenced by doi:10.4225/15/5669050CC1B3B and are available free of charge at https://data.antarctica.gov.au.<

  18. Heterogeneous growth of calcite at aragonite {001}- and vaterite {001}-melt interfaces: A molecular dynamics simulation study

    Science.gov (United States)

    Nada, Hiroki; Nishimura, Tatsuya; Sakamoto, Takeshi; Kato, Takashi

    2016-09-01

    Crystal growth at the interface between a calcium carbonate (CaCO3) crystal and its melt at a high temperature of 1500 K is investigated by means of a molecular dynamics simulation. The simulation is performed for the interfaces of a calcite {104} plane, aragonite {001}, {100}, and {010} planes, and vaterite {001}, {110}, and {100} planes. The growth from a pure melt and that from a melt containing Mg2+ are examined. Calcite growth occurs on the calcite {104} plane, aragonite growth occurs on the aragonite {100}, and {010} planes, and vaterite growth occurs on the vaterite {110} and {100} planes. However, the heterogeneous growth of calcite occurs on the {001} plane of aragonite and vaterite, irrespective of the presence of Mg2+. The results advance our understanding of geological processes that occur at high temperature, such as the formation of CaCO3 crystals from carbonatite magma and the formation of marble. Moreover, the results provide useful information for the control of CaCO3 crystal formation in material design.

  19. Calcite Supersaturation and Precipitation Kinetics in the Lower Colorado River, Ail-American Canal and East Highline Canal

    Science.gov (United States)

    Suarez, D. L.

    1983-06-01

    In situ pH determinations and analysis of major ions in solution indicated that the lower Colorado River is supersaturated with respect to calcite throughout the entire daily cycle, in both winter and summer. Although the ion activity product was 4 to 6 times greater than the calcite solubility product, there was no detectable precipitation. Chemical analyses of water samples taken along 350 km of the river and canals from Parker Dam to the Salton Sea also revealed no evidence of calcium carbonate precipitation despite the inflow of saline and highly supersaturated irrigation return flows. Laboratory kinetic studies indicated that calcite crystal growth rates with Colorado River water are about 30% of the rate for pure Ca-HCO3 waters and about 70% of that for synthetic Colorado River water. Calcite precipitation by crystal growth in the river is limited by the combination of short residence times and unavailability of reactive calcite. Critical supersaturation levels necessary for heterogeneous nucleation do not occur; a high suspended load limits algal photosynthesis and thus prevents large decreases in daytime H2CO3 levels.

  20. High-performance poly-Si thin film transistors with highly biaxially oriented poly-Si thin films using double line beam continuous-wave laser lateral crystallization

    Science.gov (United States)

    Yamano, Masayuki; Kuroki, Shin-Ichiro; Sato, Tadashi; Kotani, Koji

    2014-01-01

    Highly biaxially oriented poly-Si thin films were formed by double-line beam continuous-wave laser lateral crystallization (DLB-CLC). The crystallinities of the DLB-CLC poly-Si thin films were (110), (111), and (211) for the laser scan, transverse, and surface directions, respectively, and an energetically stable Σ3 grain boundary was observed to be dominant. All silicon grains were elongated in the laser scan direction and one-dimensionally very large silicon grains with lengths of more than 100 µm were fabricated. Using these biaxially oriented polycrystalline silicon (poly-Si) films, low-temperature poly-Si TFTs (LTPS-TFTs) were fabricated at low temperatures (≦550 °C) by a metal gate self-aligned process. As a result, a TFT with a high electron field effect mobility of μFE = 450 cm2 V-1 s-1 in a linear region was realized.

  1. STUDY ON MAGNETIC FIELD-INDUCED ORIENTATION OF A CHIRAL SIDE-CHAIN LIQUID CRYSTAL POLYACRYLATE USING INFRARED DICHROISM

    Institute of Scientific and Technical Information of China (English)

    HE Liu; JIN Shunzi; ZHANG Shufan; QI Zongneng; WANG Fosong

    1996-01-01

    Magnetic field-induced orientation of a chiral side chain liquid crystalline polyacrylate (P-11) was studied by using IR dichroism. For the investigated P-11, it has been shown that the magnetic alignment takes place over the entire temperature range between its melting point and clearing point and the orientation level is strongly temperature-dependent, the development with time of the magnetic orientation follows an exponential-type relation,and the smectic phase state influences the thermal relaxation process in the absence of the magnetic field.

  2. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells

    Energy Technology Data Exchange (ETDEWEB)

    Du Yang; Lian Fei [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Zhu Lingyan, E-mail: zhuly@nankai.edu.cn [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2011-07-15

    The potential of using mollusk shell powder in aragonite (razor clam shells, RCS) and calcite phase (oyster shells, OS) to remove Pb{sup 2+}, Cd{sup 2+} and Zn{sup 2+} from contaminated water was investigated. Both biogenic sorbents displayed very high sorption capacities for the three metals except for Cd on OS. XRD, SEM and XPS results demonstrated that surface precipitation leading to crystal growth took place during sorption. Calcite OS displayed a remarkably higher sorption capacity to Pb than aragonite RCS, while the opposite was observed for Cd. However, both sorbents displayed similar sorption capacities to Zn. These could be due to the different extent of matching in crystal lattice between the metal bearing precipitate and the substrates. The initial pH of the solution, sorbent's dosage and grain size affected the removal efficiency of the heavy meals significantly, while the organic matter in mollusk shells affected the removal efficiency to a lesser extent. - Highlights: > Mollusk shells display high removal efficiency to heavy metals in contaminated water. > Surface precipitation leading to crystal growth takes place during the sorption. > Crystal structure similarity between precipitates and substrates affects the sorption. > pH, sorbent dosage and grain size of adsorbent affects the removal efficiency. > Organic matter in mollusk shells affects the removal efficiency to a less extent. - Mollusk shells display high sorption ability to heavy metals and crystal structure similarity between precipitates and substrates affects the sorption.

  3. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chunlong; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald; De Yoreo, James J.

    2014-09-05

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic interactions (EI) and hydrophobic interactions (HI), with HI playing the dominant role. While either strong EI or HI inhibit growth and suppress (104) face expression, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate EI allow peptoids to weakly adsorb while moderate HI cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of (104) faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  4. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    Science.gov (United States)

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; Deyoreo, James J.

    2014-09-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  5. Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization.

    Science.gov (United States)

    Roiban, L; Hartmann, L; Fiore, A; Djurado, D; Chandezon, F; Reiss, P; Legrand, J-F; Doyle, S; Brinkmann, M; Ersen, O

    2012-11-21

    Highly oriented and nanostructured hybrid thin films made of regioregular poly(3-hexylthiophene) and colloidal CdSe nanocrystals are prepared by a zone melting method using epitaxial growth on 1,3,5-trichlorobenzene oriented crystals. The structure of the films has been analyzed by X-ray diffraction using synchrotron radiation, electron diffraction and 3D electron tomography to afford a multi-scale structural and morphological description of the highly structured hybrid films. A quantitative analysis of the reconstructed volumes based on electron tomography is used to establish a 3D map of the distribution of the CdSe nanocrystals in the bulk of the films. In particular, the influence of the P3HT-CdSe ratio on the 3D structure of the hybrid layers has been analyzed. In all cases, a bi-layer structure was observed. It is made of a first layer of pure oriented semi-crystalline P3HT grown epitaxially on the TCB substrate and a second P3HT layer containing CdSe nanocrystals uniformly distributed in the amorphous interlamellar zones of the polymer. The thickness of the P3HT layer containing CdSe nanoparticles increases gradually with increasing content of NCs in the films. A growth model is proposed to explain this original transversal organization of CdSe NCs in the oriented matrix of P3HT.

  6. The creep behaviour of single-crystal turbine blade alloys basing on nickel SC 16 with [011] orientation; Das Kriechverhalten der einkristallinen Nickelbasisturbinenschaufellegierung SC 16 MIT [011]-Orientierung

    Energy Technology Data Exchange (ETDEWEB)

    Klingelhoeffer, H.; Chrzanowski, U.; Kraemer, E.; Frenz, H.; Ziebs, J. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany)

    1997-12-31

    This paper describes the creep behaviour of single-crystal turbine blade alloys basing on nickel SC 16 compared to the material IN 738 LC while submitted to creep strain. The creep properties of samples with [011] and [001]-orientation are compared with each other. (orig./MM) [Deutsch] In der vorliegenden Arbeit wird das Kriechverhalten der einkristallinen Nickelbasissuperlegierung SC 16 im Vergleich zum Werkstoff IN 738 LC unter Kriechbeanspruchung dargestellt. Dabei werden die Kriecheigenschaften von Proben mit [011]- und [001]-Orientierung gegenuebergestellt. (orig./MM)

  7. Cryogenic and non-cryogenic pool calcites indicating permafrost and non-permafrost periods: a case study from the Herbstlabyrinth-Advent Cave system (Germany

    Directory of Open Access Journals (Sweden)

    D. K. Richter

    2010-11-01

    Full Text Available Weichselian cryogenic calcites collected in what is referred to as the Rätselhalle of the Herbstlabyrinth-Advent Cave system are structurally classified as rhombohedral crystals and spherulitic aggregates. The carbon and oxygen isotopic composition of these precipitates (δ13C = +0.6 to −7.3‰ δ18O = −6.9 to −18.0‰ corresponds to those of known slowly precipitated cryogenic cave calcites under conditions of isotopic equilibrium between water and ice of Central European caves. The carbon and oxygen isotopic composition varies between different caves which is attributed to the effects of cave air ventilation before the freezing started.

    By petrographic and geochemical comparisons of Weichselian cryogenic calcite with recent to sub-recent precipitates as well as Weichselian non-cryogenic calcites of the same locality, a model for the precipitation of these calcites is proposed. While the recent and sub-recent pool-calcites isotopically match the composition of interglacial speleothems (stalagmites, etc., isotope ratios of Weichselian non-cryogenic pool-calcites reflect cooler conditions. Weichselian cryogenic calcites show a trend towards low δ18O values with higher carbon isotope ratios reflecting slow freezing of the precipitating solution. In essence, the isotope geochemistry of the Weichselian calcites reflects the climate history changing from overall initial permafrost conditions to permafrost-free and subsequently to renewed permafrost conditions. Judging from the data compiled here, the last permafrost stage in the Rätselhalle is followed by a warm period (interstadial and/or Holocene. During this warmer period, the cave ice melted and cryogenic and non-cryogenic Weichselian calcite precipitates were deposited on the cave ground or on fallen blocks, respectively.

  8. Impact of trace metals on the water structure at the calcite surface

    Science.gov (United States)

    Wolthers, Mariette; Di Tommaso, Devis; De Leeuw, Nora

    2014-05-01

    Carbonate minerals play an important role in regulating the chemistry of aquatic environments, including the oceans, aquifers, hydrothermal systems, soils and sediments. Through mineral surface processes such as dissolution, precipitation and sorption, carbonate minerals affect the biogeochemical cycles of not only the constituent elements of carbonates, such as Ca, Mg, Fe and C, but also H, P and trace elements. Surface charging of the calcite mineral-water interface, and its reactivity towards foreign ions can be quantified using a surface structural model that includes, among others, the water structure at the interface (i.e. hydrogen bridging) [1,2] in accordance with the CD-MUSIC formalism [3]. Here we will show the impact of foreign metals such as Mg and Sr on the water structure around different surface sites present in etch pits and on growth terraces at the calcite (10-14) surface. We have performed Molecular Dynamics simulations of metal-doped calcite surfaces, using different interatomic water potentials. Results show that the local environment around the structurally distinct sites differs depending on metal presence, suggesting that metal substitutions in calcite affect its reactivity. The information obtained in this study will help in improving existing macroscopic surface model for the reactivity of calcite [2] and give more general insight in mineral surface reactivity in relation to crystal composition. [1] Wolthers, Charlet, & Van Cappellen (2008). Am. J. Sci., 308, 905-941. [2] Wolthers, Di Tommaso, Du, & de Leeuw (2012). Phys. Chem. Chem. Phys. 14, 15145-15157. [3] Hiemstra and Van Riemsdijk (1996) J. Colloid Interf. Sci. 179, 488-508.

  9. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide

    CERN Document Server

    Montes-Hernandez, German; Charlet, L; Tisserand, Delphine; Renard, F

    2008-01-01

    The hydrothermal carbonation of calcium hydroxide (Ca(OH)2) at high pressure of CO2 (initial PCO2 1/4 55 bar) and moderate to high temperature (30 and 90 1C) was used to synthesize fine particles of calcite. This method allows a high carbonation efficiency (about 95% of Ca(OH)2-CaCO3 conversion), a significant production rate (48 kg/m3 h) and high purity of product (about 96%). However, the various initial physicochemical conditions have a strong influence on the crystal size and surface area of the synthesized calcite crystals. The present study is focused on the estimation of the textural properties of synthesized calcite (morphology, specific surface area, average particle size, particle size distribution and particle size evolution with reaction time), using Rietveld refinements of X-ray diffraction (XRD) spectra, Brunauer-Emmett-Teller (BET) measurements, and scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. This study demonstrate that the pressure, the temperatu...

  10. Global calcite cycling constrained by sediment preservation controls

    Science.gov (United States)

    Dunne, John P.; Hales, Burke; Toggweiler, J. R.

    2012-09-01

    We assess the global balance of calcite export through the water column and burial in sediments as it varies regionally. We first drive a comprehensive 1-D model for sediment calcite preservation with globally gridded field observations and satellite-based syntheses. We then reformulate this model into a simpler five-parameter box model, and combine it with algorithms for surface calcite export and water column dissolution for a single expression for the vertical calcite balance. The resulting metamodel is optimized to fit the observed distributions of calcite burial flux. We quantify the degree to which calcite export, saturation state, organic carbon respiration, and lithogenic sedimentation modulate the burial of calcite. We find that 46% of burial and 88% of dissolution occurs in sediments overlain by undersaturated bottom water with sediment calcite burial strongly modulated by surface export. Relative to organic carbon export, we find surface calcite export skewed geographically toward relatively warm, oligotrophic areas dominated by small, prokaryotic phytoplankton. We assess century-scale projected impacts of warming and acidification on calcite export, finding high sensitive to inferred saturation state controls. With respect to long-term glacial cycling, our analysis supports the hypothesis that strong glacial abyssal stratification drives the lysocline toward much closer correspondence with the saturation horizon. Our analysis suggests that, over the transition from interglacial to glacial ocean, a resulting ˜0.029 PgC a-1decrease in deep Atlantic, Indian and Southern Ocean calcite burial leads to slow increase in ocean alkalinity until Pacific mid-depth calcite burial increases to compensate.

  11. Origin of calcite in the glacigenic Virttaankangas complex

    Directory of Open Access Journals (Sweden)

    Nina M. Kortelainen

    2007-01-01

    Full Text Available Groundwaters of the glacigenic Virttaankangas complex in southern Finland are characterized by high pH values ranging up to 9.5. These values are significantly higher than those observed in silicate-rich shallow groundwater formations in crystalline bedrock areas. TheVirttaankangas sediments were discovered to contain small amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. The primary goal of this study was to determine the mode of occurrence of calcite and to identifyits sources. The mineralogy of the glacigenic Virttaankangas complex was studied using material from 21 sediment drill cores. Fine-grained calcite is present in trace amounts (<< 1.4 % in the glaciofluvial and glaciolacustrine depositional units of the Virttaankangas complex. The topmost littoral sands were practically devoid of calcite. The isotope records of carbon and oxygen, the angular morphology of the grains and the uniform dispersion of calcite in the complex suggest a clastic origin for calcite, with no evidence for in-situ precipitation. In order to constrain the source of calcite, the isotopic composition of carbon and oxygen in five calcite samples was compared to the isotopic data from five carbonate rock erratics and eight crystalline bedrock samples from the region. Based on carbon and oxygen isotope ratios and chemical compositions, the dispersed calcite grains of the Virttaankangas complex appear to have been derived from the Mesoproterozoic Satakunta Formation, some 30 km NW from the Virttaankangas area. In sandstone, calcite is predominantly present as diagenetic cement in grain interspaces, concretions and interlayers. The source of detrital calcite was unexpected, as prior to this study the Satakunta sandstone hasnot been known to contain calcite.

  12. A study of the crystal orientation dependence of the solid-phase epitaxial growth of amorphized GaAs

    International Nuclear Information System (INIS)

    In-situ transmission electron microscopy (TEM) has been utilized in conjunction with conventional in-situ time resolved reflectivity (TRR) and ex-situ TEM to study the influence of substrate orientation on the solid-phase epitaxial growth (SPEG) of amorphized GaAs. A thin amorphous layer was produced on semi-insulating (100), (110) and (111) GaAs substrates, maintained at liquid nitrogen temperature, by As and Ga co-implantation. Sample were annealed at ∼260 deg C in the electron microscope and the dynamic events of the recrystallization process for the different substrates were video-captured. By quantitatively analyzing the in-situ TEM data, it has been demonstrated that the non-planarity of the amorphous-crystalline (a/c)-interface was greatest for the (111) and least for the (110) substrate orientations. The roughness was measured in terms of the length of the a/c-interface in a given window as a function of depth on a frame captured from the video recorded in-situ. This has been further analyzed and substantiated by measuring the size of the angle subtended by a microtwin with respect to the interface on ex-situ TEM micrographs of each orientation. The angle was both calculated and measured and was the largest in (111) orientation and smallest in (110) orientation. This has ensured that the a/c-interface was the roughest and most planar for (111) and (110) orientations, respectively. (authors)

  13. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus;

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic concentrat......The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  14. Rare Earth element (REE) incorporation in natural calcite. Upper limits for actinide uptake in a secondary phase

    Energy Technology Data Exchange (ETDEWEB)

    Stipp, S.L.S.; Christensen, J.T.; Waight, T.E. [Geological Inst., Univ. of Copenhagen (Denmark); Lakshtanov, L.Z. [Geological Inst., Univ. of Copenhagen (Denmark); Inst. of Experimental Mineralogy, Russian Academy of Science, Chernogolovka (Russian Federation); Baker, J.A. [School of Earth Sciences, Victoria Univ. of Wellington (New Zealand)

    2006-07-01

    Secondary minerals have the potential to sequester escaped actinides in the event of a radioactive waste repository failure, but currently, data to define their maximum uptake capacity are generally lacking. To estimate a maximum limit for solid solution in calcite, we took advantage of the behavioural similarities of the 4f-orbital lanthanides with some of the 5f-orbital actinides and used rare Earth element (REE) concentration as an analogue. A suite of 65 calcite samples, mostly pure single crystals, was assembled from a range of geological settings, ages and locations and analysed by isotope dilution MC-ICP-MS (multiple-collector inductively-coupled plasma mass spectroscopy). All samples were shown to contain significant lanthanide concentrations. The highest were in calcite formed from hydrothermal solutions and from carbonatite magma. Maximum total mole fraction of REE was 4.72 x 10{sup -4}, which represents one substituted atom for about 2000 Ca sites. In comparison, synthetic calcite, precipitated at growth rates slow enough to insure solid solution formation, incorporated 7.5 x 10{sup -4} mole fraction Eu(III). For performance assessment, we propose that 7.5 mmole substitution/kg calcite should be considered the upper limit for actinide incorporation in secondary calcite. The largest source of uncertainty in this estimate results from extrapolating lanthanide data to actinides. However, the data offer confidence that for waters in the hydrothermal temperature range, such as in the near-field, or at groundwater temperatures, such as in the far-field, if calcite formation is favoured and actinides are present, those with behaviour like the trivalent lanthanides, especially Am{sup 3+} and Cm{sup 3+}, will be incorporated. REE are abundant and widely distributed, and they have remained in calcite for millions of years. Thus, one can be certain that incorporated actinides will also remain immobilised in calcite formed in fractures and pore spaces, as long as

  15. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface

    OpenAIRE

    Wolthers, M.; Di Tommaso, D.; Du, Z; de Leeuw, N. H.

    2012-01-01

    Calcite–water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different s...

  16. Research on the growth orientation of pyrite grains in the colloform textures in Baiyunpu Pb-Zn polymetallic deposit, Hunan, China

    Science.gov (United States)

    Gao, Shang; Huang, Fei; Gu, Xiangping; Chen, Zhenyu; Xing, Miaomiao; Li, Yongli

    2016-08-01

    A large number of colloform-textured pyrites were found in Baiyunpu Pb-Zn ore bodies in Xinshao County, Hunan, China. This study investigates the growth orientation of the pyrite grains in these structures by field emission scanning electron microscopy (FE-SEM), in situ micro X-ray diffraction (μXRD) and electron backscatter diffraction (EBSD). The growth proceeded from micro-crystalline cores in the colloform textures. Moreover, the pyrite layers were discrete and separated by locally significant quantities of galena and calcite. The μXRD results suggested clear crystalline characteristics and weakly preferred orientations of the colloform textures. EBSD confirmed that the pyrite grains exist preferred orientations or in the layered zones. According to the crystal growth theory, the formation and variation of crystal preferred orientations (CPOs) in pyrite are mainly restricted by the internal crystal structure of the pyrite and depends on the external environment conditions, such as trace element concentrations and the supersaturation degree. We inferred the evolutionary regularity of lattice planes with different indices in the pyrite crystal structure from morphological, compositional and growth orientation information, which reflect the crystal growth history of the colloform pyrite. This study will advance our understanding of the growth processes of colloform pyrite and environmental evolution in the Baiyunpu Pb-Zn polymetallic deposits.

  17. Microstructure of (110)-Oriented Epitaxial SrRuO3 Thin Films Grown on Off-Cut Single Crystal YSZ(100) Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xinhua [Max-Planck-Institut fur Mikrostrukturphysik, Germany; Lee, Sung Kyun [Max-Planck-Institut fur Mikrostrukturphysik, Germany; Lee, Ho Nyung [ORNL; Hesse, Dietrich [Max-Planck-Institut fur Mikrostrukturphysik, Germany

    2005-01-01

    The microstructure of (1 1 0){sup pc}-oriented epitaxial SrRuO{sub 3} (SRO) thin films grown by pulsed laser deposition on (1 0 0)YSZ (YSZ: yttria-stabilized zirconia) single crystal substrates with a miscut angle of 5{sup o} has been investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The films grow epitaxially with their pseudocubic (1 1 0) plane parallel to the (1 0 0) surface of the YSZ single crystal substrate, and with an in-plane orientation relationship of [{ovr 1} 1 1]{sub SRO}//[0 1 1]{sub YSZ}. Cross-sectional TEM investigations show that the films have a rough, facetted surface. Generally, four different azimuthal domains are present in (1 1 0)SRO films on (1 0 0)YSZ. Their number can be significantly reduced using annealed offcut YSZ substrates before SRO deposition, and this reduction effect is shown to be much stronger on [0 1 1]-miscut (1 0 0)YSZ than on [0 0 1]-miscut ones. Size and morphology of the azimuthal pseudocubic domains and their domain boundaries, as well as of anti-phase domains and their domain boundaries are studied by plan-view and cross-section TEM.

  18. Microstructure of (110)-oriented epitaxial SrRuO{sub 3} thin films grown on off-cut single crystal YSZ(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Xinhua [Max-Planck Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany)]. E-mail: xhzhu@mpi-halle.de; Lee, Sung Kyun [Max-Planck Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany); Lee, Ho Nyung [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hesse, Dietrich [Max-Planck Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany)

    2005-04-25

    The microstructure of (110){sup pc}-oriented epitaxial SrRuO{sub 3} (SRO) thin films grown by pulsed laser deposition on (100)YSZ (YSZ: yttria-stabilized zirconia) single crystal substrates with a miscut angle of 5{sup o} has been investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The films grow epitaxially with their pseudocubic (110) plane parallel to the (100) surface of the YSZ single crystal substrate, and with an in-plane orientation relationship of [1-bar 11]{sub SRO}//[011]{sub YSZ}. Cross-sectional TEM investigations show that the films have a rough, facetted surface. Generally, four different azimuthal domains are present in (110)SRO films on (100)YSZ. Their number can be significantly reduced using annealed offcut YSZ substrates before SRO deposition, and this reduction effect is shown to be much stronger on [011]-miscut (100)YSZ than on [001]-miscut ones. Size and morphology of the azimuthal pseudocubic domains and their domain boundaries, as well as of anti-phase domains and their domain boundaries are studied by plan-view and cross-section TEM.

  19. Magnetic properties of epitaxial Fe{sub 3}O{sub 4} films with various crystal orientations and tunnel magnetoresistance effect at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nagahama, Taro, E-mail: nagahama@eng.hokudai.ac.jp; Matsuda, Yuya; Tate, Kazuya; Kawai, Tomohiro; Takahashi, Nozomi; Hiratani, Shungo; Watanabe, Yusuke; Yanase, Takashi; Shimada, Toshihiro [Graduate School of Engineering, Hokkaido University, Kita13 Nishi8, Kitak-ku, Sapporo 060-8628 (Japan)

    2014-09-08

    Fe{sub 3}O{sub 4} is a ferrimagnetic spinel ferrite that exhibits electric conductivity at room temperature (RT). Although the material has been predicted to be a half metal according to ab-initio calculations, magnetic tunnel junctions (MTJs) with Fe{sub 3}O{sub 4} electrodes have demonstrated a small tunnel magnetoresistance (TMR) effect. Not even the sign of the tunnel magnetoresistance ratio has been experimentally established. Here, we report on the magnetic properties of epitaxial Fe{sub 3}O{sub 4} films with various crystal orientations. The films exhibited apparent crystal orientation dependence on hysteresis curves. In particular, Fe{sub 3}O{sub 4}(110) films exhibited in-plane uniaxial magnetic anisotropy. With respect to the squareness of hysteresis, Fe{sub 3}O{sub 4} (111) demonstrated the largest squareness. Furthermore, we fabricated MTJs with Fe{sub 3}O{sub 4}(110) electrodes and obtained a TMR effect of −12% at RT. The negative TMR ratio corresponded to the negative spin polarization of Fe{sub 3}O{sub 4} predicted from band calculations.

  20. Joint investigation of the local material rotation and lattice spin in a cube {l_brace}100{r_brace} <001> oriented single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Darrieulat, M; Fillit, R Y; Mondon, M; Sao-Joao, S, E-mail: darrieulat@emse.f [Ecole Nationale Superieure des Mines de Saint-Etienne, SMS Centre, UMR CNRS n0 5146, 158 cours Fauriel 42023 Saint-Etienne, cedex 2 (France)

    2010-07-01

    Cube {l_brace}100{r_brace} <001> oriented single crystals of Al 1% Mn were compressed in channel-die. Their lateral faces were covered with transferable carbon grids with a step of 100mm . At a deformation of about 0.3, the vertical bars of the grids show undulations whose characteristic length is of the order of the millimetre and which become sharper and smaller as the deformation proceeds. Fiducial golden grids with a step of 20 mm remain largely unaffected. This shows that the investigated heterogeneity is typical of the mesoscopic scale and has no directly related patterns at the macroscopic and microscopic level. Microfocussed X-rays were used to measure the crystallographic rotations during the process. The investigated spot was a few 0.1 mm{sup 2}. At a deformation of 0.6, the lateral faces of the crystal undergo a split into two Cube orientations each rotated of about 15{sup 0} around the transverse axis. This is put in relation with the undulations of the bars. At 0.9 an additional rotation around the longitudinal axis appears. The local material rotation and the lattice spin at the mesoscopic scale are interpreted in accordance with previous analyses of the evolution of the Cube texture based on EBSD and the observation of the traces of slip systems.

  1. One-on-One and R-on-One Tests on KDP and DKDP Crystals with Different Orientations

    Institute of Scientific and Technical Information of China (English)

    HU Guo-Hang; ZHAO Yuan-An; SUN Shao-Tao; LI Da-Wei; SUN Xun; SHAO Jian-Da; FAN Zheng-Xiu

    2009-01-01

    By testing a substantial number of tripler and z-cut KDP and DKDP crystals,we have observed that at 355 nm,the laser induced damage threshold in the R-on-one test is higher than that in the one-on-one test.It is proved that laser conditioning is an efficient way to improve the damage resistance.The efficiency of laser conditioning becomes increasingly good with smaller ramping fluence steps.We have also found that the damage resistance of the z-cut crystal is higher than the tripler cut,and the pinpoint number is definitely less in the z-cut crystal.The reason for these observations is discussed.

  2. From nanometer aggregates to micrometer crystals

    DEFF Research Database (Denmark)

    Schultz, Logan Nicholas; Dideriksen, Knud; Lakshtanov, Leonid;

    2014-01-01

    and crystal shapes. Grain coarsening of calcite, CaCO3, is relevant for biomineralization and commercial products and is an important process in diagenesis of sediments to rock during geological time. We investigated coarsening of pure, synthetic calcite powder of sub-micrometer diameter crystals and...... one growth mechanism to the other. This has been poorly described by mean field coarsening models and offers predictive power to grain coarsening models. © 2014 American Chemical Society....

  3. The role of the crystal orientation (c-axis) on switching field distribution and the magnetic domain configuration in electrodeposited hcp Co–Pt nanowires

    Science.gov (United States)

    Shahid Arshad, Muhammad; Proenca, Mariana P.; Trafela, Spela; Neu, Volker; Wolff, Ulrike; Stienen, Sven; Vazquez, Manuel; Kobe, Spomenka; Žužek Rožman, Kristina

    2016-05-01

    In this report, Co–Pt nanowires (NWs) were produced via potentiostatic electrodeposition into commonly used commercial ordered-alumina and disordered-polycarbonate membranes with similar pore diameters (≈200 nm). The pore diameter of the membranes and the deposition conditions were chosen such that the Co–Pt NWs fabricated into both membranes had a hexagonal close packed (hcp) crystal structure with a crystallographic texturing of the c-axis in the direction perpendicular to the NWs’ long axis; this effect was more pronounced in the alumina membranes. Due to the local fluctuation in electrodeposition conditions (pore diameter, pore shape), we have found a small variation in the c-axis orientations in the plane perpendicular to the NWs’ long axis. Magnetic characterizations suggested that there is uniaxial anisotropy perpendicular to the Co–Pt NWs’ long axis and the small variation in the orientation of the hcp c-axis plays an important role in the switching-field distribution and the magnetic domain structure of the Co–Pt NWs. First order reversal curves (FORCs) revealed week magnetostatic interactions between Co–Pt NWs, thus suggesting that the different pore alignments are not influencing much the magnetic properties in both membranes. The micromagnetic simulation revealed that the transverse-stripe (TS) and longitudinal stripe (LS) domains are energetically most favorable structures in such NWs. This study accentuates the influence of the crystal orientation (c-axis) of the high-anisotropy materials on their functional magnetic properties and thus is of great importance for the fabrication of nanodevices based on such NWs.

  4. Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film

    Science.gov (United States)

    Shirsath, Sagar E.; Liu, Xiaoxi; Yasukawa, Yukiko; Li, Sean; Morisako, Akimitsu

    2016-07-01

    Perpendicular magnetization and precise control over the magnetic easy axis in magnetic thin film is necessary for a variety of applications, particularly in magnetic recording media. A strong (111) orientation is successfully achieved in the CoFe2O4 (CFO) thin film at relatively low substrate temperature of 100 °C, whereas the (311)-preferred randomly oriented CFO is prepared at room temperature by the DC magnetron sputtering technique. The oxygen-deficient porous CFO film after post-annealing gives rise to compressive strain perpendicular to the film surface, which induces large perpendicular coercivity. We observe the coercivity of 11.3 kOe in the 40-nm CFO thin film, which is the highest perpendicular coercivity ever achieved on an amorphous SiO2/Si substrate. The present approach can guide the systematic tuning of the magnetic easy axis and coercivity in the desired direction with respect to crystal orientation in the nanoscale regime. Importantly, this can be achieved on virtually any type of substrate.

  5. Relationship between the orientation of texture and heteroepitaxy of diamond and related materials films on silicon single crystal and the valence electron structure of the interface

    Institute of Scientific and Technical Information of China (English)

    LI; ZhiLin; LI; ZhiFeng; HUANG; Qin

    2007-01-01

    Diamond and cubic boron nitride films have already been applied practically because of their excellent properties. The specific orientations of the films have special meaning on their application in optics and microelectronics fields. In this paper, the relative electron density differences of the interface between the different crystal planes of silicon substrate and those of diamond and cubic boron films are calculated with the empirical electron theory in solids and molecules. Analyses on the calculation results show that in the range of the researched films, the smaller the relative electron density difference between the film and the substrate is, the stabler the film is in thermodynamics. Therefore, the electron density difference is the essential factor of determining the orientation of the texture and heteroepitaxy of the films. The deductions accord well with the experimental facts. The calculation methods and the theory not only provide a new angle of view for the research of the growth mechanism of diamond film and cubic boron nitride film on the silicon substrate, but also provide a possible direction for the prediction of the orientation of other films.

  6. Calcite and dolomite in intrusive carbonatites. II. Trace-element variations

    Science.gov (United States)

    Chakhmouradian, Anton R.; Reguir, Ekaterina P.; Couëslan, Christopher; Yang, Panseok

    2016-04-01

    The composition of calcite and dolomite from several carbonatite complexes (including a large set of petrographically diverse samples from the Aley complex in Canada) was studied by electron-microprobe analysis and laser-ablation inductively-coupled-plasma mass-spectrometry to identify the extent of substitution of rare-earth and other trace elements in these minerals and the effects of different igneous and postmagmatic processes on their composition. Analysis of the newly acquired and published data shows that the contents of rare-earth elements (REE) and certain REE ratios in magmatic calcite and dolomite are controlled by crystal fractionation of fluorapatite, monazite and, possibly, other minerals. Enrichment in REE observed in some samples (up to ~2000 ppm in calcite) cannot be accounted for by coupled substitutions involving Na, P or As. At Aley, the REE abundances and chondrite-normalized (La/Yb)cn ratios in carbonates decrease with progressive fractionation. Sequestration of heavy REE from carbonatitic magma by calcic garnet may be responsible for a steeply sloping "exponential" pattern and lowered Ce/Ce* ratios of calcite from Magnet Cove (USA) and other localities. Alternatively, the low levels of Ce and Mn in these samples could result from preferential removal of these elements by Ce4+- and Mn3+-bearing minerals (such as cerianite and spinels) at increasing f(O2) in the magma. The distribution of large-ion lithophile elements (LILE = Sr, Ba and Pb) in rock-forming carbonates also shows trends indicative of crystal fractionation effects (e.g., concomitant depletion in Ba + Pb at Aley, or Sr + Ba at Kerimasi), although the phases responsible for these variations cannot be identified unambiguously at present. Overall, element ratios sensitive to the redox state of the magma and its complexing characteristics (Eu/Eu*, Ce/Ce* and Y/Ho) are least variable and in both primary calcite and dolomite, approach the average chondritic values. In consanguineous

  7. The role of silicate surfaces on calcite precipitation kinetics

    DEFF Research Database (Denmark)

    Stockmann, Gabrielle J.; Wolff-Boenisch, Domenik; Bovet, Nicolas Emile;

    2014-01-01

    , labradorite, olivine, basaltic glass and peridotite rock. Calcite saturation was achieved by mixing a CaCl2-rich aqueous solution with a NaHCO3-Na2CO3 aqueous buffer in mixed-flow reactors containing 0.5-2g of mineral, rock, or glass seeds. This led to an inlet fluid calcite saturation index of 0.6 and a p......H equal to 9.1. Although the inlet fluid composition, flow rate, and temperature were identical for all experiments, the onset of calcite precipitation depended on the identity of the seeds present in the reactor. Calcite precipitated instantaneously and at a constant rate in the presence of calcite...

  8. Rocking curve FWHM maps of a chemically etched (0 0 1) oriented HPHT type Ib diamond crystal plate

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Y; Macrander, A T; Krasnicki, S; Chu, Y S; Maj, J; Assoufid, L; Qian, J [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2007-09-07

    Synchrotron radiation and a CCD detector were employed to map the full width at half maximum (FWHM) of rocking curves for a synthetic (0 0 1) oriented type Ib diamond plate. The plate was sawed from a diamond grown in the high-pressure-high-temperature (HPHT) process. Maps for broadening relative to a reference point on the diamond for the (2 2 4) reflection at 12 keV are reported before and after chemical etching. Significant rocking curve narrowing over most of the diamond was found, and we conclude that the diffraction performance of (0 0 1) oriented type Ib diamonds can be significantly improved over a large area by chemical etching. Stripes in the map before etching corresponded to grooves formed in the process of sawing the plate out of the as-grown stone. The FWHM map did not correlate with the surface height profile measured after {approx}10 {mu}m were removed from the surface by etching.

  9. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Science.gov (United States)

    Ylikantola, A.; Linnanto, J.; Knuutinen, J.; Oravilahti, A.; Toivakka, M.

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree-Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree-Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree-Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  10. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Energy Technology Data Exchange (ETDEWEB)

    Ylikantola, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Linnanto, J., E-mail: juha.m.linnanto@gmail.com [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); University of Tartu, Institute of Physics, Riia 142, EE-51014 Tartu (Estonia); Knuutinen, J.; Oravilahti, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Toivakka, M. [Åbo Akademi University, Laboratory of Paper Coating and Converting and Center for Functional Materials, FI-20500 Turku/Åbo (Finland)

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree–Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree–Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree–Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  11. Unique 1D Co3O4 crystallized nanofibers with (220) oriented facets as high-performance lithium ion battery anode material

    Science.gov (United States)

    Tan, Yanli; Gao, Qiuming; Li, Zeyu; Tian, Weiqian; Qian, Weiwei; Yang, Chunxiao; Zhang, Hang

    2016-01-01

    A novel one-step hydrothermal and calcination strategy was developed to synthesize the unique 1D oriented Co3O4 crystal nanofibers with (220) facets on the carbon matrix derived from the natural, abundant and low cost wool fibers acting as both carbon precursor and template reagent. The resultant W2@Co3O4 nanocomposite exhibited very high specific capacity and favorable high-rate capability when used as anode material of lithium ion battery. The high reversible Li+ ion storage capacity of 986 mAh g−1 was obtained at 100 mA g−1 after 150 cycles, higher than the theoretical capacity of Co3O4 (890 mAh g−1). Even at the higher current density of 1 A g−1, the electrode could still deliver a remarkable discharge capacity of 720 mAh g−1 over 150 cycles. PMID:27217201

  12. Influence of crystallographic orientation on the magnetic properties of NiFe, Co, and Ni epitaxial fcc films grown on single-crystal substrates

    Science.gov (United States)

    Ohtani, Taiki; Kawai, Tetsuroh; Ohtake, Mitsuru; Futamoto, Masaaki

    2013-08-01

    Ni80Fe20 (at. %), Co, and Ni epitaxial thin films of fcc(100) and fcc(111) orientations are prepared on single-crystal substrates by using an ultra-high-vacuum radio-frequency magnetron sputtering system. The influence of the magnetocrystalline anisotropy on the magnetostriction behavior under in-plane rotating magnetic fields is investigated. Triangular waveforms are observed in the magnetostriction measurements under low rotating fields for films that show four-fold symmetry in the in-plane magnetic anisotropies. The magnetostriction behavior is related to the motion of ninety-degree magnetic domain walls in magnetically unsaturated films. The waveform changes from a triangular to a sinusoidal shape when magnetization saturation is approached under increasing magnetic field. On the other hand, films having almost isotropic in-plane magnetic properties show sinusoidal waveforms even when the films are not magnetically saturated.

  13. Microstructure and Sn crystal orientation evolution in Sn-3.5Ag lead-free solders in high temperature packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Bite [ORNL; Muralidharan, Govindarajan [ORNL; Kurumaddali, Nalini Kanth [ORNL; Parish, Chad M [ORNL; Leslie, Dr Scott [Powerex Inc; Bieler, T. R. [Michigan State University, East Lansing

    2014-01-01

    Understanding the reliability of eutectic Sn-3.5Ag lead-free solders in high temperature packaging applications is of significant interest in power electronics for the next generation electric grid. Large area (2.5mm 2.5mm) Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates were thermally cycled between 5 C and 200 C. Sn crystal orientation and microstructure evolution during thermal cycling were characterized by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Comparisons are made between observed initial texture and microstructure and its evolution during thermal cycling. Gradual lattice rotation and grain boundary misorientation evolution suggested the continuous recrystallization mechanism. Recrystallization behavior was correlated with dislocation slip activities.

  14. Unique 1D Co3O4 crystallized nanofibers with (220) oriented facets as high-performance lithium ion battery anode material

    Science.gov (United States)

    Tan, Yanli; Gao, Qiuming; Li, Zeyu; Tian, Weiqian; Qian, Weiwei; Yang, Chunxiao; Zhang, Hang

    2016-05-01

    A novel one-step hydrothermal and calcination strategy was developed to synthesize the unique 1D oriented Co3O4 crystal nanofibers with (220) facets on the carbon matrix derived from the natural, abundant and low cost wool fibers acting as both carbon precursor and template reagent. The resultant W2@Co3O4 nanocomposite exhibited very high specific capacity and favorable high-rate capability when used as anode material of lithium ion battery. The high reversible Li+ ion storage capacity of 986 mAh g‑1 was obtained at 100 mA g‑1 after 150 cycles, higher than the theoretical capacity of Co3O4 (890 mAh g‑1). Even at the higher current density of 1 A g‑1, the electrode could still deliver a remarkable discharge capacity of 720 mAh g‑1 over 150 cycles.

  15. Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies

    International Nuclear Information System (INIS)

    X-ray absorption, luminescence, and Raman spectroscopic studies of U(VI)-containing calcite and aragonite show that the UO22+ ion, the dominant and mobile form of dissolved uranium in near-surface waters, has a disordered and apparently less stable coordination environment when incorporated into calcite in comparison to aragonite, both common polymorphs of CaCO3. Their findings suggest that calcite, a widely distributed authigenic mineral in soils and near-surface sediments and a principal weathering product of concrete-based containment structures, is not likely to be a suitable host for the long-term sequestration of U(VI). The more stable coordination provided by aragonite suggests that its long-term retention should be favored in this phase, until it inverts to calcite. Consequently, future remobilization of U(VI) coprecipitated with calcium carbonate minerals should not be ruled out in assessments of contaminated sites. Their observation of a similar equatorial coordination of UO22+ in aragonite and the dominant aqueous species [UO2(CO3)34-] but a different coordination in calcite indicates that a change in UO22+ coordination is required for its incorporation into calcite. This may explain the observed preferential uptake of U(VI) by aragonite relative to calcite

  16. Calcite Twins, a Tool for Tectonic Studies in Thrust Belts and Stable Orogenic Forelands Les macles de la calcite, un outil pour les études tectoniques dans les chaînes plissées et les avant-pays peu déformés des orogènes

    Directory of Open Access Journals (Sweden)

    Lacombe O.

    2010-10-01

    Full Text Available Calcite twins have been used for a long time as indicators of stress/strain orientations and magnitudes. Recent developments during the last 15 years point toward significant improvements of existing techniques as well as new applications of calcite twin analysis in thrust belts and forelands. This paper summarizes the principles of the most common techniques in this tectonic field and illustrates some aspects of the use of calcite twins to constrain not only stress/strain orientations and magnitudes, but also to some extent paleotemperature or paleoburial in orogenic forelands. This review is based in a large part on the studies that I conducted in various geological settings such as the forelands of Taiwan, Pyrenees, Zagros, Rockies and Albanides orogens. The contribution of calcite twin analysis to the understanding of the intraplate stress transmission away from plate boundaries is also emphasized. Les macles de la calcite sont utilisees depuis longtemps comme indicateurs de paleocontraintes et comme marqueurs de la deformation finie, en orientations comme en grandeurs. Au cours des 15 dernieres annees, des ameliorations importantes des methodes d’analyses existantes ont ete realisees et ont donne lieu a de nouvelles applications dans les chaines plissees et les avant-pays peu deformes des orogenes. Cet article resume le principe des methodes les plus utilisees en tectonique et illustre quelques apports de l’analyse des macles de la calcite pour la caracterisation non seulement des orientations et des grandeurs des paleocontraintes et de la deformation finie, mais egalement dans une certaine mesure de la paleotemperature et du paleoenfouissement. Cette revue se fonde en grande partie sur les etudes regionales que j’ai effectuees dans des contextes geologiques varies, comme les avant-pays des chaines de Taiwan, des Pyrenees, du Zagros, des Rocheuses et des Albanides. Cet article discutera egalement la contribution de l’etude des

  17. Orientation and Temperature Dependence of Piezoelectric Properties for Sillenite-Type Bi12TiO20 and Bi12SiO20 Single Crystals

    Directory of Open Access Journals (Sweden)

    Chuanying Shen

    2014-06-01

    Full Text Available The full matrix of electro-elastic constants of sillenite-type crystals Bi12TiO20 (BTO and Bi12SiO20 (BSO were determined by the resonance method, with d14 and k14 being on the order of 40–48 pC/N and 31%–36%, respectively. In addition, double-rotated orientation dependence of d33 was investigated, with the maximum values of 25–28 pC/N being achieved in ZXtl45°/54°-cut samples. The electrical resistivity of BSO was found to be two orders higher than that of BTO, being on the order of 7 × 105 Ω cm at 500 °C. The temperature dependence of dielectric and piezoelectric properties were investigated. BSO exhibited a high thermal stability in the temperature range of 25–500 °C, while BTO showed a variation of ~3% in the range of 25–350 °C. The high values of d14 and k14, together with the good thermal stability, make BTO and BSO crystals potential candidates for electromechanical applications in medium temperature range.

  18. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface.

    Science.gov (United States)

    Wolthers, M; Di Tommaso, D; Du, Z; de Leeuw, N H

    2012-11-21

    Calcite-water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different surface sites is distinct. In addition to observing the expected formation of more calcium-water interactions and hydrogen-bonds at lower-coordinated sites, we also observed subtle differences in hydrogen bonding around acute versus obtuse edges and corners. We subsequently used this information to refine the protonation constants for the calcite surface sites, according to the Charge Distribution MUltiSite Ion Complexation (CD-MUSIC) approach. The subtle differences in hydrogen bonding translate into markedly different charging behaviour versus pH, in particular for acute versus obtuse corner sites. The results show quantitatively that calcite surface reactivity is directly related to surface topography. The information obtained in this study is not only crucial for the improvement of existing macroscopic surface models of the reactivity of calcite towards contaminants, but also improves our atomic-level understanding of mineral-water interactions. PMID:23042085

  19. Biomineralisation in the Palaeozoic oceans: evidence for simultaneous crystallisation of high and low magnesium calcite by phacopine trilobites

    OpenAIRE

    Lee, M.; Torney, C.; Owen, A. W.

    2012-01-01

    The chemical composition and microstructure of the calcite cuticles of eleven species of phacopine trilobites have been investigated by electron beam imaging, diffraction, and microanalysis, and results reveal that the lenses of their schizochroal eyes differed significantly in chemical composition from the rest of the cuticle in vivo. Apart from the eye lenses, most cuticles are inferred to have escaped extensive recrystallisation because their constituent crystals are sub-micrometre in size ...

  20. Film Thickness Dependence of Crystal Structure in 100-Oriented Epitaxial Pb(Zr0.65Ti0.35)O3 Films Grown on Single-Crystal Substrates with Different Thermal Expansion Coefficients

    Science.gov (United States)

    Ehara, Yoshitaka; Yasui, Shintaro; Ishii, Koji; Funakubo, Hiroshi

    2012-09-01

    100-oriented epitaxial Pb(Zr0.65Ti0.35)O3 films with various film thicknesses from 0.1 to 3 µm were grown on (100)cSrRuO3 ∥ (100)SrTiO3 and (100)cSrRuO3 ∥ (100)LaNiO3 ∥ (001)CaF2 substrates. The out-of-plane/in-plane lattice parameter ratio of the films on the CaF2 substrates was larger than that on the SrTiO3 substrates up to 1.1 µm film thickness, while (90°-α) (α was defined as the internal tilt angle) was almost 0°. Results of analysis of Raman spectra and piezoresponse images suggest that the 1.1-µm-thick film grown on the (100)cSrRuO3 ∥ (100)LaNiO3 ∥ (001)CaF2 substrate had tetragonal symmetry with a polar-axis orientation. Moreover, the saturation polarization values of the films measured from P-E hysteresis loops correspond to the two Ps values estimated from the thermodynamic theory, assuming the change in the polar direction due to the symmetry change to tetragonal, and from the crystal distortion in tetragonal symmetry. This can be explained by the large compressive stress from the CaF2 substrate having a large thermal expansion coefficient.

  1. Calcite Twinning in the Ordovician Martinsburg Formation, Delaware Water Gap, New Jersey, USA: Implications for Cleavage Formation and Tectonic Shortening in the Appalachian Piedmont Province

    Directory of Open Access Journals (Sweden)

    John P. Craddock

    2016-02-01

    Full Text Available A traverse across the Stone Church syncline in the Ordovician Martinsburg turbidites reveals an axial planar cleavage (N40°E, SE dips in regional thrust-related folds (N40°E, shallow plunges and five phases of sparry calcite. Calcite fillings are bedding-parallel, cleavage-parallel, and one vein set cross-cuts both earlier phases; the youngest calcite filling is a bedding-parallel fault gouge that crosscuts the cleavage and preserves top-down-to-the-southeast normal fault kinematics. Calcite veins unique to disharmonically-folded calcareous siltstones (Maxwell, 1962 were also analyzed. Stable isotopic analysis (O, C of all of the calcite phases indicates a uniform fluid source (δ13C −2.0, δ18O −13.3 VPDB and, potentially, a similar precipitation and mechanical twinning age. The twinning strains (n = 1341; average Δσ = −32 MPa; average ε1 = −2.9% in the calcite suite are consistent with SE-NW thrust shortening, and sub-horizontal shortening perpendicular to evolving axial planar cleavage planes in the Stone Church syncline. Calcareous siltstone layers within the Martinsburg Fm. turbidites share concordant bedding planes and are unique, chemically (XRF, but folded and cleaved differently than the surrounding clay-rich Martinsburg turbidites. Neither sediment type yielded detrital zircons. Electron backscatter X-ray diffraction (EBSD and calcite twinning results in a folded calcareous siltstone layer preserving a layer-normal SE-NW shortening strain and Lattice Preferred Orientation (LPO. Shortening axes for the five-phase calcite suite trends ~N40°W, consistent with tectonic transport associated with crystalline nappe emplacement of the Reading Prong within the Piedmont province.

  2. Palaeotemperature reconstruction during the Last Glacial from δ18O of earthworm calcite granules from Nussloch loess sequence, Germany

    Science.gov (United States)

    Prud'homme, Charlotte; Lécuyer, Christophe; Antoine, Pierre; Moine, Olivier; Hatté, Christine; Fourel, François; Martineau, François; Rousseau, Denis-Didier

    2016-05-01

    The Nussloch loess-palaeosol sequence (Rhine Valley, Germany) is considered to be one of the most complete records of the last glacial period in Western Europe due to its very high sedimentation rate and its good chronological control. This sequence is therefore a good framework in which to develop new proxies for palaeoenvironmental reconstructions. In this study, we explore, for the first time, the potential of earthworm calcite granules as a new bio-indicator and climatic proxy of absolute air and soil temperature in the context of Last Glacial loess. These granules are composed of rhomboedric calcite crystals, organized in a radial crystalline structure. As these granules are individually generated by earthworms at a relative fast rate, they are expected to record intra-annual variations in the available sources of oxygen: percolating waters of meteoric origin. We extracted thirty earthworm calcite granules from 11 of 5 cm layers thick from tundra gley and brown soil horizons previously, dated at 45 to 23 ka. Oxygen isotope ratios were measured on each individual granule. The δ18O of calcite granules and interlinked transfer functions between water cycle, air and soil temperatures allowed us to estimate air temperatures ranging from 10 to 12 ± 4°C, which most likely reflect the warm periods of the year when earthworms were the most active.

  3. Calcite Farming at Hollow Ridge Cave: Calibrating Net Rainfall and Cave Microclimate to Dripwater and Calcite Chemical Variability

    Science.gov (United States)

    Tremaine, D. M.; Kilgore, B. P.; Froelich, P. N.

    2012-04-01

    Stable isotope (δ18O and δ13C) and trace element records in cave speleothems are often interpreted as climate changes in rainfall amount or source, cave air temperature, overlying vegetation and atmospheric pCO2. However, these records are difficult to verify without in situ calibration of changes in cave microclimate (e.g., net rainfall, interior ventilation changes) to contemporaneous variations in dripwater and speleothem chemistry. In this study at Hollow Ridge Cave (HRC) in Marianna, Florida (USA), cave dripwater, bedrock, and modern calcite (farmed in situ) were collected in conjunction with continuous cave air pCO2, temperature, barometric pressure, relative humidity, radon-222 activity, airflow velocity and direction, rainfall amount, and drip rate data [1]. We analyzed rain and dripwater δD and δ18O, dripwater Ca2+, pH, δ13C and TCO2, cave air pCO2 and δ13C, and farmed calcite δ18O and δ13C to examine the relationships among rainwater isotopic composition, cave air ventilation, cave air temperature, calcite growth rate and seasonal timing, and calcite isotopic composition. Farmed calcite δ13C decreases linearly with distance from the front entrance to the interior of the cave during all seasons, with a maximum entrance-to-interior gradient of Δδ13C = -7‰ . A whole-cave "Hendy test" at distributed contemporaneous farming sites reveals that ventilation induces a +1.9 ± 0.96‰ δ13C offset between calcite precipitated in a ventilation flow path and out of flow paths. Farmed calcite δ18O exhibits a +0.82 ± 0.24‰ offset from values predicted by both theoretical calcite-water calculations and by laboratory-grown calcite [2]. Unlike calcite δ13C, oxygen isotopes show no ventilation effects and are a function only of temperature. Combining our data with other speleothem studies, we find a new empirical relationship for cave-specific water-calcite oxygen isotope fractionation across a range of temperatures and cave environments: 1000 ln α = 16

  4. Effects of crystal orientation on the tensile and shear deformation of nickel–silicon interfaces: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Highlights: ► The deformation and fracture mechanisms of Si–Ni interfaces under tensile and shear loads were studied by MD simulations. ► A higher tensile strength is obtained for interface planes with higher density. ► Sliding of atomic planes occurs at planes with a high density that leads to a fluctuation in the stress–strain curve. ► Amorphization of the interface region was observed when sliding of low density planes was not easy to occur. ► The relationship between the interface strength and the planar density and the width of the disorder zone was demonstrated. - Abstract: Atomistic simulation was used to study the deformation and fracture mechanisms of Ni–Si interfaces under tensile and shear loads dependent on the crystal structure of interface zone. Modified embedded atom method (MEAM) potential was utilized for molecular dynamics (MD) modeling. The simulation includes analysis of common neighbors, coordination number, least-square atomic local strain, and radial distribution function. The profound effect of interface crystallography on the tensile and shear deformation is shown. The highest tensile strength is obtained for interfaces with high plane density due to lowest atomic disorder while under shear loading planes with low density exhibit a high local deformation as a result of regional atomic amorphization. The deformation mechanism in shear mode is shown to be controlled by planner sliding and local amorphization at the interface zone. A general agreement between the strength and atomic planar density at the interface is demonstrated.

  5. Calcite precipitation on glass substrates and active stalagmites in Katerloch Cave (Austria): Constraints from environmental monitoring

    Science.gov (United States)

    Sakoparnig, Marlene; Boch, Ronny; Wang, Xianfeng; Lin, Ke; Spötl, Christoph; Leis, Albrecht; Gollowitsch, Anna; Dietzel, Martin

    2016-04-01

    Located near Graz at the SE-rim of the Alps Katerloch is well-known for its impressive dripstone decoration, e.g. several metres tall and relatively fast growing (0.2-0.7 mm/yr on average) candle-stick-type stalagmites. In the course of an ongoing multi-annual and partially high-resolution cave monitoring program we study modern (active) sites of carbonate deposition focusing on the site-specific growth dynamics and connection of modern regional and cave environmental conditions with petrographic, chemical and stable isotopic information captured in the speleothems. Fresh calcite precipitates on artificial (glass) substrates underneath active drip sites were collected continuously from 2006 to 2014 (eight years!). The samples (up to 7 mm thick) represent cave sections of different temperature and drip sites of partially different characteristics (e.g. drip rate). We also recovered short drill cores (up to 3 cm length, 1 cm diameter) from the top of active stalagmites probably representing the last decades to centuries of calcite crystallization. Moreover, an actively growing stalagmite (K10) comprising both modern and past calcite deposition was collected. 238U-234U-230Th dating using MC-ICP-MS of K10 (71 cm long) revealed several distinct growth intervals (separated by growth interruptions) starting at 129.1 ±1.2 kyr BP (Last Interglacial) up to now, mostly reflecting warm and humid climate intervals. High-resolution (100 μm) isotope profiles micromilled from the multi-annual modern calcite precipitates on artificial substrates revealed low δ13C values of -12.8 to -8.3 ‰ (VPDB) and relatively high δ18O of -6.9 to -4.9 ‰Ṫhe δ18O curves from all collection sites (different growth rate) record a pronounced decrease during their most recent growth period most likely corresponding to a significant decrease towards lower oxygen isotope values observed in drip waters collected in the year 2014 compared with samples from 2005 to 2007. Drip water δ2H /δ18O

  6. THE ORIENTATION OF CaCO3 ARAGONITE CRYSTALS FROM SEVERAL ORGANISMS%几种生物CaCO3霰石结晶的取向性

    Institute of Scientific and Technical Information of China (English)

    蒋新农; 李敬之; 徐学红

    2001-01-01

    The CaCO3 crystals are widely distributed in organisms. Thecalcite, aragonite and vaterite are the main crystal polymorphisms of CaCO3. In this paper, CaCO3 crystals were obtained from the nacreous layers of Hyriopsis cumingii Lea and Pinctada martensii Dunker, the internal shell of a cuttlefish and the otolith of Pseudosciaena crocea. X-ray diffraction measurement was used to analyze the crystal orientation of CaCO3 crystals: The results showed that each kind of natural CaCO3 crystal has an orientation on specific plane. In detail, the crystal orientations of the nacreous layers are higher than the internal shell, and the orientation of the otolith is the lowest. Except the nacreous layers of Pinctada martensii, whose highest peak is on the crystal plane (312), all the other three natural samples have the highest peak on the crystal plane (012). As to ground CaCO3 crystals, the differences between their corresponding d values are very small, so each ground sample has the CaCO3 aragonite structure characterized by the JCPDS card (5-0453).%CaCO3结晶广泛分布于生物界,其主要结晶形式为方解石、霰石及球霰石。用X-射线衍射法对三角帆蚌及合浦珍珠母贝的珍珠层、墨鱼骨和大黄鱼耳石的CaCO3结晶进行测定,发现各样品均有一定取向性,以三角帆蚌和合浦珍珠母贝珍珠层的取向性为最强,墨鱼骨的取向性次之,大黄鱼耳石的取向性最小,以上材料粉末样的衍射分析表明,各样品对应d值间差异极小,均为X射线衍射卡(5-0453)所表征的CaCO3霰石结构。

  7. The Raman spectrum of CaCO{sub 3} polymorphs calcite and aragonite: A combined experimental and computational study

    Energy Technology Data Exchange (ETDEWEB)

    De La Pierre, Marco, E-mail: cedric.carteret@univ-lorraine.fr, E-mail: marco.delapierre@unito.it; Maschio, Lorenzo; Orlando, Roberto; Dovesi, Roberto [Dipartimento di Chimica, Università di Torino and NIS (Nanostructured Interfaces and Surfaces) Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Carteret, Cédric, E-mail: cedric.carteret@univ-lorraine.fr, E-mail: marco.delapierre@unito.it; André, Erwan [Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR 7564, Université de Lorraine-CNRS, 405 rue de Vandoeuvre, 54601 Villers-lès-Nancy (France)

    2014-04-28

    Powder and single crystal Raman spectra of the two most common phases of calcium carbonate are calculated with ab initio techniques (using a “hybrid” functional and a Gaussian-type basis set) and measured both at 80 K and room temperature. Frequencies of the Raman modes are in very good agreement between calculations and experiments: the mean absolute deviation at 80 K is 4 and 8 cm{sup −1} for calcite and aragonite, respectively. As regards intensities, the agreement is in general good, although the computed values overestimate the measured ones in many cases. The combined analysis permits to identify almost all the fundamental experimental Raman peaks of the two compounds, with the exception of either modes with zero computed intensity or modes overlapping with more intense peaks. Additional peaks have been identified in both calcite and aragonite, which have been assigned to {sup 18}O satellite modes or overtones. The agreement between the computed and measured spectra is quite satisfactory; in particular, simulation permits to clearly distinguish between calcite and aragonite in the case of powder spectra, and among different polarization directions of each compound in the case of single crystal spectra.

  8. Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage.

    Science.gov (United States)

    Wang, Bo; Liu, Anmin; Abdulla, Wael Al; Wang, Dianlong; Zhao, X S

    2015-05-21

    Electron transfer and lithium ion diffusion rates are the key factors limiting the lithium ion storage in anisotropic LiFePO4 electrodes. In this work, we employed a facile solvothermal method to synthesize a "platelet-on-sheet" LiFePO4/graphene composite (LFP@GNs), which is LiFePO4 nanoplatelets in situ grown on graphene sheets with highly oriented (010) facets of LiFePO4 crystals. Such a two-phase contact mode with graphene sheets cross-linked to form a three-dimensional porous network is favourable for both fast lithium ion and electron transports. As a result, the designed LFP@GNs displayed a high rate capability (∼56 mA h g(-1) at 60 C) and long life cycling stability (∼87% capacity retention over 1000 cycles at 10 C). For comparison purposes, samples ex situ modified with graphene (LFP/GNs) as well as pure LiFePO4 platelets (LFP) were also prepared and investigated. More importantly, the obtained LFP@GNs can be used as a basic unit for constructing more complex structures to further improve electrochemical performance, such as coating the exposed LFP surface with a thin layer of carbon to build a C@LFP@GN composite to further enhance its cycling stability (∼98% capacity retention over 1000 cycles at 10 C). PMID:25908535

  9. Photoinduced synthesis of single-digit micrometer-size spheroidal calcite composites in the presence of partially hydrolyzed poly(vinyl alcohol)

    Science.gov (United States)

    Nishio, Takashi; Naka, Kensuke

    2015-06-01

    Photoinduced crystallization of calcium carbonate (CaCO3), which was based on the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphyenyl)propionic acid) under alkaline conditions of pH 8.4 and 10 was studied for preparation of CaCO3 composite particles in single-digit micrometer-sizes. In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol%) was used as a precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. After the UV irradiation for 50 min, calcite spheroids in single-digit micrometer-sizes were obtained as major products at pH 8.4. The obtained calcite spheroids contained organic components of about 10 wt%. The comparison of the characteristics of the CaCO3 obtained at pH 8.4 and 10 suggests that the nucleation and crystallization of both vaterite and calcite continuously took place in a moderated supersaturation owing to the CO2 hydration equilibrium as long as the photodecarboxylation of KP continued. Consequently, the aggregation-based crystal growth in the presence of PVAPS seemed to enable the formation of the spheroidal composites of calcite in single-digit micrometer-sizes.

  10. Texture evolution in calcite gouge formed at sub-seismic slip

    Science.gov (United States)

    Delle Piane, Claudio; Luzin, Vladimir; Timms, Nick E.; Ben Clennell, M.; Giwelli, Ausama

    2016-04-01

    Carbonate rocks are abundant in the upper crust and are notoriously seismogenic with Mw>6 earthquakes nucleating in fault zones in carbonate dominated units around the world. Field observations describe fault zones as characterised by a narrow principal slip zone at their core, containing fine, granular wear material referred to as fault gouge, produced during cumulative slip. The current literature on the link between texture and frictional properties of calcite gouges is very limited and somewhat contradictory: based on the study of a natural calcite gouge a link has been proposed between the presence of a crystallographic preferred orientation (CPO) and past seismic activity on the gouge hosting fault zone. However, similar features in terms of CPO were also identified on gouges experimentally generated at slip velocities well below the seismic ones, therefore questioning their interpretation as diagnostic of past seismic events. We studied the evolution of friction coefficient and texture on calcite gouges experimentally produced by means of high pressure direct shear experiments on large, water saturated, intact blocks of travertine (calcite 99 % wt.). Several blocks were deformed at room temperature up to different amounts of maximum displacements (20 mm, 70 mm and 120 mm) under an imposed sub-seismic slip rate of approximately 0.1 microns/s. Microstructural characterization of the deformed blocks was subsequently carried out on samples representing the highest strained portion s of each blocks (i.e. gouge zones). Local and bulk texture of the original and deformed materials was studied by means of electron backscattered diffraction (EBSD) and neutron diffraction, respectively. Direct shear experiments consistently indicate an evolution of the friction coefficient stabilizing at around values of 0.6 after 15 mm of slip. Macroscopic observations on the deformed blocks indicate that deformation is localised in a narrow band of extreme grain size reduction

  11. The equilibrium between diagenetic calcites and dolomites and its impact on reservoir quality in the sandstone reservoir of Kela 2 gas field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the equilibrium theory of chemical reactions between water and rocks, this paper establishes a thermodynamic phase relationship diagram among calcites, dolomites and water solution under the condition of diagenesis based on the thermodynamic database of related minerals and fluids and dolomite's degree of order parameters. It has been discovered that the equilibrium between calcites and dolomites in the diagenetic environment is strongly impacted by temperature and the Ca/Mg ratios in groundwater, and that the dolomite's degree of order in the diagenetic environment is a function of crystallization temperature and time, not controlled by water solution. Hereby, the authors make a further analysis of the close relationship of chemical reaction between carbonate cements and pore water in the sandstone reservoirs of Kala 2 gas field in Kuche sag. It can be seen that there are different impacts on sandstone reservoir quality among the equilibrium system of calcites, dolomites and pore water at different depths of reservoirs.

  12. Climate proxies from Sr/Ca of coccolith calcite: calibrations from continuous culture of Emiliania huxleyi

    Science.gov (United States)

    Stoll, Heather M.; Rosenthal, Yair; Falkowski, Paul

    2002-03-01

    Continuous culture of the coccolithophorid Emiliania huxleyi reveals that coccolith Sr/Ca ratios depend on temperature and growth rate. At a constant temperature of 18°C, coccolith Sr/Ca ratios increased nearly 15% as growth rate increased from 0.1 to 1.5 divisions per day and calcification rate increased from 1.5 to 50 pg calcite per cell per day. When temperature increased from 7 to 26°C, Sr/Ca ratios increased by more than 25% (i.e., 1%/1°C), although the range in growth and calcification rates was the same as for experiments at constant temperature. The temperature dependence of Sr/Ca ratios in coccoliths is consistent with that observed in planktonic foraminifera and abiogenic calcites, suggesting that it is controlled by thermodynamic processes. However, the positive correlation of coccolith Sr/Ca with temperature contrasts with field studies in the equatorial Pacific, where Sr/Ca ratios are highest at the locus of maximum upwelling and productivity despite depressed temperatures. This paradox may reflect different calcification rate effects between E. huxleyi and the other species dominating assemblages in the equatorial Pacific sediments, which may be resolved by new techniques for separation of monospecific coccolith samples from sediments. Models of crystal growth indicate that kinetic effects on Sr partitioning in calcite due to surface enrichment could explain the Sr/Ca variations observed in constant temperature experiments but not the larger amplitude calcification rate effects observed in equatorial Pacific sediments. Despite the dual influence of temperature and growth rate on coccolith Sr/Ca, coccolith Sr/Ca correlates with "b," the slope of the dependence of carbon isotope fractionation in biomarkers (ɛ p) on CO 2(aq) at a range of growth rates and temperatures. Consequently, using coccolith Sr/Ca in combination with alkenone ɛ p may improve paleo-CO 2 determinations.

  13. Separation of deviatoric stress tensors from heterogeneous calcite twin data using a statistical mixture model

    Science.gov (United States)

    Yamaji, Atsushi

    2016-04-01

    It is essential for the techniques of paleostress analysis to separate stresses from heterogeneous data (e.g., Tikoff et al., 2013). A statistical mixture model is shown in this paper to be effective for calcite twinning paleopiezometry: Given the orientations of twinned e-planes and their gliding directions, the present inverse method based on the mixture model determines not only deviatoric stress tensors, but also estimates the number of tensors that should be read from a data set using Bayesian information criterion. The present method is based on the fact that mechanical twinning occurs on an e-plane if the resolved shear stress along its gliding direction, τ, is greater than a critical value, τc (e.g., Lacombe, 2010). The orientation data from e-planes corresponds to points on a 5-dimensional unit sphere, a spherical cap on which indicates a deviatoric stress tensor. The twinning condition, τ > τc, is identical with the condition that the points corresponding to the orientation data are distributed upon the spherical cap (Yamaji, 2015a). It means that the paleostress analysis of calcite twins comes down to the problem of fitting a spherical cap to data points on the sphere (Yamaji, 2015b). Given a heterogeneous data set, two or more spherical caps should be fitted to the data point on the sphere. A statistical mixture model is employed for this fitting in the present work. Such a statistical model enables us to evaluate the number of stresses recorded in the data set. The present method was tested with artificial data sets and a natural data set obtained from a Miocene graben in central Japan. From the former type of data sets, the method determined the deviatoric stress tensors that were assumed to generate the data sets. The natural data were inverted to give two stresses that appeared appropriate for the tectonic setting of the area where the data were obtained.

  14. Crystal orientation dependence of band matching in all-B2-trilayer current-perpendicular-to-plane giant magnetoresistance pseudo spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) Heusler alloy and NiAl spacer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiamin; Hono, K., E-mail: kazuhiro.hono@nims.go.jp [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-2-1, Sengen, Tsukuba 305-0047 (Japan); Furubayashi, T.; Takahashi, Y. K.; Sasaki, T. T. [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047 (Japan)

    2015-05-07

    We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (112{sup ¯}0) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation, which made it a good candidate for CPP-GMR device.

  15. Crystal orientation dependence of band matching in all-B2-trilayer current-perpendicular-to-plane giant magnetoresistance pseudo spin-valves using Co2Fe(Ge0.5Ga0.5) Heusler alloy and NiAl spacer

    Science.gov (United States)

    Chen, Jiamin; Furubayashi, T.; Takahashi, Y. K.; Sasaki, T. T.; Hono, K.

    2015-05-01

    We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co2Fe(Ge0.5Ga0.5) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (11 2 ¯ 0 ) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation, which made it a good candidate for CPP-GMR device.

  16. Crystal orientation dependence of band matching in all-B2-trilayer current-perpendicular-to-plane giant magnetoresistance pseudo spin-valves using Co2Fe(Ge0.5Ga0.5) Heusler alloy and NiAl spacer

    International Nuclear Information System (INIS)

    We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co2Fe(Ge0.5Ga0.5) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (112¯0) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation, which made it a good candidate for CPP-GMR device

  17. Surface tension alteration on calcite, induced by ion substitution

    DEFF Research Database (Denmark)

    Sakuma, Hiroshi; Andersson, Martin Peter; Bechgaard, Klaus;

    2014-01-01

    , where particles are smaller than the smallest droplet? We investigated the energy required to exchange Mg2+ and SO4 2- from aqueous solution into calcite {10.4} surfaces using density functional theory. Mg2+ substitution for Ca2+ is favored but only when SO4 2- is also present and MgSO4 incorporates...... the pore water. Incorporation of MgSO4 into calcite, which is energetically favored, decreases surface tension and releases polar oil compounds. © 2014 American Chemical Society....

  18. Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage

    Science.gov (United States)

    Wang, Bo; Liu, Anmin; Abdulla, Wael Al; Wang, Dianlong; Zhao, X. S.

    2015-05-01

    Electron transfer and lithium ion diffusion rates are the key factors limiting the lithium ion storage in anisotropic LiFePO4 electrodes. In this work, we employed a facile solvothermal method to synthesize a ``platelet-on-sheet'' LiFePO4/graphene composite (LFP@GNs), which is LiFePO4 nanoplatelets in situ grown on graphene sheets with highly oriented (010) facets of LiFePO4 crystals. Such a two-phase contact mode with graphene sheets cross-linked to form a three-dimensional porous network is favourable for both fast lithium ion and electron transports. As a result, the designed LFP@GNs displayed a high rate capability (~56 mA h g-1 at 60 C) and long life cycling stability (~87% capacity retention over 1000 cycles at 10 C). For comparison purposes, samples ex situ modified with graphene (LFP/GNs) as well as pure LiFePO4 platelets (LFP) were also prepared and investigated. More importantly, the obtained LFP@GNs can be used as a basic unit for constructing more complex structures to further improve electrochemical performance, such as coating the exposed LFP surface with a thin layer of carbon to build a C@LFP@GN composite to further enhance its cycling stability (~98% capacity retention over 1000 cycles at 10 C).Electron transfer and lithium ion diffusion rates are the key factors limiting the lithium ion storage in anisotropic LiFePO4 electrodes. In this work, we employed a facile solvothermal method to synthesize a ``platelet-on-sheet'' LiFePO4/graphene composite (LFP@GNs), which is LiFePO4 nanoplatelets in situ grown on graphene sheets with highly oriented (010) facets of LiFePO4 crystals. Such a two-phase contact mode with graphene sheets cross-linked to form a three-dimensional porous network is favourable for both fast lithium ion and electron transports. As a result, the designed LFP@GNs displayed a high rate capability (~56 mA h g-1 at 60 C) and long life cycling stability (~87% capacity retention over 1000 cycles at 10 C). For comparison purposes, samples

  19. Geochemical signatures of fluid paleo-transfer in fracture filling calcite from low permeability rock masses: examples taken from Bure's and Tournemire's site in France and northern Switzerland; Signatures geochimiques de paleocirculations aqueuses dans la calcite de remplissage de fracture de massifs argileux peu permeables et de leurs encaissants: exemples pris sur les sites de Bure, Tournemire et Suisse du nord

    Energy Technology Data Exchange (ETDEWEB)

    Lecocq, D

    2002-12-15

    Fractures in rock masses represent preferential path for fluid transfer and, as such, are the most efficient way for migration of radionuclides at a regional scale. The impact of fracturing on hydrogeological system is a major challenge for underground radioactive waste storage projects. In this context, geochemistry of fracture-filling calcite is used to better understand physical and chemical properties of palaeo-fluids. A new methodology has been developed to analyze Mg, Mn, Fe, Sr and Rare Earth Elements REE (La, Ce, Nd, Sm, Eu, Dy and Yb) in calcite by Secondary Ion Mass Spectrometry. Analyses of calcite crystals have been performed in fractures from Jurassic clays and limestones in France (Bure and Tournemire sites) and northern Switzerland (Mt Terri's tunnel and deep borehole). On each case, several geochemical signatures are observed, according to REE partitioning and Mn and Fe concentrations. In the Bure site, a dependence of calcite geochemistry from fracture host rock has been evidenced. On the other hand, speciation of REE in solution equilibrated with clayey or calcareous rocks at circum-neutral pH (7 to 8) is not significantly influenced by the media: speciation is dominated by carbonate species in both cases and phosphate complexes can modify heavy REE availability in relatively to light REE. These results point out that in fractures in clays, calcite crystallizes at equilibrium with a fluid expulsed during diagenesis from clay minerals, recording the effect of clays and accessory phases. In limestone fractures, calcite records a later event related to the past functioning of the present aquifer, and the fluid has reached equilibrium with the rock minerals. In secondary filling calcite from Toarcian Argilites faults close to Tournemire's tunnel, three successive generations of calcite are observed in an extensive fault, and a fourth in a compressive one. In Aalenian Opalinus Clays veins, comparison between existing isotopic data and Mn, Fe

  20. Carboxylated Agarose (CA)-Silk Fibroin (SF) Dual Confluent Matrices Containing Oriented Hydroxyapatite (HA) Crystals: Biomimetic Organic/Inorganic Composites for Tibia Repair.

    Science.gov (United States)

    Hu, Jing-Xiao; Ran, Jia-Bing; Chen, Si; Jiang, Pei; Shen, Xin-Yu; Tong, Hua

    2016-07-11

    By in situ combining the dual cross-linking matrices of the carboxylated agarose (CA) and the silk fibroin (SF) with the hydroxyapatite (HA) crystals, the CA-SF/HA composites with optimal physicochemical and biological properties were obtained, which were designed to meet the clinical needs of load-bearing bone repair. With the synergistic modulation of the dual organic matrices, the HA nanoparticles presented sheet and rod morphologies due to the preferred orientation, which successfully simulated the biomineralization in nature. The chemical reactivity of the native agarose (NA) was significantly enhanced via carboxylation, and the CA exhibited higher thermal stability than the NA. In the presence of SF, the composites showed optimal mechanical properties that could meet the standard of bone repair. The degradation of the composites in the presence of CA and SF was significantly delayed such that the degradation rate of the implant could satisfy the growth rate of the newly formed bone tissue. The in vitro tests confirmed that the CA-SF/HA composite scaffolds enabled the MG63 cells to proliferate and differentiate well, and the CA/HA composite presented greater capability of promoting the cell behaviors than the NA/HA composite. After 24 days of implantation, newly formed bone was observed at the tibia defect site and around the implant. Extensive osteogenesis was presented in the rats treated with the CA-SF/HA composites. In general, the CA-SF/HA composites prepared in this work had the great potential to be applied for repairing large bone defects.

  1. Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia shell calcite precipitated at constant temperature

    Directory of Open Access Journals (Sweden)

    P. S. Freitas

    2009-07-01

    Full Text Available Small-scale heterogeneity of biogenic carbonate elemental composition can be a significant source of error in the accurate use of element/Ca ratios as geochemical proxies. In this study ion microprobe (SIMS profiles showed significant small-scale variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in new shell calcite of the marine bivalves Pecten maximus and Mytilus edulis that was precipitated during a constant-temperature culturing experiment. Elevated Mg/Ca, Sr/Ca and Mn/Ca ratios were found to be associated with the deposition of elaborate shell features, i.e. a shell surface stria in P. maximus and surface shell disturbance marks in both species, the latter a common occurrence in bivalve shells. In both species the observed small-scale elemental heterogeneity most likely was not controlled by variable transport of ions to the extra-pallial fluid, but by factors such as the influence of shell organic content and/or crystal size and orientation, the latter reflecting conditions at the shell crystal-solution interface. In the mid and innermost regions of the P. maximus shell the lack of significant small-scale variation of Mg/Ca ratios, which is consistent with growth at constant temperature, suggest a potential application as a palaeotemperature proxy. Cross-growth band element/Ca ratio profiles in the interior of bivalve shells may provide more promising palaeo-environmental tools than sampling from the outer region of bivalve shells.

  2. Porosity and hydric behavior of typical calcite microfabrics in stalagmites

    OpenAIRE

    Muñoz García, Mercedes; López Arce, Paula; Fernández Valle, Mª Encarnación; Martín Chivelet, Javier; Fort González, Rafael

    2012-01-01

    Petrophysical techniques commonly used for material characterization are applied for the first time to speleothem samples to investigate the porosity and hydric behavior of calcite stalagmites used in paleoclimatology. These techniques allow the determination of the stalagmites' potential to undergo diagenetic transformations when substantial changes in drip waters occur in the cave environment. The petrophysical techniques include water absorption under vacuum and by capillarity,...

  3. Is bicarbonate stable in and on the calcite surface?

    Science.gov (United States)

    Andersson, M. P.; Rodriguez-Blanco, J. D.; Stipp, S. L. S.

    2016-03-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3- CO32- + H+, when HCO3- is included in, and adsorbed on, a calcite surface. We have used cluster models (80-100 atoms) to represent the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from -6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 pH pH units lower than in aqueous solution, 10.35. This means that adsorbed carbonate is stable even when the concentration of dissolved CO32- is several orders of magnitude lower. This has a significant effect on surface charge and thus the behaviour of the calcite surface. Our results help explain the potential determining behaviour of the carbonate species in calcite-water systems, particularly in the pH range where the bicarbonate species dominates in water and where the carbonate species dominates at the surface, i.e. when 7.5 pH high temperature and pressure.

  4. Adsorption of polar aromatic hydrocarbons on synthetic calcite

    DEFF Research Database (Denmark)

    Madsen, Lene; Grahl-Madsen, Laila; Grøn, Christian;

    1996-01-01

    The wettability of hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. A model system of synthetic call cite, cyclohexane and the three probe molecules: benzoic acid, benzyl alcohol and benzylamine, have been...

  5. Quasi-homoepitaxial growth of a-axis oriented PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta thick film on (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystal

    CERN Document Server

    Sato, M; Morishita, T

    2003-01-01

    The structural characterizations of the quasi-homoepitaxial growth of a-axis oriented PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta thick film grown on (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystal were investigated in comparison with those of the film grown on (001) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystal. The a-axis oriented PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta films, expected to be a barrier layer, were prepared using a dc-95 MHz hybrid plasma sputtering on (100) and (001) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystals that are superconducting ground planes. The atomic force microscopy image revealed that the surfaces of 700-nm-thick a-axis PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta films on (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single crystals were smooth with a mean roughness of 2.8 nm. X-ray diffraction scans showed that a-axis PrBa sub 2 Cu sub 3 O sub 7 sub - subdelta films deposited on (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta single cry...

  6. Reconstructing Cambro-Ordovician Seawater Composition using Clumped Isotope Paleothermometry on Calcitic and Phosphatic Brachiopods

    Science.gov (United States)

    Bergmann, K.; Robles, M.; Finnegan, S.; Hughes, N. C.; Eiler, J. M.; Fischer, W. W.

    2012-12-01

    A secular increase in δ18O values of marine fossils through early Phanerozoic time raises questions about the evolution of climate and the water cycle. This pattern suggests two end-member hypotheses 1) surface temperatures during early Paleozoic time were very warm, in excess of 40°C (tropical MAT), or 2) the isotopic composition of seawater increased by up to 7-8‰. It has been difficult to evaluate these hypotheses because the δ18O composition of fossils depends on both temperature and the δ18O of water. Furthermore, primary isotopic signatures can be overprinted by diagenetic processes that modify geological materials. This too could explain the decrease in δ18O values of marine fossils with age. Carbonate clumped isotope thermometry can constrain this problem by providing an independent measure of crystallization temperature and, when paired with classical δ18O paleothermometry, can determine the isotopic composition of the fluid the mineral last equilibrated with. Combined with traditional tools, this method has the potential to untangle primary isotopic signatures from diagenetic signals. We measured the isotopic ordering of CO3 groups (Δ47) substituted into the phosphate lattice of phosphatic brachiopods in Cambrian strata. Phosphatic fossils are generally less soluble than carbonates in surface and diagenetic environments, and so are hypothesized to provide a more robust record of primary growth conditions. They also provide an archive prior to the rise of thick shelled calcitic fossils during the Ordovician Radiation. Additionally, measurements of the δ18O of the CO3 groups can be compared with the δ18O of PO4 groups to test whether their mutual fractionation is consistent with primary growth and the apparent temperature recorded by carbonate clumped isotope measurements. We are constructing a phosphatic brachiopod calibration for carbonate clumped isotope thermometry, and Δ47 values of CO2 extracted from modern phosphatic brachiopods suggest

  7. New inversion of calcite twin data for paleostress tested and calibrated on numerically-generated and natural data

    Science.gov (United States)

    Parlangeau, Camille; Lacombe, Olivier; Schueller, Sylvie; Daniel, Jean-Marc

    2016-04-01

    The inversion of calcite twin data is a powerful tool to reconstruct paleostresses sustained by carbonate rocks during their geological history. Following Etchecopar's (1984) pioneering work, this study presents a new technique of inversion of calcite twin data, which allows reconstructing the 5 parameters of the deviatoric stress tensor. In order to determine the applicability domain of the technique as well as to estimate the uncertainties on the reconstructed stress tensors, we first carried out tests on numerically generated calcite twin data and tested the separability of superimposed stress tensors with various degrees of similarity and the influence of optical bias, heterogeneities and occurrence of different grain size classes as met in natural samples. For monophase datasets with homogeneous grain size, the errors on the different stress parameters (orientation of principal stress axes, stress ratio and differential stresses) are negligible except for the differential stress (error of 5%). In cases displaying distinct grain sizes, misfits remain negligible but may reach 20% for the differential stress if the differential stress applied is greater than 60-65 MPa. Incorporation of optical bias slightly increases uncertainties up to 25% for the differential stress, 5% for the stress ratio and 8° for the orientation of the principal stress axes. For polyphase datasets with homogeneous grain size, the misfit on the orientation of the principal stress axes increases up to 10°, the stress ratio remains well constrained and the misfit on differential stress reaches 20% (applied differential stress > 70 MPa). Incorporation of optical bias increases the misfit of the orientation of the principal stress axes (average misfit: 6-8°; maximum: 17°), the misfit on stress ratio (average misfit: 2%; maximum: 26%) and the misfit on the differential stress (average misfit: 15%; maximum: 30%) These tests demonstrate that it is better to analyze twin data from subsets of

  8. Impact-Induced Devolatilization or Melting of Calcite? Or Both? Answers from MEMIN Experiments

    Science.gov (United States)

    Hamann, C.; Hecht, L.; Deutsch, A.

    2015-07-01

    Calcite was experimentally shocked in a series of MEMIN hypervelocity impact and laser melting experiments. Evidence for the formation of calcite melts in both types of experiments is presented and discussed.

  9. On the Shock Behavior of Calcite: Recent Results from MEMIN Experiments

    Science.gov (United States)

    Hamann, C.; Hecht, L.; Deutsch, A.

    2015-09-01

    Hypervelocity impact and laser melting experiments, aiming at a better understanding of the shock behavior of calcite, suggest that both melting and decomposition of calcite can occur at P-T conditions commensurate with impact processes.

  10. Occlusion of Sulfate-Based Diblock Copolymer Nanoparticles within Calcite: Effect of Varying the Surface Density of Anionic Stabilizer Chains

    Science.gov (United States)

    2016-01-01

    Polymerization-induced self-assembly (PISA) offers a highly versatile and efficient route to a wide range of organic nanoparticles. In this article, we demonstrate for the first time that poly(ammonium 2-sulfatoethyl methacrylate)-poly(benzyl methacrylate) [PSEM–PBzMA] diblock copolymer nanoparticles can be prepared with either a high or low PSEM stabilizer surface density using either RAFT dispersion polymerization in a 2:1 v/v ethanol/water mixture or RAFT aqueous emulsion polymerization, respectively. We then use these model nanoparticles to gain new insight into a key topic in materials chemistry: the occlusion of organic additives into inorganic crystals. Substantial differences are observed for the extent of occlusion of these two types of anionic nanoparticles into calcite (CaCO3), which serves as a suitable model host crystal. A low PSEM stabilizer surface density leads to uniform nanoparticle occlusion within calcite at up to 7.5% w/w (16% v/v), while minimal occlusion occurs when using nanoparticles with a high PSEM stabilizer surface density. This counter-intuitive observation suggests that an optimum anionic surface density is required for efficient occlusion, which provides a hitherto unexpected design rule for the incorporation of nanoparticles within crystals. PMID:27509298

  11. Lithofacies palaeogeography and sedimentology Beef and cone-in-cone calcite fibrous cements associated with the end-Permian and end-Triassic mass extinctions:Reassessment of processes of formation

    Institute of Scientific and Technical Information of China (English)

    Stephen Kershaw; Li Guo

    2016-01-01

    This paper reassesses published interpretation that beef and cone-in-cone (B-CIC) fibrous calcite cements were precipitated contemporaneously just below the sea floor in uncon-solidated sediment, in limestones associated with the end-Permian (P/T) and end-Triassic (T/J) mass extinctions. That interpretation introduced the concept of a sub-seafloor car-bonate factory associated with ocean acidification by raised carbon dioxide driven by volcanic eruption, coinciding with mass extinction. However, our new fieldwork and petrographic analysis, with literature comparison, reveals several problems with this concept. Two key points based on evidence in the T/J transition of the UK are:(1) that B-CIC calcite deposits form thin scattered layers and lenses at several horizons, not a distinct deposit associated with volcanic activity; and (2) B-CIC calcite is more common in Early Jurassic sediments after the extinction and after the end of the Central Atlantic Magmatic Province volcanism proposed to have supplied the carbon dioxide required. Our samples from Late Triassic, Early Jurassic and Early Cretaceous limestones in southern UK show that B-CIC calcite occurs in both marine and non-marine sediments, therefore ocean processes are not mandatory for its formation. There is no proof that fibrous calcite was formed before lithification, but our Early Jurassic samples do prove fibrous calcite formed after compaction, thus interpretation of crystal growth in uncon-solidated sediment is problematic. Furthermore, B-CIC crystals mostly grew both upwards and downwards equally, contradicting the interpretation of the novel carbonate factory that they grew preferentially upwards in soft sediment. Finally, Early Jurassic and Early Cretaceous examples are not associated with mass extinction. Three further key points derived from the literature include: (1) B-CIC calcite is wide-spread geographically and stratigraphically, not clustered around mass extinctions or the Paleocene

  12. Growth rate controlled barium partitioning in calcite and aragonite

    Science.gov (United States)

    Goetschl, Katja Elisabeth; Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2016-04-01

    The barium (Ba) content and the Ba/Ca molar ratios in biogenic and abiotic carbonates have been widely used from the scientific community as a geochemical proxy especially in marine and early diagenetic settings. The Ba content of carbonate minerals has been earlier associated to changes in oceanic circulation that may have been caused by upwelling, changes in weathering regimes and river-runoff as well as melt water discharge. The physicochemical controls of Ba ion incorporation in the two most abundant CaCO3 polymorphs found in Earth's surface environments, i.e. calcite and aragonite, have adequately been studied only for calcite. These earlier studies (i.e. [1]) suggest that at increasing growth rate, Ba partitioning in calcite is increasing as well. In contrast, to date the effect of growth rate on the partitioning of Ba in aragonite remains questionable, despite the fact that this mineral phase is the predominant carbonate-forming polymorph in shallow marine environments. To shed light on the mechanisms controlling Ba ion uptake in carbonates in this study we performed steady-state Ba co-precipitation experiments with calcite and aragonite at 25°C. The obtained results for the partitioning of Ba in calcite are in good agreement with those reported earlier by [1], whereas those for aragonite indicate a reduction of Ba partitioning at elevated aragonite growth rates, with the partitioning coefficient value between solid and fluid to be approaching the unity. This finding is good agreement with the formation of a solid solution in the aragonite-witherite system, owing to the isostructural crystallography of the two mineral phases. Moreover, our data set provides new insights that are required for reconstructing the evolution of the Ba content of pristine marine versus diagenetically altered carbonate minerals commonly occurring in marine subfloor settings, as the thermodynamically less stable aragonite will transform to calcite enriched in Ba, whilst affecting

  13. Orientation dependence of the probability of close collisions during passage of high-energy negatively charged particle through a bent crystal

    International Nuclear Information System (INIS)

    The probability of close collisions of high-energy negatively charged particle with atoms in a bent crystal was considered as a function of the angle between the initial particle momentum and the bending plane. This allowed to compare the probability of close collisions of high-energy negatively charged particle in a bent crystal in two different regimes of deflection: planar channeling and stochastic deflection. The results of simulation of negatively charged particle motion in a bent crystal shown the great efficiency of high-energy negatively charged particle beam deflection by a bent crystal due to stochastic deflection and small efficiency of deflection due to planar channeling

  14. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.

    Science.gov (United States)

    Müller, Werner E G; Schlossmacher, Ute; Schröder, Heinz C; Lieberwirth, Ingo; Glasser, Gunnar; Korzhev, Michael; Neufurth, Meik; Wang, Xiaohong

    2014-01-01

    The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated. PMID:23978410

  15. The effect of dissolved magnesium on diffusion creep in calcite

    Science.gov (United States)

    Herwegh, Marco; Xiao, Xiaohui; Evans, Brian

    2003-07-01

    We experimentally tested a series of synthetic calcite marbles with varying amounts of dissolved magnesium in a standard triaxial deformation machine at 300 MPa confining pressure, temperatures between 700 and 850°C, stresses between 2 and 100 MPa, and strain rates between 10 -7 and 10 -3 s -1. The samples were fabricated by hot isostatic pressing of a mixture of calcite and dolomite at 850°C and 300 MPa. The fabrication protocol resulted in a homogeneous, fine-grained high-magnesian calcite aggregate with minimal porosity and with magnesium contents between 0.07 and 0.17 mol% MgCO 3. At stresses below 40 MPa the samples deformed with linear viscosity that depended inversely on grain size to the 3.26±0.51 power, suggesting that the mechanisms of deformation were some combination of grain boundary diffusion and grain boundary sliding. Because small grain sizes tended to occur in the high-magnesium calcite, the strength also appeared to vary inversely with magnesium content. However, the strength at constant grain size does not depend on the amount of dissolved magnesium, and thus, the impurity effect seems to be indirect. At stresses higher than 40 MPa, the aggregates become non-linearly viscous, a regime we interpret to be dislocation creep. The transition between the two regimes depends on grain size, as expected. The activation energy for diffusion creep is 200±30 kJ/mol and is quite similar to previous measurements in natural and synthetic marbles deformed at similar conditions with no added magnesium.

  16. Copper incorporation in foraminiferal calcite: results from culturing experiments

    Directory of Open Access Journals (Sweden)

    G. J. van der Zwaan

    2007-07-01

    Full Text Available A partition coefficient for copper (DCu in foraminiferal calcite has been determined by culturing individuals of two benthic species under controlled laboratory conditions. The partition coefficient of a trace element (TE is an emperically determined relation between the TE/Ca ratio in seawater and the TE/Ca ratio in foraminiferal calcite and has been established for many divalent cations. Despite its potential to act as a tracer of human-induced, heavy metal pollution, data is not yet available for copper. Since partition coefficients are usually a function of multiple factors (seawater temperature, pH, salinity, metabolic activity of the organism, etc., we chose to analyze calcite from specimens cultured under controlled laboratory conditions. They were subjected to different concentrations of Cu2+ (0.1–20 µmol/l and constant temperature (10 and 20°C, seawater salinity and pH. We monitored the growth of new calcite in specimens of the temperate, shallow-water foraminifer Ammonia tepida and in the tropical, symbiont-bearing Heterostegina depressa. Newly formed chambers were analyzed for Cu/Ca ratios by laser ablation-ICP-MS. The estimated partition coefficient (0.1–0.4 was constant to within experimental error over a large range of (Cu/Caseawater ratios and was remarkably similar for both species. Neither did the presence or absence of symbionts affect the DCu, nor did we find a significant effect of temperature or salinity on Cu-uptake.

  17. Copper incorporation in foraminiferal calcite: results from culturing experiments

    Directory of Open Access Journals (Sweden)

    L. J. de Nooijer

    2007-04-01

    Full Text Available A partition coefficient for copper (DCu in foraminiferal calcite has been determined by culturing individuals of two benthic species under controlled laboratory conditions. The partition coefficient of a trace element (TE is an emperically determined relation between the TE/Ca ratio in seawater and the TE/Ca ratio in foraminiferal calcite and has been established for many divalent cations. Despite its potential to act as a tracer of human-induced, heavy metal pollution, data is not yet available for copper. Since partition coefficients are usually a function of multiple factors (seawater temperature, pH, salinity, metabolic activity of the organism, etc., we chose to analyze calcite from specimens cultured under controlled laboratory conditions. They were subjected to different concentrations of Cu2+ (0.1–20 µmol/l and constant temperature (10 and 20°C, seawater salinity and pH. We monitored the growth of new calcite in specimens of the temperate, shallow-water foraminifer Ammonia tepida and in the tropical, symbiont-bearing Heterostegina depressa. Newly formed chambers were analyzed for Cu/Ca ratios by laser ablation-ICP-MS. The calculated partition coefficient (0.1–0.4 was constant to within experimetnal error over a large range of (Cu/Caseawater ratios and was remarkably similar for both species. Neither did the presence or absence of symbionts affect the DCu, nor did we find a significant effect of temperature or salinity on Cu-uptake.

  18. Calcite production by coccolithophores in the south east Pacific Ocean

    OpenAIRE

    Beaufort, L.; Couapel, M.; Buchet, N.; H. Claustre; Goyet, C

    2008-01-01

    BIOSOPE cruise covered an oceanographic transect through the centre of the South Pacific Gyre (SPG) from the Marquesas archipelago to the Peru-Chile upwelling (PCU). Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphom...

  19. Arsenite sorption and co-precipitation with calcite

    CERN Document Server

    Roman-Ross, Gabriela; Turrillas, Xavier; Fernandez-Martinez, Alejandro; Charlet, Laurent

    2008-01-01

    Sorption of As(III) by calcite was investigated as a function of As(III) concentration, time and pH. The sorption isotherm, i.e. the log As(III) vs. log [As(OH)3 degrees / Assat] plot is S-shaped and has been modelled on an extended version of the surface precipitation model. At low concentrations, As(OH)3 degrees is adsorbed by complexation to surface Ca surface sites, as previously described by the X-ray standing wave technique. The inflexion point of the isotherm, where As(OH)3 degrees is limited by the amount of surface sites (ST), yields 6 sites nm-2 in good agreement with crystallographic data. Beyond this value, the amount of sorbed arsenic increases linearly with solution concentration, up to the saturation of arsenic with respect to the precipitation of CaHAsO3(s). The solid solutions formed in this concentration range were examined by X-ray and neutron diffraction. The doped calcite lattice parameters increase with arsenic content while c/a ratio remains constant. Our results made on bulk calcite on...

  20. Synthetic Calcite as a Scaffold for Osteoinductive Bone Substitutes.

    Science.gov (United States)

    Chróścicka, Anna; Jaegermann, Zbigniew; Wychowański, Piotr; Ratajska, Anna; Sadło, Jarosław; Hoser, Grażyna; Michałowski, Sławomir; Lewandowska-Szumiel, Malgorzata

    2016-07-01

    Although a wide variety of biomaterials have been already proposed for use in bone tissue engineering, there is still need for man-made materials, which would combine support for osteogenesis with simplicity desirable for upscaling and costs reduction. In this study we have shown that synthetic calcite may serve as a scaffold for human osteoblasts transplantation. A simple dynamic system allows uniform and effective cell distribution. Cell viability and osteogenic phenotype were confirmed by XTT assay, alkaline phosphatase activity and selected osteoblast-specific genes expression. Extracellular matrix deposited by cells improved elasticity and made the whole system similar to the flexible composite material rather than to the brittle ceramic implants. It was revealed in the compression tests and also by the improved samples handling. Subcutaneous implantation of the cell-seeded calcite scaffolds to immunodeficient mice resulted in mineralized bone formation, which was confirmed histologically and by EPR analysis. The latter we propose as a method supplementary to histological analysis, for bone regeneration investigations. It specifically confirms the presence of bone mineral with a unique sensitivity and using bulk samples, which eliminates the risk of missing the material in the preparation. Our study resulted in development of a new osteogenic tissue engineered product based on man-made calcite. PMID:26666226

  1. Earthworm-produced calcite granules: A new terrestrial palaeothermometer?

    Science.gov (United States)

    Versteegh, Emma A. A.; Black, Stuart; Canti, Matthew G.; Hodson, Mark E.

    2013-12-01

    In this paper we show for the first time that calcite granules, produced by the earthworm Lumbricus terrestris, and commonly recorded at sites of archaeological interest, accurately reflect temperature and soil water δ18O values. Earthworms were cultivated in an orthogonal combination of two different (granule-free) soils moistened by three types of mineral water and kept at three temperatures (10, 16 and 20 °C) for an acclimatisation period of three weeks followed by transfer to identical treatments and cultivation for a further four weeks. Earthworm-secreted calcite granules were collected from the second set of soils. δ18O values were determined on individual calcite granules (δ18Oc) and the soil solution (δ18Ow). The δ18Oc values reflect soil solution δ18Ow values and temperature, but are consistently enriched by 1.51 (± 0.12)‰ in comparison to equilibrium in synthetic carbonates. The data fit the equation 1000 ln α = [20.21 ± 0.92] (103 T-1) - [38.58 ± 3.18] (R2 = 0.95; n = 96; p < 0.0005). As the granules are abundant in modern soils, buried soils and archaeological contexts, and can be dated using U-Th disequilibria, the developed palaeotemperature relationship has enormous potential for application to Holocene and Pleistocene time intervals.

  2. Origin of gem corundum in calcite marble: The Revelstoke occurrence in the Canadian Cordillera of British Columbia

    Science.gov (United States)

    Dzikowski, Tashia J.; Cempírek, Jan; Groat, Lee A.; Dipple, Gregory M.; Giuliani, Gaston

    2014-06-01

    The calcite marble-hosted gem corundum (ruby, sapphire) occurrence near Revelstoke, British Columbia, Canada, occurs in the Monashee Complex of the Omineca Belt of the Canadian Cordillera. Corundum occurs in thin, folded and stretched layers with green muscovite + Ba-bearing K-feldspar + anorthite (An0.85-1) ± phlogopite ± Na-poor scapolite. Other silicate layers within the marble are composed of: (1) diopside + tremolite ± quartz and (2) garnet (Alm0.7-0.5Grs0.2-0.4) + Na-rich scapolite + diopside + tremolite + Na,K-amphiboles. Non-silicate layers in the marble are either magnetite- or graphite-bearing. Predominantly pink (locally red or purple) opaque to transparent corundum crystals have elevated Cr2O3 (≤ 0.21 wt.%) and variable amounts of TiO2; rare blue rims on the corundum crystals contain higher amounts of TiO2 (≤ 0.53 wt.%) and Fe2O3 (≤ 0.07 wt.%). The associated micas have elevated Cr, V, Ti, and Ba contents. Petrography of the silicate layers show that corundum formed from muscovite at the peak of metamorphism (~ 650-700 °C at 8.5-9 kbar). Because the marble is almost pure calcite (dolomite is very rare), the corundum was preserved because it did not react with dolomite to spinel + calcite during decompression. The scapolite-bearing assemblages formed during or after decompression of the rock at ~ 650 °C and 4-6 kbar. Gem-quality corundum crystals formed especially on borders of the mica-feldspar layers in an assemblage with calcite. Whole rock geochemistry data show that the corundum-bearing silicate (mica-feldspar) layers formed by mechanical mixing of carbonate with the host gneiss protolith; the bulk composition of the silicate layers was modified by Si and Fe depletion during prograde metamorphism. High element mobility is supported by the homogenization of δ18O and δ13C values in carbonates and silicates for the marble and silicate layers. The silicate layers and the gneiss contain elevated contents of Cr and V due to the volcanoclastic

  3. PVC mixtures’ mechanical properties with the addition of modified calcite as filler

    Directory of Open Access Journals (Sweden)

    Vučinić Dušica R.

    2012-01-01

    Full Text Available In this study mechanical properties of PVC mixtures (PVC, stabilizer, lubricant, filler such as tensile strength, tensile elongation, breaking strength, and breaking elongation were investigated. Unmodified calcite, as well as calcite modified by stearic acid, were used as fillers in wet and dry processes. The PVC mixtures containing the calcite modified by wet procedure have better mechanical properties compared to those with the calcite modified by the dry process. Tensile and breaking strength of the PVC mixture containing the calcite modified with 1.5% stearic acid using wet process, are higher for 2.8% and 5.2%, respectively, compared to the PVC mixture containing the calcite modified with the same amount of acid used in the dry process. The tensile strength difference between the mixtures increases with the increase of the concentration of used stearic acid up to 3%. The strength of PVC mixture with the calcite modified by wet process is 3.1% higher compared to the mixture containing calcite modified by dry process. The results showed that the bonding strength between calcite and the adsorbed organic component affected tensile strength, tensile elongation and breaking strength of the PVC mixtures. The best filler was obtained by wet modification using 1.5% stearic acid solution that provided the formation of a stearate monolayer chemisorbed on calcite. The PVC mixtures containing the calcite modified by wet process using 1.5% stearic acid solution exhibited the best mechanical properties. This calcite was completely hydrophobic with dominant chemically adsorbed surfactant, which means that stearate chemisorbed on calcite provided stronger interaction in the calcite-stearic acid-PVC system.

  4. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens

    2016-04-01

    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  5. Field-Induced Domain Reorientation and Polarization Rotation of Oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    CHEN Ke-Pi; ZHANG Xiao-Wen; FANG Fei

    2006-01-01

    Polarization hysteresis loops, x-ray diffraction and temperature dependent dielectric constant under different electric Gelds for oriented 0.7PMN-0.3PT crystals are measured. The field-induced phase transition and the process of depolarization are discussed. The results show that with the electric field E increasing, the single-crystal form changes from the relaxor state of rhombohedral to normal rhombohedral, then to a monoclinic state via polar-axis reorientation and polarization rotation. Orthorhombic phase may present when E≥ 10 kV, but it is an unstable form after E removal. The depolarization process is not just the reversal of the polarization process. It is noticed that only the temperature-dependent dielectric behaviour is not enough to judge the processes of the E-field induced phase transition.

  6. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    Science.gov (United States)

    Kimball, J.; Tripati, R. E.; Dunbar, R.

    2015-12-01

    corals of different mineralogy is in the same direction as published theoretical predictions for the offset between calcite and aragonite, although the magnitude of the offset is different. One possibility is that the deep-sea coral results reflect that crystals may attain nominal mineral equilibrium clumped isotope signatures only under conditions of extremely slow growth. In that case, a possible explanation for the attainment of disequilibrium bulk isotope signatures and equilibrium clumped isotope signatures by deep-sea corals is that extraordinarily slow growth rates can promote the occurrence of isotopic reordering in the interfacial region of growing crystals. We also cannot rule out a component of a biological "vital-effect" influencing clumped isotope signatures in one or both orders of coral. Based on published experimental data and theoretical calculations, these biological "vital" effects could arise from kinetic isotope effects due to the source of carbon used for calcification, temperature- and pH-dependent rates of CO2 hydration and/or hydroxylation, calcifying fluid pH, the activity of carbonic anhydrase, the residence time of dissolved inorganic carbon in the calcifying fluid, and calcification rate. A third possible explanation is the occurrence of variable acid digestion fractionation factors. Although a recent study has suggested that dolomite, calcite, and aragonite may have similar clumped isotope acid digestion fractionation factors, the influence of acid digestion kinetics on Δ47 is a subject that warrants further investigation.

  7. First-principles study of boron speciation in calcite and aragonite

    Science.gov (United States)

    Balan, Etienne; Pietrucci, Fabio; Gervais, Christel; Blanchard, Marc; Schott, Jacques; Gaillardet, Jérome

    2016-11-01

    Despite the importance of boron as a proxy of past ocean pH, the crystal-chemical factors controlling its incorporation in the structure of calcium carbonates are still poorly understood. This is partly linked to an imperfect knowledge of the coordination, protonation state and local environment of boron species in these minerals. In the present study, we use first-principles quantum mechanical tools to model selected trigonal and tetragonal boron species in calcite and aragonite. The stable geometry of the models is obtained from standard energy minimization schemes or using a more advanced metadynamics exploration of their configurational space. The computation of 11B NMR chemical shifts and quadrupolar coupling parameters enables a straightforward comparison of the models to existing experimental NMR data. The results show that B in calcium carbonates does occur as structural species substituted for CO32- anions. The B speciation depends on the polymorph considered. In calcite, structural boron is present as partially deprotonated trigonal BO2(OH)2- species coexisting with a fraction of substituted B(OH)4- groups. In aragonite, the B(OH)4- substitution for CO32- anions is dominant. Different species, including entrapped B(OH)3 molecules and substituted BO33- groups also occur in biogenic samples. The diversity of B speciation reflects a diversity of B incorporation mechanisms and sheds light on previous studies confronting B isotopic composition determination with NMR observations. The mechanisms of boron incorporation in calcium carbonates are probably more complex than usually assumed in the literature using boron isotopes as a proxy of paleo-atmospheric CO2 reconstructions. Although not invalidating the empirical paleo-pH proxy, these results call for a better understanding of the fundamental mechanisms of boron incorporation in carbonates.

  8. Kinetical and thermodynamical parametars of crystallization of iPP nucleated with mixed α-nucleators

    OpenAIRE

    Janevski, Aco; Bogoeva-Gaceva, Gordana

    2013-01-01

    It is well known that the presence of a solid surface (substrate) in contact with thermoplastic polymers during the crystallization from the melt, generally favors the heterogeneous nucleation. Isothermal and nonisothermal crystallization of isotactic polypropylene (iPP) nucleated with 0.1 %wt. talc (average dimension of 20 µ) (assign. PPT), 0.1 %wt. calcite (average dimension of 5µ) (assign. PPC) and polymer nucleated with 0.1 %wt. talc plus 0.1 % wt. calcite (assign. PPTC), were studied...

  9. Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated calcite saturation state

    Directory of Open Access Journals (Sweden)

    M. Raitzsch

    2010-03-01

    Full Text Available We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (Ω on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing and Ammonia tepida (low-Mg calcite, symbiont-barren were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite/(TE/Caseawater. The culturing study shows that DMg of A. tepida significantly decreases with increasing Ω at a gradient of −4.3×10−5 per Ω unit. The DSr value of A. tepida does not change with Ω, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing Ω, while DSr increases considerably with Ω at a gradient of 0.009 per Ω unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50–100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep

  10. Pyrite-pyrrhotite intergrowths in calcite marble from Bistriški Vintgar, Slovenia

    Science.gov (United States)

    Zavašnik, J.

    2016-02-01

    Roman marble quarry in Bistrica gorge in southern Pohorje Mt. (north-eastern Slovenia) is situated in a 20 m thick lens of layered marble, at the contact zone between granodiorite and metamorphites. Grey and yellowish non-homogenous calcite marble is heavily included by mica, quartz, feldspars, zoisite, pyrite and amphiboles. In the present research, we have studied numerous pyrite (FeS2) crystals associated with yellowish-bronze non-stoichiometric pyrrhotite (Fe1-xS), not previously reported from this locality. SEM investigation revealed unusual sequence of crystallisation: primary skeletal pyrrhotite matrix is sparsely overgrown by well-crystalline pyrite, both being overgrown by smaller, well-developed hexagonal pyrrhotite crystals of the second generation. With TEM we identify the pyrrhotite as 5T-Fe1-xS phase, where x is about 0.1 and is equivalent to Fe9S10. The pyrite-pyrrhotite coexistence allows us a construction of fO2-pH diagram of stability fields, which reflects geochemical conditions at the time of marble re-crystallisation.

  11. EDITORIAL: Optical orientation Optical orientation

    Science.gov (United States)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  12. Principles of calcite dissolution in human and artificial otoconia.

    Directory of Open Access Journals (Sweden)

    Leif Erik Walther

    Full Text Available Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV. The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic otoconia (calcite gelatin nanocomposits and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM. Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV.

  13. Calcite production by coccolithophores in the south east Pacific Ocean

    Directory of Open Access Journals (Sweden)

    L. Beaufort

    2008-08-01

    Full Text Available BIOSOPE cruise covered an oceanographic transect through the centre of the South Pacific Gyre (SPG from the Marquesas archipelago to the Peru-Chile upwelling (PCU. Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks were usually low and reached maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales represented more than 30% of all the suspended calcite particles detected in the size range 0.1–46 μm (22% of PIC in term of calcite weight. These species grew preferentially in the Chlorophyll maximum zone. In the SPG their maximum cell concentrations were recorded between depth of 150 and 200 m, which is unusually deep for these taxa. The weight of coccoliths and coccospheres were correlated to their size. Large and heavy coccoliths and coccospheres were found in regions with relatively high fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres were found west of the PCU. This distribution is strongly related to ocean chemistry in particular to alkalinity and to carbonate ions concentration. The biotic (coccolithophores production influence on calcification is mainly driven at the local scale (depth whereas the abiotic (carbonate chemistry plays its most important role at the regional (horizontal level. Here 94% of the variability of coccolith and coccosphere weight can be explained by a change in 7 environmental variables.

  14. Calcite production by coccolithophores in the south east Pacific Ocean

    Science.gov (United States)

    Beaufort, L.; Couapel, M.; Buchet, N.; Claustre, H.; Goyet, C.

    2008-08-01

    BIOSOPE cruise covered an oceanographic transect through the centre of the South Pacific Gyre (SPG) from the Marquesas archipelago to the Peru-Chile upwelling (PCU). Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks were usually low and reached maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales) represented more than 30% of all the suspended calcite particles detected in the size range 0.1 46 μm (22% of PIC in term of calcite weight). These species grew preferentially in the Chlorophyll maximum zone. In the SPG their maximum cell concentrations were recorded between depth of 150 and 200 m, which is unusually deep for these taxa. The weight of coccoliths and coccospheres were correlated to their size. Large and heavy coccoliths and coccospheres were found in regions with relatively high fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres were found west of the PCU. This distribution is strongly related to ocean chemistry in particular to alkalinity and to carbonate ions concentration. The biotic (coccolithophores production) influence on calcification is mainly driven at the local scale (depth) whereas the abiotic (carbonate chemistry) plays its most important role at the regional (horizontal) level. Here 94% of the variability of coccolith and coccosphere weight can be explained by a change in 7 environmental variables.

  15. Study of Biomass Calcite as Fine Aggregate of Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; YU Yan

    2012-01-01

    The possibility of using crushed oyster shell to partly replace the fine aggregate of concrete was evaluated. The compressive strength and slump of concrete mixture with different amount of crushed oyster shell were tested and thus the appropriate dosage was determined. Additionally, the compatibility with super plasticizer and the stability in NazSO4 solution were also discussed to prove the feasibility of oyster shell as fine aggregate of concrete. The microstructure of concrete was observed with XRD and SEM techniques. This research provides the basis for the application of waste biomass calcite.

  16. Is bicarbonate stable in and on the calcite surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Rodriguez Blanco, Juan Diego; Stipp, Susan Louise Svane

    2016-01-01

    , 10.35. This means that adsorbed carbonate is stable even when the concentration of dissolved CO32− is several orders of magnitude lower. This has a significant effect on surface charge and thus the behaviour of the calcite surface. Our results help explain the potential determining behaviour...... even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 ... and constrain surface complexation modelling and are especially useful for predicting behaviour in systems where experiments are difficult or impossible, such as at high temperature and pressure....

  17. Three-Dimensional Reciprocal-Lattice Analysis Using Azimuth-Scan Reflection High-Energy Electron Diffraction: Determination of Complex Crystal Orientations of Al Grains on Si(111) Surface

    Science.gov (United States)

    Hattori, Ken; Oi, Hideo; Tanaka, Kota; Kumagai, Tomohiro; Daimon, Hiroshi

    2012-05-01

    We have applied a three-dimensional (3D) reciprocal-lattice analysis method using a typical reflection high-energy electron diffraction (RHEED) system - all RHEED patterns in scanning sample-surface azimuth are converted into 3D reciprocal-lattice space. This analysis method can determine complex crystal orientations of nanoclusters, islands, and grains with multiple domains, which are difficult to obtain from a small number of non-converted two-dimensional RHEED patterns. For an Al-deposited Si(111) surface followed by annealing, we successfully determined new crystal orientations of Al grains: Al(001), Al(012) and Al(011) ∥ Si(111) with Al[100] ∥ Si. The typical acquisition time of 3D RHEED patterns is 10-20 min, which is shorter than that by a standard X-ray diffraction system with φ and ω scans for 3D reciprocal-lattice mapping. This is one of the advantages of this analysis method, in addition to the convenient observation of in situ vacuum-fabricated nanocrystals on substrate surfaces with high sensitivity.

  18. Function development through microstructure control. Control of crystal axis orientation of zinc oxide and its optical properties; Soshiki seigyo ni yoru kino hatsugen. Sanka aen no haikosei seigyo to kogakuteki kino

    Energy Technology Data Exchange (ETDEWEB)

    Fujitsu, S. [Shonan Institute of Technology, Kanagawa (Japan); Watanabe, Y. [Science University of Tokyo, Tokyo (Japan)

    1998-04-01

    Described herein are light beam deflectors of thin piezoelectric films, and synthesis, photoconductance and nonlinear optical measurement of light-distributing, transparent zinc oxide, viewed from application of zinc oxide to optical purposes. Supersonic waves, when passing through a transparent medium, leaves compressional waves of strain, causing cyclic changes in refractive index. This phenomenon can be used for diffraction of light. A light beam deflector is one of the examples of using this phenomenon applied to a thin piezoelectric film of zinc oxide. The authors have developed a process to synthesize transparent, polycrystalline zinc oxide of high C-axis orientation. A seed of sintered zinc oxide is placed at the center of an electrical oven, and a substrate in the temperature-gradient zone. The seed evaporates, when heated to around 1200degC, to leave the zinc oxide crystal grains on the substrate, which grow preferentially in the C-axis direction at around 300{mu}m/h. Zinc oxide is known as a compound of anisotropy in properties by crystal orientation, and shows piezoelectric and photoconducting properties. 8 refs., 7 figs.

  19. 3D imaging using X-Ray tomography and SEM combined FIB to study non isothermal creep damage of (111) oriented samples of γ / γ ′ nickel base single crystal superalloy MC2

    KAUST Repository

    Jouiad, Mustapha

    2012-01-01

    An unprecedented investigation consisting of the association of X-Ray tomography and Scanning Electron Microscopy combined with Focus Ion Beam (SEM-FIB) is conducted to perform a 3D reconstruction imaging. These techniques are applied to study the non-isothermal creep behavior of close (111) oriented samples of MC2 nickel base superalloys single crystal. The issue here is to develop a strategy to come out with the 3D rafting of γ\\' particles and its interaction whether with dislocation structures or/and with the preexisting voids. This characterization is uncommonly performed away from the conventional studied orientation [001] in order to feed the viscoplastic modeling leading to its improvement by taking into account the crystal anisotropy. The creep tests were performed at two different conditions: classical isothermal tests at 1050°C under 140 MPa and a non isothermal creep test consisting of one overheating at 1200°C and 30 seconds dwell time during the isothermal creep life. The X-Ray tomography shows a great deformation heterogeneity that is pronounced for the non-isothermal tested samples. This deformation localization seems to be linked to the preexisting voids. Nevertheless, for both tested samples, the voids coalescence is the precursor of the observed damage leading to failure. SEM-FIB investigation by means of slice and view technique gives 3D views of the rafted γ\\' particles and shows that γ corridors evolution seems to be the main creep rate controlling parameter. © 2012 Trans Tech Publications, Switzerland.

  20. Inversion of calcite twin data, paleostress reconstruction and multiphase weak deformation in cratonic interior - Evidence from the Proterozoic Cuddapah basin, India

    Science.gov (United States)

    Tripathy, Vikash; Saha, Dilip

    2015-08-01

    Paleostress orientations from mechanically twinned calcite in carbonate rocks and veins in the neighborhood of large faults were investigated to comment on the nature of weak upper crustal stresses affecting sedimentary successions within the Proterozoic Cuddapah basin, India. Application of Turner's P-B-T method and Spang's Numerical dynamic analysis on Cuddapah samples provided paleostress orientations comparable to those derived from fault-slip inversion. Results from the neighborhood of E-W faults cutting through the Paleoproterozoic Papaghni and Chitravati groups and the Neoproterozoic Kurnool Group in the western Cuddapah basin, reveal existence of multiple deformation events - (1) NE-SW σ3 in strike-slip to extensional regime along with an additional event having NW-SE σ3, for lower Cuddapah samples; (2) compressional/transpressional event with ESE-WNW or NNE-SSW σ1 mainly from younger Kurnool samples. Integrating results from calcite twin data inversion, fault-slip analysis and regional geology we propose that late Mesoproterozoic crustal extension led to initial opening of the Kurnool sub-basin, subsequently influenced by weak compressional deformation. The dynamic analysis of calcite twins thus constrains the stress regimes influencing basin initiation in the southern Indian cratonic interior and subsequent basin inversion in relation to craton margin mobile belts and plausible global tectonic events in the Proterozoic.

  1. First-Principles Study on Influences of Crystal Structure and Orientation on Band Offsets at the CdS/Cu2ZnSnS4 Interface

    OpenAIRE

    Wujisiguleng Bao; Masaya Ichimura

    2012-01-01

    Cu2ZnSnS4 (CZTS) has attracted much attention recently as an absorber layer material in a heterojunction solar cell. Using the first-principles method, we calculate the band offsets for the CdS/CZTS heterojunction. The valence band offset is 1.2 eV for the (001) CdS/CZTS heterointerface and 1.0 eV for the (010) heterointerface, when CZTS is considered to crystallize in the kesterite structure. When CZTS is considered to crystallize in the stannite structure,  eV for the (001) heterointerface...

  2. Isotopic analysis for degradation diagnosis of calcite matrix in mortar.

    Science.gov (United States)

    Dotsika, E; Psomiadis, D; Poutoukis, D; Raco, B; Gamaletsos, P

    2009-12-01

    Mortar that was used in building as well as in conservation and restoration works of wall paintings have been analysed isotopically (delta(13)C and delta(18)O) in order to evaluate the setting environments and secondary processes, to distinguish the structural components used and to determine the exact causes that incurred the degradation phenomena. The material undergoes weathering and decay on a large proportion of its surface and in depth, due to the infiltration of water through the structural blocks. Mineralogical analysis indicated signs of sulphation and dissolution/recrystallisation processes taking place on the material, whereas stable isotopes provided information relative to the origin of the CO(2) and water during calcite formation and degradation processes. Isotopic change of the initial delta(13)C and delta(18)O in carbonate matrix was caused by alteration of the primary source of CO(2) and H(2)O in mortar over time, particularly by recrystallisation of calcite with porewater, evaporated or re-condensed water, and CO(2) from various sources of atmospheric and biogenic origin. Human influence (surface treatment) and biological growth (e.g. fungus) are major exogenic processes which may alter delta(18)O and delta(13)C in lime mortar.

  3. Oriented crystalline monolayers and bilayers of 2 x 2 silver(1) grid architectures at the air-solution interface: Their assembly and crystal structure elucidation

    DEFF Research Database (Denmark)

    Weissbuch, J.; Baxter, P.N.W.; Kuzmenko, I.;

    2000-01-01

    Oriented crystalline monolayers, similar to 14 Angstrom thick, of a 2 x 2 Ag+ grid complex, self-assembled at the air-solution interface starting from an water-insoluble ligand 3,6-bis[2-(6-phenylpyridine)]pyridazine spread on silver-ion-containing solutions,were examined by grazing-incidence X...

  4. Prediction of calcite Cement Distribution in Shallow Marine Sandstone Reservoirs using Seismic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, N.E.

    1996-12-31

    This doctoral thesis investigates how calcite cemented layers can be detected by reflection seismic data and how seismic data combined with other methods can be used to predict lateral variation in calcite cementation in shallow marine sandstone reservoirs. Focus is on the geophysical aspects. Sequence stratigraphy and stochastic modelling aspects are only covered superficially. Possible sources of calcite in shallow marine sandstone are grouped into internal and external sources depending on their location relative to the presently cemented rock. Well data and seismic data from the Troll Field in the Norwegian North Sea have been analysed. Tuning amplitudes from stacks of thin calcite cemented layers are analysed. Tuning effects are constructive or destructive interference of pulses resulting from two or more closely spaced reflectors. The zero-offset tuning amplitude is shown to depend on calcite content in the stack and vertical stack size. The relationship is found by regression analysis based on extensive seismic modelling. The results are used to predict calcite distribution in a synthetic and a real data example. It is found that describing calcite cemented beds in shallow marine sandstone reservoirs is not a deterministic problem. Hence seismic inversion and sequence stratigraphy interpretation of well data have been combined in a probabilistic approach to produce models of calcite cemented barriers constrained by a maximum amount of information. It is concluded that seismic data can provide valuable information on distribution of calcite cemented beds in reservoirs where the background sandstones are relatively homogeneous. 63 refs., 78 figs., 10 tabs.

  5. Crystallization and self-assembly of flowerlike superstructures of calcium carbonate regulated by pepsin Langmuir monolayers

    International Nuclear Information System (INIS)

    Flowerlike superstructures of calcium carbonate were synthesized at air–water interface in the presence of pepsin Langmuir monolayers as the biomimetic template. The phase structure, morphology, and microstructure of the products obtained at various crystallization stages were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction and high resolution transmission electron microscopy. The structural and morphological evolution processes of the products from monodispersed nanoparticles to nanoparticle aggregates and flowerlike superstructures were investigated. Results indicate that the flowerlike superstructures of calcium carbonate are assembled from amorphous calcium carbonate nanoparticles. The growth and assembly of calcium carbonate minerals are significantly regulated by the pepsin Langmuir monolayers. Namely, the pepsin Langmuir monolayers stabilize amorphous calcium carbonate nanoparticles and direct their transformation to amorphous aggregates via non-oriented aggregation. The present approach presents a feasible way to manipulate the growth of inorganic crystal, which, hopefully, is to help better reveal the role of proteins in mineralization process and understand the mechanism of biomineralization. -- Highlights: ► Pepsin Langmuir monolayer as biomimetic template. ► Flower-like calcite crystals experience a novel assembly and growth process. ► The morphologic evolution and phase transformation were observed. ► The trace of initial nucleation site of CaCO3 at the interface was observed. ► The template directs the crystallization and growth process.

  6. Crystallization and self-assembly of flowerlike superstructures of calcium carbonate regulated by pepsin Langmuir monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zhonghui [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); School of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Hu, Binbin; Dai, Shuxi [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Du, Zuliang, E-mail: zld@henu.edu.cn [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)

    2012-10-15

    Flowerlike superstructures of calcium carbonate were synthesized at air-water interface in the presence of pepsin Langmuir monolayers as the biomimetic template. The phase structure, morphology, and microstructure of the products obtained at various crystallization stages were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction and high resolution transmission electron microscopy. The structural and morphological evolution processes of the products from monodispersed nanoparticles to nanoparticle aggregates and flowerlike superstructures were investigated. Results indicate that the flowerlike superstructures of calcium carbonate are assembled from amorphous calcium carbonate nanoparticles. The growth and assembly of calcium carbonate minerals are significantly regulated by the pepsin Langmuir monolayers. Namely, the pepsin Langmuir monolayers stabilize amorphous calcium carbonate nanoparticles and direct their transformation to amorphous aggregates via non-oriented aggregation. The present approach presents a feasible way to manipulate the growth of inorganic crystal, which, hopefully, is to help better reveal the role of proteins in mineralization process and understand the mechanism of biomineralization. -- Highlights: Black-Right-Pointing-Pointer Pepsin Langmuir monolayer as biomimetic template. Black-Right-Pointing-Pointer Flower-like calcite crystals experience a novel assembly and growth process. Black-Right-Pointing-Pointer The morphologic evolution and phase transformation were observed. Black-Right-Pointing-Pointer The trace of initial nucleation site of CaCO{sub 3} at the interface was observed. Black-Right-Pointing-Pointer The template directs the crystallization and growth process.

  7. Structure and interactions of calcite spherulites with {alpha}-chitin in the brown shrimp (Penaeus aztecus) shell

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico); Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Aguilar-Franco, M. [Instituto de Fisica, Depto de Fisicoquimica, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Magana, C. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Flores, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Pina, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Velazquez, R. [Centro de Fisica Aplicada Tecnologia Avanzada, UNAM, Km. 15 Carretera Queretaro-San Luis Potosi, C.P. 76230, Queretaro, Qro. (Mexico); Schaeffer, T.E. [Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Bucio, L. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico)

    2007-01-15

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous {alpha}-chitin matrix. We studied mechanisms of interaction of amorphous {alpha}-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of {alpha}-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 {mu}m in diameter). Our models of crystal-biopolymer interaction found high affinity of CO{sub 3} {sup 2-} anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca{sup 2+} cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering.

  8. Impact of cooling condition on the crystal structure and surface quality of preferred c-axis-oriented AIN films for SAW devices

    Institute of Scientific and Technical Information of China (English)

    ZHANG Geng-yu; YANG Bao-he; ZHAO Jian; LI Cui-ping; LI Ming-ji

    2011-01-01

    AIN films with preferred c-axis orientation are deposited on Si substrates using the radio frequency (RF) magnetron sputtering method. The post-processing is carried out under the cooling conditions including high vacuum, low vacuum under deposition gas ambient and low vacuum under dynamic N2 ambient. Structures and morphologies of the films are analyzed by X-ray diffraction (XRD) and atomic force microscopy (AFM). The hardness and Young's modulus are investigated by the nanoindenter. The experimental results indicate that the (100) and (110) peak intensities decrease in the XRD spectra and the root-mean-square of roughness (Rrms) of the film decreases gradually with the increase of the cooling rate. The maximum values of the hardness and Young's modulus are obtained by cooling in low vacuum under deposition gas ambient. The reason for orientation variation of the films is explained from the perspective of the Al-N bond formation.

  9. CHARACTERIZATION METHODS AND RESEARCH PROGRESSES FOR STRETCHING ORIENTATION AND STRAIN-INDUCED CRYSTALLIZATION OF ELASTOMERS%弹性体拉伸取向和应变诱导结晶研究进展

    Institute of Scientific and Technical Information of China (English)

    徐志强; 卢咏来; 张立群; 闫寿科

    2011-01-01

    橡胶拉伸取向和应变诱导结晶被公认为是天然橡胶和一些合成橡胶(如氯丁橡胶、丁基橡胶、氢化丁腈橡胶等)高效自增强的关键所在,研究该现象和行为规律对理解橡胶增强机理具有十分重要的意义.本文总结了常用于研究橡胶拉伸取向和应变诱导结晶的表征方法,对其原理、特点和适用范围进行了对比分析;综述了纳米填料(炭黑,二氧化硅,黏土,碳纳米管)增强橡胶的拉伸取向和应变诱导结晶以及热塑性弹性体拉伸取向的研究进展;并展望了该领域的未来发展方向.%Stretching orientation and strain-induced crystallization of rubber is widely recognized to play key role in the self-reinforcement of natural rubber and some synthetic rubbers (such as chloroprene rubber, butyl rubber and hydrogenated nitrile-butadiene rubber). Therefore, studying these phenomena and behavior has substantial significance for understanding the mechanism of the rubber reinforcing. In this review, various characterization methods concerning stretching orientation and strain-induced crystallization of polymer materials as well as principles, features and applicable scope of these methods were summarized and compared.Current progresses in the research about stretching orientation and strain-induced crystallization of nano-fillers (including carbon black, silica, nano clay and carbon nanotube) reinforced rubber composites as well as thermoplastic elastomers were surveyed. Finally, the future developing trend in this research field was prospected.

  10. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  11. First-Principles Study on Influences of Crystal Structure and Orientation on Band Offsets at the CdS/Cu2ZnSnS4 Interface

    Directory of Open Access Journals (Sweden)

    Wujisiguleng Bao

    2012-01-01

    Full Text Available Cu2ZnSnS4 (CZTS has attracted much attention recently as an absorber layer material in a heterojunction solar cell. Using the first-principles method, we calculate the band offsets for the CdS/CZTS heterojunction. The valence band offset is 1.2 eV for the (001 CdS/CZTS heterointerface and 1.0 eV for the (010 heterointerface, when CZTS is considered to crystallize in the kesterite structure. When CZTS is considered to crystallize in the stannite structure,  eV for the (001 heterointerface and  eV for the (010 heterointerface. In any case, the conduction band minimum of CZTS is higher than that of CdS, and the conduction band offset is in a range between 0.1 and 0.4 eV.

  12. Thermal properties of halogen-ethane glassy crystals: Effects of orientational disorder and the role of internal molecular degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Vdovichenko, G. A.; Krivchikov, A. I.; Korolyuk, O. A. [B. Verkin Institute for Low Temperature Physics and Engineering of NAS Ukraine, 47 Lenin Ave., 61103 Kharkov (Ukraine); Tamarit, J. Ll., E-mail: josep.lluis.tamarit@upc.edu; Pardo, L. C.; Rovira-Esteva, M. [Grup de Caracterització de Materials, Departament de Física i Enginyeria Nuclear, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Catalonia (Spain); Bermejo, F. J. [Instituto de Estructura de la Materia, CSIC, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Hassaine, M.; Ramos, M. A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 7, 28049 Madrid (Spain)

    2015-08-28

    The thermal conductivity, specific heat, and specific volume of the orientational glass former 1,1,2-trichloro-1,2,2-trifluoroethane (CCl{sub 2}F–CClF{sub 2}, F-113) have been measured under equilibrium pressure within the low-temperature range, showing thermodynamic anomalies at ca. 120, 72, and 20 K. The results are discussed together with those pertaining to the structurally related 1,1,2,2-tetrachloro-1,2-difluoroethane (CCl{sub 2}F–CCl{sub 2}F, F-112), which also shows anomalies at 130, 90, and 60 K. The rich phase behavior of these compounds can be accounted for by the interplay between several of their degrees of freedom. The arrest of the degrees of freedom corresponding to the internal molecular rotation, responsible for the existence of two energetically distinct isomers, and the overall molecular orientation, source of the characteristic orientational disorder of plastic phases, can explain the anomalies at higher and intermediate temperatures, respectively. The soft-potential model has been used as the framework to describe the thermal properties at low temperatures. We show that the low-temperature anomaly of the compounds corresponds to a secondary relaxation, which can be associated with the appearance of Umklapp processes, i.e., anharmonic phonon-phonon scattering, that dominate thermal transport in that temperature range.

  13. Thermal properties of halogen-ethane glassy crystals: Effects of orientational disorder and the role of internal molecular degrees of freedom

    Science.gov (United States)

    Vdovichenko, G. A.; Krivchikov, A. I.; Korolyuk, O. A.; Tamarit, J. Ll.; Pardo, L. C.; Rovira-Esteva, M.; Bermejo, F. J.; Hassaine, M.; Ramos, M. A.

    2015-08-01

    The thermal conductivity, specific heat, and specific volume of the orientational glass former 1,1,2-trichloro-1,2,2-trifluoroethane (CCl2F-CClF2, F-113) have been measured under equilibrium pressure within the low-temperature range, showing thermodynamic anomalies at ca. 120, 72, and 20 K. The results are discussed together with those pertaining to the structurally related 1,1,2,2-tetrachloro-1,2-difluoroethane (CCl2F-CCl2F, F-112), which also shows anomalies at 130, 90, and 60 K. The rich phase behavior of these compounds can be accounted for by the interplay between several of their degrees of freedom. The arrest of the degrees of freedom corresponding to the internal molecular rotation, responsible for the existence of two energetically distinct isomers, and the overall molecular orientation, source of the characteristic orientational disorder of plastic phases, can explain the anomalies at higher and intermediate temperatures, respectively. The soft-potential model has been used as the framework to describe the thermal properties at low temperatures. We show that the low-temperature anomaly of the compounds corresponds to a secondary relaxation, which can be associated with the appearance of Umklapp processes, i.e., anharmonic phonon-phonon scattering, that dominate thermal transport in that temperature range.

  14. Determination of the tectonic evolution from fractures, faults, and calcite twins on the southwestern margin of the Indochina Block

    Science.gov (United States)

    Arboit, Francesco; Amrouch, Khalid; Collins, Alan S.; King, Rosalind; Morley, Christopher

    2015-08-01

    In polyphase tectonic zones, integrating a study of fault and fracture with calcite twin analysis can determine the evolving paleostress magnitudes and principle stress directions that affected the area. This paper presents the results of the analyses of fractures, striated faults, and calcite twins collected within the Khao Khwang Fold-Thrust Belt in central Thailand (SE Asia). Here we attempt to reconstruct the orientation of the principal stresses that developed during the tectonic evolution of this highly deformed, polyphase orogen. Tectonic data were collected in the Permian carbonates of the Khao Khad Formation of the Saraburi Group, and five successive tectonic stages are determined that are interpreted to have developed before, during, and after, the Triassic Indosinian Orogeny. The first three stages predate the main deformation event: the first stage is interpreted as a pre-Indosinian N-S extensional stage, the second stage described a N-S strike-slip and compressional regime, largely perpendicular to the fold axes of the main structures, while the third stage is associated with an E-W compressional strike-slip phase. A further two stages took place after, or during, the main folding event and correspond to N-S compression and to an E-W composite strike-slip/contractional stage, the latter which is interpreted to represent Cenozoic deformation related to the India-Asia collision.

  15. Stable carbon isotopes and lipid biomarkers provide new insight into the formation of calcite and siderite concretions in organic-matter rich deposits

    Science.gov (United States)

    Baumann, Lydia; Birgel, Daniel; Wagreich, Michael; Peckmann, Jörn

    2015-04-01

    Carbonate concretions from two distinct settings have been studied for their petrography, stable carbon and oxygen isotopes, and lipid biomarker content. Carbonate concretions are in large part products of microbial degradation of organic matter, as for example by sulfate-reducing bacteria, iron-reducing bacteria, and methanogenic archaea. For these prokaryotes certain lipid biomarkers such as hopanoids, terminally-branched fatty acids (bacteria) and isoprenoids (archaea) are characteristic. Two different types of concretions were studied: a) Upper Miocene septarian calcite concretions of the southern Vienna Basin embedded in brackish sediments represented by partly bituminous calcareous sands, silts and clays; b) Paleocene-Eocene siderite concretions enclosed in marine, sandy to silty turbidites with varying carbonate contents and marl layers from the Upper Gosau Subgroup in northern Styria. Calcite concretions consist of abundant calcite microspar (80-90 vol.%), as well as detrital minerals and iron oxyhydroxides. The septarian cracks show beginning cementation with dog-tooth calcite to varying degrees. Framboidal pyrite occurs in some of the calcite concretions, pointing to bacterial sulfate reduction. Siderite concretions consist of even finer carbonate crystals, mainly siderite (40-70 vol.%) but also abundant ferroan calcite, accompanied by iron oxyhydroxides and detrital minerals. The δ13C values of the calcite concretions (-6.8 to -4.1o ) most likely reflect a combination of bacterial organic matter oxidation and input of marine biodetrital carbonate. The δ18O values range from -8.9 to -7.8o agreeing with a formation within a meteoric environment. The surrounding host sediment shows about 1-2o higher δ13C and δ18O values. The siderite δ13C values (-11.1 to -7.5o ) point to microbial respiration of organic carbon and the δ18O values (-3.5 to +2.2o ) agree with a marine depositional environment. In contrast to the calcite concretions, the stable isotope

  16. X-ray dose response of calcite-A comprehensive analysis for optimal application in TL dosimetry

    Science.gov (United States)

    Kalita, J. M.; Wary, G.

    2016-09-01

    The effect of various annealing treatments on dosimetric characteristics of orange calcite (CaCO3) mineral has been studied in detail. Quantitative analysis on the dose response shows that the 573 K annealed sample showed sublinear dose response from 10 mGy to 1 Gy. The fading and reproducibility of this sample are also good enough for dosimetric application. However, a specific annealing treatment after irradiation shows some significant improvements in the dosimetric characteristics of the sample. The 773 K pre-annealed sample, after X-ray irradiation post-annealing at 340 K for 6 min provides linear dose response from 10 mGy to 3.60 Gy, very less fading and good reproducibility. Moreover, this sample after post-annealing at 380 K for 6 min shows linear dose response from 10 mGy to 5.40 Gy when analyzed from the ∼408 K thermoluminescence (TL) glow peak. Analysis of TL glow curves confirmed that the 1.30 eV trap center in calcite crystal is the most effective trapping site for dosimetric application.

  17. A global deglacial negative carbon isotope excursion in speleothem calcite

    Science.gov (United States)

    Breecker, D.

    2015-12-01

    δ13C values of speleothem calcite decreased globally during the last deglaciation defining a carbon isotope excursion (CIE) despite relatively constant δ13C values of carbon in the ocean-atmosphere system. The magnitude of the CIE varied with latitude, increasing poleward from ~2‰ in the tropics to as much as 7‰ at high latitudes. This recent CIE provides an interesting comparison with CIEs observed in deep time. A substantial portion of this CIE can be explained by the increase in atmospheric pCO2 that accompanied deglaciation. The dependence of C3 plant δ13C values on atmospheric pCO2 predicts a 2‰ δ13C decrease driven by the deglacial pCO2 increase. I propose that this signal was transferred to caves and thus explains nearly 100% of the CIE magnitude observed in the tropics and no less than 30% at the highest latitudes in the compilation. An atmospheric pCO2 control on speleothem δ13C values, if real, will need to be corrected for using ice core data before δ13C records can be interpreted in a paleoclimate context. The decrease in the magnitude of the equilibrium calcite-CO2 carbon isotope fractionation factor explains a maximum of 1‰ of the CIE at the highest northern latitude in the compilation, which experienced the largest deglacial warming. Much of the residual extratropical CIE was likely driven by increasing belowground respiration rates, which were presumably pronounced at high latitudes as glacial retreat exposed fresh surfaces and/or vegetation density increased. The largest increases in belowground respiration would have therefore occurred at the highest latitudes, explaining the meridional trend. This work supports the notion that increases in atmospheric pCO2 and belowground respiration rates can result in large CIEs recorded in terrestrial carbonates, which, as previously suggested, may explain the magnitude of the PETM CIE as recorded by paleosol carbonates.

  18. Carbon and oxygen isotopes in apatite CO2 and co-existing calcite

    International Nuclear Information System (INIS)

    Carbon and oxygen isotopes were analyzed in carbonate apatite CO2 and in co-existing calcite. Both C and O in apatite CO2 are enriched in the respective light isotopes relative to calcite. These results confirm the proposition that carbonate is part of the apatite structure

  19. Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus;

    2011-01-01

    The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite was stud....... Generally the model captures the variation in phosphate adsorption onto calcite as a function of solution composition, though it was necessary to include two types of sorption sites (strong and weak) in the model to reproduce the convex shape of the sorption isotherms.......The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite...... was studied in 11 different calcite-equilibrated solutions that varied in pH, PCO2, ionic strength and activity of Ca2+, CO32- and HCO3-. Our results show strong sorption of phosphate onto calcite. The kinetics of phosphate sorption onto calcite are fast; adsorption is complete within 2–3h while desorption...

  20. Highly birefringent crystal for Raman transitions with phase modulators

    Science.gov (United States)

    Arias, Nieves; Abediyeh, Vahide; Hamzeloui, Saeed; Jeronimo-Moreno, Yasser; Gomez, Eduardo

    2016-05-01

    We present a system to excite Raman transitions with minimum phase noise. The system uses a phase modulator to generate the phase locked beams required for the transition. We use a long calcite crystal to filter out one of the sidebands, avoiding the cancellation that appears at high detunings for phase modulation. The measured phase noise is limited by the quality of the microwave synthesizer. We use the calcite crystal a second time to produce a co-propagating Raman pair with perpendicular polarizations to drive velocity insensitive Raman transitions. Support from CONACYT and Fundacion Marcos Moshinsky.

  1. Influence of surface conductivity on the apparent zeta potential of calcite

    CERN Document Server

    Li, Shuai; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-01-01

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength < 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted ...

  2. Complex vibrational analysis of an antiferroelectric liquid crystal based on solid-state oriented quantum chemical calculations and experimental molecular spectroscopy.

    Science.gov (United States)

    Drużbicki, Kacper; Mikuli, Edward; Kocot, Antoni; Ossowska-Chruściel, Mirosława Danuta; Chruściel, Janusz; Zalewski, Sławomir

    2012-08-01

    The experimental and theoretical vibrational spectroscopic study of one of a novel antiferroelectric liquid crystals (AFLC), known under the MHPSBO10 acronym, have been undertaken. The interpretation of both FT-IR and FT-Raman spectra was focused mainly on the solid-state data. To analyze the experimental results along with the molecular properties, density functional theory (DFT) computations were performed using several modern theoretical approaches. The presented calculations were performed within the isolated molecule model, probing the performance of modern exchange-correlations functionals, as well as going beyond, i.e., within hybrid (ONIOM) and periodic boundary conditions (PBC) methodologies. A detailed band assignment was supported by the normal-mode analysis with SQM ab initio force field scaling. The results are supplemented by the noncovalent interactions analysis (NCI). The relatively noticeable spectral differences observed upon Crystal to AFLC phase transition have also been reported. For the most prominent vibrational modes, the geometries of the transition dipole moments along with the main components of vibrational polarizability were analyzed in terms of the molecular frame. One of the goals of the paper was to optimize the procedure of solid-state calculations to obtain the results comparable with the all electron calculations, performed routinely for isolated molecules, and to test their performance. The presented study delivers a complex insight into the vibrational spectrum with a noticeable improvement of the theoretical results obtained for significantly attracting mesogens using modern molecular modeling approaches. The presented modeling conditions are very promising for further description of similar large molecular crystals. PMID:22709148

  3. Interfacial dislocations in (111) oriented (Ba{sub 0.7}Sr{sub 0.3})TiO{sub 3} films on SrTiO{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xuan [National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Science, and Collaborative Innovation Center of Advanced Materials, Nanjing University, Nanjing 210093 (China); Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States); Yamada, Tomoaki [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Lin, Ruoqian; Xin, Huolin L.; Su, Dong, E-mail: dsu@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States); Kamo, Takafumi; Funakubo, Hiroshi [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Wu, Di [National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, College of Engineering and Applied Science, and Collaborative Innovation Center of Advanced Materials, Nanjing University, Nanjing 210093 (China)

    2015-10-05

    We have investigated the interfacial structure of epitaxial (Ba,Sr)TiO{sub 3} films grown on (111)-oriented SrTiO{sub 3} single-crystal substrates using transmission electron microscopy (TEM) techniques. Compared with the (100) epitaxial perovskite films, we observe dominant dislocation half-loop with Burgers vectors of a〈110〉 comprised of a misfit dislocation along 〈112〉, and threading dislocations along 〈110〉 or 〈100〉. The misfit dislocation with Burgers vector of a〈110〉 can dissociate into two ½a〈110〉 partial dislocations and one stacking fault. We found the dislocation reactions occur not only between misfit dislocations, but also between threading dislocations. Via three-dimensional electron tomography, we retrieved the configurations of the threading dislocation reactions. The reactions between threading dislocations lead to a more efficient strain relaxation than do the misfit dislocations alone in the near-interface region of the (111)-oriented (Ba{sub 0.7}Sr{sub 0.3})TiO{sub 3} films.

  4. Holographic liquid crystal devices

    OpenAIRE

    Pavani, Kotakonda, (Thesis)

    2009-01-01

    Liquid crystals have become natural candidates for use in electro-optic devices for their ability to change the orientation of the director with the application of an electric field, and exhibiting large range of refractive index. The aim of the work presented in this thesis is to fabricate liquid crystal optoelectronic devices such as electrically switchable liquid crystal diffraction gratings and polarization rotators by exploiting the holographic surface relief effect in photopolymer and b...

  5. STRONTIUM ISOTOPE EVOLUTION OF PORE WATER AND CALCITE IN THE TOPOPAH SPRING TUFF, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Yucca Mountain, a ridge of Miocene volcanic rocks in southwest Nevada, is being characterized as a site for a potential high-level radioactive waste repository. One issue of concern for the future performance of the potential repository is the movement of water in and around the potential repository horizon. Past water movement in this unsaturated zone is indicated by fluid inclusions trapped in calcite coatings on fracture footwall surfaces and in some lithophysal cavities. Some of the fluid inclusions have homogenization temperatures above the present-day geotherm (J.F. Whelan, written communication), so determining the ages of the calcite associated with those fluid inclusions is important in understanding the thermal history of the potential repository site. Calcite ages have been constrained by uranium-lead dating of silica polymorphs (opal and chalcedony) that are present in most coatings. The opal and chalcedony ages indicate that deposition of the calcite and opal coatings in the welded part of the Topopah Spring Tuff (TSw hydrogeologic unit) spanned nearly the entire history of the 12.8-million-year-old rock mass at fairly uniform overall long-term rates of deposition (within a factor of five). Constraining the age of a layer of calcite associated with specific fluid inclusions is complicated. Calcite is commonly bladed with complex textural relations, and datable opal or chalcedony may be millions of years older or younger than the calcite layer or may be absent from the coating entirely. Therefore, a more direct method of dating the calcite is presented in this paper by developing a model for strontium evolution in pore water in the TSw as recorded by the strontium coprecipitated with calcium in the calcite. Although the water that precipitated the calcite in fractures and cavities may not have been in local isotopic equilibrium with the pore water, the strontium isotope composition of all water in the TSw is primarily controlled by water

  6. Uranium isotope fractionation during coprecipitation with aragonite and calcite

    Science.gov (United States)

    Chen, Xinming; Romaniello, Stephen J.; Herrmann, Achim D.; Wasylenki, Laura E.; Anbar, Ariel D.

    2016-09-01

    Natural variations in 238U/235U of marine calcium carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ∼7.5 and ∼8.5 to study possible U isotope fractionation during incorporation into these minerals. Small but significant U isotope fractionation was observed in aragonite experiments at pH ∼8.5, with heavier U isotopes preferentially enriched in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007 + 0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ∼7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3(aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism. These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2 , Ca2+, or Mg2+ concentrations. In general, these effects are likely to be small (<0.13‰), but are nevertheless potentially significant because of the small natural range of

  7. U-Th dating of calcitic corals from the Red Sea

    Science.gov (United States)

    Stein, M.; Yehudai, M.; Kohn, N.; Shaked, Y.; Agnon, A.; Lazar, B.

    2013-12-01

    Pristine aragonite skeletons of reef building corals can be rapidly recrystallized to calcite by the interaction of the corals with freshwater in coastal aquifers. The aragonite/calcite transformation is accompanied by opening the coral's U-Th isotope system in which uranium is partly lost while Th remains adsorbed and reincorporates into the newly formed calcite. Depending on the geological setting of the reef, the corals may incorporate secondary aragonite with higher U and 234U/238U isotope ratio, while still submerged, before the recrystallization process. Recrystallization to calcite occurs during sea level drop or coast tectonic uplift and later may follow a subaerial closed system decay scheme. In this study we examine the behavior of the U and Th in calcitic corals from the last interglacial reefs at the northern Gulf of Aqaba. We analyzed several subsamples from selected reef coral skeletons in an attempt to follow the recrystallization scheme of the corals and find a reliable method to estimate the age of these heavily altered corals. The main assumptions were that all subsamples from the same coral have identical deposition age and the sub-samples Th (and hence 230Th) was fully preserved during recrystallization to calcite (increasing the 230Th/238U isotope ratio). Diagenesis to calcite occurred several thousand years after the initial precipitation of the aragonitic skeleton. This calls for wetter (than present) conditions during the last interglacial in the currently hyperarid northern Red Sea.

  8. Preferred orientation of ettringite in concrete fractures

    KAUST Repository

    Wenk, Hans-Rudolf

    2009-05-15

    Sulfate attack and the accompanying crystallization of fibrous ettringite [Ca6Al2(OH)12(SO4) 3·26H2O] cause cracking and loss of strength in concrete structures. Hard synchrotron X-ray microdiffraction is used to quantify the orientation distribution of ettringite crystals. Diffraction images are analyzed using the Rietveld method to obtain information on textures. The analysis reveals that the c axes of the trigonal crystallites are preferentially oriented perpendicular to the fracture surfaces. By averaging single-crystal elastic properties over the orientation distribution, it is possible to estimate the elastic anisotropy of ettringite aggregates. © 2009 International Union of Crystallography.

  9. Distribution of Minor Elements in Calcite From the Unsaturated Zone at Yucca Mountain, Nevada

    Science.gov (United States)

    Marshall, B. D.; Whelan, J. F.

    2001-12-01

    Calcite is sporadically distributed in fractures and cavities in the volcanic rocks that form the 500- to 700-m-thick unsaturated zone at Yucca Mountain. Previous work has shown that the calcite precipitated from water moving downward through the unsaturated zone since the volcanic rocks were emplaced approximately 13 Ma. Calcite thus serves as a proxy for the chemistry and amounts of past percolation, two parameters that are important in predictions of the future behavior of the potential radioactive waste repository at Yucca Mountain. Latest calcite, which began forming between approximately 5 and 2 Ma, typically displays fine-scale growth zoning defined by distributions of Mn (inferred from cathodoluminescence), Mg, and Sr. Electron microprobe (EPMA) mapping of outermost calcite reveals Mg growth zoning1 and higher overall concentrations of Mg in late calcite than in older calcite. Micro X-ray fluorescence (micro-XRF) maps were obtained by slow rastering of the samples over a 100-watt X-ray source collimated through a final aperture of 100 μ m. Although the spatial resolution of the micro-XRF mapping is much less than that of EPMA, this technique reveals distributions of some elements to which EPMA is less sensitive. Micro-XRF maps show that Sr is spatially correlated with Mg; Sr concentrations range to 500 μ g/g at the resolution of the 100-μ m collimator. Because both Mg and Sr have similar calcite-water distribution coefficients much less than one, the Mg/Sr in calcite reflects the Mg/Sr of the water that precipitated the calcite. The distribution coefficient for Mn is greater than one and variations in Mn are not correlated with Mg and Sr. Covariation of Mg and Sr in the percolating water may be explained by reactions that affect the rate of uptake of chemical constituents from the overlying rock and soil, and/or evaporation. Late calcite has lower δ 13C values, probably due to a regional change from wetter to drier climate conditions. The higher Mg and

  10. Recurrent Pure Calcite Urolithiasis Confirmed by Endoscopic Removal and Infrared Spectroscopy in a Malnourished Anorectic Female

    Science.gov (United States)

    Andreassen, Kim Hovgaard; Sloth Osther, Palle Jörn

    2016-01-01

    Abstract Often when calcite is found as a component of urinary calculi, they are considered false calculi or artifacts. We present a case of true calcite urolithiasis. The stone material was removed percutaneously from a severely malnourished anorectic woman and analyzed by infrared spectroscopy (IRS). In addition, calcite urolithiasis was confirmed in several recurrent stone events by IRS. Laxative abuse with magnesium oxide was believed to be the underlying cause of stone formation, and ammonium chloride given as one weekly dose turned out to be effective for stone prevention. PMID:27579419

  11. Comparison of galvanic displacement and electroless methods for deposition of gold nanoparticles on synthetic calcite

    Indian Academy of Sciences (India)

    Chamarthi K Srikanth; P Jeevanandam

    2012-11-01

    Gold nanoparticles have been deposited on synthetic calcite substrate by galvanic displacement reaction and electroless deposition methods. A comparative study has shown that electroless deposition is superior compared to galvanic displacement reaction for uniform deposition of gold nanoparticles on calcite. Characterization of the samples, prepared by two different deposition methods, was carried out by X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy (FE–SEM) and diffuse reflectance spectroscopy (DRS) measurements. FE–SEM studies prove that smaller nanoparticles of gold are deposited uniformly on calcite if electroless deposition method was employed and DRS measurements show the characteristic surface plasmon resonance of gold nanoparticles.

  12. Crystal orientation effects on implantation of low-energy hydrogen, helium and hydrogen/helium mixtures in plasma-facing tungsten surfaces

    Science.gov (United States)

    Linn, Brian C.

    The development of plasma-facing materials (PFM) is one of the major challenges in. realizing fusion reactors. Materials deployed in PFMs must be capable of withstanding the high-flux of low-energy hydrogen and helium ions omitted from the plasma. while not hindering the plasma. Tungsten is considered a promising candidate material due to desirable material properties including its high melting temperature, good thermal conductivity and relatively low physical and chemical sputtering yields. This thesis uses molecular dynamic simulations to investigate helium and hydrogen bombardment of tungsten and the underlying physical effects (e.g. sputtering, erosion, blistering). Non-cumulative and cumulative bombardment simulations of helium, hydrogen, and hydrogen/helium bombardment of tungsten were modeled using the molecular dynamics code LAMMPS. Two orientations of monocrystalline bcc tungsten surfaces were considered, (001) and (111). Simulations were performed for temperatures ranging from 600K up to 1500K and helium / hydrogen incident energies of 20eV to 100eV . The results of these simulations showed the effect of temperature and incident particle energy on retention rates and implantation/deposition profiles in tungsten.

  13. Nanoscale observations of the effect of citrate on calcium oxalate precipitation on calcite surfaces.

    Science.gov (United States)

    Burgos-Cara, Alejandro; Ruiz-Agudo, Encarnacion; Putnis, Christine V.

    2016-04-01

    Calcium oxalate (CaC2O4ṡxH2O) minerals are naturally occurring minerals found in fossils, plants, kidney stones and is a by-product in some processes such as paper, food and beverage production [1,2]. In particular, calcium oxalate monohydrate phase (COM) also known as whewellite (CaC2O4ṡH2O), is the most frequently reported mineral phase found in urinary and kidney stones together with phosphates. Organic additives are well known to play a key role in the formation of minerals in both biotic and abiotic systems, either facilitating their precipitation or hindering it. In this regard, recent studies have provided direct evidence demonstrating that citrate species could enhance dissolution of COM and inhibit their precipitation. [3,4] The present work aims at evauate the influence of pH, citrate and oxalic acid concentrations in calcium oxalate precipitation on calcite surfaces (Island Spar, Chihuahua, Mexico) through in-situ nanoscale observation using in situ atomic force microscopy (AFM, Multimode, Bruker) in flow-through experiments. Changes in calcium oxalate morphologies and precipitated phases were observed, as well as the inhibitory effect of citrate on calcium oxalate precipitation, which also lead to stabilization an the amorphous calcium oxalate phase. [1] K.D. Demadis, M. Öner, Inhibitory effects of "green"additives on the crystal growth of sparingly soluble salts, in: J.T. Pearlman (Ed.), Green Chemistry Research Trends, Nova Science Publishers Inc., New York, 2009, pp. 265-287. [2] M. Masár, M. Zuborová, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci. 26 (2003) 647-652. [3] Chutipongtanate S, Chaiyarit S, Thongboonkerd V. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. Eur J Pharmacol 2012;689:219-25. [4] Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ

  14. Stimulated Globular Scattering of Laser Radiation in Photonic Crystals: Temperature Dependences

    CERN Document Server

    Gorelik, V S; Tcherniega, N V; Vodchits, A I

    2007-01-01

    Stimulated globular scattering (SGS) characteristics (frequency shifts, threshold, conversion efficiency) have been studied in photonic crystals (synthetic opal matrices and opal nanocomposites) at different temperatures. Results have been compared with stimulated Raman scattering investigations in calcite single crystals. In both cases temperature lowering from +20 C to -196 C resulted in the stimulated scattering energy increase and its redistribution to the higher order components.

  15. Calcium sulfoaluminate (Ye'elimite) hydration in the presence of gypsum, calcite, and vaterite

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Craig W. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States); Telesca, Antonio [School of Engineering, University of Basilicata, Potenza (Italy); Monteiro, Paulo J.M., E-mail: monteiro@ce.berkeley.edu [Department of Civil and Environmental Engineering, University of California, Berkeley, CA (United States)

    2014-11-15

    Six calcium sulfoaluminate-based cementitious systems composed of calcium sulfoaluminate, calcite, vaterite, and gypsum were cured as pastes and mortars for 1, 7, 28 and 84 days. Pastes were analyzed with X-ray diffraction, thermogravimetric and differential thermal analyses. Mortars were tested for compressive strength, dimensional stability and setting time. Furthermore, pastes with a water/cementitious material mass ratio of 0.80 were tested for heat evolution during the first 48 h by means of isothermal conduction calorimetry. It has been found that: (1) both calcite and vaterite reacted with monosulfoaluminate to give monocarboaluminate and ettringite, with vaterite being more reactive; (2) gypsum lowered the reactivity of both carbonates; (3) expansion was reduced by calcite and vaterite, irrespective of the presence of gypsum; and (4) both carbonates increased compressive strength in the absence of gypsum and decreased compressive strength less in the presence of gypsum, with vaterite's action more effective than that of calcite.

  16. Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines

    Science.gov (United States)

    Greer, Heather F.; Zhou, Wuzong; Guo, Li

    2015-08-01

    A travertine specimen collected from the western part of Yunnan Province of China was subjected to microstructural analysis by powder X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. A new formation mechanism was proposed whereby polycrystalline rhombohedral particles of magnesium-containing calcite underwent a phase transformation into sheaf-like clusters of aragonite microrods. It is proposed that a high concentration of magnesium ions and embedded biological matter poisoned the growth of calcite and therefore instigated the phase transformation of the core of the rhombohedral calcite particles to an aragonite phase with a higher crystallinity. The single crystalline aragonite microrods with a higher density than the Mg-calcite nanocrystallites grew at the expense of the latter to generate sheaf-like clusters. This newly discovered formation mechanism is expected to enhance previous knowledge on this geologically important phase transformation from a morphology point of view.

  17. Chiral morphology of calcite through selective binding of amino acids

    Science.gov (United States)

    Orme, Christine

    2002-03-01

    Many living organisms contain biominerals and composites with finely tuned properties, reflecting a remarkable level of control over the nucleation, growth and shape of the constituent crystals. Peptides and proteins play an important role in achieving this control. Using in situ AFM we find that site-specific binding of amino acid residues to surface steps changes the step-edge free energies, giving rise to direction-specific binding energies unique to individual amino acid enantiomers and leading to chiral modifications that propagate from atomic length scales to macroscopic length scales. Molecular modeling studies support an energetic basis for the differences in binding. Our results emphasize that the mechanism under-lying crystal modification through organic molecules is best understood by considering both stereochemical recognition as well as the effects of binding on the interfacial energies of the growing crystal.

  18. Low-Temperature Plasticity of Naturally Deformed Calcite Rocks

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Optical, cathodoluminescence and transmission electron microscope (TEM) analyses were conducted onfour groups of calcite fault rocks, a cataclastic limestone, cataclastic coarse-grained marbles from two fault zones, and afractured mylonite. These fault rocks show similar microstructural characteristics and give clues to similar processes ofrock deformation. They are characterized by the structural contrast between macroscopic cataclastic (brittle) andmicroscopic mylonitic (ductile) microstructures. Intragranular deformation microstructures (i.e. deformation twins, kinkbands and microfractures) are well preserved in the deformed grains in clasts or in primary rocks. The matrix materials areof extremely fine grains with diffusive features. Dislocation microstructures for co-existing brittle deformation andcrystalline plasticity were revealed using TEM. Tangled dislocations are often preserved at the cores of highly deformedclasts, while dislocation walls form in the transitions to the fine-grained matrix materials and free dislocations, dislocationloops and dislocation dipoles are observed both in the deformed clasts and in the fine-grained matrix materials. Dynamicrecrystallization grains from subgrain rotation recrystallization and subsequent grain boundary migration constitute themajor parts of the matrix materials. Statistical measurements of densities of free dislocations, grain sizes of subgrains anddynamically recrystallized grains suggest an unsteady state of the rock deformation. Microstructural andcathodoluminescence analyses prove that fluid activity is one of the major parts of faulting processes. Low-temperatureplasticity, and thereby induced co-existence of macroscopic brittle and microscopic ductile microstmctures are attributedto hydrolytic weakening due to the involvement of fluid phases in deformation and subsequent variation of rock rheology.During hydrolytic weakening, fluid phases, e.g. water, enhance the rate of dislocation slip and climb, and

  19. Calcite Formation in Soft Coral Sclerites Is Determined by a Single Reactive Extracellular Protein*

    OpenAIRE

    Rahman, M. Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-01-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, so...

  20. Precipitation of Calcite during the Deposition of Paleogene Sangkarewang Oil Shale, Ombilin Basin, West Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Haris Widayat

    2015-12-01

    Full Text Available Geochemical and petrographical analyses were carried out to investigate the occurrence of calcite in theformer Ombilin lacustrine lake. The study involves eight samples taken from a 56 m long drill core of Sangkarewangoil shale. Geochemical investigation showed that the samples consist of varied terrigenous input represented by Si, Al, K, and Ti, and autochthonous input represented by S, total organic carbon (TOC, and d13C of bulk organic matter. Along the drill core profile the abundance of autochthonous input decreases upwards, while that of terrigenous input oppositely increases upwards. Petrographical analysis revealed that calcite is a major mineral in the samples. In this study, the abundance of calcite could be represented by the abundance of Ca, as calcite is the only significant Ca containing mineral. Ca is abundant in the samples (8.4% in average and its concentration varies similarly with those of S, TOC, and d13C, suggesting that the element as well as calcite incorporates the autochthonous input. Thevariation of calcite abundance in the drill core profile is considered to be related with primary productivity changes during the development of the former lake. Higher primary productivity represented by more positive of d13C value(-24.8‰ during the deposition of the lower part of the drill core profile promoted the higher amount of deposited organic matter. In such environment, the supersaturation of carbonate ion in lake water was also reached and significant precipitation of authigenic calcite occurred. As the lake developed, the primary productivity decreased as indicated by more negative of d13C value (eventually -26.8‰. This condition led to the decreases of deposited organic matterand calcite in the lake sediments.

  1. Molecular dynamics simulation of adsorption of an oil-water-surfactant mixture on calcite surface

    Institute of Scientific and Technical Information of China (English)

    Lu Guiwu; Zhang Xuefen; Shao Changjin; Yang Hong

    2009-01-01

    An interface super molecular structure model for oil-water-surfactant mixture and calcite was established. By using a molecular dynamics method, the effects of rhamnolipid, sodium dodecyl benzene sulfonate and sodium hexadecyl sulfonate on the interface adsorption behavior of oil molecules were investigated. It was found that these three surfactants could reduce oil-calcite interface binding energy, and play a role of oil-displacing agent.

  2. Origin of sulfate in barite and calcite cements in the Jebel Madar salt dome (Oman)

    Science.gov (United States)

    Vandeginste, V.; John, C. M.; Gilhooly, W. P.

    2012-12-01

    Jebel Madar is a 500-m high mountain rising in the desert at the Oman Foothills. The Jebel consists of Triassic to Cretaceous carbonate host rocks forming the carapace of a salt dome. Halokinesis caused major fracturing and faulting at Jebel Madar, and the resulting structures acted as the main pathways for fluids that generated diagenetic cements composed of both barite and calcite. The spatial distribution of calcite and barite occurrences shows that calcite is formed in large abundance along the three main faults, whereas barite is more concentrated along faults further away from the three main ones. The stable carbon and oxygen isotope composition of calcite and fluid inclusion data from both calcite and barite show a distinct evolution of the fluid with a highly saline component towards more mixing with meteoric water. This is in agreement with clumped isotopes data on calcite cements indicating an evolution towards lower temperatures, consistent with doming of the Jebel and greater input of lower-temperature descending meteoric fluids. Here, we present sulphur and oxygen isotopic data on barite that suggest a link between the barite formation and the Precambrian salt underlying Jebel Madar. The average δ34S measured in barite is 33‰ CDT (1σ = 5‰; n = 33), which falls at the lower end of the δ34S range reported for the Ara Group anhydrite. The average δ18O in the same barite samples is 23‰ VSMOW (1σ = 2‰; n = 33). Data from the barite will be compared with sulphur isotopes from the carbonate-associate sulfate in the calcite cements. The overall goal of our research is to gain a better insight in the formation process of barite and calcite in Jebel Madar and its link with salt tectonics. We would like to acknowledge the financial support of QCCSRC (funded jointly by Qatar Petroleum, Shell and the Qatar Science & Technology Park) and the GSA Laubach fund for this study.

  3. Growth rate effects on Mg/Ca and Sr/Ca ratios constrained by belemnite calcite

    Science.gov (United States)

    Vinzenz Ullmann, Clemens

    2016-04-01

    Multiple temperature proxies from single species are important to achieve robust palaeotemperature estimates. Besides the commonly employed oxygen isotope thermometer, also Mg/Ca and Sr/Ca ratios perform well as proxies for calcification temperature in the shells of some species. While salinity changes affect the ratios of earth alkaline elements much less than the δ18O thermometer, metabolic effects may exert a strong control on the expression of element ratios. Such effects are hard to study because biomineralization experiments have to overcome large intraspecific variability and can hardly ever isolate the controls of a single parameter on shell geochemistry. The unique geometry of the belemnite rostrum constitutes an exception to this rule. Its shape, large size, and the visibility of growth increments as bands enable the analysis of multiple, correlatable, high resolution geochemical profiles in a single fossil. The effects of the growth rate variability amongst these profiles on Mg/Ca and Sr/Ca ratios has been tested here. Within a specimen of Passaloteuthis bisulcata (Early Toarcian, Cleveland Basin, UK), Mg/Ca and Sr/Ca data were obtained from four profiles. With respect to growth rate in the first profile, which was taken as a reference, the relative growth rates in the remaining three profiles varied by a factor of 0.9 to 2.7. Results suggest that relative growth rate is linearly correlated with Mg/Ca and Sr/Ca, with a decrease of Mg/Ca by 8 % and increase of Sr/Ca by 6 % per 100 % increase in relative growth rate. The observed trends are consistent with abiogenic precipitation experiments and suggest that crystal precipitation rate exerts a significant, predictable control on the element distribution in biogenic calcite.

  4. NMR characterization of hydrocarbon adsorption on calcite surfaces: a first principles study.

    Science.gov (United States)

    Bevilaqua, Rochele C A; Rigo, Vagner A; Veríssimo-Alves, Marcos; Miranda, Caetano R

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca(2+). Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO3 (101¯4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for (43)Ca, (13)C, and (17)O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  5. NMR characterization of hydrocarbon adsorption on calcite surfaces: a first principles study.

    Science.gov (United States)

    Bevilaqua, Rochele C A; Rigo, Vagner A; Veríssimo-Alves, Marcos; Miranda, Caetano R

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca(2+). Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO3 (101¯4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for (43)Ca, (13)C, and (17)O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated. PMID:25429955

  6. Ion beam modifications of defect sub-structure of calcite cleavages

    Indian Academy of Sciences (India)

    E Venkateshwar Rao; M Ramakrishna Murthy

    2008-04-01

    Experimental investigations on the defect sub-structure and surface modifications, brought about by He+ ion-bombardment of calcite cleavages (100), have been carried out. Optical and scanning electron microscopic investigations revealed drastic modifications on the surface morphology, local symmetry and defect concentration. Additional structural defects on ion-bombardment of calcite surfaces also have been observed. Changes in shape and form of chemical etch pits are found to be a function of ion-beam energy, as studied by optical microscopy. Radiation damage in calcite has been attributed mainly due to desorption of CO$^{-2}_{3}$ ions from the calcite surfaces, on irradiation. Measurements of surface conductivity on irradiated calcite surfaces have been made employing a four-probe technique. Enhancement of surface conductivity has been considered to be due to an increase in concentration of CO$^{-2}_{3}$ ions formed, on ion irradiation and subsequent thermal stimulation. Planar plastic anisotropy has been studied on irradiated calcite cleavages by measurement of microhardness.

  7. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bevilaqua, Rochele C. A.; Miranda, Caetano R. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Rigo, Vagner A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR (Brazil); Veríssimo-Alves, Marcos [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Departamento de Física, ICEx, Universidade Federal Fluminense, UFF, Volta Redonda, RJ (Brazil)

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  8. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    International Nuclear Information System (INIS)

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca2+. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO3 (101¯4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for 43Ca, 13C, and 17O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated

  9. Dispersion properties of transverse anisotropic liquid crystal core photonic crystal fibers

    Science.gov (United States)

    Karasawa, Naoki

    2016-04-01

    The dispersion properties of liquid crystal core photonic crystal fibers for different core diameters have been calculated by a full vectorial finite difference method. In calculations, air holes are assumed to be arranged in a regular hexagonal array in fused silica and a central hole is filled with liquid crystal to create a core. In this study, three types of transverse anisotropic configurations, where liquid crystal molecules are oriented in a transverse plane, and a planar configuration, where liquid crystal molecules are oriented in a propagation direction, are considered. The large changes of the dispersion properties are found when the orientation of the liquid crystal molecules is changed from a planar configuration to a uniform configuration, where all molecules are oriented in the same direction in a transverse plane. Since the orientation of liquid crystal molecules may be controlled by applying an electric field, it could be utilized for various applications including the spectral control of supercontinuum generation.

  10. Tropical Silurian Paleotemperatures from Clumped Isotope Analysis of Coexisting Dolomite and Calcite

    Science.gov (United States)

    Winkelstern, I. Z.; Lohmann, K. C.

    2013-12-01

    In many instances, pervasive diagenetic alteration of original material prevents the use of quantitative climate proxies on Paleozoic or older rocks. As an inherently diagenetic phase, dolomite may provide a more resilient paleotemperature resource. The Δ47 carbonate clumped isotope thermometer has been shown to be an accurate paleothermometer and, in a limited way, has been shown to be applicable to dolomites. The shallow water carbonates of the Pipe Creek Jr. Reef in central Indiana offer an opportunity to test the viability of the technique in ancient dolomite. After formation in the late Silurian, a sea level drop resulted in a diagenetic sequence of meteoric phreatic alteration of marine cement and biotic components, which included precipitation of dolomite cements inter-grown within the meteoric phreatic calcite cement. This was post-dated by a coarse void filling calcite spar formed at burial temperatures of ~100°C (based on fluid inclusion analysis). Preliminary analyses of coexisting dolomite and calcite suggest that near-surface temperatures are preserved in dolomites despite having experienced elevated thermal diagenetic effects.. In contrast, co-existing early-formed calcites exhibit resetting of earth surface temperatures to elevated values. Δ47 measurements in dolomites yield temperatures around 30°C using the Guo et al., (2009) theoretical calibration. This contrasts with analyses of early (original) and late (hydrothermal) calcites, which record temperatures greater than ~80°C using the Δ47-calcite calibration of Dennis and Schrag (2010). These data support the hypothesis that dolomite can be a more resilient paleotemperature proxy relative to calcite in deep-time studies. Temperatures from dolomites compare reasonably with other late Silurian paleoclimate studies, and offer insight into regional-scale paleoclimate.

  11. The influence of final repository relevant electrolyte on the interaction of trivalent lanthanides and actinides with calcite; Der Einfluss endlagerrelevanter Elektrolyte auf die Wechselwirkung dreiwertiger Lanthanide und Actinide mit Calcit

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Sascha

    2015-10-21

    Calcite, a naturally occurring and very abundant mineral, is considered a potential retentive geochemical barrier regarding nuclear waste disposal. In this work, the reactivity of calcite towards trivalent Ln and An has been determined by spectroscopic, microscopic and X-ray scattering techniques. This, in connection with the use of luminescent probes Eu(III) and Cm(III), allowed for the understanding of electrolyte influences on the retention potential of calcite.

  12. Orienteering club

    CERN Document Server

    Club d'orientation

    2015-01-01

    Course d'orientation La reprise des courses d’orientation était attendue dans la région puisque près de 150 coureurs ont participé à la première épreuve automnale organisée par le club d’orientation du CERN sur le site de La Faucille. Les circuits ont été remportés par Yann Locatelli du club d’Orientation Coeur de Savoie avec 56 secondes d’avance sur Damien Berguerre du club SOS Sallanches pour le parcours technique long, Marie Vuitton du club CO CERN (membre également de l’Equipe de France Jeune) pour le parcours technique moyen avec presque 4 minutes d’avance sur Jeremy Wichoud du club Lausanne-Jorat, Victor Dannecker pour le circuit technique court devant Alina Niggli, Elliot Dannecker pour le facile moyen et Alice Merat sur le facile court, tous membres du club O’Jura. Les résultats comp...

  13. First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO 3 and calcite CaCO 3

    Science.gov (United States)

    Brik, M. G.

    2011-02-01

    Detailed ab initio calculations of the structural, electronic, optical and elastic properties of two crystals - magnesite (MgCO 3) and calcite (CaCO 3) - are reported in the present paper. Both compounds are important natural minerals, playing an important role in the carbon dioxide cycling. The optimized crystal structures, band gaps, density of states diagrams, elastic constants, optical absorption spectra and refractive indexes dependence on the wavelength all have been calculated and compared, when available, with literature data. Both crystals are indirect band compounds, with calculated band gaps of 5.08 eV for MgCO 3 and 5.023 eV for CaCO 3. Both values are underestimated by approximately 1.0 eV with respect to the experimental data. Although both crystals have the same structure, substitution of Mg by Ca ions leads to certain differences, which manifest themselves in noticeable change in the electronic bands profiles and widths, shape of the calculated absorption spectra, and values of the elastic constants. Response of both crystals to the applied hydrostatic pressure was analyzed in the pressure range of phase stability, variations of the lattice parameters and characteristic interionic distances were considered. The obtained dependencies of lattice constants and calculated band gap on pressure can be used for prediction of properties of these two hosts at elevated pressures that occur in the Earth's mantle.

  14. Templated CaCO3 Crystallization by Submicrometer and Nanosized Fibers.

    Science.gov (United States)

    Neira-Carrillo, Andrónico; Gentsch, Rafael; Börner, Hans G; Acevedo, Diego Fernando; Barbero, Cesar Alfredo; Cölfen, Helmut

    2016-09-01

    Electrospun submicrometer-sized poly(ε-caprolactone) (PCL) meshes and nanosized multiwalled carbon nanotubes (MWCNTs) were used as a template for preparing porous and interconnected inorganic-organic hybrid materials composed of CaCO3. Herein, we describe the proportion and incorporation method of submicrometer-sized plasma-treated PCL meshes over areas >1 mm(2) with CaCO3 using three crystallization methods including the use of poly(acrylic acid) (PAA). We found that flexible and rigid acid-functionalized MWCNTs showed a clear capacity and effects to penetrate calcite particles. MWCNTs interacted differently with the individual growth planes of CaCO3, indicating that fibers can undergo changes depending on sulfonate or carboxylate groups, adopt different orientations in solution, and thereby elicit changes in CaCO3 morphology. In summary, the use of PCL and acidic MWCNT fibers as an additive for substrate templates and experimental crystallization provides a viable approach for studying various aspects of biomineralization, including the production of controlled particles, control of porosities, and defined morphologies at microscale and nanoscale levels.

  15. Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus;

    2012-01-01

    The competitive adsorption of arsenate and phosphate onto calcite was studied in batch experiments using calcite-equilibrated solutions. The solutions had circum-neutral pH (7–8.3) and covered a wide span in the activity of Ca2+ and View the MathML source. The results show that the adsorption...... that adsorption of arsenate onto calcite is of minor importance in most groundwater aquifers, as phosphate is often present at concentration levels sufficient to significantly reduce arsenate adsorption. The CD-MUSIC model for calcite was used successfully to model adsorption of arsenate and phosphate separately...

  16. Thermotropic liquid crystals recent advances

    CERN Document Server

    Ramamoorthy, Ayyalusammy

    2007-01-01

    Covers developments in the field of thermotropic liquid crystals and and assesses their functional importance. This text includes chapters covering the applications of high-resolution methods, such as solid-state NMR, that have been used to understand the high-resolution structure, dynamics, orientation, and orientational order of these molecules.

  17. Strontium isotope evolution of pore water and calcite in the Topopah Spring Tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pore water in the Topopah Spring Tuff has a narrow range of (delta)87Sr values that can be calculated from the (delta)87Sr values of the rock considering advection through and reaction with the overlying nonwelded tuffs of the PTn. This model can be extended to estimate the variation of (delta)87Sr in the pore water through time; this approximates the variation of (delta)87Sr measured in calcite fracture coatings. In samples of calcite where no silica can be dated by other methods, strontium isotope data may be the only method to determine ages. In addition, other Sr-bearing minerals in the calcite and opal coatings, such as fluorite, may be dated using the same model

  18. Anomalies in the sound velocities of [011]-oriented Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals studied by using Brillouin light scattering

    Science.gov (United States)

    Kim, Tae Hyun; Kojima, Seiji; Ko, Jae-Hyeon

    2016-06-01

    The acoustic properties of [011]-oriented Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals were studied by using Brillouin spectroscopy over a wide temperature range under unpoled and poled conditions. Poling the crystal along the [011] direction induced significant changes in the sound velocity and the acoustic attenuation coefficient of both the longitudinal and the transverse acoustic modes at several characteristic temperatures. These acoustic anomalies could be attributed to changes in the polar character from macroscopic ferroelectric domains to mesoscopic polar regions along with quasi-static polar nanoregions and then to dynamic polar nanoregions upon heating the poled crystal.

  19. Orienteering Club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Courses d’orientation Une bonne dizaine de clubs étaient représentés samedi dernier à La Faucille pour participer à la  2e manche de la coupe genevoise organisée par le club du CERN. Les 120 coureurs ont pu découvrir des parcours classés "technique". Ceux du Haut-Jura familiarisés à ce type de terrain ont pu sortir leur épingle du jeu et se sont octroyé la victoire sur 4 des 5 circuits. Samedi 21 septembre, la montagne du Haut-Jura était encore plébiscitée puisque les coureurs étaient attendus à Saint Cergue sur la carte des Pralies. Pour les résultats complets de La Faucille et les informations sur la prochaine étape, consultez le site du club http://cern.ch/club-orientation.

  20. The surface reactivity of chalk (biogenic calcite) with hydrophilic and hydrophobic functional groups

    Science.gov (United States)

    Okhrimenko, D. V.; Dalby, K. N.; Skovbjerg, L. L.; Bovet, N.; Christensen, J. H.; Stipp, S. L. S.

    2014-03-01

    The surface properties of calcium carbonate minerals play an important role in a number of industrial and biological processes. Properties such as wettability and adsorption control liquid-solid interface behaviour and thus have a strong influence on processes such as biomineralisation, remediation of aquifers and oil recovery. We investigated how two model molecules of different polarity, namely water and ethanol, interact with reservoir and outcrop chalk samples and we compared their behaviour with that of pure, inorganically precipitated calcite. Thermodynamic quantities, such as the work of wetting, surface energy and isosteric adsorption enthalpy, were determined from vapour adsorption isotherms. The chalks were studied fresh and after extraction of organic residues that were originally present in these samples. The work of wetting correlates with the amount of organic matter present in the chalk samples but we observed a fundamental difference between the adsorption properties of chalk and pure, inorganically precipitated calcite toward the less polar, ethanol molecule. Further analysis of the chemical composition of the organic matter extracted from the chalk samples was made by gas chromatography (GC-MS). Monitoring surface composition by X-ray photoelectron spectroscopy (XPS) before and after extraction of the organic material, and with atomic force microscopy (AFM), showed that nanometer sized clay crystals observed on the chalk particle surfaces could be an important part of the reason for the differences. Removal of the extractable portion of the hydrocarbons liberates adsorption sites that have different wetting properties than the rest of the chalk and these have an energy distribution that is similar to clays. Thus, the results exemplify the complexity of biogenic calcite adsorption behaviour and demonstrate that chalk wetting in drinking water aquifers as well as oil reservoirs is controlled partly by the nanoparticles of clay that have grown on the

  1. Coccolithophore responses to environmental variability in the South China Sea: species composition and calcite content

    Science.gov (United States)

    Jin, Xiaobo; Liu, Chuanlian; Poulton, Alex J.; Dai, Minhan; Guo, Xianghui

    2016-08-01

    Coccolithophore contributions to the global marine carbon cycle are regulated by the calcite content of their scales (coccoliths) and the relative cellular levels of photosynthesis and calcification rates. All three of these factors vary between coccolithophore species and with response to the growth environment. Here, water samples were collected in the northern basin of the South China Sea (SCS) during summer 2014 in order to examine how environmental variability influenced species composition and cellular levels of calcite content. Average coccolithophore abundance and their calcite concentration in the water column were 11.82 cells mL-1 and 1508.3 pg C mL-1, respectively, during the cruise. Water samples can be divided into three floral groups according to their distinct coccolithophore communities. The vertical structure of the coccolithophore community in the water column was controlled by the trophic conditions, which were regulated by mesoscale eddies across the SCS basin. The evaluation of coccolithophore-based calcite in the surface ocean also showed that three key species in the SCS (Emiliania huxleyi, Gephyrocapsa oceanica, Florisphaera profunda) and other larger, numerically rare species made almost equal contributions to total coccolith-based calcite in the water column. For Emiliania huxleyi biometry measurements, coccolith size positively correlated with nutrients (nitrate, phosphate), and it is suggested that coccolith length is influenced by light and nutrients through the regulation of growth rates. Larger-sized coccoliths were also linked statistically to low pH and calcite saturation states; however, it is not a simple cause and effect relationship, as carbonate chemistry was strongly co-correlated with the other key environmental factors (nutrients, light).

  2. Determination of aragonite trace element partition coefficients from speleothem calcite-aragonite transitions

    Science.gov (United States)

    Wassenburg, Jasper A.; Scholz, Denis; Jochum, Klaus Peter; Cheng, Hai; Oster, Jessica; Immenhauser, Adrian; Richter, Detlev K.; Haeger, Tobias; Hoffmann, Dirk; Breitenbach, Sebastian F. M.

    2016-04-01

    Speleothem trace element variability has often been linked to environmental changes. While research has focused on element incorporation into speleothem calcite, our current knowledge of trace element variability in speleothem aragonite is limited to a few studies only. Here we present, to our knowledge, for the first time quantitative estimates of distribution coefficients for speleothem aragonite (DMg, DBa, DSr, and DU). These were derived from ten calcite-to-aragonite transitions from seven speleothems from Morocco, Germany, Spain, France and India. Our calculations indicate the following distribution coefficients: DMg = 1.01E-04 ± 9.0E-05, DBa(Ar) = 0.91 ± 0.53, DSr(Ar) = 1.38 ± 0.53, and DU(Ar) = 6.26 ± 4.53. These results are discussed in the context of speleothem growth rates, Rayleigh distillation effects, temperature, drip water elemental composition and drip water pH. We conclude that speleothem aragonite DMg(Ar) is below one, DSr(Ar) is close to unity, and DU(Ar) is above one. For DBa(Ar), such a conclusion is difficult. Speleothem growth rate may affect aragonite DSr in samples forming at a growth rate lower than 20 μm/a. Our results also indicate that calcite DSr and calcite DBa are affected by the Mg content of calcite. This has important implications for studies attempting to quantify processes like prior calcite precipitation. In particular, DSr and DBa cannot be transferred from caves developed within a limestone host rock to caves developed within a dolostone host rock.

  3. Orientation Club

    CERN Multimedia

    Club d'orientation

    2014-01-01

    COURSE ORIENTATION Résultats de samedi 10 mai    C’est sur une carte entièrement réactualisée dans les bois de Versoix, que plus de 100 coureurs sont venus participer à la course d’orientation, type longue distance, préparée par des membres du club du CERN. Le terrain plutôt plat nécessitait une orientation à grande vitesse, ce qui a donné les podiums suivants :  Technique long avec 17 postes : 1er Jurg Niggli, O’Jura en 52:48, 2e Beat Muller, COLJ Lausanne-Jorat en 58:02, 3e Christophe Vuitton, CO CERN en 58:19 Technique moyen avec 13 postes : 1er Jean-Bernard Zosso, CO CERN, en 46:05 ; 2e Yves Rousselot, Balise 25 Besançon, en 55:11 ; 3e Laurent Merat, O'Jura, en 55:13 Technique court avec 13 postes : 1er Julien Vuitton, CO CERN en 40:59, 2e Marc Baumgartner, CO CERN en 43:18, 3e Yaelle Mathieu en 51:42 Su...

  4. Orienteering Club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Courses d’orientation ce printemps Le Club d’orientation du CERN vous invite à venir découvrir la course d’orientation et vous propose, en partenariat avec d’autres clubs de la région, une dizaine de courses populaires. Celles-ci ont lieu les samedis après-midi, elles sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Si vous êtes débutant vous pouvez profiter d’une petite initiation offerte par l’organisateur avant de vous lancer sur un parcours. Divers types de parcours sont à votre choix lors de chaque épreuve : facile court (2-3 km), facile moyen (3-5 km), technique court (3-4 km), technique moyen (4-5 km) et technique long (5-7 km). Les dates à retenir sont les suivantes : Samedi 23 mars: Pully (Vd) Samedi 13 avril: Pougny...

  5. Characteristics of a calcite "limestone"-marble from Macedonia, used as flux material

    Directory of Open Access Journals (Sweden)

    Hristova E.

    2003-01-01

    Full Text Available The phase characteristics of calcite "limestone"-marble from Banjany area village (near Skopje, Macedonia were examined by means of XRD, SEM microscope in polarizing and reflected lights, chemical, DT/TG-analyses. It was concluded as follows: - calcite (CaCO3 is a major mineral component (cca 80-90 % prevailing in the marble over the other minerals - dolomite is generally of minor importance (cca 10-20 % in the rock - quartz, micas graphite, pyrite represent typical accessories. As result of the mentioned phase characteristics, this raw materials was for a long time (more than 30 years used as flux in the iron and steel metallurgy in Macedonia.

  6. U and Sr Isotopes in ground water and calcite, Yucca Mountain, Nevada: Evidence against upwelling water

    Science.gov (United States)

    Stuckless, J.S.; Peterman, Z.E.; Muhs, D.R.

    1991-01-01

    Hydrogenic calcite and opaline silica deposits in fault zones at Yucca Mountain, Nevada, have created considerable public and scientific controversy because of the possible development of a high-level nuclear waste repository at this location. Strontium and uranium isotopic compositions of hydrogenic materials were used to test whether the veins could have formed by upwelling of deep-seated waters. The vein deposits are isotopically distinct from ground water in the two aquifers that underlie Yucca Mountain, indicating that the calcite could not have precipitated from ground water. The data are consistent with a surficial origin for the hydrogenic deposits.

  7. Thickness and structure of the water film deposited from vapour on calcite surfaces

    DEFF Research Database (Denmark)

    Bohr, Jakob; Wogelius, Roy A.; Morris, Peter M.;

    2010-01-01

    Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from......Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from...

  8. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Sakuma, Hiroshi; Stipp, Susan Louise Svane

    2014-01-01

    We have used density functional theory to predict the ion exchange energies for divalent cations Ni(2+), Sr(2+), Cd(2+), and Pb(2+) into a calcite {10.4} surface in equilibrium with water. Exchange energies were calculated for substitution into the topmost surface layer, at the mineral-fluid inte......We have used density functional theory to predict the ion exchange energies for divalent cations Ni(2+), Sr(2+), Cd(2+), and Pb(2+) into a calcite {10.4} surface in equilibrium with water. Exchange energies were calculated for substitution into the topmost surface layer, at the mineral...

  9. Not all calcite ballast is created equal: differing effects of foraminiferan and coccolith calcite on the formation and sinking of aggregates

    Directory of Open Access Journals (Sweden)

    K. Schmidt

    2013-09-01

    Full Text Available Correlation between particulate organic carbon (POC and calcium carbonate sinking through the deep ocean has led to the idea that ballast provided by calcium carbonate is important for the export of POC from the surface ocean. While this idea is certainly to some extent true, it is worth considering in more nuance, for example, examining the different effects on the aggregation and sinking of POC of small, non-sinking calcite particles like coccoliths and large, rapidly sinking calcite like planktonic foraminiferan tests. We have done that here in a simple experiment carried out in roller tanks that allow particles to sink continuously without being impeded by container walls. Coccoliths were efficiently incorporated into aggregates that formed during the experiment, increasing their sinking speed compared to similarly sized aggregates lacking added calcite ballast. The foraminiferan tests, which sank as fast as 700 m d−1, became associated with only very minor amounts of POC. In addition, when they collided with other, larger, foraminferan-less aggregates, they fragmented them into two smaller, more slowly sinking aggregates. While these effects were certainly exaggerated within the confines of the roller tanks, they clearly demonstrate that calcium carbonate ballast is not just calcium carbonate ballast- different forms of calcium carbonate ballast have notably different effects on POC aggregation, sinking, and export.

  10. Intra-skeletal calcite in a live-collected Porites sp.: Impact on environmental proxies and potential formation process

    Science.gov (United States)

    Lazareth, Claire E.; Soares-Pereira, Caroline; Douville, Eric; Brahmi, Chloé; Dissard, Delphine; Le Cornec, Florence; Thil, François; Gonzalez-Roubaud, Cécile; Caquineau, Sandrine; Cabioch, Guy

    2016-03-01

    Geochemical proxies measured in the carbonate skeleton of tropical coral Porites sp. have commonly been used to reconstruct sea surface temperature (SST) and more recently seawater pH. Nevertheless, both reconstructed SST and pH depend on the preservation state of the skeleton, here made of aragonite; i.e., diagenetic processes and its related effects should be limited. In this study, we report on the impact of the presence of intra-skeletal calcite on the skeleton geochemistry of a live-collected Porites sp. The Porites skeleton preservation state was analyzed using X-ray diffraction and scanning electron microscopy. Sr/Ca, Mg/Ca, U/Ca, Ba/Ca, Li/Mg, and B/Ca ratios were measured at a monthly and yearly resolution using quadrupole ICP-MS and multi-collector ICP-MS. The δ11B signatures and the calcite percentages were acquired at a yearly timescale. The coral colony presents two parts, one with less than 3% calcite (referred to as "no-calcite" skeleton), the other one, corresponding to the skeleton formed during the last 4 years of growth, with calcite percentages varying from 13% to 32% (referred to as "with calcite" skeleton). This intra-skeletal calcite replaces partly or completely numerous centers of calcification (COCs). All investigated geochemical tracers are significantly impacted by the presence of calcite. The reconstructed SST decreases by about 0.1 °C per calcite-percent as inferred from the Sr/Ca ratio. Such impact reaches up to 0.26 °C per calcite-percent for temperature deduced from the Li/Mg ratio. So, less than 5% of such intra-skeletal calcite does not prevent SST reconstructions using Sr/Ca ratio, but the percentage and type of calcite have to be determined before fine SST interpretation. Seawater pH reconstruction inferred from boron isotopes drop by about -0.011 pH-unit per calcite-percent. Such sensitivity to calcite presence is particularly dramatic for fine paleo-pH reconstructions. Here we suggest that after being brought to shallow

  11. Channeling through Bent Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Stephanie; /Ottawa U. /SLAC

    2012-09-07

    Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump, thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used to

  12. Active and driven hydrodynamic crystals.

    Science.gov (United States)

    Desreumaux, N; Florent, N; Lauga, E; Bartolo, D

    2012-08-01

    Motivated by the experimental ability to produce monodisperse particles in microfluidic devices, we study theoretically the hydrodynamic stability of driven and active crystals. We first recall the theoretical tools allowing to quantify the dynamics of elongated particles in a confined fluid. In this regime hydrodynamic interactions between particles arise from a superposition of potential dipolar singularities. We exploit this feature to derive the equations of motion for the particle positions and orientations. After showing that all five planar Bravais lattices are stationary solutions of the equations of motion, we consider separately the case where the particles are passively driven by an external force, and the situation where they are self-propelling. We first demonstrate that phonon modes propagate in driven crystals, which are always marginally stable. The spatial structures of the eigenmodes depend solely on the symmetries of the lattices, and on the orientation of the driving force. For active crystals, the stability of the particle positions and orientations depends not only on the symmetry of the crystals but also on the perturbation wavelengths and on the crystal density. Unlike unconfined fluids, the stability of active crystals is independent of the nature of the propulsion mechanism at the single-particle level. The square and rectangular lattices are found to be linearly unstable at short wavelengths provided the volume fraction of the crystals is high enough. Differently, hexagonal, oblique, and face-centered crystals are always unstable. Our work provides a theoretical basis for future experimental work on flowing microfluidic crystals. PMID:22864543

  13. Effect of silk sericin on morphology and structure of calcium carbonate crystal

    Science.gov (United States)

    Zhao, Rui-Bo; Han, Hua-Feng; Ding, Shao; Li, Ze-Hao; Kong, Xiang-Dong

    2013-06-01

    In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

  14. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2013-01-01

    Course d’orientation Face aux Championnats de France des Clubs à Poitiers, et à une météo hivernale (vent glaciale et pluie), il ne restait qu’une cinquantaine d’orienteurs pour participer à l’épreuve organisée le samedi 25 mai à Grange-Malval. Les participants ont tout de même bien apprécié les 5 circuits proposés par le Satus Genève. Les résultats sont disponibles sur notre site http://cern.ch/club-orientation. En plus des résultats, vous pourrez noter des informations sur la nouvelle école de CO encadrée par B. Barge, Prof. EPS à Ferney-Voltaire pour les jeunes à partir de 6 ans. La prochaine étape de la coupe genevoise se déroulera samedi 1er juin à Morez (39). Epreuve organisée par le club O’Jura&nb...

  15. Orienteering club

    CERN Multimedia

    Club d’Orientation du CERN

    2015-01-01

    Courses d’orientation Nouvelle saison nouveau programme Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose une dizaine de courses populaires comptant pour la coupe Genevoise de printemps: samedi 28 mars: Vernand Dessus samedi 18 avril: Pougny/Challex samedi 25 avril: Chancy/Valleiry samedi 2 mai: Mauvernay samedi 9 mai: Longchaumois samedi 16 mai: Genolier samedi 30 mai: Prevondavaux samedi 6 juin: Biere-Ballens samedi 13 juin: Haut-Jura samedi 20 juin: Bonmont - Finale Ces courses sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Les inscriptions se font sur place le jour de l’épreuve. Si vous êtes débutant, vous pouvez profiter d’une initiation offerte par l’organisateur avant de vous lancer sur un parcours. Le club propose aussi...

  16. Orienteering Club

    CERN Multimedia

    Club d'orientation

    2010-01-01

    COURSE D’ORIENTATION La finale de la coupe de printemps Après avoir remporté le challenge club, samedi 29 juin lors du relais inter-club à Lausanne, le Club d’orientation du CERN organisait la dernière étape de la coupe genevoise de printemps samedi 5 juin à Saint-Cergue dans les bois de Monteret (Canton de Vaud). Plus de 100 participants se sont déplacés pour venir participer à la finale et découvrir une toute nouvelle carte dans une forêt vallonnée. Les résultats pour chaque circuit de cette étape sont : Technique long : 1. Jurg Niggli du club O’Jura, 2. Clément Poncet, 3. Oystein Midttun. Technique moyen : 1. Zoltan Trocsanyi CO CERN, 2. Christophe Ingold, 3. Christina Falga. Technique court : 1. Pierre-Andre Baum, CARE Vevey, 2. Emese Szunyog, 3. Solène Balay. Facile moyen : 1. Elisa P...

  17. Orienteering club

    CERN Multimedia

    Orienteering Club

    2016-01-01

    Course d'orientation Calendrier des courses d’orientation Coupe genevoise d’automne 2016 Samedi 3 septembre : La Faucille (01) Samedi 10 septembre : Prémanon (39) Samedi 17 septembre : Saint-Cergue (VD) Samedi 24 septembre : Jorat / Corcelles (VD) Samedi 1 octobre: Bière - Ballens (VD) -relais Vendredi 14 octobre : Parc Mon Repos (GE) - nocturne Samedi 15 octobre : Terrasse de Genève (74) Samedi 29 octobre : Bonmont (VD) Samedi 5 novembre : Pomier (74) – one-man-relay - Finale   Courses ouvertes à toutes et à tous, sportifs, familles, débutants ou confirmés, du CERN ou d’ailleurs. Cinq circuits disponibles, ceci va du facile court (2 km) adapté aux débutants et aux enfants jusqu’au parcours technique long de 6 km pour les chevronnés en passant par les parcours facile moyen (4&am...

  18. COURSE ORIENTATION

    CERN Multimedia

    Club d'orientation du CERN

    2015-01-01

      Les coureurs d’orientation de la région se sont donné rendez-vous samedi dernier dans les bois de Pougny/Challex lors de l’épreuve organisée par le club d’orientation du CERN. La carte proposée pour les 5 circuits offrait aussi bien un coté très technique avec un relief pentu qu’un coté avec de grandes zones plates à forêt claire. Le parcours technique long comportant 20 postes a été remporté par Beat Muller du COLJ Lausanne en 56:26 devançant Denis Komarov, CO CERN en 57:30 et Yvan Balliot, ASO Annecy en 57:46. Pour les autres circuits les résultats sont les suivants: Technique moyen (13 postes): 1er Joël Mathieu en 52:32 à une seconde du 2e Vladimir Kuznetsov, COLJ Lausanne-Jorat, 3e Jean-Bernard Zosso, CO CERN, en 54:01 Technique court (12 postes): 1er Lennart Jirden, ...

  19. Orienteering Club

    CERN Document Server

    Club d'Orientation

    2012-01-01

     Course d’orientation C’est sous un magnifique soleil que s’est tenue la 7e épreuve de la coupe genevoise organisée par le club d’orientation du CERN. Les organisateurs avaient concocté des parcours assez techniques sur le site de La Faucille. Sur le parcours technique long, beau podium avec la victoire de Domenico Lepori (double médaillés aux championnats du monde en 2010 en vétéran) du club Care Vevey en 1:00:23, juste devant Jürg Niggli du club O’Jura en 1:00:56 puis Beat Mueller du club Lausanne-Jorat en 1:04:28. Sur le parcours technique moyen, Franck Longchampt s’est octroyé la première place, sur le parcours technique court, le jeune Julien Vuitton, qui n’a pas tout à fait 11 ans, a remporté son circuit. Coté parcours facile moyen, Victor Kuznetsov a une fois de plus gagn&eacut...

  20. Club Orientation

    CERN Multimedia

    Club d'orientation

    2014-01-01

      COURSE ORIENTATION   Pas moins de 100 concurrents sont venus s’affronter sur les parcours proposés par le club d’orientation du CERN ce samedi 26 avril lors de la 4e étape de la coupe genevoise de printemps. Les podiums ont été attribués à :  Technique long avec 19 postes : 1er Yvan Balliot, ASO Annecy en 1:01:39 ; 2e Dominique Fleurent, ASO Annecy, en 1:05:12 ; 3e Rémi Fournier, SOS Sallanches, en 1:05:40. Technique moyen avec 14 postes : 1er Jean-Bernard Zosso, CO CERN, en 46:42 ; 2e Céline Zosso, CO CERN, en 50:51 ; 3e Clément Poncet, O’Jura Prémanon, en 51:27. Technique court avec 13 postes : 1er Jaakko Murtomaki, YKV Seinaejoki, en 36:04 ; 2e Marc Baumgartner en 41:27 ; 3e Natalia Niggli, O’Jura Prémanon, en 52:43. Sur les parcours facile moyen et facile court, victoire respectivement de Stéphanie...

  1. Orienteering club

    CERN Multimedia

    Club d'orientation

    2010-01-01

    Course d’orientation : Coupe Genevoise de printemps 2010 Et c’est reparti pour une nouvelle saison! Pour cette coupe de printemps 2010, le Club d’Orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose le calendrier suivant: – samedi 20 mars : Cossonay (Vd) – samedi 10 avril : Echallens (Vd) – samedi 17 avril : Trélex (Vd) – samedi 24 avril : Genolier (Vd) – samedi 1 mai : Vulbens/Valleiry (74) – samedi 8 mai : Bois de la Rippe (Vd) – samedi 29 mai : Sauvabellin (Vd) : relais – samedi 5 juin: St Cergue (Vd) : grande finale Les courses populaires ont lieu en général le samedi après-midi, elles sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Pour cela, divers types de parcours sont &agr...

  2. Orienteering club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Courses d’orientation Le soleil enfin de retour a incité nombre de sportifs et promeneurs à nous rejoindre dans la belle forêt de Challex /Pougny pour la deuxième étape de notre coupe de printemps 2013. Certains sont revenus crottés et fourbus alors que d’autres avaient les joues bien roses après un grand bol d’air frais. Mais tous avaient passé un agréable moment dans la nature. Nous rappelons que nos activités sont ouvertes à tous, jeunes, moins jeunes, sportifs, familles, du CERN ou d’ailleurs, et que le seul inconvénient est que si vous goûtez à la course d’orientation, il vous sera difficile de ne pas y revenir ! Samedi 20 avril 2013, nous serons sur le Mont Mourex (entre Gex et Divonne) pour notre prochaine épreuve et vous y serez les bienvenus. Les inscriptions et les départ...

  3. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2015-01-01

    Course orientation C’est au pied du Salève, proche du Golf de Bosset, que le club d’orientation du CERN (CO CERN) a organisé samedi 19 septembre une nouvelle épreuve comptant pour la Coupe Genevoise d’automne. La zone « des Terrasses de Genève » avait été cartographiée et mise en service l’année dernière. Les participants ont pu apprécier un terrain ludique avec beaucoup de microreliefs, de points d’eau et de gros rochers, le tout au milieu d’une forêt assez claire et agréable à courir. Sur le parcours technique long, le résultat a été très serré puisque Pierrick Merino du club d’Annecy a gagné avec seulement 9 secondes d’avance sur Gaëtan Vuitton (CO CERN) qui confiait avoir perdu beaucoup du te...

  4. A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite

    DEFF Research Database (Denmark)

    Mbamba, Christian Kazadi; Batstone, Damien J.; Flores Alsina, Xavier;

    2015-01-01

    , the present study aims to identify a broadly applicable precipitation modelling approach. The study uses two experimental platforms applied to calcite precipitating from synthetic aqueous solutions to identify and validate the model approach. Firstly, dynamic pH titration tests are performed to define...

  5. Interaction of ethanol and water with the {1014} surface of calcite

    DEFF Research Database (Denmark)

    Cooke, David; Gray, R J; Sand, K K;

    2010-01-01

    the starting configuration consists of a complete monolayer of water at the surface. The computational results are in good agreement with the results from atomic force microscopy experiments where it is observed that a layer of ethanol remains attached to the calcite surface, decreasing its ability to...

  6. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater

    DEFF Research Database (Denmark)

    Turner, B.D.; Binning, Philip John; Sloan, S.W.

    2008-01-01

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process...

  7. Ethanol adsorption on the {10(1)over-bar4} calcite surface

    DEFF Research Database (Denmark)

    Sand, Karina Krarup; Stipp, Susan Louise Svane; Hassenkam, Tue;

    2008-01-01

    Preliminary atomic force microscopy investigations of the {10 (1) over bar4} calcite Surface cleaved in ethanol indicate a different surface behaviour than that of the {10 (1) over bar4} surface cleaved in air. The results are consistent with recent theoretical studies and suggest strong ordering...

  8. EPR OF Mn2+ IMPURITIES IN CALCITE: A DETAILED STUDY PERTINENT TO MARBLE PROVENANCE DETERMINATION

    DEFF Research Database (Denmark)

    Weihe, H.; Piligkos, S.; Barra, A.L.;

    2009-01-01

    We demonstrate that the electron paramagnetic resonance spectrum of Mn2+ impurities in calcite, and therefore also in marble, may be accurately reproduced by a traditional spin Hamiltonian formalism. The success of such a treatment, however, very much depends on the spin Hamiltonian parameters ha...

  9. Epr of Mn2+ Impurities in Calcite: A Detailed Study Pertinent to Marble Provenance Determination

    DEFF Research Database (Denmark)

    Weihe, H.; Piligkos, S.; Barra, A.L.;

    2009-01-01

    We demonstrate that the electron paramagnetic resonance spectrum of Mn2+ impurities in calcite, and therefore also in marble, may be accurately reproduced by a traditional spin Hamiltonian formalism. The success of such a treatment, however, very much depends on the spin Hamiltonian parameters ha...

  10. Unusual biogenic calcite structures in two shallow lakes, James Ross Island, Antarctica

    Science.gov (United States)

    Elster, J.; Nedbalová, L.; Vodrážka, R.; Láska, K.; Haloda, J.; Komárek, J.

    2016-01-01

    The floors of two shallow endorheic lakes, located on volcanic surfaces on James Ross Island, are covered with calcareous organosedimentary structures. Their biological and chemical composition, lake water characteristics, and seasonal variability of the thermal regime are introduced. The lakes are frozen down to the bottom for 8-9 months a year and their water chemistry is characterised by low conductivity and neutral to slightly alkaline pH. The photosynthetic microbial mat is composed of filamentous cyanobacteria and microalgae that are considered to be Antarctic endemic species. The mucilaginous black biofilm is covered by green spots formed by a green microalga and the macroscopic structures are packed together with fine material. Thin sections consist of rock substrate, soft biofilm, calcite spicules and mineral grains originating from different sources. The morphology of the spicules is typical of calcium carbonate monocrystals having a layered structure and specific surface texture, which reflect growth and degradation processes. The spicules' chemical composition and structure correspond to pure calcite. The lakes' age, altitude, morphometry, geomorphological and hydrological stability, including low sedimentation rates, together with thermal regime predispose the existence of this community. We hypothesise that the precipitation of calcite is connected with the photosynthetic activity of the green microalgae that were not recorded in any other lake in the region. This study has shown that the unique community producing biogenic calcite spicules is quite different to any yet described.

  11. Extruded electroactive fibers: preferred crystallographic orientation

    Science.gov (United States)

    Strock, Harold B.; Pascucci, Marina R.; Bystricky, Pavel

    2001-07-01

    Electroactive fibers of preferred macro crystalline orientation and ultimately single crystal structure are goals of the research discussed in this paper. Four compositions are under evaluation; lead magnesium niobate- lead titanate solid solution, PMN-31PT, an incongruently melting near-morphotropic phase boundary piezoelectric composition; PMN-10PT, an electrostrictor composition; and two lead free compositions in the sodium bismuth titanate- barium titanate solid solution, NbiT-BaT, family, both congruently melting, one electrostrictor and one piezoelectric. The efficacy of seed crystals in stimulating oriented crystal growth is being evaluated in the lead-based PMN-31PT system. Sub-micron reactive precursor powders of high chemical potential are being evaluated as matrix material. Direct fiber and ribbon extrusion have been shown to orient high chemical potential are being evaluated as matrix material. Direct fiber and ribbon extrusion have been shown to orient high chemical potential are being evaluated as matrix material. Direct fiber and ribbon extrusion have been shown to orient prismatic, needle and platelet shaped seed crystals. Extrusion orifice, seed and initial matrix particle size have not influenced the degree of seed orientation within the tested bounds of our experimental parameters. Non-equilibrium sintering conditions near the melting points of all four compositions noted above will be used to generate exaggerated grain growth under seeded and self-seeding conditions. In the PMN-31PT system, an as yet uncharacterized melt phase appears to stimulate rapid crystal growth, the orientation of which shall be determined by x-ray back reflection Laue methods. Analyses of fiber composition and grain orientation are ongoing. Results to-date will be reported. Analyses of fiber quality and performance, measured using single fiber P-E loop testing, are presented. Loops of sufficient quality to warrant fiber evaluation in active fiber composite packs have

  12. 电场对[100]cub切型PMN-PT单晶电畴组态的影响%Effects of Electric Field on Domain Configuration in the [100]cub-oriented Crystal of PMN-PT

    Institute of Scientific and Technical Information of China (English)

    惠增哲; 项卓亮; 龙伟; 李晓娟

    2011-01-01

    采用偏光显微镜观察了电场作用下[100]cub切型PMN-PT弛豫铁电单晶电畴组态的变化.结果表明:在正向电场作用下,当电场强度超过2.45 kV/cm时,平行于电场方向小畴条带慢慢消失,当电场强度升高到7.15 kV/cm时,原畴壁逐渐消失,在接近电极附近试样上优先出现了垂直于电场方向的新电畴;在反向电场作用下,电场强度超过2.05 kV/cm时,电畴条带沿电场方向扩展,当电场强度升到7.15 kV/cm时,平行于电场方向电畴消失,而出现许多垂直于电场方向电畴;在交流电场驱动下,电畴以低于50 Hz的频率做周期性振动.%The domain configuration in the [100]cub-oriented crystal of relaxor-ferroelectric PMN-PT was investigated with a polarizing microscope.The results indicated that under the positive DC electric field,the small ribbon-like domains paralleling to the electric field disappeared gradually when the intensity of electric field exceeded 2.45 kV/cm, and the new domains perpendicular to the electric field emerged near the electrode when the intensity of electric field rose to 7.15 kV/cm.Under the negative DC electric field, the ribbon-like domains grew along the electric field when the intensity of electric field exceeded 2.05 kV/cm.When the intensity of electric field reached 7.15 kV/cm,the domains paralleling to the electric field disappeared gradually and the new domains perpendicular to the electric field emerged.Under AC electric field, domains were vibrating with the frequency less than 50 Hz.

  13. Tracing formation and durability of calcite in a Punic-Roman cistern mortar (Pantelleria Island, Italy).

    Science.gov (United States)

    Dietzel, Martin; Schön, Frerich; Heinrichs, Jens; Deditius, Artur P; Leis, Albrecht

    2016-01-01

    Ancient hydraulic lime mortar preserves chemical and isotopic signatures that provide important information about historical processing and its durability. The distribution and isotopic composition of calcite in a mortar of a well-preserved Punic-Roman cistern at Pantelleria Island (Italy) was used to trace the formation conditions, durability, and individual processing periods of the cistern mortar. The analyses of stable carbon and oxygen isotopes of calcite revealed four individual horizons, D, E, B-1 and B-2, of mortar from the top to the bottom of the cistern floor. Volcanic and ceramic aggregates were used for the production of the mortar of horizons E/D and B-1/B-2, respectively. All horizons comprise hydraulic lime mortar characterized by a mean cementation index of 1.5 ± 1, and a constant binder to aggregate ratio of 0.31 ± 0.01. This suggests standardized and highly effective processing of the cistern. The high durability of calcite formed during carbonation of slaked lime within the matrix of the ancient mortar, and thus the excellent resistance of the hydraulic lime mortar against water, was documented by (i) a distinct positive correlation of δ(18)Ocalcite and δ(13)Ccalcite; typical for carbonation through a mortar horizon, (ii) a characteristic evolution of δ(18)Ocalcite and δ(13)Ccalcite through each of the four mortar horizons; lighter follow heavier isotopic values from upper to lower part of the cistern floor, and (iii) δ(18)Ocalcite varying from -10 to -5 ‰ Vienna Pee Dee belemnite (VPDB). The range of δ(18)Ocalcite values rule out recrystallization and/or neoformation of calcite through chemical attack of water stored in cistern. The combined studies of the chemical composition of the binder and the isotopic composition of the calcite in an ancient mortar provide powerful tools for elucidating the ancient techniques and processing periods. This approach helps to evaluate the durability of primary calcite and demonstrates the

  14. Investigation of crystal anisotropy using seismic data from Kohnen Station, Antarctica

    OpenAIRE

    Diez, Anja; Eisen, Olaf; Weikusat, Ilka; Lambrecht, Astrid; Mayer, Christoph; Hofstede, Coen; Bohlen, Thomas; Miller, Heinrich

    2014-01-01

    The flow behavior of glaciers and ice sheets is influenced by a preferred orientation of the anisotropic ice crystals. Knowledge about crystal anisotropy is mainly provided by crystal orientation fabric (COF) data from ice cores. To gain a broader understanding about the distribution of crystal anisotropy in ice sheets and glaciers we use seismic measurements. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections and (ii) the anisotrop...

  15. Ca-Mg inter-diffusion in synthetic polycrystalline dolomite-calcite aggregate at elevated temperatures and pressure

    Science.gov (United States)

    Huang, Wuu-Liang; Liu, Teh-Ching; Shen, Pouyan; Hsu, Allen

    2009-03-01

    This study measures the reaction rate of dolomite and aragonite (calcite) into Mg-calcite at 800, 850, and 900°C and 1.6 GPa. The dry synthetic dolomite-aragonite aggregate transformed very rapidly into dolomite-calcite polycrystalline aggregate while Mg-calcites formed at a relatively slow rate, becoming progressively richer in Mg with run time. We modeled the reaction progress semi-empirically by the first-order rate law. The temperature dependence of the overall transport rate of MgCO3 into calcite can be described by the kinetic parameters ( E = 231.7 kJ/mol and A o = 22.69 h-1). Extrapolation using the Arrhenius equation to the conditions during exhumation of UHPM rocks indicates that the reaction of dolomite with aragonite into Mg-saturated calcite can be completed as the P-T path enters the Mg-calcite stability field in a geologically short time period (340°C and >10 My). SEM-EDS analysis of individual calcite grains shows compositional gradients of Mg in the calcite grains. The Mg-Ca inter-diffusion coefficient at 850°C is around 1.68 × 10-14 m2/sec if diffusion is the major control of the reaction. The calculated closure temperatures for Ca-Mg inter-diffusion as a function of cooling rate and grain size reveal that Ca/Mg resetting in calcite in a dry polycrystalline carbonate aggregate (with grain size around 1 mm) may not occur at temperatures below 480°C at a geological cooling rate around 10°C/My, unless other processes, such as short-circuit interdiffusion along grain boundaries and dislocations, are involved.

  16. Calcite solubility in supercritical CO 2H 2O fluids

    Science.gov (United States)

    Fein, Jeremy B.; Walther, John V.

    1987-06-01

    An extraction-quench apparatus was used to measure calcite solubilities in supercritical CO 2H 2O mixtures. Experiments were conducted at 1 kbar and 2 kbar, between 240°C and 620°C and from XCO 2 = .02 toXCO 2 = .15 in order to determine the solubility behavior as a function of pressure, temperature and CO 2 content. The results indicate that calcite solubilities under these conditions behave similarly to previously investigated calcite solubilities at lower pressures and temperatures (SHARP and Kennedy, 1965). At constant XCO 2, the solubility increases with increasing pressure, but it decreases with increasing temperature. When the temperature and pressure are constant, the calcite solubility rises with increasing XCO 2 to a maximum value at XCO 2 between 0.02 and 0.05. For higher CO 2 contents, up to XCO 2 = .15, the calcite solubility decreases, probably due to the decrease of H 2O activities to values significantly below unity. The solubility behavior can be successfully modeled by making the assumption that Ca ++ is the dominant calcium species and that the carbon-bearing species are CO 2(aq) and HCO -3. Since for these dilute H 2OCO 2 fluids, all activity coefficients can be assumed to not differ significantly from unity, ionization constants for the reaction H 2O + CO 2(aq) H + + HCO -3 can be calculated at 1 and 2 kbar between 250°C and 550°C. These calculated values are in good agreement with the low temperature determinations of the ionization constants for this reaction determined by Read (1975). Values of the molal Gibbs free energy of CO 2(aq) obtained in our study exhibit a much greater positive departure from ideality than those calculated with the modified Redlich-Kwong equations of either Flowers (1979) or Kerrick and Jacobs (1981) for dilute CO 2 aqueous solutions.

  17. The role of background electrolytes on the kinetics and mechanism of calcite dissolution

    Science.gov (United States)

    Ruiz-Agudo, E.; Kowacz, M.; Putnis, C. V.; Putnis, A.

    2010-02-01

    The influence of background electrolytes on the mechanism and kinetics of calcite dissolution was investigated using in situ Atomic Force Microscopy (AFM). Experiments were carried out far from equilibrium by passing alkali halide salt (NaCl, NaF, NaI, KCl and LiCl) solutions over calcite cleavage surfaces. This AFM study shows that all the electrolytes tested enhance the calcite dissolution rate. The effect and its magnitude is determined by the nature and concentration of the electrolyte solution. Changes in morphology of dissolution etch pits and dissolution rates are interpreted in terms of modification in water structure dynamics (i.e. in the activation energy barrier of breaking water-water interactions), as well as solute and surface hydration induced by the presence of different ions in solution. At low ionic strength, stabilization of water hydration shells of calcium ions by non-paired electrolytes leads to a reduction in the calcite dissolution rate compared to pure water. At high ionic strength, salts with a common anion yield similar dissolution rates, increasing in the order Cl - salts with a common cation due to an increasing mobility of water around the calcium ion. Changes in etch pit morphology observed in the presence of F - and Li + are explained by stabilization of etch pit edges bonded by like-charged ions and ion incorporation, respectively. As previously reported and confirmed here for the case of F -, highly hydrated ions increased the etch pit nucleation density on calcite surfaces compared to pure water. This may be related to a reduction in the energy barrier for etch pit nucleation due to disruption of the surface hydration layer.

  18. Orientation games in kindergarten

    OpenAIRE

    Pišek, Anja

    2012-01-01

    The thesis presents the area of general orientation and orientation of the child. The focus is placed on orientation games for preschool children. The first part outlines different definitions of orientation, types of orientation, accessories for orientation and major errors in orientation. It also presents the development of spatial orientation of preschool children, the development of the concept of space according to the level of cognitive development in line with the theory by Piaget,...

  19. Orienting hypnosis.

    Science.gov (United States)

    Hope, Anna E; Sugarman, Laurence I

    2015-01-01

    This article presents a new frame for understanding hypnosis and its clinical applications. Despite great potential to transform health and care, hypnosis research and clinical integration is impaired in part by centuries of misrepresentation and ignorance about its demonstrated efficacy. The authors contend that advances in the field are primarily encumbered by the lack of distinct boundaries and definitions. Here, hypnosis, trance, and mind are all redefined and grounded in biological, neurological, and psychological phenomena. Solutions are proposed for boundary and language problems associated with hypnosis. The biological role of novelty stimulating an orienting response that, in turn, potentiates systemic plasticity forms the basis for trance. Hypnosis is merely the skill set that perpetuates and influences trance. This formulation meshes with many aspects of Milton Erickson's legacy and Ernest Rossi's recent theory of mind and health. Implications of this hypothesis for clinical skills, professional training, and research are discussed.

  20. Orienteering club

    CERN Multimedia

    Club d'orientation

    2011-01-01

    Reprise fin août Le Club d’orientation, en partenariat avec d’autres clubs de la région, vous propose une nouvelle série de courses pour cet automne. Le calendrier à retenir est le suivant : Samedi 27 août : Granges Malval (GE) – type classique Samedi 10 septembre : Lamoura (39) – type classique Samedi 17 septembre : La Dôle (F/VD) – type classique Samedi 24 septembre : Monteret (VD) – relais Samedi 8 octobre : Saint Cergue (VD) – type classique Vendredi 14 octobre : Les Evaux (GE) – nocturne Samedi 15 octobre : Grand Jorat (VD) – type classique Samedi 22 octobre : Pomier (74) – type classique Samedi 5 novembre : Echallens (VD) – type classique Samedi 12 novembre : CERN (GE) - sprint - Finale Généralement cinq circuits sont disponibles : ceci va du facile court (2 km) adapt&eacu...

  1. Evidence of a Biological Control over Origin, Growth and End of the Calcite Prisms in the Shells of Pinctada margaritifera (Pelecypod, Pterioidea

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Cuif

    2014-12-01

    Full Text Available Consistently classified among the references for calcite simple prisms, the microstructural units that form the outer layer of the Pinctada margaritifera have been investigated through a series of morphological, crystallographical and biochemical characterizations. It is often said that the polygonal transverse shape of the prisms result from the competition for space between adjacent crystals. In contrast to this classical scheme the Pinctada prisms appear to be composed of four successive developmental stages from the concentrically growing disks on the internal side of the periostracum to the morphological, structural and compositional changes in both envelopes and mineral components at the end of the prisms. These latest structural and compositional changes predate nacre deposition, so that the end of prism growth is not caused by occurrence of nacre, but by metabolic changes in the secretory epithelium. This sequence makes obvious the permanent biological control exerted by the outer cell layer of the mantle in both organic envelopes and mineralizing organic phases.

  2. Orientation Studies of Recrystallized Vanadium Dioxide

    Science.gov (United States)

    Rivera, Felipe; Clemens, Mike; Burk, Laurel; Davis, Robert; Vanfleet, Richard

    2007-03-01

    Crystalline films and isolated vanadium dioxide particles were obtained through thermal annealing of amorphous vanadium dioxide thin films on silicon dioxide. Vanadium dioxide undergoes an insulator to metal transition near 66 ^oC. Orientation Imaging Microscopy (OIM) was used to study the phase and orientation of the crystals formed, as well as to differentiate from different vanadium oxide crystal structures. Kikuchi patterns for the tetragonal phase of vanadium dioxide were used for indexing as the Kikuchi patterns for the two phases are indistinguishable by OIM. There is a preferred orientation for the growth of these crystals with the c axis of the tetragonal phase parallel to the plane of the specimen. Resistance and Capacitance measurements on these films are being performed to study the electronic chracteristics of this phase transition. The results of this study will be presented.

  3. Preferred orientation of ettringite in concrete fractures

    Energy Technology Data Exchange (ETDEWEB)

    Wenk, Hans-Rudolf; Monteiro, Paulo J.M.; Kunz, Martin; Chen, Kai; Tamura, Nobumichi; Lutterotti, Luca; Delacroz, John

    2009-01-31

    Sulfate attack and the accompanying crystallization of fibrous ettringite [Ca{sub 6}Al{sub 2}(OH){sub 12}(SO{sub 4}){sub 3} {center_dot} 26H{sub 2}O] cause cracking and loss of strength in concrete structures. Hard synchrotron X-ray microdiffraction is used to quantify the orientation distribution of ettringite crystals. Diffraction images are analyzed using the Rietveld method to obtain information on textures. The analysis reveals that the c axes of the trigonal crystallites are preferentially oriented perpendicular to the fracture surfaces. By averaging single-crystal elastic properties over the orientation distribution, it is possible to estimate the elastic anisotropy of ettringite aggregates.

  4. Influence of Teflon substrate on crystallization and enzymatic degradation of polymorphic poly(butylene adipate)

    DEFF Research Database (Denmark)

    Ning, Zhenbo; Nielsen, Ronnie Bo Højstrup; Zhao, Lifen;

    2014-01-01

    Oriented and non-oriented Teflon films, which were found to have the same crystalline structure, but different surface morphologies, were used to sandwich poly(butylene adipate) (PBA) films during isothermal crystallization. It was found that both the Teflon surface structure and the PBA...... polymorphic structure are the determining factors to induce epitaxial crystallization. The oriented Teflon film was able to induce epitaxial crystallization of PBA alpha crystal, while the non-oriented Teflon did not induce any epitaxial crystallization of PBA. Epitaxial crystallization did not occurred for...... PBA beta crystals between neither the oriented nor the non-oriented Teflon films. The enzymatic degradation rate of PBA films was not determined by the epitaxial crystallization, in fact it was still dependent on the polymorphic crystal structure of PBA. The morphological changes of PBA films after...

  5. Computational strain gradient crystal plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2014-01-01

    of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....

  6. Crystal Meth

    Science.gov (United States)

    ... for: Navigation Home / Stories of Hope / Crystal meth Crystal meth Story Of Hope By giovanni January 3rd, ... about my drug addiction having to deal with Crystal meth. I am now in recovery and fighting ...

  7. Rheology, microstructure and crystallographic preferred orientation of matrix containing a dispersed second phase: Insight from experimentally deformed ice

    Science.gov (United States)

    Cyprych, Daria; Piazolo, Sandra; Wilson, Christopher J. L.; Luzin, Vladimir; Prior, David J.

    2016-09-01

    We utilize in situ neutron diffraction to continuously track the average grain size and crystal preferred orientation (CPO) development in ice, during uniaxial compression of two-phase and pure ice samples. Two-phase samples are composed of ice matrix and 20 vol.% of second phases of two types: (1) rheologically soft, platy graphite, and (2) rigid, rhomb-shaped calcite. The samples were tested at 10 °C below the ice melting point, ambient pressures, and two strain rates (1 ×10-5 and 2.5 ×10-6 s-1), to 10 and 20% strain. The final CPO in the ice matrix, where second phases are present, is significantly weaker, and ice grain size is smaller than in an ice-only sample. The microstructural and rheological data point to dislocation creep as the dominant deformation regime. The evolution and final strength of the CPO in ice depend on the efficiency of the recrystallization processes, namely grain boundary migration and nucleation. These processes are markedly influenced by the strength, shape, and grain size of the second phase. In addition, CPO development in ice is further accentuated by strain partitioning into the soft second phase, and the transfer of stress onto the rigid second phase.

  8. Environmental controls for the precipitation of different fibrous calcite cement fabrics

    Science.gov (United States)

    Ritter, Ann-Christine; Wiethoff, Felix; Neuser, Rolf D.; Richter, Detlev K.; Immenhauser, Adrian

    2016-04-01

    Abiogenic calcite cements are widely used as climate archives. They can yield information on environmental change and climate dynamics at the time when the sediment was lithified in a (marine) diagenetic environment. Radiaxial-fibrous (RFC) and fascicular-optic fibrous (FOFC) calcite cements are two very common and similar pore-filling cement fabrics in Palaeozoic and Mesozoic carbonate rocks (Richter et al., 2011) and in Holocene Mg-calcitic speleothems (Richter et al., 2015). Both fabrics are characterised by distinct crystallographic properties. Current research has shown that these fabrics are often underexplored and that a careful combination of conservative and innovative proxies allows for a better applicability of these carbonate archives to paleoenvironmental reconstructions (Ritter et al., 2015). A main uncertainty in this context is that it is still poorly understood which parameters lead to the formation of either RFC or FOFC and if differential crystallographic parameters affect proxy data from these fabrics. This study aims at a better understanding of the environmental factors that may control either RFC or FOFC precipitation. Therefore, suitable samples (a stalagmite and a Triassic marine cement succession), each with clearly differentiable layers of RFC and FOFC, were identified and analysed in high detail using a multi-proxy approach. Detailed thin section and cathodoluminescence analysis of the samples allowed for a precise identification of layers consisting solely of either RFC or FOFC. Isotopic (δ13C, δ18O) as well as trace elemental compositions have been determined and the comparison of data obtained from these different carbonate archives sheds light on changes in environmental parameters during RFC or FOFC precipitation. References: Richter, D.K., et al., 2011. Radiaxial-fibrous calcites: A new look at an old problem. Sedimentary Geology, 239, 26-36 Richter, D.K., et al., 2015. Radiaxial-fibrous and fascicular-optic Mg-calcitic cave

  9. An AFM investigation of the interaction of chiral amino acids with the {l_brace}104{r_brace} face of calcite

    Energy Technology Data Exchange (ETDEWEB)

    Orme, C A; Noy, A; McBride, M T; DeYoreo, J J

    2000-10-01

    In biomineralized tissue, Nature often uses a single crystal system to form tools with widely varied form and functionality. To accomplish this, organisms have developed methods to deterministically modify and control crystal habit, commonly creating shapes with lower symmetry than is possessed by the pure crystal. In this paper we use atomic force microscopy to investigate the effect of chiral amino acids on calcite growth. We show that the atomic steps and resultant macroscopic shape exhibit a lower symmetry that reflects the chirality of the amino acid. We use this result to constrain the possible stereospecific binding sites. We argue that the change in morphology is not due to the incorporation of the amino acid, but rather that it acts like a surfactant changing the energetics of the interface. These results suggest that the conventional paradigm for understanding the geometrical and chemical aspects of biomineralization in terms of stereochemical recognition should be expanded to capture the energetic controls that determine the mechanisms of mineral modification by biomolecules.

  10. Orienteering club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Course d'orientation Finale de la coupe genevoise Rapide et méthodique, voilà les qualités dont il fallait faire preuve pour remporter la dernière étape de la coupe organisée par le club du CERN dans les bois de Monteret. Il s’agissait d’une course au score où chaque concurrent disposait d’un temps imparti pour poinçonner le maximum de balises. Le parcours technique a été remporté par Tomas Shellman et le parcours facile par Victor Dannecker. Cette dernière étape était aussi décisive pour la désignation des lauréats de la coupe genevoise de printemps. Les résultats officiels étaient donnés par le président du club, L. Jirden : Circuit Technique Long : Berni Wehrle, Bruno Barge, Edvins Reisons Circuit Technique Moyen : J.-Bernard Zosso, ...

  11. Orienteering Club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    De jour comme de nuit Les amateurs de course d’orientation ont pu s’en donner à cœur joie ce week-end puisqu’ils avaient la possibilité de courir sur deux épreuves en moins de 24 heures. En effet, le club du CERN organisait une course de nuit aux Evaux et la 7e étape de la coupe genevoise se tenait samedi après-midi dans les bois du Grand Jorat à Savigny. Les vainqueurs pour chaque course sont : Technique long CO de nuit: Julien Charlemagne, SOS Sallanches CO samedi: Philipp Khlebnikov, ANCO   Technique moyen CO de nuit: Céline Zosso, CO CERN CO samedi: Pavel Khlebnikov, ANCO Technique court CO de nuit: Colas Ginztburger, SOS Sallanches CO samedi: Victor Kuznetsov, COLJ Lausannne Facile moyen CO de nuit: Gaëtan Rickenbacher, CO CERN CO samedi: Tamas Szoke   Facile court CO de nuit:Oriane Rickenbacher, CO CERN CO samedi: Katya Kuznetsov...

  12. Orienteering Club

    CERN Multimedia

    Club d'orientation

    2011-01-01

    Coupe genevoise, suite Résultats de la course de Saint-Cergue, sur la carte Les Pralies, samedi 17 septembre. Nouvelle victoire du finlandais Ville Keskisaari, du club COLJ sur le parcours technique long avec une belle avance sur le deuxième concurrent Christophe Vuitton du CO CERN. David Cuenin a remporté le parcours technique moyen, Franck Lonchampt du club O’Jura a, lui aussi, remporté à nouveau le parcours technique court, tout comme Julien Vuitton du club CO CERN sur le facile moyen. Pour finir, Stéphane Clément devance Victor Dannecker sur le parcours facile court. Les résultats complets sont disponibles sur le site du club du CERN http://cern.ch/club-orientation. Un abonnement est pris sur le secteur de Saint-Cergue, puisque le club organise les deux prochaines étapes de la coupe genevoise dans le Haut-Jura suisse. Tout d’abord le samedi 24 septembre, un relais inter-club se courr...

  13. Orienteering club

    CERN Multimedia

    Club d'orientation

    2010-01-01

    COURSE D’ORIENTATION  De La Rippe à Sauvabellin, la coupe genevoise continue ! Le rendez-vous était donné samedi 8 mai aux amateurs de course d’orientation dans les bois de La Rippe (Canton de Vaud). Cette 6e épreuve était organisée par le Club Satus Grutli de Genève. Il est dommage que les participants n’aient pas été aussi nombreux que lors des dernières courses, les Championnats de France des clubs à Dijon ayant certainement retenus plus d’un compétiteur. La première place est revenue à : – Technique long : Berni Wehrle – Technique moyen : Jean-Bernard Zosso – Technique court : Berni Wehrle – Facile moyen : Peter Troscanyi – Facile court : Claire Droz. Il ne restera plus que deux épreuves ...

  14. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2015-01-01

    Course orientation Finale de la coupe genevoise La série des courses de printemps s’est achevée samedi dernier dans les bois de Bonmont (Vaud) avec une épreuve «one-man-relay» organisée par le club. Le vainqueur du parcours technique  long, Yann Locatelli (Club de Chambéry Savoie) a réalisé les deux boucles comportant 24 balises avec presque 6 minutes d’avance sur le second concurrent Domenico Lepori (Club CARE Vevey). Cette dernière étape était aussi décisive pour la désignation des lauréats de la coupe genevoise de printemps, en comptabilisant les 6 meilleurs résultats sur les 10 épreuves. Le podium officiel était donné par le président du club, L. Jirden, qui profitait de l’occasion pour remercier tous les participants et également tous les...

  15. Orienteering Club

    CERN Document Server

    Club d'Orientation

    2012-01-01

    Course d'orientation Ces deux dernières semaines, le club a organisé la troisième puis la quatrième étape de la coupe de printemps, une dans la forêt de Collogny/Moissey près de Vulbens, l’autre vers le parcours vita de Trélex. Les résultats sont: Facile court Vulbens : 1er Léo Lonchampt, O’Jura (16:04), 2e Timothée Bazin (23:07), 3e Francesco Pieri (26:57) Trélex : 1er Noora Maurent (23:11), 2e Sarah Stuber, COLJ (26:51), 3e T. Bazin (28:17) Facile moyen Vulbens : 1er Victor Kuznetsov, CO CERN (25:36), 2e Didier Descourvières (28:03), 3e Konstantinos Haider, CO CERN (36:53) Trélex : 1er V. Kuznetsov, COLJ (38:01), 2e K. Haider, CO CERN (43:15), 3e ex aequo Olivia Nguyen et Sven Vietmeier (58:11) Technique court Vulbens : 1er Benoit Bazin (41:21), 2e Colas Gintzburger (55:12), 3e Nathan Freydoz (55:48) Trélex : 1...

  16. Orienteering Club

    CERN Document Server

    Club d'orientation

    2013-01-01

    Finale de la coupe d’automne La dernière épreuve de la coupe d’automne organisée par le club d’orientation du CERN s’est déroulée ce samedi 2 novembre avec une course au score dans le bois Tollot (GE). Les concurrents disposaient d’un temps imparti pour poinçonner le maximum de balises différemment placées selon le circuit choisi. Juerg Niggli (club O’Jura) a remporté le parcours technique long. A l’issue de cette course, le classement général de la coupe d’automne, basé sur les 6 meilleurs résultats de la saison, est le suivant : Circuit technique long : 1er Juerg Niggli (O’Jura), 2e Bruno Barge, 3e Beat Mueller. Circuit technique moyen : 1er Laurent Merat (O’Jura), 2e Jirden Lennart, 3e Daria Niggli. Circuit technique court : 1er Victor Kuznetsov (COLJ), 2e N...

  17. Orienteering club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Course d'orientation Vers les dernières courses de printemps Une centaine de coureurs se sont déplacés sur le site de la Roche Fendue prés de Morez pour gouter à un des 5 parcours proposés par le club du O’Jura. Le terrain était gras mais que peut-on trouver d’autre avec cette météo! Les vainqueurs de chaque circuit sont : Alina Niggli (O’Jura) facile court, Natalja Niggli (O’Jura) facile moyen, Victor Kuznetsov (COLJ) technique court, Yves Rousselot (Balise 25) technique moyen et pour finir François Gonon (O’Jura) avec une victoire haut la main sur le technique long. Il ne reste plus que deux épreuves pour la coupe genevoise de printemps : à savoir samedi 8 juin, course de type longue distance organisée par le club de Lausanne Jorat (COLJ) dans le bois de Seyte sur Mutrux/Concise, inscription de 12h &...

  18. Orienteering Club

    CERN Document Server

    Club d'Orientation

    2012-01-01

     Finale de la coupe de printemps   La dernière course d’orientation comptant pour la Coupe de printemps a eu lieu samedi dernier dans le village des Rousses et vers le Fort. Il s’agissait d’un sprint organisé par le club O’Jura. Les temps de course ont avoisiné les 20 minutes que ce soit pour le parcours technique moyen ou technique long. Tous les habitués étaient au rendez-vous pour venir consolider ou améliorer leur place au classement. A l’issue de cette course, le classement général de la Coupe de printemps prenant en compte les 6 meilleurs résultats des 9 courses était établi et les lauréats de chaque catégorie sont les suivants: Circuit technique long : 1er Berni Wehrle, 2e Bruno Barge, 3e Edvins Reisons. Circuit technique moyen : 1er Jean-Bernard Zosso, 2e Cédric Wehrl&...

  19. Orienteering Club

    CERN Document Server

    Club d'orientation

    2012-01-01

    Finale de la coupe d’automne   La coupe d’automne organisée par le club d’orientation du CERN s’est terminée ce samedi 10 novembre avec une course sprint à Prévessins. C’était la 12e épreuve de la saison. En stage dans la région, Tanya Ryabkina, championne d’Europe en titre et médaillée de bronze en moyenne distance lors des championnats du monde à La Givrine cet été, a fait l’honneur de sa présence et termine 2e à 8 secondes de Trygve Buanes, norvégien du club de Bergen. A l’issue de cette dernière épreuve, le classement général de la coupe d’automne, basé sur les 8 meilleurs résultats de la saison, est ainsi le suivant : Circuit technique long : 1er Jurg Niggli (O&rsqu...

  20. Orienteering club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Courses d’orientation Samedi 20 avril, les organisateurs du Club de CO du CERN ont accueilli au Mont Mourex 70 participants qui n’ont pas hésité à venir malgré la forte bise. Berni Wehrle du CO CERN s’est octroyé la première place en 1:04:49 sur le parcours technique long devant Pyry Kettunen du Saynso Juankoski en 1:06:52, la 3e place revenant à Bruno Barge, CO CERN, à 7 secondes. Les autres parcours ont été remportés par : Technique moyen : 1er Jacques Moisset, Chamonix (47:44), 2e Yves Rousselot, Balise 25 Besançon (57:16), 3e Jean-Bernard Zosso, CO CERN (59:28). Technique court : 1er Victor Kuznetsov, COLJ (51:53), 2e Pierrick Collet, CO CERN (1:12:52), 3e Dominique Balay, CO CERN (1:16:04). Pour les parcours facile moyen et facile court, Ralf Nardini et Léa Nicolas, tous deux du CO CERN, terminaient respectivement premier. Voi...

  1. Orienteering Club

    CERN Multimedia

    CLUB D'ORIENTATION

    2013-01-01

    Calendrier de la coupe d’automne Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose, pour cette nouvelle coupe d’automne genevoise, une série de 10 courses. Le club du O’Jura donnera le coup d’envoi le samedi 31 août. Les courses s’enchaîneront selon le calendrier suivant : Samedi 31 août : Prémanon (39) - longue distance Samedi 14 septembre : La Faucille (01) - longue distance Samedi 21 septembre : Saint Cergue (VD) - longue distance Samedi 28 septembre : Ballens (VD) - relais Samedi 5 octobre : La Pile (VD) - longue distance Vendredi 11 octobre : Les Evaux (GE) - nocturne Samedi 12 octobre : Grand Jorat, Savigny (VD) - longue distance Samedi 19 octobre : Terrasses de Genève (74) - longue distance Samedi 26 octobre : Prémanon (39) - longue distance Samedi 2 novembre : Bois Tollot (GE) - score - Finale Les &a...

  2. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2011-01-01

    Course d'orientation Avec la CO en nocturne organisée par le club du CERN vendredi 14 octobre au stade des Eveaux (Ge), et la CO à Savigny (Vd) proposée par le club de Lausanne-Jorat le lendemain, les étapes de la coupe genevoise d’automne s’enchainent rapidement. Il ne reste plus que 3 rendez-vous pour boucler la saison. Les premières places devraient certainement se jouer entre des membres du club du CERN, du O’Jura ou de Lausanne-Jorat. La prochaine course du club est programmée pour samedi 22 octobre à Pomier, près de Cruseilles. L’accueil se fera à partir de 12h30 et les départs s’échelonneront de 13h à 15h. * * * * * * * Nouvelle belle victoire samedi 8 octobre à Saint Cergue du jeune finlandais Ville Keskisaari (COLJ) en 50:56 devant Jürg Niggli (O’Jura) en 1:03:32, et Alexandre...

  3. Orienteering club

    CERN Multimedia

    Club d'orientation

    2014-01-01

    Course d'orientation C’est sous un beau soleil samedi 4 octobre que s’est déroulée la 6e étape de la Coupe genevoise d’automne organisée par le club. Plus d’une centaine de concurrents provenant de 7 clubs de CO avaient fait le déplacement pour courir sur un des cinq parcours proposés dans les bois de Trélex-Génolier (VD). Le podium est le suivant : Technique long (5,9 km, 19 postes) : 1er Jurg Niggli, O’Jura (1:00:02); 2e Berni Wehrle, CO CERN (1:06:44); 3e Konrad Ehrbar, COLJ (1:07:08) Technique moyen (4,8 km, 18 postes) : 1er Christophe Vuitton, CO CERN (54:25); 2e J.B. Zosso, CO CERN (1:01:19); 3e Jeremy Wichoud, COLJ (1:06:21) Technique court (3,8 km, 14 postes) : 1er Julien Vuitton, CO CERN (36:19); 2e Vladimir Kuznetsov, COLJ (48:47); 3e Natalia Niggli, O’Jura (50:38) Facile moyen (3,2 km, 11 postes) : 1ère Alina Niggli, O&...

  4. Orienteering Club

    CERN Multimedia

    Club d'Orientation

    2012-01-01

    Relais inter-club/Challenge Carlo Milan Samedi dernier, lors de l’épreuve de course d’orientation organisée par le club du O’Jura, le moteur de la discipline était l’esprit d’équipe, puisqu’il était question d’un relais inter-club avec le Challenge Carlo Milan. Les clubs avaient aligné leurs coureurs soit sur le relais technique (trois participants) soit sur le relais facile (deux participants). Côté O’Jura, il fallait noter la participation de François Gonon, champion du monde 2011, côté club du CERN, Marie et Gaëtan Vuitton, jeunes espoirs du club, devaient préparer la piste pour lancer le dernier relayeur. Côté Lausanne-Jorat, il fallait compter sur le très jeune Viktor Kuznetsov. Les 31 équipes engagées n’ont pas m&ea...

  5. Orienteering club

    CERN Multimedia

    Club d'orientation

    2014-01-01

    Course d'orientation Finale de la coupe d’automne La dernière épreuve de la coupe d’automne organisée par le club s’est déroulée ce samedi 1er novembre avec une course type «one-man-relay» dans la forêt de Trelex (Vd). Les concurrents des circuits techniques devaient parcourir trois boucles et ceux des circuits «faciles» deux boucles, avec changements de carte. Le parcours technique long a été remporté par un membre du club, Berni Wehrle. A l’issue de cette course, le Président du club, L. Jirden annonçait le classement général de la coupe d’automne, basé sur les 6 meilleurs résultats de la saison : Circuit technique long : 1er Juerg Niggli (O’Jura), 2e Berni Wehrle, 3e Beat Mueller. Circuit technique moyen : 1er Laurent Merat (O&r...

  6. Orienteering Club

    CERN Multimedia

    Club d'orientation

    2013-01-01

    Course d'orientation Le coup d’envoi de la coupe genevoise a été donné samedi 31 août dans les bois de Combe Froide à Prémanon. Plus de 150 coureurs avaient fait le déplacement. Les parcours facile court, facile moyen et technique court ont été remportés par des coureurs du club O’Jura - Ulysse Dannecker, Léo Lonchampt, Franck Lonchampt, le technique moyen par Pekka Marti du club Ol Biel Seeland et le technique long par Térence Risse du CA Rosé – également membre de l’équipe nationale suisse des moins de 20 ans. Pour le club du CERN, les meilleures résultats ont été obtenus pas Emese Szunyog sur technique court et Marie Vuitton sur technique moyen avec une 4e place. La prochaine course aura lieu samedi 14 septembre à La Faucille. Le club propose aussi...

  7. Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory

    Science.gov (United States)

    Coplen, T.B.

    2007-01-01

    The ??18O of ground water (-13.54 ?? 0.05 ???) and inorganically precipitated Holocene vein calcite (+14.56 ?? 0.03 ???) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 ??C of 1.02849 ?? 0.00013 (1000 ln ??calcite-water = 28.09 ?? 0.13). Using the commonly accepted value of ???(??calcite-water)/???T of -0.00020 K-1, this corresponds to a 1000 ln ??calcite-water value at 25 ??C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 ??C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a ??18O of water, from which the calcite precipitated, that is too negative by 1.5 ??? using a temperature of 33.7 ??C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order. Assuming the Devils Hole oxygen isotopic value of ??calcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a ??18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.

  8. 3D Mapping of calcite and a demonstration of its relevance to permeability evolution in reactive fractures

    Science.gov (United States)

    Ellis, Brian R.; Peters, Catherine A.

    2016-09-01

    There is a need to better understand reaction-induced changes in fluid transport in fractured shales, caprocks and reservoirs, especially in the context of emerging energy technologies, including geologic carbon sequestration, unconventional natural gas, and enhanced geothermal systems. We developed a method for 3D calcite mapping in rock specimens. Such information is critical in reactive transport modeling, which relies on information about the locations and accessible surface area of reactive minerals. We focused on calcite because it is a mineral whose dissolution could lead to substantial pathway alteration because of its high solubility, fast reactivity, and abundance in sedimentary rocks. Our approach combines X-ray computed tomography (XCT) and scanning electron microscopy. The method was developed and demonstrated for a fractured limestone core containing about 50% calcite, which was 2.5 cm in diameter and 3.5 cm in length and had been scanned using XCT. The core was subsequently sectioned and energy dispersive X-ray spectroscopy was used to determine elemental signatures for mineral identification and mapping. Back-scattered electron microscopy was used to identify features for co-location. Finally, image analysis resulted in characteristic grayscale intensities of X-ray attenuation that identify calcite. This attenuation mapping ultimately produced a binary segmented 3D image of the spatial distribution of calcite in the entire core. To demonstrate the value of this information, permeability changes were investigated for hypothetical fractures created by eroding calcite from 2D rock surfaces. Fluid flow was simulated using a 2D steady state model. The resulting increases in permeability were profoundly influenced by the degree to which calcite is contiguous along the flow path. If there are bands of less reactive minerals perpendicular to the direction of flow, fracture permeability may be an order of magnitude smaller than when calcite is contiguous

  9. A thermodynamic adsorption/entrapment model for selenium(IV) coprecipitation with calcite

    Science.gov (United States)

    Heberling, Frank; Vinograd, Victor L.; Polly, Robert; Gale, Julian D.; Heck, Stephanie; Rothe, Jörg; Bosbach, Dirk; Geckeis, Horst; Winkler, Björn

    2014-06-01

    Selenium is an environmentally relevant trace element, while the radioisotope 79Se is of particular concern in the context of nuclear waste disposal safety. Oxidized selenium species are relatively soluble and show only weak adsorption at common mineral surfaces. However, a possible sorption mechanism for selenium in the geosphere is the structural incorporation of selenium(IV) (selenite, SeO32-) into calcite (CaCO3). In this study we investigate the interactions between selenite and calcite by a series of experimental and computational methods with the aim to quantify selenite incorporation into calcite at standard conditions. We further seek to describe the thermodynamics of selenite-doped calcite, and selenite coprecipitation with calcite. The structure of the incorporated species is investigated using Se K-edge EXAFS (isotropic and polarization dependent) and results are compared to density functional theory (DFT) calculations. These investigations confirm structural incorporation of selenite into calcite by the substitution of carbonate for selenite, leading to the formation of a Ca(SeO3)X(CO3)(1-X) solid solution. Coprecipitation experiments at low supersaturation indicate a linear increase of the selenite to carbonate ratio in the solid with the increase of the selenite to carbonate ratio in the contact solution. This relationship can be described under the assumption of an ideal mixing between calcite and a virtual CaSeO3 endmember, whose standard Gibbs free energy (G0(CaSeO3_exp) = -953 ± 6 kJ/mol, log10(KSP(CaSeO3_exp)) = -6.7 ± 1.0) is defined by linear extrapolation of the excess free energy from the dilute Henry’s law domain to X(CaSeO3) = 1. In contrast to this experimental result, DFT and force field calculations predict the virtual bulk CaSeO3 endmember to be significantly less stable and more soluble: G0(CaSeO3 bulk) = -912 ± 10 kJ/mol and log10(KSP(CaSeO3_bulk)) = 0.5 ± 1.7. To explain this discrepancy we introduce a thermodynamic adsorption

  10. Infrared spectroscopy and density functional theory investigation of calcite, chalk, and coccoliths-do we observe the mineral surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Hem, Caroline Piper; Schultz, Logan Nicholas;

    2014-01-01

    asymmetric for the coccoliths and the synthetic calcite prepared using the carbonation method. It can be very well fitted by two peaks: a narrow Lorenzian at lower frequency and a broader Gaussian at higher frequency. These two samples both have a high specific surface area. Density functional theory...... broadening from macroscopic dielectric effects. We detect water adsorbed on the high surface area synthetic calcite, which permits observation of the chemistry of thin liquid films on calcite using transmission infrared spectroscopy. The combination of infrared spectroscopy and density functional theory also...

  11. Experimental Research on Microscopic Indicators of Temperature's Returning-to-Zero in Deformation of Calcite and Discussions of Correlation Problem

    Institute of Scientific and Technical Information of China (English)

    Yao Daquan; Zhai Hongtao

    2005-01-01

    In order to determine the degree of returning-to-zero of temperatures of deformed calcite, a series of rock-breaking experiments were designed to test calcite-rich limestone samples under fixed confining pressures and different temperatures. The consolidated deformed samples in their initial state were observed under a microscope and the microscopic indicators in different zero-returning states were put forward, thus providing a microscopic foundation for evaluation of reliability of dating values of deformation in calcite. At last, the correction of dating values of deformation for samples whose temperature has not yet returned to zero is discussed.

  12. Investigation on orientation, epitaxial growth and microstructure of a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ films prepared on (001), (110) and (111) SrTiO3 single crystal substrates by spray atomizing and coprecipitating laser chemical vapor deposition

    Science.gov (United States)

    Zhao, Pei; Wang, Ying; Huang, Zhi liang; Mao, Yangwu; Xu, Yuan Lai

    2015-04-01

    a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ (YBCO) films were pareared by spray atomizing and coprecipitating laser chemical vapor deposition. The surface of the a-axis-oriented YBCO film consisted of rectangular needle-like grains whose in-plane epitaxial growth relationship was YBCO [100] // STO [001] (YBCO [001] // STO [100]), and that of the c-axis-oriented YBCO film consisted of dense flat surface with epitaxial growth relationship of YBCO [001] // STO [001] (YBCO [100] //STO [100]). For the (103)/(110)-oriented and (113)-oriented YBCO film, they showed wedge-shaped and triangle-shaped grains, with corresponding in-plane epitaxial growth relationship of YBCO [110] // STO [110] (YBCO [010] // STO [010]) and YBCO [100] // STO [100] (YBCO [113] // STO [111], respectively.

  13. First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO{sub 3} and calcite CaCO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Brik, M.G., E-mail: brik@fi.tartu.e [Institute of Physics, University of Tartu, Riia 142, Tartu 51014, Tartu (Estonia)

    2011-02-15

    Detailed ab initio calculations of the structural, electronic, optical and elastic properties of two crystals - magnesite (MgCO{sub 3}) and calcite (CaCO{sub 3}) - are reported in the present paper. Both compounds are important natural minerals, playing an important role in the carbon dioxide cycling. The optimized crystal structures, band gaps, density of states diagrams, elastic constants, optical absorption spectra and refractive indexes dependence on the wavelength all have been calculated and compared, when available, with literature data. Both crystals are indirect band compounds, with calculated band gaps of 5.08 eV for MgCO{sub 3} and 5.023 eV for CaCO{sub 3}. Both values are underestimated by approximately 1.0 eV with respect to the experimental data. Although both crystals have the same structure, substitution of Mg by Ca ions leads to certain differences, which manifest themselves in noticeable change in the electronic bands profiles and widths, shape of the calculated absorption spectra, and values of the elastic constants. Response of both crystals to the applied hydrostatic pressure was analyzed in the pressure range of phase stability, variations of the lattice parameters and characteristic interionic distances were considered. The obtained dependencies of lattice constants and calculated band gap on pressure can be used for prediction of properties of these two hosts at elevated pressures that occur in the Earth's mantle. -- Research highlights: {yields} Ab initio calculations of physical properties of MgCO{sub 3} and CaCO{sub 3} were performed. {yields} Changes of the calculated properties with replacement of Mg by Ca were followed. {yields} Pressure dependence of the structural and electronic properties was analyzed. {yields} Good agreement with experimental data was demonstrated.

  14. Arsenic uptake by gypsum and calcite: Modeling and probing by neutron and x-ray scattering

    CERN Document Server

    Fernandez-Martinez, Alejandro; Roman-Ross, Gabriela; Johnson, Mark R; Bardelli, Fabrizio; Turrillas, Xavier; Charlet, Laurent

    2006-01-01

    Here we report on two structural studies performed on As-doped gypsum (CaSO4 2H2O) and calcite (CaCO3), using neutron (D20-ILL) and x-ray (ID11-ESRF) diffraction data and EXAFS (BM8-ESRF). The aim of this study is to determine whether As gets into the bulk of gypsum and calcite structures or is simply adsorbed on the surface. Different mechanisms of substitution are used as hypotheses. The combined Rietveld analysis of neutron and x-ray diffraction data shows an expansion of the unit cell volume proportional to the As concentration within the samples. DFT-based simulations confirm the increase of the unit cell volume proportional to the amount of carbonate or sulphate groups substituted. Interpolation of the experimental Rietveld data allows us to distinguish As substituted within the structure from that adsorbed on the surface of both minerals.

  15. Uranium immobilization by sulfate-reducing biofilms grown on hematite, dolomite, and calcite.

    Energy Technology Data Exchange (ETDEWEB)

    Marsili, E.; Beyenal, Haluk; Di Palma, L.; Merli, C.; Dohnalkova, Alice; Amonette, James E.; Lewandowski, Zbigniew

    2007-12-15

    Biofilms of sulfate-reducing bacteria Desulfovibrio desulfuricans G20 wereused to reduce dissolved U(VI)and subsequently immobilize U(IV) in the presence of uranium-complexing carbonates. The biofilms were grown in three identically operated fixed bed reactors, filled with three types of minerals: one noncarbonate-bearing mineral(hematite) and two carbonate-bearing minerals (calcite and dolomite). The source of carbonates in the reactors filled with calcite and dolomite were the minerals, while in the reactor filled with hematite it was a 10 mM carbonate buffer, pH 7.2, which we added to the growth medium. Our five-month study demonstrated that the sulfate-reducing biofilms grown in all reactors were able to immobilize/reduce uranium efficiently, despite the presence of uranium-complexing carbonates.

  16. A simple reactive-transport model of calcite precipitation in soils and other porous media

    Science.gov (United States)

    Kirk, G. J. D.; Versteegen, A.; Ritz, K.; Milodowski, A. E.

    2015-09-01

    Calcite formation in soils and other porous media generally occurs around a localised source of reactants, such as a plant root or soil macro-pore, and the rate depends on the transport of reactants to and from the precipitation zone as well as the kinetics of the precipitation reaction itself. However most studies are made in well mixed systems, in which such transport limitations are largely removed. We developed a mathematical model of calcite precipitation near a source of base in soil, allowing for transport limitations and precipitation kinetics. We tested the model against experimentally-determined rates of calcite precipitation and reactant concentration-distance profiles in columns of soil in contact with a layer of HCO3--saturated exchange resin. The model parameter values were determined independently. The agreement between observed and predicted results was satisfactory given experimental limitations, indicating that the model correctly describes the important processes. A sensitivity analysis showed that all model parameters are important, indicating a simpler treatment would be inadequate. The sensitivity analysis showed that the amount of calcite precipitated and the spread of the precipitation zone were sensitive to parameters controlling rates of reactant transport (soil moisture content, salt content, pH, pH buffer power and CO2 pressure), as well as to the precipitation rate constant. We illustrate practical applications of the model with two examples: pH changes and CaCO3 precipitation in the soil around a plant root, and around a soil macro-pore containing a source of base such as urea.

  17. Quantitative laboratory measurements of biogeochemical processes controlling biogenic calcite carbon sequestration.

    Energy Technology Data Exchange (ETDEWEB)

    Zendejas, Frank; Lane, Todd W.; Lane, Pamela D.

    2011-01-01

    The purpose of this LDRD was to generate data that could be used to populate and thereby reduce the uncertainty in global carbon cycle models. These efforts were focused on developing a system for determining the dissolution rate of biogenic calcite under oceanic pressure and temperature conditions and on carrying out a digital transcriptomic analysis of gene expression in response to changes in pCO2, and the consequent acidification of the growth medium.

  18. Smaller calcite lattice deformation caused by occluded organic material in coccoliths than in mollusk shell

    DEFF Research Database (Denmark)

    Frølich, Simon; Sørensen, Henning Osholm; Hakim, Sepideh Sadat;

    2015-01-01

    and the coccolithophorids. These differences were reflected in lattice deformation (macrostrain), structure (microstrain), and atomic disorder distributions (δorganic). The influence of the biological macromolecules on the inorganic phase was consistently smaller in the P. carterae compared to P. nobilis......The growth and nucleation of biominerals are directed and affected by associated biological molecules. In this paper, we investigate the influence of occluded biomolecules on biogenic calcite from the coccolithophorid Pleurochrysis carterae and from chalk, a rock composed predominantly of fossil...

  19. Coccolithophore responses to environmental variability in the South China Sea: species composition and calcite content

    OpenAIRE

    Jin, X. B.; C. L. Liu; Poulton, A. J.; M. H. Dai; X.H. Guo

    2016-01-01

    Coccolithophore contributions to the global marine carbon cycle are regulated by the calcite content of their scales (coccoliths), and the relative cellular levels of photosynthesis and calcification. All three of these factors vary between coccolithophore species, and with response to the growth environment. Here, water samples were collected in the northern basin of the South China Sea (SCS) during summer 2014 in order to examine how environmental variability influenced species composition ...

  20. Rapid changes in water hardness and alkalinity: Calcite formation is lethal to Daphnia magna.

    Science.gov (United States)

    Bogart, Sarah J; Woodman, Samuel; Steinkey, Dylan; Meays, Cindy; Pyle, Greg G

    2016-07-15

    There is growing concern that freshwater ecosystems may be negatively affected by ever-increasing anthropogenic inputs of extremely hard, highly alkaline effluent containing large quantities of Ca(2+), Mg(2+), CO3(2-), and HCO3(-) ions. In this study, the toxicity of rapid and extreme shifts in water hardness (38-600mg/L as CaCO3) and alkalinity (30-420mg/L as CaCO3) to Daphnia magna was tested, both independently and in combination. Within these ranges, where no precipitation event occurred, shifts in water hardness and/or alkalinity were not toxic to D. magna. In contrast, 98-100% of D. magna died within 96h after exposure to 600mg/L as CaCO3 water hardness and 420mg/L as CaCO3 alkalinity (LT50 of 60h with a 95% CI of 54.2-66.0h). In this treatment, a CaCO3 (calcite) precipitate formed in the water column which was ingested by and thoroughly coated the D. magna. Calcite collected from a mining impacted stream contained embedded organisms, suggesting field streams may also experience similar conditions and possibly increased mortality as observed in the lab tests. Although further investigation is required to determine the exact fate of aquatic organisms exposed to rapid calcite precipitation in the field, we caution that negative effects may occur more quickly or at lower concentrations of water hardness and alkalinity in which we observed effects in D. magna, because some species, such as aquatic insects, are more sensitive than cladocerans to changes in ionic strength. Our results provide evidence that both calcite precipitation and the major ion balance of waters should be managed in industrially affected ecosystems and we support the development of a hardness+alkalinity guideline for the protection of aquatic life.