WorldWideScience

Sample records for calcineurin phosphatase inhibition

  1. Calcineurin phosphatase activity and immunosuppression. A review on the role of calcineurin phosphatase activity and the immunosuppressive effect of cyclosporin A and tacrolimus

    DEFF Research Database (Denmark)

    Jørgensen, Kaj Anker; Koefoed-Nielsen, P.B.; Karamperis, N.

    2003-01-01

    The mode of immunosuppressive action of tacrolimus (FK506) and cyclosporin A has been elucidated. Both drugs bind to proteins in the cytoplasm to form complexes, which in turn inhibit the phosphatase activity of calcineurin, an important limiting step in the activation of T cells. The association...

  2. A new calcineurin inhibition domain in Cabin1

    International Nuclear Information System (INIS)

    Calcineurin (CN), a calcium-activated phosphatase, plays a critical role in various biological processes including T cell activation. Cabin1, a calcineurin binding protein 1, has been shown to bind directly to CN using its C-terminal region and inhibit CN activity. However, no increase in CN activity has been found in Cabin1ΔC T cells, which produce a truncated Cabin1 lacking the C-terminal CN binding region. Here, we report that Cabin1 has additional CN binding domain in its 701-900 amino acid residues. Cabin1 (701-900) blocked both CN-mediated dephosphorylation and nuclear import of NFAT and thus inhibited IL-2 production in response to PMA/ionomycin stimulation. This fact may explain why Cabin1ΔC mice previously showed no significant defect in CN-mediated signaling pathway

  3. Calcineurin Inhibition Blocks Within-, but Not Between-Session Fear Extinction in Mice

    Science.gov (United States)

    Almeida-Corrêa, Suellen; Moulin, Thiago C.; Carneiro, Clarissa F. D.; Gonçalves, Marina M. C.; Junqueira, Lara S.; Amaral, Olavo B.

    2015-01-01

    Memory extinction involves the formation of a new associative memory that inhibits a previously conditioned association. Nonetheless, it could also depend on weakening of the original memory trace if extinction is assumed to have multiple components. The phosphatase calcineurin (CaN) has been described as being involved in extinction but not in…

  4. Cyclosporin-mediated inhibition of bovine calcineurin by cyclophilins A and B.

    OpenAIRE

    Swanson, S. K.; Born, T.; Zydowsky, L D; Cho, H.; Chang, H.Y.; Walsh, C T; Rusnak, F.

    1992-01-01

    The Ca(2+)- and calmodulin-dependent protein phosphatase calcineurin is inhibited by the immunosuppressant drug cyclosporin A in the presence of cyclophilin A or B. Of the two isoforms, cyclophilin B is more potent by a factor of 2-5 when either the phosphoprotein [32P]casein or the [32P]phosphoserine [Ser(32P)] form of the 19-residue bovine cardiac cAMP-dependent protein kinase regulatory subunit peptide RII, [Ser(32P)15]RII, is used as substrate. With [Ser(32P15]RII as substrate, the concen...

  5. Compensatory renal hypertrophy following uninephrectomy is calcineurin-independent

    OpenAIRE

    Clintoria R Williams; Wynne, Brandi M.; Walker, Makeeva; Hoover, Robert S.; Gooch, Jennifer L

    2014-01-01

    Calcineurin is a calcium-dependent phosphatase that is involved in many cellular processes including hypertrophy. Inhibition or genetic loss of calcineurin blocks pathological cardiac hypertrophy and diabetic renal hypertrophy. However, calcineurin does not appear to be involved in physiological cardiac hypertrophy induced by exercise. The role of calcineurin in a compensatory, non-pathological model of renal hypertrophy has not been tested. Therefore, in this study, we examined activation of...

  6. Spatial control of calcineurin in response to heat shock in fission yeast.

    Science.gov (United States)

    Higa, Mari; Kita, Ayako; Hagihara, Kanako; Kitai, Yuki; Doi, Akira; Nagasoko, Rie; Satoh, Ryosuke; Sugiura, Reiko

    2015-02-01

    In fission yeast, Ppb1, the Ca2+/calmodulin-dependent protein phosphatase calcineurin regulates multiple biological processes, such as cytokinesis, Ca2+-homeostasis, membrane trafficking and cell wall integrity. Calcineurin dephosphorylates the Prz1 transcription factor, leading to its nuclear translocation and gene expression under the control of CDRE (calcineurin-dependent response element). Although the calcineurin-mediated spatial control of downstream transcription factors has been intensively studied in many organisms, less is known about the spatial regulation of calcineurin on stresses. Here, we show that heat shock stimulates calcineurin-dependent nuclear translocation of Prz1 and CDRE-dependent gene expression. Notably, calcineurin exhibited a dramatic change in subcellular localization, translocating from diffuse cytoplasmic to dot-like structures on heat shock. The calcineurin dots colocalized with Dcp2 or Pabp, the constituent of P-bodies or stress granules, respectively, thus suggesting that calcineurin is a component of RNA granules under heat shock. Importantly, the calcineurin inhibitor FK506 markedly inhibited the accumulation of calcineurin granules, whereas the constitutively active calcineurin strongly accumulated in the granules on heat shock, suggesting that phosphatase activity is important for calcineurin localization. Notably, the depletion of calcineurin induced a rapid appearance of Nrd1- and Pabp-positive RNA granules. The possible roles of calcineurin in response to heat shock will be discussed. PMID:25529221

  7. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    International Nuclear Information System (INIS)

    Highlights: ► Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. ► Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. ► FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment

  8. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Zawawi, M.S.F. [Universiti Sains Malaysia (USM) (Malaysia); Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia); Dharmapatni, A.A.S.S.K.; Cantley, M.D. [Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia); McHugh, K.P. [University of Florida, College of Dentistry, Fl (United States); Haynes, D.R. [Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia); Crotti, T.N., E-mail: tania.crotti@adelaide.edu.au [Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005 (Australia)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real

  9. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer.

    Science.gov (United States)

    Zhao, Xin; Wang, Qiuting; Yang, Shijun; Chen, Chen; Li, Xiaoya; Liu, Jinyu; Zou, Zhongmei; Cai, Dayong

    2016-06-15

    Vascular endothelial growth factor receptor 2 (VEGFR2) mediated calcineurin/nuclear factor of activated T-cells (NFAT) pathway is crucial in the angiogenesis of human breast cancer. Quercetin (Qu), a flavonoid known to possess anti-angiogenesis and antitumor properties, inhibited calcineurin activity in vitro. Herein, we performed a study in vivo to evaluate the effects of Qu on the angiogenesis in breast cancer. Female BALB/c nude mice were injected with MCF-7 cells into the mammary fat and were randomly divided into four groups. The animals were treated with vehicle solution, tamoxifen (TAM, 5.6mg/kg), tacrolimus (FK506, 3mg/kg), or Qu (34mg/kg) for 21 days, respectively. The results showed that, similar to TAM and FK506, Qu decreased tumor growth, limited oncocyte proliferation and promoted tumor necrosis. Anti-angiogenic actions of Qu were demonstrated as decreased serum VEGF (P0.05). Effects of Qu on calcineurin/NFAT pathway were confirmed as decreased subcellular located levels of VEGF (Pangiogenesis of human breast cancer xenograft in nude mice, which was associated with suppressing calcineurin activity and its regulated pathway activation. PMID:27041643

  10. Calcineurin phosphatase as a negative regulator of fear memory in hippocampus: control on nuclear factor-κB signaling in consolidation and reconsolidation.

    Science.gov (United States)

    de la Fuente, Verónica; Federman, Noel; Fustiñana, María Sol; Zalcman, Gisela; Romano, Arturo

    2014-12-01

    Protein phosphatases are important regulators of neural plasticity and memory. Some studies support that the Ca(2+) /calmodulin-dependent phosphatase calcineurin (CaN) is, on the one hand, a negative regulator of memory formation and, on the other hand, a positive regulator of memory extinction and reversal learning. However, the signaling mechanisms by which CaN exerts its action in such processes are not well understood. Previous findings support that CaN negatively regulate the nuclear factor kappaB (NF-κB) signaling pathway during extinction. Here, we have studied the role of CaN in contextual fear memory consolidation and reconsolidation in the hippocampus. We investigated the CaN control on the NF-κB signaling pathway, a key mechanism that regulates gene expression in memory processes. We found that post-training intrahippocampal administration of the CaN inhibitor FK506 enhanced memory retention one day but not two weeks after training. Accordingly, the inhibition of CaN by FK506 increased NF-κB activity in dorsal hippocampus. The administration of the NF-κB signaling pathway inhibitor sulfasalazine (SSZ) impeded the enhancing effect of FK506. In line with our findings in consolidation, FK506 administration before memory reactivation enhanced memory reconsolidation when tested one day after re-exposure to the training context. Strikingly, memory was also enhanced two weeks after training, suggesting that reinforcement during reconsolidation is more persistent than during consolidation. The coadministration of SSZ and FK506 blocked the enhancement effect in reconsolidation, suggesting that this facilitation is also dependent on the NF-κB signaling pathway. In summary, our results support a novel mechanism by which memory formation and reprocessing can be controlled by CaN regulation on NF-κB activity. PMID:25043904

  11. Effects of arsenite and UVA-1 radiation on calcineurin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Musson, Ruben E.A., E-mail: rm@ream.nl [Department of Clinical Chemistry, Leiden University Medical Center (Netherlands); Department of Toxicogenetics, Leiden University Medical Center (Netherlands); Mullenders, Leon H.F. [Department of Toxicogenetics, Leiden University Medical Center (Netherlands); Smit, Nico P.M. [Department of Clinical Chemistry, Leiden University Medical Center (Netherlands)

    2012-07-01

    Calcineurin is a Ca{sup 2+}-dependent serine/threonine phosphatase and the target of the immunosuppressive drugs cyclosporin and tacrolimus, which are used in transplant recipients to prevent rejection. Unfortunately, the therapeutic use of this drugs is complicated by a high incidence of skin malignancy, which has set off a number of studies into the role of calcineurin signaling in skin, particularly with respect to cell cycle control and DNA repair. Both UVA1 radiation and arsenic species are known to promote skin cancer development via production of reactive oxygen species. In light of the well-documented sensitivity of calcineurin to oxidative stress, we examined and compared the effects of UVA1 and arsenite on calcineurin signaling. In this paper, we show that physiologically relevant doses of UVA1 radiation and low micromolar concentrations of arsenite strongly inhibit calcineurin phosphatase activity in Jurkat and skin cells and decrease NFAT nuclear translocation in Jurkat cells. The effects on calcineurin signaling could be partly prevented by inhibition of NADPH oxidase in Jurkat cells or increased dismutation of superoxide in Jurkat and skin cells. In addition, both UVA1 and arsenite decreased NF-{kappa}B activity, although at lower concentrations, arsenite enhanced NF-{kappa}B activity. These data indicate that UVA1 and arsenite affect a signal transduction route of growingly acknowledged importance in skin and that calcineurin may serve as a potential link between ROS exposure and impaired tumor suppression.

  12. Estrogen Inhibits Cardiomyocyte Hypertrophy in Vitro: ANTAGONISM OF CALCINEURIN-RELATED HYPERTROPHY THROUGH INDUCTION OF MCIP1*

    OpenAIRE

    Pedram, Ali; Razandi, Mahnaz; Aitkenhead, Mark; Levin, Ellis R.

    2005-01-01

    Evidence from in vivo studies suggests that some imputs to cardiac hypertrophy are opposed by the actions of estrogen. However, the mechanisms of E2 action in this respect are mainly unknown. An important pathway that is utilized by multiple hypertrophic stimuli involves the activation of the tyrosine phosphatase, calcineurin (PP2B). Here we show that 17β -estradiol (E2) significantly prevents angiotensin II (AngII)- or endothelin-1 (ET-1)-induced new protein synthesis, skeletal muscle actin ...

  13. Arctigenin Inhibits Osteoclast Differentiation and Function by Suppressing Both Calcineurin-Dependent and Osteoblastic Cell-Dependent NFATc1 Pathways

    OpenAIRE

    Teruhito Yamashita; Shunsuke Uehara; Nobuyuki Udagawa; Feng Li; Shigetoshi Kadota; Hiroyasu Esumi; Yasuhiro Kobayashi; Naoyuki Takahashi

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblasti...

  14. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    Science.gov (United States)

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM) cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA), a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the pit

  15. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    Directory of Open Access Journals (Sweden)

    Teruhito Yamashita

    Full Text Available Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1, a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA, a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the

  16. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    International Nuclear Information System (INIS)

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression

  17. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Sook; Lee, Eun Hye [Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Lee, Kooyeon [Department of Bio-Health Technology, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jo, Su-Hyun, E-mail: suhyunjo@kangwon.ac.kr [Department of Physiology, BK21 Plus Graduate Program, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Seo, Su Ryeon, E-mail: suryeonseo@kangwon.ac.kr [Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2015-04-17

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression.

  18. Calcineurin antagonists inhibit interferon-gamma production by downregulation of interleukin-18 in human mixed lymphocyte reactions.

    Directory of Open Access Journals (Sweden)

    Kuinose M

    2000-10-01

    Full Text Available Tacrolimus (FK-506 and cyclosporin A (CsA are calcineurin antagonists used widely as T-cell immunosuppressants; however, their relative efficacy on the production of interleukin-18 (IL-18 remains undefined. We have examined the effects of FK-506 and CsA on the cytokine generation of human peripheral blood mononuclear cells (PBMCs in mixed lymphocyte reaction (MLR with lipopolysaccharide (LPS. We studied the levels of interleukin-18 (IL-18, IL-12, IL-10, IL-6, IL-2 and interferon-gamma (IFN-gamma in the supernatant in allo-MLR by ELISA assay. Supernatant levels of IFN-gamma, IL-2, IL-6, IL-10 and IL-12 were detected 12 h after MLR and markedly increased thereafter. In contrast, production of IL-18 was detected at 12 h, reached a near maximum level at 24 h and decreased at 72 h. These results suggested that IFN-gamma production depended on IL-18, IL-12 and IL-2 in the early phase of MLR and depended mainly on IL-12 and IL-2 in the late phase. Both calcineurin antagonists inhibit the generation of IL-18, which plays a large role in allogeneic cell interactions, in macrophages and they also promote an equivalent down-regulation of T helper 1 (Th1 and Th2 responses in a concentration-dependent manner. About 90% of IFN-gamma production induced by MLR was inhibited by an anti-IL-18 antibody, showing that IL-18 can trigger IFN-gamma production in MLR. These results suggest that dual signaling consisting of antigen-driven nuclear factor of activated T cells (NFAT activation and LPS-mediated NF-kappaB activation is crucial for IL-18 production in macrophages, and that IL-18 can trigger IFN-gamma production in T-cells by MLR.

  19. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases.

    Science.gov (United States)

    Chen, Ying-Nan P; LaMarche, Matthew J; Chan, Ho Man; Fekkes, Peter; Garcia-Fortanet, Jorge; Acker, Michael G; Antonakos, Brandon; Chen, Christine Hiu-Tung; Chen, Zhouliang; Cooke, Vesselina G; Dobson, Jason R; Deng, Zhan; Fei, Feng; Firestone, Brant; Fodor, Michelle; Fridrich, Cary; Gao, Hui; Grunenfelder, Denise; Hao, Huai-Xiang; Jacob, Jaison; Ho, Samuel; Hsiao, Kathy; Kang, Zhao B; Karki, Rajesh; Kato, Mitsunori; Larrow, Jay; La Bonte, Laura R; Lenoir, Francois; Liu, Gang; Liu, Shumei; Majumdar, Dyuti; Meyer, Matthew J; Palermo, Mark; Perez, Lawrence; Pu, Minying; Price, Edmund; Quinn, Christopher; Shakya, Subarna; Shultz, Michael D; Slisz, Joanna; Venkatesan, Kavitha; Wang, Ping; Warmuth, Markus; Williams, Sarah; Yang, Guizhi; Yuan, Jing; Zhang, Ji-Hu; Zhu, Ping; Ramsey, Timothy; Keen, Nicholas J; Sellers, William R; Stams, Travis; Fortin, Pascal D

    2016-07-01

    The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers. PMID:27362227

  20. The role of calcineurin in the lung fibroblasts proliferation and collagen synthesis induced by basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    陈亚红; 赵鸣武; 符民桂; 姚婉贞; 唐朝枢

    2003-01-01

    Objective To investigate the role of calcineurin (CaN) in the lung fibroblast proliferation and collagen synthesis induced by basic fibroblast growth factor (bFGF).Methods We used Western blot and immunohistochemical methods for investigating the content and distribution of calcineurin in the lung tissue. Calcineurin activity in different tissues was measured using 32P-labelled substrate. In the primary culture of lung fibroblasts, 3H-thymidine (3H-TdR) and 3H-proline incorporation methods were used to study the effect of cyclosporin A(CsA), an inhibitor of calcineurin, on the lung fibroblast DNA and collagen synthesis stimulated by bFGF. Results We found that calcineurin was expressed in lung tissue and has phosphatase activity (7.1±2.0 pmol Pi/mg pr/min). CsA(10-8-10-6mol/L) inhibited lung fibroblast,3H-TdR incorporation induced by bFGF in a dose-dependent manner, with the inhibitory rates by20%, 46% and 66%(P<0.01). CsA(10-7-10-6mol/L) inhibited 3H-proline incorporation in lung fibroblasts stimulated by bFGF, with the inhibitory rates by 21% and 37%(P<0.01). In a culture medium, CsA (10-8-10-6mol/L) inhibited 3H-proline secretion induced by bFGF in a dose-dependent manner, with the inhibitory rates by 19%,29%(P<0.05) and 56% (P<0.01). CsA (10-7mol/L) could inhibit calcineurin activity by 44% in lung fibroblasts(P<0.01). Conclusions Calcineurin is expressed in lung tissue and has phosphatase activity. It is involved in the bFGF stimulated lung fibroblast DNA and collagen synthesis.

  1. Effect of different immunosuppressive drugs on calcineurin and its mutants

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Several mutants in Loop7 region and near Loop7 region of calcineurin A (CN A) subunit have been constructed and purified using site-directed mutagenesis.Their phosphatase activity and the corresponding solution conformation were examined.Their phosphatase activities between wild-type CN and mutants were compared to identify the interaction of different immunosuppressive drugs with CN.The results showed that the phosphatase activities of the mutants at Loop7 were much higher than the one of wild-type CN.Furthermore,circular dichroism spectra of the mutants revealed that their solution conformations gave rise in changes in native structure of the protein.Cyclophilin-CyclosporinA (CyP-CsA) significantly inhibited the phosphatase activity of wild-type CN,and had no effects on the phosphatase activity of mutants in Loop7 region,which indicates that the site-directed mutagenesis at Loop7 region made a significant change in the interaction between CyP-CsA and CN.Examination of the activities of these mutants resulted in the presence of immunosuppressive component from traditional Chinese drugs.The component of Chinese drug,ZIP1,could directly inhibit both CN and CN mutants without drug binding protein.These results suggest that the Loop7 region is an important structural area involved in the inhibition by CyP-CsA.It is valuable to further study the inhibition by ZIP1.

  2. Nuclear-localized Calcineurin Homologous Protein CHP1 Interacts with Upstream Binding Factor and Inhibits Ribosomal RNA Synthesis*

    OpenAIRE

    Jiménez-Vidal, Maite; Srivastava, Jyoti; Putney, Luanna K; Barber, Diane L.

    2010-01-01

    Calcineurin homologous protein 1 (CHP1) is a widely expressed, 22-kDa myristoylated EF-hand Ca2+-binding protein that shares a high degree of similarity with the regulatory B subunit of calcineurin (65%) and with calmodulin (59%). CHP1 localizes to the plasma membrane, the Golgi apparatus, and the nucleus and functions to regulate trafficking of early secretory vesicles, activation of T cells, and expression and transport of the Na-H exchanger NHE1. Although CHP1 contains nuclear export signa...

  3. Structural basis for activation of calcineurin by calmodulin

    OpenAIRE

    Rumi-Masante, Julie; Rusinga, Farai I.; Lester, Terrence E.; Dunlap, Tori B.; Williams, Todd D.; Dunker, A. Keith; Weis, David D.; Trevor P Creamer

    2011-01-01

    The highly conserved phosphatase calcineurin plays vital roles in numerous processes including T-cell activation, development and function of the central nervous system, and cardiac growth. It is activated by the calcium sensor calmodulin. Calmodulin binds to a regulatory domain within calcineurin, causing a conformational change that displaces an autoinhibitory domain from the active site, resulting in activation of the phosphatase. This is the same general mechanism by which calmodulin acti...

  4. Inhibition of acid, alkaline, and tyrosine (PTP1B) phosphatases by novel vanadium complexes.

    Science.gov (United States)

    McLauchlan, Craig C; Hooker, Jaqueline D; Jones, Marjorie A; Dymon, Zaneta; Backhus, Emily A; Greiner, Bradley A; Dorner, Nicole A; Youkhana, Mary A; Manus, Lisa M

    2010-03-01

    In the course of our investigations of vanadium-containing complexes for use as insulin-enhancing agents, we have generated a series of novel vanadium coordination complexes with bidentate ligands. Specifically we have focused on two ligands: anthranilate (anc(-)), a natural metabolite of tryptophan, and imidizole-4-carboxylate (imc(-)), meant to mimic naturally occurring N-donor ligands. For each ligand, we have generated a series of complexes containing the V(III), V(IV), and V(V) oxidation states. Each complex was investigated using phosphatase inhibition studies of three different phosphatases (acid, alkaline, and tyrosine (PTP1B) phosphatase) as prima facia evidence for potential use as an insulin-enhancing agent. Using p-nitrophenyl phosphate as an artificial phosphatase substrate, the levels of inhibition were determined by measuring the absorbance of the product at 405nm using UV/vis spectroscopy. Under our experimental conditions, for instance, V(imc)(3) appears to be as potent an inhibitor of alkaline phosphatase as sodium orthovanadate when comparing the K(cat)/K(m) term. VO(anc)(2) is as potent an inhibitor of acid phosphatase and tyrosine phosphatase as the Na(3)VO(4). Thus, use of these complexes can increase our mechanistic understanding of the effects of vanadium in vivo. PMID:20071031

  5. Gp66, a calcineurin family phosphatase encoded by mycobacteriophage D29, is a 2', 3' cyclic nucleotide phosphodiesterase that negatively regulates phage growth.

    Science.gov (United States)

    Dutta, Soumita; Bhawsinghka, Niketa; Das Gupta, Sujoy K

    2014-10-13

    Mycobacteriophage D29 encodes a protein Gp66 which has been predicted to be a calcineurin family phosphoesterase. Phylogenetically Gp66 and related proteins mostly derived from mycobacteriophages form a distinct clade within this family. Interestingly, the presence of gene 66 orthologs can be traced to bacteria of diverse phylogenetic lineages such as Aquifex aeolicus, a deep branching eubacteria and Methanococcus jannaschii, an archaebacteria. The promiscuous nature of gene 66 suggests that it may have been transferred across genus barriers by horizontal gene transfer mechanisms. The biological function of members of this novel clade comprising mostly the mycobacteriophage phosphoesterases have not been elucidated so far. In this investigation, it has been demonstrated for the first time that Gp66, a member of this novel family, is a 2', 3' cyclic phosphodiesterase. The gene is expressed during phage infection and the net result is negative regulation of bacteriophage as well as bacterial growth. PMID:25307893

  6. Tyrosine Phosphatase Inhibition Induces an ASC-dependent Pyroptosis

    OpenAIRE

    Ghonime, Mohammed G.; Shamaa, Obada R.; Eldomany, Ramadan A.; Gavrilin, Mikhail A.; Wewers, Mark D.

    2012-01-01

    Pyroptosis is a type of cell death in which danger associated molecular patterns (DAMPs) and pathogen associated molecular patterns (PAMPs) induce mononuclear phagocytes to activate caspase-1 and release mature IL-1β. Because the tyrosine kinase inhibitor AG126 can prevent DAMP/PAMP induced activation of caspase-1, we hypothesized that tipping the tyrosine kinase/phosphatase balance toward phosphorylation would promote caspase-1 activation and cell death. THP-1 derived macrophages were theref...

  7. Biochemical Properties and Inhibition Kinetics of Phosphatase from Wheat Thylakoid Membranes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A phosphatase that hydrolyses phosphate monoesters has been isolated from wheat thylakoid membranes.Biochemical properties and inhibition kinetics of the phosphatase were investigated using several ions, organic solvents, and inhibitors. Wheat (Triticum aestivum L. cv. PH82-2-2) thylakoid membrane phosphatase activity was activated by Mg2+, Ca2+, and Fe2+ and was inhibited by Mn2+ and Cu2+. For example, enzyme activity was activated 34.81% by 2 mmol/L Mg2+, but was inhibited 22.3% and 8.5% by 2 and 1 mmol/L Cu2+, respectively.Methanol, ethanol and glycol were all able to activate enzyme activity. Enzyme activity was activated 58.5%, 48.2%,and 8.7% by 40% ethanol, methanol and glycol, respectively. From these results, it can be seen that the degree of activation of the phosphatase was greatest for ethanol and the type of activation was uncompetitive. Moreover,the activity of the thylakoid membrane phosphatase was inhibited by molybdate, vanadate, phosphate, and fluoride and the type of inhibition produced by these elements was uncompetitive, non-competitive, competitive and mixed, respectively.

  8. Recombinant NFAT1 (NFATp) is regulated by calcineurin in T cells and mediates transcription of several cytokine genes.

    OpenAIRE

    Luo, C.; Burgeon, E; Carew, J A; McCaffrey, P G; Badalian, T M; Lane, W S; Hogan, P G; Rao, A

    1996-01-01

    Transcription factors of the NFAT family play a key role in the transcription of cytokine genes and other genes during the immune response. We have identified two new isoforms of the transcription factor NFAT1 (previously termed NFATp) that are the predominant isoforms expressed in murine and human T cells. When expressed in Jurkat T cells, recombinant NFAT1 is regulated, as expected, by the calmodulin-dependent phosphatase calcineurin, and its function is inhibited by the immunosuppressive a...

  9. [Inhibition of alkaline phosphatase I of Pichia guilliermondii yeast in vitro and in vivo].

    Science.gov (United States)

    Sibirnyi, A A; Shavlovskii, G M

    1978-01-01

    The rate of p-nitrophenyl phosphate and flavin mononucleotide (FMN) hydrolysis by the partially purified preparation of alkaline phosphatase I of Pichia guilliermondii flavinogenic yeast was studied as affected by different substrates and inorganic ions. Their Km was established to be 2.0 X 10(-4) m and 2.5 X 10(-4) M, respectively. Dephosphorylation of p-nitrophenylphosphate and FMN was inhibited competitively by beta-glycerophosphate (Ki = 3.1 X 10(-3) M, respectively). The presence of inorganic phosphate ions in the reaction mixture decreases or removes inhibition of these compounds hydrolysis by other substrates of alkaline phosphatase I. The activity of alkaline phosphatase I increases in the presence of Mg2+ and was strongly inhibited in the presence of Be2+, Cu2+, Zn2+, Cd2+ and inorganic phosphate, the mixture of Be2+ and F- being the most effective. This mixture inhibited the phosphatase activity of the partially purified preparation of alkaline phosphatase I of the cell-free extract as well as of intact cells in both the alkaline and acid zones of pH (8.6 and 5.5, respectively). Incubation of the washed iron-deficient P. guilliermondii cells in the presence of Be2+ and F- did not result in accumulation of FMN in the yeast culture. A possible role of nonspecific phosphomonoesterases in hydrolysis of FMN in vivo is discussed. PMID:208203

  10. Effect of different immunosuppressive drugs on calcineurin and its mutants

    Institute of Scientific and Technical Information of China (English)

    阎力君; 于翠娟; 张丽芳; 魏群

    2000-01-01

    Several mutants in Loop7 region and near Loop7 region of calcineurin A (CN A) subunit have been constructed and purified using site-directed mutagenesis. Their phosphatase activity and the corresponding solution conformation were examined. Their phosphatase activities between wild-type CN and mutants were compared to identify the interaction of different immuno-suppressive drugs with CN. The results showed that the phosphatase activities of the mutants at Loop7 were much higher than the one of wild-type CN. Furthermore, circular dichroism spectra of the mutants revealed that their solution conformations gave rise in changes in native structure of the protein. Cyclophilin-CyclosporinA (CyP-CsA) significantly inhibited the phosphatase activity of wild-type CN, and had no effects on the phosphatase activity of mutants in Loop7 region, which indicates that the site-directed mutagenesis at Loop7 region made a significant change in the interaction between CyP-CsA and CN. Examination of the activities of these

  11. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    Science.gov (United States)

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  12. MKP-8, a novel MAPK phosphatase that inhibits p38 kinase

    International Nuclear Information System (INIS)

    Intracellular signaling pathways and their relationship to malignant progression have become a major focus of cancer biology. The dual-specificity phosphatase (DSP) family is a more recently identified family of intracellular signaling modulators. We have identified a novel protein phosphatase with a well-conserved DSP catalytic domain containing the DSP catalytic motif, xHCxxGxSRS, and mitogen-activated protein kinase phosphatase (MKP) motif, AYLM. Because of these unique characteristics, the protein was named mitogen-activated protein kinase phosphatase-8 (MKP-8). This protein is approximately 20 kDa in size and mainly localizes to the nuclear compartment of the cell. MKP-8 is expressed in embryonal cancers (retinoblastoma, neuroepithelioma, and neuroblastoma) and has limited expression in normal tissues. MKP-8 displays significant phosphatase activity that is inhibited by a cysteine to serine substitution in the catalytic domain. When co-expressed with activated MAPKs, MKP-8 is able to inhibit p38 kinase phosphorylation and downstream activity

  13. The calcineurin activity profiles of cyclosporin and tacrolimus are different in stable renal transplant patients

    DEFF Research Database (Denmark)

    Koefoed-Nielsen, PB; Karamperis, N; Hojskov, C; Poulsen, Jørgen Hjelm; Jorgensen, KA

    2006-01-01

    Cyclosporin and tacrolimus remain the cornerstone immunosuppressive drugs in organ transplantation. Dosing and monitoring these drugs is based on pharmacokinetic protocols, but measuring a pharmacodynamic parameter, calcineurin phosphatase (CaN) activity, could be a valuable supplement in...... determining optimal doses. Forty stable renal transplant patients were investigated three times in a 6-month period. Blood samples were drawn at 0, 1, 2, 3 and 4 h after oral intake of tacrolimus (FK) or cyclosporin at days 1 and 180. At day 90, one blood sample at trough level (FK) or C2 level (cyclosporin A...... significantly different effects on calcineurin activity in renal transplant patients with stable, well-functioning grafts and that tacrolimus-treated patients can maintain good, stable graft function with minimal CaN inhibition....

  14. Free Fatty Acids Inhibit Protein Tyrosine Phosphatase 1B and Activate Akt

    Directory of Open Access Journals (Sweden)

    Eisuke Shibata

    2013-09-01

    Full Text Available Background/Aims: Accumulating evidence has suggested that free fatty acids (FFAs interact with protein kinases and protein phosphatases. The present study examined the effect of FFAs on protein phosphatases and Akt. Methods: Activities of protein phosphatase 1 (PP1, protein phosphatase 2A (PP2A, and protein tyrosine phosphatase 1B (PTP1B were assayed under the cell-free conditions. Phosphorylation of Akt was monitored in MSTO-211H human malignant pleural mesothelioma cells without and with knocking-down phosphatidylinositol 3 kinase (PI3K or 3-phosphoinositide-dependent protein kinase-1 (PDK1. Results: In the cell-free assay, unsaturated FFAs (uFFAs such as oleic, linoleic and linolenic acid and saturated FFAs (sFFAs such as stearic, palmitic, myristic, and behenic acid markedly reduced PTP1B activity, with the potential for uFFAs greater than that for sFFAs. All the investigated sFFAs inhibited PP2A activity, but otherwise no inhibition was obtained with uFFAs. Both uFFAs and sFFAs had no effect on PP1 activity. Oleic acid phosphorylated Akt both on Thr308 and Ser473, while stearic acid phosphorylated Akt on Thr308 alone. The effects of oleic and stearic acid on Akt phosphorylation were abrogated by the PI3K inhibitor wortmannin or the PDK1 inhibitor BX912 and also by knocking-down PI3K or PDK1. Conclusion: The results of the present study indicate that uFFAs and sFFAs could activate Akt through a pathway along a PI3K/PDK1/Akt axis in association with PTP1B inhibition.

  15. Structural basis of Rap phosphatase inhibition by Phr peptides.

    Directory of Open Access Journals (Sweden)

    Francisca Gallego del Sol

    Full Text Available Two-component systems, composed of a sensor histidine kinase and an effector response regulator (RR, are the main signal transduction devices in bacteria. In Bacillus, the Rap protein family modulates complex signaling processes mediated by two-component systems, such as competence, sporulation, or biofilm formation, by inhibiting the RR components involved in these pathways. Despite the high degree of sequence homology, Rap proteins exert their activity by two completely different mechanisms of action: inducing RR dephosphorylation or blocking RR binding to its target promoter. However the regulatory mechanism involving Rap proteins is even more complex since Rap activity is antagonized by specific signaling peptides (Phr through a mechanism that remains unknown at the molecular level. Using X-ray analyses, we determined the structure of RapF, the anti-activator of competence RR ComA, alone and in complex with its regulatory peptide PhrF. The structural and functional data presented herein reveal that peptide PhrF blocks the RapF-ComA interaction through an allosteric mechanism. PhrF accommodates in the C-terminal tetratricopeptide repeat domain of RapF by inducing its constriction, a conformational change propagated by a pronounced rotation to the N-terminal ComA-binding domain. This movement partially disrupts the ComA binding site by triggering the ComA disassociation, whose interaction with RapF is also sterically impaired in the PhrF-induced conformation of RapF. Sequence analyses of the Rap proteins, guided by the RapF-PhrF structure, unveil the molecular basis of Phr recognition and discrimination, allowing us to relax the Phr specificity of RapF by a single residue change.

  16. Inhibition of CDC25B Phosphatase Through Disruption of Protein-Protein Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lund, George; Dudkin, Sergii; Borkin, Dmitry; Ni, Wendi; Grembecka, Jolanta; Cierpicki, Tomasz [Michigan

    2015-04-29

    CDC25 phosphatases are key cell cycle regulators and represent very attractive but challenging targets for anticancer drug discovery. Here, we explored whether fragment-based screening represents a valid approach to identify inhibitors of CDC25B. This resulted in identification of 2-fluoro-4-hydroxybenzonitrile, which directly binds to the catalytic domain of CDC25B. Interestingly, NMR data and the crystal structure demonstrate that this compound binds to the pocket distant from the active site and adjacent to the protein–protein interaction interface with CDK2/Cyclin A substrate. Furthermore, we developed a more potent analogue that disrupts CDC25B interaction with CDK2/Cyclin A and inhibits dephosphorylation of CDK2. Based on these studies, we provide a proof of concept that targeting CDC25 phosphatases by inhibiting their protein–protein interactions with CDK2/Cyclin A substrate represents a novel, viable opportunity to target this important class of enzymes.

  17. Calcineurin Links Mitochondrial Elongation with Energy Metabolism.

    Science.gov (United States)

    Pfluger, Paul T; Kabra, Dhiraj G; Aichler, Michaela; Schriever, Sonja C; Pfuhlmann, Katrin; García, Verónica Casquero; Lehti, Maarit; Weber, Jon; Kutschke, Maria; Rozman, Jan; Elrod, John W; Hevener, Andrea L; Feuchtinger, Annette; Hrabě de Angelis, Martin; Walch, Axel; Rollmann, Stephanie M; Aronow, Bruce J; Müller, Timo D; Perez-Tilve, Diego; Jastroch, Martin; De Luca, Maria; Molkentin, Jeffery D; Tschöp, Matthias H

    2015-11-01

    Canonical protein phosphatase 3/calcineurin signaling is central to numerous physiological processes. Here we provide evidence that calcineurin plays a pivotal role in controlling systemic energy and body weight homeostasis. Knockdown of calcineurin in Drosophila melanogaster led to a decrease in body weight and energy stores, and increased energy expenditure. In mice, global deficiency of catalytic subunit Ppp3cb, and tissue-specific ablation of regulatory subunit Ppp3r1 from skeletal muscle, but not adipose tissue or liver, led to protection from high-fat-diet-induced obesity and comorbid sequelæ. Ser637 hyperphosphorylation of dynamin-related protein 1 (Drp1) in skeletal muscle of calcineurin-deficient mice was associated with mitochondrial elongation into power-cable-shaped filaments and increased mitochondrial respiration, but also with attenuated exercise performance. Our data suggest that calcineurin acts as highly conserved pivot for the adaptive metabolic responses to environmental changes such as high-fat, high-sugar diets or exercise. PMID:26411342

  18. Pyruvate dehydrogenase/sub b/ phosphatase inhibition by NADH and dihydrolipoamide along with effects of and capacity for binding the phosphatase to the bovine kidney transacetylase-protein X subcomplex

    International Nuclear Information System (INIS)

    NADH inhibits PDH/sub b/ phosphatase activity when 32P-PDH is associated with the intact complex but not when 32P-PDH is prepared free of other components of the complex. Addition of the transacetylase-protein X (E2-X) subcomplex both activated the phosphatase and restored NADH inhibition. Low levels of dihydrolipoyl dehydrogenase associated with the subcomplex might be required for NADH inhibition. Dihydrolipoamide gave inhibition of the phosphatase equivalent to NADH and the combination did not give additional inhibition suggesting a common mechanism. Pretreatment of phosphorylated complex and phosphatase with 2.0 mM dithiothreitol nearly eliminated inhibition of the phosphatase by NADH or dihydrolipoamide. Strong arsenite inhibition of phosphatase activity occurred only in the presence of NADH suggesting modification of thiols reduced by NADH can alter phosphatase activity. Only about 6 molecules of purified phosphatase could be activated by 1 molecule of E2-X subcomplex (initial velocities measured in 15s period). Since that corresponded to the number of protein X rather than E2 subunits, protein X may contribute to the Ca2+-dependent binding of the phosphatase. Since protein X also contains a lipoyl moiety, it may also contribute to NADH inhibition of the phosphatase

  19. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    Science.gov (United States)

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  20. A selective role of calcineurin Aα in synaptic depotentiation in hippocampus

    OpenAIRE

    Zhuo, Min; ZHANG Wei; Son, Hyeon; Mansuy, Isabelle; Sobel, Raymond A.; Seidman, Jonathan; Kandel, Eric R.

    1999-01-01

    Pharmacological studies have suggested that long-term potentiation (LTP) and long-term depression (LTD) and depotentiation, three forms of synaptic plasticity in the hippocampus, require the activity of the phosphatase calcineurin. At least two different isoforms of calcineurin are found in the central nervous system. To investigate whether all of these forms of synaptic plasticity require the same isoforms of calcineurin, we have examined LTD, depotentiation, and LTP in mice lacking the pred...

  1. A conserved docking surface on calcineurin mediates interaction with substrates and immunosuppressants

    OpenAIRE

    Rodríguez, Antonio; Roy, Jagoree; Martínez-Martínez, Sara; López-Maderuelo, Ma Dolores; Niño-Moreno, Perla; Ortí, Leticia; Pantoja, David; Pineda-Lucena, Antonio; Martha S Cyert; Redondo, Juan Miguel

    2009-01-01

    The phosphatase calcineurin, target of the immunosuppressants cyclosporin A and FK506, dephosphorylates NFAT transcription factors to promote immune activation and development of the vascular and nervous systems. NFAT interacts with calcineurin through distinct binding motifs: the PxIXIT and LxVP sites. While many calcineurin substrates contain PxIxIT motifs, the generality of LxVP-mediated interactions is unclear. We define critical residues in the LxVP motif, and demonstrate its binding to ...

  2. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    OpenAIRE

    Kunihiro Sakuma; Akihiko Yamaguchi

    2010-01-01

    Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, e...

  3. Characterization of a mutant calcineurin A alpha gene expressed by EL4 lymphoma cells.

    OpenAIRE

    Fruman, D A; Pai, S Y; Burakoff, S J; Bierer, B E

    1995-01-01

    The calmodulin-stimulated phosphatase calcineurin plays a critical role in calcium-dependent T-lymphocyte activation pathways. Here, we report the identification of a missense mutation in the calcineurin A alpha gene expressed by EL4 T-lymphoma cells. This mutation changes an evolutionarily conserved aspartic acid to asparagine within the autoinhibitory domain of the calcineurin A alpha protein. A comparison of wild-type and mutant autoinhibitory peptides indicates that this amino acid substi...

  4. Dexamethasone Causes Sustained Expression of Mitogen-Activated Protein Kinase (MAPK) Phosphatase 1 and Phosphatase-Mediated Inhibition of MAPK p38

    OpenAIRE

    Lasa, Marina; Abraham, Sonya M.; Boucheron, Christine; Saklatvala, Jeremy; Clark, Andrew R.

    2002-01-01

    The stress-activated protein kinase p38 stabilizes a number of mRNAs encoding inflammatory mediators, such as cyclooxygenase 2 (Cox-2). In HeLa cells the anti-inflammatory glucocorticoid dexamethasone destabilizes Cox-2 mRNA by inhibiting p38 function. Here we demonstrate that this effect is phosphatase dependent. Furthermore, in HeLa cells dexamethasone induced the sustained expression of mitogen-activated protein kinase phosphatase 1 (MKP-1), a potent inhibitor of p38 function. The inhibiti...

  5. The neuroprotective effects of ginsenosides on calcineurin activity and tau phosphorylation in SY5Y cells.

    Science.gov (United States)

    Tu, Ling-Hui; Ma, Jie; Liu, Hai-Peng; Wang, Rong-Rong; Luo, Jing

    2009-12-01

    Calcineurin (CN) is a Ca(2+)/calmodulin-dependent protein phosphatase expressed at high levels in brain. Many findings have shown that calcineurin plays an important role in tau hyperphosphorylation, which is one of the neuropathologic features in the brains of Alzheimer's disease (AD). Based on the molecular screening model using p-nitrophenyl phosphate (p-NPP) as a substrate for preliminary screening and (32)P-labeled 19-residue phosphopeptide as a specific substrate for final determination, we found that the total ginsenoside extracts from stems and leaves of Panax ginseng (GSL) could enhance the phosphatase activity of purified CN. In the human neuroblastoma cells SY5Y, inhibition of CN by cyclosporine A (CsA) could induce hyperphosphorylation of tau at multiple sites, accompanied with oxidative stress. Pretreatment of the cells with GSL prior to CsA exposure could alleviate CsA-induced CN inhibition and tau hyperphosphorylation to some degree. Further oxidative parameters demonstrated that GSL caused increased SOD activity and content of SH significantly. It is speculated that GSL weakens CsA-induced CN inhibition through the antioxidant mechanisms. Although our results indicate that GSL may have neuroprotective effects on some characteristic features of AD, the chemical compositions of GSL and their potential for affecting the disease mechanism need to be further studied. PMID:19517226

  6. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex

    OpenAIRE

    Li, Hui-Hua; Kedar, Vishram; Zhang, Chunlian; McDonough, Holly; Arya, Ranjana; Wang, Da-Zhi; Patterson, Cam

    2004-01-01

    Calcineurin, which binds to the Z-disc in cardiomyocytes via α-actinin, promotes cardiac hypertrophy in response to numerous pathologic stimuli. However, the endogenous mechanisms regulating calcineurin activity in cardiac muscle are not well understood. We demonstrate that a muscle-specific F-box protein called atrogin-1, or muscle atrophy F-box, directly interacts with calcineurin A and α-actinin-2 at the Z-disc of cardiomyocytes. Atrogin-1 associates with Skp1, Cul1, and Roc1 to assemble a...

  7. Calcineurin proteolysis in astrocytes: Implications for impaired synaptic function.

    Science.gov (United States)

    Pleiss, Melanie M; Sompol, Pradoldej; Kraner, Susan D; Abdul, Hafiz Mohmmad; Furman, Jennifer L; Guttmann, Rodney P; Wilcock, Donna M; Nelson, Peter T; Norris, Christopher M

    2016-09-01

    Mounting evidence suggests that astrocyte activation, found in most forms of neural injury and disease, is linked to the hyperactivation of the protein phosphatase calcineurin. In many tissues and cell types, calcineurin hyperactivity is the direct result of limited proteolysis. However, little is known about the proteolytic status of calcineurin in activated astrocytes. Here, we developed a polyclonal antibody to a high activity calcineurin proteolytic fragment in the 45-48kDa range (ΔCN) for use in immunohistochemical applications. When applied to postmortem human brain sections, the ΔCN antibody intensely labeled cell clusters in close juxtaposition to amyloid deposits and microinfarcts. Many of these cells exhibited clear activated astrocyte morphology. The expression of ΔCN in astrocytes near areas of pathology was further confirmed using confocal microscopy. Multiple NeuN-positive cells, particularly those within microinfarct core regions, also labeled positively for ΔCN. This observation suggests that calcineurin proteolysis can also occur within damaged or dying neurons, as reported in other studies. When a similar ΔCN fragment was selectively expressed in hippocampal astrocytes of intact rats (using adeno-associated virus), we observed a significant reduction in the strength of CA3-CA1 excitatory synapses, indicating that the hyperactivation of astrocytic calcineurin is sufficient for disrupting synaptic function. Together, these results suggest that proteolytic activation of calcineurin in activated astrocytes may be a central mechanism for driving and/or exacerbating neural dysfunction during neurodegenerative disease and injury. PMID:27212416

  8. Effect of inhibition of tyrosine phosphatases on voltage-operated calcium channel currents in rabbit isolated ear artery cells

    OpenAIRE

    Wijetunge, S; Lymn, J S; Hughes, A.D.

    1998-01-01

    The effect of increasing cellular tyrosine phosphorylation by inhibiting endogenous tyrosine phosphatases was examined on voltage-operated calcium channel currents in vascular smooth muscle cells.In single ear artery smooth muscle cells of the rabbit, studied by the whole cell voltage clamp technique, intracellular application of the tyrosine phosphatase inhibitors, sodium orthovanadate (100 μM) and peroxyvanadate (100 μM orthovanadate+1 mM H2O2) increased voltage-operated calcium channel cur...

  9. The multiple faces of calcineurin signaling in Caenorhabditis elegans: Development, behaviour and aging

    Indian Academy of Sciences (India)

    Jin Il Lee; Sutapa Mukherjee; Kyoung–Hye Yoon; Meenakshi Dwivedi; Jaya Bandyopadhyay

    2013-06-01

    Calcineurin, a well-conserved protein phosphatase 2B (PP2B), is a Ca2+-calmodulin–dependent serine/threonine protein phosphatase that is known to be involved in a myriad of cellular processes and signal transduction pathways. The biological role of calcineurin has been extensively studied in diverse groups of organisms. Homologues of mammalian and Drosophila calcineurin subunits exist in the nematode, Caenorhabditis elegans. The C. elegans counterpart of the catalytic subunit, calcineurin A, cna-1/tax-6, and the regulatory subunit, calcineurin B, cnb-1, are known to express ubiquitously in multiple tissues including neurons. The characterization of C. elegans calcineurin mutants facilitates identification of its physiological functions and signaling pathways. Genetic interactions between cna-1/tax-6 and cnb-1 mutants with a number of mutants involved in several signaling pathways have exemplified the pivotal role of calcineurin in regulating nematode development, behaviour and lifespan (aging). The present review has been aimed to provide a succinct summary of the multiple functions of calcineurin in C. elegans relating to its development, fertility, proliferation, behaviour and lifespan. Analyses of cna-1/tax-6 and cnb-1 interacting proteins and regulators of the phosphatase in this fascinating worm model have an immense scope to identify potential drug targets in various parasitic nematodes, which cause many diseases inflicting huge economic loss; and also for many human diseases, particularly neurodegenerative and myocardial diseases.

  10. Phosphorylation and activation of calcineurin by glycogen synthase (casein) kinase-1 and cyclic AMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Calcineurin is a phosphoprotein phosphatase that is activated by divalent cations and further stimulated by calmodulin. In this study calcineurin is shown to be a substrate for both glycogen synthase (casein) kinase-1 (CK-1) and cyclic AMP-dependent protein kinase (A-kinase). Either kinase can catalyze the incorporation of 1.0-1.4 mol 32P/mol calcineurin. Analysis by SDS-PAGE revealed that only the α subunit is phosphorylated. Phosphorylation of calcineurin by either kinase leads to its activation. Using p-nitrophenyl phosphate as a substrate the authors observed a 2-3 fold activation of calcineurin by either Mn2+ or Ni2+ (in the presence or absence of calmodulin) after phosphorylation of calcineurin by either CK-1 or A-kinase. In the absence of Mn2+ or Ni2+ phosphorylated calcineurin, like the nonphosphorylated enzyme, showed very little activity. Ni2+ was a more potent activator of phosphorylated calcineurin compared to Mn2+. Higher levels of activation (5-8 fold) of calcineurin by calmodulin was observed when phosphorylated calcineurin was pretreated with Ni2+ before measurement of phosphatase activity. These results indicate that phosphorylation may be an important mechanism by which calcineurin activity is regulated by Ca2+

  11. Protein-tyrosine phosphatase activity of Coxiella burnetii that inhibits human neutrophils

    International Nuclear Information System (INIS)

    Supernatants prepared from disrupted Coxiella burnetii posses acid phosphatase (ACP) activity that apparently accounts for the inhibition of the metabolic burst of formyl-Met-Leu-Phe(fMLP)-stimulated human neutrophils. Results are presented regarding purification and biochemical-biological characterization of the ACP. The highly purified enzyme, which exhibited an apparent M of 91 K and optimal activity at pH 5.0, also inhibited neutrophils. The enzyme retained full activity at pH 4.5, 5.5, and 7.4, when incubated overnight at 0 grad C and room temperature; at pH 5.5, it retained full activity after overnight incubation at 37 grad C. Apparently, the enzyme contains asparagine-linked but not serine- or threonine-liked glycan residues since its treatment with N-glycosidase F decreased its Mr to 87 K and no changes were detected with O-glycosidase. The enzyme's capacity to hydrolyze phosphate from a number of phosphate-containing compounds was examined; five phospho-compounds were significantly hydrolyzed: 5'-CMP > fructose 1,6-diphosphate > tyrosine phosphate > 3'-AMP >5'-AMP. The ACP also dephosphorylated 32P-Raytide, a phosphotyrosine-containing peptide. Dephosphorylation of Raytide was inhibited by the following phosphatase inhibitors: sodium molybdate, potassium fluoride, sodium ortho-vanadate and D2, a heteropolymolybdate compound. These results indicate that C.burnetii ACP may play a role in disrupting tyrosine phosphorylation/dephosphorylation reactions associated with the signal transduction pathway culminating in the metabolic burst. Interestingly, Western blot analysis of ACP-inhibited neutrophils showed a marked increase in tyrosine phosphorylation of a 44 K protein as compared to uninhibited cells. (author)

  12. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2010-01-01

    Full Text Available Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles.

  13. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    OpenAIRE

    Yamashita, T.; Uehara, S.; Udagawa, N; Li, F; Kadota, S; Esumi, H; Kobayashi, Y.; Takahashi, N.

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurindependent and osteoblastic...

  14. Coumarins from Angelica decursiva inhibit α-glucosidase activity and protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Ali, Md Yousof; Jannat, Susoma; Jung, Hyun Ah; Jeong, Hyong Oh; Chung, Hae Young; Choi, Jae Sue

    2016-05-25

    In the present study, we investigated the anti-diabetic potential of six natural coumarins, 4-hydroxy Pd-C-III (1), 4'-methoxy Pd-C-I (2), decursinol (3), decursidin (4), umbelliferone 6-carboxylic acid (5), and 2'-isopropyl psoralene (6) isolated from Angelica decursiva and evaluated their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, and ONOO(-)-mediated protein tyrosine nitration. Coumarins 1-6 showed potent PTP1B and α-glucosidase inhibitory activities with ranges of IC50 values of 5.39-58.90 μM and 65.29-172.10 μM, respectively. In the kinetic study for PTP1B enzyme inhibition, compounds 1, 5, and 6 were competitive, whereas 2 and 4 showed mixed type, and 3 displayed noncompetitive type inhibition. For α-glucosidase enzyme inhibition, compounds 1 and 3 exhibited good mixed-type, while 2, 5, and 6 showed noncompetitive and 4 displayed competitive type inhibition. Furthermore, these coumarins also effectively suppressed ONOO(-)-mediated tyrosine nitration in a dose-dependent manner. To further investigate PTP1B inhibition, we generated a 3D structure of PTP1B using Autodock 4.2 and simulated the binding of compounds 1-6. Docking simulations showed that different residues of PTP1B interacted with different functional groups of compounds 1-6 through hydrogen and hydrophobic interactions. In addition, the binding energies of compounds 1-6 were negative, suggesting that hydrogen bonding may stabilize the open form of the enzyme and potentiate tight binding of the active site of PTP1B, thereby resulting in more effective PTP1B inhibition. These results demonstrate that the whole plant of A. decursiva and its coumarins are useful as potential functional food ingredients for the prevention and treatment of type 2 diabetes. PMID:27085377

  15. Inhibition of Setaria cervi protein tyrosine phosphatases by Phenylarsine oxide: A proteomic and biochemical study.

    Science.gov (United States)

    Singh, Neetu; Wadhawan, Mohit; Tiwari, Savitri; Kumar, Ranjeet; Rathaur, Sushma

    2016-07-01

    Phenylarsine oxide (PAO), a specific protein tyrosine phosphatase (PTP) inhibitor significantly decreased the motility and viability of Setaria cervi ultimately leading to its death. The PTP activity present in the cytosolic and detergent soluble fractions as well as on surface of these parasites was significantly inhibited by PAO. A marked alteration in protein spots abundance after proteomic analysis showed 14 down-regulated and 9 upregulated spots in the treated parasites as compared to the control. The PTP inhibition led to increase in the cytosolic and mitochondrial calpain activity in these parasites. PAO also blocked the ATP generation in the parasite depicted by reduced activity of phosphoglycerate kinase and expression of enolase. An increased ROS level, induced lipid peroxidation/protein carbonyl formation and decreased activity of different antioxidant enzymes like thioredoxin reductase, glutathione reductase and glutathione transferases was also observed in the PAO treated parasites. PAO, thus disturbs the overall homeostasis of the filarial parasite by inhibiting PTPs. Thereby suggesting that these molecules could be used as a good chemotherapeutic target for lymphatic filariasis. PMID:26965172

  16. Calcineurin Triggers Reactive/Inflammatory Processes in Astrocytes and Is Upregulated in Aging and Alzheimer’s Models

    OpenAIRE

    Norris, Christopher M.; Kadish, Inga; Blalock, Eric M.; Chen, Kuey-Chu; Thibault, Veronique; Porter, Nada M.; Landfield, Philip W; Kraner, Susan D.

    2005-01-01

    Astrocyte reactivity (i.e., activation) and associated neuroinflammation are increasingly thought to contribute to neurodegenerative disease. However, the mechanisms that trigger astrocyte activation are poorly understood. Here, we studied the Ca2+-dependent phosphatase calcineurin, which regulates inflammatory signaling pathways in immune cells, for a role in astrogliosis and brain neuroinflammation. Adenoviral transfer of activated calcineurin to primary rat hippocampal cultures resulted in...

  17. σ-1 Receptor Inhibition of ASIC1a Channels is Dependent on a Pertussis Toxin-Sensitive G-Protein and an AKAP150/Calcineurin Complex.

    Science.gov (United States)

    Mari, Yelenis; Katnik, Christopher; Cuevas, Javier

    2015-10-01

    ASIC1a channels play a major role in various pathophysiological conditions including depression, anxiety, epilepsy, and neurodegeneration following ischemic stroke. Sigma-1 (σ-1) receptor stimulation depresses the activity of ASIC1a channels in cortical neurons, but the mechanism(s) by which σ-1 receptors exert their influence on ASIC1a remains unknown. Experiments were undertaken to elucidate the signaling cascade linking σ-1 receptors to ASIC1a channels. Immunohistochemical studies showed that σ-1 receptors, ASIC1a and A-kinase anchoring peptide 150 colocalize in the plasma membrane of the cell body and processes of cortical neurons. Fluorometric Ca(2+) imaging experiments showed that disruption of the macromolecular complexes containing AKAP150 diminished the effects of the σ-1 on ASIC1a, as did application of the calcineurin inhibitors, cyclosporin A and FK-506. Moreover, whole-cell patch clamp experiments showed that σ-1 receptors were less effective at decreasing ASIC1a-mediated currents in the presence of the VIVIT peptide, which binds to calcineurin and prevents cellular effects dependent on AKAP150/calcineurin interaction. The coupling of σ-1 to ASIC1a was also disrupted by preincubation of the neurons in the G-protein inhibitor, pertussis toxin (PTX). Taken together, our data reveal that σ-1 receptor block of ASIC1a function is dependent on activation of a PTX-sensitive G-protein and stimulation of AKAP150 bound calcineurin. PMID:24925261

  18. Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition.

    Science.gov (United States)

    Azkona, Garikoitz; Saavedra, Ana; Aira, Zigor; Aluja, David; Xifró, Xavier; Baguley, Tyler; Alberch, Jordi; Ellman, Jonathan A; Lombroso, Paul J; Azkue, Jon J; Pérez-Navarro, Esther

    2016-02-01

    The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP(61) protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund's adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP(61) protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP(61) inactivation and increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception. PMID:26270590

  19. A conserved docking site modulates substrate affinity for calcineurin, signaling output, and in vivo function.

    Science.gov (United States)

    Roy, Jagoree; Li, Huiming; Hogan, Patrick G; Cyert, Martha S

    2007-03-23

    Calcineurin, the conserved Ca(2+)/calmodulin-regulated protein phosphatase, mediates diverse aspects of Ca(2+)-dependent signaling. We show that substrates bind calcineurin with varying strengths and examine the impact of this affinity on signaling. We altered the calcineurin-docking site, or PxIxIT motif, in Crz1, the calcineurin-regulated transcription factor in S. cerevisiae, to decrease (Crz1(PVIAVN)) or increase (Crz1(PVIVIT)) its affinity for calcineurin. As a result, the Ca(2+)-dependent dephosphorylation and activation of Crz1(PVIAVN) are decreased, whereas Crz1(PVIVIT) is constitutively dephosphorylated and hyperactive. Surprisingly, the physiological consequences of altering calcineurin-Crz1 affinity depend on the growth conditions. Crz1(PVIVIT) improves yeast growth under several environmental stress conditions but causes a growth defect during alkaline stress, most likely by titrating calcineurin away from other substrates or regulators. Thus, calcineurin-substrate affinity determines the Ca(2+) concentration dependence and output of signaling in vivo as well as the balance between different branches of calcineurin signaling in an overall biological response. PMID:17386265

  20. Association between the PPP3CC gene, coding for the calcineurin gamma catalytic subunit, and bipolar disorder

    OpenAIRE

    Bellivier Frank; Chevalier Fabien; El Khoury Marie-Anne; Etain Bruno; Miot Stéphanie; Mathieu Flavie; Leboyer Marion; Giros Bruno; Tzavara Eleni T

    2008-01-01

    Abstract Background Calcineurin is a neuron-enriched phosphatase that regulates synaptic plasticity and neuronal adaptation. Activation of calcineurin, overall, antagonizes the effects of the cyclic AMP activated protein/kinase A. Thus, kinase/phosphatase dynamic balance seems to be critical for transition to long-term cellular responses in neurons, and disruption of this equilibrium should induce behavioral impairments in animal models. Genetic animal models, as well as post-mortem studies i...

  1. Inhibition of calcineurin abrogates while inhibition of mTOR promotes regulatory T cell expansion and graft-versus-host disease protection by IL-2 in allogeneic bone marrow transplantation.

    Directory of Open Access Journals (Sweden)

    Atsushi Satake

    Full Text Available Regulatory T cells (Tregs attenuate excessive immune responses, making their expansion beneficial in immune-mediated diseases including allogeneic bone marrow transplantation (BMT-associated graft-versus-host disease (GVHD. We have recently reported that Treg expansion does not require phospholipase Cγ activation when IL-2 is provided. As such, the combination of IL-2 and a calcineurin inhibitor (Cyclosporine A; CsA expands Tregs while inhibiting Tconv proliferation and protects against a mouse model of multiple sclerosis. However, CsA inhibits Treg proliferation in the presence of a TCR stimulus, suggesting that CsA may negatively impact Treg proliferation when they receive strong allogeneic MHC-mediated TCR signals. In this study, we show that CsA inhibits Treg proliferation and inducible Treg generation in allogeneic but not in syngeneic BMT when IL-2 is provided. In contrast to CsA, the mTOR inhibitor (Rapamycin almost completely suppressed IL-2-mediated Treg proliferation. However, CsA and Rapamycin inhibited Treg proliferation to a similar extent when TCR stimulation was provided. Furthermore, Rapamycin promoted Treg expansion and inducible Treg generation in allogeneic BMT recipients treated with IL-2. Consistent with these observations, CsA abrogated while Rapamycin promoted the protective effect of IL-2 on allogeneic BMT-induced GVHD. These results suggest that while CsA permits IL-2-induced Treg proliferation in the syngeneic setting (absence of strong TCR signals, CsA in combination with IL-2 may be detrimental for Treg proliferation in an allogeneic setting. Thus, in allogeneic settings, an mTOR inhibitor such as Rapamycin is a better choice for adjunct therapy with IL-2 in expansion of Tregs and protection against allogeneic BMT-induced GVHD.

  2. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics

    NARCIS (Netherlands)

    Groves, M R; Yao, Z J; Roller, P P; Burke, T R; Barford, D

    1998-01-01

    Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of phosphotyrosin

  3. Calcineurin, Synaptic Plasticity, and Memory

    Directory of Open Access Journals (Sweden)

    Carl Weitlauf

    2001-01-01

    Full Text Available A long-held hypothesis in neuroscience holds that learning and memory mechanisms involve lasting changes in synaptic weights. Multiple mechanisms for producing such changes exist, of which NMDA-receptor–dependent long-term potentiation (LTP is the most widely studied. Curiously, the relatively simple hypothesis that LTP plays a role in learning and memory has proven difficult to test. A current experimental strategy is to generate genetically altered mice with mutations in genes thought to be involved in LTP and assess the effects of these mutations both on LTP and animal behavior[1,2]. A difficulty associated with these approaches has been that they are not temporally or spatially refined. To alleviate this problem, Dr. Isabelle Mansuy and colleagues used an inducible and reversible transgene expression system in which transgene expression could be controlled on a week-to-week timescale to assess the effects of genetic reduction of the activity of a protein phosphatase known as calcineurin or PP2B in adult mouse forebrain[3,4].

  4. Altered Skeletal Muscle Phenotypes in Calcineurin Aα and Aβ Gene-Targeted Mice

    OpenAIRE

    Parsons, Stephanie A.; Wilkins, Benjamin J.; Bueno, Orlando F.; Molkentin, Jeffery D

    2003-01-01

    Calcineurin is a calcium-regulated serine-threonine protein phosphatase that controls developmental and inducible biological responses in diverse cell types, in part through activation of the transcription factor nuclear factor of activated T cells (NFAT). In skeletal muscle, calcineurin has been implicated in the regulation of myoblast differentiation, hypertrophy of mature myofibers, and fiber type switching in response to alterations in intracellular calcium concentration. However, conside...

  5. Epithelial calcineurin controls microbiota-dependent intestinal tumor development.

    Science.gov (United States)

    Peuker, Kenneth; Muff, Stefanie; Wang, Jun; Künzel, Sven; Bosse, Esther; Zeissig, Yvonne; Luzzi, Giuseppina; Basic, Marijana; Strigli, Anne; Ulbricht, Andrea; Kaser, Arthur; Arlt, Alexander; Chavakis, Triantafyllos; van den Brink, Gijs R; Schafmayer, Clemens; Egberts, Jan-Hendrik; Becker, Thomas; Bianchi, Marco E; Bleich, André; Röcken, Christoph; Hampe, Jochen; Schreiber, Stefan; Baines, John F; Blumberg, Richard S; Zeissig, Sebastian

    2016-05-01

    Inflammation-associated pathways are active in intestinal epithelial cells (IECs) and contribute to the pathogenesis of colorectal cancer (CRC). Calcineurin, a phosphatase required for the activation of the nuclear factor of activated T cells (NFAT) family of transcription factors, shows increased expression in CRC. We therefore investigated the role of calcineurin in intestinal tumor development. We demonstrate that calcineurin and NFAT factors are constitutively expressed by primary IECs and selectively activated in intestinal tumors as a result of impaired stratification of the tumor-associated microbiota and toll-like receptor signaling. Epithelial calcineurin supports the survival and proliferation of cancer stem cells in an NFAT-dependent manner and promotes the development of intestinal tumors in mice. Moreover, somatic mutations that have been identified in human CRC are associated with constitutive activation of calcineurin, whereas nuclear translocation of NFAT is associated with increased death from CRC. These findings highlight an epithelial cell-intrinsic pathway that integrates signals derived from the commensal microbiota to promote intestinal tumor development. PMID:27043494

  6. Cloning of human calcineurin A: Evidence for two isozymes and identification of a polyproline structural domain

    International Nuclear Information System (INIS)

    Two types (I and II) of cDNAs encoding the large (A) subunit of calcineurin, a calmodulin-regulated protein phosphatase, were isolated from human basal ganglia and brainstem mRNA. The complete sequences of the two calcineurin clones are identical except for a 54-base-pair insert in the type I clone and different 3' ends including part of the coding sequence for the C termini of the two proteins. These findings suggest that calcineurin A consists of at least two isozymes that may result from alternative splicing events. The two forms of the enzyme differ in the C terminus, which contains an inhibitory domain rapidly severed by limited proteolysis. With the exception of an 18-amino acid insert, the central parts of the molecules, which harbor the catalytic domains, are identical and show extended similarities with the entire catalytic subunits of protein phosphatases 1 and 2A, defining a distinct family of protein phosphatases. The 40-residue N-terminal fragment, specific for calcineurin, contains a sequence of 11 successive prolines that is also found to bovine brain calcineurin by peptide sequencing. A role in the calmodulin activation of calcineurin is proposed for this novel structural element

  7. The C2 Domain Protein Cts1 Functions in the Calcineurin Signaling Circuit during High-Temperature Stress Responses in Cryptococcus neoformans ▿ †

    OpenAIRE

    Aboobakar, Eanas F.; Wang, Xuying; Heitman, Joseph; Kozubowski, Lukasz

    2011-01-01

    Calcineurin is a conserved calcium/calmodulin-dependent serine/threonine-specific protein phosphatase that acts in cell stress responses. Calcineurin is essential for growth at 37°C and for virulence of the human fungal pathogen Cryptococcus neoformans, but its substrates remain unknown. The C2 domain-containing, phospholipid-binding protein Cts1 was previously identified as a multicopy suppressor of a calcineurin mutation in C. neoformans. Here we further characterize the function of Cts1 an...

  8. Calcineurin and Calcium Channel CchA Coordinate the Salt Stress Response by Regulating Cytoplasmic Ca2+ Homeostasis in Aspergillus nidulans.

    Science.gov (United States)

    Wang, Sha; Liu, Xiao; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-06-01

    The eukaryotic calcium/calmodulin-dependent protein phosphatase calcineurin is crucial for the environmental adaption of fungi. However, the mechanism of coordinate regulation of the response to salt stress by calcineurin and the high-affinity calcium channel CchA in fungi is not well understood. Here we show that the deletion of cchA suppresses the hyphal growth defects caused by the loss of calcineurin under salt stress in Aspergillus nidulans Additionally, the hypersensitivity of the ΔcnaA strain to extracellular calcium and cell-wall-damaging agents can be suppressed by cchA deletion. Using the calcium-sensitive photoprotein aequorin to monitor the cytoplasmic Ca(2+) concentration ([Ca(2+)]c) in living cells, we found that calcineurin negatively regulates CchA on calcium uptake in response to external calcium in normally cultured cells. However, in salt-stress-pretreated cells, loss of either cnaA or cchA significantly decreased the [Ca(2+)]c, but a deficiency in both cnaA and cchA switches the [Ca(2+)]c to the reference strain level, indicating that calcineurin and CchA synergistically coordinate calcium influx under salt stress. Moreover, real-time PCR results showed that the dysfunction of cchA in the ΔcnaA strain dramatically restored the expression of enaA (a major determinant for sodium detoxification), which was abolished in the ΔcnaA strain under salt stress. These results suggest that double deficiencies of cnaA and cchA could bypass the requirement of calcineurin to induce enaA expression under salt stress. Finally, YvcA, a member of the transient receptor potential channel (TRPC) protein family of vacuolar Ca(2+) channels, was proven to compensate for calcineurin-CchA in fungal salt stress adaption.IMPORTANCE The feedback inhibition relationship between calcineurin and the calcium channel Cch1/Mid1 has been well recognized from yeast. Interestingly, our previous study (S. Wang et al., PLoS One 7:e46564, 2012, http://dx.doi.org/10.1371/journal

  9. Quercetin targets the interaction of calcineurin with LxVP-type motifs in immunosuppression.

    Science.gov (United States)

    Zhao, Yane; Zhang, Jin; Shi, Xiaoyu; Li, Jing; Wang, Rui; Song, Ruiwen; Wei, Qun; Cai, Huaibin; Luo, Jing

    2016-08-01

    Calcineurin (CN) is a unique calcium/calmodulin (CaM)-activated serine/threonine phosphatase. To perform its diverse biological functions, CN communicates with many substrates and other proteins. In the physiological activation of T cells, CN acts through transcriptional factors belonging to the NFAT family and other transcriptional effectors. The classic immunosuppressive drug cyclosporin A (CsA) can bind to cyclophilin (CyP) and compete with CN for the NFAT LxVP motif. CsA has debilitating side effects, including nephrotoxicity, hypertension and tremor. It is desirable to develop alternative immunosuppressive agents. To this end, we first tested the interactions between CN and the LxVP-type substrates, including endogenous regulators of calcineurin (RCAN1) and NFAT. Interestingly, we found that quercetin, the primary dietary flavonol, can inhibit the activity of CN and significantly disrupt the associations between CN and its LxVP-type substrates. We then validated the inhibitory effects of quercetin on the CN-NFAT interactions in cell-based assays. Further, quercetin also shows dose-dependent suppression of cytokine gene expression in mouse spleen cells. These data raise the possibility that the interactions of CN with its LxVP-type substrates are potential targets for immunosuppressive agents. PMID:27109380

  10. Benomyl inhibits phosphorus transport but not fungal alkaline phosphatase activity in a Glomus–cucumber symbiosis

    DEFF Research Database (Denmark)

    Larsen, John; Thingstrup, Ida; Jakobsen, Iver;

    1996-01-01

    Short-term effects of benomyl on the arbuscular mycorrhizal fungus Glomus caledonium (Nicol. & Gerd.) Trappe and Gerdeman associated with Cucumis sativus L. were studied by measuring effects on fungal P transport and on fungal alkaline phosphatase activity. Mycorrhizal plants were grown in three...... when benomyl was applied to the HC at 10 µg g-1 soil, whereas the uptake of 32P from RHC I roots + hyphae) was reduced only at the highest dose of application to the RHC (100 µ g g-1 soil). In contrast to the marked reduction of benomyl on fungal P transport, the activity of fungal alkaline phosphatase...

  11. Topical calcineurin inhibitors in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Christos E Lampropoulos

    2010-04-01

    Full Text Available Christos E Lampropoulos, David P D’CruzLupus Research Unit, Rayne Institute, St. Thomas’ Hospital, London, UKAbstract: Cutaneous lupus erythematosus (CLE encompasses a variety of lesions that may be refractory to systemic or topical agents. Discoid lupus erythematosus (DLE and subacute cutaneous lupus erythematosus (SCLE are the most common lesions in clinical practice. The topical calcineurin inhibitors, tacrolimus and pimecrolimus, have been used to treat resistant cutaneous lupus since 2002 and inhibit the proliferation and activation of T-cells and suppress immune-mediated cutaneous inflammation. This article reviews the mechanism of action, efficacy, adverse effects, and the recent concern about their possible carcinogenic effect. Although the total number of patients is small and there is only one relevant randomized controlled study, the data are encouraging. Many patients, previously resistant to systemic agents or topical steroids, improved after four weeks of treatment. DLE and SCLE lesions were less responsive, reflecting the chronicity of the lesions, although more than 50% of patients still showed improvement. Topical calcineurin inhibitors may be a safe and effective alternative to topical steroids for CLE although the only approved indication is for atopic dermatitis.Keywords: tacrolimus, pimecrolimus, cutaneous lupus erythematosus, topical calcineurin inhibitors

  12. Oral voclosporin: novel calcineurin inhibitor for treatment of noninfectious uveitis

    Directory of Open Access Journals (Sweden)

    Roesel M

    2011-09-01

    Full Text Available Martin Roesel1, Christoph Tappeiner2, Arnd Heiligenhaus1,3, Carsten Heinz1,31Department of Ophthalmology, St Franziskus-Hospital, Muenster, Germany; 2Department of Ophthalmology, Inselspital, University of Bern, Switzerland; 3University Duisburg-Essen, GermanyAbstract: Voclosporin, a novel immunomodulatory drug inhibiting the calcineurin enzyme, was developed to prevent organ graft rejection and to treat autoimmune diseases. The chemical structure of voclosporin is similar to that of cyclosporine A, with a difference in one amino acid, leading to superior calcineurin inhibition and less variability in plasma concentration. Compared with placebo, voclosporin may significantly reduce inflammation and prevent recurrences of inflammation in patients with noninfectious uveitis. Future studies have to show if these advantages are accompanied by greater clinical efficacy and fewer side effects compared with the classic calcineurin inhibitors.Keywords: uveitis, immunosuppression, voclosporin

  13. Inhibition of protein phosphatase 2A induces serine/threonine phosphorylation, subcellular redistribution, and functional inhibition of STAT3

    DEFF Research Database (Denmark)

    Woetmann, A; Nielsen, M; Christensen, S T; Brockdorff, J; Kaltoft, K; Engel, A M; Skov, S; Brender, C; Geisler, C; Svejgaard, A; Rygaard, J; Leick, V; Odum, N

    1999-01-01

    that serine phosphorylation of STATs also is involved in the regulation of STAT-mediated gene transcription. Here, we studied the role of serine/threonine phosphatases in STAT3 signaling in human antigen-specific CD4(+) T cell lines and cutaneous T cell lymphoma lines, expressing a constitutively...

  14. Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2+) cluster which inhibits inositol pyrophosphate 1-phosphatase activity.

    Science.gov (United States)

    Wang, Huanchen; Nair, Vasudha S; Holland, Ashley A; Capolicchio, Samanta; Jessen, Henning J; Johnson, Michael K; Shears, Stephen B

    2015-10-27

    Iron-sulfur (Fe-S) clusters are widely distributed protein cofactors that are vital to cellular biochemistry and the maintenance of bioenergetic homeostasis, but to our knowledge, they have never been identified in any phosphatase. Here, we describe an iron-sulfur cluster in Asp1, a dual-function kinase/phosphatase that regulates cell morphogenesis in Schizosaccharomyces pombe. Full-length Asp1, and its phosphatase domain (Asp1(371-920)), were each heterologously expressed in Escherichia coli. The phosphatase activity is exquisitely specific: it hydrolyzes the 1-diphosphate from just two members of the inositol pyrophosphate (PP-InsP) signaling family, namely, 1-InsP7 and 1,5-InsP8. We demonstrate that Asp1 does not hydrolyze either InsP6, 2-InsP7, 3-InsP7, 4-InsP7, 5-InsP7, 6-InsP7, or 3,5-InsP8. We also recorded 1-phosphatase activity in a human homologue of Asp1, hPPIP5K1, which was heterologously expressed in Drosophila S3 cells with a biotinylated N-terminal tag, and then isolated from cell lysates with avidin beads. Purified, recombinant Asp1(371-920) contained iron and acid-labile sulfide, but the stoichiometry (0.8 atoms of each per protein molecule) indicates incomplete iron-sulfur cluster assembly. We reconstituted the Fe-S cluster in vitro under anaerobic conditions, which increased the stoichiometry to approximately 2 atoms of iron and acid-labile sulfide per Asp1 molecule. The presence of a [2Fe-2S](2+) cluster in Asp1(371-920) was demonstrated by UV-visible absorption, resonance Raman spectroscopy, and electron paramagnetic resonance spectroscopy. We determined that this [2Fe-2S](2+) cluster is unlikely to participate in redox chemistry, since it rapidly degraded upon reduction by dithionite. Biochemical and mutagenic studies demonstrated that the [2Fe-2S](2+) cluster substantially inhibits the phosphatase activity of Asp1, thereby increasing its net kinase activity. PMID:26422458

  15. Genetic and Phenotypic analyses of Calcineurin A subunit in Arthroderma vanbreuseghemii.

    Science.gov (United States)

    Alshahni, Mohamed Mahdi; Shimizu, Kiminori; Yoshimoto, Maki; Yamada, Tsuyoshi; Nishiyama, Yayoi; Arai, Toshiro; Makimura, Koichi

    2016-02-01

    Calcineurin is a serine/threonine protein phosphatase that consists of catalytic (calcineurin A) and regulatory (calcineurin B) subunits. The conserved protein plays important roles in various biological processes. Drug combination of fluconazole and the calcineurin inhibitor (FK506) showed synergistic effects against dermatophytes. In the current study, we identified the calcineurin A homologous gene (TmcanA) in the dermatophyte Arthroderma vanbreuseghemii (anamorph: Trichophyton mentagrophytes). Knockdown mutants were produced from A. vanbreuseghemii, resulting in a defection in growth properties in accordance with dose of the suppressing reagent. The TmcanA gene restored the ability of calcineurin A-deficient Cryptococcus neoformans strain to grow at elevated temperatures. Repression of TmcanA at 37°C resulted in severely stunted growth, suggesting that this protein plays a role in tolerance to elevated temperatures. In addition, TMCANA showed an interaction with high osmolarity glycerol (HOG) signalling pathway by governing the secretion of a secondary metabolite. Moreover, expression of the hydrophobin A gene (TmHF) decreased significantly under the TmcanA-repressive condition, suggesting that TMCANA is involved in its regulation. In conclusion, calcineurin A is a multifunctional gene that is involved in the regulation of several biological processes and therefore is worth being considered as a drug target for treatment of dermatophytoses. PMID:26483437

  16. Selective Effects of PDE10A Inhibitors on Striatopallidal Neurons Require Phosphatase Inhibition by DARPP-321,2,3

    Science.gov (United States)

    Polito, Marina; Guiot, Elvire; Gangarossa, Giuseppe; Longueville, Sophie; Doulazmi, Mohamed; Valjent, Emmanuel; Hervé, Denis; Girault, Jean-Antoine; Paupardin-Tritsch, Danièle; Castro, Liliana R. V.

    2015-01-01

    Abstract Type 10A phosphodiesterase (PDE10A) is highly expressed in the striatum, in striatonigral and striatopallidal medium-sized spiny neurons (MSNs), which express D1 and D2 dopamine receptors, respectively. PDE10A inhibitors have pharmacological and behavioral effects suggesting an antipsychotic profile, but the cellular bases of these effects are unclear. We analyzed the effects of PDE10A inhibition in vivo by immunohistochemistry, and imaged cAMP, cAMP-dependent protein kinase A (PKA), and cGMP signals with biosensors in mouse brain slices. PDE10A inhibition in mouse striatal slices produced a steady-state increase in intracellular cAMP concentration in D1 and D2 MSNs, demonstrating that PDE10A regulates basal cAMP levels. Surprisingly, the PKA-dependent AKAR3 phosphorylation signal was strong in D2 MSNs, whereas D1 MSNs remained unresponsive. This effect was also observed in adult mice in vivo since PDE10A inhibition increased phospho-histone H3 immunoreactivity selectively in D2 MSNs in the dorsomedial striatum. The PKA-dependent effects in D2 MSNs were prevented in brain slices and in vivo by mutation of the PKA-regulated phosphorylation site of 32 kDa dopamine- and cAMP-regulated phosphoprotein (DARPP-32), which is required for protein phosphatase-1 inhibition. These data highlight differences in the integration of the cAMP signal in D1 and D2 MSNs, resulting from stronger inhibition of protein phosphatase-1 by DARPP-32 in D2 MSNs than in D1 MSNs. This study shows that PDE10A inhibitors share with antipsychotic medications the property of activating preferentially PKA-dependent signaling in D2 MSNs. PMID:26465004

  17. Selective Effects of PDE10A Inhibitors on Striatopallidal Neurons Require Phosphatase Inhibition by DARPP-32(1,2,3).

    Science.gov (United States)

    Polito, Marina; Guiot, Elvire; Gangarossa, Giuseppe; Longueville, Sophie; Doulazmi, Mohamed; Valjent, Emmanuel; Hervé, Denis; Girault, Jean-Antoine; Paupardin-Tritsch, Danièle; Castro, Liliana R V; Vincent, Pierre

    2015-01-01

    Type 10A phosphodiesterase (PDE10A) is highly expressed in the striatum, in striatonigral and striatopallidal medium-sized spiny neurons (MSNs), which express D1 and D2 dopamine receptors, respectively. PDE10A inhibitors have pharmacological and behavioral effects suggesting an antipsychotic profile, but the cellular bases of these effects are unclear. We analyzed the effects of PDE10A inhibition in vivo by immunohistochemistry, and imaged cAMP, cAMP-dependent protein kinase A (PKA), and cGMP signals with biosensors in mouse brain slices. PDE10A inhibition in mouse striatal slices produced a steady-state increase in intracellular cAMP concentration in D1 and D2 MSNs, demonstrating that PDE10A regulates basal cAMP levels. Surprisingly, the PKA-dependent AKAR3 phosphorylation signal was strong in D2 MSNs, whereas D1 MSNs remained unresponsive. This effect was also observed in adult mice in vivo since PDE10A inhibition increased phospho-histone H3 immunoreactivity selectively in D2 MSNs in the dorsomedial striatum. The PKA-dependent effects in D2 MSNs were prevented in brain slices and in vivo by mutation of the PKA-regulated phosphorylation site of 32 kDa dopamine- and cAMP-regulated phosphoprotein (DARPP-32), which is required for protein phosphatase-1 inhibition. These data highlight differences in the integration of the cAMP signal in D1 and D2 MSNs, resulting from stronger inhibition of protein phosphatase-1 by DARPP-32 in D2 MSNs than in D1 MSNs. This study shows that PDE10A inhibitors share with antipsychotic medications the property of activating preferentially PKA-dependent signaling in D2 MSNs. PMID:26465004

  18. Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate.

    OpenAIRE

    Schmidt, A.; Rutledge, S J; Endo, N; Opas, E E; Tanaka, H; Wesolowski, G.; Leu, C T; Huang, Z; Ramachandaran, C; Rodan, S B; Rodan, G A

    1996-01-01

    Alendronate (ALN), an aminobisphosphonate used in the treatment of osteoporosis, is a potent inhibitor of bone resorption. Its molecular target is still unknown. This study examines the effects of ALN on the activity of osteoclast protein-tyrosine phosphatase (PTP; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48), called PTPepsilon. Using osteoclast-like cells generated by coculturing mouse bone marrow cells with mouse calvaria osteoblasts, we found by molecular cloning and RNA blot ...

  19. Inhibitors of the Ca2+/calmodulin-dependent protein kinase phosphatase family (CaMKP and CaMKP-N)

    International Nuclear Information System (INIS)

    Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) and its nuclear isoform CaMKP-N are unique Ser/Thr protein phosphatases that negatively regulate the Ca2+/calmodulin-dependent protein kinase (CaMK) cascade by dephosphorylating multifunctional CaMKI, II, and IV. However, the lack of specific inhibitors of these phosphatases has hampered studies on these enzymes in vivo. In an attempt to obtain specific inhibitors, we searched inhibitory compounds and found that Evans Blue and Chicago Sky Blue 6B served as effective inhibitors for CaMKP. These compounds also inhibited CaMKP-N, but inhibited neither protein phosphatase 2C, another member of PPM family phosphatase, nor calcineurin, a typical PPP family phosphatase. The minimum structure required for the inhibition was 1-amino-8-naphthol-4-sulfonic acid. When Neuro2a cells cotransfected with CaMKIV and CaMKP-N were treated with these compounds, the dephosphorylation of CaMKIV was strongly suppressed, suggesting that these compounds could be used as potent inhibitors of CaMKP and CaMKP-N in vivo as well as in vitro

  20. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    International Nuclear Information System (INIS)

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of [3H]proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of [3H]hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of [3H]thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone

  1. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    Directory of Open Access Journals (Sweden)

    Naoto Tatewaki

    Full Text Available Ataxia telangiectasia mutated (ATM kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR. The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15 and Chk1 (Ser317 was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.

  2. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    Science.gov (United States)

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression. PMID:26824362

  3. Different in vitro proliferation and cytokine-production inhibition of memory T-cell subsets after calcineurin and mammalian target of rapamycin inhibitors treatment.

    Science.gov (United States)

    Merino, David; San Segundo, David; Medina, Juan M; Rodrigo, Emilio; Asensio, Esther; Irure, Juan; Fernández-Fresnedo, Gema; Arias, Manuel A; López-Hoyos, Marcos

    2016-06-01

    Calcineurin inhibitors (CNI) and mammalian target of rapamycin inhibitors (mTORi) are the main immunosuppressants used for long-term maintenance therapy in transplant recipients to avoid acute rejection episodes. Both groups of immunosuppressants have wide effects and are focused against the T cells, although different impacts on specific T-cell subsets, such as regulatory T cells, have been demonstrated. A greater knowledge of the impact of immunosuppression on the cellular components involved in allograft rejection could facilitate decisions for individualized immunosuppression when an acute rejection event is suspected. Memory T cells have recently gained focus because they might induce a more potent response compared with naive cells. The impact of immunosuppressants on different memory T-cell subsets remains unclear. In the present study, we have studied the specific impact of CNI (tacrolimus) and mTORi (rapamycin and everolimus) over memory and naive CD4(+) T cells. To do so, we have analysed the proliferation, phenotypic changes and cytokine synthesis in vitro in the presence of these immunosuppressants. The present work shows a more potent effect of CNI on proliferation and cytokine production in naive and memory T cells. However, the mTORi permit the differentiation of naive T cells to the memory phenotype and allow the production of interleukin-2. Taken together, our data show evidence to support the combined use of CNI and mTORi in transplant immunosuppression. PMID:26931075

  4. Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase

    International Nuclear Information System (INIS)

    T-cell protein tyrosine phosphatase (TCPTP/TC45) is a ubiquitously expressed intra-cellular non-receptor protein tyrosine phosphatase involved in the negative regulation of several cancer relevant cellular signalling pathways. We have previously shown that interaction between the α-cytoplasmic tail of α1β1 integrin and TCPTP activates TCPTP by disrupting an inhibitory intra-molecular bond in TCPTP. Thus, inhibition of the regulatory interaction in TCPTP is a desirable strategy for TCPTP activation and attenuation of oncogenic RTK signalling. However, this is challenging with low molecular weight compounds. We developed a high-throughput compatible assay to analyse activity of recombinant TCPTP in vitro. Using this assay we have screened 64280 small molecules to identify novel agonists for TCPTP. Dose-dependent response to TCPTP agonist was performed using the in vitro assay. Inhibition effects and specificity of TCPTP agonists were evaluated using TCPTP expressing and null mouse embryonic fibroblasts. Western blot analysis was used to evaluate attenuation of PDGFRβ and EGFR phosphorylation. Inhibition of VEGF signalling was analysed with VEGF-induced endothelial cell sprouting assays. From the screen we identified six TCPTP agonists. Two compounds competed with α1-cytoplasmic domain for binding to TCPTP, suggesting that they activate TCPTP similar to α1-cyt by disrupting the intra-molecular bond in TCPTP. Importantly, one of the compounds (spermidine) displayed specificity towards TCPTP in cells, since TCPTP -/- cells were 43-fold more resistant to the compound than TCPTP expressing cells. This compound attenuates PDGFRβ and VEGFR2 signalling in cells in a TCPTP-dependent manner and functions as a negative regulator of EGFR phosphorylation in cancer cells. In this study we showed that small molecules mimicking TCPTP-α1 interaction can be used as TCPTP agonists. These data provide the first proof-of-concept description of the use of high-throughput screening

  5. Activation of calcineurin by phosphotidylserine containing vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Politino, M.; King, M.M.

    1986-05-01

    Calcineurin (CaN) is a Ca/sup 2 +/- and calmodulin-regulated phosphatase. Recent findings suggested an association of CaN with biological membranes and prompted the present investigation into the interactions of the phosphatase with phospholipids in vitro. In the absence of calmodulin, sonicated preparations of phosphatidylserine (PS) provided a five-fold activation of the Ni- and Mn-supported activities of CaN towards (/sup 32/P) histone Hl; activation in the presence of calmodulin was much less pronounced. Half-maximal activation in the absence of calmodulin required approximately 0.1 mg/ml of PS. Activation of CaN was also observed with mixed vesicles of phosphatidylcholine (PC) containing 20% PS but not with PC alone, or with phosphatidylethanolamine (PE). Molecular sieve chromatography on Ultrogel AcA 34 provided further evidence that CaN associates with phospholipid vesicles composed of PS, or PC containing 20% PS, but not with vesicles of PC or PE. Complete association with medium sized vesicles of PS and PC/PS required Ca/sup 2 +/ ions; in the absence of the metal ion at least 60% of the enzyme failed to interact with the lipids while the remainder preferentially migrated with larger vesicles. These results suggest a role for Ca/sup 2 +/ in regulating CaN's interaction with phospholipids.

  6. Curcumin inhibits Akt/mTOR signaling through protein phosphatase-dependent mechanism*

    OpenAIRE

    Yu, Siwang; Shen, Guoxiang; Khor, Tin Oo; Kim, Jung-Hwan; Kong, Ah-Ng

    2008-01-01

    Akt/mTOR signaling plays an important role in tumorigenesis and is dysregulated in many tumors, especially metastatic prostate cancers. Curcumin has been shown to effectively prevent or inhibit prostate cancer in vivo and inhibit Akt/mTOR signaling in vitro, but the mechanism(s) remains unclear. Here we show that curcumin concentration- and time-dependently inhibited the phosphorylation of Akt, mTOR, and their downstream substrates in human prostate cancer PC-3 cells, and this inhibitory effe...

  7. Inhibition of phosphoserine phosphatase enhances the anticancer efficacy of 5-fluorouracil in colorectal cancer.

    Science.gov (United States)

    Li, Xin; Xun, Zhe; Yang, Yong

    2016-09-01

    Most colorectal cancer (CRC) cell lines are identified to overexpress phosphoserine phosphatase (PSPH), which regulates the intracellular synthesis of serine and glycine, and supports tumor growth. In this study, the effect of PSPH on 5-fluorouracil (5-FU) efficacy was evaluated. CRC cells exposed to 5-FU acquire metabolic remodeling, resulting in increased glucose flux for PSPH-mediated serine synthesis. Then serine is converted into GSH, which promotes cell survival through the detoxification of 5-FU-induced reactive oxygen species (ROS). Consequently, repression of PSPH by the use of shRNAs for PSPH impaired the defense against drug-induced oxidative stress, thereby sensitizing cells to 5-FU. The importance of the PSPH in supporting tumor growth during 5-FU treatment was also demonstrated in an in vivo tumor model of CRC. These findings indicate that the PSPH could serve as a target for increasing the anticancer efficacy of conventional therapy in patients with CRC. PMID:27349874

  8. ROLE OF CALCINEURIN IN ANGIOTENSIN II INDUCED CARDIAC MYOCYTE HYPERTROPHY OF RATS

    Institute of Scientific and Technical Information of China (English)

    符民桂; 张继峰; 许松; 庞永政; 刘乃奎; 唐朝枢

    2001-01-01

    Objective. The present study investigated the role of calcineurin in angiotensin II(AngII) induced cardiac myocyte hypertrophy of rats. Method. The primary cardiac myocytes were cultured under the standard conditions. The calcineurin activity in AngII treated cardiomyocytes was tested by using PNPP;protein synethsis rate was assessed by 3H leucine incorporation; atrial natriuretic factor(ANF) Mrna level was determined by Northern blot analysis. Cell viability was estimated by lactate dehydrogenase(LDH) levels in cultured medium and by dyed cell numbers. Result. After stimulation of 10,100 and 1 000nmol/L of AngII, calcineurin activities in the cardiomyocytes were increased by 13% ,57% (P< 0.05) and 228% (P< 0.01) respectively, compared with control group. Cyclosporin A(CsA), a specific inhibitor of calcineurin, markedly inhibited the calcineurin activity and decreased the 3H leucine incorporation in AngII treated cardiomyocytes in a dose dependent manner. It was also found that CsA slightly reduced the Mrna level of ANF gene in AngII stimulated cardiomyocytes. Conclusion. During AngII induced cardiac myocyte hypertrophy, calcineurin signal pathway is activated, and inhibition of the pathway can attenuate AngII induced cardiac myocyte hypertrophy, which suggests that the calcineurin signal pathway may play an important role in AngII induced myocardial hypertrophy of rats.

  9. INHIBITION OF PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZN2+

    Science.gov (United States)

    A number of studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden particulate matter inhibits protein tyrosine phosphatase activity in HAEC and leads to Src-dependent activation of EGFR sign...

  10. Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase

    Directory of Open Access Journals (Sweden)

    Tähtinen Siri

    2010-01-01

    Full Text Available Abstract Background T-cell protein tyrosine phosphatase (TCPTP/TC45 is a ubiquitously expressed intra-cellular non-receptor protein tyrosine phosphatase involved in the negative regulation of several cancer relevant cellular signalling pathways. We have previously shown that interaction between the α-cytoplasmic tail of α1β1 integrin and TCPTP activates TCPTP by disrupting an inhibitory intra-molecular bond in TCPTP. Thus, inhibition of the regulatory interaction in TCPTP is a desirable strategy for TCPTP activation and attenuation of oncogenic RTK signalling. However, this is challenging with low molecular weight compounds. Methods We developed a high-throughput compatible assay to analyse activity of recombinant TCPTP in vitro. Using this assay we have screened 64280 small molecules to identify novel agonists for TCPTP. Dose-dependent response to TCPTP agonist was performed using the in vitro assay. Inhibition effects and specificity of TCPTP agonists were evaluated using TCPTP expressing and null mouse embryonic fibroblasts. Western blot analysis was used to evaluate attenuation of PDGFRβ and EGFR phosphorylation. Inhibition of VEGF signalling was analysed with VEGF-induced endothelial cell sprouting assays. Results From the screen we identified six TCPTP agonists. Two compounds competed with α1-cytoplasmic domain for binding to TCPTP, suggesting that they activate TCPTP similar to α1-cyt by disrupting the intra-molecular bond in TCPTP. Importantly, one of the compounds (spermidine displayed specificity towards TCPTP in cells, since TCPTP -/- cells were 43-fold more resistant to the compound than TCPTP expressing cells. This compound attenuates PDGFRβ and VEGFR2 signalling in cells in a TCPTP-dependent manner and functions as a negative regulator of EGFR phosphorylation in cancer cells. Conclusions In this study we showed that small molecules mimicking TCPTP-α1 interaction can be used as TCPTP agonists. These data provide the first

  11. Synthesis and protein tyrosine phosphatase 1B inhibition activities of two new synthetic bromophenols and their methoxy derivatives

    Science.gov (United States)

    Cui, Yongchao; Shi, Dayong; Hu, Zhiqiang

    2011-11-01

    3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzenediol ( 1) is a natural bromophenol isolated from the red algae Rhodomela confervoides that exhibits significant inhibition against protein tyrosine phosphatase 1B (PTP1B). Based on its activity, we synthesized two new synthetic bromophenols and their methoxy derivatives from vanillin using the structure of natural bromophenol 1 as a scaffold. The structures of these bromophenols were elucidated from 1H NMR, 13C NMR, and high resolution electron ionization mass spectrometry as 2,3-dibromo-1-(2'-bromo-6'-(3″,4″-dimethoxybenzyl)-3',4'-dimethoxybenzyl)-4,5-dimethoxybenzene ( 2), 2,3-dibromo-1-(2'-bromo-6'-(2″-bromo-4″,5″-dimethoxybenzyl)-3',4'-dimethoxybenzyl)-4,5-dimethoxybenzene ( 3), 3,4-dibromo-5-(2'-bromo-6'-(2″-bromo-4″,5″-dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol ( 4) and 3,4-dibromo-5-(2'-bromo-6'-(3″,4″-dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol ( 5). PTP1B inhibition activities of these compounds were evaluated using a colorimetric assay, and compounds 3 and 4 demonstrated interesting activity against PTP1B.

  12. Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine phosphatase inhibition

    International Nuclear Information System (INIS)

    Exposure to particulate matter (PM) is associated with increased cardiopulmonary morbidity and mortality. Diesel exhaust particles (DEP) are a major component of ambient PM and may contribute to PM-induced pulmonary inflammation. Proinflammatory signaling is mediated by phosphorylation-dependent signaling pathways whose activation is opposed by the activity of protein tyrosine phosphatases (PTPases) which thereby function to maintain signaling quiescence. PTPases contain an invariant catalytic cysteine that is susceptible to electrophilic attack. DEP contain electrophilic oxy-organic compounds that may contribute to the oxidant effects of PM. Therefore, we hypothesized that exposure to DEP impairs PTPase activity allowing for unopposed basal kinase activity. Here we report that exposure to 30 μg/cm2 DEP for 4 h induces differential activation of signaling in primary cultures of human airway epithelial cells (HAEC), a primary target cell in PM inhalation. In-gel kinase activity assay of HAEC exposed to DEPs of low (L-DEP), intermediate (I-DEP) or high (H-DEP) organic content showed differential activation of intracellular kinases. Exposure to these DEP also induced varying levels of phosphorylation of the receptor tyrosine kinase EGFR in a manner that requires EGFR kinase activity but does not involve receptor dimerization. We demonstrate that treatment with DEP results in an impairment of total and EGFR-directed PTPase activity in HAEC with a potency that is independent of the organic content of these particles. These data show that DEP-induced EGFR phosphorylation in HAEC is the result of a loss of PTPase activities which normally function to dephosphorylate EGFR in opposition to baseline EGFR kinase activity

  13. Monitoring the activity and inhibition of alkaline phosphatase via quenching and restoration of the fluorescence of carbon dots

    International Nuclear Information System (INIS)

    We report that the fluorescence of carbon dots (C-dots) in water is quenched by the addition of Cu2+ ions, and that the subsequent addition of pyrophosphate (PPi) restores fluorescence. This is likely to be due to the coordination of Cu2+ by PPi. This effect forms the basis for a method to determine the activity and inhibition of the enzyme alkaline phosphatase (ALP). If ALP is added to a system composed of C-dots, Cu2+ and PPi, fluorescence will decrease over time because ALP catalyzes the hydrolysis of PPi to form orthophosphate (Pi). This results in a release of the quencher Cu2+. The decrease in fluorescence is related to the activity of ALP. The method is simple and displays good sensitivity (with a limit of detection of 1 units per L) and selectivity. The method was successfully applied to the determination of ALP in serum samples. We also have studied the inhibitory effect of Pi on the activity of ALP. We presume that this method holds a large potential in terms of diagnosis of ALP-related diseases, to evaluate the function of ALP in biological systems and in screening for potential inhibitors of ALP. (author)

  14. Hypothermic Preconditioning Reverses Tau Ontogenesis in Human Cortical Neurons and is Mimicked by Protein Phosphatase 2A Inhibition.

    Science.gov (United States)

    Rzechorzek, Nina M; Connick, Peter; Livesey, Matthew R; Borooah, Shyamanga; Patani, Rickie; Burr, Karen; Story, David; Wyllie, David J A; Hardingham, Giles E; Chandran, Siddharthan

    2016-01-01

    Hypothermia is potently neuroprotective, but the molecular basis of this effect remains obscure. Changes in neuronal tau protein are of interest, since tau becomes hyperphosphorylated in injury-resistant, hypothermic brains. Noting inter-species differences in tau isoforms, we have used functional cortical neurons differentiated from human pluripotent stem cells (hCNs) to interrogate tau modulation during hypothermic preconditioning at clinically-relevant temperatures. Key tau developmental transitions (phosphorylation status and splicing shift) are recapitulated during hCN differentiation and subsequently reversed by mild (32 °C) to moderate (28 °C) cooling--conditions which reduce oxidative and excitotoxic stress-mediated injury in hCNs. Blocking a major tau kinase decreases hCN tau phosphorylation and abrogates hypothermic neuroprotection, whilst inhibition of protein phosphatase 2A mimics cooling-induced tau hyperphosphorylation and protects normothermic hCNs from oxidative stress. These findings indicate a possible role for phospho-tau in hypothermic preconditioning, and suggest that cooling drives human tau towards an earlier ontogenic phenotype whilst increasing neuronal resilience to common neurotoxic insults. This work provides a critical step forward in understanding how we might exploit the neuroprotective benefits of cooling without cooling patients. PMID:26870825

  15. Calcineurin inhibitor minimisation versus continuation of calcineurin inhibitor treatment for liver transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Wettergren, Andre; Chan, An-Wen;

    2012-01-01

    The therapeutic success of liver transplantation has been largely attributable to the development of effective immunosuppressive treatment regimens. In particular, calcineurin inhibitors were essential in reducing acute rejection and improving early survival. Currently, more than 90% of all liver...... transplant recipients are treated with the calcineurin inhibitor cyclosporine or tacrolimus. Unfortunately, calcineurin inhibitors cause adverse events, such as nephrotoxicity, and because of this, minimisation (reduction and withdrawal) regimens of calcineurin inhibitor have been developed and studied...

  16. Calcineurin activity in tacrolimus-treated renal transplant patients early after and 5 years after transplantation.

    Science.gov (United States)

    Mortensen, D M; Koefoed-Nielsen, P B; Jørgensen, K A

    2006-10-01

    The pharmacodynamic (PD) action of tacrolimus (FK) within the T-cell is inhibition of calcineurin phosphatase (CaN). Determination of CaN activity provides us with an important PD marker. Eleven renal transplant patients treated with FK were investigated on day 14 following transplantation and 5 years later. Blood samples drawn before as well as 1, 2, 3, and 4 hours after oral intake of FK were analyzed for CaN activity and blood FK concentrations. Twenty healthy subjects had one blood sample drawn for CaN activity, which was measured as the release of (32)P from a phosphorylated peptide. Radioactivity of (32)P was quantitated by liquid scintillation counting with the results converted to units of CaN utilizing a calibration curve. On day 14, we observed significant inhibition of CaN activity at T:1, 2, and 3 compared with the predose level (P = .002; P = .015; P = .015). Furthermore, all measured CaN activities were significantly different from those observed in healthy nonmedicated subjects. In contrast, at 5 years posttransplant only the CaN activity at T:2 was significantly inhibited compared with the predose level (P = .02). Additionally, all CaN activities at this time were not significantly different from CaN activities in the healthy subjects. We were not able to demonstrate individual CaN activity profiles in the patients. The lack of CaN inhibition at 5 years after transplantation despite relevant drug concentrations, probably reflected the lower drug dose used long after transplantation. This result raises the question of whether CaN inhibition is necessary to hold graft function and whether FK possess CaN-independent mechanisms of action. PMID:17098028

  17. FIN13, a novel growth factor-inducible serine-threonine phosphatase which can inhibit cell cycle progression.

    OpenAIRE

    Guthridge, M A; Bellosta, P; Tavoloni, N; Basilico, C.

    1997-01-01

    We have identified a novel type 2C serine-threonine phosphatase, FIN13, whose expression is induced by fibroblast growth factor 4 and serum in late G1 phase. The protein encoded by FIN13 cDNA includes N- and C-terminal domains with significant homologies to type 2C phosphatases, a domain homologous to collagen, and an acidic domain. FIN13 expression predominates in proliferating tissues. Bacterially expressed FIN13 and FIN13 expressed in mammalian cells exhibit serine-threonine phosphatase ac...

  18. Ulinastatin attenuates neuropathic pain induced by L5-VRT via the calcineurin/IL-10 pathway.

    Science.gov (United States)

    Ouyang, Handong; Nie, Bilin; Wang, Peizong; Li, Qiang; Huang, Wan; Xin, Wenjun; Zeng, Weian; Liu, Xianguo

    2016-01-01

    Previous studies have shown that ulinastatin, an effective inhibitor of the inflammatory response in clinical applications, can attenuate hyperalgesia in rodents. However, the underlying mechanism remains unclear. In the present study, we first examined the change in the calcineurin level, which plays an important role in regulating cytokine release in the nervous system, following lumbar 5 ventral root transection in the rat. Furthermore, we determined whether intraperitoneal (i.p.) injection of ulinastatin attenuated pain behavior via inhibition of the calcineurin-mediated inflammatory response induced by lumbar 5 ventral root transection. The results showed that the paw withdrawal threshold and paw withdrawal latency were significantly decreased following lumbar 5 ventral root transection compared to the sham group. Neuropathic pain induced by lumbar 5 ventral root transection significantly decreased the expression of calcineurin in the DRG, and calcineurin was mostly located with NF-200-positive cells, IB4-positive cells, and CGRP-positive cells and less with GFAP-positive satellite cells. Furthermore, intrathecal (i.t.) injection of exogenous calcineurin attenuated the pain behavior induced by lumbar 5 ventral root transection. Importantly, intraperitoneal injection of ulinastatin alleviated the pain behavior and calcineurin downregulation induced by lumbar 5 ventral root transection. Lastly, the cytokine IL-10 was significantly decreased following lumbar 5 ventral root transection, and application of calcineurin (intrathecal) or ulinastatin (intraperitoneal) inhibited the IL-10 downregulation induced by lumbar 5 ventral root transection. These results suggested that ulinastatin, by acting on the CN/IL-10 pathway, might be a novel and effective drug for the treatment of neuropathic pain. PMID:27175013

  19. Lentivirus-Mediated Short-Hairpin RNA Targeting Protein Phosphatase 4 Regulatory Subunit 1 Inhibits Growth in Breast Cancer

    OpenAIRE

    Qi, Yuying; Hu, Tinghui; Li, Kai; Ye, Renqing; Ye, Zuodong

    2015-01-01

    Purpose Protein phosphatase 4 regulatory subunit 1 (PP4R1), as an interaction partner of the catalytic serine/threonine-protein phosphatase 4 catalytic subunit has been shown to involve in cellular processes and nuclear factor κB signaling. However, the functions of PP4R1 in human breast cancers remain unclear. This study is designed to explore the effect of PP4R1 knockdown on the biological characteristics of breast cancer cells. Methods A lentivirus-mediated short hairpin RNA (shRNA) was de...

  20. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues

    DEFF Research Database (Denmark)

    Cook, Naomi L.; Moeke, Cassidy H.; Fantoni, Luca I.;

    2016-01-01

    Phosphorylation of protein tyrosine residues is critical to cellular processes, and is regulated by kinases and phosphatases (PTPs). PTPs contain a redox-sensitive active site Cys residue, which is readily oxidized. Myeloperoxidase, released from activated leukocytes, catalyzes thiocyanate ion (S...

  1. Wip1 phosphatase is associated with chromatin and dephosphorylates gammaH2AX to promote checkpoint inhibition

    Czech Academy of Sciences Publication Activity Database

    Macůrek, Libor; Lindqvist, A.; Voets, O.; Kool, J.; Vos, H.R.; Medema, R.H.

    2010-01-01

    Roč. 29, č. 15 (2010), s. 2281-2291. ISSN 0950-9232 R&D Projects: GA ČR GPP305/10/P420 Institutional research plan: CEZ:AV0Z50520514 Keywords : DNA damage * checkpoint * phosphatase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.414, year: 2010

  2. Theophylline Represses IL-8 Secretion from Airway Smooth Muscle Cells Independently of Phosphodiesterase Inhibition. Novel Role as a Protein Phosphatase 2A Activator.

    Science.gov (United States)

    Patel, Brijeshkumar S; Rahman, Md Mostafizur; Rumzhum, Nowshin N; Oliver, Brian G; Verrills, Nicole M; Ammit, Alaina J

    2016-06-01

    Theophylline is an old drug experiencing a renaissance owing to its beneficial antiinflammatory effects in chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Multiple modes of antiinflammatory action have been reported, including inhibition of the enzymes that degrade cAMP-phosphodiesterase (PDE). Using primary cultures of airway smooth muscle (ASM) cells, we recently revealed that PDE4 inhibitors can potentiate the antiinflammatory action of β2-agonists by augmenting cAMP-dependent expression of the phosphatase that deactivates mitogen-activated protein kinase (MAPK)-MAPK phosphatase (MKP)-1. Therefore, the aim of this study was to address whether theophylline repressed cytokine production in a similar, PDE-dependent, MKP-1-mediated manner. Notably, theophylline did not potentiate cAMP release from ASM cells treated with the long-acting β2-agonist formoterol. Moreover, theophylline (0.1-10 μM) did not increase formoterol-induced MKP-1 messenger RNA expression nor protein up-regulation, consistent with the lack of cAMP generation. However, theophylline (at 10 μM) was antiinflammatory and repressed secretion of the neutrophil chemoattractant cytokine IL-8, which is produced in response to TNF-α. Because theophylline's effects were independent of PDE4 inhibition or antiinflammatory MKP-1, we then wished to elucidate the novel mechanisms responsible. We investigated the impact of theophylline on protein phosphatase (PP) 2A, a master controller of multiple inflammatory signaling pathways, and show that theophylline increases TNF-α-induced PP2A activity in ASM cells. Confirmatory results were obtained in A549 lung epithelial cells. PP2A activators have beneficial effects in ex vivo and in vivo models of respiratory disease. Thus, our study is the first to link theophylline with PP2A activation as a novel mechanism to control respiratory inflammation. PMID:26574643

  3. Force-inhibiting effect of Ser/Thr protein phosphatase 2A inhibitors on bovine ciliary muscle.

    OpenAIRE

    石田, 美織

    2015-01-01

    Ciliary muscle is a smooth muscle characterized by a rapid response to muscarinic receptor stimulation and sustained contraction. Although it is evident that these contractions are Ca(2+)-dependent, detailed molecular mechanisms are still unknown. In order to elucidate the role of Ser/Thr protein phosphatase 2A (PP2A) in ciliary muscle contraction, we examined the effects of okadaic acid and other PP2A inhibitors on contractions induced by carbachol (CCh) and ionomycin in bovine ciliary muscl...

  4. Topical calcineurin inhibitors in dermatology. Part I: Properties, method and effectiveness of drug use.

    Science.gov (United States)

    Gutfreund, Katarzyna; Bienias, Wojciech; Szewczyk, Anna; Kaszuba, Andrzej

    2013-06-01

    Topical calcineurin inhibitors (TCI) are a relatively new class of drugs used in dermatology. There are two drug forms available - tacrolimus 0.03% or 0.1% ointment and 1.0% pimecrolimus cream. The drugs act by inhibiting synthesis of proinflammatory cytokines. The only approved indication for using TCI is treatment of atopic dermatitis. The TCI may be used as an alternative therapy to corticosteroids. Tacrolimus is used to treat moderate-to-severe atopic dermatitis, pimecrolimus - mild-to-moderate atopic dermatitis. Topical calcineurin inhibitors do not cause skin atrophy and the drug absorption through the skin is minimal. The TCI have been well-studied, their efficacy was evaluated in a number of vast, long-term studies. The anti-inflammatory potency of tacrolimus ointment is similar to a corticosteroid with moderate activity, while the latter is clearly more active than pimecrolimus cream. Topical calcineurin inhibitors significantly relieve pruritus in atopic eczema. PMID:24278069

  5. Crystallization and preliminary crystallographic study of a trypsin-resistant catalytic domain of human calcineurin

    International Nuclear Information System (INIS)

    A trypsin-resistant catalytic domain of human calcineurin α (A subunit, residues 20–347) was crystallized in space group P21212. An X-ray diffraction data set was collected to 2.87 Å resolution and the structure was solved by molecular replacement. Calcineurin, a Ca2+/calmodulin-dependent serine/threonine protein phosphatase, plays a key role in a number of cellular pathways, including T-cell activation, and is an important molecular target of the immunosuppressive drugs cyclosporin A and FK506. To understand the structural basis underlying the activation of calcineurin by calmodulin, X-ray crystallography was employed to solve the three-dimensional structure of the free calcineurin catalytic domain (residues 20–347 of the A subunit). To accomplish this, a bacterially expressed glutathione S-transferase (GST) fusion protein of the human calcineurin catalytic domain was first purified by GST-affinity chromatography. After limited digestion by trypsin, the catalytic domain (Cncat) was purified using anion-exchange and size-exclusion chromatography. Crystallization of Cncat was achieved by the hanging-drop vapour-diffusion method at pH 6.5 using PEG 6000 as precipitant. The diffraction results showed that the Cncat crystal belonged to the orthorhombic space group P21212, with unit-cell parameters a = 161.6, b = 87.4, c = 112.0 Å. There are four Cncat molecules in the asymmetric unit, with 49.5% solvent content. An X-ray diffraction data set was collected to 2.87 Å resolution and a clear molecular-replacement solution was obtained. The active site of Cncat is open to the solvent channels in the crystal packing

  6. Identification of genes required for secretion of the Francisella oxidative burst-inhibiting acid phosphatase AcpA

    Directory of Open Access Journals (Sweden)

    John S Gunn

    2016-04-01

    Full Text Available Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses.

  7. Identification of Genes Required for Secretion of the Francisella Oxidative Burst-Inhibiting Acid Phosphatase AcpA.

    Science.gov (United States)

    Hoang, Ky Van; Chen, Carolyn G; Koopman, Jacob; Moshiri, Jasmine; Adcox, Haley E; Gunn, John S

    2016-01-01

    Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI)-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant) AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease) and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses. PMID:27199935

  8. Microcystin-LR induces mitotic spindle assembly disorders in Vicia faba by protein phosphatase inhibition and not reactive oxygen species induction.

    Science.gov (United States)

    Garda, Tamás; Kónya, Zoltán; Tándor, Ildikó; Beyer, Dániel; Vasas, Gábor; Erdődi, Ferenc; Vereb, György; Papp, Georgina; Riba, Milán; M-Hamvas, Márta; Máthé, Csaba

    2016-07-20

    We aimed to reveal the mechanisms of mitotic spindle anomalies induced by microcystin-LR (MCY-LR), a cyanobacterial toxin in Vicia faba, a well-known model in plant cell and molecular biology. MCY-LR inhibits type 1 and 2A phosphoserine/threonine specific protein phosphatases (PP1 and PP2A) and induces reactive oxygen species (ROS) formation. The cytoskeleton is one of the main targets of the cyanotoxin during cytopathogenesis. Histochemical-immunohistochemical and biochemical methods were used. A significant number of MCY-LR induced spindle alterations are described for the first time. Disrupted, multipolar spindles and missing kinetochore fibers were detected both in metaphase and anaphase cells. Additional polar microtubule (MT) bundles, hyperbundling of spindle MTs, monopolar spindles, C-S- shaped, additional and asymmetric spindles were detected in metaphase, while midplane kinetochore fibers were detected in anaphase cells only. Several spindle anomalies induced mitotic disorders, i.e. they occurred concomitantly with altered sister chromatid separation. Alterations were dependent on the MCY-LR dose and exposure time. Under long-term (2 and mainly 6 days') exposure they were detected in the concentration range of 0.1-20μgmL(-1) MCY-LR that inhibited PP1 and PP2A significantly without significant ROS induction. Elevated peroxidase/catalase activities indicated that MCY-LR treated V. faba plants showed efficient defense against oxidative stress. Thus, although the elevation of ROS is known to induce cytoskeletal aberrations in general, this study shows that long-term protein phosphatase inhibition is the primary cause of MCY-LR induced spindle disorders. PMID:27186862

  9. Structural basis for activation of calcineurin by calmodulin.

    Science.gov (United States)

    Rumi-Masante, Julie; Rusinga, Farai I; Lester, Terrence E; Dunlap, Tori B; Williams, Todd D; Dunker, A Keith; Weis, David D; Creamer, Trevor P

    2012-01-13

    The highly conserved phosphatase calcineurin (CaN) plays vital roles in numerous processes including T-cell activation, development and function of the central nervous system, and cardiac growth. It is activated by the calcium sensor calmodulin (CaM). CaM binds to a regulatory domain (RD) within CaN, causing a conformational change that displaces an autoinhibitory domain (AID) from the active site, resulting in activation of the phosphatase. This is the same general mechanism by which CaM activates CaM-dependent protein kinases. Previously published data have hinted that the RD of CaN is intrinsically disordered. In this work, we demonstrate that the RD is unstructured and that it folds upon binding CaM, ousting the AID from the catalytic site. The RD is 95 residues long, with the AID attached to its C-terminal end and the 24-residue CaM binding region toward the N-terminal end. This is unlike the CaM-dependent protein kinases that have CaM binding sites and AIDs immediately adjacent in sequence. Our data demonstrate that not only does the CaM binding region folds but also an ∼25- to 30-residue region between it and the AID folds, resulting in over half of the RD adopting α-helical structure. This appears to be the first observation of CaM inducing folding of this scale outside of its binding site on a target protein. PMID:22100452

  10. A Calcineurin-NFATc3-Dependent Pathway Regulates Skeletal Muscle Differentiation and Slow Myosin Heavy-Chain Expression

    OpenAIRE

    Delling, Ulrike; Tureckova, Jolana; Lim, Hae W.; De Windt, Leon J.; Rotwein, Peter; Molkentin, Jeffery D

    2000-01-01

    The differentiation and maturation of skeletal muscle cells into functional fibers is coordinated largely by inductive signals which act through discrete intracellular signal transduction pathways. Recently, the calcium-activated phosphatase calcineurin (PP2B) and the family of transcription factors known as NFAT have been implicated in the regulation of myocyte hypertrophy and fiber type specificity. Here we present an analysis of the intracellular mechanisms which underlie myocyte different...

  11. CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation.

    Science.gov (United States)

    Kumar, Vinit; Cheng, Pingyan; Condamine, Thomas; Mony, Sridevi; Languino, Lucia R; McCaffrey, Judith C; Hockstein, Neil; Guarino, Michael; Masters, Gregory; Penman, Emily; Denstman, Fred; Xu, Xiaowei; Altieri, Dario C; Du, Hong; Yan, Cong; Gabrilovich, Dmitry I

    2016-02-16

    Recruitment of monocytic myeloid-derived suppressor cells (MDSCs) and differentiation of tumor-associated macrophages (TAMs) are the major factors contributing to tumor progression and metastasis. We demonstrated that differentiation of TAMs in tumor site from monocytic precursors was controlled by downregulation of the activity of the transcription factor STAT3. Decreased STAT3 activity was caused by hypoxia and affected all myeloid cells but was not observed in tumor cells. Upregulation of CD45 tyrosine phosphatase activity in MDSCs exposed to hypoxia in tumor site was responsible for downregulation of STAT3. This effect was mediated by the disruption of CD45 protein dimerization regulated by sialic acid. Thus, STAT3 has a unique function in the tumor environment in controlling the differentiation of MDSC into TAM, and its regulatory pathway could be a potential target for therapy. PMID:26885857

  12. Protein tyrosine phosphatase 1B (PTP1B)-inhibiting constituents from the leaves of Syzygium polyanthum.

    Science.gov (United States)

    Saifudin, Azis; Tanaka, Ken; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2012-08-01

    A methanol extract of the leaves of Syzygium polyanthum (Wight) Walp. afforded four new acylbenzene derivatives (1-4) together with seven known compounds (5-11). The structures of 1-11 were elucidated by extensive spectroscopic methods and comparison with the literature data. The new compounds 1-3 and a known compound, campest-4-en-3-one (10), exhibited a significant protein tyrosine phosphatase 1B inhibitory activity with IC₅₀ values of 13.1 ± 0.1, 5.77 ± 0.15, 4.01 ± 0.26, and 10.4 ± 0.5 µM, respectively. The inhibitory potency of the new compounds 2 and 3 was comparable to that of a positive control RK-682 (IC₅₀, 5.51 ± 0.04 µM). PMID:22763740

  13. Modulators of intestinal alkaline phosphatase.

    Science.gov (United States)

    Bobkova, Ekaterina V; Kiffer-Moreira, Tina; Sergienko, Eduard A

    2013-01-01

    Small molecule modulators of phosphatases can lead to clinically useful drugs and serve as invaluable tools to study functional roles of various phosphatases in vivo. Here, we describe lead discovery strategies for identification of inhibitors and activators of intestinal alkaline phosphatases. To identify isozyme-selective inhibitors and activators of the human and mouse intestinal alkaline phosphatases, ultrahigh throughput chemiluminescent assays, utilizing CDP-Star as a substrate, were developed for murine intestinal alkaline phosphatase (mIAP), human intestinal alkaline phosphatase (hIAP), human placental alkaline phosphatase (PLAP), and human tissue-nonspecific alkaline phosphatase (TNAP) isozymes. Using these 1,536-well assays, concurrent HTS screens of the MLSMR library of 323,000 compounds were conducted for human and mouse IAP isozymes monitoring both inhibition and activation. This parallel screening approach led to identification of a novel inhibitory scaffold selective for murine intestinal alkaline phosphatase. SAR efforts based on parallel testing of analogs against different AP isozymes generated a potent inhibitor of the murine IAP with IC50 of 540 nM, at least 65-fold selectivity against human TNAP, and >185 selectivity against human PLAP. PMID:23860652

  14. Sorafenib Inhibits Signal Transducer and Activator of Transcription-3 Signaling in Cholangiocarcinoma Cells by Activating the Phosphatase Shatterproof 2

    OpenAIRE

    Blechacz, Boris R. A.; Smoot, Rory L.; Bronk, Steven F; Werneburg, Nathan W.; Sirica, Alphonse E.; Gores, Gregory J.

    2009-01-01

    The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is one of the key signaling cascades in cholangiocarcinoma (CCA) cells, mediating their resistance to apoptosis. Our aim was to ascertain if sorafenib, a multikinase inhibitor, may also inhibit JAK/STAT signaling and, therefore, be efficacious for CCA. Sorafenib treatment of three human CCA cell lines resulted in Tyr705 phospho-STAT3 dephosphorylation. Similar results were obtained with the Raf-kinase inhibit...

  15. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats - A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, TH; van der Sluijs, FH; Wiegman, CH; Baller, JFW; Gustafson, LA; Burger, HJ; Herling, AW; Kuipers, F; Meijer, AJ; Reijngoud, DJ

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in pl

  16. CYLD negatively regulates nontypeable Haemophilus influenzae-induced IL-8 expression via phosphatase MKP-1-dependent inhibition of ERK.

    Science.gov (United States)

    Wang, Wenzhuo Y; Komatsu, Kensei; Huang, Yuxian; Wu, Jing; Zhang, Wenhong; Lee, Ji-Yun; Miyata, Masanori; Xu, Haidong; Li, Jian-Dong

    2014-01-01

    Nontypeable Haemophilus influenzae (NTHi), a Gram-negative bacterium, is the primary cause of otitis media in children and the exacerbation of chronic obstructive pulmonary disease in adults. A hallmark of both diseases is an overactive inflammatory response, including the upregulation of chemokines, such as interleukin-8 (IL-8). An appropriate inflammatory response is essential for eradicating pathogens. However, excessive inflammation can cause host tissue damage. Therefore, expression of IL-8 must be tightly regulated. We previously reported that NTHi induces IL-8 expression in an ERK-dependent manner. We also have shown that the deubiquitinase cylindromatosis (CYLD) suppresses NTHi-induced inflammation. However, the underlying molecular mechanism of how CYLD negatively regulates ERK-mediated IL-8 production is largely unknown. Here, we examine both human lung epithelial A549 cells and lung of Cyld-/- mice to show that CYLD specifically targets the activation of ERK. Interestingly, CYLD enhances NTHi-induced upregulation of another negative regulator, MAP Kinase Phosphatase-1 (MKP-1), which, in turn, leads to reduced ERK activation and subsequent suppression of IL-8. Taken together, the CYLD suppression of ERK-dependent IL-8 via MKP-1 may bring novel insights into the tight regulation of inflammatory responses and also lead to innovative therapeutic strategies for controlling these responses by targeting key negative regulators of inflammation. PMID:25389768

  17. Acid phosphatase purified from Mycoplasma fermentans has protein tyrosine phosphatase-like activity.

    OpenAIRE

    Shibata, K; Noda, M.; Sawa, Y; Watanabe, T.

    1994-01-01

    Acid phosphatase purified from Mycoplasma fermentans dephosphorylated phosphotyrosine-containing lysozyme and Raytide, a peptide substrate for protein tyrosine phosphatases. The optimum pH for Raytide was about 5.5. Raytide phosphatase activity was inhibited by potassium fluoride, sodium molybdate, and sodium orthovanadate and was found to exist in some mycoplasmas.

  18. Downregulation of Calcineurin Gene is Associated with Glucantime Resiatance in Leishmania Infantum

    Directory of Open Access Journals (Sweden)

    Reza Rafooian

    2013-09-01

    Full Text Available Background: Pentavalent antimonials are the first line drugs for the treatment of leishmaniasis. Unresponsiveness of Leishmania spp. to antimonial drugs is a serious problem in some endemic areas. Investigations on molecular mechanisms involved in drug resistance are essential for monitoring and managing of the disease. Calcineu­rin is an essential protein phosphatase for number of signal transduction pathways in eukaryotic cells and it has a mediated role in apoptosis. This study aimed to determine of biomarker(s in Glucantime® resiatance strain of L. infan­tum.Methods: We used cDNA amplified fragment length polymorphism (cDNA-AFLP and real time-RT PCR assays to compare gene expression profiles at the mRNA levels in resistant and susceptible L. infantum field isolates.Results: The cDNA-AFLP results showed downlegulation of calcineurin in resis­tant isolate in comparison with susceptible one. Significant downregulation of calcineu­rin (0.42 fold (P<0.05 was found in resistant isolate compared to suscepti­ble one by Real time-RT PCR.Conclusion: This is the first report of calcineurin implication in Glucantime® drug resistance of field (natural isolate of L. infantum. Downregulation of calcineurin could protect parasites from antimonial-induced apoptosis.

  19. Calcineurin Subunits A and B Interact to Regulate Growth and Asexual and Sexual Development in Neurospora crassa

    Science.gov (United States)

    Tamuli, Ranjan; Deka, Rekha; Borkovich, Katherine A.

    2016-01-01

    Calcineurin is a calcium/calmodulin dependent protein phosphatase in eukaryotes that consists of a catalytic subunit A and a regulatory subunit B. Previous studies in the filamentous fungus Neurospora crassa had suggested that the catalytic subunit of calcineurin might be an essential protein. We generated N. crassa strains expressing the A (cna-1) and B (cnb-1) subunit genes under the regulation of Ptcu-1, a copper-responsive promoter. In these strains, addition of bathocuproinedisulfonic acid (BCS), a copper chelator, results in induction of cna-1 and cnb-1, while excess Cu2+ represses gene expression. Through analysis of these strains under repressing and inducing conditions, we found that the calcineurin is required for normal growth, asexual development and female fertility in N. crassa. Moreover, we isolated and analyzed cnb-1 mutant alleles generated by repeat-induced point mutation (RIP), with the results further supporting roles for calcineurin in growth and fertility in N. crassa. We demonstrated a direct interaction between the CNA-1 and CNB-1 proteins using an assay system developed to study protein-protein interactions in N. crassa. PMID:27019426

  20. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase type 5 (PP5)

    Science.gov (United States)

    Swingle, Mark R.; Ciszak, Ewa M.; Honkanen, Richard E.

    2004-01-01

    Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP-gene family of protein phosphatases that is widely expressed in mammalian tissues and is highly conserved among eukaryotes. PP5 associates with several proteins that affect signal transduction networks, including the glucocorticoid receptor (GR)-heat shock protein-90 (Hsp90)-heterocomplex, the CDC16 and CDC27 subunits of the anaphase-promoting complex, elF2alpha kinase, the A subunit of PP2A, the G12-alpha / G13-alpha subunits of heterotrimeric G proteins and DNA-PK. The catalytic domain of PP5 (PP5c) shares 35-45% sequence identity with the catalytic domains of other PPP-phosphatases, including protein phosphatase-1 (PP1), -2A (PP2A), -2B / calcineurin (PP2B), -4 (PP4), -6 (PP6), and -7 (PP7). Like PP1, PP2A and PP4, PP5 is also sensitive to inhibition by okadaic acid, microcystin, cantharidin, tautomycin, and calyculin A. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 angstroms. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1):M(sub 2)-W(sup 1)-His(sup 304)-Asp(sup 274) catalytic motif. The structure of PP5c provides a possible structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  1. Inhibition of Phosphatase Activity Follows Decline in Sulfatase Activity and Leads to Transcriptional Effects through Sustained Phosphorylation of Transcription Factor MITF.

    Science.gov (United States)

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K

    2016-01-01

    Arylsulfatase B (B-acetylgalactosamine 4-sulfatase; ARSB) is the enzyme that removes 4-sulfate groups from the non-reducing end of the glycosaminoglycans chondroitin 4-sulfate and dermatan sulfate. Decline in ARSB has been shown in malignant prostate, colonic, and mammary cells and tissues, and decline in ARSB leads to transcriptional events mediated by galectin-3 with AP-1 and Sp1. Increased mRNA expression of GPNMB (transmembrane glycoprotein NMB) in HepG2 cells and in hepatic tissue from ARSB-deficient mice followed decline in expression of ARSB and was mediated by the microphthalmia-associated transcription factor (MITF), but was unaffected by silencing galectin-3. Since GPNMB is increased in multiple malignancies, studies were performed to determine how decline in ARSB increased GPNMB expression. The mechanism by which decline in ARSB increased nuclear phospho-MITF was due to reduced activity of SHP2, a protein tyrosine phosphatase with Src homology (SH2) domains that regulates multiple cellular processes. SHP2 activity declined due to increased binding with chondroitin 4-sulfate when ARSB was reduced. When SHP2 activity was inhibited, phosphorylations of p38 mitogen-associated phosphokinase (MAPK) and of MITF increased, leading to GPNMB promoter activation. A dominant negative SHP2 construct, the SHP2 inhibitor PHSP1, and silencing of ARSB increased phospho-p38, nuclear MITF, and GPNMB. In contrast, constitutively active SHP2 and overexpression of ARSB inhibited GPNMB expression. The interaction between chondroitin 4-sulfate and SHP2 is a novel intersection between sulfation and phosphorylation, by which decline in ARSB and increased chondroitin 4-sulfation can inhibit SHP2, thereby regulating downstream tyrosine phosphorylations by sustained phosphorylations with associated activation of signaling and transcriptional events. PMID:27078017

  2. Tyr Phosphatase-Mediated P-ERK Inhibition Suppresses Senescence in EIA + v-raf Transformed Cells, Which, Paradoxically, Are Apoptosis-Protected in a MEK-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Stefania De Vitis

    2011-02-01

    Full Text Available Activation of the Ras-Raf-extracellular signal-regulated kinase (ERK pathway causes not only proliferation and suppression of apoptosis but also the antioncogenic response of senescence. How these contrasting effects are reconciled to achieve cell transformation and cancer formation is poorly understood. In a system of two-step carcinogenesis (dedifferentiated PC EIA, transformed PC EIA-polyoma-middle T [PC EIA + Py] and PC EIA-v-raf [PC EIA + raf] cells], v-raf cooperated with EIA by virtue of a strong prosurvival effect, not elicited by Py-middle T, evident toward serum-deprivation-and H2O2-induced apoptosis. Apoptosis was detected by DNA fragmentation and annexin V staining. The prosurvival function of v-raf was, in part, mitogen-activated protein kinase/ERK kinase (MEK-dependent, as shown by pharmacological MEK inhibition. The MEK-dependent antiapoptotic effect of v-raf was exerted despite a lower level of P-ERK1/2 in EIA + raf cells with respect to EIA + Py/EIA cells, which was dependent on a high tyrosine phosphatase activity, as shown by orthovanadate blockade. An ERK1/2 tyrosine phosphatase was likely involved. The high tyrosine phosphatase activity was instrumental to the complete suppression of senescence, detected by β-galactosidase activity, because tyrosine phosphatase blockade induced senescence in EIA + raf but not in EIA + Py cells. High tyrosine phosphatase activity and evasion from senescence were confirmed in an anaplastic thyroid cancer cell line. Therefore, besides EIA, EIA + raf cells suppress senescence through a new mechanism, namely, phosphatase-mediated P-ERK1/2 inhibition, but, paradoxically, retain the oncogenic effects of the Raf-ERK pathway. We propose that the survival effect of Raf is not a function of absolute P-ERK1/2 levels at a given time but is rather dynamically dependent on greater variations after an apoptotic stimulus.

  3. Cryptococcus neoformans Isolates from Transplant Recipients Are Not Selected for Resistance to Calcineurin Inhibitors by Current Immunosuppressive Regimens

    OpenAIRE

    Blankenship, Jill R.; Singh, Nina; Alexander, Barbara D.; Heitman, Joseph

    2005-01-01

    The immunosuppressants tacrolimus (FK506) and cyclosporine A inhibit calcineurin and have potent antifungal activity. In this study, 24% of Cryptococcus neoformans isolates from solid-organ transplant patients exhibited altered sensitivity to these drugs, which may have an impact on the infectious course but does not appear to be the consequence of immunosuppressive therapy.

  4. Effects of epidermal growth factor receptor and phosphatase and tensin homologue gene expression on the inhibition of U87MG glioblastoma cell proliferation induced by protein kinase inhibitors.

    Science.gov (United States)

    Xing, Wen-Jing; Zou, Yan; Han, Qing-Lian; Dong, Yu-Cui; Deng, Zhen-Ling; Lv, Xiao-Hong; Jiang, Tao; Ren, Huan

    2013-01-01

    The aim of the present study was to analyse the antiproliferative effects and mechanisms of action of protein kinase inhibitors (PKIs) in human glioblastoma multiforme (GBM) cells with different epidermal growth factor receptor (EGFR) and phosphatase and tensin homologue (PTEN) status. The GBM cell models were established by transfection of plasmids carrying wild-type EGFR, mutated EGFRvIII or PTEN and clonal selection in U87MG cells. Phosphatidylinositol 3-kinase (PI3-K)/AKT pathway-focused gene profiles were examined by real-time polymerase chain reaction-based assays, protein expression was evaluated by western blotting and the antiproliferative effects of PKI treatment were determined by the 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay in GBM cells. The cell model with intact PTEN and low EGFR levels was the most sensitive to treatment with the EGFR inhibitor erlotinib, whereas the model with EGFRvIII was the most resistant to treatment with the mitogen-activated protein kinase kinase inhibitor U0126. The dual PI3-K and mammalian target of rapamycin (mTOR) inhibitor PI103 had the most potent antiproliferative effects against all GBM cells tested. Following simultaneous stimulation of AKT and extracellular signal-regulated kinase, rapamycin concentrations > 0.5 nmol/L failed to exhibit a further growth inhibitory effect. Concurrent inhibition of mTOR and ribosomal protein s6 activity may underlie the inhibition of GBM proliferation by PKI. In conclusion, overexpression of EGFR or EGFRvIII, accompanied by a loss of PTEN, contributed to the activation of multiple intracellular signalling pathways in GBM cells. Rigorous examination of biomarkers in tumour tissues before and after treatment may be necessary to determine the efficacy of PKI therapy in patients with GBM. PMID:23110505

  5. Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn2+

    International Nuclear Information System (INIS)

    Epidemiological studies have implicated zinc (Zn2+) in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads to Src-dependent activation of EGFR signaling in B82 and A431 cells. In order to elucidate the mechanism of Zn2+-induced EGFR activation in HAEC, we treated HAEC with 500 μM ZnSO4 for 5-20 min and measured the state of activation of EGFR, c-Src and PTPs. Western blots revealed that exposure to Zn2+ results in increased phosphorylation at both trans- and autophosphorylation sites in the EGFR. Zn2+-mediated EGFR phosphorylation did not require ligand binding and was ablated by the EGFR kinase inhibitor PD153035, but not by the Src kinase inhibitor PP2. Src activity was inhibited by Zn2+ treatment of HAEC, consistent with Src-independent EGFR transactivation in HAEC exposed to Zn2+. The rate of exogenous EGFR dephosphorylation in lysates of HAEC exposed to Zn2+ or V4+ was significantly diminished. Moreover, exposure of HAEC to Zn2+ also resulted in a significant impairment of dephosphorylation of endogenous EGFR. These data show that Zn2+-induced activation of EGFR in HAEC involves a loss of PTP activities whose function is to dephosphorylate EGFR in opposition to baseline EGFR kinase activity. These findings also suggest that there are marked cell-type-specific differences in the mechanism of EGFR activation induced by Zn2+ exposure

  6. Are calcineurin genes associated with endurance phenotype traits?

    OpenAIRE

    He, Zi-Hong; Hu, Yang; Wang, Hai-Yan; Li, Yan-Chun; Lu, Yingli; Zhang, Li; Bao, Dapeng; Ruiz, Jonatan R.; Lucía Mulas, Alejandro

    2010-01-01

    Polymorphisms in calcineurin genes are candidates to explain individual variations in endurance phenotype traits owing to the pivotal role that the calcineurin signaling pathway plays in the regulation of important cardiac and skeletal muscle phenotypes such as slow myosin heavy chain expression, skeletal muscle oxidative capacity or cardiac hypertrophy. We studied the possible association of 55 polymorphisms in the calcineurin gene isoforms PPP3CA, PPP3CB, PPP3CC, PPP3R1 and PPP3R2 with both...

  7. Topical calcineurin inhibitors in systemic lupus erythematosus

    OpenAIRE

    Lampropoulos, Christos

    2010-01-01

    Christos E Lampropoulos, David P D’CruzLupus Research Unit, Rayne Institute, St. Thomas’ Hospital, London, UKAbstract: Cutaneous lupus erythematosus (CLE) encompasses a variety of lesions that may be refractory to systemic or topical agents. Discoid lupus erythematosus (DLE) and subacute cutaneous lupus erythematosus (SCLE) are the most common lesions in clinical practice. The topical calcineurin inhibitors, tacrolimus and pimecrolimus, have been used to treat resistant cu...

  8. Characterization of calcineurin-dependent response element binding protein and its involvement in copper-metallothionein gene expression in Neurospora

    International Nuclear Information System (INIS)

    In continuation of our recent observations indicating the presence of a lone calcineurin-dependent response element (CDRE) in the -3730 bp upstream region of copper-induced metallothionein (CuMT) gene of Neurospora [K.S. Kumar, S. Dayananda, C. Subramanyam, Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa, FEMS Microbiol. Lett. 242 (2005) 45-50], we isolated and characterized the CDRE-binding protein. The cloned upstream region of CuMT gene was used as the template to specifically amplify CDRE element, which was immobilized on CNBr-activated Sepharose 4B for use as the affinity matrix to purify the CDRE binding protein from nuclear extracts obtained from Neurospora cultures grown in presence of copper. Two-dimensional gel electrophoresis of the affinity purified protein revealed the presence of a single 17 kDa protein, which was identified and characterized by MALDI-TOF. Peptide mass finger printing of tryptic digests and analysis of the 17 kDa protein matched with the regulatory β-subunit of calcineurin (Ca2+-calmodulin dependent protein phosphatase). Parallel identification of nuclear localization signals in this protein by in silico analysis suggests a putative role for calcineurin in the regulation of CuMT gene expression

  9. Applying a Targeted Label-free Approach using LC-MS AMT Tags to Evaluate Changes in Protein Phosphorylation Following Phosphatase Inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feng; Jaitly, Navdeep; Jayachandran, Hemalatha; Lou, Quanzhou; Monroe, Matthew E.; Du, Xiuxia; Gritsenko, Marina A.; Zhang, Rui; Anderson, David J.; Purvine, Samuel O.; Adkins, Joshua N.; Moore, Ronald J.; Mottaz, Heather M.; Ding, Shi-Jian; Lipton, Mary S.; Camp, David G.; Udseth, Harold R.; Smith, Richard D.; Rossie, Sandra S.

    2007-10-12

    To identify phosphoproteins regulated by the phosphoprotein phosphatase (PPP) family of S/T phosphatases, we performed a large-scale characterization of changes in protein phosphorylation on extracts from HeLa cells treated with or without calyculin A, a potent PPP enzyme inhibitor. A label-free comparative Phosphoproteomics approach using immobilized metal ion affinity chromatography and targeted tandem mass spectrometry was employed to discover and identify signatures based upon distinctive changes in abundance. Overall, 232 proteins were identified as either direct or indirect targets for PPP enzyme regulation. Most of the present identifications represent novel PPP enzyme targets at the level of both phosphorylation site and protein. These include phosphorylation sites within signaling proteins such as p120 Catenin, A Kinase Anchoring Protein 8, JunB, and Type II Phosphatidyl Inositol 4 Kinase. These data can be used to define underlying signaling pathways and events regulated by the PPP family of S/T phosphatases.

  10. Intermedilysin induces EGR-1 expression through calcineurin/NFAT pathway in human cholangiocellular carcinoma cells

    International Nuclear Information System (INIS)

    Research highlights: → ILY leads to the accumulation of [Ca2+]i in the nucleus in HuCCT1 cells. → ILY induced activation of NFAT1 through a calcineurin-dependent pathway. → Calcineuri/NFAT pathway is involved in EGR-1 expression in response to ILY treatment. -- Abstract: Intermedilysin (ILY) is a cholesterol-dependent cytolysin produced by Streptococcus intermedius, which is associated with human brain and liver abscesses. Although intrahepatic bile duct cells play a valuable role in the pathogenesis of liver abscess, the molecular mechanism of ILY-treated intrahepatic bile duct cells remains unknown. In this study, we report that ILY induced a nuclear accumulation of intracellular calcium ([Ca2+]i) in human cholangiocellular cells HuCCT1. We also demonstrate that 10 ng/ml ILY induced NFAT1 dephosphorylation and its nuclear translocation in HuCCT1 cells. In contrast to the result that ILY induced NF-κB translocation in human hepatic HepG2 cells, ILY did not affect NF-κB localization in HuCCT1 cells. Dephosphorylation and nuclear translocation of NFAT1 caused by ILY were prevented by [Ca2+]i calcium chelator, BAPTA/AM, and calcineurin inhibitors, cyclosporine A and tacrolimus. ILY induced early growth response-1 (EGR-1) expression and it was inhibited by the pre-treatment with cyclosporine A, indicating that the calcineurin/NFAT pathway was involved in EGR-1 expression in response to ILY. ILY-induced calcineurin/NFAT1 activation and sequential EGR-1 expression might be related to the pathogenesis of S. intermedius in human bile duct cells.

  11. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  12. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    International Nuclear Information System (INIS)

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment

  13. Association between the PPP3CC gene, coding for the calcineurin gamma catalytic subunit, and bipolar disorder

    Directory of Open Access Journals (Sweden)

    Bellivier Frank

    2008-01-01

    Full Text Available Abstract Background Calcineurin is a neuron-enriched phosphatase that regulates synaptic plasticity and neuronal adaptation. Activation of calcineurin, overall, antagonizes the effects of the cyclic AMP activated protein/kinase A. Thus, kinase/phosphatase dynamic balance seems to be critical for transition to long-term cellular responses in neurons, and disruption of this equilibrium should induce behavioral impairments in animal models. Genetic animal models, as well as post-mortem studies in humans have implicated calcineurin dependent calcium and cyclic AMP regulated phosphorylation/dephosphorylation in both affective responses and psychosis. Recently, genetic association between schizophrenia and genetic variation of the human calcineurin A gamma subunit gene (PPP3CC has been reported. Methods Based on the assumption of the common underlying genetic factor in schizophrenia and bipolar affective disorder (BPAD, we performed association analysis of CC33 and CCS3 polymorphisms of the PPP3CC gene reported to be associated with schizophrenia in a French sample of 115 BPAD patients and 97 healthy controls. Results Carrying 'CT' or 'TT' genotypes of the PPP3CC-CC33 polymorphism increased risk to develop BPAD comparing to carry 'CC' genotype (OR = 1.8 [1.01–3.0]; p = 0.05. For the PPP3CC-CCS3 polymorphism, 'AG' or 'GG' carriers have an increased risk to develop BPAD than 'AA' carriers (OR = 2.8 [1.5–5.2]. The CC33 and CCS3 polymorphisms were observed in significant linkage disequilibrium (D' = 0.91, r2 = 0.72. Haplotype frequencies were significantly different in BPAD patients than in controls (p = 0.03, with a significant over-transmission of the 'TG' haplotype in BPAD patients (p = 0.001. Conclusion: We suggest that the PPP3CC gene might be a susceptibility gene for BPAD, in accordance with current neurobiological hypotheses that implicate dysregulation of signal-transduction pathways, such as those regulated by calcineurin, in the etiology of

  14. Overexpression of protein tyrosine phosphatase-alpha (PTP-alpha) but not PTP-kappa inhibits translocation of GLUT4 in rat adipose cells

    DEFF Research Database (Denmark)

    Cong, L N; Chen, H; Li, Y;

    1999-01-01

    Protein tyrosine phosphatases (PTPases) are likely to play important roles in insulin action. We recently demonstrated that the nontransmembrane PTPase PTP1B can act as a negative modulator of insulin-stimulated translocation of GLUT4. We now examine the role of PTP-alpha and PTP-kappa (two trans......-stimulated glucose transport....

  15. 腹泻性贝类毒素DSP的磷酸酶抑制检测法研究%Study on determination of diarrhetic shellfish poisoning(DSP)in shellfish by phosphatase inhibition method

    Institute of Scientific and Technical Information of China (English)

    胡雪莲; 曲勤凤; 顾文佳

    2011-01-01

    对腹泻性贝类毒素DSP的快速筛选方法——磷酸酶抑制法进行了研究,分析了该方法的检测原理,并提出了该方法的筛选检出限,对标准溶液、加标回收样品及市场采样样品进行了检测,并就该方法的重复性进行验证。检测结果显示,磷酸酶抑制法检测准确率高,重复性较好,提出的筛选检出限(200μg/kg)远低于我国相关标准的规定(600μg/kg),是一种对于腹泻性贝类毒素DSP较为理想的筛选方法。%The application of phosphatase inhibition assay as a screening detecting method of diarrhetic shellfish poisoning(DSP)was studied.The principles of this method were explored and the threshold value for detection limit was determined in this study,as well as the standard solution,the artificially contaminated samples and the market-sell samples.The reproducibility of this method was also discussed.As a result,the method of phosphatase inhibition assay showed a high veracity and good reproducibility.The detection limit we reached(200μg/kg)was much lower than the set standard of relevant stipulate(600μg/kg).Therefore,the method of phosphatase inhibition assay is an ideal way to detect DSP in aquatic products.

  16. Effects of combination of irbesartan and perindopril on calcineurin expression and sarcoplasmic reticulum Ca2+-ATPase activity in rat cardiac pressure-overload hypertrophy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Aim: To observe effects of angiotensin (Ang) Ⅱ receptor antagonist (AT1) irbesartan and angiotensin-converting enzyme (ACE) inhibitor perindopril on rat myocardium calcineurin expression and sarcoplasmic reticulum Ca2+-ATPase activity in the model of pressure-overload cardiac hypertrophy. Methods: Forty male adult Sprague Dawley rats were divided into 5 groups.One group was treated by sham operation; four groups were myocardium hypertrophy cases caused by banding aortic above renal artery. Drugs were given one week after operation. Group 1: sham group, rats (n=8) were gavaged with normal saline 2 ml/(kg·d)(ig); Group 2: control group, rats (n=8) were treated with normal saline 2 ml/(kg·d) (ig); Group 3: rats (n=8) were given perindopril 2 mg/(kg·d) (ig); Group 4: rats (n=8) were treated with irbesartan 20 mg/(kg·d) (ig); Group 5: rats (n=8) were given irbesartan 20 mg/(kg·d) plus perindopril 2 mg/(kg·d) (ig). Morphometric determination, calcineurin expression and sarcoplasmic reticulum Ca2+-ATPase activity were done at the end of 6 week of drug intervention. Expression of calcineurin in myocardium was detected by immunohistochemistry. Results: Left ventricular mass index (LVMI), transverse diameter of myocardial cell (TDM), calcineurin activity were remarkably decreased after drug intervention and this decrease was most remarkable in the combination drug therapy group. Sarcoplasmic reticulum Ca2+-ATPase activity was increased after drug intervention, especially in the combined drug therapy group. Calcineurin expression in myocardium was remarkably decreased after drug intervention. LVMI was positively correlated with TDM and calcineurin, negatively correlated with sarcoplasmic reticulum Ca2+-ATPase. Conclusion:These data suggest that irbesartan and perindopril inhibit cardiac hypertrophy through the increased activity of sarcoplasmic reticulum Ca2+-ATPase and decreased expression of calcineurin. Their combination had better effects on regressing of

  17. Efficacy of topical calcineurin inhibitors in vitiligo.

    Science.gov (United States)

    Wong, Russell; Lin, Andrew N

    2013-04-01

    Topical tacrolimus and pimecrolimus are indicated for the treatment of atopic dermatitis, but they have been studied in many off-label uses. We reviewed the English language literature to define their roles in treatment of vitiligo. Double-blind studies show that tacrolimus 0.1% ointment combined with excimer laser is superior to placebo, especially for UV resistant areas, such as bony prominences of the extremities. When used alone, tacrolimus 0.1% ointment is almost as effective as clobetasol propionate 0.05% ointment. Other studies suggest it can also be effective for facial lesions. Double blind studies show that pimecrolimus 1% cream combined with narrow band UVB is superior to placebo, especially for facial lesions. Additional studies would further clarify the role of topical calcineurin inhibitors in vitiligo. PMID:23331250

  18. ALP (Alkaline Phosphatase) Test

    Science.gov (United States)

    ... Also known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on ...

  19. Calcineurin Controls Growth, Morphology, and Pathogenicity in Aspergillus fumigatus

    OpenAIRE

    Steinbach, William J.; Cramer, Robert A; Perfect, B. Zachary; Asfaw, Yohannes G.; Sauer, Theodor C.; Najvar, Laura K.; Kirkpatrick, William R.; Thomas F. Patterson; Benjamin, Daniel K., Jr.; Heitman, Joseph; Perfect, John R.

    2006-01-01

    Calcineurin is implicated in a myriad of human diseases as well as homeostasis and virulence in several major human pathogenic microorganisms. The fungus Aspergillus fumigatus is a leading cause of infectious death in the rapidly expanding immunocompromised patient population. Current antifungal treatments for invasive aspergillosis are often ineffective, and novel therapeutic approaches are urgently needed. We demonstrate that a mutant of A. fumigatus lacking the calcineurin A (cnaA) catalyt...

  20. Topical calcineurin inhibitors in dermatology. Part I: Properties, method and effectiveness of drug use

    OpenAIRE

    Gutfreund, Katarzyna; Bienias, Wojciech; Szewczyk, Anna; Kaszuba, Andrzej

    2013-01-01

    Topical calcineurin inhibitors (TCI) are a relatively new class of drugs used in dermatology. There are two drug forms available – tacrolimus 0.03% or 0.1% ointment and 1.0% pimecrolimus cream. The drugs act by inhibiting synthesis of proinflammatory cytokines. The only approved indication for using TCI is treatment of atopic dermatitis. The TCI may be used as an alternative therapy to corticosteroids. Tacrolimus is used to treat moderate-to-severe atopic dermatitis, pimecrolimus – mild-to-mo...

  1. Expression of protein tyrosine phosphatase alpha (RPTPalpha) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo

    DEFF Research Database (Denmark)

    Ardini, E; Agresti, R; Tagliabue, E;

    2000-01-01

    Tyrosine phosphorylation is controlled by a balance of tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Whereas the contribution of PTKs to breast tumorigenesis is the subject of intense scrutiny, the potential role of PTPs is poorly known. RPTPalpha is implicated in the activati...... delayed tumor growth and metastasis. To our knowledge, this is the first example of a study correlating expression level of a specific bona fide PTP with neoplastic disease status in humans....

  2. Calcineurin β protects brain after injury by activating the unfolded protein response.

    Science.gov (United States)

    Chen, Yanan; Holstein, Deborah M; Aime, Sofia; Bollo, Mariana; Lechleiter, James D

    2016-10-01

    The Ca(2+)-dependent phosphatase, calcineurin (CN) is thought to play a detrimental role in damaged neurons; however, its role in astrocytes is unclear. In cultured astrocytes, CNβ expression increased after treatment with a sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor, thapsigargin, and with oxygen and glucose deprivation, an in vitro model of ischemia. Similarly, CNβ was induced in astrocytes in vivo in two different mouse models of brain injury - photothrombotic stroke and traumatic brain injury (TBI). Immunoprecipitation and chemical activation dimerization methods pointed to physical interaction of CNβ with the unfolded protein response (UPR) sensor, protein kinase RNA-like endoplasmic reticulum kinase (PERK). In accordance, induction of CNβ resulted in oligomerization and activation of PERK. Strikingly, the presence of a phosphatase inhibitor did not interfere with CNβ-mediated activation of PERK, suggesting a hitherto undiscovered non-enzymatic role for CNβ. Importantly, the cytoprotective function of CNβ was PERK-dependent both in vitro and in vivo. Loss of CNβ in vivo resulted in a significant increase in cerebral damage, and correlated with a decrease in astrocyte size, PERK activity and glial fibrillary acidic protein (GFAP) expression. Taken together, these data reveal a critical role for the CNβ-PERK axis in not only prolonging astrocyte cell survival but also in modulating astrogliosis after brain injury. PMID:27334877

  3. The small chemical enzyme inhibitor 5-phenylnicotinic acid/CD13 inhibits cell migration and invasion of tartrate-resistant acid phosphatase/ACP5-overexpressing MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Krumpel, Michael; Reithmeier, Anja; Senge, Teresa; Baeumler, Toni Andreas; Frank, Martin; Nyholm, Per-Georg; Ek-Rylander, Barbro; Andersson, Göran

    2015-11-15

    Tartrate-resistant acid phosphatase (TRAP/ACP5/uteroferrin/purple acid phosphatase/PP5) has received considerable attention as a newly discovered proinvasion metastasis driver associated with different malignancies. This renders TRAP an interesting target for novel anti-cancer therapy approaches. TRAP exists as two isoforms, 5a and 5b, where the 5a isoform represents an enzymatically less active monomeric precursor to the more enzymatically active 5b isoform generated by proteolytic excision of a repressive loop domain. Recently, three novel lead compounds were identified by fragment-based screening and demonstrated to be efficient TRAP enzyme inhibitors in vitro. We conclude that one of the three compounds i.e. 5-phenylnicotinic acid (CD13) was efficient as a TRAP inhibitor with Kic values in the low micromolar range towards the TRAP 5b isoform, but was not able to inhibit the TRAP 5a isoform. Structure-based docking revealed similar interactions of CD13 with the active site in both TRAP isoforms. In stably TRAP-overexpressing MDA-MB-231 breast cancer cells, CD13 inhibited intracellular TRAP activity and showed no cytotoxicity at 200 µM. Furthermore, CD13 selectively blocked the TRAP 5b isoform compared to the TRAP 5a in cultured cells, indicating the usefulness of CD13 for assessing the different biological functions of the two TRAP isoforms 5a and 5b in cell systems. Moreover, inhibition of cell migration and invasion of stably TRAP-overexpressing MDA-MB-231 by CD13 was observed. These data establish a proof of principle that a small chemical inhibitor of the TRAP enzyme can block TRAP-dependent functions in cancer cells. PMID:26428664

  4. Regulator of Calcineurin 1 in Periodontal Disease

    Science.gov (United States)

    Peters, Ulrike; Solominidou, Eleni; Korkmaz, Yüksel; Rüttermann, Stefan; Klocke, Astrid; Flemmig, Thomas Frank; Beikler, Thomas

    2016-01-01

    Nuclear factor of activated T-cells (NFAT) and NF-kB pathway associated processes are involved in the pathogenesis of various inflammatory disorders, for example, periodontal disease. The activation of these pathways is controlled by the regulator of calcineurin 1 (RCAN1). The aim of this study was to elucidate the role of RCAN1 in periodontal disease. Healthy and inflamed periodontal tissues were analyzed by immunohistochemistry and immunofluorescence using specific rabbit polyclonal anti-RCAN1 antibodies. For expression analysis human umbilical vein endothelial cells (HUVEC) were used. HUVEC were incubated for 2 h with Vascular Endothelial Growth Factor (VEGF) or with wild type and laboratory strains of Porphyromonas gingivalis (P. gingivalis). Expression analysis of rcan1 and cox2 was done by real time PCR using specific primers for rcan1.4 and cox2. The expression of rcan1 was found to be significantly suppressed in endothelial cells of chronically inflamed periodontal tissues compared to healthy controls. Rcan1 and cox2 were significantly induced by VEGF and wild type and laboratory P. gingivalis strains. Interestingly, the magnitude of the rcan1 and cox2 induction was strain dependent. The results of this study indicate that RCAN1 is suppressed in endothelial cells of chronically inflamed periodontal tissues. During an acute infection, however, rcan1 seems to be upregulated in endothelial cells, indicating a modulating role in immune homeostasis of periodontal tissues. PMID:27403036

  5. Electroacupuncture Improves Insulin Resistance by Reducing Neuroprotein Y/Agouti-Related Protein Levels and Inhibiting Expression of Protein Tyrosine Phosphatase 1B in Diet-induced Obese Rats.

    Science.gov (United States)

    Liu, Xia; He, Jun-Feng; Qu, Ya-Ting; Liu, Zhi-Jun; Pu, Qing-Yang; Guo, Sheng-Tong; Du, Jia; Jiang, Peng-Fei

    2016-04-01

    Electroacupuncture (EA) has been shown to exert beneficial effects on obesity, but the mechanism is unclear. This study investigated the effects of EA on diet-induced obese (DIO) rats. Fifty male Sprague-Dawley rats were randomly divided into low-fat diet (LFD, 10 rats) and high-fat diet (HFD, 40 rats) groups. After the DIO models had been established, successful model rats were randomly divided into HFD, EA, and orlistat (OLST) groups. The EA group received EA at Zusanli (ST36) and Quchi (LI11) for 20 minutes once per day for 28 days. The OLST group was treated with orlistat by gavage. The body weight, homeostasis model assessment-insulin resistance index, adipocyte diameters, and neuroprotein Y/agouti-related protein and protein tyrosine phosphatase 1B levels were significantly lower in the EA group than in the HFD group. The rats of the OLST group showed watery stools and yellow hairs whereas those of the EA group had regular stools and sleek coats. The effect of EA on weight loss may be related to improved insulin resistance caused by changes in the adipocyte size and by reductions in the expressions of neuroprotein Y/agouti-related protein and protein tyrosine phosphatase 1B. This study indicates that EA may be a better method of alternative therapy for treating obesity and other metabolic diseases. PMID:27079226

  6. Inhibition of Alkaline Phosphatase from Pearl Oyster Pinctada fucata by o-Phthalaldehyde: Involvement of Lysine and Histidine Residues at the Active Site

    Institute of Scientific and Technical Information of China (English)

    CHEN Hongtao; XIE Liping; YU Zhenyan; ZHANG Rongqing

    2005-01-01

    Alkaline phosphatase from Pinctada fucata was inactivated by o-phthalaldehyde (OPA). The inactivation followed pseudo first-order kinetics with a second rate constant of 0.167 (mmol/L)-1·min-1 at pH 7.5 and 25°C. A Tsou's plot analysis showed that inactivation occurred upon formation of one isoindole group. The OPA-modified enzyme lost the ability to bind with the specific affinity column and the presence of substrates or competitive inhibitors protected the enzyme from inactivation. The results revealed that the OPA-reaction site was at the enzyme substrate binding site. Prior modification of the enzyme by lysine or histidine specific reagent abolished formation of the isoindole derivatives, suggesting that lysine and histidine residues were involved in the OPA-induced inactivation. Taken together, OPA inactivated the alkaline phosphatase from Pinctada fucata by cross-linking lysine and histidine residues at the active site and formed an isoindole group at the substrate binding site of the enzyme.

  7. Phosphatases in plants.

    Science.gov (United States)

    Schweighofer, Alois; Meskiene, Irute

    2015-01-01

    Reversible protein phosphorylation is an essential posttranslational modification mechanism executed by opposing actions of protein phosphatases and protein kinases. About 1,000 predicted kinases in Arabidopsis thaliana kinome predominate the number of protein phosphatases, of which there are only ~150 members in Arabidopsis. Protein phosphatases were often referred to as "housekeeping" enzymes, which act to keep eukaryotic systems in balance by counteracting the activity of protein kinases. However, recent investigations reveal the crucial and specific regulatory functions of phosphatases in cell signaling. Phosphatases operate in a coordinated manner with the protein kinases, to execute their important function in determining the cellular response to a physiological stimulus. Closer examination has established high specificity of phosphatases in substrate recognition and important roles in plant signaling pathways, such as pathogen defense and stress regulation, light and hormonal signaling, cell cycle and differentiation, metabolism, and plant growth. In this minireview we provide a compact overview about Arabidopsis protein phosphatase families, as well as members of phosphoglucan and lipid phosphatases, and highlight the recent discoveries in phosphatase research. PMID:25930691

  8. Rhizobiales-like Phosphatase 2 from Arabidopsis thaliana Is a Novel Phospho-tyrosine-specific Phospho-protein Phosphatase (PPP) Family Protein Phosphatase.

    Science.gov (United States)

    Uhrig, R Glen; Labandera, Anne-Marie; Muhammad, Jamshed; Samuel, Marcus; Moorhead, Greg B

    2016-03-11

    Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants. PMID:26742850

  9. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorgani-Firuzjaee, Sattar [Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Adeli, Khosrow [Division of Clinical Biochemistry, The Hospital for Sick Children, University of Toronto, Toronto (Canada); Meshkani, Reza, E-mail: rmeshkani@tums.ac.ir [Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-08-21

    The serine–threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome c and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients. - Highlights: • Lipoapoptosis is the major contributor to the development of NAFLD. • The PI3-K/Akt pathway regulates apoptosis in different cells. • The role of negative regulator of this pathway, SHIP2 in lipoapoptosis is unknown. • SHIP2 inhibition significantly reduces palmitate-induced apoptosis in HepG2 cells. • SHIP2 inhibition prevents palmitate induced-apoptosis by regulating Akt/FOXO1 pathway.

  10. The Calcineurin-NFAT-Angiopoietin-2 Signaling Axis in Lung Endothelium Is Critical for the Establishment of Lung Metastases

    Directory of Open Access Journals (Sweden)

    Takashi Minami

    2013-08-01

    Full Text Available The premetastatic niche is a predetermined site of metastases, awaiting the influx of tumor cells. However, the regulation of the angiogenic switch at these sites has not been examined. Here, we demonstrate that the calcineurin and nuclear factor of activated T cells (NFAT pathway is activated specifically in lung endothelium prior to the detection of tumor cells that preferentially metastasize to the lung. Upregulation of the calcineurin pathway via deletion of its endogenous inhibitor Dscr1 leads to a significant increase in lung metastases due to increased expression of a newly identified NFAT target, Angiopoietin-2 (ANG2. Increased VEGF levels specifically in the lung, and not other organ microenvironments, trigger a threshold of calcineurin-NFAT signaling that transactivates Ang2 in lung endothelium. Further, we demonstrate that overexpression of DSCR1 or the ANG2 receptor, soluble TIE2, prevents the activation of lung endothelium, inhibiting lung metastases in our mouse models. Our studies provide insights into mechanisms underlying angiogenesis in the premetastatic niche and offer targets for lung metastases.

  11. Bifunctional coating based on carboxymethyl chitosan with stable conjugated alkaline phosphatase for inhibiting bacterial adhesion and promoting osteogenic differentiation on titanium

    Science.gov (United States)

    Zheng, Dong; Neoh, Koon Gee; Kang, En-Tang

    2016-01-01

    In this work, alkaline phosphatase (ALP) was covalently immobilized on carboxymethyl chitosan (CMCS)-coated polydopamine (PDA)-functionalized Ti to achieve a bifunctional surface. Our results showed ∼89% reduction in Staphylococcus epidermidis adhesion on this surface compared to that on pristine Ti. The ALP-modified Ti supported cell proliferation, and significantly enhanced cellular ALP activity and calcium deposition of osteoblasts, human mesenchymal stem cells (hMSCs) and human adipose-derived stem cells (hADSCs). The extent of enhancement in the functions of these cells is dependent on the surface density of immobilized ALP. The substrate prepared using an ALP solution of 50 μg/cm2 resulted in 44%, 54% and 129% increase in calcium deposited by osteoblasts, hMSCs and hADSCs, respectively, compared to those cultured on pristine Ti. The ALP-modified substrates also promoted the osteogenic differentiation of hMSCs and hADSCs by up-regulating gene expressions of runt-related transcription factor 2 (RUNX2), osterix (OSX), and osteocalcin (OC) in the two types of stem cells. The surface-immobilized ALP was stable after being subjected to 1 h immersion in 70% ethanol and autoclaving at 121 °C for 20 min. However, the enzymatic bioactivity of the surface-immobilized ALP was reduced by about 50% after these substrates were immersed in phosphate buffered saline (PBS) or PBS containing lysozyme for 14 days.

  12. Glucocorticoids synergize with IL-1β to induce TLR2 expression via MAP Kinase Phosphatase-1-dependent dual Inhibition of MAPK JNK and p38 in epithelial cells

    Directory of Open Access Journals (Sweden)

    Sakai Akihiro

    2004-05-01

    Full Text Available Abstract Background Despite the importance of glucocorticoids in suppressing immune and inflammatory responses, their role in enhancing host immune and defense response against invading bacteria is poorly understood. Toll-like receptor 2 (TLR2 has recently gained importance as one of the major host defense receptors. The increased expression of TLR2 in response to bacteria-induced cytokines has been thought to be crucial for the accelerated immune response and resensitization of epithelial cells to invading pathogens. Results We show that IL-1β, a key proinflammatory cytokine, greatly up-regulates TLR2 expression in human epithelial cells via a positive IKKβ-IκBα-dependent NF-κB pathway and negative MEKK1-MKK4/7-JNK1/2 and MKK3/6-p38 α/β pathways. Glucocorticoids synergistically enhance IL-1β-induced TLR2 expression via specific up-regulation of the MAP kinase phosphatase-1 that, in turn, leads to dephosphorylation and inactivation of both MAPK JNK and p38, the negative regulators for TLR2 induction. Conclusion These results indicate that glucocorticoids not only suppress immune and inflammatory response, but also enhance the expression of the host defense receptor, TLR2. Thus, our studies may bring new insights into the novel role of glucocorticoids in orchestrating and optimizing host immune and defense responses during bacterial infections and enhance our understanding of the signaling mechanisms underlying the glucocorticoid-mediated attenuation of MAPK.

  13. Vinpocetine Inhibits Streptococcus pneumoniae–Induced Upregulation of Mucin MUC5AC Expression via Induction of MKP-1 Phosphatase in the Pathogenesis of Otitis Media

    Science.gov (United States)

    Lee, Ji-Yun; Komatsu, Kensei; Lee, Byung-Cheol; Miyata, Masanori; O’Neill Bohn, Ashley; Xu, Haidong

    2015-01-01

    Mucin overproduction is a hallmark of otitis media (OM). Streptococcus pneumoniae is one of the most common bacterial pathogens causing OM. Mucin MUC5AC plays an important role in mucociliary clearance of bacterial pathogens. However, if uncontrolled, excessive mucus contributes significantly to conductive hearing loss. Currently, there is a lack of effective therapeutic agents that suppress mucus overproduction. In this study, we show that a currently existing antistroke drug, vinpocetine, a derivative of the alkaloid vincamine, inhibited S. pneumoniae–induced mucin MUC5AC upregulation in cultured middle ear epithelial cells and in the middle ear of mice. Moreover, vinpocetine inhibited MUC5AC upregulation by inhibiting the MAPK ERK pathway in an MKP-1–dependent manner. Importantly, ototopical administration of vinpocetine postinfection inhibited MUC5AC expression and middle ear inflammation induced by S. pneumoniae and reduced hearing loss and pneumococcal loads in a well-established mouse model of OM. Thus, these studies identified vinpocetine as a potential therapeutic agent for inhibiting mucus production in the pathogenesis of OM. PMID:25972475

  14. Vinpocetine inhibits Streptococcus pneumoniae-induced upregulation of mucin MUC5AC expression via induction of MKP-1 phosphatase in the pathogenesis of otitis media.

    Science.gov (United States)

    Lee, Ji-Yun; Komatsu, Kensei; Lee, Byung-Cheol; Miyata, Masanori; O'Neill Bohn, Ashley; Xu, Haidong; Yan, Chen; Li, Jian-Dong

    2015-06-15

    Mucin overproduction is a hallmark of otitis media (OM). Streptococcus pneumoniae is one of the most common bacterial pathogens causing OM. Mucin MUC5AC plays an important role in mucociliary clearance of bacterial pathogens. However, if uncontrolled, excessive mucus contributes significantly to conductive hearing loss. Currently, there is a lack of effective therapeutic agents that suppress mucus overproduction. In this study, we show that a currently existing antistroke drug, vinpocetine, a derivative of the alkaloid vincamine, inhibited S. pneumoniae-induced mucin MUC5AC upregulation in cultured middle ear epithelial cells and in the middle ear of mice. Moreover, vinpocetine inhibited MUC5AC upregulation by inhibiting the MAPK ERK pathway in an MKP-1-dependent manner. Importantly, ototopical administration of vinpocetine postinfection inhibited MUC5AC expression and middle ear inflammation induced by S. pneumoniae and reduced hearing loss and pneumococcal loads in a well-established mouse model of OM. Thus, these studies identified vinpocetine as a potential therapeutic agent for inhibiting mucus production in the pathogenesis of OM. PMID:25972475

  15. Calcineurin inhibitor tacrolimus does not interfere with the suppression of hepatitis C virus infection by interferon-alpha.

    Science.gov (United States)

    Pan, Qiuwei; Metselaar, Herold J; de Ruiter, Petra; Kwekkeboom, Jaap; Tilanus, Hugo W; Janssen, Harry L A; van der Laan, Luc J W

    2010-04-01

    Immunosuppression considerably affects hepatitis C virus (HCV) recurrence and the outcome of antiviral treatment after liver transplantation. Recent findings have suggested that the calcineurin inhibitor tacrolimus (Tac), unlike cyclosporine A (CsA), interferes with the antiviral activity of interferon-alpha (IFN-alpha) in vitro. The aim of this study was to more extensively investigate the effects of calcineurin inhibitors on IFN-alpha signaling and antiviral activity in subgenomic and infectious HCV models. Treatment with Tac and CsA did not affect Huh7 cell proliferation at doses of 10 to 500 ng/mL; however, it completely inhibited T cell proliferation. In contrast to previous reports, Tac had no effect on IFN-alpha-stimulated reporter gene expression, even at the dose of 5 microg/mL. Furthermore, in Huh7 subgenomic HCV replicon cells, treatment with Tac had no significant effect on the suppression of viral replication by IFN-alpha. In the infectious HCV model, treatment with IFN-alpha effectively inhibited both viral RNA replication and de novo production of virus particles, and neither was attenuated at any concentration of Tac. CsA had no significant effect on IFN-alpha-stimulated reporter gene expression; however, as shown previously, a combination of CsA (at 500 ng/mL and higher) and IFN-alpha resulted in enhanced inhibition of viral replication in both the subgenomic and infectious HCV models. In conclusion, our study shows no evidence that Tac or CsA interferes with IFN-alpha-mediated inhibition of HCV replication and virion production in vitro. Therefore, no further mechanistic arguments have been found to break the clinical controversy about the choice of calcineurin inhibitors during posttransplantation antiviral therapy. PMID:20373462

  16. Development of a gene therapy strategy to target hepatocellular carcinoma based inhibition of protein phosphatase 2A using the α-fetoprotein promoter enhancer and pgk promoter: an in vitro and in vivo study

    Directory of Open Access Journals (Sweden)

    Li Wei

    2012-11-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related deaths worldwide. Current therapies are insufficient, making HCC an intractable disease. Our previous studies confirmed that inhibition of protein phosphatase 2A (PP2A may provide a promising therapeutic strategy for cancer. Unfortunately, constitutive expression of PP2A in normal tissues limits the application of PP2A inhibition. Thus, a HCC-specific gene delivery system should be developed. The α-fetoprotein (AFP promoter is commonly used in HCC-specific gene therapy strategies; however, the utility of this approach is limited due to the weak activity of the AFP promoter. It has been shown that linking the AFP enhancer with the promoter of the non-tissue-specific, human housekeeping phosphoglycerate kinase (pgk gene can generate a strong and HCC-selective promoter. Methods We constructed a HCC-specific gene therapy system to target PP2A using the AFP enhancer/pgk promoter, and evaluated the efficiency and specificity of this system both in vitro and in vivo. Results AFP enhancer/pgk promoter-driven expression of the dominant negative form of the PP2A catalytic subunit α (DN-PP2Acα exerted cytotoxic effects against an AFP-positive human hepatoma cell lines (HepG2 and Hep3B, but did not affect AFP-negative human hepatoma cells (SK-HEP-1 or normal human liver cells (L-02. Moreover, AFP enhancer/pgk promoter driven expression of DN-PP2Acα inhibited the growth of AFP-positive HepG2 tumors in nude mice bearing solid tumor xenografts, but did not affect AFP-negative SK-HEP-1 tumors. Conclusions The novel approach of AFP enhancer/pgk promoter-driven expression of DN-PP2Acα may provide a useful cancer gene therapy strategy to selectively target HCC.

  17. Development of a gene therapy strategy to target hepatocellular carcinoma based inhibition of protein phosphatase 2A using the α-fetoprotein promoter enhancer and pgk promoter: an in vitro and in vivo study

    International Nuclear Information System (INIS)

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Current therapies are insufficient, making HCC an intractable disease. Our previous studies confirmed that inhibition of protein phosphatase 2A (PP2A) may provide a promising therapeutic strategy for cancer. Unfortunately, constitutive expression of PP2A in normal tissues limits the application of PP2A inhibition. Thus, a HCC-specific gene delivery system should be developed. The α-fetoprotein (AFP) promoter is commonly used in HCC-specific gene therapy strategies; however, the utility of this approach is limited due to the weak activity of the AFP promoter. It has been shown that linking the AFP enhancer with the promoter of the non-tissue-specific, human housekeeping phosphoglycerate kinase (pgk) gene can generate a strong and HCC-selective promoter. We constructed a HCC-specific gene therapy system to target PP2A using the AFP enhancer/pgk promoter, and evaluated the efficiency and specificity of this system both in vitro and in vivo. AFP enhancer/pgk promoter-driven expression of the dominant negative form of the PP2A catalytic subunit α (DN-PP2Acα) exerted cytotoxic effects against an AFP-positive human hepatoma cell lines (HepG2 and Hep3B), but did not affect AFP-negative human hepatoma cells (SK-HEP-1) or normal human liver cells (L-02). Moreover, AFP enhancer/pgk promoter driven expression of DN-PP2Acα inhibited the growth of AFP-positive HepG2 tumors in nude mice bearing solid tumor xenografts, but did not affect AFP-negative SK-HEP-1 tumors. The novel approach of AFP enhancer/pgk promoter-driven expression of DN-PP2Acα may provide a useful cancer gene therapy strategy to selectively target HCC

  18. Therapeutic Targeting the Cell Division Cycle 25 (CDC25 Phosphatases in Human Acute Myeloid Leukemia — The Possibility to Target Several Kinases through Inhibition of the Various CDC25 Isoforms

    Directory of Open Access Journals (Sweden)

    Annette K. Brenner

    2014-11-01

    Full Text Available The cell division cycle 25 (CDC25 phosphatases include CDC25A, CDC25B and CDC25C. These three molecules are important regulators of several steps in the cell cycle, including the activation of various cyclin-dependent kinases (CDKs. CDC25s seem to have a role in the development of several human malignancies, including acute myeloid leukemia (AML; and CDC25 inhibition is therefore considered as a possible anticancer strategy. Firstly, upregulation of CDC25A can enhance cell proliferation and the expression seems to be controlled through PI3K-Akt-mTOR signaling, a pathway possibly mediating chemoresistance in human AML. Loss of CDC25A is also important for the cell cycle arrest caused by differentiation induction of malignant hematopoietic cells. Secondly, high CDC25B expression is associated with resistance against the antiproliferative effect of PI3K-Akt-mTOR inhibitors in primary human AML cells, and inhibition of this isoform seems to reduce AML cell line proliferation through effects on NFκB and p300. Finally, CDC25C seems important for the phenotype of AML cells at least for a subset of patients. Many of the identified CDC25 inhibitors show cross-reactivity among the three CDC25 isoforms. Thus, by using such cross-reactive inhibitors it may become possible to inhibit several molecular events in the regulation of cell cycle progression and even cytoplasmic signaling, including activation of several CDKs, through the use of a single drug. Such combined strategies will probably be an advantage in human cancer treatment.

  19. Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages.

    Science.gov (United States)

    Nicolao, María Celeste; Cumino, Andrea C

    2015-06-01

    Calcineurin (CaN) is a Ca(2+)-calmodulin activated serine-threonine protein phosphatase that couples the local or global calcium signals, thus controlling important cellular functions in physiological and developmental processes. The aim of this study was to characterize CaN in Echinococcus granulosus (Eg-CaN), a human cestode parasite of clinical importance, both functionally and molecularly. We found that the catalytic subunit isoforms have predicted sequences of 613 and 557 amino acids and are substantially similar to those of the human counterpart, except for the C-terminal end. We also found that the regulatory subunit consists of 169 amino acids which are 87% identical to the human ortholog. We cloned a cDNA encoding for one of the two catalytic subunit isoforms of CaN (Eg-can-A1) as well as the only copy of the Eg-can-B gene, both constitutively transcribed in all Echinococcus larval stages and responsible for generating a functionally active heterodimer. Eg-CaN native enzyme has phosphatase activity, which is enhanced by Ca(2+)/Ni(2+) and reduced by cyclosporine A and Ca(2+) chelators. Participation of Eg-CaN in exocytosis was demonstrated using the FM4-64 probe and Eg-CaN-A was immunolocalized in the cytoplasm of tegumental cells, suckers and excretory bladder of protoscoleces. We also showed that the Eg-can-B transcripts were down-regulated in response to low Ca(2+) intracellular level, in agreement with decreased enzyme activity. Confocal microscopy revealed a striking pattern of Eg-CaN-A in discrete fluorescent spots in the protoscolex posterior bladder and vesicularized protoscoleces beginning the vesicular differentiation. In contrast, Eg-CaN-A was undetectable during the pre-microcyst closing stage while a high DDX-like RNA helicase expression was evidenced. Finally, we identified and analyzed the expression of CaN-related endogenous regulators. PMID:25818323

  20. NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein.

    Science.gov (United States)

    Chang, Szu-Wei; Tsao, Yeou-Ping; Lin, Chia-Yi; Chen, Show-Li

    2011-07-01

    Previously, we found a gene named nuclear receptor interaction protein (NRIP) (or DCAF6 or IQWD1). We demonstrate that NRIP is a novel binding protein for human papillomavirus 16 (HPV-16) E2 protein. HPV-16 E2 and NRIP can directly associate into a complex in vivo and in vitro, and the N-terminal domain of NRIP interacts with the transactivation domain of HPV-16 E2. Only full-length NRIP can stabilize E2 protein and induce HPV gene expression, and NRIP silenced by two designed small interfering RNAs (siRNAs) decreases E2 protein levels and E2-driven gene expression. We found that NRIP can directly bind with calmodulin in the presence of calcium through its IQ domain, resulting in decreased E2 ubiquitination and increased E2 protein stability. Complex formation between NRIP and calcium/calmodulin activates the phosphatase calcineurin to dephosphorylate E2 and increase E2 protein stability. We present evidences for E2 phosphorylation in vivo and show that NRIP acts as a scaffold to recruit E2 and calcium/calmodulin to prevent polyubiquitination and degradation of E2, enhancing E2 stability and E2-driven gene expression. PMID:21543494

  1. Isoliquiritigenin impairs insulin signaling and adipocyte differentiation through the inhibition of protein-tyrosine phosphatase 1B oxidation in 3T3-L1 preadipocytes.

    Science.gov (United States)

    Park, Sun-Ji; Choe, Young-Geun; Kim, Jung-Hak; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-07-01

    Isoliquritigenin (ISL) is an abundant dietary flavonoid with a chalcone structure, which is an important constituent in Glycyrrhizae Radix (GR). ISL exhibits anti-oxidant activity, and this activity has been shown to play a beneficial role in various health conditions. However, it is unclear whether the anti-oxidant activity of ISL affects insulin signaling pathway and lipid accumulation of adipocytes. We sought to investigate the effects and molecular mechanisms of ISL on insulin-stimulated adipogenesis in 3T3-L1 cells. We investigated whether ISL attenuates insulin-induced Reactive Oxygen Species (ROS) generation, and whether ISL inhibits the lipid accumulation and the expression of adipogenic-genes during the differentiation of 3T3-L1 cells. ISL blocked the ROS generation, suppressed the lipid accumulation and the expression of adipocyte-specific proteins, which are increased in response to insulin stimulation during adipocyte differentiation of 3T3-L1 cells. We also investigated whether the anti-oxidant capacity of ISL is involved in regulating the molecular events of insulin-signaling cascade in 3T3-L1 adipocytes. ISL restores PTP1B activity by inhibiting PTP1B oxidation and IR/PI3K/AKT phosphorylation during the early stages of insulin-induced adipogenesis. Our findings show that the anti-oxidant capacity of ISL attenuated insulin IR/PI3K/AKT signaling through inhibition of PTP1B oxidation, and ultimately attenuated insulin-induced adipocyte differentiation of 3T3-L1 cells. PMID:27117918

  2. A Chronoamperometric Screen Printed Carbon Biosensor Based on Alkaline Phosphatase Inhibition for W(VI Determination in Water, Using 2-Phospho-l-Ascorbic Acid Trisodium Salt as a Substrate

    Directory of Open Access Journals (Sweden)

    Ana Lorena Alvarado-Gámez

    2015-01-01

    Full Text Available This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3, a repeatability of 9.4% (n = 3 and a detection limit of 0.29 ± 0.01 µM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case and a dynamic range from 0.6 to 30 µM. This study was performed by means of a Lineweaver–Burk plot, showing a mixed kinetic inhibition.

  3. Novel 2,7-Substituted (S)-1,2,3,4-Tetrahydroisoquinoline-3-carboxylic Acids: Peroxisome Proliferator-Activated Receptor γ Partial Agonists with Protein-Tyrosine Phosphatase 1B Inhibition.

    Science.gov (United States)

    Otake, Kazuya; Azukizawa, Satoru; Takeda, Shigemitsu; Fukui, Masaki; Kawahara, Arisa; Kitao, Tatsuya; Shirahase, Hiroaki

    2015-01-01

    A novel series of 2,7-substituted 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives were synthesized and biologically evaluated. (S)-2-(2-Furylacryloyl)-7-[2-(2-methylindane-2-yl)-5-methyloxazol-4-yl]methoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid tert-butylamine salt (13jE) was identified as a potent human peroxisome proliferator-activated receptor γ (PPARγ)-selective agonist (EC50=85 nM) and human protein-tyrosine phosphatase 1B (PTP-1B) inhibitor (IC50=1.0 µM). Compound 13jE partially activated PPARγ, but not PPARα or PPARδ, and antagonized farglitazar, a full PPARγ agonist. Cmax after the oral administration of 13jE at 10 mg/kg was 28.6 µg/mL (53 µM) in male Sprague-Dawley (SD) rats. Repeated administration of 13jE and rosiglitazone for 14 d at 10 mg/kg/d decreased plasma glucose and triglyceride levels significantly in male KK-A(y) mice. Rosiglitazone, but not 13jE, significantly increased the plasma volume and liver weight. In conclusion, 13jE showed stronger hypoglycemic and hypolipidemic effects and weaker hemodilution and hepatotoxic effects than rosiglitazone, suggesting that its safer efficacy may be due to its partial PPARγ agonism and PTP-1B inhibition. PMID:26633022

  4. Topical Calcineurin Inhibitors for Atopic Dermatitis: Review and Treatment Recommendations

    OpenAIRE

    Carr, Warner W

    2013-01-01

    Atopic dermatitis (AD) is an inflammatory skin disease commonly affecting children and managed by pediatricians, primary care physicians, allergists, and dermatologists alike. For many years, the only available topical pharmacological treatment was topical corticosteroids. This changed in 2000–2001, when topical formulations of two calcineurin inhibitors (tacrolimus and pimecrolimus) were approved for short-term or chronic intermittent treatment of AD in patients ≥2 years of age, in whom othe...

  5. Treatment of pruritic diseases with topical calcineurin inhibitors

    OpenAIRE

    Ständer, Sonja; Schürmeyer-Horst, Funda; Luger, Thomas A; Weisshaar, Elke

    2006-01-01

    The introduction of topical calcineurin inhibitors resulted in a significant improvement in the treatment of atopic dermatitis. In addition, rapid amelioration of pruritus could be observed. In case reports, other pruritic dermatoses such as chronic irritative hand dermatitis, rosacea, graft-versus-host-disease, and lichen sclerosus were also treated successfully with pimecrolimus and tacrolimus. Twenty patients were treated with tacrolimus and pimecrolimus in a surveillance study to evaluate...

  6. Repeated cocaine administration decreases calcineurin (PP2B) but enhances DARPP-32 modulation of sodium currents in rat nucleus accumbens neurons.

    Science.gov (United States)

    Hu, Xiu-Ti; Ford, Kerstin; White, Francis J

    2005-05-01

    Our previous studies have demonstrated that repeated cocaine (COC) administration reduces voltage-sensitive sodium and calcium currents (I(Na) or VSSCs and I(Ca) or VSCCs, respectively) in medium spiny nucleus accumbens (NAc) neurons of rats. The present findings further indicate that chronic COC-induced I(Na) reduction in NAc neurons is regulated by decreased dephosphorylation and enhanced phosphorylation of Na(+) channels. Whole-cell voltage-clamp recordings revealed that dephosphorylation of Na(+) channels by calcineurin (CaN) enhanced I(Na), while inhibition of protein phosphatase 1 (PP1) by phosphorylated dopamine- and cAMP-regulated phosphoprotein (M(r)=32 kDa) (DARPP-32) at the site of threonine 34 (p-Thr.34-DARPP-32) suppressed I(Na), in freshly dissociated NAc neurons of saline-pretreated rats. However, the effects of CaN on enhancing I(Na) were significantly attenuated, and the action of p-Thr.34-DARPP-32 to decrease I(Na) was mimicked, although not potentiated, by repeated COC pretreatment. Dephosphorylation of Na(+) channels by PP1 also enhanced I(Na), but this effect of PP1 on I(Na) was not apparently affected by repeated COC administration. Western blot analysis indicates that the protein levels of CaN and DARPP-32 were significantly decreased and increased, respectively, while the PP1 levels were unchanged, in the COC-withdrawn NAc as compared to saline-pretreated controls. Combined with previous findings, our results indicate that both CaN and PP1 modulate the increase in I(Na) via enhancing dephosphorylation, while p-Thr.34-DARPP-32 reduces I(Na) by inhibiting PP1-induced dephosphorylation, thereby stabilizing the phosphorylation state, of Na(+) channels in NAc neurons. They also suggest that chronic COC-induced I(Na) reduction may be attributed to a reduction in Ca(2+) signaling, which disrupts the physiological balance of phosphorylation and dephosphorylation of Na(+) channels. PMID:15726118

  7. Cdc14 phosphatase

    DEFF Research Database (Denmark)

    Machín, Félix; Quevedo Rodriguez, Oliver; Ramos-Pérez, Cristina;

    2016-01-01

    Cycling events in nature start and end to restart again and again. In the cell cycle, whose purpose is to become two where there was only one, cyclin-dependent kinases (CDKs) are the beginning and, therefore, phosphatases must play a role in the ending. Since CDKs are drivers of the cell cycle...

  8. Everolimus with reduced calcineurin inhibitor in thoracic transplant recipients with renal dysfunction: a multicenter, randomized trial

    DEFF Research Database (Denmark)

    Gullestad, Lars; Iversen, Martin; Mortensen, Svend-Aage; Eiskjaer, Hans; Riise, Gerdt C; Mared, Lena; Bjørtuft, Oystein; Ekmehag, Björn; Jansson, Kjell; Simonsen, Svein; Gude, Einar; Rundqvist, Bengt; Fagertun, Hans E; Solbu, Dag; Bergh, Claes-Håkan

    2010-01-01

    The proliferation signal inhibitor everolimus offers the potential to reduce calcineurin inhibitor (CNI) exposure and alleviate CNI-related nephrotoxicity. Randomized trials in maintenance thoracic transplant patients are lacking.......The proliferation signal inhibitor everolimus offers the potential to reduce calcineurin inhibitor (CNI) exposure and alleviate CNI-related nephrotoxicity. Randomized trials in maintenance thoracic transplant patients are lacking....

  9. Purification and properties of alkaline phosphatase of silkworm Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    TANG Yunming; CEN Liang; CHU Bo; LI Changchun; XU Min; LUO Ying; LU Cheng

    2006-01-01

    Alkaline phosphatase(AKP),from the succus entericus of silkworm,was purified using 10%-50% ammonium sulfate fractions,ion exchange chromatography Of DEAE-Sepharose,and size exclusion chromatography of Sephacryl S-200.The purification fold was 464 times and specified activity was 3936 U/mg.Optimum pH value of the phosphatase was 10.5,and was stable between pH 7.5 and 11.The optimum temperature of the phosphatase was 40℃ and it was unstable over 50℃.Km value of the phosphatase was 1.25 mmol/L.In a given condition,the phosphatase was selectively modified by PCMB,NBS,PMSE TNBS,SUAN,DTT,BrAc,and IAc,the results indicate that PMSF,SUA,BrAc,IAc,and TNBS could Obviously inhibit the activity of the phosphatase,and the degree of inhibition depended on the concentration of these reagents.There was little effect on the activity of phosphatase after treatment by PMSF,DTT,and NBT.We primarily conclude that mercapto and imidazole are essential for AKP from silkworm.Also,Lys residue and disulfide bands are necessary to protect the catalysis of the AKP.

  10. Phosphatase activity of Poa pratensis seeds. I. Preliminary studies on acid phosphatase II

    Directory of Open Access Journals (Sweden)

    I. Lorenc-Kubis

    2015-05-01

    Full Text Available Acid phosphatase (EC 3.1.3.2 was extracted with 0.1 M sodium acetate buffer pH 5.1 from Poa pratensis seeds, and separated into three fractions by chromatography on DEAE cellulose. The highest activity was found in fraction Il-b (acid phosphatase II. The activity of the enzyme was optimal at pH 4.9. It hydrolyzed p-nitrophenyl phosphate most readily among the various phosphomonoesters examined. Acid phosphatase II showed also a high activity toward β-naphtyl phosphate and phenyl phosphate, very low activity towards β-glycero phosphate, 5'-GMP and no activity with glucose-1 phosphate. The enzyme was inhibited by Ca2+ and fluoride, but activated by Mg2+. EDTA had no influence on the activity of the enzyme.

  11. MicroRNA-30 family members regulate calcium/calcineurin signaling in podocytes

    Science.gov (United States)

    Wu, Junnan; Zheng, Chunxia; Wang, Xiao; Yun, Shifeng; Zhao, Yue; Liu, Lin; Lu, Yuqiu; Ye, Yuting; Zhu, Xiaodong; Zhang, Changming; Shi, Shaolin; Liu, Zhihong

    2015-01-01

    Calcium/calcineurin signaling is critical for normal cellular physiology. Abnormalities in this pathway cause many diseases, including podocytopathy; therefore, understanding the mechanisms that underlie the regulation of calcium/calcineurin signaling is essential. Here, we showed that critical components of calcium/calcineurin signaling, including TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3, are the targets of the microRNA-30 family (miR-30s). We found that these 5 genes are highly expressed as mRNA, but the level of the proteins is low in normal podocytes. Conversely, protein levels were markedly elevated in podocytes from rats treated with puromycin aminonucleoside (PAN) and from patients with focal segmental glomerulosclerosis (FSGS). In both FSGS patients and PAN-treated rats, miR-30s were downregulated in podocytes. In cultured podocytes, PAN or a miR-30 sponge increased TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3 expression; calcium influx; intracellular Ca2+ concentration; and calcineurin activity. Moreover, NFATC3 nuclear translocation, synaptopodin degradation, integrin β3 (ITGB3) activation, and actin fiber loss, which are downstream of calcium/calcineurin signaling, were induced by miR-30 reduction but blocked by the calcineurin inhibitor FK506. Podocyte-specific expression of the miR-30 sponge in mice increased calcium/calcineurin pathway component protein expression and calcineurin activity. The mice developed podocyte foot process effacement and proteinuria, which were prevented by FK506. miR-30s also regulated calcium/calcineurin signaling in cardiomyocytes. Together, our results identify miR-30s as essential regulators of calcium/calcineurin signaling. PMID:26436650

  12. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family

    OpenAIRE

    Di Sole, Francesca; Vadnagara, Komal; MOE, ORSON W.; Babich, Victor

    2012-01-01

    The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca2+-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca2+-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, a...

  13. Direct determination of phosphatase activity from physiological substrates in cells.

    Directory of Open Access Journals (Sweden)

    Zhongyuan Ren

    Full Text Available A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1 mg(-1 for PPi, to 56 ± 11 nmol min(-1 mg(-1 for AMP, to 79 ± 23 nmol min(-1 mg(-1 for beta-glycerophosphate and to 73 ± 15 nmol min(-1 mg(-1 for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes.

  14. Alkaline Phosphatase in Stem Cells

    Directory of Open Access Journals (Sweden)

    Kateřina Štefková

    2015-01-01

    Full Text Available Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells.

  15. Effect of phenylmercuric acetate injections on phosphatase activity in chickens resistant and susceptible to Leukosis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, V.L.; Bearse, G.E.; Csonka, E.

    1972-01-01

    The weighted means of liver and kidney alkaline phosphatase activity was greater in three strains of chickens classified as susceptible to limphoid leukosis than in five strains classified as resistant. On the same basis, four strains classified as susceptible to Marek's disease had more liver alkaline phosphatase activity than four strains classified as resistant. The weighted means of liver and kidney acid phosphatase activity were not different among the same strains of chickens classified similarly. Kidney alkaline phosphatase activity was the most generally inhibited by phenylmercuric acetate injections, followed by liver acid and alkaline phosphatase. Kidney acid phosphatase activity was enhanced by phenylmercuric acetate injections in three strains of chickens classified as resistant to both lymphoid leukosis and Marek's disease. Liver acid phosphatase activity was depressed in three strains classed as resistant to lymphoid leukosis.

  16. Isolation and characterization of a neutral phosphatase from wheat seedlings

    International Nuclear Information System (INIS)

    A neutral phosphatase was purified to homogeneity from wheat seedlings. The enzyme was a monomeric glycoprotein exhibiting a molecular weight of 35,000, frictional ratio of 1.22, Stokes' radius of 26 A, and sedimentation coefficient of 3.2 S. That the enzyme was a glycoprotein was surmised from its chromatographic property on Concanavalin A-Sepharose column. The phosphatase activity was assayed using either fructose-2,6-bisphosphate or p-nitrophenyl phosphate as substrate. The phosphatase activity was not affected by high concentrations of chelating agents and did not require the addition of Mg+2 or Ca+2 for its activity. Molybdate, orthovanadate, Zn+2, and Hg+2 were all potent inhibitors of the phosphatase activity. The inhibition by Hg+2 was reversed by dithiothreitol. The enzyme activity was stimulated by Mn+2 about 2-fold. On the other hand, 3-phosphoglycerate, fructose-6-P and Pi as well as polyamines inhibited the enzyme activity. The ability of the neutral phosphatase to dephosphorylate protein phosphotyrosine was also investigated. The phosphotyrosyl-substrates, such as [32P] phosphotyrosyl-poly(Glu, Tyr)n, -alkylated bovine serum albumin, -angiotensin-1, and -band 3 of erythrocytes, were all substrates of the phosphatase. On the other hand, the enzyme had no activity toward protein phosphoserine and protein phosphothreonine

  17. PTEN Protein Phosphatase Activity Correlates with Control of Gene Expression and Invasion, a Tumor-Suppressing Phenotype, But Not with AKT Activity

    OpenAIRE

    Tibarewal, P; Zilidis, G; Spinelli, L.; et al.

    2012-01-01

    The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has a well-characterized lipid phosphatase activity and a poorly characterized protein phosphatase activity. We show that both activities are required for PTEN to inhibit cellular invasion and to mediate most of its largest effects on gene expression. PTEN appears to dephosphorylate itself at threonine 366, and mutation of this site makes lipid phosphatase activity sufficient for PTEN to inhibit invasion. We p...

  18. Molecular Cloning, Structural Analysis and Tissue Expression of Protein Phosphatase 3 Catalytic Subunit Alpha Isoform (PPP3CA Gene in Tianfu Goat Muscle

    Directory of Open Access Journals (Sweden)

    Lu Wan

    2014-02-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, plays a critical role in controlling skeletal muscle fiber type. However, little information is available concerning the expression of calcineurin in goat. Therefore, protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA gene, also called calcineurin Aα, was cloned and its expression characterized in Tianfu goat muscle. Real time quantitative polymerase chain reaction (RT-qPCR analyses revealed that Tianfu goat PPP3CA was detected in cardiac muscle, biceps femoris muscle, abdominal muscle, longissimus dors muscle, and soleus muscle. High expression levels were found in biceps femoris muscle, longissimus muscle and abdominal muscle (p < 0.01, and low expression levels were seen in cardiac muscle and soleus muscle (p > 0.05. In addition, the spatial-temporal mRNA expression levels showed different variation trends in different muscles with the age of the goats. Western blotting further revealed that PPP3CA protein was expressed in the above-mentioned tissues, with the highest level in biceps femoris muscle, and the lowest level in soleus muscle. In this study, we isolated the full-length coding sequence of Tianfu goat PPP3CA gene, analyzed its structure, and investigated its expression in different muscle tissues from different age stages. These results provide a foundation for understanding the function of the PPP3CA gene in goats.

  19. Effects of calcineurin on LTP of rats in vivo

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Calcineurin (CN) is thought to play a role in the synaptic plastivity and long-term potentiation (LTP) in the hippocampus. Based on two LTP models in vivo, a specific inhibitor cyclosporin A (CsA) of CN was observed, which affected LTP in the hippocampal dentate gyrus of the rats. The results indicated that CsA blocked LTP induced by high frequency stimulation (HFS) partly, but it had no effect on the decrease of the onset and peak latency of population spikes (PS) except that it reduced the increase of the amplitude after HFS. On the other hand, CsA blocked LTP induced by ginsenosides (GSS) completely. It suppressed the GSS-enhanced amplitude of PS reversibly and blocked the decrease of the peak latency of PS induced by the GSS. These results suggest that the postsynaptic CN plays a role in the induction of LTP in the hippocampus of the rats.

  20. Calcineurin inhibitors and male fertility after renal transplantation - a review.

    Science.gov (United States)

    Georgiou, G K; Dounousi, E; Harissis, H V

    2016-06-01

    Renal transplantation and restoration of renal function are associated with significant favourable changes regarding the reproductive capacity of male patients with previous end-stage renal disease. However, there is evidence that some of the immunosuppressive agents may impair male fertility after all. Calcineurin inhibitors (CNIs), cyclosporine A and tacrolimus (FK506), which constitute the cornerstone of immunosuppression regimen following renal transplantation, have been implicated in causing an overall decline in the fertilisation capacity of male renal transplant recipients (RTRs). In this review, data from human clinical studies are collectively presented in an effort to estimate the potential adverse effects of CNIs on the masculine reproductive organs, the hormonal axis of males, the process of spermatogenesis and generally the male RTRs capacity to fertilise. PMID:26341518

  1. Topical calcineurin inhibitors for atopic dermatitis: review and treatment recommendations.

    Science.gov (United States)

    Carr, Warner W

    2013-08-01

    Atopic dermatitis (AD) is an inflammatory skin disease commonly affecting children and managed by pediatricians, primary care physicians, allergists, and dermatologists alike. For many years, the only available topical pharmacological treatment was topical corticosteroids. This changed in 2000-2001, when topical formulations of two calcineurin inhibitors (tacrolimus and pimecrolimus) were approved for short-term or chronic intermittent treatment of AD in patients ≥ 2 years of age, in whom other treatments have been ineffective or contraindicated. These topical calcineurin inhibitors (TCIs) quickly became a popular treatment option due at least in part to concerns over adverse events associated with prolonged topical corticosteroid use, especially in children. However, based on theoretical concerns about a possible risk of lymphoma associated with TCI use, a Boxed Warning was placed on both products in 2006. Since then, despite an extensive body of evidence, no causal relationship has been demonstrated between TCI use and an increased risk of lymphoma; however, the US FDA has concluded that a link cannot be ruled out. In fact, based on post-marketing surveillance of spontaneous, literature, and solicited reports, we report here that the lymphoma incidence in the topical pimecrolimus-exposed population is up to approximately 54-fold less than that seen in the general US population. This review summarizes the mechanism of action of TCIs, the factors that prompted the Boxed Warning, and recent TCI safety and efficacy data. Based on these data, both topical corticosteroids and TCIs should have defined roles in AD management, with TCIs favored for sensitive skin areas (e.g., face) and instances where topical corticosteroids have proven ineffective, thereby minimizing the risk of adverse effects with both drug classes. PMID:23549982

  2. Pain syndrome with stress fractures in transplanted patients treated with calcineurin inhibitors

    OpenAIRE

    Gurin, Lindsey; Gohh, Reginald; Evangelista, Peter

    2012-01-01

    Bone disease remains a major cause of morbidity after renal transplantation. Post-transplant osseous complications include osteoporosis and osteonecrosis, both historically associated with glucocorticoids, and a newer syndrome of bone pain associated with calcineurin inhibitors. Calcineurin inhibitor-induced pain syndrome (CIPS) is a reversible etiology of lower extremity bone pain and bone marrow edema reported in patients receiving cyclosporine or tacrolimus after solid organ or bone marrow...

  3. Multiple labial melanotic macules occurring after topical application of calcineurin inhibitors

    OpenAIRE

    Shi, Vivian Y; Joo, Jayne S; Sharon, Victoria R.

    2014-01-01

    Topical calcineurin inhibitors are widely used to treat inflammatory dermatoses for their steroid-sparing advantage. Herein, we report a patient with chronic lip dermatitis who developed multiple labial melanotic macules after application of tacrolimus 0.1% ointment and pimecrolimus 1% cream. Prior and current reports raise concerns for potential development of pigmented lesions associated with topical calcineurin inhibitor use. These reports highlight the need for careful risk-benefit assess...

  4. Micro-RNA Feedback Loops Modulating the Calcineurin/NFAT Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Shichina Kannambath

    2016-05-01

    Full Text Available Nuclear factor of activated T cells (NFAT is a family of transcription factors important for innate and adaptive immune responses. NFAT activation is tightly regulated through the calcineurin/NFAT signaling pathway. There is increasing evidence on non-coding RNAs such as miRNAs playing a crucial role in regulating transcription factors and signaling pathways. However, not much is known about microRNAs (miRNAs targeting the calcineurin/NFAT signaling pathway involved in immune response in human. In this study, a comprehensive pathway level analysis has been carried out to identify miRNAs regulating the calcineurin/NFAT signaling pathway. Firstly, by incorporating experimental data and computational predictions, 191 unique miRNAs were identified to be targeting the calcineurin/NFAT signaling pathway in humans. Secondly, combining miRNA expression data from activated T cells and computational predictions, 32 miRNAs were observed to be induced by NFAT transcription factors. Finally, 11 miRNAs were identified to be involved in a feedback loop to modulate the calcineurin/NFAT signaling pathway activity. This data demonstrate the potential role of miRNAs as regulators of the calcineurin/NFAT signaling pathway. The present study thus emphasizes the importance of pathway level analysis to identify miRNAs and understands their role in modulating signaling pathways and transcription factor activity.

  5. Methods to distinguish various types of protein phosphatase activity

    International Nuclear Information System (INIS)

    To distinguish the action of protein Tyr(P) and protein Ser(P)/Thr(P) phosphatases on 32P-labeled phosphoproteins in subcellular fractions different inhibitors and activators are utilized. Comparison of the effects of added compounds provides a convenient, indirect method to characterize dephosphorylation reactions. Protein Tyr(P) phosphatases are specifically inhibited by micromolar Zn2+ or vanadate, and show maximal activity in the presence of EDTA. The other class of cellular phosphatases, specific for protein Ser(P) and Thr(P) residues, are inhibited by fluoride and EDTA. In this class of enzymes two major functional types can be distinguished: those sensitive to inhibition by the heat-stable protein inhibitor-2 and not stimulated by polycations, and those not sensitive to inhibition and stimulated by polycations. Preparation of 32P-labeled Tyr(P) and Ser(P) phosphoproteins also is presented for the direct measurement of phosphatase activities in preparations by the release of acid-soluble [32P]phosphate

  6. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1

    Science.gov (United States)

    Musaro, A.; McCullagh, K. J.; Naya, F. J.; Olson, E. N.; Rosenthal, N.

    1999-01-01

    Localized synthesis of insulin-like growth factors (IGFs) has been broadly implicated in skeletal muscle growth, hypertrophy and regeneration. Virally delivered IGF-1 genes induce local skeletal muscle hypertrophy and attenuate age-related skeletal muscle atrophy, restoring and improving muscle mass and strength in mice. Here we show that the molecular pathways underlying the hypertrophic action of IGF-1 in skeletal muscle are similar to those responsible for cardiac hypertrophy. Transfected IGF-1 gene expression in postmitotic skeletal myocytes activates calcineurin-mediated calcium signalling by inducing calcineurin transcripts and nuclear localization of calcineurin protein. Expression of activated calcineurin mimics the effects of IGF-1, whereas expression of a dominant-negative calcineurin mutant or addition of cyclosporin, a calcineurin inhibitor, represses myocyte differentiation and hypertrophy. Either IGF-1 or activated calcineurin induces expression of the transcription factor GATA-2, which accumulates in a subset of myocyte nuclei, where it associates with calcineurin and a specific dephosphorylated isoform of the transcription factor NF-ATc1. Thus, IGF-1 induces calcineurin-mediated signalling and activation of GATA-2, a marker of skeletal muscle hypertrophy, which cooperates with selected NF-ATc isoforms to activate gene expression programs.

  7. Temporal profile of calcineurin phosphatase activity during acute allograft rejection in the heterotopic rat heart transplantation model

    DEFF Research Database (Denmark)

    Karamperis, N; Koefoed-Nielsen, P B; Marcussen, N;

    2008-01-01

    it can be utilized as a pharmacodynamic marker to identify and monitor the rejection process. METHODS: The heterotopic cervical rat heart transplantation model was used (dark Agouti to Lewis). We performed 25 control isogeneic and 46 allogeneic transplantations. Rats were sacrificed at various...... as a pharmacodynamic biomarker of acute allograft rejection in the heterotopic rat heart transplantation model. Further research is required in order to reveal the precise role of CaN during acute allograft rejection....... postoperative time points. CaN activity was measured in isolated peripheral blood and spleen mononuclear cells and in graft heart homogenates. CaN activity was measured as the release of radiolabeled phosphate from a previously phosphorylated 19 amino acid peptide. RESULTS: We have shown that CaN's activity...

  8. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    Energy Technology Data Exchange (ETDEWEB)

    Zaja, Ivan [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Bai, Xiaowen, E-mail: xibai@mcw.edu [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G. [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Bosnjak, Zeljko J. [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States)

    2014-10-31

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  9. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    International Nuclear Information System (INIS)

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  10. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Saif Hameed

    Full Text Available We previously demonstrated that iron deprivation enhances drug susceptibility of Candida albicans by increasing membrane fluidity which correlated with the lower expression of ERG11 transcript and ergosterol levels. The iron restriction dependent membrane perturbations led to an increase in passive diffusion and drug susceptibility. The mechanisms underlying iron homeostasis and multidrug resistance (MDR, however, are not yet resolved. To evaluate the potential mechanisms, we used whole genome transcriptome and electrospray ionization tandem mass spectrometry (ESI-MS/MS based lipidome analyses of iron deprived Candida cells to examine the new cellular circuitry of the MDR of this pathogen. Our transcriptome data revealed a link between calcineurin signaling and iron homeostasis. Among the several categories of iron deprivation responsive genes, the down regulation of calcineurin signaling genes including HSP90, CMP1 and CRZ1 was noteworthy. Interestingly, iron deprived Candida cells as well as iron acquisition defective mutants phenocopied molecular chaperone HSP90 and calcineurin mutants and thus were sensitive to alkaline pH, salinity and membrane perturbations. In contrast, sensitivity to above stresses did not change in iron deprived DSY2146 strain with a hyperactive allele of calcineurin. Although, iron deprivation phenocopied compromised HSP90 and calcineurin, it was independent of protein kinase C signaling cascade. Notably, the phenotypes associated with iron deprivation in genetically impaired calcineurin and HSP90 could be reversed with iron supplementation. The observed down regulation of ergosterol (ERG1, ERG2, ERG11 and ERG25 and sphingolipid biosynthesis (AUR1 and SCS7 genes followed by lipidome analysis confirmed that iron deprivation not only disrupted ergosterol biosynthesis, but it also affected sphingolipid homeostasis in Candida cells. These lipid compositional changes suggested extensive remodeling of the membranes in iron

  11. Comparative effectiveness of topical calcineurin inhibitors in adult patients with atopic dermatitis.

    Science.gov (United States)

    Frankel, Hillary C; Qureshi, Abrar A

    2012-04-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by extreme pruritis and lichenified papules and plaques that may begin in or persist into adulthood. Topical corticosteroids are first-line prescription therapy for AD; they are efficacious and have a well established safety profile. The topical calcineurin inhibitors tacrolimus and pimecrolimus were approved by the US FDA in 2000 and 2001, respectively, as second-line topical therapy for AD. This review evaluates the available studies on the comparative effectiveness, safety, cost, and impact on quality of life of topical corticosteroids and topical calcineurin inhibitors for the treatment of adult AD. Tacrolimus was found to be as effective as class III-V topical corticosteroids for AD of the trunk and extremities, and more effective than low-potency class VI or VII corticosteroids for AD of the face or neck. Pimecrolimus was less effective than both tacrolimus and low-potency topical corticosteroids for moderate to severe AD. The short-term safety studies found that, compared with topical corticosteroid-treated adults, patients treated with topical calcineurin inhibitors had an increased frequency of application-site reactions, an equivalent infection risk, and a decreased risk of skin atrophy. The long-term safety of topical calcineurin inhibitors remains under investigation. Currently published studies that evaluated the comparative cost and quality-of-life effects compared tacrolimus with less potent topical corticosteroids despite the availability of equivalent potency corticosteroids. Further cost and quality-of-life studies are needed that compare topical calcineurin inhibitors with stronger classes of topical corticosteroids over longer time periods. The available clinical trials data do not suggest an efficacy advantage for topical calcineurin inhibitors over topical corticosteroids in adults with AD of the trunk and extremities, and there is not yet adequate evidence to support

  12. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans.

    Science.gov (United States)

    Hameed, Saif; Dhamgaye, Sanjiveeni; Singh, Ashutosh; Goswami, Shyamal K; Prasad, Rajendra

    2011-01-01

    We previously demonstrated that iron deprivation enhances drug susceptibility of Candida albicans by increasing membrane fluidity which correlated with the lower expression of ERG11 transcript and ergosterol levels. The iron restriction dependent membrane perturbations led to an increase in passive diffusion and drug susceptibility. The mechanisms underlying iron homeostasis and multidrug resistance (MDR), however, are not yet resolved. To evaluate the potential mechanisms, we used whole genome transcriptome and electrospray ionization tandem mass spectrometry (ESI-MS/MS) based lipidome analyses of iron deprived Candida cells to examine the new cellular circuitry of the MDR of this pathogen. Our transcriptome data revealed a link between calcineurin signaling and iron homeostasis. Among the several categories of iron deprivation responsive genes, the down regulation of calcineurin signaling genes including HSP90, CMP1 and CRZ1 was noteworthy. Interestingly, iron deprived Candida cells as well as iron acquisition defective mutants phenocopied molecular chaperone HSP90 and calcineurin mutants and thus were sensitive to alkaline pH, salinity and membrane perturbations. In contrast, sensitivity to above stresses did not change in iron deprived DSY2146 strain with a hyperactive allele of calcineurin. Although, iron deprivation phenocopied compromised HSP90 and calcineurin, it was independent of protein kinase C signaling cascade. Notably, the phenotypes associated with iron deprivation in genetically impaired calcineurin and HSP90 could be reversed with iron supplementation. The observed down regulation of ergosterol (ERG1, ERG2, ERG11 and ERG25) and sphingolipid biosynthesis (AUR1 and SCS7) genes followed by lipidome analysis confirmed that iron deprivation not only disrupted ergosterol biosynthesis, but it also affected sphingolipid homeostasis in Candida cells. These lipid compositional changes suggested extensive remodeling of the membranes in iron deprived Candida

  13. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen; Gammeltoft, Steen

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides......, without the need for phosphopeptide mimics or phosphatase inhibitors. As no proven ILKAP substrates were available, we selected phosphopeptide substrates among known PP2Cδ substrates including the protein kinases: p38, ATM, Chk1, Chk2 and RSK2 and synthesized directly on PEGA solid supports through a BAL...

  14. Structural Genomics of Protein Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  15. Identification of the site on calcineurin phosphorylated by Ca+/CaM-dependent kinase II: Modification of the CaM-binding domain

    International Nuclear Information System (INIS)

    The catalytic subunit of the Ca2+/calmodulin- (CaM) dependent phosphoprotein phosphatase calcineurin (CN) was phosphorylated by an activated form of Ca2+/CaM-dependent protein kinase II (CaM-kinase II) incorporating approximately 1 mol of phosphoryl group/mol of catalytic subunit, in agreement with a value previously reported. Cyanogen bromide cleavage of radiolabeled CN followed by peptide fractionation using reverse-phase high-performance liquid chromatography yielded a single labeled peptide that contained a phosphoserine residue. Microsequencing of the peptide allowed both the determination of the cleavage cycle that released [32P]phosphoserine and the identity of amino acids adjacent to it. Comparison of this sequence with the sequences of methionyl peptides deduced from the cDNA structure of CN allowed the phosphorylated serine to be uniquely identified. Interestingly, the phosphoserine exists in the sequence Met-Ala-Arg-Val-Phe-Ser(P)-Val-Leu-Arg-Glu, part of which lies within the putative CaM-binding sites. The phosphorylated serine residue was resistant to autocatalytic dephosphorylation, yet the slow rate of hydrolysis could be powerfully stimulated by effectors of CN phosphatase activity. The mechanism of dephosphorylation may be intramolecular since the initial rate was the same at phosphoCN concentrations of 2.5-250 nM

  16. Identification of the site on calcineurin phosphorylated by Ca sup + /CaM-dependent kinase II: Modification of the CaM-binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Martensen, T.M.; Kincaid, R.L. (National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (USA)); Martin, B.M. (National Institute of Mental Health, Bethesda, MD (USA))

    1989-11-28

    The catalytic subunit of the Ca{sup 2+}/calmodulin- (CaM) dependent phosphoprotein phosphatase calcineurin (CN) was phosphorylated by an activated form of Ca{sup 2+}/CaM-dependent protein kinase II (CaM-kinase II) incorporating approximately 1 mol of phosphoryl group/mol of catalytic subunit, in agreement with a value previously reported. Cyanogen bromide cleavage of radiolabeled CN followed by peptide fractionation using reverse-phase high-performance liquid chromatography yielded a single labeled peptide that contained a phosphoserine residue. Microsequencing of the peptide allowed both the determination of the cleavage cycle that released ({sup 32}P)phosphoserine and the identity of amino acids adjacent to it. Comparison of this sequence with the sequences of methionyl peptides deduced from the cDNA structure of CN allowed the phosphorylated serine to be uniquely identified. Interestingly, the phosphoserine exists in the sequence Met-Ala-Arg-Val-Phe-Ser(P)-Val-Leu-Arg-Glu, part of which lies within the putative CaM-binding sites. The phosphorylated serine residue was resistant to autocatalytic dephosphorylation, yet the slow rate of hydrolysis could be powerfully stimulated by effectors of CN phosphatase activity. The mechanism of dephosphorylation may be intramolecular since the initial rate was the same at phosphoCN concentrations of 2.5-250 nM.

  17. Optical Algal Biosensor using Alkaline Phosphatase for Determination of Heavy Metals

    OpenAIRE

    Durrieu, Claude; Tran-Minh, Canh

    2002-01-01

    International audience A biosensor is constructed to detect heavy metals from inhibition of alkaline phosphatase (AP) present on the external membrane of Chlorella vulgaris microalgae. The microalgal cells are immobilized on removable membranes placed in front of the tip of an optical fiber bundle inside a homemade microcell. C. vulgaris was cultivated in the laboratory and its alkaline phosphatase activity is strongly inhibited in the presence of heavy metals. This property has been used ...

  18. Direct Promotion of Collagen Calcification by Alkaline Phosphatase

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alkaline phosphatase promotes hydrolysis of phosphate containing substrates, causes a rise in inorganic phosphate and, therefore, enhances calcification of biological tissues. In this work, the calcification of collagen in a model serum was used as a model of collagenous tissue biomaterials to study the possible calcification promotion mechanism of alkaline phosphatase. In the enzyme concentration range of 0.10.5mg/mL, the enzyme shows a direct calcification promoting effect which is independent of the hydrolysis of its phosphate containing substrates but proportional to the enzyme concentration. Potassium pyrophosphate somewhat inhibits the calcification promotion.

  19. Glucose-6-phosphatase deficiency

    Directory of Open Access Journals (Sweden)

    Labrune Philippe

    2011-05-01

    Full Text Available Abstract Glucose-6-phosphatase deficiency (G6P deficiency, or glycogen storage disease type I (GSDI, is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea. Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty, generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency. GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib. Mutations in the genes G6PC (17q21 and SLC37A4 (11q23 respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most

  20. Calcineurin/NFAT signaling in osteoblasts regulates bone mass.

    Science.gov (United States)

    Winslow, Monte M; Pan, Minggui; Starbuck, Michael; Gallo, Elena M; Deng, Lei; Karsenty, Gerard; Crabtree, Gerald R

    2006-06-01

    Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Wnt signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc1(nuc) mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts. PMID:16740479

  1. Long-term maintenance therapy with calcineurin inhibitors: an update.

    Science.gov (United States)

    Campistol, J M

    2010-11-01

    Combination therapy with mammalian target of rapamycin (mTOR)-inhibitors and calcineurin inhibitors (CNIs) provides significant immunosuppressive efficacy. If the combination of these agents is not properly optimized, however, important risks for synergistic toxicity and long-term complications may result. The combination of a CNI and an mTOR-inhibitor is a potent immunosuppressive therapy that effectively prevents the incidence of acute rejection, although the potential nephrotoxic impact must be considered in the longer term. The trend has therefore been to use a low-dose CNI in combination with the mTOR-inhibitor sirolimus in order to reduce the risk of nephrotoxicity. Recent studies show that an mTOR-inhibitor/low-dose CNI combination is effective in the short term following transplantation, and over time, consideration should be given to the elimination of the CNI in order to preserve renal function. In the medium to long term, it is also possible to consider the elimination of steroids from such a protocol. Considering CNI dose minimization or elimination is an essential component of this approach, as is the optimal dose and level of both drugs when used in combination. PMID:21095445

  2. Calcineurin-inhibitor minimization in liver transplant patients with calcineurin-inhibitor-related renal dysfunction: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yuan Kong

    Full Text Available BACKGROUND: Introduction of calcineurin-inhibitor (CNI has made transplantation a miracle in the past century. However, the side effects of long-term use of CNI turn out to be one of the major challenges in the current century. Among these, renal dysfunction attracts more and more attention. Herein, we undertook a meta-analysis to evaluate the efficacy and safety of calcineurin-inhibitor (CNI minimization protocols in liver transplant recipients with CNI-related renal dysfunction. METHODS: We included randomized trials with no year and language restriction. All data were analyzed using random effect model by Review Manager 5.0. The primary endpoints were glomerular filtration rate (GFR, serum creatinine level (sCr and creatinine clearance rate (CrCl, and the secondary endpoints were acute rejection episodes, incidence of infection and patient survival at the end of follow-up. RESULTS: GFR was significantly improved in CNI minimization group than in routine CNI regimen group (Z = 5.45, P<0.00001; I(2 = 0%. Likely, sCr level was significantly lower in the CNI minimization group (Z = 2.84, P = 0.005; I(2 = 39%. However, CrCl was not significantly higher in the CNI minimization group (Z = 1.59, P = 0.11; I(2 = 0%. Both acute rejection episodes and patient survival were comparable between two groups (rejection: Z = 0.01, P = 0.99; I(2 = 0%; survival: Z = 0.28, P = 0.78; I(2 = 0%, respectively. However, current CNI minimization protocols may be related to a higher incidence of infections (Z = 3.06, P = 0.002; I(2 = 0%. CONCLUSION: CNI minimization can preserve or even improve renal function in liver transplant patients with renal impairment, while sharing similar short term acute rejection rate and patient survival with routine CNI regimen.

  3. Is phosphoadenosine phosphate phosphatase a target of lithium’s therapeutic effect?

    OpenAIRE

    Shaltiel, G.; Deutsch, J.; Rapoport, S I; Basselin, M.; Belmaker, R. H.; Agam, G.

    2009-01-01

    Lithium, which is approved for treating patients with bipolar disorder, is reported to inhibit 3′(2′)-phosphoadenosine-5′-phosphate (PAP) phosphatase activity. In yeast, deletion of PAP phosphatase results in elevated PAP levels and in inhibition of sulfation and of growth. The effect of lithium on PAP phosphatase is remarkable for the low Ki (~0.2 mM), suggesting that this system would be almost completely shut down in vivo with therapeutic levels of 1 mM lithium, thereby elevating PAP level...

  4. ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling.

    Science.gov (United States)

    Seto, Jane T; Quinlan, Kate G R; Lek, Monkol; Zheng, Xi Fiona; Garton, Fleur; MacArthur, Daniel G; Hogarth, Marshall W; Houweling, Peter J; Gregorevic, Paul; Turner, Nigel; Cooney, Gregory J; Yang, Nan; North, Kathryn N

    2013-10-01

    α-Actinin-3 deficiency occurs in approximately 16% of the global population due to homozygosity for a common nonsense polymorphism in the ACTN3 gene. Loss of α-actinin-3 is associated with reduced power and enhanced endurance capacity in elite athletes and nonathletes due to "slowing" of the metabolic and physiological properties of fast fibers. Here, we have shown that α-actinin-3 deficiency results in increased calcineurin activity in mouse and human skeletal muscle and enhanced adaptive response to endurance training. α-Actinin-2, which is differentially expressed in α-actinin-3-deficient muscle, has higher binding affinity for calsarcin-2, a key inhibitor of calcineurin activation. We have further demonstrated that α-actinin-2 competes with calcineurin for binding to calsarcin-2, resulting in enhanced calcineurin signaling and reprogramming of the metabolic phenotype of fast muscle fibers. Our data provide a mechanistic explanation for the effects of the ACTN3 genotype on skeletal muscle performance in elite athletes and on adaptation to changing physical demands in the general population. In addition, we have demonstrated that the sarcomeric α-actinins play a role in the regulation of calcineurin signaling. PMID:24091322

  5. The catalytic properties of alkaline phosphatases under various conditions

    Science.gov (United States)

    Atyaksheva, L. F.; Chukhrai, E. S.; Poltorak, O. M.

    2008-11-01

    A comparative study was performed to examine the catalytic properties of alkaline phosphatases from bacteria Escherichia coli and bovine and chicken intestines. The activity of enzyme dimers and tetramers was determined. The activity of the dimer was three or four times higher than that of the tetramer. The maximum activity and affinity for 4-nitrophenylphosphate was observed for the bacterial alkaline phosphatase ( K M = 1.7 × 10-5 M, V max = 1800 μmol/(min mg of protein) for dimers and V max = 420 μmol/(min mg of protein) for tetramers). The Michaelis constants were equal for two animal phosphatases in various buffer media (pH 8.5) ((3.5 ± 0.2) × 10-4 M). Five buffer systems were investigated: tris, carbonate, hepes, borate, and glycine buffers, and the lowest catalytic activity of alkaline phosphatases at equal pH was observed in the borate buffer (for enzyme from bovine intestine, V max = 80 μmol/(min mg of protein)). Cu2+ cations formed a complex with tris-(oxymethyl)-aminomethane ( tris-HCl buffer) and inhibited the intestine alkaline phosphatases by a noncompetitive mechanism.

  6. Synergistic Effects of Calcineurin Inhibitors and Steroids on Steroid Sensitivity of Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Takeuchi, Hironori; Iwamoto, Hitoshi; Nakamura, Yuki; Hirano, Toshihiko; Konno, Osamu; Kihara, Yu; Chiba, Naokazu; Yokoyama, Takayoshi; Takano, Kiminori; Toraishi, Tatsunori; Okuyama, Kiyoshi; Ikeda, Chie; Tanaka, Sachiko; Onda, Kenji; Soga, Akiko; Kikuchi, Yukiko; Kawaguchi, Takashi; Kawachi, Shigeyuki; Unezaki, Sakae; Shimazu, Motohide

    2015-02-01

    The steroid receptor (SR) complex contains FKBP51 and FKBP52, which bind to tacrolimus (TAC) and cyclophilin 40, which, in turn, bind to cyclosporine (CYA); these influence the intranuclear mobility of steroid-SR complexes. Pharmacodynamic interactions are thought to exist between steroids and calcineurin inhibitors (CNIs) on the SR complex. We examined the effect of CNIs on steroid sensitivity. Methylprednisolone (MPSL) sensitivity was estimated as the concentration inhibiting mitosis in 50% (IC50) of peripheral blood mononuclear cells and as the area under the MPSL concentration-proliferation suppressive rate curves (CPS-AUC) in 30 healthy subjects. MPSL sensitivity was compared between the additive group (AG) as the MPSL sensitivity that was a result of addition of the proliferation suppressive rate of CNIs to that of MPSL and the mixed culture group (MCG) as MPSL sensitivity of mixed culture with both MPSL and CNIs in identical patients. IC50 values of MPSL and cortisol sensitivity were examined before and 2 months after CNI administration in 23 renal transplant recipients. IC50 and CPS-AUC values of MPSL were lower in the MCG than in the AG with administration of TAC and CYA. The CPS-AUC ratio of MCG and AG was lower in the TAC group. IC50 values of MPSL and cortisol tended to be lower after administration of TAC and CYA, and a significant difference was observed in the IC50 of cortisol after TAC administration. Steroid sensitivity increased with both TAC and CYA. Furthermore, TAC had a greater effect on increasing sensitivity. Thus, concomitant administration of CNIs and steroids can increase steroid sensitivity. PMID:26858893

  7. Decreased calcineurin immunoreactivity in the postmortem brain of a patient with schizophrenia who had been prescribed the calcineurin inhibitor, tacrolimus, for leukemia

    OpenAIRE

    Wada, Akira

    2016-01-01

    Akira Wada,1,2 Yasuto Kunii,1 Jyunya Matsumoto,1 Mizuki Hino,1 Atsuko Nagaoka,1 Shin-ichi Niwa,3 Hirooki Yabe1 1Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 2Department of Neuropsychiatry, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, 3Department of Psychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu City, Fukushima, Japan Background: The calcineurin (CaN) inhibitor, tacrolimus, is widely used in pa...

  8. Effects of multivalent cations on cell wall-associated acid phosphatase activity

    Energy Technology Data Exchange (ETDEWEB)

    Tu, S.I.; Brouillette, J.N.; Nagahashi, G.; Kumosinski, T.F.

    1988-09-01

    Primary cell walls, free from cytoplasmic contamination were prepared from corn (Zea mays L.) roots and potato (Solanum tuberosum) tubers. After EDTA treatment, the bound acid phosphatase activities were measured in the presence of various multivalent cations. Under the conditions of minimized Donnan effect and at pH 4.2, the bound enzyme activity of potato tuber cell walls (PCW) was stimulated by Cu/sup 2 +/, Mg/sup 2 +/, Za/sup 2 +/, and Mn/sup 2 +/; unaffected by Ba/sup 2 +/, Cd/sup 2 +/, and Pb/sup 2 +/; and inhibited by Al/sup 3 +/. The bound acid phosphatase of PCW was stimulated by a low concentration but inhibited by a higher concentration of Hg/sup 2 +/. On the other hand, in the case of corn root cells walls (CCW), only inhibition of the bound acid phosphatase by Al/sup 3 +/ and Hg/sup 2 +/ was observed. Kinetic analyses revealed that PCW acid phosphatase exhibited a negative cooperativity under all employed experimental conditions except in the presence of Mg/sup 2 +/. In contrast, CCW acid phosphatase showed no cooperative behavior. The presence of Ca/sup 2 +/ significantly reduced the effects of Hg/sup 2 +/ or Al/sup 3 +/, but not Mg/sup 2 +/, to the bound cell wall acid phosphatases. The salt solubilized (free) acid phosphatases from both PCW and CCW were not affected by the presence of tested cations except for Hg/sup 2 +/ or Al/sup 3 +/ which caused a Ca/sup 2 +/-insensitive inhibition of the enzymes. The induced stimulation or inhibition of bound acid phosphatases was quantitatively related to cation binding in the cell wall structure.

  9. Structural Basis of Response Regulator Dephosphorylation by Rap Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    V Parashar; N Mirouze; D Dubnau; M Neiditch

    2011-12-31

    Bacterial Rap family proteins have been most extensively studied in Bacillus subtilis, where they regulate activities including sporulation, genetic competence, antibiotic expression, and the movement of the ICEBs1 transposon. One subset of Rap proteins consists of phosphatases that control B. subtilis and B. anthracis sporulation by dephosphorylating the response regulator Spo0F. The mechanistic basis of Rap phosphatase activity was unknown. Here we present the RapH-Spo0F X-ray crystal structure, which shows that Rap proteins consist of a 3-helix bundle and a tetratricopeptide repeat domain. Extensive biochemical and genetic functional studies reveal the importance of the observed RapH-Spo0F interactions, including the catalytic role of a glutamine in the RapH 3-helix bundle that inserts into the Spo0F active site. We show that in addition to dephosphorylating Spo0F, RapH can antagonize sporulation by sterically blocking phosphoryl transfer to and from Spo0F. Our structure-function analysis of the RapH-Spo0F interaction identified Rap protein residues critical for Spo0F phosphatase activity. This information enabled us to assign Spo0F phosphatase activity to a Rap protein based on sequence alone, which was not previously possible. Finally, as the ultimate test of our newfound understanding of the structural requirements for Rap phosphatase function, a non-phosphatase Rap protein that inhibits the binding of the response regulator ComA to DNA was rationally engineered to dephosphorylate Spo0F. In addition to revealing the mechanistic basis of response regulator dephosphorylation by Rap proteins, our studies support the previously proposed T-loop-Y allostery model of receiver domain regulation that restricts the aromatic 'switch' residue to an internal position when the {beta}4-{alpha}4 loop adopts an active-site proximal conformation.

  10. Calcineurin inhibitor sparing with mycophenolate in kidney transplantation: a systematic review and meta-analysis.

    LENUS (Irish Health Repository)

    Moore, Jason

    2009-02-27

    Limiting the exposure of kidney transplant recipients to calcineurin inhibitors (CNIs) has potential merit, but there is no clear consensus on the utility of current strategies. In an attempt to aid clarification, we conducted a systematic review and meta-analysis of randomized trials that assessed CNI sparing (minimization or elimination) with mycophenolate as sole adjunctive immunosuppression.

  11. Alkaline phosphatase for immunocytochemical labelling: problems with endogenous enzyme activity.

    OpenAIRE

    Bulman, A. S.; Heyderman, E

    1981-01-01

    Alkaline phosphatase may be used as a label for immunocytochemistry and can be demonstrated in tissue sections using the single step naphthol phosphate method. Endogenous enzyme activity may not be destroyed by fixation in formalin, formol alcohol, Carnoy's or Baker's solutions and should be inhibited before results are assessed. Either Bouin's solution or periodic acid followed by potassium borohydride are satisfactory inhibitor and do not adversely affect immunocytochemical results.

  12. The use of the tyrosine phosphatase antagonist orthovanadate in the study of a cell proliferation inhibitor

    Science.gov (United States)

    Enebo, D. J.; Hanek, G.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Incubation of murine fibroblasts with orthovanadate, a global tyrosine phosphatase inhibitor, was shown to confer a "pseudo-transformed" phenotype with regard to cell morphology and growth characteristics. This alteration was manifested by both an increasing refractile appearance of the cells, consistent with many transformed cell lines, as well as an increase in maximum cell density was attained. Despite the abrogation of cellular tyrosine phosphatase activity, orthovanadate-treated cells remained sensitive to the biological activity of a naturally occurring sialoglycopeptide (SGP) cell surface proliferation inhibitor. The results indicated that tyrosine phosphatase activity, inhibited by orthovanadate, was not involved in the signal transduction pathway of the SGP.

  13. Single and Combined Effects of As (III) and Acetochlor on Phosphatase Activity in Soil

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun; ZHANG Feng; ZHANG Guan-cai; GUAN Lian-zhu

    2013-01-01

    The actions and interactions of acetochlor and As on the soil phosphatase activity were investigated after 1, 3, 6, 10, 15, 30 and 60 d of exposure under control conditions. The soils were exposed to various concentrations of acetochlor and As individually and simultaneously. The results showed that acetochlor, As only, and combined pollution all clearly inhibited soil phosphatase activity. The maximum inhibition ratios of soil phosphatase activity by acetochlor, As only and combined pollution were 36.44, 74.12 and 61.29%, respectively. Two kinetic models,ν=c/(1+bi) (model 1) andν=c(1+ai)/(l+bi) (model 2), were used to describe the relationship between the concentrations of As and acetochlor and the activity of soil phosphatase. The semi-effect dose (ED50) values induced by As and acetochlor stress based on the inhibition of soil phosphatase were 18.1 and 33.11 mg kg-1, respectively, according to calculation by model 1. The interactive effect of acetochlor with As on soil phosphatase primarily consisted of significant antagonism effects at the higher concentrations tested. The step regression results show that the toxicity order was As (III)>acetochlor>As (III)×acetochlor throughout the incubation period.

  14. Catalytic DNA with phosphatase activity

    OpenAIRE

    Chandrasekar, Jagadeeswaran; Silverman, Scott K.

    2013-01-01

    Catalytic DNA sequences (deoxyribozymes, DNA enzymes, or DNAzymes) have been identified by in vitro selection for various catalytic activities. Expanding the limits of DNA catalysis is an important fundamental objective and may facilitate practical utility of catalysts that can be obtained from entirely unbiased (random) sequence populations. In this study, we show that DNA can catalyze Zn2+-dependent phosphomonoester hydrolysis of tyrosine and serine side chains (i.e., exhibit phosphatase ac...

  15. Purification and characterization of an alkaline phosphatase induced by phosphorus starvation in common bean (Phaseolus vulgaris L.) roots

    Energy Technology Data Exchange (ETDEWEB)

    Morales, L.; Gutierrez, N.; Maya, V.; Parra, C.; Martinez B, E.; Coello, P., E-mail: pcoello@servidor.unam.mx [UNAM, Facultad de Quimica, Departamento de Bioquimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-07-01

    Two phosphatase isoforms from roots of the common bean (Phaseolus vulgaris L.) showed an increase in activity in response to phosphate deficiency. One of them (APIII) was chosen for further purification through ionic exchange chromatography and preparative electrophoresis. The estimated molecular mass of APIII was 35 kDa by both SDS-Page and gel filtration analyses, suggesting a monomeric form of the active enzyme. The phosphatase was classified as an alkaline phosphatase based on the requirement of ph 8 for optimum catalysis. It not only exhibited broad substrate specificity, with the most activity against pyrophosphate, but also effectively catalyzed the hydrolysis of polyphosphate, glucose-1-phosphate and phospho enol-pyruvate. Activity was completely inhibited by molybdate, vanadate and phosphate but was only partially inhibited by fluoride. Although divalent cations were not essential for the pyro phosphatase activity of this enzyme, the hydrolysis of pyro phosphatase increased substantially in the presence of Mg{sup 2+}.

  16. Rapid Determination of Diarrhetic Shellfish Poisoning in Shellfish by Colorimetric Protein Phosphatase Inhibition Assay%磷酸酶抑制比色法快速测定贝类中腹泻性贝毒素

    Institute of Scientific and Technical Information of China (English)

    郭萌萌; 吴海燕; 薛瑞宇; 谭志军; 李兆新; 翟毓秀

    2014-01-01

    基于腹泻性贝毒素(Diarrhetic shellfish poisoning,DSP)的致腹泻性组分大田软海绵酸(okadaic acid,OA)及其衍生物鳍藻毒素(dinophysistoxins,DTXs)能抑制蛋白磷酸酶活性的特点,建立了快速测定贝类中DSP的磷酸酶抑制比色分析方法.采用对硝基苯磷酸二钠(p-nitrophenyl phosphate disodium,p-NPP)为底物,其与蛋白磷酸酶2A(protein phosphatase 2A,PP2A)反应生成的黄色水解产物在碱性条件下于405 nm波长处有强烈的吸收峰,根据吸光废值计算抑制剂的浓度.酶抑制法继承了小鼠生物法能建立剂量-效应关系的优势,直接反映毒素的相对毒性大小,测定的是DSP毒素致腹泻性成分的总量,以OA浓度计.本研究优化了样品前处理方法并考察了基质浓度的影响.方法的筛选检出限为80 μg/kg.采用该方法进行加标回收实验,回收率在90.43%~118.52%范围内,相对标准偏差(RSD)为6.85%~13.93%.该方法操作简便、快捷,回收率高,重现性好,可作为快速筛查工具用于贝毒的日常监控.

  17. Hsp90 is involved in apoptosis of Candida albicans by regulating the calcineurin-caspase apoptotic pathway.

    Science.gov (United States)

    Dai, BaoDi; Wang, Yan; Li, DeDong; Xu, Yi; Liang, RongMei; Zhao, LanXue; Cao, YongBing; Jia, JianHui; Jiang, YuanYing

    2012-01-01

    Candida albicans is the most common human fungal pathogen. Recent evidence has revealed the occurrence of apoptosis in C. albicans that is inducible by environmental stresses such as hydrogen peroxide, acetic acid, and amphotericin B. Apoptosis is regulated by the calcineurin-caspase pathway in C. albicans, and calcineurin is under the control of Hsp90 in echinocandin resistance. However, the role of Hsp90 in apoptosis of C. albicans remains unclear. In this study, we investigated the role of Hsp90 in apoptosis of C. albicans by using an Hsp90-compromised strain tetO-HSP90/hsp90 and found that upon apoptotic stimuli, including hydrogen peroxide, acetic acid or amphotericin B treatment, less apoptosis occurred, less ROS was produced, and more cells survived in the Hsp90-compromised strain compared with the Hsp90/Hsp90 wild-type strain. In addition, Hsp90-compromised cells were defective in up-regulating caspase-encoding gene CaMCA1 expression and activating caspase activity upon the apoptotic stimuli. Investigations on the relationship between Hsp90 and calcineurin revealed that activation of calcineurin could up-regulate apoptosis but could not further down-regulate apoptosis in Hsp90-compromised cells, indicating that calcineurin was downstream of Hsp90. Hsp90 inhibitor geldanamycin (GdA) could further decrease the apoptosis in calcineurin-pathway-defect strains, indicating that compromising Hsp90 function had a stronger effect than compromising calcineurin function on apoptosis. Collectively, this study demonstrated that compromised Hsp90 reduced apoptosis in C. albicans, partially through downregulating the calcineurin-caspase pathway. PMID:23028789

  18. Hsp90 is involved in apoptosis of Candida albicans by regulating the calcineurin-caspase apoptotic pathway.

    Directory of Open Access Journals (Sweden)

    BaoDi Dai

    Full Text Available Candida albicans is the most common human fungal pathogen. Recent evidence has revealed the occurrence of apoptosis in C. albicans that is inducible by environmental stresses such as hydrogen peroxide, acetic acid, and amphotericin B. Apoptosis is regulated by the calcineurin-caspase pathway in C. albicans, and calcineurin is under the control of Hsp90 in echinocandin resistance. However, the role of Hsp90 in apoptosis of C. albicans remains unclear. In this study, we investigated the role of Hsp90 in apoptosis of C. albicans by using an Hsp90-compromised strain tetO-HSP90/hsp90 and found that upon apoptotic stimuli, including hydrogen peroxide, acetic acid or amphotericin B treatment, less apoptosis occurred, less ROS was produced, and more cells survived in the Hsp90-compromised strain compared with the Hsp90/Hsp90 wild-type strain. In addition, Hsp90-compromised cells were defective in up-regulating caspase-encoding gene CaMCA1 expression and activating caspase activity upon the apoptotic stimuli. Investigations on the relationship between Hsp90 and calcineurin revealed that activation of calcineurin could up-regulate apoptosis but could not further down-regulate apoptosis in Hsp90-compromised cells, indicating that calcineurin was downstream of Hsp90. Hsp90 inhibitor geldanamycin (GdA could further decrease the apoptosis in calcineurin-pathway-defect strains, indicating that compromising Hsp90 function had a stronger effect than compromising calcineurin function on apoptosis. Collectively, this study demonstrated that compromised Hsp90 reduced apoptosis in C. albicans, partially through downregulating the calcineurin-caspase pathway.

  19. Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study

    Science.gov (United States)

    Petrezsélyová, Silvia; López-Malo, María; Canadell, David; Roque, Alicia; Serra-Cardona, Albert; Marqués, M. Carmen; Vilaprinyó, Ester; Alves, Rui; Yenush, Lynne

    2016-01-01

    Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study of the expression of Ena1 in response to alkalinization of the environment and we analyze the contribution of Crz1 to this response. Experimental data and mathematical models substantiate the existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and estimate that the contribution of Crz1 to the early response of the ENA1 promoter is about 60%. The models suggest the existence of a second input with similar kinetics, which would be likely mediated by high pH-induced activation of the Snf1 kinase. PMID:27362362

  20. Testicular acid phosphatase induces odontoblast differentiation and mineralization.

    Science.gov (United States)

    Choi, Hwajung; Kim, Tak-Heun; Yun, Chi-Young; Kim, Jung-Wook; Cho, Eui-Sic

    2016-04-01

    Odontoblasts differentiate from dental mesenchyme during dentin formation and mineralization. However, the molecular mechanisms controlling odontoblast differentiation remain poorly understood. Here, we show that expression of testicular acid phosphatase (ACPT) is restricted in the early stage of odontoblast differentiation in proliferating dental mesenchymal cells and secretory odontoblasts. ACPT is expressed earlier than tissue-nonspecific alkaline phosphatase (TNAP) and partly overlaps with TNAP in differentiating odontoblasts. In MDPC-23 odontoblastic cells, expression of ACPT appears simultaneously with a decrease in β-catenin activity and is abolished with the expression of Phex and Dsp. Knockdown of ACPT in MDPC-23 cells stimulates cell proliferation together with an increase in active β-catenin and cyclin D1. In contrast, the overexpression of ACPT suppresses cell proliferation with a decrease in active β-catenin and cyclin D1. Expression of TNAP, Osx, Phex and Dsp is reduced by knockdown of ACPT but is enhanced by ACPT overexpression. When ACPT is blocked with IgG, alkaline phosphatase activity is inhibited but cell proliferation is unchanged regardless of ACPT expression. These findings suggest that ACPT inhibits cell proliferation through β-catenin-mediated signaling in dental mesenchyme but elicits odontoblast differentiation and mineralization by supplying phosphate during dentin formation. Thus, ACPT might be a novel candidate for inducing odontoblast differentiation and mineralization for dentin regeneration. PMID:26547858

  1. Role of metabolites and calcineurin inhibition on C2 monitoring in renal transplant patients

    DEFF Research Database (Denmark)

    Karamperis, N.; Koefoed-Nielsen, P.; Bagger, Sorensen A.;

    2005-01-01

    microemulsion. Whole blood samples were analysed by liquid chromatography/tandem mass spectrometry for cyclosporin blood concentration and for the cyclosporin metabolites AM1, AM9, AM1c and AM4n. All samples were analysed for CaN utilizing a 32P-labelled 19 amino-acid peptide. RESULTS: The concentrations of AM1...

  2. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin aα null mice

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Reddy, Ramesh N; Price, S Russ;

    2013-01-01

    Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα) were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to...... deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development......, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2) expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα-/- mice and the advances that are now possible with the use of adult, rescued knockout...

  3. Bone-marrow edema in renal transplant recipients treated with calcineurin-inhibitors: Case reports

    International Nuclear Information System (INIS)

    Transient acute musculoskeletal pain syndrome occurs predominantly within the first several months after renal transplantation. Its pathogenesis is not well understood. The toxic effect of calcineurin inhibitors or steroids on bone metabolism has been suspected. Almost all reported cases were associated with the use of cyclosporin A. The pain typically involves distal part of lower extremities and arises in the feet, ankles, or knees. Two cases are presented of renal allograft recipients who developed severe lower-limb pain in the early period after transplantation while receiving calcineurin-inhibitor (cyclosporin A and tacrolimus). We observed typical clinical and radiological symptoms. The final diagnosis was based on MRI scans. Relief from pain was observed during rest and elevation of the affected extremities. Clinical symptoms and MRI abnormalities resolved spontaneously within a few months. (author)

  4. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate

    Science.gov (United States)

    Telford, W. G.; Cox, W. G.; Stiner, D.; Singer, V. L.; Doty, S. B.

    1999-01-01

    BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications. Copyright 1999 Wiley-Liss, Inc.

  5. Skeletal muscle metabolic flexibility : The roles of AMP-activated protein kinase and calcineurin

    OpenAIRE

    Long, Yun Chau

    2007-01-01

    Skeletal muscle fibers differ considerably in their metabolic and physiological properties. The metabolic properties of skeletal muscle display a high degree of flexibility which adapts to various physiological demands by shifting energy substrate metabolism. Studies were conducted to evaluate the roles of AMP-activated protein kinase (AMPK) and calcineurin in the regulation of skeletal muscle metabolism. Fasting elicited a coordinated expression of genes involved in lipid ...

  6. Calcineurin/Nfat signaling is required for perinatal lung maturation and function

    OpenAIRE

    Davé, Vrushank; Childs, Tawanna; Xu, Yan; Ikegami, Machiko; Besnard, Valérie; Maeda, Yutaka; Wert, Susan E.; Neilson, Joel R.; Crabtree, Gerald R.; Whitsett, Jeffrey A.

    2006-01-01

    Pulmonary surfactant proteins and lipids are required for lung function after birth. Lung immaturity and resultant surfactant deficiency cause respiratory distress syndrome, a common disorder contributing to morbidity and mortality in preterm infants. Surfactant synthesis increases prior to birth in association with formation of the alveoli that mediate efficient gas exchange. To identify mechanisms controlling perinatal lung maturation, the Calcineurin b1 (Cnb1) gene was deleted in the respi...

  7. Topical Calcineurin Inhibitors and Lymphoma Risk: Evidence Update with Implications for Daily Practice

    OpenAIRE

    Siegfried, Elaine C.; Jaworski, Jennifer C.; Hebert, Adelaide A

    2013-01-01

    Topical calcineurin inhibitors (TCIs), commercially available since 2000–2001, are the first and only topical medications approved for chronic treatment of atopic dermatitis (AD) in pediatric patients and remain a welcomed alternative to topical corticosteroids. In January 2006, the US Food and Drug Administration (FDA) issued a boxed warning requirement based on a theoretical risk of malignancy (including lymphoma) with TCI use. However, in the years since, analyses of epidemiologic and clin...

  8. KMUP-1 Attenuates Endothelin-1-Induced Cardiomyocyte Hypertrophy through Activation of Heme Oxygenase-1 and Suppression of the Akt/GSK-3β, Calcineurin/NFATc4 and RhoA/ROCK Pathways

    Directory of Open Access Journals (Sweden)

    Shu-Fen Liou

    2015-06-01

    Full Text Available The signaling cascades of the mitogen activated protein kinase (MAPK family, calcineurin/NFATc4, and PI3K/Akt/GSK3, are believed to participate in endothelin-1 (ET-1-induced cardiac hypertrophy. The aim of this study was to investigate whether KMUP-1, a synthetic xanthine-based derivative, prevents cardiomyocyte hypertrophy induced by ET-1 and to elucidate the underlying mechanisms. We found that in H9c2 cardiomyocytes, stimulation with ET-1 (100 nM for 4 days induced cell hypertrophy and enhanced expressions of hypertrophic markers, including atrial natriuretic peptide and brain natriuretic peptide, which were all inhibited by KMUP-1 in a dose-dependent manner. In addition, KMUP-1 prevented ET-1-induced intracellular reactive oxygen species generation determined by the DCFH-DA assay in cardiomyocytes. KMUP-1 also attenuated phosphorylation of ERK1/2 and Akt/GSK-3β, and activation of calcineurin/NFATc4 and RhoA/ROCK pathways induced by ET-1. Furthermore, we found that the expression of heme oxygenase-1 (HO-1, a stress-response enzyme implicated in cardio-protection, was up-regulated by KMUP-1. Finally, KMUP-1 attenuated ET-1-stimulated activator protein-1 DNA binding activity. In conclusion, KMUP-1 attenuates cardiomyocyte hypertrophy induced by ET-1 through inhibiting ERK1/2, calcineurin/NFATc4 and RhoA/ROCK pathways, with associated cardioprotective effects via HO-1 activation. Therefore, KMUP-1 may have a role in pharmacological therapy of cardiac hypertrophy.

  9. Topical calcineurin inhibitors in the treatment of atopic dermatitis - an update on safety issues.

    Science.gov (United States)

    Czarnecka-Operacz, Magdalena; Jenerowicz, Dorota

    2012-03-01

    Atopic dermatitis is a common chronic skin disorder whose management is complex. Topical corticosteroids have been the mainstay of atopic dermatitis treatment for more than 50 years but have multiple side effects. Topical calcineurin inhibitors including tacrolimus and pimecrolimus are safe and efficacious in atopic dermatitis. In 2005 the FDA issued "black box" warnings for pimecrolimus cream and tacrolimus ointment because of potential safety risks, including skin cancers and lymphomas. However, these concerns are not supported by current data. Topical calcineurin inhibitors are particularly indicated for treating patients with atopic dermatitis in whom topical corticosteroid therapy cannot be employed or may cause irreversible side effects. They can be used advantageously in problem zones. A novel regimen of proactive treatment has been shown to prevent, delay and reduce exacerbations of atopic dermatitis. Therapy with topical calcineurin inhibitors should be managed by an experienced specialist and each patient should receive proper education on how to use them and what possible unwanted effects may be expected. PMID:21974750

  10. The calcineurin antagonist RCAN1-4 is induced by exhaustive exercise in rat skeletal muscle.

    Science.gov (United States)

    Emrani, Ramin; Rébillard, Amélie; Lefeuvre, Luz; Gratas-Delamarche, Arlette; Davies, Kelvin J A; Cillard, Josiane

    2015-10-01

    The aim of this work was to study the regulation of the calcineurin antagonist regulator of calcineurin 1 (RCAN1) in rat skeletal muscles after exhaustive physical exercise, which is a physiological modulator of oxidative stress. Three skeletal muscles, namely extensor digitorum longus (EDL), gastrocnemius, and soleus, were investigated. Exhaustive exercise increased RCAN1-4 protein levels in EDL and gastrocnemius, but not in soleus. Protein oxidation as an index of oxidative stress was increased in EDL and gastrocnemius, but remained unchanged in soleus. However, lipid peroxidation was increased in all three muscles. CuZnSOD and catalase protein levels were increased at 3 h postexercise in soleus, whereas they remained unchanged in EDL and gastrocnemius. Calcineurin enzymatic activity declined in EDL and gastrocnemius but not in soleus, and its protein expression was decreased in all three muscles. The level of PGC1-α protein remained unchanged, whereas the protein expression of the transcription factor NFATc4 was decreased in all three muscles. Adiponectin expression was increased in all three muscles. RCAN1-4 expression in EDL and gastrocnemius muscles was augmented by the oxidative stress generated from exhaustive exercise. We propose that increased RCAN1-4 expression and the signal transduction pathways it regulates represent important components of the physiological adaptation to exercise-induced oxidative stress. PMID:26122706

  11. Stimulation of protein phosphatase activity by insulin and growth factors in 3T3 cells

    International Nuclear Information System (INIS)

    Incubation of Swiss mouse 3T3-D1 cells with physiological concentrations of insulin resulted in a rapid and transient activation of protein phosphatase activity as measure by using [32P]phosphorylase α as substrate. Activation reached a maximum level (140% of control value) within 5 min of addition and returned to control levels within 20 min. The effect of insulin was dose-dependent with half-maximal activation occurring at ∼5 nM insulin. This activity could be completely inhibited by addition of the heat-stable protein inhibitor 2, which suggests the presence of an activated type-1 phosphatase. Similar effects on phosphatase activity were seen when epidermal growth factor and platelet-derived growth factor were tested. These results suggest that some of the intracellular effects caused by insulin and growth factors are mediated through the activation of a protein phosphatase

  12. Protein phosphatase 2A in stretch-induced endothelial cell proliferation

    Science.gov (United States)

    Murata, K.; Mills, I.; Sumpio, B. E.

    1996-01-01

    We previously proposed that activation of protein kinase C is a key mechanism for control of cell growth enhanced by cyclic strain [Rosales and Sumpio (1992): Surgery 112:459-466]. Here we examined protein phosphatase 1 and 2A activity in bovine aortic endothelial cells exposed to cyclic stain. Protein phosphatase 2A activity in the cytosol was decreased by 36.1% in response to cyclic strain for 60 min, whereas the activity in the membrane did not change. Treatment with low concentration (0.1 nM) of okadaic acid enhanced proliferation of both static and stretched endothelial cells in 10% fetal bovine serum. These data suggest that protein phosphatase 2A acts as a growth suppressor and cyclic strain may enhance cellular proliferation by inhibiting protein phosphatase 2A as well as stimulating protein kinase C.

  13. Ecto-phosphatase activity on the external surface of Rhodnius prolixus salivary glands: modulation by carbohydrates and Trypanosoma rangeli.

    Science.gov (United States)

    Gomes, Suzete A O; Fonseca de Souza, André L; Kiffer-Moreira, Tina; Dick, Claudia F; dos Santos, André L A; Meyer-Fernandes, José R

    2008-05-01

    The salivary glands of insect's vectors are target organs to study the vectors-pathogens interactions. Rhodnius prolixus an important vector of Trypanosoma cruzi can also transmit Trypanosoma rangeli by bite. In the present study we have investigated ecto-phosphatase activity on the surface of R. prolixus salivary glands. Ecto-phosphatases are able to hydrolyze phosphorylated substrates in the extracellular medium. We characterized these ecto-enzyme activities on the salivary glands external surface and employed it to investigate R. prolixus-T. rangeli interaction. Salivary glands present a low level of hydrolytic activity (4.30+/-0.35 nmol p-nitrophenol (p-NP)xh(-1)xgland pair(-1)). The salivary glands ecto-phosphatase activity was not affected by pH variation; and it was insensitive to alkaline inhibitor levamisole and inhibited approximately 50% by inorganic phosphate (Pi). MgCl2, CaCl2 and SrCl2 enhanced significantly the ecto-phosphatase activity detected on the surface of salivary glands. The ecto-phosphatase from salivary glands surface efficiently releases phosphate groups from different phosphorylated amino acids, giving a higher rate of phosphate release when phospho-tyrosine is used as a substrate. This ecto-phosphatase activity was inhibited by carbohydrates as d-galactose and d-mannose. Living short epimastigotes of T. rangeli inhibited salivary glands ecto-phosphatase activity at 75%, while boiled parasites did not. Living long epimastigote forms induced a lower, but significant inhibitory effect on the salivary glands phosphatase activity. Interestingly, boiled long epimastigote forms did not loose the ability to modulate salivary glands phosphatase activity. Taken together, these data suggest a possible role for ecto-phosphatase on the R. prolixus salivary glands-T. rangeli interaction. PMID:18407240

  14. Discovery of Small Molecule Inhibitors of the PH Domain Leucine-Rich Repeat Protein Phosphatase (PHLPP) by Chemical and Virtual Screening

    OpenAIRE

    Sierecki, Emma; Sinko, William; McCammon, J. Andrew; Newton, Alexandra C.

    2010-01-01

    PH domain Leucine-rich repeat protein phosphatase (PHLPP) directly dephosphorylates and inactivates Akt and protein kinase C, poising it as a prime target for pharmacological intervention of two major survival pathways. Here we report on the discovery of small molecule inhibitors of the phosphatase activity of PHLPP, a member of the PP2C family of phosphatases for which there are no general pharmacological inhibitors. First, the Diversity Set of the NCI was screened for inhibition of the puri...

  15. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  16. The parathyroid hormone-related protein is secreted during the osteogenic differentiation of human dental follicle cells and inhibits the alkaline phosphatase activity and the expression of DLX3.

    Science.gov (United States)

    Klingelhöffer, C; Reck, A; Ettl, T; Morsczeck, C

    2016-08-01

    The dental follicle is involved in tooth eruption and it expresses a great amount of the parathyroid hormone-related protein (PTHrP). PTHrP as an extracellular protein is required for a multitude of different regulations of enchondral bone development and differentiation of bone precursor cells and of the development of craniofacial tissues. The dental follicle contains also precursor cells (DFCs) of the periodontium. Isolated DFCs differentiate into periodontal ligament cells, alveolar osteoblast and cementoblasts. However, the role of PTHrP during the human periodontal development remains elusive. Our study evaluated the influence of PTHrP on the osteogenic differentiation of DFCs under in vitro conditions for the first time. The PTHrP protein was highly secreted after 4days of the induction of the osteogenic differentiation of DFCs with dexamethasone (2160.5pg/ml±345.7SD. in osteogenic differentiation medium vs. 315.7pg/ml±156.2SD. in standard cell culture medium; Student's t Test: pHedgehog (IHH) induces PTHrP and that PTHrP, in turn, inhibits IHH via a negative feedback loop. We showed that SUFU (Suppressor Of Fused Homolog) was not regulated during the osteogenic differentiation in DFCs. So, neither the hedgehog signaling pathway induced PTHrP nor PTHrP suppressed the hedgehog signaling pathway during the osteogenic differentiation in DFCs. In conclusion, our results suggest that PTHrP regulates independently of the hedgehog signaling pathway the osteogenic differentiated in DFCs. PMID:27368119

  17. The influence of complexing pharmaceutical compositions on alkaline phosphatase

    Science.gov (United States)

    Atyaksheva, L. F.; Chukhrai, E. S.; Stepina, N. D.; Novikova, N. N.; Yur'eva, E. A.

    2011-06-01

    It is established that the pharmaceutical compositions xydiphon, medifon, succimer, and EDTA, which are used as complexing agents for accelerating the excretion of heavy metals from human organism, at certain concentrations inhibit enzyme alkaline phosphatase (AP). It is concluded that xydiphon and EDTA have a noticeable effect on AP activity at concentrations over 0.01 mM; medifon and succimer, at concentrations of over 0.3-0.5 mM. The enzyme's inhibition constants and type of inhibition are determined. Xydiphon is found to manifest the highest affinity to AP ( K I = 0.35 mM). It is shown by kinetic analysis that dissociative chemoinactivation of the enzyme takes place under the action of complexing agents. The corresponding kinetic parameters are calculated.

  18. Searching for the role of protein phosphatases in eukaryotic microorganisms

    Directory of Open Access Journals (Sweden)

    da-Silva A.M.

    1999-01-01

    Full Text Available Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively. Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.

  19. Decreased calcineurin immunoreactivity in the postmortem brain of a patient with schizophrenia who had been prescribed the calcineurin inhibitor, tacrolimus, for leukemia

    Directory of Open Access Journals (Sweden)

    Wada A

    2016-07-01

    Full Text Available Akira Wada,1,2 Yasuto Kunii,1 Jyunya Matsumoto,1 Mizuki Hino,1 Atsuko Nagaoka,1 Shin-ichi Niwa,3 Hirooki Yabe1 1Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, 2Department of Neuropsychiatry, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, 3Department of Psychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu City, Fukushima, Japan Background: The calcineurin (CaN inhibitor, tacrolimus, is widely used in patients undergoing allogeneic organ transplantation and in those with certain allergic diseases. Recently, several reports have suggested that CaN is also associated with schizophrenia. However, little data are currently available on the direct effect of tacrolimus on the human brain.Case: A 23-year-old Japanese female experienced severe delusion of persecution, delusional mood, suspiciousness, aggression, and excitement. She visited our hospital and was diagnosed with schizophrenia. When she was 27 years old, she had severe general fatigue, persistent fever, systemic joint pain, gingival bleeding, and breathlessness and was diagnosed with acute myelomonocytic leukemia. Later she underwent bone marrow transplantation (BMT, she was administered methotrexate and cyclosporin A to prevent graft versus host disease (GVHD. Three weeks after BMT, she showed initial symptoms of GVHD and was prescribed tacrolimus instead of cyclosporin A. Seven months after BMT at the age of 31 years, she died of progression of GVHD. Pathological anatomy was examined after her death, including immunohistochemical analysis of her brain using anti-CaN antibodies. For comparison, we used our previous data from both a schizophrenia group and a healthy control group. No significant differences were observed in the percentage of CaN-immunoreactive neurons among the schizophrenia group, healthy control group, and the tacrolimus case (all P>0.5, analysis of covariance. Compared with the

  20. Expression and Characterization of Recombinant Thermostable Alkaline Phosphatase from a Novel Thermophilic Bacterium Thermus thermophilus XM

    Institute of Scientific and Technical Information of China (English)

    Jianbo LI; Limei XU; Feng YANG

    2007-01-01

    A gene (tap) encoding a thermostable alkaline phosphatase from the thermophilic bacterium Thermus thermophilus XM was cloned and sequenced. It is 1506 bp long and encodes a protein of 501 amino acid residues with a calculated molecular mass of 54.7 kDa. Comparison of the deduced amino acid sequence with other alkaline phosphatases showed that the regions in the vicinity of the phosphorylation site and metal binding sites are highly conserved. The recombinant thermostable alkaline phosphatase was expressed as a His6-tagged fusion protein in Escherichia coli and its enzymatic properties were characterized after purification. The pH and temperature optima for the recombinant thermostable alkaline phosphatases activity were pH 12 and 75 ℃. As expected, the enzyme displayed high thermostability, retaining more than 50% activity after incubating for 6 h at 80 ℃. Its catalytic function was accelerated in the presence of 0.1 mM Co2+, Fe2+, Mg2+, or Mn2+ but was strongly inhibited by 2.0 mM Fe2+. Under optimal conditions, the Michaelis constant (Km) for cleavage of p-nitrophenyl-phosphate was 0.034 mM. Although it has much in common with other alkaline phosphatases, the recombinant thermostable alkaline phosphatase possesses some unique features, such as high optimal pH and good thermostability.

  1. Biochemistry and structure of phosphoinositide phosphatases

    Directory of Open Access Journals (Sweden)

    Young Yil Bahk

    2013-01-01

    Full Text Available Phosphoinositides are the phosphorylated derivatives ofphosphatidylinositol, and play a very significant role in adiverse range of signaling processes in eukaryotic cells. Anumber of phosphoinositide-metabolizing enzymes, includingphosphoinositide-kinases and phosphatases are involved in thesynthesis and degradation of these phospholipids. Recently,the function of various phosphatases in the phosphatidylinositolsignaling pathway has been of great interest. In thepresent review we summarize the structural insights andbiochemistry of various phosphatases in regulating phosphoinositidemetabolism. [BMB Reports 2013; 46(1: 1-8

  2. ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling

    OpenAIRE

    Seto, Jane T.; Quinlan, Kate G.R.; Lek, Monkol; Zheng, Xi Fiona; Garton, Fleur; MacArthur, Daniel G.; Hogarth, Marshall W.; Houweling, Peter J.; Gregorevic, Paul; Turner, Nigel; Cooney, Gregory J.; Yang, Nan; North, Kathryn N.

    2013-01-01

    α-Actinin-3 deficiency occurs in approximately 16% of the global population due to homozygosity for a common nonsense polymorphism in the ACTN3 gene. Loss of α-actinin-3 is associated with reduced power and enhanced endurance capacity in elite athletes and nonathletes due to “slowing” of the metabolic and physiological properties of fast fibers. Here, we have shown that α-actinin-3 deficiency results in increased calcineurin activity in mouse and human skeletal muscle and enhanced adaptive re...

  3. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture

    DEFF Research Database (Denmark)

    Higginson, James; Wackerhage, Henning; Woods, Niall;

    2002-01-01

    and mitogen-activated protein kinase kinase (MEK1/2) blockade with U0126 upon myosin heavy chain (MHC) isoform mRNA levels and activities of metabolic enzymes after 1 day, 3 days and 7 days of treatment in primary cultures of spontaneously twitching rat skeletal muscle. U0126 treatment significantly......Activation of either the calcineurin or the extracellular signal-regulated kinase (ERK1/2) pathway increases the percentage of slow fibres in vivo suggesting that both pathways can regulate fibre phenotypes in skeletal muscle. We investigated the effect of calcineurin blockade with cyclosporin A...

  4. Protein kinase and phosphatase activities of thylakoid membranes

    International Nuclear Information System (INIS)

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg2+ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg2+ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs

  5. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    Science.gov (United States)

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  6. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  7. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion.

    Science.gov (United States)

    Tangmansakulchai, Kulvadee; Abubakar, Zuroida; Kitiyanant, Narisorn; Suwanjang, Wilasinee; Leepiyasakulchai, Chaniya; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-09-01

    Calpain is an intracellular Ca(2+)-dependent protease, and the activation of calpain has been implicated in neurodegenerative diseases. Calpain activity can be regulated by calpastatin, an endogenous specific calpain inhibitor. Several lines of evidence have demonstrated a potential role of calpastatin in preventing calpain-mediated pathogenesis. Additionally, several studies have revealed that calpain activation and mitochondrial damage are involved in the cell death process; however, recent evidence has not clearly indicated a neuroprotective mechanism of calpastatin against calpain-dependent mitochondrial impairment in the process of neuronal cell death. Therefore, the purpose of this study was to investigate the potential ability of calpastatin to inhibit calpain activation and mitochondrial impairment in oxidative stress-induced neuron degeneration. Calpastatin was stably overexpressed in human neuroblastoma SH-SY5Y cells. In non-calpastatin overexpressing SH-SY5Y cells, hydrogen peroxide significantly decreased cell viability, superoxide dismutase activity, mitochondrial membrane potential, ATP production and mitochondrial fusion protein (Opa1) levels in the mitochondrial fraction but increased reactive oxygen species formation, calpain and calcineurin activation, mitochondrial fission protein (Fis1 and Drp1) levels in the mitochondrial fraction and apoptotic cells. Nevertheless, these toxic effects were abolished in hydrogen peroxide-treated calpastatin-overexpressing SH-SY5Y cells. The results of the present study demonstrate the potential ability of calpastatin to diminish calpain and calcineurin activation and mitochondrial impairment in neurons that are affected by oxidative damage. PMID:27453331

  8. Photocarcinogenicity of selected topically applied dermatological drugs: calcineurin inhibitors, corticosteroids, and vitamin D analogs

    Directory of Open Access Journals (Sweden)

    Catharina Margrethe Lerche

    2010-09-01

    Full Text Available Topical therapies constitute the mainstay of dermatological treatments for skin disorders, such as atopic dermatitis, contact dermatitis, psoriasis, or acne. Since some of these diseases are often chronic, treatment duration may last for years and may even last the patient’s entire lifetime. Obviously, such long-term therapy may raise safety concerns, which also include the potential photocarcinogenic effect. Most patients are exposed to ultraviolet radiation (UVR during leisure, work, vacations, or in tanning beds. Additionally, the patients may receive UVR via UVB phototherapy or psoralens plus UVA radiation (PUVA. The use of immunosuppressant’s, such as corticosteroids and calcineurin inhibitors, has markedly increased. Patients with skin diseases have benefited from both systemic and topical treatment of both new and established drugs. The issue of a black box warning by the US Food and Drug Administration has increased concerns about photocarcinogenesis, which raises the question: “Are these drugs safe?” This review focuses on the mechanism of action and photocarcinogenic potential of commonly used topical treatments, such as corticosteroids, calcineurin inhibitors, and vitamin D analogs.

  9. Update on the use of topical calcineurin inhibitors in cutaneous lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Michael Sticherling

    2011-02-01

    Full Text Available Michael SticherlingHautklinik, Universitätsklinikum Erlangen (Clinic of Dermatology, University Hospitals of Erlangen, Erlangen, GermanyAbstract: Cutaneous manifestations of lupus erythematosus (CLE are manifold, presenting with unspecific skin manifestations or well-defined clinical dermatological entities. Their relation to each other as well as to systemic lupus erythematosus is variable, yet diagnostically and therapeutically challenging. Therapeutic decisions have to be based on the activity and distribution as well as the type of skin lesions and the extent of systemic disease. Limited skin manifestations may be amply tackled by topical therapy, so far, mainly relying on corticosteroids. In many cases, however, internal treatment has to be combined by using antimalarials, in addition to strict UV-protection. The advent of topical calcineurin inhibitors has contributed substantially to the armamentarium of external treatment options. By specifically interfering with intracytoplasmic signal transduction to activate the nuclear factor of activated T-cells (NF-AT, they are able to modulate various inflammatory mechanisms. The two available compounds, pimecrolimus and tacrolimus, do not induce the skin atrophy characteristic of corticosteroids. They have been studied in a number of case reports, but only in a few randomized, comparative studies. Both are well-tolerated, but differentially effective in the various subsets of CLE. Further studies are needed to directly compare the two compounds to each other, as well as to topical corticosteroids, before final recommendations can be made.Keywords: cutaneous lupus erythematosus, calcineurin inhibitors, topical therapy, systemic therapy 

  10. Quality-control method for the determination of biological activity of engineered calcineurin subunit B.

    Science.gov (United States)

    Shi, Xinchang; Yang, Huan; Xu, Li; Li, Xiang; Huang, Zongwen; Han, Yudong; Wei, Qun; Rao, Chunming

    2016-06-01

    The aim of this study was to establish a quality-control method for calcineurin subunit B (CNB) biological activity determinations. CNB enhances the p-nitrophenylphosphate (pNPP) dephosphorylating activity of calcineurin subunit A Δ316 mutant (CNAΔ316). A series of CNB concentrations were fitted to a four-parameter equation to calculate the corresponding pNPP maximum dephosphorylation rates. Values were calculated based on biological activity references using a parallel line method. The method was then validated for accuracy, precision, linearity, linear range, sensitivity, specificity, and robustness. The recovery results were greater than 98%. Intra-plate precision was 6.7%, with inter-plate precision of 10.8%. The coefficient of determination was greater than 0.98. The linear range was 0.05-50 μg mL(-1), with sensitivity of 50 μg mL(-1). Tested cytokines did not induce CNAΔ316 dephosphorylation of pNPP. The chosen CNAΔ316 concentration range did not affect activity determinations. PMID:27053126

  11. Assessing the Biological Activity of the Glucan Phosphatase Laforin.

    Science.gov (United States)

    Romá-Mateo, Carlos; Raththagala, Madushi; Gentry, Mathew S; Sanz, Pascual

    2016-01-01

    Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin's unique glycogen phosphatase activity. PMID:27514803

  12. Effects of synthetic detergents on in vivo activity of tissue phosphatases and succinic dehydrogenase from Mystus vittatus

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, D.; Verma, S.R.

    1981-05-01

    African catfish (Mystus vittatus) were exposed to three sub-lethal concentrations of Swascofix E45 (13.8, 9.2 and 4.6 mg/l) and Swascol 3L (69.3, 46.2 and 23.1 mg/l) for 15 and 30 days, and their effects on alkaline and acid phosphatase, and succinic dehydrogenase in liver, kidney and intestine were measured. The enzymes were found to be inhibited in all the tissues. Maximum inhibition (38.44%) was observed in liver alkaline phosphatase activity after 30 days with the highest concentration of Swascofix E45 and the lowest inhibition (0.118%) was found in kidney acid phosphatase activity with the lowest concentration of Swascol 3L after 15 days. Insignificant enzyme stimulation in some cases was also observed.

  13. The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases.

    Science.gov (United States)

    Kipanyula, Maulilio John; Kimaro, Wahabu Hamisi; Seke Etet, Paul F

    2016-01-01

    The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca(2+)/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca(2+)-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects. PMID:27597899

  14. Subcellular localisation and properties of histone phosphate phosphatase in human polymorphonuclear leukocytes: alterations in pregnancy and chronic granulocytic leukaemia and relationship to alkaline phosphatase

    International Nuclear Information System (INIS)

    Using [32P]histone as substrate, an assay for histone phosphate phosphatase was optimised for human polymorphonuclear leukocytes. Kinetic studies showed that the activity was optimal at pH 6.8, was stimulated by Mn2+ and Co2+, and inhibited by sodium sulphite and zinc chloride. The apparent Ksub(m) of the enzyme for histone phosphate was 0.89 μmol/l. (Auth.)

  15. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release

    NARCIS (Netherlands)

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A. Soliman; Seinen, Willem; Schamhorst, Volkher; Wulkan, Raymond W.; Schoenberger, Jacques P.; van Oeveren, Wim

    2012-01-01

    Introduction: Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels

  16. MALDI mass sequencing and biochemical characterization of Setaria cervi protein tyrosine phosphatase.

    Science.gov (United States)

    Rai, Reeta; Singh, Neetu; Elesela, Srikanth; Tiwari, Savitri; Rathaur, Sushma

    2013-01-01

    A 30-kDa acid phosphatase with protein tyrosine phosphatase activity was identified in Setaria cervi (ScPTP). The enzyme was purified to homogeneity using three-step column chromatography. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of purified ScPTP yielded a total of eight peptides matching most closely to phosphoprotein phosphatase of Ricinus communis (RcPP). A hydrophilicity plot of RcPP revealed the presence of these peptides in the hydrophilic region, suggesting their antigenic nature. The substrate specificity of ScPTP with ortho-phospho-L-tyrosine and inhibition with sodium orthovanadate and ammonium molybdate affirmed it as a protein tyrosine phosphatase. ScPTP was also found to be tartrate resistant. The Km and Vmax were 6.60 mM and 83.3 μM/ml/min, respectively, with pNPP and 8.0 mM and 111 μM/ml/min, respectively, with ortho-phospho-L-tyrosine as the substrate. The Ki value with sodium orthovanadate was calculated to be 16.10 mM. Active site modification with DEPC, EDAC and pHMB suggested the presence of histidine, cysteine and aspartate at its active site. Thus, on the basis of MALDI-TOF and biochemical studies, it was confirmed that purified acid phosphatase is a PTP. PMID:23052758

  17. Potentiometric assay for acid and alkaline phosphatase

    International Nuclear Information System (INIS)

    Simple potentiometric kinetic assay for evaluation of acid and alkaline phosphatase activity has been developed. Enzymatically catalyzed hydrolysis of monofluorophosphate, the simplest inorganic compound containing P-F bond, has been investigated as the basis of the assays. Fluoride ions formed in the course of the hydrolysis of this specific substrate have been detected using conventional fluoride ion-selective electrode based on membrane made of lanthanum fluoride. The key analytical parameters necessary for sensitive and selective detection of both enzymes have been assessed. Maximal sensitivity of the assays was observed at monofluorophosphate concentration near 10-3 M. Maximal sensitivity of acid phosphatase assay was found at pH 6.0, but pH of 4.8 is recommended to eliminate effects from alkaline phosphatase. Optimal pH for alkaline phosphatase assay is 9.0. The utility of the developed substrate-sensor system for determination of acid and alkaline phosphatase activity in human serum has been demonstrated

  18. Effect of Combined Heavy Metal Pollution on Nitrogen Mineralization Potential,Urease and Phosphatase Activities in a Typic Udic Ferrisol

    Institute of Scientific and Technical Information of China (English)

    ZHENGCHUNRONG; TUCONG; 等

    1999-01-01

    Individual and combined effects of Cu,Pb,Zn and Cd on N mineralization,urease and phosphatase were examined in a Typic Udic Ferrisol in laboratory by employing and uniform design and a single factor design,Soil pollution caused by heavy metals inhibited N mineralization (N0 value)and urease and phosphatase activities.The combined pollution of metals alleviated their toxicity to N mineralization to some extent whereas aggravated the toxicity to urease and phosphatase.Phosphorous application could mitigat the toxic effect of heavy metals on phosphatase activities,while alleviating effect of N application on the toxicity of heavy metals to urease was inconsistent.However,the mitigating effect of the fertilizers was limited in heavily polluted soils.

  19. Origin and production of phosphatases in the acid Lake Gardsjoen

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, H.

    1983-01-01

    The activity of acid phosphatases was followed for one year in Lake Gardsjoen as well as in the inlet and the outlet of the lake. A budget of the phosphatases was calculated, including an estimation of the production of phosphatases. The phosphatase activity was also measured in two basins upstream of L. Gardsjoen: the north basin and the south basin of L. Stora Haestevatten. The acid phosphatase activity was very high compared with reported alkaline phosphatase activities in other lakes. About 95% of the phosphatases in L. Gardsjoen was produced in the lake, and the production was highest in early summer. Small Chrysophyceae (< 10 ..mu..m) probably produced the majority of the acid phosphatases in the investigated lakes, and accordingly could be favoured in environments with low phosphorus supply due to their ability to produce large amounts of phosphatases. 10 references, 8 figures, 2 tables.

  20. Radioprotective effect of Panax ginseng on the phosphatases and lipid peroxidation level in testes of Swiss albino mice

    Energy Technology Data Exchange (ETDEWEB)

    Kumar M.; Sharma M.K.; Saxena P.S.; Kumar A. [Rajasthan Univ., Jaipur (India)

    2003-03-01

    The Panax ginseng has been used as traditional medicine for past several years among oriental people. The present investigation has been made to assess the radioprotective efficacy of ginseng root extract in the testicular enzymes of Swiss albino mice. The Swiss albino mice were divided into different groups. Ginseng treated group: The animals were administered 10 mg/kg body weight ginseng root extract intraperitoneal (i.p.). Radiation treated group: The animals were exposed to 8 Gy gamma radiation at the dose rate of 1.69 Gy/min at the distance of 80 cm. Combination group: Animals were administered ginseng extract continuously for 4 d and on 4th day they were irradiated to 8 Gy gamma radiation after 30 min of extract administration. The animals from above groups were autopsied on day 1, 3, 7, 14 and 30. Biochemical estimations of acid and alkaline phosphatases and Lipid peroxidation (LPO) in testes were done. In ginseng treated group acid and alkaline phosphatases activity and LPO level did not show any significant alteration. In irradiated animals there was a significant increase in acid phosphatase activity and LPO level. However, significant decline in alkaline phosphatase activity was observed. The treatment of ginseng before irradiation causes significant decrease in acid phosphatase and LPO level and significant increase in alkaline phosphatase activity. One of the cause of radiation damage is lipid peroxidation. Due to lipid peroxidation, lysosomal membrane permeability alters and thus results in release of hydrolytic enzymes. So, an increase in acid phosphatase was noticed after radiation treatment. The alkaline phosphatase activity is associated with membrane permeability and different stages of spermatogenesis. Due to membrane damage and depletion of germ cells of testes after irradiation the enzyme activity was decreased. Ginseng markedly inhibits lipid peroxidation. It acts in indirect fashion to protect radical processes by inhibition of initiation of

  1. Radioprotective effect of Panax ginseng on the phosphatases and lipid peroxidation level in testes of Swiss albino mice

    International Nuclear Information System (INIS)

    The Panax ginseng has been used as traditional medicine for past several years among oriental people. The present investigation has been made to assess the radioprotective efficacy of ginseng root extract in the testicular enzymes of Swiss albino mice. The Swiss albino mice were divided into different groups. Ginseng treated group: The animals were administered 10 mg/kg body weight ginseng root extract intraperitoneal (i.p.). Radiation treated group: The animals were exposed to 8 Gy gamma radiation at the dose rate of 1.69 Gy/min at the distance of 80 cm. Combination group: Animals were administered ginseng extract continuously for 4 d and on 4th day they were irradiated to 8 Gy gamma radiation after 30 min of extract administration. The animals from above groups were autopsied on day 1, 3, 7, 14 and 30. Biochemical estimations of acid and alkaline phosphatases and Lipid peroxidation (LPO) in testes were done. In ginseng treated group acid and alkaline phosphatases activity and LPO level did not show any significant alteration. In irradiated animals there was a significant increase in acid phosphatase activity and LPO level. However, significant decline in alkaline phosphatase activity was observed. The treatment of ginseng before irradiation causes significant decrease in acid phosphatase and LPO level and significant increase in alkaline phosphatase activity. One of the cause of radiation damage is lipid peroxidation. Due to lipid peroxidation, lysosomal membrane permeability alters and thus results in release of hydrolytic enzymes. So, an increase in acid phosphatase was noticed after radiation treatment. The alkaline phosphatase activity is associated with membrane permeability and different stages of spermatogenesis. Due to membrane damage and depletion of germ cells of testes after irradiation the enzyme activity was decreased. Ginseng markedly inhibits lipid peroxidation. It acts in indirect fashion to protect radical processes by inhibition of initiation of

  2. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper;

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch is...... comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...

  3. Conserved and Diverged Functions of the Calcineurin-Activated Prz1 Transcription Factor in Fission Yeast

    Science.gov (United States)

    Chatfield-Reed, Kate; Vachon, Lianne; Kwon, Eun-Joo Gina; Chua, Gordon

    2016-01-01

    Gene regulation in response to intracellular calcium is mediated by the calcineurin-activated transcription factor Prz1 in the fission yeast Schizosaccharomyces pombe. Genome-wide studies of the Crz1 and CrzA fungal orthologs have uncovered numerous target genes involved in conserved and species-specific cellular processes. In contrast, very few target genes of Prz1 have been published. This article identifies an extensive list of genes using transcriptome and ChIP-chip analyses under inducing conditions of Prz1, including CaCl2 and tunicamycin treatment, as well as a ∆pmr1 genetic background. We identified 165 upregulated putative target genes of Prz1 in which the majority contained a calcium-dependent response element in their promoters, similar to that of the Saccharomyces cerevisiae ortholog Crz1. These genes were functionally enriched for Crz1-conserved processes such as cell-wall biosynthesis. Overexpression of prz1+ increased resistance to the cell-wall degradation enzyme zymolyase, likely from upregulation of the O-mannosyltransferase encoding gene omh1+. Loss of omh1+ abrogates this phenotype. We uncovered a novel inhibitory role in flocculation for Prz1. Loss of prz1+ resulted in constitutive flocculation and upregulation of genes encoding the flocculins Gsf2 and Pfl3, as well as the transcription factor Cbf12. The constitutive flocculation of the ∆prz1 strain was abrogated by the loss of gsf2+ or cbf12+. This study reveals that Prz1 functions as a positive and negative transcriptional regulator of genes involved in cell-wall biosynthesis and flocculation, respectively. Moreover, comparison of target genes between Crz1/CrzA and Prz1 indicate some conservation in DNA-binding specificity, but also substantial rewiring of the calcineurin-mediated transcriptional regulatory network. PMID:26896331

  4. Conserved and Diverged Functions of the Calcineurin-Activated Prz1 Transcription Factor in Fission Yeast.

    Science.gov (United States)

    Chatfield-Reed, Kate; Vachon, Lianne; Kwon, Eun-Joo Gina; Chua, Gordon

    2016-04-01

    Gene regulation in response to intracellular calcium is mediated by the calcineurin-activated transcription factor Prz1 in the fission yeastSchizosaccharomyces pombe Genome-wide studies of theCrz1and CrzA fungal orthologs have uncovered numerous target genes involved in conserved and species-specific cellular processes. In contrast, very few target genes of Prz1 have been published. This article identifies an extensive list of genes using transcriptome and ChIP-chip analyses under inducing conditions of Prz1, including CaCl2and tunicamycin treatment, as well as a∆pmr1genetic background. We identified 165 upregulated putative target genes of Prz1 in which the majority contained a calcium-dependent response element in their promoters, similar to that of theSaccharomyces cerevisiaeorthologCrz1 These genes were functionally enriched forCrz1-conserved processes such as cell-wall biosynthesis. Overexpression ofprz1(+)increased resistance to the cell-wall degradation enzyme zymolyase, likely from upregulation of theO-mannosyltransferase encoding geneomh1(+) Loss ofomh1(+)abrogates this phenotype. We uncovered a novel inhibitory role in flocculation for Prz1. Loss ofprz1(+)resulted in constitutive flocculation and upregulation of genes encoding the flocculins Gsf2 and Pfl3, as well as the transcription factor Cbf12. The constitutive flocculation of the∆prz1strain was abrogated by the loss ofgsf2(+)orcbf12(+) This study reveals that Prz1 functions as a positive and negative transcriptional regulator of genes involved in cell-wall biosynthesis and flocculation, respectively. Moreover, comparison of target genes betweenCrz1/CrzA and Prz1 indicate some conservation in DNA-binding specificity, but also substantial rewiring of the calcineurin-mediated transcriptional regulatory network. PMID:26896331

  5. Two-year outcomes in thoracic transplant recipients after conversion to everolimus with reduced calcineurin inhibitor within a multicenter, open-label, randomized trial

    DEFF Research Database (Denmark)

    Gullestad, Lars; Mortensen, Svend-Aage; Eiskjær, Hans;

    2010-01-01

    Use of the mammalian target of rapamycin inhibitor everolimus with an accompanying reduction in calcineurin inhibitor (CNI) exposure has shown promise in preserving renal function in maintenance thoracic transplant patients, but robust, long-term data are required.......Use of the mammalian target of rapamycin inhibitor everolimus with an accompanying reduction in calcineurin inhibitor (CNI) exposure has shown promise in preserving renal function in maintenance thoracic transplant patients, but robust, long-term data are required....

  6. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells.

    Science.gov (United States)

    Abbasian, Nima; Burton, James O; Herbert, Karl E; Tregunna, Barbara-Emily; Brown, Jeremy R; Ghaderi-Najafabadi, Maryam; Brunskill, Nigel J; Goodall, Alison H; Bevington, Alan

    2015-09-01

    Hyperphosphatemia in patients with advanced CKD is thought to be an important contributor to cardiovascular risk, in part because of endothelial cell (EC) dysfunction induced by inorganic phosphate (Pi). Such patients also have an elevated circulating concentration of procoagulant endothelial microparticles (MPs), leading to a prothrombotic state, which may contribute to acute occlusive events. We hypothesized that hyperphosphatemia leads to MP formation from ECs through an elevation of intracellular Pi concentration, which directly inhibits phosphoprotein phosphatases, triggering a global increase in phosphorylation and cytoskeletal changes. In cultured human ECs (EAhy926), incubation with elevated extracellular Pi (2.5 mM) led to a rise in intracellular Pi concentration within 90 minutes. This was mediated by PiT1/slc20a1 Pi transporters and led to global accumulation of tyrosine- and serine/threonine-phosphorylated proteins, a marked increase in cellular Tropomyosin-3, plasma membrane blebbing, and release of 0.1- to 1-μm-diameter MPs. The effect of Pi was independent of oxidative stress or apoptosis. Similarly, global inhibition of phosphoprotein phosphatases with orthovanadate or fluoride yielded a global protein phosphorylation response and rapid release of MPs. The Pi-induced MPs expressed VE-cadherin and superficial phosphatidylserine, and in a thrombin generation assay, they displayed significantly more procoagulant activity than particles derived from cells incubated in medium with a physiologic level of Pi (1 mM). These data show a mechanism of Pi-induced cellular stress and signaling, which may be widely applicable in mammalian cells, and in ECs, it provides a novel pathologic link between hyperphosphatemia, generation of MPs, and thrombotic risk. PMID:25745026

  7. Decreased calcineurin immunoreactivity in the postmortem brain of a patient with schizophrenia who had been prescribed the calcineurin inhibitor, tacrolimus, for leukemia

    Science.gov (United States)

    Wada, Akira; Kunii, Yasuto; Matsumoto, Jyunya; Hino, Mizuki; Nagaoka, Atsuko; Niwa, Shin-ichi; Yabe, Hirooki

    2016-01-01

    Background The calcineurin (CaN) inhibitor, tacrolimus, is widely used in patients undergoing allogeneic organ transplantation and in those with certain allergic diseases. Recently, several reports have suggested that CaN is also associated with schizophrenia. However, little data are currently available on the direct effect of tacrolimus on the human brain. Case A 23-year-old Japanese female experienced severe delusion of persecution, delusional mood, suspiciousness, aggression, and excitement. She visited our hospital and was diagnosed with schizophrenia. When she was 27 years old, she had severe general fatigue, persistent fever, systemic joint pain, gingival bleeding, and breathlessness and was diagnosed with acute myelomonocytic leukemia. Later she underwent bone marrow transplantation (BMT), she was administered methotrexate and cyclosporin A to prevent graft versus host disease (GVHD). Three weeks after BMT, she showed initial symptoms of GVHD and was prescribed tacrolimus instead of cyclosporin A. Seven months after BMT at the age of 31 years, she died of progression of GVHD. Pathological anatomy was examined after her death, including immunohistochemical analysis of her brain using anti-CaN antibodies. For comparison, we used our previous data from both a schizophrenia group and a healthy control group. No significant differences were observed in the percentage of CaN-immunoreactive neurons among the schizophrenia group, healthy control group, and the tacrolimus case (all P>0.5, analysis of covariance). Compared with the healthy control group and schizophrenia group, the percentages of CaN-immunoreactive neurons in layers III–VI of the BA46 and the putamen tended to be lower in the tacrolimus case. Conclusion Tacrolimus may decrease CaN immunoreactivity in some regions of the human brain. Thus, tacrolimus may introduce side effects such as cognitive dysfunction and extrapyramidal symptoms. In addition, we also found that the effect of tacrolimus on Ca

  8. Renal impairment after liver transplantation - a pilot trial of calcineurin inhibitor-free vs. calcineurin inhibitor sparing immunosuppression in patients with mildly impaired renal function after liver transplantation

    Directory of Open Access Journals (Sweden)

    Gerhardt T

    2009-05-01

    Full Text Available Abstract Objectives Chronic kidney disease is frequent in patients after orthotopic liver transplantation (OLT and has impact on survival. Patients receiving calcineurin inhibitors (CNI are at increased risk to develop impaired renal function. Early CNI reduction and concomitant use of mycophenolat mofetil (MMF has been shown to improve renal function. Methods The aim of this trial was to compare dose-reduced CNI/MMF versus CNI-free MMF/prednisone-based treatment in stable patients after OLT with respect to glomerular filtration rate (GFR. 21 patients [GFR 44.9 ± 9.9 mL/min/1.73 m2 measured by 99m-Tc-DTPA-clearance, serum creatinine (SCr 1.5 ± 0.42 mg/dL] were randomized either to exchange CNI for 10 mg prednisone (group 1; n = 8 or to receive CNI at 25% of the initial dose (group 2; n = 13 each in combination with 1000 mg MMF b.i.d. Results At month 12 mean SCr (-0.3 ± 0.4 mg/dL, p = 0.031 and GFR improved (8.6 ± 13.1 mL/min/1.73 m2, p = 0.015 in group 2 but remained unchanged in group 1. Main side effects were gastroinstestinal symptoms (14.3% and infections (4.8%. Two biopsy proven, steroid-responsive rejections occurred. In group 1 mean diastolic blood pressure (BP increased by 11 ± 22 mmHg (p = 0.03. Conclusions Reduced dose CNI in combination with MMF but not CNI-free-immunosuppression leads to improvement of GFR in patients with moderately elevated SCr levels after OLT. Addition of steroids resulted in increased diastolic blood pressure presumably counterbalancing the benefits of CNI withdrawal on renal function.

  9. SERUM PROTEINS, TRANSAMINASES AND PHOSPHATASES IN MALNUTRITION

    Directory of Open Access Journals (Sweden)

    H. Mohammadiha

    1976-07-01

    Full Text Available The levels of serum tota1 protein, albumin, transaminases and phosphatases were estimated in a group of children with severe Marasmus or mild malnutrition in order to identify some of the associated deficiencies in these syndromes. The biochemical pattern was similar in the normal and malnourished children.

  10. Persistently increased intestinal fraction of alkaline phosphatase

    DEFF Research Database (Denmark)

    Nathan, E; Baatrup, G; Berg, H;

    1984-01-01

    Persistent elevation of the intestinal fraction of the alkaline phosphatase (API) as an isolated finding has to our knowledge not been reported previously. It was found in a boy followed during a period of 5.5 years. The only symptom was transient periodic fatigue observed at home, but not apparent...

  11. Partial purification and characterization of phosphotyrosyl-protein phosphatase(s) from human erythrocyte cytosol

    International Nuclear Information System (INIS)

    Phosphotyrosyl-protein phosphatase activity of human erythrocyte cytosol can be resolved into two fractions by DEAE-cellulose chromatography followed by P-cellulose chromatography. Both 32P-Tyr-phosphatases are able to dephosphorylate 32P-Tyr of poly (Glu-Tyr) 4:1 but no angiotensin II and synthetic peptide Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Arg-Gly, previously phosphorylated on tyrosine residues by rat spleen tyrosine-protein kinase. Both 32P-Tyr-phosphatase activities distinctly differ from either 32P-Ser-casein phosphatase activity or acid and alkaline p-nitrophenylphosphatase activities with regard to catalytic and physico-chemical properties such as substrate specificity, chromatographic behavior, response to various effectors

  12. Redox and zinc signalling pathways converging on protein tyrosine phosphatases.

    Science.gov (United States)

    Bellomo, Elisa; Hogstrand, Christer; Maret, Wolfgang

    2014-10-01

    Zinc ions, though redox-inert, have either pro-antioxidant or pro-oxidant functions at critical junctures in redox metabolism and redox signalling. They are released from cells and in cells, e.g. from metallothionein, a protein that transduces redox signals into zinc signals (1). The released zinc ions inhibit enzymes such as protein tyrosine phosphatases (PTPs), key regulatory enzymes of cellular phosphorylation signalling. The Ki(Zn) value for inhibition of receptor PTPB is 21pM (2). The binding is about as tight as the binding of zinc to zinc metalloenzymes and suggests tonic zinc inhibition. PTP1-B (PTPN1), an enzyme regulating the insulin and leptin receptors and involved in cancer and diabetes pathobiochemistry, has a Ki(Zn) value of about 5nM (3). Zinc ions bind to the enzyme in the closed conformation when additional metal-binding ligands are brought into the vicinity of the active site. In contrast, redox reactions target cysteines in the active sites of PTPs in the open conformation. This work provides a molecular basis how hydrogen peroxide and free zinc ions generated by growth factor signalling stimulate phosphorylation signalling differentially. (Supported by the Biotechnology and Biological Sciences Research Council UK, grant BB/K001442/1.). PMID:26461422

  13. MAP kinase phosphatase 2 regulates macrophage-adipocyte interaction.

    Directory of Open Access Journals (Sweden)

    Huipeng Jiao

    Full Text Available Inflammation is critical for the development of obesity-associated metabolic disorders. This study aims to investigate the role of mitogen-activated protein kinase phosphatase 2 (MKP-2 in inflammation during macrophage-adipocyte interaction.White adipose tissues (WAT from mice either on a high-fat diet (HFD or normal chow (NC were isolated to examine the expression of MKP-2. Murine macrophage cell line RAW264.7 stably expressing MKP-2 was used to study the regulation of MKP-2 in macrophages in response to saturated free fatty acid (FFA and its role in macrophage M1/M2 activation. Macrophage-adipocyte co-culture system was employed to investigate the role of MKP-2 in regulating inflammation during adipocyte-macrophage interaction. c-Jun N-terminal kinase (JNK- and p38-specific inhibitors were used to examine the mechanisms by which MKP-2 regulates macrophage activation and macrophage-adipocytes interaction.HFD changed the expression of MKP-2 in WAT, and MKP-2 was highly expressed in the stromal vascular cells (SVCs. MKP-2 inhibited the production of proinflammatory cytokines in response to FFA stimulation in macrophages. MKP-2 inhibited macrophage M1 activation through JNK and p38. In addition, overexpression of MKP-2 in macrophages suppressed inflammation during macrophage-adipocyte interaction.MKP-2 is a negative regulator of macrophage M1 activation through JNK and p38 and inhibits inflammation during macrophage-adipocyte interaction.

  14. Revisiting histidine-dependent acid phosphatases: a distinct group of tyrosine phosphatases

    OpenAIRE

    Veeramani, Suresh; Lee, Ming-Shyue; Lin, Ming-Fong

    2009-01-01

    Although classical protein tyrosine phosphatase (PTP) superfamily members are cysteine-dependent, emerging evidence shows that many acid phosphatases (AcPs) function as histidine-dependent PTPs in vivo. These AcPs dephosphorylate phospho-tyrosine substrates intracellularly and could have roles in development and disease. In contrast to cysteine-dependent PTPs, they utilize histidine, rather than cysteine, for substrate dephosphorylation. Structural analyses reveal that active site histidine, ...

  15. Calcineurin Orchestrates Hyphal Growth, Septation, Drug Resistance and Pathogenesis of Aspergillus fumigatus: Where Do We Go from Here?

    Directory of Open Access Journals (Sweden)

    Praveen R Juvvadi

    2015-12-01

    Full Text Available Studies on fungal pathogens belonging to the ascomycota phylum are critical given the ubiquity and frequency with which these fungi cause infections in humans. Among these species, Aspergillus fumigatus causes invasive aspergillosis, a leading cause of death in immunocompromised patients. Fundamental to A. fumigatus pathogenesis is hyphal growth. However, the precise mechanisms underlying hyphal growth and virulence are poorly understood. Over the past 10 years, our research towards the identification of molecular targets responsible for hyphal growth, drug resistance and virulence led to the elucidation of calcineurin as a key signaling molecule governing these processes. In this review, we summarize our salient findings on the significance of calcineurin for hyphal growth and septation in A. fumigatus and propose future perspectives on exploiting this pathway for designing new fungal-specific therapeutics.

  16. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi.

    Science.gov (United States)

    Rispail, Nicolas; Soanes, Darren M; Ant, Cemile; Czajkowski, Robert; Grünler, Anke; Huguet, Romain; Perez-Nadales, Elena; Poli, Anna; Sartorel, Elodie; Valiante, Vito; Yang, Meng; Beffa, Roland; Brakhage, Axel A; Gow, Neil A R; Kahmann, Regine; Lebrun, Marc-Henri; Lenasi, Helena; Perez-Martin, José; Talbot, Nicholas J; Wendland, Jürgen; Di Pietro, Antonio

    2009-04-01

    Mitogen-activated protein kinase (MAPK) cascades and the calcium-calcineurin pathway control fundamental aspects of fungal growth, development and reproduction. Core elements of these signalling pathways are required for virulence in a wide array of fungal pathogens of plants and mammals. In this review, we have used the available genome databases to explore the structural conservation of three MAPK cascades and the calcium-calcineurin pathway in ten different fungal species, including model organisms, plant pathogens and human pathogens. While most known pathway components from the model yeast Saccharomyces cerevisiae appear to be widely conserved among taxonomically and biologically diverse fungi, some of them were found to be restricted to the Saccharomycotina. The presence of multiple paralogues in certain species such as the zygomycete Rhizopus oryzae and the incorporation of new functional domains that are lacking in S. cerevisiae signalling proteins, most likely reflect functional diversification or adaptation as filamentous fungi have evolved to occupy distinct ecological niches. PMID:19570501

  17. Plasma NGAL and glomerular filtration rate in cardiac transplant recipients treated with standard or reduced calcineurin inhibitor levels

    DEFF Research Database (Denmark)

    Gustafsson, Finn; Gude, Einar; Sigurdardottir, Vilborg;

    2014-01-01

    AIM: Predictors of renal recovery following conversion from calcineurin inhibitor- to proliferation signal inhibitor-based therapy are lacking. We hypothesized that plasma NGAL (P-NGAL) could predict improvement in glomerular filtration rate (GFR) after conversion to everolimus. PATIENTS & METHOD...... controlling for baseline mGFR. CONCLUSION: P-NGAL and GFR correlate with renal dysfunction in long-term heart transplantation recipients. P-NGAL did not predict improvement of renal function after conversion to everolimus-based immunosuppression.......: P-NGAL was measured in 88 cardiac transplantation patients (median 5 years post-transplant) with renal dysfunction randomized to continuation of conventional calcineurin inhibitor-based immunosuppression or switching to an everolimus-based regimen. RESULTS: P-NGAL correlated with measured GFR (m...

  18. Inibidores de calcineurina no tratamento das dermatoses alérgicas Calcineurin inhibitors in the treatment of allergic dermatitis

    Directory of Open Access Journals (Sweden)

    Ana Paula Beltran Moschione Castro

    2006-11-01

    Full Text Available OBJETIVO: Revisar o papel dos inibidores da calcineurina no tratamento das dermatoses alérgicas, com ênfase nos mecanismos de ação, eficácia e efeitos adversos tópicos e sistêmicos. FONTES DOS DADOS: Artigos de língua inglesa publicados na MEDLINE, considerando as palavras chave: pimecrolimus, tacrolimo, calcineurin inhibitors. Foram selecionados os artigos originais que apresentaram estudos controlados e estudos abertos para avaliação da eficácia, tolerabilidade e eventos adversos. Também foram avaliados artigos de revisão e relatos e série de casos, sendo estes últimos considerados apenas para avaliação de efeitos adversos. Foram consultados os sites oficiais da Food and Drug Administration e dos fabricantes de inibidores da calcineurina. SÍNTESE DOS DADOS: Os dados mostraram que inibidores de calcineurina são eficientes no tratamento da dermatite atópica leve a grave, levando a melhora dos sintomas, diminuição do número de crises e necessidade de corticoterapia tópica. Apresentam boa tolerabilidade e poucos efeitos adversos tópicos. Até o momento, não há evidências que sustentem a maior prevalência de neoplasias nos pacientes que utilizam esses medicamentos; entretanto, um adequado sistema de farmacovigilância está montado para avaliar esse aspecto. CONCLUSÕES: Os inibidores de calcineurina são uma nova classe de medicamentos para o tratamento das dermatoses alérgicas. São eficazes, tolerados e com poucos efeitos adversos. Devem ser sempre utilizados de acordo com as orientações preconizadas, e os pacientes devem ser sempre acompanhados pelo médico durante e após sua administração.OBJECTIVE: To review the role of calcineurin inhibitors in the treatment of allergic dermatitis, focusing on mechanisms of action, efficacy and topical and systemic adverse effects. SOURCES: Articles written in English and published in MEDLINE using the following keywords: pimecrolimus, tacrolimus, calcineurin inhibitors

  19. Therapeutic efficacy of topical calcineurin inhibitors in plasma cell balanitis: case series and review of the literature.

    Science.gov (United States)

    Kyriakou, A; Patsatsi, A; Patsialas, C; Sotiriadis, D

    2014-01-01

    Plasma cell balanitis of Zoon (PCBZ) and plasma cell vulvitis (PCV) are characterized as idiopathic, benign, chronic irritant mucositis. The clinical symptoms and signs usually persist or reappear after treatment withdrawal. Therefore, many therapies have been tried and are available. Recently, several reports of PCBZ and PCV treated with calcineurin inhibitors, tacrolimus and pimecrolimus, have been reported in the literature. We present 9 cases of PCBZ treated with tacrolimus 0.1% ointment (Protopic, Toyama, Japan) that showed good therapeutic results within 4 weeks of treatment, and we review the literature of PCBZ and PCV and their response to these topical immunomodulators. Based on the current literature and on the anecdotal experience, we believe that topical calcineurin inhibitors may serve as a therapeutic option in recalcitrant plasma cell balanitis and vulvitis. PMID:24434685

  20. CSACI position statement: safety of topical calcineurin inhibitors in the management of atopic dermatitis in children and adults

    OpenAIRE

    Segal, Audrey O; Ellis, Anne K; Kim, Harold L.

    2013-01-01

    Atopic dermatitis (AD) is a condition frequently encountered in medical practices across the country. Arming ourselves with appropriate and safe treatment modalities to provide relief for this chronic and relapsing inflammatory condition is of utmost importance to our patients and their families. Utilizing topical calcineurin inhibitors (TCIs) for the treatment of AD not responsive to high-potency corticosteroids, or low-potency corticosteroids and localized to the face, eyelids, and skin fol...

  1. Characterization of Saccharomyces cerevisiae protein Ser/Thr phosphatase T1 and comparison to its mammalian homolog PP5

    Directory of Open Access Journals (Sweden)

    Park Jung-Min

    2003-03-01

    Full Text Available Abstract Background Protein Ser/Thr phosphatase 5 (PP5 and its Saccharomyces cerevisiae homolog protein phosphatase T1 (Ppt1p each contain an N-terminal domain consisting of several tetratricopeptide repeats (TPRs and a C-terminal catalytic domain that is related to the catalytic subunits of protein phosphatases 1 and 2A, and calcineurin. Analysis of yeast Ppt1p could provide important clues to the function of PP5 and its homologs, however it has not yet been characterized at the biochemical or cellular level. Results The specific activity of recombinant Ppt1p toward the artificial substrates 32P-myelin basic protein (MBP and 32P-casein was similar to that of PP5. Dephosphorylation of 32P-MBP, but not 32P-casein, was stimulated by unsaturated fatty acids and by arachidoyl coenzyme A. Limited proteolysis of Ppt1p removed the TPR domain and abrogated lipid stimulation. The remaining catalytic fragment exhibited a two-fold increase in activity toward 32P-MBP, but not 32P-casein. Removal of the C terminus increased Ppt1p activity toward both substrates two fold, but did not prevent further stimulation of activity toward 32P-MBP by lipid treatment. Ppt1p was localized throughout the cell including the nucleus. Levels of PPT1 mRNA and protein peaked in early log phase growth. Conclusions Many characteristics of Ppt1p are similar to those of PP5, including stimulation of phosphatase activity with some substrates by lipids, and peak expression during periods of rapid cell growth. Unlike PP5, however, proteolytic removal of the TPR domain or C-terminal truncation only modestly increased its activity. In addition, C-terminal truncation did not prevent further activation by lipid. This suggests that these regions play only a minor role in controlling its activity compared to PP5. Ppt1p is present in both the nucleus and cytoplasm, indicating that it may function in multiple compartments. The observation that Ppt1p is most highly expressed during early log

  2. Phosphatase PTP4A3 Promotes Triple-Negative Breast Cancer Growth and Predicts Poor Patient Survival.

    Science.gov (United States)

    den Hollander, Petra; Rawls, Kathryn; Tsimelzon, Anna; Shepherd, Jonathan; Mazumdar, Abhijit; Hill, Jamal; Fuqua, Suzanne A W; Chang, Jenny C; Osborne, C Kent; Hilsenbeck, Susan G; Mills, Gordon B; Brown, Powel H

    2016-04-01

    Triple-negative breast cancer (TNBC) has the worst prognosis of all breast cancers, and women diagnosed with TNBC currently lack targeted treatment options. To identify novel targets for TNBC, we evaluated phosphatase expression in breast tumors and characterized their contributions to in vitro and in vivo growth of TNBC. Using Affymetrix microarray analysis of 102 breast cancers, we identified 146 phosphatases that were significantly differentially expressed in TNBC compared with estrogen receptor (ER)-positive tumors. Of these, 19 phosphatases were upregulated (0.66-fold; FDR = 0.05) in TNBC compared with ER-positive breast cancers. We knocked down 17 overexpressed phosphatases in four triple-negative and four ER-positive breast cancer lines using specific siRNAs and found that depletion of six of these phosphatases significantly reduced growth and anchorage-independent growth of TNBC cells to a greater extent than ER-positive cell lines. Further analysis of the phosphatase PTP4A3 (also known as PRL-3) demonstrated its requirement for G1-S cell-cycle progression in all breast cancer cells, but PTP4A3 regulated apoptosis selectively in TNBC cells. In addition, PTP4A3 inhibition reduced the growth of TNBC tumors in vivo Moreover, in silico analysis revealed the PTP4A3 gene to be amplified in 29% of basal-like breast cancers, and high expression of PTP4A3 could serve as an independent prognostic indicator for worse overall survival. Collectively, these studies define the importance of phosphatase overexpression in TNBC and lay the foundation for the development of new targeted therapies directed against phosphatases or their respective signaling pathways for TNBC patients. Cancer Res; 76(7); 1942-53. ©2016 AACR. PMID:26921331

  3. Identification and Biochemical Characterization of Protein Phosphatase 5 from the Cantharidin-Producing Blister Beetle, Epicauta chinensis

    Directory of Open Access Journals (Sweden)

    Xi'en Chen

    2013-12-01

    Full Text Available Protein phosphatase 5 (PP5 is a unique member of serine/threonine phosphatases which has been recognized in regulation of diverse cellular processes. A cDNA fragment encoding PP5 (EcPP5 was cloned and characterized from the cantharidin-producing blister beetle, E. chinensis. EcPP5 contains an open reading frame of 1500 bp that encodes a protein of 56.89 kDa. The deduced amino acid sequence shares 88% and 68% identities to the PP5 of Tribolium castaneum and humans, respectively. Analysis of the primary sequence shows that EcPP5 has three TPR (tetratricopeptide repeat motifs at its N-terminal region and contains a highly conserved C-terminal catalytic domain. RT-PCR reveals that EcPP5 is expressed in all developmental stages and in different tissues. The recombinant EcPP5 (rEcPP5 was produced in Escherichia coli and purified to homogeneity. The purified protein exhibited phosphatase activity towards pNPP (p-nitrophenyl phosphate and phosphopeptides, and its activity can be enhanced by arachidonic acid. In vitro inhibition study revealed that protein phosphatase inhibitors, okadaic acid, cantharidin, norcantharidin and endothall, inhibited its activity. Further, protein phosphatase activity of total soluble protein extract from E. chinensis adults could be impeded by these inhibitors suggesting there might be some mechanism to protect this beetle from being damaged by its self-produced cantharidin.

  4. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose

    DEFF Research Database (Denmark)

    Van Vleet, Jennifer; Jeffries, T.W.; Olsson, Lisbeth

    2008-01-01

    Overexpression of D-xylulokinase in Saccharomyces cerevisiae engineered for assimilation of xylose results in growth inhibition that is more pronounced at higher xylose concentrations. Mutants deficient in the para-nitrophenyl phosphatase, PHO13, resist growth inhibition on xylose. We studied thi...

  5. Construction of Rat Calcineurin A α cDNA Recombinant Adenovirus Vector and Its Identification

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Rat calcineurin (CaN) A α isoform (Ppp3ca) cDNA recombinant adenovirus vector was constructed in order to explore the effect of CaN on the myocardium apoptosis induced by ischemiareperfusion injury. Total RNA was isolated from the heart of the adult Wistar rat, and Ppp3ca CDS segment of approximate 1.59 kb size was amplified by reverse transcriptional PCR method. Ppp3ca cDNA segment was cloned into pMD18-T Simple vector for sequencing, and the right clone was named T-Ppp3ca. Ppp3ca cDNA segment obtained from T-Ppp3ca was ligated with pShuttle2-IRES-EGFP to construct a recombinant plasmid pShuttle2-Ppp3ca-IRES-EGFP. Ppp3ca-IRES-EG-FP expression cassette containing CMV, Ppp3ca-IRES-EGFP and SV40 polyA DNA fragment (3.97 kb) obtained from pShuttle2-Ppp3ca-IRES-EGFP was connected with pAdeno-X backbone sequence to construct a recombinant plasmid pAdeno-Ppp3ca. After being identified by PCR and enzyme digestion, recombinant plasmid pAdeno-Ppp3ca was packaged in HEK293 cells. Supernatant of adenovirus from HEK293 cells was collected after a visible cytopathic effect (CPE) appeared.The DNA of the recombinant adenovirus was extracted with the standard method. The presence of the recombinant adenovirus was verified by PCR. The results showed that sequencing results veri fied that the PCR product of Ppp3ca gene was identical to GenBank. Agarose electrophoresis showed the bands of recombined plasmid pAdeno-Ppp3ca and the recombinant adenovirus identified by enzyme digestion and PCR were in the right range corresponding with expectation. It was concluded that the recombinant adenovirus carrying rat calcineurin A α (Ppp3ca) cDNA as well as a report gene-enhancer green fluorescent protein gene was successfully constructed in this experiment.

  6. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    Science.gov (United States)

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition. PMID:27043172

  7. Identification, purification, and characterization of phosphotyrosine-specific protein phosphatases from cultured chicken embryo fibroblasts

    International Nuclear Information System (INIS)

    Tyrosine phosphorylation catalyzed by a unique class of protein kinases is an important process in both normal cell proliferation and oncogenic transformation. In this study, phosphoprotein phosphatases specific for the dephosphorylation of phosphotyrosine residues were partially purified from secondary chicken embryo fibroblasts, using 32P-labeled immunoglobulin G. The soluble activity was purified by using DEAE-cellulose and carboxymethyl cellulose column chromatography and gel filtration, and at least three enzyme species of apparent Mr 55,000 (pTPI), 50,000 (pTPII), and 95,000 (pTPIII) were resolved. All three enzymes possessed somewhat similar properties. They had a pH optimum of about 7.4, they were inhibited by Zn2+, vanadate, ATP, and ADP, and they were unaffected by divalent metal cations, EDTA, and F- under standard assay conditions employing a physiological ionic strength. These properties suggest that they represent a class of enzymes distinct from well-known phosphoseryl-phosphothreonyl-protein phosphatases and that dephosphorylation of phosphotyrosine-containing proteins may be carried out by a unique family of phosphoprotein phosphatases. Transformation by Rous sarcoma virus resulted in a small increase in phosphotyrosyl-protein phosphatase activity

  8. Latent phosphorylase phosphatases from rat liver: relationship with the heat-stable inhibitory protein.

    Science.gov (United States)

    Jett, M F; Hers, H G

    1981-08-01

    A high-speed supernatant from rat liver contains at least two latent phosphorylase phosphatases the activities of which are revealed by treatment with ethanol, urea, mercaptoethanol or trypsin. This fraction also contains at least one protein which, after heating, inhibits to various degrees the activated form(s) of the two phosphatases. The two latent enzymes can be separated by cellulase-phosphate chromatography and can be differentiated by their preferential activation by ethanol or trypsin and by their different sensitivity to the inhibitory protein after ethanol activation. Activation of the latent phosphorylase phosphatases by ethanol, urea or mercaptoethanol is not accompanied by the destruction of the precursor of the inhibitory protein whereas activation by trypsin is. However, trypsin treatment of fractions previously activated by ethanol decreases their activity and also increases their sensitivity to the inhibitory protein in a way which is unrelated to the destruction of this inhibitor. Furthermore, some protein fractions, almost free of the precursor of the inhibitory protein can be readily activated by trypsin. In is concluded that the activation of the latent phosphorylase phosphorylase phosphatases is unrelated to the destruction of the inhibitory protein. PMID:6269850

  9. Assessment and kinetics of soil phosphatase in Brazilian Savanna systems.

    Science.gov (United States)

    Ferreira, Adão S; Espíndola, Suéllen P; Campos, Maria Rita C

    2016-05-31

    The activity and kinetics of soil phosphatases are important indicators to evaluate soil quality in specific sites such as the Cerrado (Brazilian Savanna). This study aimed to determine the activity and kinetic parameters of soil phosphatase in Cerrado systems. Soil phosphatase activity was assessed in samples of native Cerrado (NC), no-tillage (NT), conventional tillage (CT) and pasture with Brachiaria brizantha (PBb) and evaluated with acetate buffer (AB), tris-HCl buffer (TB), modified universal buffer (MUB) and low MUB. The Michaelis-Menten equation and Eadie-Hofstee model were applied to obtain the kinetic parameters of soil phosphatase using different concentrations of p-nitrophenol phosphate (p-NPP). MUB showed the lowest soil phosphatase activity in all soils whereas AB in NC and NT presented the highest. Low MUB decreased interferences in the assessment of soil phosphatase activity when compared to MUB, suggesting that organic acids interfere on the soil phosphatase activity. In NC and NT, soil phosphatase activity performed with TB was similar to AB and low MUB. Km values from the Michaels-Menten equation were higher in NC than in NT, which indicate a lower affinity of phosphatase activity for the substrate in NC. Vmax values were also higher in NC than in NT. The Eadie-Hofstee model suggests that NC had more phosphatase isoforms than NT. The study showed that buffer type is of fundamental importance when assessing soil phosphatase activity in Cerrado soils. PMID:27254453

  10. Leishmanial phosphatase hydrolyzes phosphoproteins and inositol phosphates

    International Nuclear Information System (INIS)

    An extensively purified preparation of the predominant, tartrate-resistant acid phosphatase (ACP) from the external surface of Leishmania donovani promastigotes form catalyzes the dephosphorylation of several phosphoproteins; these include: pyruvate kinase, phosphorylase kinase and histones. However, the protein phosphatase activity of ACP is very low compared with that of other protein phosphates known to be involved in regulating various metabolic pathways. 32P-labelled inositoltriphosphate (IP3), a well-established second messenger derived from phosphatidylinositol-4,5-diphosphate (PIP2), was a substrate for the leishmanial acid phosphatase; incubation of the IP3 preparation with 13.2 milliunits (1 unit equals 1 μmol 4-methylumbelliferyl phosphate (MUP) cleaved per min at pH 5.5) of ACP at pH 5.5 for 4 hr resulted in hydrolysis of 75% of the radiolabelled substrate resulting in a mixture of inositoldiphosphate and inositolmonophosphate. In addition PIP2 was hydrolyzed rapidly by ACP at pH 5.5 (V/sub max/, 71 units/mg protein; k/sub m/, 4.16 μM). In contrast, to MUP which is hydrolzyed most rapidly at pH 5.5, PIP2 hydrolysis was optimal at pH 6.8. These observations raise the possibility that ACP could play a role in the host-phagocyte interaction by degrading the precursor of the second messenger, PIP2 or the second messenger itself, IP3

  11. Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana.

    Science.gov (United States)

    Shah, Muhammad Raza; Ishtiaq; Hizbullah, Syed Muhammad; Habtemariam, Solomon; Zarrelli, Armando; Muhammad, Akhtar; Collina, Simona; Khan, Inamulllah

    2016-08-01

    Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49 ± 0.02, 4.17 ± 0.03 and 87.52 ± 0.03 µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds. PMID:26118418

  12. Partial Purification and Properties of an Acid Phosphatase from Pearl Oyster Pinctada Fucata

    Institute of Scientific and Technical Information of China (English)

    柴云峰; 谢莉萍; 张荣庆

    2003-01-01

    Acid phosphatases (ACPs) are marker enzymes for the detection of lysosomes in cell fractions.However, ACPs in sea creatures are less studied than those on land.An acid phosphatase was partially purified from pearl oyster Pinctada fucata by chromatography on Sephadex G-150 and Con A-Sepharose 4B.The specific activity was 1719 U*mg-1 and with optimum pH (5.0) and temperature (60℃).The enzyme was strongly inhibited competitively by product analog WO3-4 and MoO3-4, but less inhibited by product analog AsO3-4.The enzyme could also be strongly inhibited by heavy metal ions, such as Ag+ and Cu2+, but was not affected by Pb2+.High concentrations of ethanol (64%) and NaF (10-3 mol·L-1) could inhibit the enzyme while low concentration of NaF (<10-4 mol·L-1) could slightly activate the enzyme.Other haloids (Cl-, Br-, I-) and EDTA did not have any effect on this enzyme, while tartrate and some chemical modification reagents (bromoacetic acid, formaldehyde and dithiothreitol) could inhibit the enzyme.It is concluded that the properties of the enzyme are different from many fresh water mollusks.

  13. Primary structure of rat secretory acid phosphatase and comparison to other acid phosphatases.

    Science.gov (United States)

    Roiko, K; Jänne, O A; Vihko, P

    1990-05-14

    Overlapping cDNA clones encoding rat prostatic acid phosphatase (rPAP) were isolated by using two human prostatic acid phosphatase (hPAP)-encoding cDNAs to screen rat prostatic cDNA libraries. The isolated cDNAs encompassed a total of 1626 nucleotides (nt), of which 1143 nt corresponded to the protein coding sequence encoding a mature polypeptide of 350 amino acids (aa) and a 31-aa long signal peptide-like sequence. The deduced Mr of the mature rPAP was 40,599. RNA blot analysis indicated the presence of three mRNA species (4.9, 2.3 and 1.5 kb in size) in the rat prostate. The deduced aa sequences of rPAP and hPAP show 75% identity, whereas the similarity between rPAP and human lysosomal acid phosphatase (hLAP) is only 45%. Furthermore, the sequence similarity between rPAP and rat lysosomal acid phosphatase (rLAP) is 46% at the aa level. Similar to hPAP, but unlike hLAP and rLAP, the rPAP sequence lacks a membrane-anchoring domain indicating the secretory character of this phosphatase. All six cysteines present in the overlapping areas of the mature rPAP, hPAP, rLAP and hLAP proteins are positionally conserved, suggesting that these residues are important for the tertiary structure of acid phosphatases (APs). The previously reported active site residues, two arginines and one histidine, are also conserved in these APs. PMID:2373368

  14. Downregulation of Calcineurin Gene Is Associated with Glucantime® Resiatance in Leishmania infantum

    OpenAIRE

    Reza Rafooian; Mojtaba Saffari; Setareh Mamishi; GholamHossein Edrissian; Homa Hajjaran; Elham Kazemirad; Mehdi Mohebali; Mohammad Bagher Khadem Erfan; Mansour Heidari

    2013-01-01

    Background: Pentavalent antimonials are the first line drugs for the treatment of leishmaniasis. Unresponsiveness of Leishmania spp. to antimonial drugs is a serious problem in some endemic areas. Investigations on molecular mechanisms involved in drug resistance are essential for monitoring and managing of the disease. Calcineu­rin is an essential protein phosphatase for number of signal transduction pathways in eukaryotic cells and it has a mediated role in apoptosis. This study aimed to de...

  15. Human neutrophil calmodulin-binding proteins: identification of the calmodulin-dependent protein phosphatase

    International Nuclear Information System (INIS)

    The molecular events in linking neutrophil activation and ligand binding to specific membrane receptors are mediated in part by an increase in intracellular Ca2+. One mechanism by which Ca2+ may trigger neutrophil activation is through Ca2+/calmodulin (CaM)-regulated proteins and enzymes. To determine which Ca2+/CaM-regulated enzymes may be present in the neutrophil, they have used Western blotting techniques and 125I-CaM to identify neutrophil CaM-binding proteins. Eleven proteins with molecular weights ranging from 230K to 13.5K bound 125I-CaM in a Ca2+-dependent manner. One predominant region of 125I-Cam binding was to a 59K protein; a protein with an identical mobility was labeled by an antisera against brain CaM-dependent phosphatase. Ca2+-dependent phosphatase activity, which was inhibited by the CaM antagonist trifluoperazine, was detected in a neutrophil extract; a radioimmunoassay for the phosphatase indicated that it was present in the extract at approximately 0.2 μg/mg protein. Most of the CaM-binding proteins, including the 59K protein, were rapidly degraded upon lysis of the neutrophil. There was a close correlation between the degradation of the 59K protein and the loss of Ca2+-dependent phosphatase activity in the neutrophil extract. Thus, human neutrophils contain numerous CaM-binding proteins which are presumably Ca2+/calmodulin-regulated enzymes and proteins; the 59K protein is a CaM-dependent phosphatase

  16. Redox Modulation of PTEN Phosphatase Activity by Hydrogen Peroxide and Bisperoxidovanadium Complexes.

    Science.gov (United States)

    Lee, Chang-Uk; Hahne, Gernot; Hanske, Jonas; Bange, Tanja; Bier, David; Rademacher, Christoph; Hennig, Sven; Grossmann, Tom N

    2015-11-01

    PTEN is a dual-specificity protein tyrosine phosphatase. As one of the central tumor suppressors, a thorough regulation of its activity is essential for proper cellular homeostasis. The precise implications of PTEN inhibition by reactive oxygen species (e.g. H2 O2 ) and the subsequent structural consequences remain elusive. To study the effects of PTEN inhibition, bisperoxidovanadium (bpV) complexes serve as important tools with the potential for the treatment of nerve injury or cardiac ischemia. However, their mode of action is unknown, hampering further optimization and preventing therapeutic applications. Based on protein crystallography, mass spectrometry, and NMR spectroscopy, we elucidate the molecular basis of PTEN inhibition by H2O2 and bpV complexes. We show that both molecules inhibit PTEN via oxidative mechanisms resulting in the formation of the same intramolecular disulfide, therefore enabling the reactivation of PTEN under reductive conditions. PMID:26418532

  17. Protein phosphatase 2A isotypes regulate cell surface expression of the T cell receptor

    DEFF Research Database (Denmark)

    Lauritsen, Jens Peter Holst; Menné, C; Kastrup, J;

    2001-01-01

    The mechanisms underlying T cell receptor (TCR) down-regulation have been extensively studied during the last decade. Whereas the importance of phosphorylation in this process has been established, it is less certain whether dephosphorylation plays a role in TCR down-regulation. In this study, we...... show that inhibition of the serine/threonine protein phosphatase PP2A family had a biphasic effect on TCR expression. Thus, low concentrations of PP2A inhibitors induced TCR down-regulation, whereas higher concentrations of PP2A inhibitors induced TCR up-regulation. The effect of PP2A inhibition was...... independent of phosphorylation of the CD3gamma endocytosis motif. Whereas TCR down-regulation was caused by a partial inhibition of exocytosis, TCR up-regulation was caused by an inhibition of endocytosis. The effects on exocytosis and endocytosis were not restricted to the TCR, indicating a more general...

  18. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production

    OpenAIRE

    Zeiser, Robert; Nguyen, Vu H; Beilhack, Andreas; Buess, Martin; Schulz, Stephan; Baker, Jeanette; Contag, Christopher H.; Negrin, Robert S.

    2006-01-01

    CD4+CD25+ regulatory T (Treg) cells control immunologic tolerance and antitumor immune responses. Therefore, in vivo modification of Treg function by immunosuppressant drugs has broad implications for transplantation biology, autoimmunity, and vaccination strategies. In vivo bioluminescence imaging demonstrated reduced early proliferation of donor-derived luciferase-labeled conventional T cells in animals treated with Treg cells after major histocompatibility complex mismatch bone marrow tran...

  19. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    González-Guerrero, Cristian, E-mail: cristian.gonzalez@fjd.es [Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Av. Reyes Católicos 2, 28040 Madrid (Spain); Ocaña-Salceda, Carlos, E-mail: carlos.ocana@fjd.es [Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Av. Reyes Católicos 2, 28040 Madrid (Spain); Berzal, Sergio, E-mail: sberzal@fjd.es [Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Av. Reyes Católicos 2, 28040 Madrid (Spain); Carrasco, Susana, E-mail: scarrasco@fjd.es [Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Av. Reyes Católicos 2, 28040 Madrid (Spain); Fernández-Fernández, Beatriz, E-mail: bfernandez@fjd.es [Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Av. Reyes Católicos 2, 28040 Madrid (Spain); and others

    2013-11-01

    The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed that in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to inflammatory

  20. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells

    International Nuclear Information System (INIS)

    The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed that in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to inflammatory

  1. Ure2 is involved in nitrogen catabolite repression and salt tolerance via Ca2+ homeostasis and calcineurin activation in the yeast Hansenula polymorpha.

    Science.gov (United States)

    Rodríguez, Celia; Tejera, Paula; Medina, Braulio; Guillén, Rosa; Domínguez, Angel; Ramos, José; Siverio, José M

    2010-11-26

    Disruption of HpURE2 resulted in a low expression of genes encoding nitrate-assimilatory proteins; sensitivity to Li(+), Na(+), and Cd(2+); no induction of ENA1; low levels of the GATA-type transcription factor Gat1; and low intracellular Ca(2+) levels. Gat1 levels were also very low in a Δcnb1 mutant lacking the regulatory subunit of calcineurin. The strain Δure2 was very sensitive to the calcineurin inhibitor FK506 and displayed several phenotypes reminiscent of Δcnb1. The reporter 4xCDRE-lacZ, containing calcineurin-dependent response elements in its promoter, revealed that calcineurin activation was reduced in HpΔure2. Expression of ScURE2 in Δure2 rescued nitrogen catabolite repression and Cd(2+) tolerance but not those phenotypes depending on calcineurin activation, such as salt tolerance and nitrate assimilation gene derepression. HpΔure2 showed an increased expression of the gene PMR1 encoding the Golgi Ca(2+)-ATPase, whereas that of PMC1 encoding the vacuolar Ca(2+)-ATPase remained unaltered. PMR1 up-regulation was abolished by deletion of the GATA-type transcription factor GAT2 in a HpΔure2 genetic background, and normal Ca(2+) levels were recovered. Moreover, overexpression of GAT2 or PMR1 yielded strains mimicking the phenotype of the HpΔure2. This suggests that the low Ca(2+) levels in the HpΔure2 mutant are due to the high levels of Pmr1 that replenish the Golgi Ca(2+) content, thus acting as a negative signal for Ca(2+) entry into the cell. We conclude that HpUre2 is involved in salt tolerance and also in nitrate assimilation gene derepression via Ca(2+) homeostasis regulation and calcineurin activation, which control the levels of Gat1. PMID:20880842

  2. Serum proteins, trace metals and phosphatases in psoriasis

    Directory of Open Access Journals (Sweden)

    Bhatnagar M

    1994-01-01

    Full Text Available Serum proteins, zinc, copper, acid phosphatase (AcPase and alkaline phosphatase (AlPase were studied in both active and remission phases of psoriasis. Data were compared with healthy controls, ?1, ? and ? globulins were high in active phase while ?1 and ? globulins were at par in remission phase. Serum copper was low but zinc and alkaline phosphatase were significantly high in both active and remission phases of the disease. Acid phosphatase level was at par in all the experimental groups. Study suggests a positive correlation of globulin, zinc and Alpase in active and remission phase of psoriasis.

  3. The extended human PTPome: a growing tyrosine phosphatase family.

    Science.gov (United States)

    Alonso, Andrés; Pulido, Rafael

    2016-04-01

    Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease. PMID:26573778

  4. Steroid- and calcineurin inhibitor free immunosuppression in kidney transplantation: state of the art and future developments.

    Science.gov (United States)

    Giessing, Markus; Fuller, Tom Florian; Tuellmann, Max; Slowinski, Torsten; Budde, Klemens; Liefeldt, Lutz

    2007-06-01

    Owing to the increasing disparity of organ demand and organ supply the search for optimal immunosuppressive strategies has become a central issue in kidney transplantation (KTX). In the focus today are modifications of the use of calcineurin-inhibitors (CNIs, Cyclosporine A/Tacrolimus) and steroids, as they are nephrotoxic and promote cardiovascular risk factors like arterial hypertension, hyperlipidemia and diabetes mellitus. These modifications can either be withdrawal or avoidance of these substances in combination with new and/or established immunosuppressants. Because about half of all KTXs are performed by or with the help of urologists' knowledge of modern immunosuppressive regimens is crucial also for urologists. We performed a literature research (PubMed, DIMDI, medline) for CNI- and steroid-sparing protocols and studies to elucidate their influence on graft-function and graft- and patient-survival. New substances and actual studies were also evaluated. Several published reports on CNI- and steroid-sparing protocols after KTX exist, including withdrawal, reduction or avoidance. The time of reduction seems to be crucial: an initially increased immune response should be counterbalanced by an initially intensified immunosuppression. Therefore, late steroid withdrawal seems to be safer than early withdrawal especially in Cyclosporine-based immunosuppression. Steroid avoidance also seems feasible on a CNI based regimen, especially in context with induction therapy. Withdrawal or avoidance of CNIs seems feasible with mycophenolate acid and/or induction therapy with IL 2-receptor antibodies as co-immunosuppressants. This is of interest in grafts with deteriorating function or from donors with extended criteria. Also, CNI- and steroid-free immunosuppression can be successfully performed with new immunosuppressants but results are yet premature. CNI- and/or steroid reduction, withdrawal or even avoidance is feasible. As long-term graft function is the goal of KTX

  5. Everolimus and early calcineurin inhibitor withdrawal: 3-year results from a randomized trial in liver transplantation.

    Science.gov (United States)

    Sterneck, M; Kaiser, G M; Heyne, N; Richter, N; Rauchfuss, F; Pascher, A; Schemmer, P; Fischer, L; Klein, C G; Nadalin, S; Lehner, F; Settmacher, U; Neuhaus, P; Gotthardt, D; Loss, M; Ladenburger, S; Paulus, E M; Mertens, M; Schlitt, H J

    2014-03-01

    The feasibility of de novo everolimus without calcineurin inhibitor (CNI) therapy following liver transplantation was assessed in a multicenter, prospective, open-label trial. Liver transplant patients were randomized at 4 weeks to start everolimus and discontinue CNI, or continue their current CNI-based regimen. The primary endpoint was adjusted estimated GFR (eGFR; Cockcroft-Gault) at month 11 post randomization. A 24-month extension phase followed 81/114 (71.1%) of eligible patients to month 35 post randomization. The adjusted mean eGFR benefit from randomization to month 35 was 10.1 mL/min (95% confidence interval [CI] -1.3, 21.5 mL/min, p = 0.082) in favor of CNI-free versus CNI using Cockcroft-Gault, 9.4 mL/min/1.73 m(2) (95% CI -0.4, 18.9, p = 0.053) with Modification of Diet in Renal Disease (four-variable) and 9.5 mL/min/1.73 m(2) (95% CI -1.1, 17.9, p = 0.028) using Nankivell. The difference in favor of the CNI-free regimen increased gradually over time due to a small progressive decline in eGFR in the CNI cohort despite a reduction in CNI exposure. Biopsy-proven acute rejection, graft loss and death were similar between groups. Adverse events led to study drug discontinuation in five CNI-free patients and five CNI patients (12.2% vs. 12.5%, p = 1.000) during the extension phase. Everolimus-based CNI-free immunosuppression is feasible following liver transplantation and patients benefit from sustained preservation of renal function versus patients on CNI for at least 3 years. PMID:24502384

  6. Topical calcineurin inhibitors and lymphoma risk: evidence update with implications for daily practice.

    Science.gov (United States)

    Siegfried, Elaine C; Jaworski, Jennifer C; Hebert, Adelaide A

    2013-06-01

    Topical calcineurin inhibitors (TCIs), commercially available since 2000-2001, are the first and only topical medications approved for chronic treatment of atopic dermatitis (AD) in pediatric patients and remain a welcomed alternative to topical corticosteroids. In January 2006, the US Food and Drug Administration (FDA) issued a boxed warning requirement based on a theoretical risk of malignancy (including lymphoma) with TCI use. However, in the years since, analyses of epidemiologic and clinical data have failed to demonstrate a causal relationship between TCI use and malignancy or lymphoma risk, especially for pimecrolimus cream. In fact, the observed number of malignancies and lymphomas observed both in post-marketing surveillance and reported to the FDA using its adverse events reporting system is much lower among TCI-exposed patients than the expected number for the general population. Furthermore, among children enrolled in post-marketing pediatric registry studies for both tacrolimus and pimecrolimus followed for up to 5.5 years [10,724 patient-years (PY)] or 6.5 years (16,219 PY), respectively, the observed number of malignancies and lymphomas is very low and similar to the number expected for a sample of similar size in the general population. In addition to reporting these comparative malignancy and lymphoma data, this article provides a historical overview of the boxed warning requirement and critically evaluates the preclinical, clinical, and epidemiological evidence that has thus far failed to substantiate a relationship between TCI use and malignancy. The authors also provide practical clinical advice for optimizing AD management and patient care in the context of the boxed warning. PMID:23703374

  7. Meta-analysis on the comparison between two topical calcineurin inhibitors in atopic dermatitis.

    Science.gov (United States)

    Yin, Zhi Qiang; Zhang, Wei Ming; Song, Guo Xin; Luo, Dan

    2012-06-01

    Topical calcineurin inhibitors have proved to be suitable for the treatment of AD. We conducted a meta-analysis comparing efficacy and tolerance of tacrolimus with pimecrolimus in treatment of AD. According to our meta-analysis, tacrolimus 0.1% was more effective than pimecrolimus 1% in adult patients (week 3: risk ratio [RR] 0.55, 95% confidence interval [CI] 0.42-0.73), and tacrolimus (a combination of 0.03% and 0.1%) was also more effective than pimecrolimus 1% in pediatric patients (week 6/end of study: RR 0.76, 95% CI 0.63-0.92). Regardless of age or illness severity, tacrolimus 0.1% had higher efficacy than pimecrolimus 1% in the treatment of AD (week 3: RR 0.55, 95% CI 0.42-0.72). In adult patients, tacrolimus 0.1% had more adverse events than pimecrolimus 1% (RR 1.30, 95% CI 1.02-1.66), but the incidence of adverse events between tacrolimus 0.1% (or 0.03%) and pimecrolimus 1% was not significantly different in pediatric patients. No matter whether the patients were adult or pediatric, more pimecrolimus-treated patients withdrew from the trials because of a lack of efficacy. Regardless of age and illness severity, more pimecrolimus 1%-treated patients withdrew from the trials because of a lack of efficacy, compared with tacrolimus 0.1% (or 0.03%)-treated patients. More pimecrolimus-treated pediatric patients withdrew from the trials because of adverse events (RR 0.26, 95% CI 0.1-0.68). More pimecrolimus 1%-treated patients withdrew from the trials because of adverse events, compared with tacrolimus 0.03%-treated patients, regardless of age (RR 0.1, 95% CI 0.02-0.53). In conclusion, tacrolimus ointment has higher efficacy and better tolerance than pimecrolimus cream in treatment of AD. PMID:22409418

  8. Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. isolated from acid sulphate soil

    Directory of Open Access Journals (Sweden)

    Chairatana Nilnond

    2007-03-01

    Full Text Available Acid phosphatase secreted from Ustilago sp. is able to hydrolyze organic phosphorus. These soil yeast microorganisms were isolated from rice roots grown in acid sulphate soil that generally contains highamount of aluminum (Al, iron (Fe and manganese (Mn ions. Therefore, the objectives of this study were to examine the effect of pH and some cations on acid phosphatase activity. Two isolates of Ustilago sp., AR101and AR102, were cultured in 100 mL of modified Pikovskaya's broth containing Na-phytate, pH 4, and acid phosphatase activity was determined at pH 2.0-7.0. Effect of Al, Fe, and Mn, including calcium (Ca ions,on growth of AR101 and AR102, secreted acid phosphatase activity, and the ability of acid phosphatase on the phosphorus release from Na-phytate by Ustilago sp. were investigated. It was found that the optimum pH for acid phosphatase activity was 3.5-4.5. The activity of acid phosphatase secreted from AR101 (3,690nmol min-1 mL-1 was remarkably higher than that from AR102 (956 nmol min-1 mL-1. Aluminum, iron, manganese and calcium ions in the medium did not affect the growth of either isolate. The activity of secretedacid phosphatase of AR101 was inhibited by Al and Ca ion, and synthesis of acid phosphatase of Ustilago sp. AR102 was possibly stimulated by Fe ion. Both AR101 and AR102 solubilized Na-phytate, resulting in therelease of P. However, some amount of released P was then precipitated with Al and Fe ions as the highly insoluble Fe- or Al- phosphate.

  9. Role of Striatal-Enriched Tyrosine Phosphatase in Neuronal Function.

    Science.gov (United States)

    Kamceva, Marija; Benedict, Jessie; Nairn, Angus C; Lombroso, Paul J

    2016-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is a CNS-enriched protein implicated in multiple neurologic and neuropsychiatric disorders. STEP regulates key signaling proteins required for synaptic strengthening as well as NMDA and AMPA receptor trafficking. Both high and low levels of STEP disrupt synaptic function and contribute to learning and behavioral deficits. High levels of STEP are present in human postmortem samples and animal models of Alzheimer's disease, Parkinson's disease, and schizophrenia and in animal models of fragile X syndrome. Low levels of STEP activity are present in additional disorders that include ischemia, Huntington's chorea, alcohol abuse, and stress disorders. Thus the current model of STEP is that optimal levels are required for optimal synaptic function. Here we focus on the role of STEP in Alzheimer's disease and the mechanisms by which STEP activity is increased in this illness. Both genetic lowering of STEP levels and pharmacological inhibition of STEP activity in mouse models of Alzheimer's disease reverse the biochemical and cognitive abnormalities that are present. These findings suggest that STEP is an important point for modulation of proteins required for synaptic plasticity. PMID:27190655

  10. Protein Phosphatase-1 regulates Rift Valley fever virus replication.

    Science.gov (United States)

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-03-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target. PMID:26801627

  11. Structural mechanisms of plant glucan phosphatases in starch metabolism.

    Science.gov (United States)

    Meekins, David A; Vander Kooi, Craig W; Gentry, Matthew S

    2016-07-01

    Glucan phosphatases are a recently discovered class of enzymes that dephosphorylate starch and glycogen, thereby regulating energy metabolism. Plant genomes encode two glucan phosphatases, called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), that regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. Recently, the structures of both SEX4 and LSF2 were determined, with and without phosphoglucan products bound, revealing the mechanism for their unique activities. This review explores the structural and enzymatic features of the plant glucan phosphatases, and outlines how they are uniquely adapted to perform their cellular functions. We outline the physical mechanisms used by SEX4 and LSF2 to interact with starch glucans: SEX4 binds glucan chains via a continuous glucan-binding platform comprising its dual-specificity phosphatase domain and carbohydrate-binding module, while LSF2 utilizes surface binding sites. SEX4 and LSF2 both contain a unique network of aromatic residues in their catalytic dual-specificity phosphatase domains that serve as glucan engagement platforms and are unique to the glucan phosphatases. We also discuss the phosphoglucan substrate specificities inherent to SEX4 and LSF2, and outline structural features within the active site that govern glucan orientation. This review defines the structural mechanism of the plant glucan phosphatases with respect to phosphatases, starch metabolism and protein-glucan interaction, thereby providing a framework for their application in both agricultural and industrial settings. PMID:26934589

  12. Human placental alkaline phosphatase in liver and intestine

    International Nuclear Information System (INIS)

    Three distinct forms of human alkaline phosphatase, presumably isozymes, are known, each apparently associated with a specific tissue. These are placental, intestinal, and liver (kidney and bone). The authors have used a specific immunoassay and HPLC to show that placental alkaline phosphatase is also present in extracts of liver and intestine in appreciable amounts

  13. Crystallization and preliminary crystallographic analysis of a calcineurin B-like protein 1 (CBL1) mutant from Ammopiptanthus mongolicus

    International Nuclear Information System (INIS)

    Recombinant calcineurin B-like protein 1 from Ammopiptanthus mongolicus (AmCBL1) was overexpressed, purified and crystallized. Calcineurin B-like protein 1 (CBL1) is a calcium sensor in plants. It transmits the calcium signal through the downstream protein CBL-interacting protein kinase (CIPK). CBL1 and CIPK play crucial roles in the response to environmental stresses such as low K+, osmotic shock, high salt, cold and drought. Recombinant CBL1 from Ammopiptanthus mongolicus (AmCBL1) was overexpressed, purified and crystallized. However, the crystal did not diffract well. A mutant prepared using the surface-entropy method and crystallized using the hanging-drop method at 298 K with PEG 2000 MME as a precipitant diffracted to 2.90 Å resolution. The crystal belonged to space group P21212, with unit-cell parameters a = 99.87, b = 114.42, c = 63.80 Å, α = β = γ = 90.00° and three molecules per asymmetric unit

  14. Crystallization and preliminary X-ray diffraction analysis of rat protein tyrosine phosphatase η

    Energy Technology Data Exchange (ETDEWEB)

    Matozo, Huita C.; Nascimento, Alessandro S.; Santos, Maria A. M. [Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP (Brazil); Iuliano, Rodolfo [Dipartimento di Medicina Sperimentale e Clinica, Facoltà di Medicina e Chirurgia, Università di Catanzaro, 88100 Catanzaro (Italy); Fusco, Alfredo [Dipartimento di Biologia e Patologia Cellulare e Molecolare, c/o Instituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facolta di Medicina e Chirurgia, Università degli Studi di Napoli ‘Federico II’, Via Pansini 5, 80131 Naples (Italy); NOGEC (Naples Oncogenomocs Center)-CEINGE, Biotecnologie Avanzate, Via Comunale Margherita 482, 80145 Naples (Italy); Polikarpov, Igor, E-mail: ipolikarpov@if.sc.usp.br [Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP (Brazil); Laboratório Nacional de Luz Síncrotron, Campinas, SP (Brazil)

    2006-09-01

    In this study, the catalytic domain of rat protein tyrosine phosphatase η was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. The rat protein tyrosine phosphatase η (rPTPη) is a cysteine-dependent phosphatase which hydrolyzes phosphoester bonds in proteins and other molecules. rPTPη and its human homologue DEP-1 are involved in neoplastic transformations. Thus, expression of the protein is reduced in all oncogene-transformed thyroid cell lines and is absent in highly malignant thyroid cells. Moreover, consistent with the suggested tumour suppression role of PTPη, inhibition of the tumorigenic process occurs after its exogenous reconstitution, suggesting that PTPη might be important for gene therapy of cancers. In this study, the catalytic domain of rPTPη was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.87 Å resolution. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 46.46, b = 63.07, c = 111.64 Å, and contains one molecule per asymmetric unit.

  15. Activation of SPS from darkened spinach leaves by an endogenous protein phosphatase

    International Nuclear Information System (INIS)

    Sucrose-phosphate synthase from darkened spinach leaves has a low activation state but can undergo a time-dependent activation in desalted leaf extracts that is inhibited by Pi, molybdate, okadaic acid and vanadate, but stimulated by fluoride. SPS labeled in vivo with [32P]Pi in excised leaves in the dark loses incorporated 32P with time when extracts are incubated at 25 degree C. This loss is largely prevented by vanadate, suggesting that an endogenous protein phosphatase can use SPS as substrate. Changes in phosphorylation state are closely paralleled by changes in SPS activation state. The spontaneous activation achieved in the extracts can be reversed by addition of 2 mM MgATP. Feeding okadaic acid to darkened leaves prevents light activation of SPS suggesting that the endogenous protein phosphatase is similar to the type-1 enzyme of animal tissues. Overall, the results are consistent with the notion that light activation of SPS involves dephosphorylation of inhibitory phosphorylation site(s). Regulation of the protein phosphatase by Pi may be of physiological significance

  16. Phosphatase activity and organic phosphorus turnover on a high Arctic glacier

    Directory of Open Access Journals (Sweden)

    M. Stibal

    2009-05-01

    Full Text Available Arctic glacier surfaces harbour abundant microbial communities consisting mainly of heterotrophic and photoautotrophic bacteria. The microbes must cope with low concentrations of nutrients and with the fact that both the dissolved and debris-bound nutrient pools are dominated by organic phases. Here we provide evidence that phosphorus (P is deficient in the supraglacial environment on a Svalbard glacier, we quantify the enzymatic activity of phosphatases in the system and we estimate the contribution of the microbes to the cycling of the dominant organic P in the supraglacial environment. Incubation of cryoconite debris revealed significant phosphatase activity in the samples (19–67 nmol MUP g−1 h−1. It was inhibited by inorganic P during incubations and had its optimum at around 30°C. The phosphatase activity measured at near-in situ temperature and substrate concentration suggests that the available dissolved organic P can be turned over by microbes within ~3–11 h on the glacier surface. By contrast, the amount of potentially bioavailable debris-bound organic P is sufficient for a whole ablation season. However, it is apparent that some of this potentially bioavailable debris-bound P is not accessible to the microbes.

  17. Involvement of Phosphatases in Proliferation, Maturation, and Hemoglobinization of Developing Erythroid Cells

    Directory of Open Access Journals (Sweden)

    Eitan Fibach

    2011-01-01

    Full Text Available Production of RBCs is triggered by the action of erythropoietin (Epo through its binding to surface receptors (Epo-R on erythroid precursors in the bone marrow. The intensity and the duration of the Epo signal are regulated by several factors, including the balance between the activities of kinesase and phosphatases. The Epo signal determines the proliferation and maturation of the precursors into hemoglobin (Hb-containing RBCs. The activity of various protein tyrosine phosphatases, including those involved in the Epo pathway, can be inhibited by sodium orthovanadate (Na3VO4, vanadate. Adding vanadate to cultured erythroid precursors of normal donors and patients with β-thalassemia enhanced cell proliferation and arrested maturation. This was associated with an increased production of fetal hemoglobin (HbF. Increased HbF in patients with β-hemoglobinopathies (β-thalassemia and sickle cell disease ameliorates the clinical symptoms of the disease. These results raise the possibility that specific and nontoxic inhibitors of phosphatases may be considered as a therapeutic modality for elevating HbF in patients with β-hemoglobinopathies as well as for intensifying the Epo response in other forms of anemia.

  18. Inositol monophosphate phosphatase genes of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Parish Tanya

    2010-02-01

    Full Text Available Abstract Background Mycobacteria use inositol in phosphatidylinositol, for anchoring lipoarabinomannan (LAM, lipomannan (LM and phosphatidylinosotol mannosides (PIMs in the cell envelope, and for the production of mycothiol, which maintains the redox balance of the cell. Inositol is synthesized by conversion of glucose-6-phosphate to inositol-1-phosphate, followed by dephosphorylation by inositol monophosphate phosphatases (IMPases to form myo-inositol. To gain insight into how Mycobacterium tuberculosis synthesises inositol we carried out genetic analysis of the four IMPase homologues that are present in the Mycobacterium tuberculosis genome. Results Mutants lacking either impA (Rv1604 or suhB (Rv2701c were isolated in the absence of exogenous inositol, and no differences in levels of PIMs, LM, LAM or mycothiol were observed. Mutagenesis of cysQ (Rv2131c was initially unsuccessful, but was possible when a porin-like gene of Mycobacterium smegmatis was expressed, and also by gene switching in the merodiploid strain. In contrast, we could only obtain mutations in impC (Rv3137 when a second functional copy was provided in trans, even when exogenous inositol was provided. Experiments to obtain a mutant in the presence of a second copy of impC containing an active-site mutation, in the presence of porin-like gene of M. smegmatis, or in the absence of inositol 1-phosphate synthase activity, were also unsuccessful. We showed that all four genes are expressed, although at different levels, and levels of inositol phosphatase activity did not fall significantly in any of the mutants obtained. Conclusions We have shown that neither impA, suhB nor cysQ is solely responsible for inositol synthesis. In contrast, we show that impC is essential for mycobacterial growth under the conditions we used, and suggest it may be required in the early stages of mycothiol synthesis.

  19. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    International Nuclear Information System (INIS)

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either 3H-fatty acids or [3H]ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the 3H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of [3H]ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from 3H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the 3H-fatty acid and the [3H]ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the [3H]ethanolamine label from the purified alkaline phosphatase. The 3H radioactivity in alkaline phosphatase purified from [3H]ethanolamine-labeled cells comigrated with authentic [3H]ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the 3H-fatty acid and [3H]ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase

  20. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  1. Protein phosphatase 2A (PP2A) regulates interleukin-4-mediated STAT6 signaling

    DEFF Research Database (Denmark)

    Woetmann, Anders; Brockdorff, Johannes; Lovato, Paola;

    2002-01-01

    Interleukin-4 (IL-4) plays a pivotal role in the induction and maintenance of allergy by promoting Th2 differentiation and B cell isotype switching to IgE. Studies on STAT6-deficient mice have demonstrated the essential role of STAT6 in mediating the biological functions of IL-4. IL-4 induces...... of protein phosphatase 2A (PP2A) induces serine phosphorylation of STAT6 and severely inhibits DNA binding of STAT6. In contrast, IL-4-induced tyrosine phosphorylation of Janus kinase-1 and STAT6 is not affected, suggesting that PP2A acts downstream of Janus kinases in IL-4 signaling. In conclusion, we...

  2. Rif1 Controls DNA Replication Timing in Yeast through the PP1 Phosphatase Glc7

    OpenAIRE

    Stefano Mattarocci; Maksym Shyian; Laure Lemmens; Pascal Damay; Dogus Murat Altintas; Tianlai Shi; Clinton R. Bartholomew; Thomä, Nicolas H.; Christopher F.J. Hardy; David Shore

    2014-01-01

    The Rif1 protein, originally identified as a telomere-binding factor in yeast, has recently been implicated in DNA replication control from yeast to metazoans. Here, we show that budding yeast Rif1 protein inhibits activation of prereplication complexes (pre-RCs). This inhibitory function requires two N-terminal motifs, RVxF and SILK, associated with recruitment of PP1 phosphatase (Glc7). In G1 phase, we show both that Glc7 interacts with Rif1 in an RVxF/SILK-dependent manner and that two pro...

  3. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research

    Directory of Open Access Journals (Sweden)

    Kirstin eHobiger

    2015-02-01

    Full Text Available The transmembrane protein Ci-VSP from the ascidian Ciona intestinalis was described as first member of a fascinating family of enzymes, the voltage sensitive phosphatases (VSPs. Ci-VSP and its voltage-activated homologs from other species are stimulated by positive membrane potentials and dephosphorylate the head groups of negatively charged phosphoinositide phosphates (PIPs. In doing so, VSPs act as control centers at the cytosolic membrane surface, because they intervene in signaling cascades that are mediated by PIP lipids. The characteristic motif CX5RT/S in the active site classifies VSPs as members of the huge family of cysteine-based protein tyrosine phosphatases (PTPs. Although PTPs have already been well characterized regarding both, structure and function, their relationship to VSPs has drawn only limited attention so far. Therefore, the intention of this review is to give a short overview about the extensive knowledge about PTPs in relation to the facts known about VSPs. Here, we concentrate on the structural features of the catalytic domain which are similar between both classes of phosphatases and their consequences for the enzymatic function. By discussing results obtained from crystal structures, molecular dynamics simulations, and mutagenesis studies, a possible mechanism for the catalytic cycle of VSPs is presented based on that one proposed for PTPs. In this way, we want to link the knowledge about the catalytic activity of VSPs and PTPs.

  4. Comment je traite ... la dermatite atopique par le pimecrolimus topique (Elidel). Le paradigme émergent des inhibiteurs de la calcineurine.

    OpenAIRE

    Pierard, Claudine; Quatresooz, Pascale; Pierard, Gérald

    2005-01-01

    Topical calcineurin inhibitors, also called topical immunomodulators or downregulators, represent an innovative class of non-steroidal anti-inflammatory agents. Pimecrolimus 1% cream (Elidel) is one representative drug available for the treatment of atopic dermatitis. Unlike topical steroids, this drug does not affect collagen synthesis and does not alter the dendritic cell functions and the barrier function of the skin.

  5. The endogenous inhibitor of protein kinase-C in the rat ovary is a protein phosphatase.

    Science.gov (United States)

    Eyster, K M; Waller, M S; Miller, T L; Miller, C J; Johnson, M J; Persing, J S

    1993-09-01

    Calcium- and lipid-dependent protein kinase (PKC) activity in the ovary of the pseudopregnant rat is masked by an endogenous inhibitor of PKC. These studies were undertaken to examine the mechanism of action of the endogenous inhibitor of PKC in the rat ovary. The addition of the phosphatase inhibitors calyculin-A (0.09 nM), microcystin-LR (6.4 nM), and okadaic acid (10 nM) resulted in the loss of PKC inhibitory activity and an increase in basal PKC activity in rat ovarian cytosol. In phosphatase assays, significant dephosphorylation of histone-III-S or myelin basic protein that had been phosphorylated by PKC occurred within 4 min after the addition of ovarian cytosol from the pseudopregnant rat. This dephosphorylation was prevented from the pseudopregnant rat. This dephosphorylation was prevented by the addition of calyculin-A (0.73 nM) and was removed by fractionation of ovarian cytosol on diethylaminoethyl cellulose. No inhibition of PKC activity was observed when the PKC-specific peptides AcMBP-(4-14) and [Ser25]PKC-(19-31) were used as the substrate for phosphorylation. In addition, rat ovarian cytosol did not exhibit phosphatase activity when the peptide AcMBP-(4-14) was used as the substrate. Addition of ovarian cytosol resulted in dephosphorylation of phosphorylase-alpha phosphorylated by phosphorylase kinase, but not dephosphorylation of histone-II-A or histone-VIII-S phosphorylated by PKA. The data suggest that the endogenous inhibitor of PKC in the rat ovary is a protein phosphatase. PMID:7689949

  6. Energy-requiring translocation of the OmpA protein and alkaline phosphatase of Escherichia coli into inner membrane vesicles.

    OpenAIRE

    Rhoads, D B; Tai, P C; Davis, B D

    1984-01-01

    In developing a reliable in vitro system for translocating bacterial proteins, we found that the least dense subfraction of the membrane of Escherichia coli was superior to the total inner membrane, both for a secreted protein (alkaline phosphatase) and for an outer membrane protein (OmpA). Compounds that eliminated the proton motive force inhibited translocation, as already observed in cells; since protein synthesis continued, the energy for translocation appears to be derived from the energ...

  7. Enzymatic methods for the determination of pollution in seawater using salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius

    International Nuclear Information System (INIS)

    Highlights: • Alkaline phosphatase from eggs of the sea urchin (StAP) proved to be active in seawater. • Activity of StAP is inhibited by very low concentrations of heavy metal. • A test to assess sea and fresh water quality has been developed basing on StAP. • For the first time a salt resistant alkaline phosphatase has been found in eukaryote. - Abstract: A new salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius (StAP) has been shown to have a unique property to hydrolyze substrate in seawater without loss of enzymatic activity. The enzyme has pH optimum at 8.0–8.5. Model experiments showed various concentrations of copper, zinc, cadmium and lead added to seawater or a standard buffer mixture to inhibit completely the enzyme activity at the concentrations of 15–150 μg/l. StAP sensitivity to the presence in seawater of metals, pesticides, detergents and oil products appears to be considerably less. Samples of seawater taken from aquatic areas of the Troitsy Bay of the Peter the Great Bay, Japan Sea have been shown to inhibit the enzyme activity; the same was shown for the samples of fresh waters. The phosphatase inhibition assay developed proved to be highly sensitive, technically easy-to use allowing to test a great number of samples

  8. Plasma acid and alkaline phosphatase in patients with breast cancer.

    Science.gov (United States)

    Nguyen, M; Bonneterre, J; Hecquet, B; Desoize, B; Demaille, A

    1991-01-01

    Acid and alkaline phosphatase were determined in 107 breast cancer patients to study their potential value in case of bone metastases. The patients were divided into 4 groups: A, patients without metastases (n = 34); B, metastatic patients without bone lesions (n = 37); C, patients with metastases in and outside of bones (n = 24), D, patients with bone-only metastases (n = 12). Tartrate resistant acid phosphatase (TR-ACP), and bone alkaline phosphatase (bone-ALP) were significantly higher in patients with metastases than in patients without. However, no difference in TR-ACP was observed between subgroups of metastatic patients. PMID:2064338

  9. Radiation-induced alterations in splenic acid phosphatase of pigeons

    International Nuclear Information System (INIS)

    The effect of total body ν-irradiation with sub-lethal dose (400 rad) on acid phosphatase has been studied in spleen of pigeons. The specific activity of acid phosphatase increased significantly 48 hr and 72 hr after irradiation. This increase was accompanied by a substantial reduction in per cent 'bound' activity. The histochemical observation after irradiation confirmed the result obtained by quantitative biochemical study. This increase in acid phosphatase activity may be attributed to an increased permeability of lysosomal membrane caused by damaged lymphocytes (lymphocytolysis) after ν-irradiation. (author)

  10. Control of Acid Phosphatases Expression from Aspergillus niger by Soil Characteristics

    Directory of Open Access Journals (Sweden)

    Ely Nahas

    2015-10-01

    Full Text Available ABSTRACTThis work studied the acid phosphatase (APase activity from culture medium (extracellular, eAPase and mycelial extract (intracellular, iAPase ofAspergillus niger F111. The influence of fungus growth and phosphate concentration of the media on the synthesis and secretion of phosphatase was demonstrated. The effects of pH, substrate concentration and inorganic and organic compounds added to the reaction mixture on APase activity were also studied. Both enzymes were repressed by high concentrations of phosphate. Overexpression of iAPase in relation to eAPase was detected; iAPase activity was 46.1 times higher than eAPase. The maximal activity of eAPase was after 24h of fungus growth and for iAPase was after 96h. Optimal pH and substrate concentrations were 4.5 and 8.0 mM, respectively. Michaelis-Menten constant (Km for the hydrolysis of p-nitrophenyl phosphate was 0.57 mM with Vmax = 14,285.71 U mg-1 mycelium for the iAPase and 0.31 mM with V max = 147.06 U mg-1 mycelium for eAPase. Organic substances had little effect on acid phosphatases when compared with the salts. Both the APases were inhibited by 10 mM KH 2PO4 and 5 mM (NH42MoO4; eAPase was also inhibited by 1 mM CoCl2.

  11. RPM-1 uses both ubiquitin ligase and phosphatase-based mechanisms to regulate DLK-1 during neuronal development.

    Directory of Open Access Journals (Sweden)

    Scott T Baker

    2014-05-01

    Full Text Available The Pam/Highwire/RPM-1 (PHR proteins are key regulators of neuronal development that function in axon extension and guidance, termination of axon outgrowth, and synapse formation. Outside of development, the PHR proteins also regulate axon regeneration and Wallerian degeneration. The PHR proteins function in part by acting as ubiquitin ligases that degrade the Dual Leucine zipper-bearing Kinase (DLK. Here, we show that the Caenorhabditis elegans PHR protein, Regulator of Presynaptic Morphology 1 (RPM-1, also utilizes a phosphatase-based mechanism to regulate DLK-1. Using mass spectrometry, we identified Protein Phosphatase Magnesium/Manganese dependent 2 (PPM-2 as a novel RPM-1 binding protein. Genetic, transgenic, and biochemical studies indicated that PPM-2 functions coordinately with the ubiquitin ligase activity of RPM-1 and the F-box protein FSN-1 to negatively regulate DLK-1. PPM-2 acts on S874 of DLK-1, a residue implicated in regulation of DLK-1 binding to a short, inhibitory isoform of DLK-1 (DLK-1S. Our study demonstrates that PHR proteins function through both phosphatase and ubiquitin ligase mechanisms to inhibit DLK. Thus, PHR proteins are potentially more accurate and sensitive regulators of DLK than originally thought. Our results also highlight an important and expanding role for the PP2C phosphatase family in neuronal development.

  12. Radioimmunoassay of human intestinal alkaline phosphatase

    International Nuclear Information System (INIS)

    A new method of radioimmunoassay using the double antibody method for human intestinal alkaline phosphatase (ALP) was first elaborated. The following results were obtained: 1) In this system, the optimal antibody concentration is 10,000 times the dilution of the original anti-serum, and the optimal assay range is 0.5 to 25 ng. Enzymatic activity of 1 ng intestinal ALP is 4.1 King-Armstrong units. 2) In this system, the sera including intestinal ALP are divided to two groups. One group shows a dose response curve similar to that of purified intestinal ALP, and the other shows a lesser one. This reason is not clear. Hepatic ALP, osseous ALP and placental ALP in the sera show no response in this system. 3) In this system, the B/T value of 50 μg of purified human placental ALP is almost equal to 1 ng of purified human intestinal ALP. Similarly, the B/T value of 50 μg of purified human intestinal ALP is equal to almost 5 ng of purified human placental ALP. This shows that cross-reaction exists between intestinal and placental ALPs at high concentrations. (J.P.N.)

  13. Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase

    OpenAIRE

    Kim, Soo-A; Vacratsis, Panayiotis O.; Firestein, Ron; Cleary, Michael L.; Dixon, Jack E.

    2003-01-01

    The myotubularin (MTM) family constitutes one of the most highly conserved protein-tyrosine phosphatase subfamilies in eukaryotes. MTM1, the archetypal member of this family, is mutated in X-linked myotubular myopathy, whereas mutations in the MTM-related (MTMR)2 gene cause the type 4B1 Charcot–Marie-Tooth disease, a severe hereditary motor and sensory neuropathy. In this study, we identified a protein that specifically interacts with MTMR2 but not MTM1. The interacting protein was shown by m...

  14. Serine/threonine phosphatases in socioeconomically important parasitic nematodes--prospects as novel drug targets?

    Science.gov (United States)

    Campbell, Bronwyn E; Hofmann, Andreas; McCluskey, Adam; Gasser, Robin B

    2011-01-01

    Little is known about the fundamental biology of parasitic nematodes (=roundworms) that cause serious diseases, affecting literally billions of animals and humans worldwide. Unlocking the biology of these neglected pathogens using modern technologies will yield crucial and profound knowledge of their molecular biology, and could lead to new treatment and control strategies. Supported by studies in the free-living nematode, Caenorhabditis elegans, some recent investigations have provided improved insights into selected protein phosphatases (PPs) of economically important parasitic nematodes (Strongylida). In the present article, we review this progress and assess the potential of serine/threonine phosphatase (STP) genes and/or their products as targets for new nematocidal drugs. Current information indicates that some small molecules, known to specifically inhibit PPs, might be developed as nematocides. For instance, some cantharidin analogues are known to display exquisite PP-inhibitor activity, which indicates that some of them could be designed and tailored to specifically inhibit selected STPs of nematodes. This information provides prospects for the discovery of an entirely novel class of nematocides, which is of paramount importance, given the serious problems linked to anthelmintic resistance in parasitic nematode populations of livestock, and has the potential to lead to significant biotechnological outcomes. PMID:20732402

  15. Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Jin, Tiantian; Yu, Haibo; Huang, Xu-Feng

    2016-01-01

    Protein Tyrosine Phosphatase 1B (PTP1B) has been recognized as a promising therapeutic target for treating obesity, diabetes, and certain cancers for over a decade. Previous drug design has focused on inhibitors targeting the active site of PTP1B. However, this has not been successful because the active site is positively charged and conserved among the protein tyrosine phosphatases. Therefore, it is important to develop PTP1B inhibitors with alternative inhibitory strategies. Using computational studies including molecular docking, molecular dynamics simulations, and binding free energy calculations, we found that lupane triterpenes selectively inhibited PTP1B by targeting its more hydrophobic and less conserved allosteric site. These findings were verified using two enzymatic assays. Furthermore, the cell culture studies showed that lupeol and betulinic acid inhibited the PTP1B activity stimulated by TNFα in neurons. Our study indicates that lupane triterpenes are selective PTP1B allosteric inhibitors with significant potential for treating those diseases with elevated PTP1B activity. PMID:26865097

  16. Inhibitors of tissue-nonspecific alkaline phosphatase: design, synthesis, kinetics, biomineralization and cellular tests.

    Science.gov (United States)

    Debray, Julien; Chang, Lei; Marquès, Stéphanie; Pellet-Rostaing, Stéphane; Le Duy, Do; Mebarek, Saida; Buchet, René; Magne, David; Popowycz, Florence; Lemaire, Marc

    2013-12-15

    Chronic kidney disease (CKD) is associated with numerous metabolic and endocrine disturbances, including abnormalities of calcium and phosphate metabolism and an inflammatory syndrome. The latter occurs early in the course of CKD and contributes to the development and progression of vascular calcification. A few therapeutic strategies are today contemplated to target vascular calcification in patients with CKD: vitamin K2, calcimimetics and phosphate binders. However, none has provided complete prevention of vascular calcification and there is an urgent need for alternate efficient treatments. Recent findings indicate that tissue-nonspecific alkaline phosphatase (TNAP) may represent a very promising drug target due to its participation in mineralization by vascular smooth muscle cells. We report the synthesis of four levamisole derivatives having better inhibition property on TNAP than levamisole. Their IC50, Ki and water solubility have been determined. We found that the four inhibitors bind to TNAP in an uncompetitive manner and are selective to TNAP. Indeed, they do not inhibit intestinal and placental alkaline phosphatases. Survival MTT tests on human MG-63 and Saos-2 osteoblast-like cells have been performed in the presence of inhibitors. All the inhibitors are not toxic at concentrations that block TNAP activity. Moreover, they are able to significantly reduce mineralization in MG63 and Saos-2 osteoblast-like cells, indicating that they are promising molecules to prevent vascular calcification. PMID:24183741

  17. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Domenech

    2011-01-01

    Full Text Available Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP or phosphorylcholine (Pcho. The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs: one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure.

  18. [Glucose-6-phosphatase from nuclear envelope in rat liver].

    Science.gov (United States)

    González-Mujica, Freddy

    2008-06-01

    Nuclear envelope (NE) and microsomal glucosa-6-phosphatase (G-6-Pase) activities were compared. Intact microsomes were unable to hydrolyze mannose-6-phosphate (M-6-P), on the other hand, intact NE hydrolyzes this substrate. Galactose-6-phosphate showed to be a good substrate for both NE and microsomal enzymes, with similar latency to that obtained with M-6-P using microsomes. In consequence, this substrate was used to measure the NE integrity. The kinetic parameters (Kii and Kis) of the intact NE G-6-Pase for the phlorizin inhibition using glucose-6-phosphate (G-6-P) and M-6-P as substrates, were very similar. The NE T1 transporter was more sensitive to amiloride than the microsomal T1. The microsomal system was more sensitive to N-ethylmalemide (NEM) than the NE and the latter was insensitive to anion transport inhibitors DIDS and SITS, which strongly affect the microsomal enzyme. The above results allowed to postulate the presence of a hexose-6-phosphate transporter in the NE which is able to carry G-6-P and M-6-P, and perhaps other hexose-6-phosphate which could be different from that present in microsomes or, if it is the same, its activity could by modified by the membrane system where it is included. The higher PPi hydrolysis activity of the intact NE G-6-Pase in comparison to the intact microsomal, suggests differences between the Pi/PPi transport (T2) of both systems. The lower sensitivity of the NE G-6-Pase to NEM suggests that the catalytic subunit of this system has some differences with the microsomal isoform. PMID:18717264

  19. Phosphatase of Regenerating Liver and Its Association with Tumors

    Institute of Scientific and Technical Information of China (English)

    Yuqiong Liu; Huixiang Li

    2007-01-01

    @@ INTRODUCTION Protein kinases and protein phosphatases play key roles in regulating functions of diverse proteins which control numerous essential events in eukaryotes, such as transcriptional regulation, apoptosis, cell cycle progression, protein degradation and protein trafficking[1-3].

  20. Crystal Structures of Type-II Inositol Polyphosphate 5-Phosphatase INPP5B with Synthetic Inositol Polyphosphate Surrogates Reveal New Mechanistic Insights for the Inositol 5-Phosphatase Family.

    Science.gov (United States)

    Mills, Stephen J; Silvander, Camilla; Cozier, Gyles; Trésaugues, Lionel; Nordlund, Pär; Potter, Barry V L

    2016-03-01

    The inositol polyphosphate 5-phosphatase INPP5B hydrolyzes the 5-phosphate group from water- and lipid-soluble signaling messengers. Two synthetic benzene and biphenyl polyphosphates (BzP/BiPhPs), simplified surrogates of inositol phosphates and phospholipid headgroups, were identified by thermodynamic studies as potent INPP5B ligands. The X-ray structure of the complex between INPP5B and biphenyl 3,3',4,4',5,5'-hexakisphosphate [BiPh(3,3',4,4',5,5')P6, IC50 5.5 μM] was determined at 2.89 Å resolution. One inhibitor pole locates in the phospholipid headgroup binding site and the second solvent-exposed ring binds to the His-Tag of another INPP5B molecule, while a molecule of inorganic phosphate is also present in the active site. Benzene 1,2,3-trisphosphate [Bz(1,2,3)P3] [one ring of BiPh(3,3',4,4',5,5')P6] inhibits INPP5B ca. 6-fold less potently. Co-crystallization with benzene 1,2,4,5-tetrakisphosphate [Bz(1,2,4,5)P4, IC50 = 6.3 μM] yielded a structure refined at 2.9 Å resolution. Conserved residues among the 5-phosphatase family mediate interactions with Bz(1,2,4,5)P4 and BiPh(3,3',4,4',5,5')P6 similar to those with the polar groups present in positions 1, 4, 5, and 6 on the inositol ring of the substrate. 5-Phosphatase specificity most likely resides in the variable zone located close to the 2- and 3-positions of the inositol ring, offering insights to inhibitor design. We propose that the inorganic phosphate present in the INPP5B-BiPh(3,3',4,4',5,5')P6 complex mimics the postcleavage substrate 5-phosphate released by INPP5B in the catalytic site, allowing elucidation of two new key features in the catalytic mechanism proposed for the family of phosphoinositide 5-phosphatases: first, the involvement of the conserved Arg-451 in the interaction with the 5-phosphate and second, identification of the water molecule that initiates 5-phosphate hydrolysis. Our model also has implications for the proposed "moving metal" mechanism. PMID:26854536

  1. Detection of phosphatase activity in aquatic and terrestrial cyanobacterial strains

    Directory of Open Access Journals (Sweden)

    Babić Olivera B.

    2013-01-01

    Full Text Available Cyanobacteria, as highly adaptable microorganisms, are characterized by an ability to survive in different environmental conditions, in which a significant role belongs to their enzymes. Phosphatases are enzymes produced by algae in relatively large quantities in response to a low orthophosphate concentration and their activity is significantly correlated with their primary production. The activity of these enzymes was investigated in 11 cyanobacterial strains in order to determine enzyme synthesis depending on taxonomic and ecological group of cyanobacteria. The study was conducted with 4 terrestrial cyanobacterial strains, which belong to Nostoc and Anabaena genera, and 7 filamentous water cyanobacteria of Nostoc, Oscillatoria, Phormidium and Microcystis genera. The obtained results showed that the activity of acid and alkaline phosphatases strongly depended on cyanobacterial strain and the environment from which the strain originated. Higher activity of alkaline phosphatases, ranging from 3.64 to 85.14 μmolpNP/s/dm3, was recorded in terrestrial strains compared to the studied water strains (1.11-5.96 μmolpNP/s/dm3. The activity of acid phosphatases was higher in most tested water strains (1.67-6.28 μmolpNP/s/dm3 compared to the activity of alkaline phosphatases (1.11-5.96 μmolpNP/s/dm3. Comparing enzyme activity of nitrogen fixing and non-nitrogen fixing cyanobacteria, it was found that most nitrogen fixing strains had a higher activity of alkaline phosphatases. The data obtained in this work indicate that activity of phosphatases is a strain specific property. The results further suggest that synthesis and activity of phosphatases depended on eco-physiological characteristics of the examined cyanobacterial strains. This can be of great importance for the further study of enzymes and mechanisms of their activity as a part of cyanobacterial survival strategy in environments with extreme conditions. [Projekat Ministarstva nauke Republike

  2. ELEVATE: an innovative study design to assess the efficacy, safety, and evolution of cardiovascular parameters in de novo kidney transplant recipients after early conversion from a calcineurin inhibitor to everolimus

    Directory of Open Access Journals (Sweden)

    van der Giet M

    2014-03-01

    Full Text Available Markus van der Giet,1 Josep M Cruzado,2 Johan W de Fijter,3 Hallvard Holdaas,4 Zailong Wang,5 Antonio Speziale,6 Guido Junge61Department of Nephrology, Campus Benjamin Franklin, Charite'-Universitätsmedizin, Berlin, Germany; 2Department of Nephrology, University Hospital of Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; 3Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands; 4Section of Nephrology, Department of Transplant Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; 5Biometrics and Statistical Science, Novartis Pharmaceuticals, East Hanover, NJ, USA; 6Research and Development, Novartis Pharma AG, Basel, SwitzerlandAbstract: Progressive decline in allograft function and cardiovascular mortality after kidney transplantation remain major clinical challenges that can potentially be addressed by the mammalian target of rapamycin (mTOR inhibitors, everolimus and sirolimus. mTOR inhibitors maintain immunosuppressive efficacy after minimization of calcineurin inhibitor (CNI therapy and can achieve significant long-term improvements in renal function. Recently, data have accumulated that suggest mTOR inhibitors may offer cardioprotective effects. In animal models, inhibition of mTOR leads to regression of cardiac hypertrophy, and the limited data consistently point to a remodeling benefit following heart transplantation. Experimentally, mTOR inhibitors restrict atherogenesis, confirmed clinically by intravascular ultrasound data demonstrating lower rates of transplant vasculopathy in heart transplant recipients on everolimus. Lastly, mTOR inhibitors appear to ameliorate arterial stiffness, a known risk factor for post-transplant cardiovascular events, but data remain sparse. The ELEVATE study will examine the renal effect of early conversion from CNI therapy to everolimus after kidney transplantation. Key secondary endpoints include the change in left ventricular mass index, the first time

  3. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alkaline phosphatase or isoenzymes test system... Test Systems § 862.1050 Alkaline phosphatase or isoenzymes test system. (a) Identification. An alkaline phosphatase or isoenzymes test system is a device intended to measure alkaline phosphatase or its...

  4. Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP)

    International Nuclear Information System (INIS)

    Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involved in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAsIII) and its intermediate metabolites such as monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMAIII and DMAIII) but not by iAsIII. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMAIII directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. Highlights: ► This study focused on the interaction of PTPs with trivalent arsenicals in vitro. ► We for the first time confirmed that DMAIII strongly inhibited activity of PTP1B. ► DMAIII directly bound to PTP1B, resulting in inhibition of enzyme

  5. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  6. [Phosphatase activity in Amoeba proteus at pH 9.0].

    Science.gov (United States)

    Sopina, V A

    2007-01-01

    In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1). PMID:17933343

  7. Protein phosphatase 1α is a Ras-activated Bad phosphatase that regulates interleukin-2 deprivation-induced apoptosis

    Science.gov (United States)

    Ayllón, Verónica; Martínez-A, Carlos; García, Alphonse; Cayla, Xavier; Rebollo, Angelita

    2000-01-01

    Growth factor deprivation is a physiological mechanism to regulate cell death. We utilize an interleukin-2 (IL-2)-dependent murine T-cell line to identify proteins that interact with Bad upon IL-2 stimulation or deprivation. Using the yeast two-hybrid system, glutathione S-transferase (GST) fusion proteins and co-immunoprecipitation techniques, we found that Bad interacts with protein phosphatase 1α (PP1α). Serine phosphorylation of Bad is induced by IL-2 and its dephosphorylation correlates with appearance of apoptosis. IL-2 deprivation induces Bad dephosphorylation, suggesting the involvement of a serine phosphatase. A serine/threonine phosphatase activity, sensitive to the phosphatase inhibitor okadaic acid, was detected in Bad immunoprecipitates from IL-2-stimulated cells, increasing after IL-2 deprivation. This enzymatic activity also dephosphorylates in vivo 32P-labeled Bad. Treatment of cells with okadaic acid blocks Bad dephosphorylation and prevents cell death. Finally, Ras activation controls the catalytic activity of PP1α. These results strongly suggest that Bad is an in vitro and in vivo substrate for PP1α phosphatase and that IL-2 deprivation-induced apoptosis may operate by regulating Bad phosphorylation through PP1α phosphatase, whose enzymatic activity is regulated by Ras. PMID:10811615

  8. Protein phosphatase 2A plays a critical role in interleukin-2-induced beta 2-integrin dependent homotypic adhesion in human CD4+ T cell lines

    DEFF Research Database (Denmark)

    Brockdorff, J; Nielsen, M; Svejgaard, A;

    1997-01-01

    Besides its function as a growth factor for T lymphocytes, interleukin 2 (IL-2) induces beta 2-integrin mediated adhesion, migration, and extravasation of T lymphocytes. It is, however, largely unknown how IL-2 receptors (IL-2R) are coupled to the beta 2-integrin adhesion pathway. Because IL-2...... modulates enzymatic activity and/or subcellular distribution of serine/threonine phosphatases 1 and 2A (PP1/PP2A) in T cells, we examined the role of these phosphatases in IL-2 induced homotypic adhesion in antigen specific human CD4+ T cell lines. We show that calyculin A, a potent inhibitor of PP1 and PP2...... inhibitory effect on cytokine induced adhesion at concentrations which strongly inhibited phosphatase activity. In conclusion, these data provide evidence that PP2A plays a critical role in IL-2-induced beta 2-integrin-dependent adhesion of human T cell lines....

  9. Serum alkaline phosphatase screening for vitamin D deficiency states

    International Nuclear Information System (INIS)

    Objective: To determine whether serum vitamin D levels are correlated with serum levels of alkaline phosphatase or not. Study Design: Cross-sectional, observational study. Place and Duration of Study: Multi-centre study, conducted at Liaquat National Hospital and Medical College, National Medical Centre and Medicare Hospital, Karachi, from January to October 2009. Methodology: Patients attending the Orthopaedic OPDs with complaints of pain in different body regions and serum vitamin D/sub 3/ levels of greater or equal to 30 ng/ml were included in the study. Patients with vitamin D deficiency were further categorized into mild deficiency or insufficiency (vit. D/sub 3/ = 20-29 ng/ml), moderate deficiency (vit. D/sub 3/ = 5 - 19 ng/ml) and severe deficiency forms (vit. D/sub 3/ < 5 ng/ml). Pearson correlation was applied to test the correlation of serum alkaline phosphatase levels with serum vitamin D/sub 3/ levels. P-value < 0.05 was considered to be significant. Results: Out of 110 samples, 26 had mild (23%), 61 had moderate (55%) and 21 had severe (19.1%) vitamin D deficiencies. All of the patients in the three groups had alkaline phosphatase with in normal limits and the total mean value of the enzyme was 135.97 +- 68.14I U/L. The inter group comparison showed highest values of alkaline phosphatase in the moderate vitamin D deficiency group. The correlation coefficient of alkaline phosphatase and serum vitamin D/sub 3/ levels was r =0.05 (p =0.593). Conclusion: Serum vitamin D/sub 3/ levels may not be correlated with increased serum alkaline phosphatase levels. Therefore, alkaline phosphatase may not be used as a screening test to rule out vitamin D deficiency. (author)

  10. Plasmin digestion of bovine $\\beta$-casein dephosphorylated with one protein phosphatase type 2A purified from Yarrowia lipolytica

    OpenAIRE

    Jolivet, Pascale; Macedo, Isabel; Wu, Min; Meunier, Jean-Claude

    2000-01-01

    Hydrolyse par la plasmine de la caséine $\\beta$ bovine déphosphorylée par une protéine phosphatase de type 2A purifiée chez Yarrowia lipolytica. La caséine $\\beta$ peut être déphosphorylée par la sous-unité catalytique d'une protéine phosphatase de type 2A purifiée chez la levure Yarrowia lipolytica. La déphosphorylation complète est obtenue en 24 à 30 h en tampon Tris (pH 7.5). À l'inverse, elle est largement inhibée par le citrate de sodium 13 mmol$\\cdot$L$^{-1}$ à pH 6.8 (80 % d'inhibition...

  11. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles

    Science.gov (United States)

    Petrényi, Katalin; Molero, Cristina; Kónya, Zoltán; Erdődi, Ferenc; Ariño, Joaquin; Dombrádi, Viktor

    2016-01-01

    Protein phosphatase Z (Ppz) is a fungus specific enzyme that regulates cell wall integrity, cation homeostasis and oxidative stress response. Work on Saccharomyces cerevisiae has shown that the enzyme is inhibited by Hal3/Vhs3 moonlighting proteins that together with Cab3 constitute the essential phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme. In Candida albicans CaPpz1 is also involved in the morphological changes and infectiveness of this opportunistic human pathogen. To reveal the CaPpz1 regulatory context we searched the C. albicans database and identified two genes that, based on the structure of their S. cerevisiae counterparts, were termed CaHal3 and CaCab3. By pull down analysis and phosphatase assays we demonstrated that both of the bacterially expressed recombinant proteins were able to bind and inhibit CaPpz1 as well as its C-terminal catalytic domain (CaPpz1-Cter) with comparable efficiency. The binding and inhibition were always more pronounced with CaPpz1-Cter, indicating a protective effect against inhibition by the N-terminal domain in the full length protein. The functions of the C. albicans proteins were tested by their overexpression in S. cerevisiae. Contrary to expectations we found that only CaCab3 and not CaHal3 rescued the phenotypic traits that are related to phosphatase inhibition by ScHal3, such as tolerance to LiCl or hygromycin B, requirement for external K+ concentrations, or growth in a MAP kinase deficient slt2 background. On the other hand, both of the Candida proteins turned out to be essential PPCDC components and behaved as their S. cerevisiae counterparts: expression of CaCab3 and CaHal3 rescued the cab3 and hal3 vhs3 S. cerevisiae mutations, respectively. Thus, both CaHal3 and CaCab3 retained the PPCDC related functions and have the potential for CaPpz1 inhibition in vitro. The fact that only CaCab3 exhibits its phosphatase regulatory potential in vivo suggests that in C. albicans CaCab3, but not CaHal3, acts as a

  12. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase

    International Nuclear Information System (INIS)

    A cDNA clone for human adult intestinal alkaline phosphatase (ALP) [orthophosphoric-monoester phosphohydrolase (alkaline optimum); EC 3.1.3.1] was isolated from a λgt11 expression library. The cDNA insert of this clone is 2513 base pairs in length and contains an open reading frame that encodes a 528-amino acid polypeptide. This deduced polypeptide contains the first 40 amino acids of human intestinal ALP, as determined by direct protein sequencing. Intestinal ALP shows 86.5% amino acid identity to placental (type 1) ALP and 56.6% amino acid identity to liver/bone/kidney ALP. In the 3'-untranslated regions, intestinal and placental ALP cDNAs are 73.5% identical (excluding gaps). The evolution of this multigene enzyme family is discussed

  13. Calcium-activated-calcineurin reduces the In vitro and In vivo sensitivity of fluconazole to Candida albicans via Rta2p.

    Directory of Open Access Journals (Sweden)

    Yu Jia

    Full Text Available Due to the emergence of drug-resistance, first-line therapy with fluconazole (FLC increasingly resulted in clinical failure for the treatment of candidemia. Our previous studies found that in vitro RTA2 was involved in the calcineurin-mediated resistance to FLC in C. albicans. In this study, we found that calcium-activated-calcineurin significantly reduced the in vitro sensitivity of C. albicans to FLC by blocking the impairment of FLC to the plasma membrane via Rta2p. Furthermore, we found that RTA2 itself was not involved in C. albicans virulence, but the disruption of RTA2 dramatically increased the therapeutic efficacy of FLC in a murine model of systemic candidiasis. Conversely, both re-introduction of one RTA2 allele and ectopic expression of RTA2 significantly reduced FLC efficacy in a mammalian host. Finally, we found that calcium-activated-calcineurin, through its target Rta2p, dramatically reduced the efficacy of FLC against candidemia. Given the critical roles of Rta2p in controlling the efficacy of FLC, Rta2p can be a potential drug target for antifungal therapies.

  14. Human prostatic acid phosphatase directly stimulates collagen synthesis and alkaline phosphatase content of isolated bone cells

    International Nuclear Information System (INIS)

    Human prostatic acid phosphatase (hPAP) directly enhances the differentiated characteristics of isolated bone cells in vitro. This enzyme, when added to cell cultures for 24 h in vitro stimulates collagen synthesis and the production of alkaline phosphatase. The effects are dose dependent, with statistically significant effects occurring from 0.1-100 nM hPAP. Concentrations higher than 100 nM do not evoke greater effects. The maximal effect of hPAP occurs between 12 and 24 h of exposure. The cells stimulated to the greatest degree are osteoprogenitor cells and osteoblasts. Fibroblasts isolated from the same tissue show a lesser sensitivity to hPAP. hPAP has no detectable effect on cell proliferation, as measured by radiolabeled thymidine incorporation or total DNA synthesis. None of the observations reported in this work can be attributed to contaminating proteins in the hPAP preparation. hPAP was radiolabeled with 125I and was used for affinity binding and cross-linking studies. Scatchard analysis of specific binding indicated the presence of 1.0 X 10(5) high affinity binding sites/cell, with a Kd of 6.5 nM. Cross-linking studies demonstrated the presence of one 320-kDa binding complex. The pH profile and kinetic determinations of Km and maximum velocity for hPAP were similar to those previously reported, except for the finding of positive cooperativity of the substrate with the enzyme under the conditions of our assay. We believe that the direct stimulation of bone-forming cells by hPAP may contribute to the sclerotic nature of skeletal bone around sites of neoplastic prostatic metastases and that the effect of the enzyme is probably mediated by a plasma membrane receptor

  15. New Functions of the Inositol Polyphosphate 5-Phosphatases in Cancer.

    Science.gov (United States)

    Erneux, Christophe; Ghosh, Somadri; Ramos, Ana Raquel; Edimo, William's Elong

    2016-01-01

    Inositol polyphosphate 5-phosphatases act on inositol phosphates and phosphoinositides as substrates. They are 10 different isoenzymes and several splice variants in the human genome that are involved in a series of human pathologies such as the Lowe syndrome, the Joubert and MORM syndromes, breast cancer, glioblastoma, gastric cancer and several other type of cancers. Inositol 5-phosphatases can be amplified in human cancer cells, whereas the 3- and 4- phosphatase tumor suppressor PTEN and INPP4B, repectively are often repressed or deleted. The inositol 5-phosphatases are critically involved in a complex network of higly regulated phosphoinositides, affecting the lipid content of PI(3, 4, 5)P3, PI(4, 5)P2 and PI(3, 4)P2. This has an impact on the normal behavior of many intracellular target proteins e.g. protein kinase B (PKB/Akt) or actin binding proteins and final biological responses. The production of PI(3, 4P)2 by dephosphorylation of the substrate PI(3, 4, 5)P3 is particularly important as it produces a new signal messenger in the control of cell migration, invasion and endocytosis. New inhibitors/activators of inositol 5- phosphatases have recently been identified for the possible control of their activity in several human pathologies such as inflamation and cancer. PMID:26916021

  16. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium

    Directory of Open Access Journals (Sweden)

    Vasavada Abhay

    1993-01-01

    Full Text Available The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium. In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium. From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  17. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    Science.gov (United States)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  18. Prostatic acid phosphatase, purification and iodination using Iodogen

    International Nuclear Information System (INIS)

    Prostatic acid phosphatase was purified from prostatic adenomas. The procedure involved chromatography on Concanavalin A-Sepharose, DEAE-cellulose, Bio-Gel P-150 and L-tartrate-Sepharose. The purified phosphatase hydrolyzed p-nitrophenyl phosphate at a rate of 270 μmol.mg-1.min-1 (250C) and showed homogeneity upon polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The final prostatic acid phosphatase preparation was pure and the antisera were monospecific as judged by the highly-sensitive technique of crossed immunoelectrophoresis. Of the procedures evaluated for the radioiodination of the purified enzyme with iodine 125, oxidation with Iodogen was found to give the best radioiodinated product, to be used in radioimmunoassay. (Auth.)

  19. Association of erythrocyte acid phosphatase phenotypes with myopia

    Directory of Open Access Journals (Sweden)

    Himabindu P

    2005-01-01

    Full Text Available Acid phosphatase is a polymorphic nonspecific orthophosphate monoesterase which catalyses the cleaving of phosphoric acid and subsequent breakdown of several monophosphoric esters under acidic pH conditions. Acid phosphatase has a physiologic function as a flavin mononucleotide phosphatase (FMN and regulates the intracellular concentrations of flavin coenzymes that are electron carriers in the oxidative phosphorylation pathway. Myopia or nearsightedness is caused by both environmental and genetic factors. Myopic eyes when subjected to excessive oxidative stress results in retinal detachments .In the present study there is a significant elevation of AA phenotype in myopes when compared to controls. The AA phenotype is more susceptible to oxidative stress and its lower enzyme activity is known to be associated with increased intrauterine growth that further results in increased axial length in progressive myopia. The AA phenotype also confers risk for myopia development in males, early age group and cases with parental consanguinity.

  20. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    Science.gov (United States)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  1. A calcineurin inhibitory protein overexpressed in Down's syndrome interacts with the product of a ubiquitously expressed transcript

    Directory of Open Access Journals (Sweden)

    H.C.S. Silveira

    2004-06-01

    Full Text Available The Down's syndrome candidate region 1 (DSCR1 protein, encoded by a gene located in the human chromosome 21, interacts with calcineurin and is overexpressed in Down's syndrome patients. As an approach to clarifying a putative function for this protein, in the present study we used the yeast two-hybrid system to identify DSCR1 partners. The two-hybrid system is a method that allows the identification of protein-protein interactions through reconstitution of the activity of the yeast GAL 4 transcriptional activator. The gene DSCR1 fused to the GAL 4 binding domain (BD was used to screen a human fetal brain cDNA library cloned in fusion with the GAL 4 activation domain (AD. Three positive clones were found and sequence analysis revealed that all the plasmids coded for the ubiquitously expressed transcript (UXT. UXT, which is encoded in human Xp11, is a 157-amino acid protein present in both cytosol and nucleus of the cells. This positive interaction of DSCR1 and UXT was confirmed in vivo by mating the yeast strain AH109 (MATaexpressing AD-UXT with the strain Y187 (MATalpha expressing BD-DSCR1, and in vitro by co-immunoprecipitation experiments. These results may help elucidate a new function for DSCR1 and its participation in Down's syndrome pathogenesis.

  2. Calpain-Calcineurin-Nuclear Factor Signaling and the Development of Atrial Fibrillation in Patients with Valvular Heart Disease and Diabetes

    Science.gov (United States)

    Zhao, Yong; Cui, Guo-ming; Zhou, Nan-nan; Li, Cong; Zhang, Qing; Sun, Hui; Han, Bo; Zou, Cheng-wei; Wang, Li-juan; Li, Xiao-dong; Wang, Jian-chun

    2016-01-01

    Calpain, calcineurin (CaN), and nuclear factor of activated T cell (NFAT) play a key role in the development of atrial fibrillation. Patients with valvular heart disease (VHD) are prone to develop atrial fibrillation (AF). Thus, our current study was aimed at investigating whether activation of calpain-CaN-NFAT pathway is associated with the incidence of AF in the patients with VHD and diabetes. The expressions of calpain 2 and alpha- and beta-isoforms of CaN catalytic subunit (CnA) as well as NFAT-c3 and NFAT-c4 were quantified by quantitative reverse transcription-polymerase chain reaction in atrial tissues from 77 hospitalized patients with VHD and diabetes. The relevant protein content was measured by Western blot and calpain 2 in human atrium was localized by immunohistochemistry. We found that the expressions of calpain 2, CnA alpha and CnA beta, and NFAT-c3 but not NFAT-c4 were significantly elevated in the samples from patients with AF compared to those with sinus rhythm (SR). Elevated protein levels of calpain 2 and CnA were observed in patients with AF, and so was the enhanced localization of calpain 2. We thereby concluded that CaN together with its upstream molecule, calpain 2, and its downstream effector, NFAT-c3, might contribute to the development of AF in patients with VHD and diabetes. PMID:27123462

  3. Fluoride stimulates [3H]thymidine incorporation and alkaline phosphatase production by human osteoblasts

    International Nuclear Information System (INIS)

    The effect of sodium fluoride on alkaline phosphatase (ALP) release and [3H]thymidine uptake by human osteoblasts in culture was investigated. Sodium fluoride stimulated both ALP release and [3H]thymidine uptake at concentrations of sodium fluoride greater than 250 mumol/L. This stimulation was similar in magnitude to that induced by 1,25-dihydroxycholecalciferol. The fluoride-induced increase in ALP was inhibited by verapamil, a calcium channel blocker. We conclude that sodium fluoride stimulates osteoblasts to proliferate and to release ALP. This stimulation by fluoride is dependent on calcium influx. Fluoride-induced stimulation of human osteoblasts may be relevant to its effect in enhancing bone formation in patients with osteoporosis

  4. A Disposable Alkaline Phosphatase-Based Biosensor for Vanadium Chronoamperometric Determination

    Directory of Open Access Journals (Sweden)

    Ana Lorena Alvarado-Gámez

    2014-02-01

    Full Text Available A chronoamperometric method for vanadium ion determination, based on the inhibition of the enzyme alkaline phosphatase, is reported. Screen-printed carbon electrodes modified with gold nanoparticles were used as transducers for the immobilization of the enzyme. The enzymatic activity over 4-nitrophenyl phosphate sodium salt is affected by vanadium ions, which results in a decrease in the chronoamperometric current registered. The developed method has a detection limit of 0.39 ± 0.06 µM, a repeatability of 7.7% (n = 4 and a reproducibility of 8% (n = 3. A study of the possible interferences shows that the presence of Mo(VI, Cr(III, Ca(II and W(VI, may affect vanadium determination at concentration higher than 1.0 mM. The method was successfully applied to the determination of vanadium in spiked tap water.

  5. Diagnostic evaluation of canine serum alkaline phosphatase by immunochemical means and interpretation of results.

    Science.gov (United States)

    Saini, P K; Peavy, G M; Hauser, D E; Saini, S K

    1978-09-01

    Sera of several canine patients contained an isoenzyme of alkaline phosphatase (ALP) that resembled intestinal ALP with respect to heat inactivation, L-phenylalanine inhibition, and sensitivity to anti-canine intestinal ALP antibody, but differed with regard to the electrophoretic migration. The electrophoretic mobility of the isoenzyme was slightly cathodal than that of hepatic ALP, and its migration was reduced, similar to that of hepatic isoenzyme after neuraminidase treatment. This isoenzyme, which could be corticosteroid induced, was in the sera of numerous dogs with hepatobiliary disorders and was different from the hepatic isoenzyme that appeared in the sera of dogs with acute hepatitis, based on anti-canine intestinal ALP antibody interaction, heat inactivation, and electrophoretic migration. PMID:358873

  6. Effect of copper on acid phosphatase activity in yeast Yarrowia lipolytica

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroyasu; Inouhe, Masahiro; Tohoyama, Hiroshi; Joho, Masanori [Ehime Univ., Matsuyama (Japan). Dept. of Biology

    2007-01-15

    Acid phosphatase (APase) activity of the yeast Yarrowia lipolytica increased with increasing Cu{sup 2+} concentrations in the medium. Furthermore, the enzyme in soluble form was stimulated in vitro by Cu{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Mn{sup 2+} and Mg{sup 2+} and inhibited by Ag{sup +} and Cd{sup 2+}. The most effective ion was Cu{sup 2+}, especially for the enzyme from cultures in medium containing Cu{sup 2+}, whereas APase activity in wall-bound fragments was only slightly activated by Cu{sup 2+}. The content of cellular phosphate involving polyphosphate was decreased by adding Cu{sup 2+}, regardless of whether or not the medium was rich in inorganic phosphate. Overproduction of the enzyme stimulated by Cu{sup 2+} might depend on derepression of the gene encoding the APase isozyme. (orig.)

  7. Expression, purification and characterization of recombinant protein tyrosine phosphatase from Thermus thermophilus HB27

    Institute of Scientific and Technical Information of China (English)

    Yejing Wang; Fanguo Meng; Yingmei Zhang

    2009-01-01

    The low-molecular-weight protein tyrosine phospha-tases (PTPase) exist ubiquitously in prokaryotes and eukaryotes and play important roles in the regulation of physiological activities. We report here the expression, purification and characterization of an active and soluble PTPase from Thermus thermophilus HB27 in Escherichia coli. This PTPase has an optimum pH range of 2.8-4.8 when using p-nitrophenyl phos-phate as the substrate. The thermal inactivation results indicate a high thermal stability of this enzyme, with the optimum temperature of 75℃ for activity. It can be activated by Mn2+, Mg2+, Ca2+, Ba2+, and Ni2+, but inhibited by Zn2+, Cu2+, Cl-, and SO2-4. These results suggest that this heat-resistant PTPase may play impor-tant roles in vivo in the adaptation of the microorgan-ism to extreme temperatures and specific nutritional conditions.

  8. Procyanidins Negatively Affect the Activity of the Phosphatases of Regenerating Liver.

    Directory of Open Access Journals (Sweden)

    Sven Stadlbauer

    Full Text Available Natural polyphenols like oligomeric catechins (procyanidins derived from green tea and herbal medicines are interesting compounds for pharmaceutical research due to their ability to protect against carcinogenesis in animal models. It is nevertheless still unclear how intracellular pathways are modulated by polyphenols. Monomeric polyphenols were shown to affect the activity of some protein phosphatases (PPs. The three phosphatases of regenerating liver (PRLs are close relatives and promising therapeutic targets in cancer. In the present study we show that several procyanidins inhibit the activity of all three members of the PRL family in the low micromolar range, whereas monomeric epicatechins show weak inhibitory activity. Increasing the number of catechin units in procyanidins to more than three does not further enhance the potency. Remarkably, the tested procyanidins showed selectivity in vitro when compared to other PPs, and over 10-fold selectivity toward PRL-1 over PRL-2 and PRL-3. As PRL overexpression induces cell migration compared to control cells, the effect of procyanidins on this phenotype was studied. Treatment with procyanidin C2 led to a decrease in cell migration of PRL-1- and PRL-3-overexpressing cells, suggesting the compound-dependent inhibition of PRL-promoted cell migration. Treatment with procyanidin B3 led to selective suppression of PRL-1 overexpressing cells, thereby corroborating the selectivity toward PRL-1- over PRL-3 in vitro. Together, our results show that procyanidins negatively affect PRL activity, suggesting that PRLs could be targets in the polypharmacology of natural polyphenols. Furthermore, they are interesting candidates for the development of PRL-1 inhibitors due to their low cellular toxicity and the selectivity within the PRL family.

  9. Cyclosporin versus tacrolimus for liver transplanted patients

    DEFF Research Database (Denmark)

    Haddad, E M; McAlister, V C; Renouf, E;

    2006-01-01

    Most liver transplant recipients receive either cyclosporin or tacrolimus to prevent rejection. Both drugs inhibit calcineurin phosphatase which is thought to be the mechanism of their anti-rejection effect and principle toxicities. The drugs have different pharmacokinetic profiles and potencies....... Several randomised clinical trials have compared cyclosporin and tacrolimus in liver transplant recipients, but it remains unclear which is superior....

  10. Selective dephosphorylation of histone H1 by nuclear phosphatases

    International Nuclear Information System (INIS)

    The aim of this study was to characterize the sites of H1 phosphorylated by the cAMP-dependent protein kinase (kinase A) and the Ca2+ phospholipid-dependent protein kinase (kinase C) and to study their dephosphorylation by nuclear protein phosphatases. H1 was phosphorylated on a ser residue to approx. 1 mole [32P]/mole H1 with either kinase A or C. The sites of phosphorylation were differentiated by digestion of the H1 by thrombin or N-bromosuccinimide. Phosphopeptide maps on reversed phase HPLC and gel filtration HPLC clearly showed that the kinase C phosphorylated a different site than the well characterized kinase A site. H1, phosphorylated by kinase C or kinase A, was used as a substrate for the nuclear phosphatases. The nuclear phosphatases were purified from salt extracted rat liver chromatin and separated into 2 forms based on heat-stable inhibitor sensitivity and polycation stimulation. Polycation-stimulated phosphatase rapidly dephosphorylated the kinase C site and slowly dephosphorylated the kinase A site. The inhibitor-sensitive enzyme showed little activity toward either site under standard assay conditions

  11. Selective dephosphorylation of histone H1 by nuclear phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Jakes, S.; Schlender, K.K.

    1987-05-01

    The aim of this study was to characterize the sites of H1 phosphorylated by the cAMP-dependent protein kinase (kinase A) and the CaS phospholipid-dependent protein kinase (kinase C) and to study their dephosphorylation by nuclear protein phosphatases. H1 was phosphorylated on a ser residue to approx. 1 mole (TSP)/mole H1 with either kinase A or C. The sites of phosphorylation were differentiated by digestion of the H1 by thrombin or N-bromosuccinimide. Phosphopeptide maps on reversed phase HPLC and gel filtration HPLC clearly showed that the kinase C phosphorylated a different site than the well characterized kinase A site. H1, phosphorylated by kinase C or kinase A, was used as a substrate for the nuclear phosphatases. The nuclear phosphatases were purified from salt extracted rat liver chromatin and separated into 2 forms based on heat-stable inhibitor sensitivity and polycation stimulation. Polycation-stimulated phosphatase rapidly dephosphorylated the kinase C site and slowly dephosphorylated the kinase A site. The inhibitor-sensitive enzyme showed little activity toward either site under standard assay conditions.

  12. A physiologic function for alkaline phosphatase : Endotoxin detoxification

    NARCIS (Netherlands)

    Poelstra, Klaas; Bakker, W.W; Klok, P.A; Hardonk, M.J; Meijer, D.K F

    1997-01-01

    Alkaline phosphatase (AP), a common enzyme present in many species including humans, has been studied extensively. Although the enzyme is routinely applied as a marker for liver function, its biologic relevance is poorly understood. The reason for this is obvious: the pH optimum of AP in vitro, as m

  13. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase

    Science.gov (United States)

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika

    2010-01-01

    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  14. Optimization of a Cyclic Peptide Inhibitor of Ser/Thr Phosphatase PPM1D (Wip1)†

    OpenAIRE

    Hayashi, Ryo; Tanoue, Kan; Durell, Stewart R; Chatterjee, Deb K.; Miller Jenkins, Lisa M.; Appella, Daniel H.; Appella, Ettore

    2011-01-01

    PPM1D (PP2Cδ or Wip1) was identified as a wild type p53-induced Ser/Thr phosphatase that accumulates after DNA damage and classified into the PP2C family. It dephosphorylates and inactivates several proteins critical for cellular stress responses, including p38 MAPK, p53, and ATM. Furthermore, PPM1D is amplified and/or overexpressed in a number of human cancers. Thus, inhibition of its activity could constitute an important new strategy for therapeutic intervention to halt the progression of ...

  15. Novel Mechanism for Suppression of Hyperpolarization-activated Cyclic Nucleotide-gated Pacemaker Channels by Receptor-like Tyrosine Phosphatase-α*

    OpenAIRE

    Huang, Jianying; Huang, Aijie; Zhang, Qi; Lin, Yen-Chang; Yu, Han-Gang

    2008-01-01

    We have previously reported an important role of increased tyrosine phosphorylation activity by Src in the modulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Here we provide evidence showing a novel mechanism of decreased tyrosine phosphorylation on HCN channel properties. We found that the receptor-like protein-tyrosine phosphatase-α (RPTPα) significantly inhibited or eliminated HCN2 channel expression in HEK293 cells. Biochemical eviden...

  16. 钙调神经磷酸酶抑制剂治疗白癜风的进展%Calcineurin inhibitors in the treatment of vitiligo

    Institute of Scientific and Technical Information of China (English)

    曹永萍; 许爱娥

    2011-01-01

    Vitiligo is an acquired hypopigmented disease characterized by the destruction of melanocytes.Many scholars consider that the pathogenesis of vitiligo is mainly associated with immune abnormalities.Topical calcineurin inhibitors have favorable efficacy in the treatment of vitiligo,and the efficacy is associated with the treatment regimen,course,application sites,duration and stage of vitiligo,etc.The combination with narrow-band ultraviolet B,308-nm excimer laser or other therapies may have synergistic effect on the efficiency of calcineurin inhibitors.Although calcineurin inhibitors are safe and effective in the treatment of vitiligo,further studies are needed to evaluate their long-term safety and stability.%白癜风是一种以黑素细胞破坏为特征的获得性色素脱失性疾病,目前许多学者认为其发病机制主要与免疫异常有关.局部外用钙调神经磷酸酶抑制剂治疗白癜风有较好的疗效.单用钙调神经磷酸酶抑制剂治疗白癜风的疗效与用药方法、用药部位、疾病的病程、分期有关,也与疗程有关系.联合窄谱中波紫外线、308准分子激光及其他方法可以提高其有效率.钙调神经磷酸酶抑制剂治疗白癜风安全有效,长期使用的安全性和稳定性还需要进一步评估.

  17. 钙调磷酸酶抑制剂治疗银屑病研究进展%Calcineurin inhibitors in the treatment of psoriasis

    Institute of Scientific and Technical Information of China (English)

    文晓婷; 魏志平; 刘彦群

    2011-01-01

    Calcineurin inhibitors can block calcineurin signaling pathway,thereby suppress T-cell activation.In the past,it was used as an immunosuppressant for immunoregulation after organ transplantation.Recent studies have found that they are also effective for the treatment of some inflammatory skin diseases such as psoriasis and atopic dermatitis.Their efficacy is close to that of corticosteroids but they do not induce skin atrophy.Tacrolimus ointment and pimecrolimus cream are expected to be an alternative to topical corticosteroids in the treatment of psoriasis.This review presents the clinical efficacy,mechanism of action and side effects of several calcineurin inhibitors in the treatment of psoriasis.%钙调磷酸酶抑制剂可阻断钙调磷酸酶的信号通路,抑制T细胞的活化,以往主要作为免疫抑制剂用于器官移植后的免疫调节治疗.近年的研究发现其对一些炎症性皮肤病,如银屑病和特应性皮炎等同样有效,外用疗效接近糖皮质激素却不会导致皮肤萎缩,他克莫司软膏和吡美莫司乳膏有望成为外用糖皮质激素在银屑病治疗中的替代药物.概述几种钙调磷酸酶抑制剂治疗银屑病的临床疗效、作用机制以及其不良反应.

  18. Research of Calcineurin Inhibitors in Psoriasis Vulgaris%钙调磷酸酶抑制剂在寻常型银屑病中的研究

    Institute of Scientific and Technical Information of China (English)

    黄凯; 张学军

    2014-01-01

    钙调磷酸酶抑制剂可阻断钙调磷酸酶的信号通路,抑制T细胞的活化,以往主要作为免疫抑制剂用于器官移植后的免疫调节治疗。近年的研究发现其对一些炎症性皮肤病,如银屑病和特应性皮炎等同样有效,外用疗效接近糖皮质激素却不会导致皮肤萎缩,他克莫司软膏和吡美莫司乳膏有望成为外用糖皮质激素在银屑病治疗中的替代药物。下面以他克莫司及吡美莫司为例概述钙调磷酸酶抑制剂治疗寻常型银屑病的临床疗效、作用机制以及其不良反应。%Calcineurin inhibitors can block calcineurin signaling pathway, thereby suppress Tcellactivation.In the past,itwas used as an immunosuppressant for immunoregulation after organ transplantation. Recent studies have found that they are also ef ective for the treatment of some inflammatoryskin diseases such as psoriasis and atopic dermatitis.Their ef icacyis close to that of corticosteroids but they do notinduce skin atrophy. Tacrolimus ointment and pimecrolimus cream are expected to be an alternative to topical corticosteroids in the treatment of psoriasis. This review presents the clinical ef icacy, mechanism of action and side ef ects of several calcineurin inhibitors in the psoriasis vulgaris.

  19. Untersuchung des Calcineurin-NFAT Signalweges mittels eines „miRNA-Hochdurchsatz-Screens“ in einer murinen Myoblastenvorläuferzelllinie

    OpenAIRE

    Harazin, Violetta

    2016-01-01

    Das Ziel der vorliegenden Arbeit war, systematisch neue miRNA Modulatoren des Calcineurin-NFAT Signalweg zu identifizieren. Zu diesem Zweck wurde ein „miRNA Screen“ entwickelt und getestet. Die Durchführung des „Screens“ erfolgte in einer murinen Myoblastenvorläuferzelllinie, die eine Luziferase Expressionskassette unter der transkriptionellen Kontrolle von vier NFAT Enhancer Elementen enthielt. Bei der Analyse des „miRNA-Screens“ wurde der Einfluss von 1050 miRNA Mimics und 624 miRNA LNA™ In...

  20. Receptor-type protein tyrosine phosphatases in cancer

    Directory of Open Access Journals (Sweden)

    Yu Du

    2015-02-01

    Full Text Available Protein tyrosine phosphatases (PTPs play an important role in regulating cell signaling events in coordination with tyrosine kinases to control cell proliferation, apoptosis, survival, migration, and invasion. Receptor-type protein tyrosine phosphatases (PTPRs are a subgroup of PTPs that share a transmembrane domain with resulting similarities in function and target specificity. In this review, we summarize genetic and epigenetic alterations including mutation, deletion, amplification, and promoter methylation of PTPRs in cancer and consider the consequences of PTPR alterations in different types of cancers. We also summarize recent developments using PTPRs as prognostic or predictive biomarkers and/or direct targets. Increased understanding of the role of PTPRs in cancer may provide opportunities to improve therapeutic approaches.

  1. Protein phosphatase 2A, a key player in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Rong LIU; Qing TIAN

    2009-01-01

    Protein phosphatase 2A (PP2A) is the pre-dominant serine/threonine phosphatase in eukaryotic cells. In the brains of patients with Alzheimer's disease (AD), decreased PP2A activities were observed, which is suggested to be involved in neurofibrillary tangle (NFT) formation, disturbed amyloid precursor protein (APP) secretion and neurodegeneration in AD brain. Based on our research and other previous findings, decreased PP2Ac level, decreased PP2A holoenzyme composition, increased level of PP2A inhibitors, increased PP2Ac Leu309 demethylation and Tyr307 phosphorylation underlie PP2A inactivation in AD. β-amyloid (Aβ) over-production, estrogen deficiency and impaired homocys-teine metabolism are the possible up-stream factors that inactivate PP2A in AD neurons. Further studies are required to disclose the role of PP2A in Alzheimer's disease.

  2. Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily.

    Science.gov (United States)

    Pabis, Anna; Kamerlin, Shina Caroline Lynn

    2016-04-01

    Catalytic promiscuity, that is, the ability of single enzymes to facilitate the turnover of multiple, chemically distinct substrates, is a widespread phenomenon that plays an important role in the evolution of enzyme function. Additionally, such pre-existing multifunctionality can be harnessed in artificial enzyme design. The members of the alkaline phosphatase superfamily have served extensively as both experimental and computational model systems for enhancing our understanding of catalytic promiscuity. In this Opinion, we present key recent computational studies into the catalytic activity of these highly promiscuous enzymes, highlighting the valuable insight they have provided into both the molecular basis for catalytic promiscuity in general, and its implications for the evolution of phosphatase activity. PMID:26716576

  3. Assembly and structure of protein phosphatase 2A

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Protein phosphatase 2A (PP2A) represents a conserved family of important protein serine/threonine phosphatases in species ranging from yeast to human. The PP2A core enzyme comprises a scaffold subunit and a catalytic subunit. The heterotrimeric PP2A holoenzyme consists of the core enzyme and a variable regulatory subunit. The catalytic subunit of PP2A is subject to reversible methylation, medi-ated by two conserved enzymes. Both the PP2A core and holoenzymes are regulated through interac-tion with a large number of cellular cofactors. Recent biochemical and structural investigation reveals critical insights into the assembly and function of the PP2A core enzyme as well as two families of holoenzyme. This review focuses on the molecular mechanisms revealed by these latest advances.

  4. Assembly and structure of protein phosphatase 2A

    Institute of Scientific and Technical Information of China (English)

    SHI YiGong

    2009-01-01

    Protein phosphatase 2A (PP2A) represents a conserved family of important protein serinetthreonine phosphatases in species ranging from yeast to human. The PP2A core enzyme comprises a scaffold subunit and a catalytic subunit. The heterotrimeric PP2A holoenzyme consists of the core enzyme and a variable regulatory subunit. The catalytic subunit of PP2A is subject to reversible methylation, mediated by two conserved enzymes. Both the PP2A core and holoenzymes are regulated through interaction with a large number of cellular cofactors. Recent biochemical and structural investigation reveals critical insights into the assembly and function of the PP2A core enzyme as well as two families of holoenzyme. This review focuses on the molecular mechanisms revealed by these latest advances.

  5. The development of determining human prostatic acid phosphatase by radioimmunoassay

    International Nuclear Information System (INIS)

    We purified human prostatic acid phosphatase (hPAP) from prostatic tissues by affinity chromatography, DEAE cellulose and gel filtration and also examined physicochemical properties of highly purified PAP. We developed a double-antibody radioimmunoassay for hPAP in serum, with use of antiserum raised in rabbit against highly purified PAP. The antiserum did not cross react with acid phosphatase from platelets and red blood cells. Experimental detail are outlined to assess the reproducibility and reliability of the method under various conditions. The upper limit of the serum PAP levels in the present assay was set at 3.0 ng/ml by 162 determinations of samples. The serum PAP levels of 2 untreated patients with prostatic carcinoma were higher than 3.0 ng/ml and 39 patients with benign prostatic hyperplasia were an average value of 1.9 ng/ml. (author)

  6. Redox Regulation of Protein Tyrosine Phosphatase Activity by Hydroxyl Radical

    OpenAIRE

    Meng, Fan-Guo; Zhang, Zhong-Yin

    2012-01-01

    Substantial evidence suggests that transient production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) is an important signaling event triggered by the activation of various cell surface receptors. Major targets of H2O2 include protein tyrosine phosphatases (PTPs). Oxidation of the active site Cys by H2O2 abrogates PTP catalytic activity, thereby potentially furnishing a mechanism to ensure optimal tyrosine phosphorylation in response to a variety of physiological stimuli. ...

  7. Protein tyrosine phosphatases expression during development of mouse superior colliculus

    OpenAIRE

    Reinhard, Jacqueline; Horvat-Bröcker, Andrea; Illes, Sebastian; Zaremba, Angelika; Knyazev, Piotr; Ullrich, Axel; Faissner, Andreas

    2009-01-01

    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior col...

  8. Monomeric Tartrate Resistant Acid Phosphatase Induces Insulin Sensitive Obesity

    OpenAIRE

    Lång, Pernilla; van Harmelen, Vanessa; Rydén, Mikael; Kaaman, Maria; Parini, Paolo; Carneheim, Claes; Cassady, A. Ian; Hume, David A.; Andersson, Göran; Arner, Peter

    2008-01-01

    Background Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP) is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. Principal Findings Using mice over expressing TRAP...

  9. Metavanadate at the active site of the phosphatase VHZ.

    Science.gov (United States)

    Kuznetsov, Vyacheslav I; Alexandrova, Anastassia N; Hengge, Alvan C

    2012-09-01

    Vanadate is a potent modulator of a number of biological processes and has been shown by crystal structures and NMR spectroscopy to interact with numerous enzymes. Although these effects often occur under conditions where oligomeric forms dominate, the crystal structures and NMR data suggest that the inhibitory form is usually monomeric orthovanadate, a particularly good inhibitor of phosphatases because of its ability to form stable trigonal-bipyramidal complexes. We performed a computational analysis of a 1.14 Å structure of the phosphatase VHZ in complex with an unusual metavanadate species and compared it with two classical trigonal-bipyramidal vanadate-phosphatase complexes. The results support extensive delocalized bonding to the apical ligands in the classical structures. In contrast, in the VHZ metavanadate complex, the central, planar VO(3)(-) moiety has only one apical ligand, the nucleophilic Cys95, and a gap in electron density between V and S. A computational analysis showed that the V-S interaction is primarily ionic. A mechanism is proposed to explain the formation of metavanadate in the active site from a dimeric vanadate species that previous crystallographic evidence has shown to be able to bind to the active sites of phosphatases related to VHZ. Together, the results show that the interaction of vanadate with biological systems is not solely reliant upon the prior formation of a particular inhibitory form in solution. The catalytic properties of an enzyme may act upon the oligomeric forms primarily present in solution to generate species such as the metavanadate ion observed in the VHZ structure. PMID:22876963

  10. Bioengineered protein phosphatase 2A: Update on need

    OpenAIRE

    Rubiolo, Juan A.; López-Alonso, Henar; Alfonso, Amparo; Vega, Félix V.; Vieytes, Mercedes Rodríguez; Botana, Luis M

    2013-01-01

    Harmful algal blooms caused by phytoplankton can occur in all aquatic environments. Some of the algae present in these blooms are capable of producing extremely potent toxins. Due to climate change and eutrophication, harmful algal blooms are increasing on a global scale. One kind of toxin producing algae are those that produce okadaic acid, its derivatives (dinophysistoxin-1 and 2), and microcystins. These toxins are potent inhibitors of protein phosphatase 2A, so this protein is used to det...

  11. Radioimmunoassay for human placental alkaline phosphatase and clinical significance

    International Nuclear Information System (INIS)

    A radioimmunoassay specific for placental alkaline phosphatase (PALP) has been performed. Sera from blood donnors contain less than 15 μg of PALP per liter. The amounts of PALP found in sera of pregnant women are higher, as soon as the first trimester of the pregnancy, increasing untill delivery (50-600 μg of PALP/l). Only 3,5% of the patients with various cancer diseases have amounts higher than 25 μg PALP/l

  12. The relationship between the MMP system, adrenoceptors and phosphoprotein phosphatases

    OpenAIRE

    Rietz, A; Spiers, JP

    2012-01-01

    The MMPs and their inhibitors [tissue inhibitor of MMPs (TIMPs) ] form the mainstay of extracellular matrix homeostasis. They are expressed in response to numerous stimuli including cytokines and GPCR activation. This review highlights the importance of adrenoceptors and phosphoprotein phosphatases (PPP) in regulating MMPs in the cardiovascular system, which may help explain some of the beneficial effects of targeting the adrenoceptor system in tissue remodelling and will establish emerging c...

  13. Associations between Renal Hyperfiltration and Serum Alkaline Phosphatase

    OpenAIRE

    Oh, Se Won; Han, Kum Hyun; Han, Sang Youb

    2015-01-01

    Renal hyperfiltration, which is associated with renal injury, occurs in diabetic or obese individuals. Serum alkaline phosphatase (ALP) level is also elevated in patients with diabetes (DM) or metabolic syndrome (MS), and increased urinary excretion of ALP has been demonstrated in patients who have hyperfiltration and tubular damage. However, little was investigated about the association between hyperfiltration and serum ALP level. A retrospective observational study of the 21,308 adults in t...

  14. Light availability may control extracellular phosphatase production in turbid environments

    Czech Academy of Sciences Publication Activity Database

    Rychtecký, Pavel; Řeháková, Klára; Kozlíková, Eliška; Vrba, Jaroslav

    2015-01-01

    Roč. 69, č. 1 (2015), s. 37-44. ISSN 0095-3628 R&D Projects: GA ČR(CZ) GA206/09/0309; GA ČR(CZ) GAP504/11/2177; GA ČR(CZ) GAP504/11/2182 Institutional support: RVO:60077344 Keywords : phytoplankton * phosphatase activity * ELF97 phosphate Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.973, year: 2014

  15. Mammalian-like Purple Acid Phosphatases in Plants

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Introduction Purple acid phosphatases (PAPs) comprise of a family of binuclear metal-containing hydrolases, some members of which have been isolated and characterized from animal, plant and fungal sources[1]. PAPs not only catalyze the hydrolyses of a wide range of phosphate esters and anhydrides under acidic reaction conditions,but also catalyze the generation of hydroxyl radicals in a Fenton-like reaction, by virtue of the presence of a redox-active binuclear metal center.

  16. Roles of phosphatidate phosphatase enzymes in lipid metabolism

    OpenAIRE

    Carman, George M.; Han, Gil-Soo

    2006-01-01

    Phosphatidate phosphatase (PAP) enzymes catalyze the dephosphorylation of phosphatidate, yielding diacylglycerol and inorganic phosphate. In eukaryotic cells, PAP activity has a central role in the synthesis of phospholipids and triacylglycerol through its product diacylglycerol, and it also generates and/or degrades lipid-signaling molecules that are related to phosphatidate. There are two types of PAP enzyme, Mg2+ dependent (PAP1) and Mg2+ independent (PAP2), but only genes encoding PAP2 en...

  17. Phosphoserine phosphatase deficiency in a patient with Williams syndrome.

    OpenAIRE

    Jaeken, J; Detheux, M; Fryns, J P; Collet, J.F.; Alliet, P; Van Schaftingen, E

    1997-01-01

    Decreased serine levels were found in plasma and cerebrospinal fluid (CSF) of a boy with pre- and postnatal growth retardation, moderate psychomotor retardation, and facial dysmorphism suggestive of Williams syndrome. Fluorescence in situ hybridisation with an elastin gene probe indicated the presence of a submicroscopic 7q11.23 deletion, confirming this diagnosis. Further investigation showed that the phosphoserine phosphatase (EC 3.1.3.3.) activity in lymphoblasts and fibroblasts amounted t...

  18. Identification and characterization of novel membrane-bound PRL protein tyrosine phosphatases from Setaria cervi, a bovine filarial parasite.

    Science.gov (United States)

    Singh, Neetu; Yadav, Smita; Rathaur, Sushma

    2015-11-01

    A significant amount of protein tyrosine phosphatase (PTP) activity was detected in the detergent-soluble membrane-bound fraction of Setaria cervi, a bovine filarial parasite. The membrane-bound PTP activity was significantly inhibited when the adult parasites were exposed to compounds having antifilarial activity like aspirin and SK7 as well as phenylarsine oxide, a specific PTP inhibitor suggesting that this activity is stress regulated. Further, this enzyme was purified as a single protein of apparently 21 kDa using two different chromatographic techniques. The MALDI-MS/MS analysis of its peptides showed closest match with protein tyrosine phosphatase PRL (Aedes aegypti). This purified enzyme (named as PRL) showed maximum activity at pH 5.5/37 °C and hydrolysed para nitro phenyl phosphate (pNPP) at the highest rate followed by O-P-L-tyrosine and O-P-L-threonine. It showed significant inhibition by specific inhibitors of PTP such as sodium orthovanadate, phenylarsine oxide and ammonium molybdate and was activated by dithiothreitol (DTT). The active site modification studies suggested involvement of cysteine, arginine, histidine and aspartic acid in the catalytic activity of PRL. The activity of S. cervi PRL was also found to be resistant towards the external oxidative stress. Thus, S. cervi PRL could be taken as a potential target for the management of human lymphatic filariasis. PMID:26341797

  19. Activation of Calf Intestinal Alkaline Phosphatase by Trifluoroethanol

    Institute of Scientific and Technical Information of China (English)

    曹志方; 徐真; 朴龙斗; 周海梦

    2001-01-01

    Alkaline phosphatase is a stable enzyme which is strongly resistant to urea, guanidine hydrochloride, acid pH, and heat. But there have been few studies on the effect of organic cosolvents on the activity and structure of alkaline phosphatase. The activity of calf intestinal alkaline phosphatase (CIAP) is markedly increased when incubated in solutions with elevated trifluoroethanol (TFE) concentrations. The activation is a time dependent course. There is a very fast phase in the activation kinetics in the mixing dead time (30 s) using convential methods. Further activation after the very fast phase follows biphasic kinetics. The structural basis of the activation has been monitored by intrinsic fluorescence and far ultraviolet circular dichroism. TFE (0 - 60%) did not lead to any significant change in the intrinsic fluorescence emission maximum, indicating no significant change in the tertiary structure of CIAP. But TFE did significantly change the secondary structure of CIAP, especially increasing α-helix content. We conclude that the activation of ClAP is due to its secondary structural change. The time for the secondary structure change induced by TFE preceds that of the activity increase. These results suggest that a rapid conformational change of ClAP induced by TFE results in the enhancement of ClAP activity, followed by further increase of this activity because of the further slightly slower rearrangements of the activated conformation. It is concluded that the higher catalytic activity of ClAP can be attained with various secondary structures.

  20. Discovery and development of small molecule SHIP phosphatase modulators.

    Science.gov (United States)

    Viernes, Dennis R; Choi, Lydia B; Kerr, William G; Chisholm, John D

    2014-07-01

    Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds. PMID:24302498

  1. A PTEN-like phosphatase with a novel substrate specificity.

    Science.gov (United States)

    Pagliarini, David J; Worby, Carolyn A; Dixon, Jack E

    2004-09-10

    We show that a novel PTEN-like phosphatase (PLIP) exhibits a unique preference for phosphatidylinositol 5-phosphate (PI(5)P) as a substrate in vitro. PI(5)P is the least characterized member of the phosphoinositide (PI) family of lipid signaling molecules. Recent studies suggest a role for PI(5)P in a variety of cellular events, such as tumor suppression, and in response to bacterial invasion. Determining the means by which PI(5)P levels are regulated is therefore key to understanding these cellular processes. PLIP is highly enriched in testis tissue and, similar to other PI phosphatases, exhibits poor activity against several proteinaceous substrates. Despite a recent report suggesting a role for PI(5)P in the regulation of Akt, the overexpression of wild-type or catalytically inactive PLIP in Chinese hamster ovary-insulin receptor cells or a dsRNA-mediated knockdown of PLIP mRNA levels in Drosophila S2 cells does not alter Akt activity or phosphorylation. The unique in vitro catalytic activity and detailed biochemical and kinetic analyses reported here will be of great value in our continued efforts to identify in vivo substrate(s) for this highly conserved phosphatase. PMID:15247229

  2. Displacement affinity chromatography of protein phosphatase one (PP1 complexes

    Directory of Open Access Journals (Sweden)

    Gourlay Robert

    2008-11-01

    Full Text Available Abstract Background Protein phosphatase one (PP1 is a ubiquitously expressed, highly conserved protein phosphatase that dephosphorylates target protein serine and threonine residues. PP1 is localized to its site of action by interacting with targeting or regulatory proteins, a majority of which contains a primary docking site referred to as the RVXF/W motif. Results We demonstrate that a peptide based on the RVXF/W motif can effectively displace PP1 bound proteins from PP1 retained on the phosphatase affinity matrix microcystin-Sepharose. Subsequent co-immunoprecipitation experiments confirmed that each identified binding protein was either a direct PP1 interactor or was in a complex that contains PP1. Our results have linked PP1 to numerous new nuclear functions and proteins, including Ki-67, Rif-1, topoisomerase IIα, several nuclear helicases, NUP153 and the TRRAP complex. Conclusion This modification of the microcystin-Sepharose technique offers an effective means of purifying novel PP1 regulatory subunits and associated proteins and provides a simple method to uncover a link between PP1 and additional cellular processes.

  3. PTP-PEST phosphatase variations in human cancer.

    Science.gov (United States)

    Streit, Sylvia; Ruhe, Jens Ernst; Knyazev, Pjotr; Knyazeva, Tatjana; Iacobelli, Stefano; Peter, Stephan; Hoefler, Heinz; Ullrich, Axel

    2006-10-01

    Signal transduction via tyrosine phosphorylation, normally fine-tuned by the concerted action of both protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is a key mechanism in tumorigenesis. PTP-PEST, a ubiquitously expressed cytoplasmic tyrosine phosphatase, is thought to play an important role in cell adhesion and motility, and may be involved in metastasis. A search for sequence variations within the gene PTPN12 (alias PTP-PEST) was performed in breast cancer cell lines, leading to the identification of three amino acid substitutions at positions 322, 573, and 709. These alterations were also found in squamous cell carcinoma cell lines and could be verified in primary human breast and kidney tumor samples. Analysis of peripheral blood samples confirmed the germline origin of these alterations. Furthermore, functional characterization of the Ile322 and Ala573 PTP-PEST mutants revealed an enhancement of in vitro phosphatase activity, whereas the Lys709 variant showed reduced catalytic activity. These data demonstrate the existence of PTP-PEST variants that might be meaningful for human cancer and underscore the need for further characterizing PTP-PEST and its signaling pathways in context of this disease. PMID:16965954

  4. POPX2 phosphatase regulates the KIF3 kinesin motor complex.

    Science.gov (United States)

    Phang, Hui-Qun; Hoon, Jing-Ling; Lai, Soak-Kuan; Zeng, Yukai; Chiam, Keng-Hwee; Li, Hoi-Yeung; Koh, Cheng-Gee

    2014-02-15

    The kinesin motors are important in the regulation of cellular functions such as protein trafficking, spindle organization and centrosome separation. In this study, we have identified POPX2, a serine-threonine phosphatase, as an interacting partner of the KAP3 subunit of the kinesin-2 motor. The kinesin-2 motor is a heterotrimeric complex composed of KIF3A, KIF3B motor subunits and KAP3, the non-motor subunit, which binds the cargo. Here we report that the phosphatase POPX2 is a negative regulator of the trafficking of N-cadherin and other cargoes; consequently, it markedly influences cell-cell adhesion. POPX2 affects trafficking by determining the phosphorylation status of KIF3A at serine 690. This is consistent with the observation that the KIF3A-S690A mutant is defective in cargo trafficking. Our studies also implicate CaMKII as the kinase that phosphorylates KIF3A at serine 690. These results strongly suggest that POPX2 and CaMKII are a phosphatase-kinase pair that regulates kinesin-mediated transport and cell-cell adhesion. PMID:24338362

  5. Disulfide bonds in the catalytic subunit of skeletal muscle protein phosphatase

    International Nuclear Information System (INIS)

    The protein phosphatase in skeletal muscle that inactivates phosphorylase and phosphorylase kinase and activates glycogen synthase is both inhibited and reversibly activated/inactivated by a heat-stable protein called inhibitor-2 (I2). This enzyme, called type-1 or MgATP-dependent protein phosphatase, has a catalytic subunit (C) of M/sub r/ = 38,000. Conversion of the inactive to the active conformer of C occurs by reaction with Mn2+ or Co2+, or by dephosphorylation of I2 bound to the C. The C active conformer is cleaved by trypsin to give a stable catalytic fragment of M/sub r/ = 33,000 which resists denaturation by 80% ethanol. This fragment of C was purified by polylysine and Sephadex chromatography to over 20,000 U/mg. After boiling the catalytic fragment of C in 0.1% dodecyl sulfate containing dithiothreitol (DTT), reaction with [14C]-iodoacetate labeled about 1 residue/molecule. However, the authors found the same extent of labeling without DTT in 6M guanidine at pH 9 and in parallel reactions that contained DTT, labeling was increased over 10-fold. The fully labeled protein migrated at M/sub r/ = 33,000 during gel electrophoresis. Chymotryptic digestion in dodecyl sulfate yielded eight major 14C peptides that were resolved by reversed-phase HPLC. The results are interpreted as evidence that C contains one free Cys residue and as many as 5 disulfide bonds. Multiple disulfides would account for the unusual stability of C and intramolecular disulfide interchange is proposed as the mechanism for conversion of the conformers

  6. Unbiased identification of substrates of protein tyrosine phosphatase ptp-3 in C. elegans.

    Science.gov (United States)

    Mitchell, Christopher J; Kim, Min-Sik; Zhong, Jun; Nirujogi, Raja Sekhar; Bose, Anjun K; Pandey, Akhilesh

    2016-06-01

    The leukocyte antigen related (LAR) family of receptor-like protein tyrosine phosphatases has three members in humans - PTPRF, PTPRD and PTPRS - that have been implicated in diverse processes including embryonic development, inhibition of cell growth and axonal guidance. Mutations in the LAR family are associated with developmental defects such as cleft palate as well as various cancers including breast, neck, lung, colon and brain. Although this family of tyrosine phosphatases is important for many developmental processes, little is known of their substrates. This is partially due to functional redundancy within the LAR family, as deletion of a single gene in the LAR family does not have an appreciable phenotype, but a dual knockout is embryonically lethal in mouse models. To circumvent the inability to knockout multiple members of the LAR family in mouse models, we used a knockout of ptp-3, which is the only known ortholog of the LAR family in Caenorhabditis elegans and allows for the study of the LAR family at the organismal level. Using SILAC-based quantitative phosphoproteomics, we identified 255 putative substrates of ptp-3, which included four of the nine known annotated substrates of the LAR family. A motif analysis of the identified phosphopeptides allowed for the determination of sequences that appear to be preferentially dephosphorylated. Finally, we discovered that kinases were overrepresented in the list of identified putative substrates and tyrosine residues whose phosphorylation is known to increase kinase activity were dephosphorylated by ptp-3. These data are suggestive of ptp-3 as a potential negative regulator of several kinase families, such as the mitogen activated kinases (MAPKs), and multiple tyrosine kinases including FER, MET, and NTRK2. PMID:27067626

  7. Tissue Non-specific Alkaline Phosphatase (TNAP) in Vessels of the Brain.

    Science.gov (United States)

    Deracinois, Barbara; Lenfant, Anne-Marie; Dehouck, Marie-Pierre; Flahaut, Christophe

    2015-01-01

    The microvessels of the brain represent around 3-4 % of the brain compartment but constitute the most important length (400 miles) and surface of exchange (20 m(2)) between the blood and the parenchyma of brain. Under influence of surrounding tissues, the brain microvessel endothelium expresses a specific phenotype that regulates and restricts the entry of compounds and cells from blood to brain, and defined the so-called blood-brain barrier (BBB). Evidences that alkaline phosphatase (AP) is a characteristic feature of the BBB phenotype that allows differentiating capillary endothelial cells from brain to those of the periphery have rapidly emerge. Thenceforth, AP has been rapidly used as a biomarker of the blood-brain barrier phenotype. In fact, brain capillary endothelial cells (BCECs) express exclusively tissue non-specific alkaline phosphatase (TNAP). There are several lines of evidence in favour of an important role for TNAP in brain function. TNAP is thought to be responsible for the control of transport of some compounds across the plasma membrane of the BCECs. Here, we report that levamisole-mediated inhibition of TNAP provokes an increase of the permeability to Lucifer Yellow of the endothelial monolayer. Moreover, we illustrate the disruption of the cytoskeleton organization. Interestingly, all observed effects were reversible 24 h after levamisole removal and correlated with the return of a full activity of the TNAP. This reversible effect remains to be studied in details to evaluate the potentiality of a levamisole treatment to enhance the entry of drugs in the brain parenchyma. PMID:26219710

  8. Association of Protein Phosphatase 1γ1 with Spinophilin Suppresses Phosphatase Activity in a Parkinson Disease Model*

    OpenAIRE

    Brown, Abigail M.; Baucum, Anthony J.; Bass, Martha A.; Roger J Colbran

    2008-01-01

    Sustained nigrostriatal dopamine depletion increases the serine/threonine phosphorylation of multiple striatal proteins that play a role in corticostriatal synaptic plasticity, including Thr286 phosphorylation of calcium/calmodulin-dependent protein kinase IIα (CaMKIIα). Mechanisms underlying these changes are unclear, but protein phosphatases play a critical role in the acute modulation of striatal protein phosphorylation. Here we show that dopamine depletion for periods ranging from 3 weeks...

  9. Have We Overlooked the Importance of Serine/Threonine Protein Phosphatases in Pancreatic Beta-Cells? Role Played by Protein Phosphatase 2A in Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Esser V

    2005-07-01

    Full Text Available Genetic predisposition and environmental influences insidiously converge to cause glucose intolerance and hyperglycemia. Beta-cell compensates by secreting more insulin and when it fails, overt diabetes mellitus ensues. The need to understand the mechanisms involved in insulin secretion cannot be stressed enough. Phosphorylation of proteins plays an important role in regulating insulin secretion. In order to understand how a particular cellular process is regulated by protein phosphorylation the nature of the protein kinases and protein phosphatases involved and the mechanisms that determine when and where these enzymes are active should be investigated. While the actions of protein kinases have been intensely studied within the beta-cell, less emphasis has been placed on protein phosphatases even though they play an important regulatory role. This review focuses on the importance of protein phosphatase 2A in insulin secretion. Most of the present knowledge on protein phosphatase 2A originates from protein phosphatase inhibitor studies on islets and beta-cell lines. The ability of protein phosphatase 2A to change its activity in the presence of glucose and inhibitors provides clues to its role in regulating insulin secretion. An aggressive approach to elucidate the substrates and mechanisms of action of protein phosphatases is crucial to the understanding of phosphorylation events within the beta-cell. Characterizing protein phosphatase 2A within the beta-cell will certainly help us in understanding the mechanisms involved in insulin secretion and provide valuable information for drug development.

  10. Dephosphorylation of chicken cardiac myofibril C-protein by protein phosphatases 1 and 2A

    International Nuclear Information System (INIS)

    C-Protein, which is a regulatory component of cardiac muscle myofibrils, is phosphorylated in response to β-adrenergic agonists by a cAMP-dependent mechanism and dephosphorylated in response to cholinergic agonists. It is believed that the cAMP-dependent phosphorylation is due to cAMP-dependent protein kinase. The protein phosphatase(s) involved in the dephosphorylation of C-protein has not been determined. In this study, chicken cardiac C-protein was phosphorylated with the cAMP-dependent protein kinase to about 3 mol phosphate/mol C-protein. Incubation of [32P]C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of 32[P]. Phosphopeptide maps and phosphoamino acid analysis revealed that the major site(s) dephosphorylated by either phosphatase was a phosphothreonine residue(s) located on the same tryptic peptide and on the same CNBr fragment. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A completely dephosphorylated C-protein. Preliminary studies showed that the major protein phosphatase associated with the myofibril was phosphatase 2A. These results indicate the phosphatase 2A may be important in the regulation of the phosphorylation state of C-protein

  11. Transcription factor C/EBP-β induces tumor-suppressor phosphatase PHLPP2 through repression of the miR-17-92 cluster in differentiating AML cells.

    Science.gov (United States)

    Yan, Y; Hanse, E A; Stedman, K; Benson, J M; Lowman, X H; Subramanian, S; Kelekar, A

    2016-07-01

    PHLPP2, a member of the PH-domain leucine-rich repeat protein phosphatase (PHLPP) family, which targets oncogenic kinases, has been actively investigated as a tumor suppressor in solid tumors. Little is known, however, regarding its regulation in hematological malignancies. We observed that PHLPP2 protein expression, but not its mRNA, was suppressed in late differentiation stage acute myeloid leukemia (AML) subtypes. MicroRNAs (miR or miRNAs) from the miR-17-92 cluster, oncomir-1, were shown to inhibit PHLPP2 expression and these miRNAs were highly expressed in AML cells that lacked PHLPP2 protein. Studies showed that miR-17-92 cluster regulation was, surprisingly, independent of transcription factors c-MYC and E2F in these cells; instead all-trans-retinoic acid (ATRA), a drug used for terminally differentiating AML subtypes, markedly suppressed miR-17-92 expression and increased PHLPP2 protein levels and phosphatase activity. Finally, we demonstrate that the effect of ATRA on miR-17-92 expression is mediated through its target, transcription factor C/EBPβ, which interacts with the intronic promoter of the miR-17-92 gene to inhibit transactivation of the cluster. These studies reveal a novel mechanism for upregulation of the phosphatase activity of PHLPP2 through C/EBPβ-mediated repression of the miR-17-92 cluster in terminally differentiating myeloid cells. PMID:26868909

  12. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    International Nuclear Information System (INIS)

    The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium U(VI) phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO43- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and a Bacillus sp. strain Y9-2, were further characterized. The Rahnella sp. exhibited enhanced phosphatase activity relative to the Bacillus sp. Whole-cell enzyme assays identified a pH optimum of 5.5, and inorganic phosphate accumulated in pH 5.5 synthetic groundwater (designed to mimic FRC conditions) incubations of both strains in the presence of a model organophosphorus substrate provided as the sole C and P source. Kinetic experiments showed that these two organisms can grow in the presence of 200 (micro)M dissolved uranium and that Rahnella is much more efficient in precipitating U(VI) than Bacillus sp. The

  13. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Martinez; Melanie J. Beazley; Samuel M. Webb; Martial Taillefert (co-PI); and Patricia A. Sobecky

    2007-04-19

    The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO4 3- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and a Bacillus sp. strain Y9-2, were further characterized. The Rahnella sp. exhibited enhanced phosphatase activity relative to the Bacillus sp. Whole-cell enzyme assays identified a pH optimum of 5.5, and inorganic phosphate accumulated in pH 5.5 synthetic groundwater (designed to mimic FRC conditions) incubations of both strains in the presence of a model organophosphorus substrate provided as the sole C and P source. Kinetic experiments showed that these two organisms can grow in the presence of 200 μM dissolved uranium and that Rahnella is much more efficient in precipitating U(VI) than Bacillus sp. The

  14. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakisaka, Yukihiko [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tohoku Fukushi University, Sendai 989-3201 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  15. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    International Nuclear Information System (INIS)

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression

  16. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate

    DEFF Research Database (Denmark)

    Faerk, J; Peitersen, Birgit; Petersen, S; Michaelsen, K F

    2002-01-01

    BACKGROUND: The bone mineral content of premature infants at term is lower than in mature infants at the same postconceptional age. Serum alkaline phosphatase and serum phosphate are often used as indicators of bone mineralisation. OBJECTIVE: To analyse the association between bone mineral content...... and serum alkaline phosphatase and serum phosphate. METHODS: Serum alkaline phosphatase and phosphate were measured at weekly intervals during admission in 108 premature infants of gestational age below 32 weeks (mean (SD) gestational age 29 (2) weeks; mean (SD) birth weight 1129 (279) g). Bone...... alkaline phosphatase (p = 0.8), peak serum alkaline phosphatase (p = 0.5), or mean serum phosphate (p = 0.2) at term. CONCLUSION:Routine measurements of serum alkaline phosphatase and serum phosphate are of no use in predicting bone mineralisation outcome in premature infants....

  17. A description of alkaline phosphatases from marine organisms

    Science.gov (United States)

    Tian, Jiyuan; Jia, Hongbing; Yu, Juan

    2015-12-01

    Alkaline phosphatases (APs) are non-specific phosphohydrolases, and they are widely used in clinical diagnostics and biological studies. APs are widespread in nature and exhibit different structural formulations. Based on the diversity of biogenetic sources, APs exhibit temperature-propensity traits, and they are classified as psychrophilic, mesophilic, and thermophilic. In this article, the characteristics of psychrophilic APs from marine organisms were described, accompanied by a simple description of APs from other organisms. This review will facilitate better utilization of marine APs in the biotechnology field.

  18. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E

    1989-01-01

    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4.......4. Three enzyme peaks were eluted using low pressure chromatography with a Bio-gel column. With a HPLC gel filtration column the separation of the enamel extract resulted in only one peak with AP activity. The fractions of this peak were used to produce an antibody against bovine AP....

  19. ALKALINE PHOSPHATASE ACTIVITY AS A MARKER OF DOG SEMEN FREEZABILITY

    Directory of Open Access Journals (Sweden)

    KOSINIAK-KAMYSZ K.

    2007-01-01

    Full Text Available The investigation was performed to evaluate the dog semen freezability and itsquality after thawing allowing its use for artificial insemination (AI. On the basis ofsperm motility, concentration and alkaline phosphatase (AP activity in semenplasma it was possible to establish that AP activity corresponds with the basic factorof semen examination. Significant statistical differences occurred between thequality of ejaculates which were qualified or disqualified to deep freezing and AI.These results show that AP activity in raw dog semen plasma can be used as amarker for the dog semen qualification for deep freezing and AI with 95%probability of the prognosis of the results.

  20. PROTEN TYROSINE PHOSPHATASE ACTIVITY IN RAT ASCITES HEPATOMA CELLS

    Directory of Open Access Journals (Sweden)

    M.Saadat

    1998-10-01

    Full Text Available Protein tyrosine phosphatases (PTPases regulate tyrosine phosphorylation of target proteins involved in several aspects of cellular functions. Enzyme activities of the PTPases in cytosolic and particulate fractions of rat ascites hepatoma cell lines were determined and compared with those of normal rat liver. Our present data revealed that although there was no neoplatic-specific alteration of the PTPase activity in examined hepatomas, the activity in particulate fractions of island type of hepatomas was remarkably decreased compared with either rat liver or free type hepatomas.

  1. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    International Nuclear Information System (INIS)

    The overall goal of this project is to examine the role of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO43-. During this phase of the project we have been conducting assays to determine the effects of pH, inorganic anions and organic ligands on U(VI) mineral formation and precipitation when FRC bacterial isolates were grown in simulated groundwater medium. The molecular characterization of FRC isolates has also been undertaken during this phase of the project. Analysis of a subset of gram-positive FRC isolates cultured from FRC soils (Areas 1, 2 and 3) and background sediments have indicated a higher percentage of isolates exhibiting phosphatase phenotypes (i.e., in particular those surmised to be PO43--irrepressible) relative to isolates from the reference site. A high percentage of strains that exhibited such putatively PO43--irrepressible phosphatase phenotypes were also resistant to the heavy metals lead and cadmium. Previous work on FRC strains, including Arthrobacter, Bacillus and Rahnella spp., has demonstrated differences in tolerance to U(VI) toxicity (200 (micro)M) in the absence of organophosphate substrates. For example, Arthrobacter spp. exhibited the greatest tolerance to U(VI) while the Rahnella spp. have been shown to facilitate the precipitation of U(VI) from solution and the Bacillus spp. demonstrate the greatest sensitivity to acidic conditions and high concentrations of U(VI). PCR-based detection of FRC strains are being conducted to determine if non-specific acid phosphatases of the known molecular classes [i.e., classes A, B and C] are present in these FRC isolates. Additionally, these amplified phosphatases are being

  2. A description of alkaline phosphatases from marine organisms

    Science.gov (United States)

    Tian, Jiyuan; Jia, Hongbing; Yu, Juan

    2016-07-01

    Alkaline phosphatases (APs) are non-specific phosphohydrolases, and they are widely used in clinical diagnostics and biological studies. APs are widespread in nature and exhibit different structural formulations. Based on the diversity of biogenetic sources, APs exhibit temperature-propensity traits, and they are classified as psychrophilic, mesophilic, and thermophilic. In this article, the characteristics of psychrophilic APs from marine organisms were described, accompanied by a simple description of APs from other organisms. This review will facilitate better utilization of marine APs in the biotechnology field.

  3. Direct Electrochemistry of Porcine Purple Acid Phosphatase (Uteroferrin)

    OpenAIRE

    Bernhardt, Paul V; Schenk, Gerhard; Wilson, Gregory J.

    2004-01-01

    Cyclic voltammetry of the non-heme diiron enzyme porcine purple acid phosphatase (uteroferrin, Uf) has been reported for the first time. Totally reversible one-electron oxidation responses (FeIII-FeII f FeIII-FeIII) are seen both in the absence and in the presence of weak competitive inhibitors phosphate and arsenate, and dissociation constants of these oxoanion complexes formed with uteroferrin in its oxidized state (Ufo) have been determined. The effect of pH on the redox potent...

  4. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Robert J.; Beazley, Melanie J.; Wilson, Jarad J.; Taillefert, Martial; Sobecky, Patricia A.

    2005-04-05

    The overall goal of this project is to examine the role of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO{sub 4}{sup 3-}. During this phase of the project we have been conducting assays to determine the effects of pH, inorganic anions and organic ligands on U(VI) mineral formation and precipitation when FRC bacterial isolates were grown in simulated groundwater medium. The molecular characterization of FRC isolates has also been undertaken during this phase of the project. Analysis of a subset of gram-positive FRC isolates cultured from FRC soils (Areas 1, 2 and 3) and background sediments have indicated a higher percentage of isolates exhibiting phosphatase phenotypes (i.e., in particular those surmised to be PO{sub 4}{sup 3-}-irrepressible) relative to isolates from the reference site. A high percentage of strains that exhibited such putatively PO{sub 4}{sup 3-}-irrepressible phosphatase phenotypes were also resistant to the heavy metals lead and cadmium. Previous work on FRC strains, including Arthrobacter, Bacillus and Rahnella spp., has demonstrated differences in tolerance to U(VI) toxicity (200 {micro}M) in the absence of organophosphate substrates. For example, Arthrobacter spp. exhibited the greatest tolerance to U(VI) while the Rahnella spp. have been shown to facilitate the precipitation of U(VI) from solution and the Bacillus spp. demonstrate the greatest sensitivity to acidic conditions and high concentrations of U(VI). PCR-based detection of FRC strains are being conducted to determine if non-specific acid phosphatases of the known molecular classes [i.e., classes A, B and C] are present in these FRC isolates. Additionally, these

  5. A double antibody radioimmunoassay specific for placental alkaline phosphatase

    International Nuclear Information System (INIS)

    Placental alkaline phosphatase (PLAP) is normally found in enzymically measurable amounts in second and third trimester pregnancy serum. Its occurrence in sera and tumours from patients with malignant disease has led to the development of methods to specifically identify and quantitate the enzyme. Recently immunological techniques have been used, employing antibodies raised to purified PLAP; these include solid phase radioimmunoassays and enzyme-immunoassay. The development of a sensitive, specific, automated double-antibody radioimmunoassay for the measurement of PLAP in serum is reported. (Auth.)

  6. ALKALINE PHOSPHATASE ACTIVITY AS A MARKER OF DOG SEMEN FREEZABILITY

    Directory of Open Access Journals (Sweden)

    K. KOSINIAK-KAMYSZ

    2013-12-01

    Full Text Available The investigation was performed to evaluate the dog semen freezability and itsquality after thawing allowing its use for artificial insemination (AI. On the basis ofsperm motility, concentration and alkaline phosphatase (AP activity in semenplasma it was possible to establish that AP activity corresponds with the basic factorof semen examination. Significant statistical differences occurred between thequality of ejaculates which were qualified or disqualified to deep freezing and AI.These results show that AP activity in raw dog semen plasma can be used as amarker for the dog semen qualification for deep freezing and AI with 95%probability of the prognosis of the results.

  7. Acid phosphatase localization in neurons of Bulla gouldiana (Gastropoda: Opisthobranchia.

    Science.gov (United States)

    Robles, L J; Fisher, S K

    1975-01-01

    The organization of the ganglia and the ultrastructure of the neurons of Bulla gouldiana are similar to those described for other molluscs. Acid phosphatase positive reactions were found in the large pigmented granules, small dense bodies, multivesicular bodies, and Golgi lamellae and associated vesicles. The small dense bodies and multivesicular bodies may be stages in the formation of the larger pigmented granules which are interpreted as lysosomes. Comparison is made between the pigmented granules in Bulla and the lipofuscin bodies of vertebrate neurons. The possible involvement of these pigmented granules in the hyperpolarization of Bulla and Aplysia neurons to light is discussed. PMID:1122539

  8. Study on prostatic acid phosphatase (PAP) immunoradiometric assay kit

    International Nuclear Information System (INIS)

    This coat-antibody-count PAP IRMA is a solid-phase immunoradiometric assay based on two strains of monoclonal antibodies, designed for the quantitative measurement of prostatic acid phosphatase (PAP) in serum. The minimal detectable concentration is 0.1 μg/L. The intra and inter coefficients of variation are 8.8%-9.6% and 7.7%-12.3%, respectively. The recovery is 96.3%-105.0% and the range of detection is 2.5-200.0 μg/L

  9. Structure determination of T-cell protein-tyrosine phosphatase

    DEFF Research Database (Denmark)

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.;

    2002-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly......-crystallize TC-PTP with the same set of inhibitors. This seems to be due to a multimerization process where residues 130-132, the DDQ loop, from one molecule is inserted into the active site of the neighboring molecule, resulting in a continuous string of interacting TC-PTP molecules. Importantly, despite the...

  10. Fluorescence spectroscopy measures yeast PAH1-encoded phosphatidate phosphatase interaction with liposome membranes

    OpenAIRE

    Xu, Zhi; Su, Wen-Min; Carman, George M.

    2012-01-01

    Phosphatidate (PA) phosphatase, the enzyme that catalyzes the penultimate step in triacylglycerol synthesis, is a cytosolic enzyme that must associate with the membrane where its substrate PA resides. Fluorescence spectroscopy was used to measure the interaction of yeast PAH1-encoded PA phosphatase with model liposome membranes. PA phosphatase contains five tryptophan residues and exhibited inherit fluorescence that increased upon interaction with phosphatidylcholine liposomes. The interactio...

  11. Distinct alkaline phosphatase in serum of patients with lymphatic leukemia and infectious mononucleosis

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, H.; Moran, E.M.; Russell, R.M.; Rosenberg, I.H.

    1974-10-11

    A distinct alkaline phosphatase (phosphatase N) was demonstrated in the serum of patients with acute lymphatic leukemia, chronic lymphatic leukemia, and infectious mononucleosis. This enzyme closely resembles that extracted from the thymus of mice with lymphoma or lymphatic leukemia, both in its electrophoretic mobility and its substrate specificity. The phosphatase N activity was related to the clinical state of patients with lymphatic leukemia and disappeared with recovery from infectious mononucleosis.

  12. Cervical acid phosphatase detection: A guide to abnormal cells in cytology smear screening for cervical cancer

    OpenAIRE

    Deb Prabal; Iyer Venkateswaran; Bhatla Neerja; Markovic O; Verma Kusum

    2008-01-01

    Background: Cervical acid phosphatase-Papanicolaou (CAP-PAP) test has recently been described for detection of acid phosphatase enzyme in abnormal squamous cells, and has been proposed as a biomarker-based technology for the screening of cervical cancer. Materials and Methods: Eighty-one consecutive cervical smears were subjected to routine Papanicolaou (Pap) staining as well as CAP-PAP, which combined cytochemical staining for acid phosphatase with modified Pap stain. Statistical evaluation ...

  13. Characterization and site-directed mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus

    Directory of Open Access Journals (Sweden)

    Gilbert Christophe

    2008-04-01

    Full Text Available Abstract Background Reversible phosphorylation events within a polymerisation complex have been proposed to modulate capsular polysaccharide synthesis in Streptococcus pneumoniae. Similar phosphatase and kinase genes are present in the exopolysaccharide (EPS biosynthesis loci of numerous lactic acid bacteria genomes. Results The protein sequence deduced from the wzb gene in Lactobacillus rhamnosus ATCC 9595 reveals four motifs of the polymerase and histidinol phosphatase (PHP superfamily of prokaryotic O-phosphatases. Native and modified His-tag fusion Wzb proteins were purified from Escherichia coli cultures. Extracts showed phosphatase activity towards tyrosine-containing peptides. The purified fusion protein Wzb was active on p-nitrophenyl-phosphate (pNPP, with an optimal activity in presence of bovine serum albumin (BSA 1% at pH 7.3 and a temperature of 75°C. At 50°C, residual activity decreased to 10 %. Copper ions were essential for phosphatase activity, which was significantly increased by addition of cobalt. Mutated fusion Wzb proteins exhibited reduced phosphatase activity on p-nitrophenyl-phosphate. However, one variant (C6S showed close to 20% increase in phosphatase activity. Conclusion These characteristics reveal significant differences with the manganese-dependent CpsB protein tyrosine phosphatase described for Streptococcus pneumoniae as well as with the polysaccharide-related phosphatases of Gram negative bacteria.

  14. Prostatic acid phosphatase is the main acid phosphatase with 5'-ectonucleotidase activity in the male mouse saliva and regulates salivation.

    Science.gov (United States)

    Araujo, César L; Quintero, Ileana B; Kipar, Anja; Herrala, Annakaisa M; Pulkka, Anitta E; Saarinen, Lilli; Hautaniemi, Sampsa; Vihko, Pirkko

    2014-06-01

    We have previously shown that in addition to the well-known secreted isoform of prostatic acid phosphatase (sPAP), a transmembrane isoform exists (TMPAP) that interacts with snapin (a SNARE-associated protein) and regulates the endo-/exocytic pathways. We have also shown that PAP has 5'-ectonucleotidase and thiamine monophosphatase activity and elicits antinociceptive effects in mouse models of chronic inflammatory and neuropathic pain. Therefore, to determine the physiological role of PAP in a typical exocrine organ, we studied the submandibular salivary gland (SMG) of PAP(-/-) and wild-type C57BL/6J mice by microarray analyses, microRNA sequencing, activity tests, immunohistochemistry, and biochemical and physiological analyses of saliva. We show that PAP is the main acid phosphatase in the wild-type male mouse saliva, accounting for 50% of the total acid phosphatase activity, and that it is expressed only in the granular convoluted tubules of the SMGs, where it is the only 5'-ectonucleotidase. The lack of PAP in male PAP(-/-) mice was associated with a significant increase in the salivation volume under secretagogue stimulation, overexpression of genes related to cell proliferation (Mki67, Aurkb, Birc5) and immune response (Irf7, Cxcl9, Ccl3, Fpr2), and upregulation of miR-146a in SMGs. An increased and sustained acinar cell proliferation was detected without signs of glandular hyperplasia. Our results indicate that in PAP(-/-) mice, SMG homeostasis is maintained by an innate immune response. Additionally, we suggest that in male mice, PAP via its 5'-ectonucleotidase activity and production of adenosine can elicit analgesic effects when animals lick their wounds. PMID:24717577

  15. The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms.

    Science.gov (United States)

    Ciuffreda, Ludovica; Di Sanza, Cristina; Cesta Incani, Ursula; Eramo, Adriana; Desideri, Marianna; Biagioni, Francesca; Passeri, Daniela; Falcone, Italia; Sette, Giovanni; Bergamo, Paola; Anichini, Andrea; Sabapathy, Kanaga; McCubrey, James A; Ricciardi, Maria Rosaria; Tafuri, Agostino; Blandino, Giovanni; Orlandi, Augusto; De Maria, Ruggero; Cognetti, Francesco; Del Bufalo, Donatella; Milella, Michele

    2012-06-01

    The mitogen-activated protein kinase (MAPK) and PI3K pathways are regulated by extensive crosstalk, occurring at different levels. In tumors, transactivation of the alternate pathway is a frequent "escape" mechanism, suggesting that combined inhibition of both pathways may achieve synergistic antitumor activity. Here we show that, in the M14 melanoma model, simultaneous inhibition of both MEK and mammalian target of rapamycin (mTOR) achieves synergistic effects at suboptimal concentrations, but becomes frankly antagonistic in the presence of relatively high concentrations of MEK inhibitors. This observation led to the identification of a novel crosstalk mechanism, by which either pharmacologic or genetic inhibition of constitutive MEK signaling restores phosphatase and tensin homolog (PTEN) expression, both in vitro and in vivo, and inhibits downstream signaling through AKT and mTOR, thus bypassing the need for double pathway blockade. This appears to be a general regulatory mechanism and is mediated by multiple mechanisms, such as MAPK-dependent c-Jun and miR-25 regulation. Finally, PTEN upregulation appears to be a major effector of MEK inhibitors' antitumor activity, as cancer cells in which PTEN is inactivated are consistently more resistant to the growth inhibitory and anti-angiogenic effects of MEK blockade. PMID:22215152

  16. Spatial control of protein phosphatase 2A (de)methylation

    International Nuclear Information System (INIS)

    Reversible methylation of the protein phosphatase 2A catalytic subunit (PP2AC) is an important regulatory mechanism playing a crucial role in the selective recruitment of regulatory B subunits. Here, we investigated the subcellular localization of leucine carboxyl methyltransferase (LCMT1) and protein phosphatase methylesterase (PME-1), the two enzymes catalyzing this process. The results show that PME-1 is predominantly localized in the nucleus and harbors a functional nuclear localization signal, whereas LCMT1 is underrepresented in the nucleus and mainly localizes to the cytoplasm, Golgi region and late endosomes. Indirect immunofluorescence with methylation-sensitive anti-PP2AC antibodies revealed a good correlation with the methylation status of PP2AC, demethylated PP2AC being substantially nuclear. Throughout mitosis, demethylated PP2AC is associated with the mitotic spindle and during cytokinesis with the cleavage furrow. Overexpression of PME-1, but not of an inactive mutant, results in increased demethylation of PP2AC in the nucleus, whereas overexpression of a cytoplasmic PME-1 mutant lacking the NLS results in increased demethylation in the cytoplasm-in all cases, however, without any obvious functional consequences. PME-1 associates with an inactive PP2A population, regardless of its esterase activity or localization. We propose that stabilization of this inactive, nuclear PP2A pool is a major in vivo function of PME-1

  17. Functional Analysis of Protein Tyrosine Phosphatases in Thrombosis and Hemostasis.

    Science.gov (United States)

    Rahmouni, Souad; Hego, Alexandre; Delierneux, Céline; Wéra, Odile; Musumeci, Lucia; Tautz, Lutz; Oury, Cécile

    2016-01-01

    Platelets are small blood cells derived from cytoplasmic fragments of megakaryocytes and play an essential role in thrombosis and hemostasis. Platelet activation depends on the rapid phosphorylation and dephosphorylation of key signaling molecules, and a number of kinases and phosphatases have been identified as major regulators of platelet function. However, the investigation of novel signaling proteins has suffered from technical limitations due to the anucleate nature of platelets and their very limited levels of mRNA and de novo protein synthesis. In the past, experimental methods were restricted to the generation of genetically modified mice and the development of specific antibodies. More recently, novel (phospho)proteomic technologies and pharmacological approaches using specific small-molecule inhibitors have added additional capabilities to investigate specific platelet proteins.In this chapter, we report methods for using genetic and pharmacological approaches to investigate the function of platelet signaling proteins. While the described experiments focus on the role of the dual-specificity phosphatase 3 (DUSP3) in platelet signaling, the presented methods are applicable to any signaling enzyme. Specifically, we describe a testing strategy that includes (1) aggregation and secretion experiments with mouse and human platelets, (2) immunoprecipitation and immunoblot assays to study platelet signaling events, (3) detailed protocols to use selected animal models in order to investigate thrombosis and hemostasis in vivo, and (4) strategies for utilizing pharmacological inhibitors on human platelets. PMID:27514813

  18. Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair

    Science.gov (United States)

    Tahbaz, Nasser; Subedi, Sudip; Weinfeld, Michael

    2012-01-01

    Mutations in mitochondrial DNA (mtDNA) are implicated in a broad range of human diseases and in aging. Compared to nuclear DNA, mtDNA is more highly exposed to oxidative damage due to its proximity to the respiratory chain and the lack of protection afforded by chromatin-associated proteins. While repair of oxidative damage to the bases in mtDNA through the base excision repair pathway has been well studied, the repair of oxidatively induced strand breaks in mtDNA has been less thoroughly examined. Polynucleotide kinase/phosphatase (PNKP) processes strand-break termini to render them chemically compatible for the subsequent action of DNA polymerases and ligases. Here, we demonstrate that functionally active full-length PNKP is present in mitochondria as well as nuclei. Downregulation of PNKP results in an accumulation of strand breaks in mtDNA of hydrogen peroxide-treated cells. Full restoration of repair of the H2O2-induced strand breaks in mitochondria requires both the kinase and phosphatase activities of PNKP. We also demonstrate that PNKP contains a mitochondrial-targeting signal close to the C-terminus of the protein. We further show that PNKP associates with the mitochondrial protein mitofilin. Interaction with mitofilin may serve to translocate PNKP into mitochondria. PMID:22210862

  19. Crystallization and preliminary crystallographic analysis of the human calcineurin homologous protein CHP2 bound to the cytoplasmic region of the Na+/H+ exchanger NHE1

    International Nuclear Information System (INIS)

    Crystallization of the human CHP2–NHE1 binding domain complex. Calcineurin homologous protein (CHP) is a Ca2+-binding protein that directly interacts with and regulates the activity of all plasma-membrane Na+/H+-exchanger (NHE) family members. In contrast to the ubiquitous isoform CHP1, CHP2 is highly expressed in cancer cells. To understand the regulatory mechanism of NHE1 by CHP2, the complex CHP2–NHE1 (amino acids 503–545) has been crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as precipitant. The crystals diffract to 2.7 Å and belong to a tetragonal space group, with unit-cell parameters a = b = 49.96, c = 103.20 Å

  20. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius.

    Science.gov (United States)

    Reimann, Julia; Esser, Dominik; Orell, Alvaro; Amman, Fabian; Pham, Trong Khoa; Noirel, Josselin; Lindås, Ann-Christin; Bernander, Rolf; Wright, Phillip C; Siebers, Bettina; Albers, Sonja-Verena

    2013-12-01

    In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius. PMID:24078887

  1. The content of macro- and microelements and the phosphatase activity of soils under a varied plant cultivation technology

    Science.gov (United States)

    Bartkowiak, A.; Lemanowicz, J.; Kobierski, M.

    2015-12-01

    The paper presents the results of the analyses of selected physicochemical properties and the activity of alkaline and acid phosphatase in the soils which differed in terms of plant cultivation technology. Profile sI represented arable land in the crop rotation with cereals dominating (medium intensive technology), without irrigation, while profile sII—represented arable land with vegetable crops cultivation (intensive technology), intensively fertilized and irrigated. The content of available phosphorus in the two soil profiles investigated ranged from 6.6 to 69.1 mg/kg. The highest contents of phosphorus available to plants were reported in the plough horizon of both soils, while the abundance of potassium and magnesium was highest in the illuvial horizon of both soils. The soil profiles investigated showed a significant variation in terms of the cultivation technologies applied. The contents of plant-available Cu and Zn in soil were low and they resulted in the inhibition of neither alkaline nor acid phosphatase. The intensive vegetable crops cultivation technology decreased the content of organic matter and increased the content of the nutrients in soil. Using the Ward method, it was found that relatively similar physicochemical and chemical properties were reported for the genetic horizons of both soil profiles, especially Ap horizon of the soil representing arable land with intensive cultivation of vegetable crops.

  2. The effect of water and salt stresses on the phosphorus content and acid phosphatase activity in oilseed rape

    Directory of Open Access Journals (Sweden)

    Stanisław Flasiński

    2014-02-01

    Full Text Available Oilseed rape plants responded to water and salt stresses (-0.5 MPa, PEG 6000 and NaCI by reduction of the fresh and dry weights of shoots and roots. When PEG was used, the ratio of dry weights of roots:shoots surpassed that of controls. The leaf protein content increased considerably. The phosphorus content decreased only in the roots, most significantly after three days of stress. Immediately after the stresses were induced, an increase in the acid phosphatase (AP activity was noted. Water and salt stresses caused four- and two-fold increases in AP activity in leaves, respectively. Changes in the enzyme activity were negligible in stems and roots. There are nine forms of AP in young leaves of oilseed rape. In the stressed plants, from No. 5 revealed lower activity and forms Nos 8 and 9, higher activities than in the control. The increase in AP activity was directly accompanied by the decrease in the water potential of the tissues. Oilseed rape is considerably less sensitive to salt stress than to water stress, which is manifested as the lower inhibition of plant growth and also by a smaller increase in acid phosphatase activity.

  3. Hypoxia-induced regulation of MAPK phosphatase-1 as identified by subtractive suppression hybridization and cDNA microarray analysis.

    Science.gov (United States)

    Seta, K A; Kim, R; Kim, H W; Millhorn, D E; Beitner-Johnson, D

    2001-11-30

    Subtractive suppression hybridization was used to generate a cDNA library enriched in cDNA sequences corresponding to mRNA species that are specifically up-regulated by hypoxia (6 h, 1% O(2)) in the oxygen-responsive pheochromocytoma cell line. The dual specificity protein-tyrosine phosphatase MAPK phosphatase-1 (MKP-1) was highly represented in this library. Clones were arrayed on glass slides to create a hypoxia-specific cDNA microarray chip. Microarray, northern blot, and western blot analyses confirmed that MKP-1 mRNA and protein levels were up-regulated by hypoxia by approximately 8-fold. The magnitude of the effect of hypoxia on MKP-1 was approximately equal to that induced by KCl depolarization and much larger than the effects of either epidermal growth factor or nerve growth factor on MKP-1 mRNA levels. In contrast to the calcium-dependent induction of MKP-1 by KCl depolarization, the effect of hypoxia on MKP-1 persisted under calcium-free conditions. Cobalt and deferoxamine also increased MKP-1 mRNA levels, suggesting that hypoxia-inducible factor proteins may play a role in the regulation of MKP-1 by hypoxia. Pretreatment of cells with SB203580, which inhibits p38 kinase activity, significantly reduced the hypoxia-induced increase in MKP-1 RNA levels. Thus, hypoxia robustly increases MKP-1 levels, at least in part through a p38 kinase-mediated mechanism. PMID:11577072

  4. A therapeutic exploratory study to determine the efficacy and safety of calcineurin-inhibitor-free de-novo immunosuppression after liver transplantation: CILT

    Directory of Open Access Journals (Sweden)

    Lorf Thomas

    2010-04-01

    Full Text Available Abstract Background Immunosuppression with calcineurin inhibitors (CNI increases the risk of renal dysfunction after orthotopic liver transplantation (OLT. Controlled trials have shown improvement of renal function in patients that received delayed and/or reduced-dose CNI after OLT. Delaying immunosuppression with CNI in combination with induction therapy does not increase the risk of acute rejection but reduces the incidence of acute renal dysfunction. Based on this clinical data this study protocol was designed to assess the efficacy and safety of calcineurin-inhibitor-free de-novo immunosuppression after liver transplantation. Methods/Design A prospective therapeutic exploratory, non-placebo controlled, two stage monocenter trial in a total of 29 liver transplant patients was designed to assess the safety and efficacy of de-novo CNI-free immunosuppression with basiliximab, mycophenolate sodium, prednisolone and everolimus. The primary endpoint is the rate of steroid resistant rejections. Secondary endpoints are the incidence of acute rejection, kidney function (assessed by incidence and duration of renal replacement therapy, incidence of chronic renal failure, and measurement glomerular filtration rate, liver allograft function (assessed by measurement of AST, ALT, total bilirubin, AP, GGT, treatment failure, (i. e., re-introduction of CNI, incidence of adverse events, and mortality up to one year after OLT. Discussion This prospective, two-stage, single-group pilot study represents an intermediate element of the research chain. If the data of the phase II study corroborates safety of de-novo CNI-free immunosuppressive regimen this should be confirmed in a randomized, prospective, controlled double-blinded clinical trial. The exploratory data from this trial may then also facilitate the design (e. g. sample size calculation of this phase III trial. Trial registration number NCT00890253 (clinicaltrials.gov

  5. Specific dephosphorylation by phosphatases 1 and 2A of a nuclear protein structurally and immunologically related to nucleolin

    DEFF Research Database (Denmark)

    Schneider, H R; Mieskes, G; Issinger, O G

    1989-01-01

    A new nuclear substrate (N-60) for phosphatase 1 and 2Ac has been described. In contrast to nucleolin (C23), to which it is structurally and immunologically related, N-60 becomes dephosphorylated to 51% and 41% by phosphatases 1 and 2Ac, respectively, within 10 min. Incubation up to 20 min led to a...... complete dephosphorylation of N-60. The two other phosphatases tested (2B and 2C) did not dephosphorylate protein N-60 to the same extent as phosphatases 1 and 2Ac. In the case of nucleolin only 18% phosphate was released by all four phosphatases tested. The activity of both phosphatases, 1 and 2A, could...

  6. High degree of homology between primary structure of human lysosomal acid phosphatase and human prostatic acid phosphatase.

    Science.gov (United States)

    Peters, C; Geier, C; Pohlmann, R; Waheed, A; von Figura, K; Roiko, K; Virkkunen, P; Henttu, P; Vihko, P

    1989-02-01

    Alignment of the amino-acid sequences of the human lysosomal acid phosphatase (LAP) and human prostatic acid phosphatase (PAP) yielded an extensive homology between the two mature polypeptide chains. In the overlapping part, which extends over the entire PAP sequence and the N-terminal 90% of the LAP sequence, the identity is 49.1%. The LAP has an additional C-terminal sequence, which is encoded by the last exon of the LAP gene. This sequence contains the transmembrane domain of LAP, which is lacking in the secretory PAP. All six cysteine residues as well as 20 out of 27 (LAP) and 26 (PAP) proline residues present in the overlapping part of the proteins are conserved, suggesting that they are involved in stabilization of the tertiary structure of both proteins. Only two out of 8 N-glycosylation sites in LAP and 3 in PAP are conserved, suggesting that the dense N-glycosylation of LAP is related to its function in lysosomes. PMID:2706086

  7. Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations.

    Directory of Open Access Journals (Sweden)

    Heidi O Nousiainen

    Full Text Available Prostatic acid phosphatase (PAP, the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG, but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP in the brain by utilizing mice deficient in TMPAP (PAP-/- mice. Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.

  8. Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis.

    Science.gov (United States)

    Xu, Qingwen; Zhang, Yuxia; Wei, Qing; Huang, Yan; Hu, Jinghua; Ling, Kun

    2016-01-01

    Defective primary cilia are causative to a wide spectrum of human genetic disorders, termed ciliopathies. Although the regulation of ciliogenesis is intensively studied, how it is initiated remains unclear. Here we show that type Iγ phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (PIPKIγ) and inositol polyphosphate-5-phosphatase E (INPP5E), a Joubert syndrome protein, localize to the centrosome and coordinate the initiation of ciliogenesis. PIPKIγ counteracts INPP5E in regulating tau-tubulin kinase-2 (TTBK2) recruitment to the basal body, which promotes the removal of microtubule capping protein CP110 and the subsequent axoneme elongation. Interestingly, INPP5E and its product-PtdIns(4)P-accumulate at the centrosome/basal body in non-ciliated, but not ciliated, cells. PtdIns(4)P binding to TTBK2 and the distal appendage protein CEP164 compromises the TTBK2-CEP164 interaction and inhibits the recruitment of TTBK2. Our results reveal that PtdIns(4)P homoeostasis, coordinated by PIPKIγ and INPP5E at the centrosome/ciliary base, is vital for ciliogenesis by regulating the CEP164-dependent recruitment of TTBK2. PMID:26916822

  9. Oleanane triterpenes as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Camellia japonica.

    Science.gov (United States)

    Uddin, Mohammad Nasir; Sharma, Govinda; Yang, Jun-Li; Choi, Hong Seok; Lim, Seong-Il; Kang, Keon Wook; Oh, Won Keun

    2014-07-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role in metabolic signaling, thereby making it an exciting drug target for type 2 diabetes and obesity. Besides, there is substantial evidence that shows its overexpression is involved in breast cancer, which suggests that selective PTP1B inhibition might be effective in breast cancer treatment. As part of our continuous research on PTP1B inhibitors from medicinal plants, four oleanane-type triterpenes were isolated from an EtOAc-soluble extract of fruit peels of Camellia japonica (Theaceae), together with 6 previously known compounds of this class. Their structures were determined on the basis of spectroscopic data analysis (UV, IR, (1)H and (13)CNMR, HMBC, HSQC, NOESY, and MS). All isolates were evaluated for their inhibitory effects on PTP1B, as well as their cytotoxic effects against human breast cancer cell lines MCF7, MCF7/ADR, and MDA-MB-231. Several compounds with OH-3 or/and COOH-28 functionalities showed strong PTP1B inhibitory activity (IC50 values ranging from 3.77±0.11 to 6.40±0.81 μM) as well as significant cytotoxicity (IC50 values ranging from 0.51±0.05 to 13.55±1.44 μM). PMID:24815008

  10. Molecular cloning and characterization of L-galactose-1-phosphate phosphatase from tobacco (Nicotiana tabacum).

    Science.gov (United States)

    Sakamoto, Shingo; Fujikawa, Yukichi; Tanaka, Nobukazu; Esaka, Muneharu

    2012-01-01

    L-Galactose-1-phosphate phosphatase (GPPase) is an enzyme involved in ascorbate biosynthesis in higher plants. We isolated a cDNA encoding GPPase from tobacco, and named it NtGPPase. The putative amino acid sequence of NtGPPase contained inositol monophosphatase motifs and metal binding sites. Recombinant NtGPPase hydrolyzed not only L-galactose-1-phosphate, but also myo-inositol-1-phosphate. The optimum pH for the GPPase activity of NtGPPase was 7.5. Its enzyme activity required Mg2+, and was inhibited by Li+ and Ca2+. Its fluorescence, fused with green fluorescence protein in onion cells and protoplasts of tobacco BY-2 cells, was observed in both the cytosol and nucleus. The expression of NtGPPase mRNA and protein was clearly correlated with L-ascorbic acid (AsA) contents of BY-2 cells during culture. The AsA contents of NtGPPase over expression lines were higher than those of empty lines at 13 d after subculture. This suggests that NtGPPase contributes slightly to AsA biosynthesis. PMID:22790939

  11. Role of Phosphatases During Transport and Energy Matabolism in Labeo rohita After Exposure to Cypermethrin

    Institute of Scientific and Technical Information of China (English)

    G.H.PHILIP; J.ANURADHA

    1996-01-01

    Freshwater fish,Labeo rohita,were exposed to sublethal concentration(0.5μg·L-1)of cypermethrin for 7 and 15 days to examine the bioenergetics in functionally four differnt tissues,namely,gill,liver,brain and muscle.Whole animal oxygen consumption was measured first and it was found to decrease in both the exposure periods(EPs),mainifesting respiratory distress of the animal in both the exposure periods(EPs),manifesting respiratory distress of the animal in toxic environment,Ionic regulation and energy requirements were also found to be altered under stress,as observed by the inhibition of both Na+/K+and Mg2+ ATP ases at 7d EP and elevation at 15d EP.Increase in gluose-6 phosphate dehydrogenase(G-6-PDH) was consistent with the increase in exposure time.Attenuation of acid and alkaline phosphatases wer noticed in treated fish after 7 days but were cloase to normalcy at 15d EP.These results clearly indicate that the fish were affected at 7d EP but adapted to the toxic environment within 15 days.It shows that at this concentration cypermethrin is only moderately toxic and the animal has alternate pathways to derive energy and survive.

  12. Phosphatidate phosphatase-1 is functionally conserved in lipid synthesis and storage from human to yeast.

    Science.gov (United States)

    Fang, Zhijia; Wang, Song; Du, Xiuxiu; Shi, Ping; Huang, Zhiwei

    2014-12-01

    Phosphatidate phosphatase-1 (PAP1) enzymes (yeast Pah1p/Smp2p, mammalian lipin1-3) have a key role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate (PA) and its product diacylglycerol (DAG). Recent investigation shows that mammalian lipin-1 complements phenotypes exhibited by yeast pah1Δ mutant cells, which indicates the functions of PAP1 enzymes are evolutionarily conserved. The observation was confirmed after transformation of human LPIN1 into PAH1-defective yeast, which resulted in human LPIN1-induced accumulation of triacylglycerol (TAG )and lipid droplet formation. In double mutants lacking Tgl3p and Tgl4p, overexpression of PAH1 or LPIN1 induced TAG accumulation and excessive obesity. Furthermore, the obese yeast was used as a model to study the anti-obesity effects of PAP1 activity inhibitors, including propranolol and clenbuterol. The data showed that the inhibitors significantly suppressed TAG accumulation and lipid droplets formation. These findings demonstrate that LPIN1 plays a functional role in lipid synthesis and storage, a role which is highly conserved from human to yeast. Inhibition of TAG synthesis will become an efficacious treatment strategy for obesity and our excessive obesity model will provide a very useful tool for discovery of new anti-obesity drugs in the future. PMID:25475986

  13. Beyond the Dopamine Receptor: Regulation and Roles of Serine/Threonine Protein Phosphatases

    Directory of Open Access Journals (Sweden)

    Sven I Walaas

    2011-08-01

    Full Text Available Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington's disease and Parkinson's disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse. Our studies over the last 30 years have focused on the molecular actions of dopamine acting on medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched phosphoproteins, particularly DARPP-32, RCS (Regulator of Calmodulin Signaling and ARPP-16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly or indirectly, regulates the activity of one of the three major subclasses of serine/threonine protein phosphatases, PP1, PP2B and PP2A, respectively. For example, phosphorylation of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to the nucleus. The discovery of DARPP-32 and its emergence as a critical molecular integrator of striatal signaling will be discussed, as will more recent studies that highlight novel roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways.

  14. Improved double immunohistochemical staining method for cryostat and paraffin wax sections, combining alkaline phosphatase anti-alkaline phosphatase and indirect immunofluorescence

    OpenAIRE

    Tao, Q.; Srivastava, G; Loke, S L; Chan, E. Y.; Ho, F C

    1994-01-01

    Aims - To develop an immunohistochemical staining method for cryostat and paraffin wax sections so that two different antigens in the same section of tissues could be detected by combining immunoenzyme and immunofluorescence techniques. Methods - This double immunohistochemical staining method combines alkaline phosphatase-anti-alkaline phosphatase (APAAP) using New Fuchsin as a chromogen and indirect immunofluorescence. Results - APAAP staining for one antigen of this double immunohistochemi...

  15. Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants.

    Science.gov (United States)

    Płachno, B J; Adamec, L; Lichtscheidl, I K; Peroutka, M; Adlassnig, W; Vrba, J

    2006-11-01

    A new ELF (enzyme labelled fluorescence) assay was applied to detect phosphatase activity in glandular structures of 47 carnivorous plant species, especially Lentibulariaceae, in order to understand their digestive activities. We address the following questions: (1) Are phosphatases produced by the plants and/or by inhabitants of the traps? (2) Which type of hairs/glands is involved in the production of phosphatases? (3) Is this phosphatase production a common feature among carnivorous plants or is it restricted to evolutionarily advanced species? Our results showed activity of the phosphatases in glandular structures of the majority of the plants tested, both from the greenhouse and from sterile culture. In addition, extracellular phosphatases can also be produced by trap inhabitants. In Utricularia, activity of phosphatase was detected in internal glands of 27 species from both primitive and advanced sections and different ecological groups. Further positive reactions were found in Genlisea, Pinguicula, Aldrovanda, Dionaea, Drosera, Drosophyllum, Nepenthes, and Cephalotus. In Utricularia and Genlisea, enzymatic secretion was independent of stimulation by prey. Byblis and Roridula are usually considered as "proto-carnivores", lacking digestive enzymes. However, we found high activity of phosphatases in both species. Thus, they should be classified as true carnivores. We suggest that the inflorescence of Byblis and some Pinguicula species might also be an additional "carnivorous organ", which can trap a prey, digest it, and finally absorb available nutrients. PMID:16865659

  16. Optimization of a cyclic peptide inhibitor of Ser/Thr phosphatase PPM1D (Wip1).

    Science.gov (United States)

    Hayashi, Ryo; Tanoue, Kan; Durell, Stewart R; Chatterjee, Deb K; Jenkins, Lisa M Miller; Appella, Daniel H; Appella, Ettore

    2011-05-31

    PPM1D (PP2Cδ or Wip1) was identified as a wild-type p53-induced Ser/Thr phosphatase that accumulates after DNA damage and classified into the PP2C family. It dephosphorylates and inactivates several proteins critical for cellular stress responses, including p38 MAPK, p53, and ATM. Furthermore, PPM1D is amplified and/or overexpressed in a number of human cancers. Thus, inhibition of its activity could constitute an important new strategy for therapeutic intervention to halt the progression of several different cancers. Previously, we reported the development of a cyclic thioether peptide with low micromolar inhibitory activity toward PPM1D. Here, we describe important improvements in the inhibitory activity of this class of cyclic peptides and also present a binding model based upon the results. We found that specific interaction of an aromatic ring at the X1 position and negative charge at the X5 and X6 positions significantly increased the inhibitory activity of the cyclic peptide, with the optimized molecule having a K(i) of 110 nM. To the best of our knowledge, this represents the highest inhibitory activity reported for an inhibitor of PPM1D. We further developed an inhibitor selective for PPM1D over PPM1A with a K(i) of 2.9 μM. Optimization of the cyclic peptide and mutagenesis experiments suggest that a highly basic loop unique to PPM1D is related to substrate specificity. We propose a new model for the catalytic site of PPM1D and inhibition by the cyclic peptides that will be useful both for the subsequent design of PPM1D inhibitors and for identification of new substrates. PMID:21528848

  17. Tau pathology involves protein phosphatase 2A in parkinsonism-dementia of Guam.

    Science.gov (United States)

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M; Iqbal, Khalid

    2014-01-21

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr(307) and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr(307) in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr(307). These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5-PP2A complex, and its phosphorylation at Tyr(307) by Src. PMID:24395787

  18. Significant Association Between Bone-Specific Alkaline Phosphatase and Vascular Calcification of the Hand Arteries in Male Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Eiji Ishimura

    2014-09-01

    Full Text Available Background/Aims: Bone-specific alkaline phosphatase (BAP hydrolyzes pyrophosphate, which inhibits vascular calcification. We examined association between serum BAP and vascular calcification of male hemodialysis patients. Methods: Hand roentgenography of 167 male maintenance hemodialysis patients was conducted, and visible vascular calcification of the hand arteries was evaluated. Serum levels of 3 bone formation markers (BAP, osteocalcin, and N-terminal propeptide of type I collagen and 2 bone resorption markers (C-terminal telopeptide of type I collagen, and cross-linked N-telopeptide of type I collagen were measured, along with serum intact parathyroid hormone (PTH. Results: Of 167 patients, visible vascular calcification was seen in 37 patients. Among the bone formation and resorption markers, serum BAP was significantly higher in patients with vascular calcification than in those without (pConclusions: Higher serum BAP, but not other bone markers, is significantly associated with the presence of vascular calcification in male hemodialysis patients.

  19. microRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells

    International Nuclear Information System (INIS)

    Highlights: • miR-183 was up-regulated in renal cancer tissues. • Inhibition of endogenous miR-183 suppressed renal cancer cell growth and metastasis. • miR-183 increased cell growth and metastasis. • miR-183 regulated renal cancer cell growth and metastasis via directly targeting tumor suppressor protein phosphatase 2A. - Abstract: The aim of this study was to investigate the function of miR-183 in renal cancer cells and the mechanisms miR-183 regulates this process. In this study, level of miR-183 in clinical renal cancer specimens was detected by quantitative real-time PCR. miR-183 was up- and down-regulated in two renal cancer cell lines ACHN and A498, respectively, and cell proliferation, Caspase 3/7 activity, colony formation, in vitro migration and invasion were measured; and then the mechanisms of miR-183 regulating was analyzed. We found that miR-183 was up-regulated in renal cancer tissues; inhibition of endogenous miR-183 suppressed in vitro cell proliferation, colony formation, migration, and invasion and stimulated Caspase 3/7 activity; up-regulated miR-183 increased cell growth and metastasis and suppressed Caspase 3/7 activity. We also found that miR-183 directly targeted tumor suppressor, specifically the 3′UTR of three subunits of protein phosphatase 2A (PP2A-Cα, PP2A-Cβ, and PP2A-B56-γ) transcripts, inhibiting their expression and regulated the downstream regulators p21, p27, MMP2/3/7 and TIMP1/2/3/4. These results revealed the oncogenes role of miR-183 in renal cancer cells via direct targeting protein phosphatase 2A

  20. Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk

    Science.gov (United States)

    Chon, Jung-Whan; Kim, Hyunsook; Kim, Kwang-Yup

    2016-01-01

    The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk. PMID:27194927

  1. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  2. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy

    Science.gov (United States)

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis.

  3. Mannitol metabolism in brown algae involves a new phosphatase family.

    Science.gov (United States)

    Groisillier, Agnès; Shao, Zhanru; Michel, Gurvan; Goulitquer, Sophie; Bonin, Patricia; Krahulec, Stefan; Nidetzky, Bernd; Duan, Delin; Boyen, Catherine; Tonon, Thierry

    2014-02-01

    Brown algae belong to a phylogenetic lineage distantly related to green plants and animals, and are found predominantly in the intertidal zone, a harsh and frequently changing environment. Because of their unique evolutionary history and of their habitat, brown algae feature several peculiarities in their metabolism. One of these is the mannitol cycle, which plays a central role in their physiology, as mannitol acts as carbon storage, osmoprotectant, and antioxidant. This polyol is derived directly from the photoassimilate fructose-6-phosphate via the action of a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase (M1Pase). Genome analysis of the brown algal model Ectocarpus siliculosus allowed identification of genes potentially involved in the mannitol cycle. Among these, two genes coding for haloacid dehalogenase (HAD)-like enzymes were suggested to correspond to M1Pase activity, and thus were named EsM1Pase1 and EsM1Pase2, respectively. To test this hypothesis, both genes were expressed in Escherichia coli. Recombinant EsM1Pase2 was shown to hydrolyse the phosphate group from mannitol-1-phosphate to produce mannitol but was not active on the hexose monophosphates tested. Gene expression analysis showed that transcription of both E. siliculosus genes was under the influence of the diurnal cycle. Sequence analysis and three-dimensional homology modelling indicated that EsM1Pases, and their orthologues in Prasinophytes, should be seen as founding members of a new family of phosphatase with original substrate specificity within the HAD superfamily of proteins. This is the first report describing the characterization of a gene encoding M1Pase activity in photosynthetic organisms. PMID:24323504

  4. Studies on alkaline and acid phosphatase activity of neutrophil leukicytes, 2

    International Nuclear Information System (INIS)

    With a view to analyzing the inhibiting effect of anticancer drugs and irradiation on hematopoiesis in rabbits neutrophil (pseudoeosinophil) counts and the neutrophilic activities of alkaline phosphatase (AP) and acid phosphatase (SP) were serially followed up after drug administration or irradiation. The enzym activity was estimated histochemically, using azo-dye staining. Each rabbit was given cyclophosphamid (CP) (25mg/kg x 10, at intervals of 5 - 7 days ; 50mg/kg x 5, every day; or 100mg/kg x 1, i.m.), Thio-TEPA (4mg/kg x 1, i.m.), Vinblastin (VBT) (1mg/kg x 1, i.v.), 6MP (25mg/kg x 1, p.o.), or Mitomycin C (MMC) (1.5mg/kg x 1, i.v.). The results obtained were as follows : 1) The neutrophil counts became slightly elevated at 24 hrs, reached their nadir at 48 to 72 hrs, and recovered to normal in 5 to 6 days thereafter, except with 6 MP which produced no significant change but for a temporary elevation after dosages. 2) Except in the group administrated 6MP, which caused no significant hematorogical changes, the AP changes were similar in all of the animal groups : after temporary depression, it became elevated for 5 to 6 days, and recovered to normal about 9 days thereafter. 3) SP showed no changes in the 25mg/kg x 10 CP and the 6MP groups, it became elevated in 2 or 3 days after the administration of MMC, VBT, or Thio-TEPA to recover to normal in 5 to 10 days thereafter. 4) 60Co irradiation (1,000 rad/whole body x 1) led to a temporary ascent in phil count followed by a descent from the 6th day on, and then a slow recovery to normal. AP was elevated from the third to the sixth days, and, after a depression on the tenth day, it returned to normal 24 days after irradiation, while SP showed a continued elevation from the 2nd to the 13th day. (author)

  5. A new family of phosphoinositide phosphatases in microorganisms: identification and biochemical analysis

    Directory of Open Access Journals (Sweden)

    Bennett Hayley J

    2010-08-01

    Full Text Available Abstract Background Phosphoinositide metabolism is essential to membrane dynamics and impinges on many cellular processes, including phagocytosis. Modulation of phosphoinositide metabolism is important for pathogenicity and virulence of many human pathogens, allowing them to survive and replicate in the host cells. Phosphoinositide phosphatases from bacterial pathogens are therefore key players in this modulation and constitute attractive targets for chemotherapy. MptpB, a virulence factor from Mycobacterium tuberculosis, has phosphoinositide phosphatase activity and a distinct active site P-loop signature HCXXGKDR that shares characteristics with eukaryotic lipid phosphatases and protein tyrosine phosphatases. We used this P-loop signature as a "diagnostic motif" to identify related putative phosphatases with phosphoinositide activity in other organisms. Results We found more than 200 uncharacterised putative phosphatase sequences with the conserved signature in bacteria, with some related examples in fungi and protozoa. Many of the sequences identified belong to recognised human pathogens. Interestingly, no homologues were found in any other organisms including Archaea, plants, or animals. Phylogenetic analysis revealed that these proteins are unrelated to classic eukaryotic lipid phosphatases. However, biochemical characterisation of those from Listeria monocytogenes and Leishmania major, demonstrated that, like MptpB, they have phosphatase activity towards phosphoinositides. Mutagenesis studies established that the conserved Asp and Lys in the P-loop signature (HCXXGKDR are important in catalysis and substrate binding respectively. Furthermore, we provide experimental evidence that the number of basic residues in the P-loop is critical in determining activity towards poly-phosphoinositides. Conclusion This new family of enzymes in microorganisms shows distinct sequence and biochemical characteristics to classic eukaryotic lipid phosphatases

  6. The effect of phosphours and water deficit on phosphatase activity and proline accumulation in seedling cotyledons and roots of oilseed rape as compared to that of excised cotyledons and roots

    OpenAIRE

    Stanisław Flasiński; Janina Rogozińska; Lucyna Drozdowska

    2014-01-01

    Oilseed rape seedlings and excised cotyledons and roots were exposed to phosphorus and osmotic stress (-1 MPa: NaCl or PEG). The stress factors limited the growth of the seedlings and inhibited the growth of the excised roots and cotyledons. The phosphorus content in the cotyledons and roots depended on its level in the media and on the stress factors used. Phosphorus deficiency differentiated total phosphatase activity in seedling cotyledons and increased the activity in the excised cotyledo...

  7. Catalytic activity of a novel serine/threonine protein phosphatase PP5 from Leishmania major

    Directory of Open Access Journals (Sweden)

    Norris-Mullins Brianna

    2014-01-01

    Full Text Available Leishmaniasis is a vector-borne disease caused by protozoan parasites of the genus Leishmania. Our knowledge of protein phosphatases (PPs and their implication in signaling events is very limited. Here we report the expression, characterization and mutagenesis analysis of a novel protein phosphatase 5 (PP5 in Leishmania major. Recombinant PP5 is a bona fide phosphatase and is enzymatically active. Site-directed mutagenesis revealed auto-inhibitory roles of the N-terminal region. This is a rational first approach to understand the role of PP5 in the biology of the parasite better as well as its potential future applicability to anti-parasitic intervention.

  8. Research on Phosphatases of Belladona Leaves and Their Purification (Part 1

    Directory of Open Access Journals (Sweden)

    M. Khorsand

    1956-07-01

    Full Text Available Belladona leaves as well as all other studied leaves contains two distinct phosphatase fractions belonging respectively to types II and IIIi the major parts of these enzymes is extraetible by water. It was not possible to extract the non soluble fraction which is solidly retained by the cellular constituents. Phosphatase II does not differ from other phosphatnses of the same type. Whereas phosphatase III is distinetely different from enzymes of the same type of vegetal or animal origins. It is activated by bivalent metallic ions which are specific activators of the alkaline phcspbatnses: Mg-Zn-Ni and Co.

  9. Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with cellular transformation.

    OpenAIRE

    C. J. Speed; Little, P J; Hayman, J. A.; Mitchell, C A

    1996-01-01

    The 43 kDa inositol polyphosphate 5-phosphatase (5-phosphatase) hydrolyses the second messenger molecules inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. We have underexpressed the 43 kDa 5-phosphatase by stably transfecting normal rat kidney cells with the cDNA encoding the enzyme, cloned in the antisense orientation into the tetracycline-inducible expression vector pUHD10-3. Antisense-transfected cells demonstrated a 45% reduction in Ins(...

  10. Research on Phosphatases of Belladona Leaves and Their Purification (Part 1

    Directory of Open Access Journals (Sweden)

    M. Khorsand

    1956-12-01

    Full Text Available Belladona leaves as well as all other studied leaves contains two distinct phosphatase fractions belonging respectively to types II and IIIi the major parts of these enzymes is extraetible by water. It was not possible to extract the non soluble fraction which is solidly retained by the cellular constituents. Phosphatase II does not differ from other phosphatnses of the same type. Whereas phosphatase III is distinetely different from enzymes of the same type of vegetal or animal origins. It is activated by bivalent metallic ions which are specific activators of the alkaline phcspbatnses: Mg-Zn-Ni and Co.

  11. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-04-01

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  12. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Sobecky, Patricia A. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  13. SERUM VALUES OF ALKALINE PHOSPHATASE AND LACTATE DEHYDROGENASE IN OSTEOSARCOMA

    Science.gov (United States)

    ZUMÁRRAGA, JUAN PABLO; BAPTISTA, ANDRÉ MATHIAS; ROSA, LUIS PABLO DE LA; CAIERO, MARCELO TADEU; CAMARGO, OLAVO PIRES DE

    2016-01-01

    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series. PMID:27217815

  14. Protein tyrosine phosphatases expression during development of mouse superior colliculus.

    Science.gov (United States)

    Reinhard, Jacqueline; Horvat-Bröcker, Andrea; Illes, Sebastian; Zaremba, Angelika; Knyazev, Piotr; Ullrich, Axel; Faissner, Andreas

    2009-12-01

    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior colliculus. Subsequently, the expression patterns of 11 PTPs (TC-PTP, PTP1C, PTP1D, PTP-MEG2, PTP-PEST, RPTPJ, RPTPε, RPTPRR, RPTPσ, RPTPκ and RPTPγ) were further analyzed in detail in superior colliculus from embryonic E13 to postnatal P20 stages by quantitative real-time RT-PCR, Western blotting and immunohistochemistry. Each of the 11 PTPs exhibits distinct spatiotemporal regulation of mRNAs and proteins in the developing superior colliculus suggesting their versatile roles in genesis of neuronal and glial cells and retinocollicular topographic mapping. At E13, additional double-immunohistochemical analysis revealed the expression of PTPs in collicular nestin-positive neural progenitor cells and RC-2-immunoreactive radial glia cells, indicating the potential functional importance of PTPs in neurogenesis and gliogenesis. PMID:19727691

  15. Diagnostic value of prostatic acid phosphatase as determined by radioimmunoassay

    International Nuclear Information System (INIS)

    Serum concentrations of prostatic acid phosphatase (PAP) were determined with 4 different radioimmunoassays and with the standard enzymatic method (p-nitrophenylphosphate) in 35 patients with prostatic carcinoma. Staging of localized tumors was based on histopathological evaluation after radial prostatectomy and pelvic lymphnode dissection (pTsub(1-3), pN0). In tumor lesions Tsub(1-2) N0 M0 elevated PAP-serum concentrations were found by RIA-determination in only one patient. Increased PAP serum levels were observed in 43-78% of carcinomas stage T3 N0 M0 and in 54-83% in stage Tsub(2-4) Nsub(x) M1 tumors, depending on the test kit used for the PAP determination. Concentrations for PAP obtained with the 4 different RIA-kits used, varied significantly and thus are not comparable. No false positive results were observed in sera of 9 patients with benign prostatic hyperplasia. Elevated PAP serum levels were found in a significantly higher frequency when determined by radioimmunoassay than by the enzymatic method. The results clearly indicate, that PAP is of no value for early recognition of carcinoma of the prostate even when measured by radioimmunoassay. However, the RIA-method seems to be of clinical importance in estimating the course of advanced local and metastasizing carcinoma of the prostate. (orig.)

  16. Phosphoglycosylation of a secreted acid phosphatase from Leishmania donovani.

    Science.gov (United States)

    Lippert, D N; Dwyer, D W; Li, F; Olafson, R W

    1999-06-01

    The secreted acid phosphatase (SAcP) of L.donovani is a heterogeneous glycoprotein that displays a wide array of N- and O-linked glycosylations. The O-linked sugars are of particular interest due to their similarity to the phosphoglycan structures of the major lipophosphoglycan surface antigen and released phosphoglycan (Turco et al., 1987; Greis et al., 1992). This study describes a structural analysis of the SAcP O-linked glycosylations using mass spectroscopy, amino acid sequencing, and enzymatic carbohydrate sequencing. Analysis of glycan chain lengths and peptide glycosylation site distribution was performed, revealing that the average O-linked structure was approximately 32 repeat units in length. Amino acid sequence analysis of glycosylated peptides showed that phosphoglycosylations did not occur randomly but were localized to specific serine residues within an array of degenerate serine/threonine-rich repeat sequences localized in the C-terminus. No evidence was obtained for modification of threonine residues. The observed pattern suggested that a consensus sequence may exist for localization of phosphoglycan structures. PMID:10336996

  17. Sensitive optical detection of alkaline phosphatase activity with quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiangling [Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Haidian District, Beijing 100190 (China); The State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China); Chen, Zhenzhen; Chen, Xiaoying; Liu, Jing [Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Haidian District, Beijing 100190 (China); Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Haidian District, Beijing 100190 (China)

    2014-01-15

    A simple method has been developed to detect the activity of alkaline phosphatase (ALP) by the changing of fluorescence intensities of the quantum dots (QDs). In this system, the fluorescence intensities of the QDs were quenched by p-nitrophenol (pNP) which was produced in the process of ALP catalytic reaction. A series of linear calibration curves of the activity of ALP were obtained in different pH buffer solutions. The wide linear range was 3–1000 U L{sup −1} and the detection limit was 3 U L{sup −1} (S/N=3). Furthermore, the experimental conditions of biosensor were optimized, and anti-interference ability was presented. The activity of ALP was also detected in serum and the recovery of ALP in serum samples was more than 95%. The excellent performance of this biosensor indicates that it can be used in practice detection of ALP. -- Highlights: • A sensitive ALP biosensor is constructed based on QDs without complex processes. • The analysis processing is very convenient, simple and rapid. • The detection mechanism of the ALP biosensor is studied by XPS. • The paper proposes a feasible approach for some substrates or enzymes detecting.

  18. Sensitive optical detection of alkaline phosphatase activity with quantum dots

    International Nuclear Information System (INIS)

    A simple method has been developed to detect the activity of alkaline phosphatase (ALP) by the changing of fluorescence intensities of the quantum dots (QDs). In this system, the fluorescence intensities of the QDs were quenched by p-nitrophenol (pNP) which was produced in the process of ALP catalytic reaction. A series of linear calibration curves of the activity of ALP were obtained in different pH buffer solutions. The wide linear range was 3–1000 U L−1 and the detection limit was 3 U L−1 (S/N=3). Furthermore, the experimental conditions of biosensor were optimized, and anti-interference ability was presented. The activity of ALP was also detected in serum and the recovery of ALP in serum samples was more than 95%. The excellent performance of this biosensor indicates that it can be used in practice detection of ALP. -- Highlights: • A sensitive ALP biosensor is constructed based on QDs without complex processes. • The analysis processing is very convenient, simple and rapid. • The detection mechanism of the ALP biosensor is studied by XPS. • The paper proposes a feasible approach for some substrates or enzymes detecting

  19. How Should an Increase in Alkaline Phosphatase Activity Be Interpreted?

    International Nuclear Information System (INIS)

    Low-level laser therapy, commonly known as LLLT, is the application of low power, monochromatic, and coherent light to injuries and lesions to stimulate healing and give pain relief. There are conflicting reports in the literature regarding the role of ALP. Objective: this study aimed to compare the cellular responses of wounded human skin fibroblasts exposed to doses of 0.5 J/cm2, 2.5 J/cm2, 5 J/cm2, or 16 J/cm2 using LLLT with a Helium-Neon laser (632.8 nm, 18.8 mW power output, 2.07 mW/cm2 power density, and 3.4 cm diameter spot size or area 9.1?cm2) to elucidate the role of alkaline phosphatase (ALP) in cell proliferation. Methods: cellular responses to laser irradiation were evaluated using ALP enzyme activity, LDH membrane integrity, neutral red for cell proliferation, optical density at 540?nm, and basic fibroblast growth factor (bFGF) expression. Results: results suggest that an increase in ALP is negatively correlated with cell growth depending on the concentration of growth factors in the medium. Results also indicate that an increase in ALP may be related to cellular damage. Conclusion: since the exact role of ALP is unknown, the ALP enzyme activity assay should be considered in conjunction with other cell proliferation assays such as neutral red, optical density, or more specifically bFGF expression.

  20. Radioimmunoassay for human prostatic acid phosphatase: Pt.4

    International Nuclear Information System (INIS)

    After PAP RIA has been established, serum prostatic acid phosphatase concentration was measured in 40 healthy males, 20 healthy females, 57 patients with benign prostatic hyperplasia, 20 patients with prostate cancers at various stages, 11 patients with cancers after prostatectomy or orchiectomy, and 36 patients with cancers other than prostate cancer. An upper cutoff value was calculated from the x + 2S of healthy males, which yielded a value of 2.2 μg/L of serum. More male patients with cancers other than prostate cancer had serum PAP values of less than 2.2 g/L. 91% (52/57) of BPH patients had normal value, 9% (5/57) exhibited elevated serum PAP levels. If cutoff the limit of x + 2S, the calculated value from 57 BPH patients was used, i.e. 3.0 μg/L, as hormal limit, the false positives presented by BPH were almost eliminated. 95% (1/20) patients with prostate cancers demonstrated an evidently elevated PAP, only one of those patients had a normal PAP value. After prostatectomy of prostate cancer, PAP declined to normal range or near upper cutoff value. The values obtained by this PAP assay were able to distinguish patients with prostate cancer from those with benign prostatic hyperplasia, and the course of disease could be monitored by the assay. Intraindividual sequential studies of PAP could be used to evaluate therapeutic response and prognosis

  1. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    International Nuclear Information System (INIS)

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  2. Elongation factor-1A1 is a novel substrate of the protein phosphatase 1-TIMAP complex.

    Science.gov (United States)

    Boratkó, Anita; Péter, Margit; Thalwieser, Zsófia; Kovács, Előd; Csortos, Csilla

    2015-12-01

    TIMAP (TGF-β inhibited membrane associated protein) is a protein phosphatase 1 (PP1) regulatory subunit highly abundant in endothelial cells and it is involved in the maintenance of pulmonary endothelial barrier function. It localizes mainly in the plasma membrane, but it is also present in the nuclei and cytoplasm. Direct interaction of TIMAP with the eukaryotic elongation factor 1 A1 (eEF1A1) is shown by pull-down, LC-MS/MS, Far-Western and immunoprecipitations. In connection with the so called moonlighting functions of the elongation factor, eEF1A is thought to establish protein-protein interactions through a transcription-dependent nuclear export motif, TD-NEM, and to aid nuclear export of TD-NEM containing proteins. We found that a TD-NEM-like motif of TIMAP has a critical role in its specific binding to eEF1A1. However, eEF1A1 is not or not exclusively responsible for the nuclear export of TIMAP. On the contrary, TIMAP seems to regulate membrane localization of eEF1A1 as the elongation factor co-localized with TIMAP in the plasma membrane fraction of control endothelial cells, but it has disappeared from the membrane in TIMAP depleted cells. It is demonstrated that membrane localization of eEF1A1 depends on the phosphorylation state of its Thr residue(s); and ROCK phosphorylated eEF1A1 is a novel substrate for TIMAP-PP1 underlining the complex regulatory role of TIMAP in the endothelium. The elongation factor seems to be involved in the regulation of endothelial cell attachment and spreading as silencing of eEF1A1 positively affected these processes which were monitored by transendothelial resistance measurements. PMID:26497934

  3. Isolation and partial characterization of an acid phosphatase from Artemisia vulgaris pollen extract

    Directory of Open Access Journals (Sweden)

    RATKO M. JANKOV

    2002-09-01

    Full Text Available An acid phosphatase from an extract of mugwort (Artemisia vulgaris pollen was purified by a factor of 48 by a combination of ion exchange and gel-chromatography. The molecular weights of the enzyme were 76 kDa and 73 kDa, determined by gel filtration on a Sephadex G-100 sf column and by SDS PAGE (under reducing and non-reducing conditions, respectively. In analytical isoelectrofocusing, the enzyme appears as two very close bands, pI at about 4.2. The optimum pH for the enzyme is 5.4. The apparent Km for p-nitrophenyl phosphate was estimated to be 0.16 mM. The purified enzyme has broad specificity, and hydrolyses p-nitrophenyl phosphate and a-naphthyl phosphate. Pyrophosphate and O-phospho-L-tyrosine were estimated to be the best substrates for this enzyme as potential in vivo substrates. The enzyme is inhibited competitively by phosphate (Ki = 1.25 mM, molybdate (Ki = 0.055 mM and pyrophosphate (Ki = 6.7 mM and non-competitively by fluoride (Ki = 9.8 mM. Metal ions such as Hg2+, Cu2+ and Zn2+ express an inhibitory effect on the enzyme, while the enzyme is slightly activated by non-ionic detergents, Tween 20 and Triton X-100. There is no change in the enzyme activity in the presence of tartrate, citrate, EDTA, 1,10-phenanthroline and sulfhydryl-group modifiers such as p-chloromercuribenzoate and N-ethylmaleimide.

  4. Properties of a constitutive alkaline phosphatase from strain 74A of the mold Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Morales A.C.

    2000-01-01

    Full Text Available A constitutive alkaline phosphatase was purified to apparent homogeneity as determined by polyacrylamide gel electrophoresis from mycelia of the wild strain 74A of the mold Neurospora crassa, after growth on acetate and in the presence of saturating amounts of inorganic phosphate (Pi for 72 h at 30ºC. The molecular mass was 58 kDa and 56 kDa as determined by exclusion chromatography and SDS-PAGE, respectively. This monomeric enzyme shows an apparent optimum pH ranging from 9.5 to 10.5 and Michaelis kinetics for the hydrolysis of p-nitrophenyl phosphate (the Km and Hill coefficient values were 0.35 mM and 1.01, respectively, alpha-naphthyl phosphate (the Km and Hill coefficient values were 0.44 mM and 0.97, respectively, ß-glycerol phosphate (the Km and Hill coefficient values were 2.46 mM and 1.01, respectively and L-histidinol phosphate (the Km and Hill coefficient values were 0.47 mM and 0.94, respectively at pH 8.9. The purified enzyme is activated by Mg2+, Zn2+ and Tris-HCl buffer, and is inhibited by Be2+, histidine and EDTA. Also, 0.3 M Tris-HCl buffer protected the purified enzyme against heat inactivation at 70ºC(half-life of 19.0 min, k = 0.036 min-1 as compared to 0.3 M CHES (half-life of 2.3 min, k = 0.392 min-1 in the same experiment.

  5. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    International Nuclear Information System (INIS)

    HeLa S3 cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-[35S]methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S3 cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S3 cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product

  6. High-Throughput Screening of Substrate Specificity for Protein Tyrosine Phosphatases (PTPs) on Phosphopeptide Microarrays.

    Science.gov (United States)

    Gao, Liqian; Lee, Su Seong; Chen, Jun; Sun, Hongyan; Zhao, Yuliang; Chai, Zhifang; Hu, Yi

    2016-01-01

    Phosphatases are a family of enzymes responsible for the dephosphorylation of biomolecules. Phosphatases play essential roles in cell cycle regulation, signal transduction, and cellular communication. In recent years, one type of phosphatases, protein tyrosine phosphatases (PTPs), emerges as important therapeutic targets for complex and devastating diseases. Nevertheless, the physiological roles, substrate specificity, and downstream targets for PTPs remain largely unknown. To demonstrate how microarrays can be applied to characterizing PTPs, we describe here a phosphopeptide microarray strategy for activity-based high-throughput screening of PTPs substrate specificity. This is followed by a kinetic microarray assay and microplate assay to determine the rate constants of dephosphorylation by PTPs. This microarray strategy has been successfully applied to identifying several potent and selective substrates against different PTPs. These substrates could be used to design potent and selective PTPs inhibitors in the future. PMID:26614076

  7. Characterization of the phosphatidylinositol-glycan membrane anchor of human placental alkaline phosphatase

    International Nuclear Information System (INIS)

    Placental alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] is a member of a diverse group of membrane proteins whose attachment to the lipid bilayer is mediated by a phosphatidylinositol-glycan. To investigate structural aspects of the glycolipid anchor, cultured WISH cells were used because, they produce the enzyme in abundant quantities. When cell suspensions were incubated with purified phosphatidylinositol-specific phospholipase C, most of the placental alkaline phosphatase was released from membranes in a hydrophilic form. On incubation of the cells with [14C]ethanolamine, [14C]myristic acid, or myo[3H]inositol, each was incorporated into the phosphatase near the carboxyl terminus, showing that these components, which are found in other phosphatidylinositol membrane-linked proteins, are also present in placental alkaline phosphatase

  8. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate

    DEFF Research Database (Denmark)

    Faerk, J; Peitersen, Birgit; Petersen, S; Michaelsen, K F

    2002-01-01

    BACKGROUND: The bone mineral content of premature infants at term is lower than in mature infants at the same postconceptional age. Serum alkaline phosphatase and serum phosphate are often used as indicators of bone mineralisation. OBJECTIVE: To analyse the association between bone mineral content...... and serum alkaline phosphatase and serum phosphate. METHODS: Serum alkaline phosphatase and phosphate were measured at weekly intervals during admission in 108 premature infants of gestational age below 32 weeks (mean (SD) gestational age 29 (2) weeks; mean (SD) birth weight 1129 (279) g). Bone...... mineral content was measured at term (mean gestational age 41 weeks) by dual energy x ray absorptiometry and corrected for body size. RESULTS: Serum alkaline phosphatase was significantly negatively associated with serum phosphate (p < 0.001). Bone mineral content was not associated with mean serum...

  9. Alkaline phosphatase activity in plasma and liver of rats submitted to chronic exposure to fluoride

    Directory of Open Access Journals (Sweden)

    Mileni da Silva Fernandes

    2011-12-01

    Full Text Available The aim of this study was to compare the effect of fluoride (F on alkaline phosphatase activity in the liver and plasma of the rats. Four groups of male Wistar rats (n=6, which received drinking water containing 5, 15 or 50 ppm F or deionized water (control throughout the experiment were included in the study. The animals were euthanized and had their tissues and blood plasma collected for the analysis of fluoride and alkaline phosphatase. There was an increase in F concentration in most tissues in the animals treated with higher F concentrations, except for the heart. The alkaline phosphatase assay showed an increase in the activity in the liver and blood plasma of the animals treated with fluoride concentrations of 15 and 50 ppm (p<0.05. This study suggested that F at a concentration of 50 ppm in drinking water promotes increased the activity of alkaline phosphatase in the liver and blood plasma.

  10. Cloning and sequencing of human intestinal alkaline phosphatase cDNA

    International Nuclear Information System (INIS)

    Partial protein sequence data obtained on intestinal alkaline phosphatase indicated a high degree of homology with the reported sequence of the placental isoenzyme. Accordingly, placental alkaline phosphatase cDNA was cloned and used as a probe to clone intestinal alkaline phosphatase cDNA. The latter is somewhat larger (3.1 kilobases) than the cDNA for the placental isozyme (2.8 kilobases). Although the 3' untranslated regions are quite different, there is almost 90% homology in the translated regions of the two isozymes. There are, however, significant differences at their amino and carboxyl termini and a substitution of an alanine in intestinal alkaline phosphatase for a glycine in the active site of the placental isozyme

  11. Subcellular localization of alkaline phosphatase in Bacillus licheniformis 749/C by immunoelectron microscopy with colloidal gold

    International Nuclear Information System (INIS)

    Subcellular distribution of the alkaline phosphatase of Bacillus licheniformis 749/C was determined by an immunoelectron microscopy method. Anti-alkaline phosphatase antibody labeled with 15- to 18-nm colloidal gold particles (gold-immunoglobulin G [IgG] complex) were used for the study. Both the plasma membrane and cytoplasmic material were labeled with the gold-IgG particles. These particles formed clusters in association with the plasma membrane; in contrast, in the cytoplasm the particles were largely dispersed, and only a few clusters were found. The gold-IgG binding was quantitatively estimated by stereological analysis of labeled, frozen thin sections. This estimation of a variety of control samples showed that the labeling was specific for the alkaline phosphatase. Cluster formation of the gold -IgG particles in association with the plasma membrane suggests that existence of specific alkaline phosphatase binding sites (receptors) in the plasma membrane of B. licheniformis 749/C. 27 references, 6 figures, 1 table

  12. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate

    OpenAIRE

    Faerk, J; Peitersen, B; Petersen, S; Michaelsen, K

    2002-01-01

    Background: The bone mineral content of premature infants at term is lower than in mature infants at the same postconceptional age. Serum alkaline phosphatase and serum phosphate are often used as indicators of bone mineralisation.

  13. Tyrosine phosphatases epsilon and alpha perform specific and overlapping functions in regulation of voltage-gated potassium channels in Schwann cells

    DEFF Research Database (Denmark)

    Tiran, Zohar; Peretz, Asher; Sines, Tal;

    2006-01-01

    + channels and Src were analyzed in vivo in mice lacking either or both PTPs. Lack of either PTP increases Kv channel activity and phosphorylation in Schwann cells, indicating these PTPs inhibit Kv current amplitude in vivo. Open probability and unitary conductance of Kv channels are unchanged, suggesting an......Tyrosine phosphatases (PTPs) epsilon and alpha are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPepsilon and PTPalpha and the mechanisms by which they regulate K...... effect on channel number or organization. PTPalpha inhibits Kv channels more strongly than PTPepsilon; this correlates with constitutive association of PTPalpha with Kv2.1, driven by membranal localization of PTPalpha. PTPalpha, but not PTPepsilon, activates Src in sciatic nerve extracts, suggesting Src...

  14. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    Science.gov (United States)

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  15. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice(Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Droughtis very harmful to grain yield due to its adverse effect on reproduction,especially on pollination proeess in rice.However,the molecular basis of such an effect still remains largely unknown.Here,wereport the role of amember of CBL(Calcineurin B-Like)Interacting Protein Kinase(CIPK)family,OsCIPK23,in pollination and stress responses in dee.Molecular analyses revealed that it is mainly expressed in pistil and anther but up-regulated by pollination,as well as by treatments of various abiotic stresses and phytohormones.RNA interference-mediated suppression of OsCIPK23 expression significantly reduced seed set and conferred a hypersensitive response to drought stress,indicating its possible roles in pollination and drought stress.In consistent,overexpression of OsCIPK23 induced the expression of seVeral drought tolerance related genes.Taken together,these results indicate that OsCIPK23 is a multistress induced gene and likely mediatesa signaling pathway commonly shared by both pollination and drought stress responses in rice.

  16. Calcineurin-B-Like Protein CBL9 Interacts with Target Kinase CIPK3 in the Regulation of ABA Response in Seed Germination

    Institute of Scientific and Technical Information of China (English)

    Girdhar K.Pandey; John J.Grant; Yong Hwa Cheong; Beom-Gi Kim; Le Gong Li; Sheng Luan

    2008-01-01

    Calcium plays a vital role as a second messenger in many signaling pathways in plants.The calcineurin B-like proteins (CBLs) represent a family of plant calcium-binding proteins that function in calcium signaling by interacting with their interacting protein kinases (CIPKs).In our previous study,we have reported a role for one of the CBLs (CBL9) and one of the CIPKs (CIPK3) in ABA signaling.Here,we have shown that CBL9 and CIPK3 physically and functionally interact with each other in regulating the ABA responses.The CBL9 and CIPK3 proteins interacted with each other in the yeast twohybrid system and when expressed in plant cells.The double mutant cbl9cipk3 showed the similar hypersensitive response to ABA as observed in single mutants (cbl9 or cipk3).The constitutively active form of CIPK3 genetically complemented the cbl9 mutant,indicating that CIPK3 function downstream of CBL9.Based on these findings,we conclude that CBL9 and CIPK3 act together in the same pathway for regulating ABA responses.

  17. Long-term outcomes of thoracic transplant recipients following conversion to everolimus with reduced calcineurin inhibitor in a multicenter, open-label, randomized trial lv

    DEFF Research Database (Denmark)

    Gullestad, Lars; Eiskjaer, Hans; Gustafsson, Finn;

    2016-01-01

    showed no between-group difference at last follow-up. Rates of rejection, death and major cardiac events were similar between groups, as was graft function. Pneumonia was more frequent with everolimus (18.3% versus 6.4%). In conclusion, introducing everolimus in maintenance heart transplant patients......The NOCTET study randomized 282 patients ≥1 year after heart or lung transplantation to continue conventional calcineurin inhibitor (CNI) therapy or to start everolimus with reduced-exposure CNI. Last follow-up, at ≥5 years post-randomization (mean 5.6 years) was attended by 72/140 everolimus...... squares mean (SE) change from randomization was -1.5 (1.7)mL/min with everolimus versus -7.2 (1.7)mL/min for controls (difference 5.7 [95% CI 1.7; 9.6]mL/min; p=0.006). The difference was accounted for by heart transplant patients (difference 6.9 [95% 2.3; 11.5]mL/min; p=0.004). Lung transplant patients...

  18. Everolimus Initiation With Early Calcineurin Inhibitor Withdrawal in De Novo Heart Transplant Recipients: Three-Year Results From the Randomized SCHEDULE Study.

    Science.gov (United States)

    Andreassen, A K; Andersson, B; Gustafsson, F; Eiskjaer, H; Rådegran, G; Gude, E; Jansson, K; Solbu, D; Karason, K; Arora, S; Dellgren, G; Gullestad, L

    2016-04-01

    In a randomized, open-label trial, de novo heart transplant recipients were randomized to everolimus (3-6 ng/mL) with reduced-exposure calcineurin inhibitor (CNI; cyclosporine) to weeks 7-11 after transplant, followed by increased everolimus exposure (target 6-10 ng/mL) with cyclosporine withdrawal or standard-exposure cyclosporine. All patients received mycophenolate mofetil and corticosteroids. A total of 110 of 115 patients completed the 12-month study, and 102 attended a follow-up visit at month 36. Mean measured GFR (mGFR) at month 36 was 77.4 mL/min (standard deviation [SD] 20.2 mL/min) versus 59.2 mL/min (SD 17.4 mL/min) in the everolimus and CNI groups, respectively, a difference of 18.3 mL/min (95% CI 11.1-25.6 mL/min; p advantage. PMID:26820618

  19. Transcriptional Profiling of Hypoxic Neural Stem Cells Identifies Calcineurin-NFATc4 Signaling as a Major Regulator of Neural Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Marta Moreno

    2015-08-01

    Full Text Available Neural stem cells (NSCs reside in a hypoxic microenvironment within the brain. However, the crucial transcription factors (TFs that regulate NSC biology under physiologic hypoxia are poorly understood. Here we have performed gene set enrichment analysis (GSEA of microarray datasets from hypoxic versus normoxic NSCs with the aim of identifying pathways and TFs that are activated under oxygen concentrations mimicking normal brain tissue microenvironment. Integration of TF target (TFT and pathway enrichment analysis identified the calcium-regulated TF NFATc4 as a major candidate to regulate hypoxic NSC functions. Nfatc4 expression was coordinately upregulated by top hypoxia-activated TFs, while NFATc4 target genes were enriched in hypoxic NSCs. Loss-of-function analyses further revealed that the calcineurin-NFATc4 signaling axis acts as a major regulator of NSC self-renewal and proliferation in vitro and in vivo by promoting the expression of TFs, including Id2, that contribute to the maintenance of the NSC state.

  20. Tartrate resistant acid phosphatase in the immune and nervous system : Distribution and pathophysiological implications

    OpenAIRE

    Lång, Pernilla

    2007-01-01

    Tartrate resistant acid phosphatase (TRAP) belongs to the family of purple acid phosphatases (PAP). It is a glycoprotein synthesized as a monomer with low enzyme activity containing a redox active diiron centre in the active site. Post-translational proteolytic processing of this monomer into a dimeric protein increases the enzyme activity. Traditionally, TRAP has been used as a marker for bone resorbing cells but the biological function of TRAP is still not fully elucidated...