WorldWideScience

Sample records for calcined layered double

  1. RECONSTRUCTION OF CALCINED Zn -Al LAYERED DOUBLE HYDROXIDES DURING TETRACYCLINE ADSORPSION

    Directory of Open Access Journals (Sweden)

    G. M. Starukh

    2015-12-01

    Full Text Available Zn-Al mixed oxides containing ZnO different degree crystallinity were obtained by calcinations of Zn-Al layered double hydroxides (LDHs. The reconstruction of calcined Zn-Al LDHs has been performed under stirring in aqueous suspensions. The assynthesized LDHs, its decomposition products, as well as the reconstructed solids upon hydration were characterized by XRD, N2adsorption, differential and thermal gravimetric analysis. It was found that the ability of Zn-Al LDHs to recover a layered structure under the hydration of mixed oxides depends on the degree of ZnO crystallinity. The partial reconstruction of Zn-Al layered structure occurs in tetracycline solutions irrespective to the degree of ZnO crystallinity in calcined LDHs. Calcined Zn-Al LDHs demonstrate the higher adsorption capacity to tetracycline in comparison with as-prepared Zn-Al LDHs. The adsorption of TC on calcined and uncalcined ZnAl LDHs occurs on the centers of one particular type. It is suggested that surface complexation of the A-ring ligand of TC with Al-OH centers takes place.

  2. Defluoridation of groundwater by calcined Mg/Al layered double hydroxide

    Directory of Open Access Journals (Sweden)

    A. Elhalil

    2016-03-01

    Full Text Available The present study evaluated calcined Mg/Al layered double hydroxide (CLDH availability for the removal of fluoride from local groundwaters. The Mg/Al layered double hydroxide (LDH was synthesized by co-precipitation method and characterized by XRD, FT-IR and TGA-TDA analyses. Batch defluoridation experiments were performed under various conditions such as calcination, solution pH, contact time, temperature, material dosage and reuse. Experimental results indicate that fluoride removal strongly increased after calcination of the LDH up to 600 °C. The maximum fluoride removal was obtained at solution pH of 6.85. Kinetics of fluoride removal followed the pseudo-second order kinetic model. The rise in solution temperature strongly enhances the removal efficiency. The adsorption mechanism involved surface adsorption, ion exchange interaction and original LDH structure reconstruction by rehydration of mixed metal oxides and concomitant intercalation of fluoride ions into the interlayer region. The optimum dosages required to meet the national standard for drinking water quality were found to be 0.29 and 0.8 g/L, respectively, for Bejaad and Settat goundwaters. A decrease in the fluoride uptake with increasing the number of regeneration cycles was observed.

  3. Adsorption of Anionic Dyes from Aqueous Solutions by Calcined and Uncalcined Mg/ Al Layered Double Hydroxide

    International Nuclear Information System (INIS)

    Siti Mariam Sumari; Zaini Hamzah; Kantasamy, N.

    2016-01-01

    The uptake of Acid Blue 29 (AB29), Reactive Orange 16 (RO16) and Reactive Red 120 (RR120) from aqueous solutions by calcined (CLDH) and uncalcined Mg/Al layered double hydroxide (LDH) has been investigated. The adsorption process was conducted in a batch mode at 25 degree Celcius. Anionic dye removal was more efficient using the CLDH rather than LDH. The adsorption process by CLDH involved reconstruction and hydration of the calcined LDH and intercalation of AB29, RO16 and RR120. Physical characterization using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) were used to ascertain the memory effect phenomenon that is structural reconstruction to regain its original LDH after rehydration. To gain insight into the mechanism of adsorption by CLDH, the pseudo-first order (PFO) and pseudo-second order (PSO) and intraparticle diffusion (IPD) kinetic models were used to analyse experimental data. Based on the correlation coefficient (R 2 ), the PSO has better fitting (R 2 =0.987-1.00) compared to PFO (R 2 =0.867-0.990). Furthermore the values of maximum adsorption capacity, (q e ) calculated from PSO model are consistent with the experimental q e indicating that the experimental kinetic data for AB29, RO16 and RR120 adsorption by CLDH are suitable for this model. Recycling of the adsorbent, in cycles of calcination-reconstruction process promised a possibility of regeneration of CLDH. (author)

  4. Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: equilibrium and kinetic studies.

    Science.gov (United States)

    Lv, Liang; He, Jing; Wei, Min; Evans, D G; Duan, Xue

    2006-02-01

    Layered double hydroxides (LDH) calcined within a certain temperature range (denoted as CLDH) have been shown to recover their original layered structure in the presence of appropriate anions. In the light of this so-called "memory effect", uptake of chloride ion from aqueous solution by calcined MgAl-CO3 LDH was investigated in batch mode. The equilibrium isotherm showed that the uptake of chloride ion by CLDH was consistent with the Langmuir and Freundlich equations and that the Langmuir model gave a better fit to the experimental data than the Freundlich model. The maximum uptake capacity of CLDH for chloride ion was 149.5 mg/g, close to the stoichiometric uptake (168 mg/g). The influence of varying pH of solution, initial chloride concentration, adsorbent quantity, and temperature on the kinetics of chloride removal has also been explored. Four kinetic models were used to fit the experimental data, and it was found that the pseudo-second-order kinetics model could be used to describe the uptake process satisfactorily. The calculated value of Ea was found to be 56.8 kJ/mol, which suggests that the process of uptake of chloride ion is controlled by the rate of reaction of chloride ion with the CLDH rather than diffusion. A mechanism for removal of chloride ion has been confirmed by X-ray diffraction, FT-IR spectroscopy and TG-MS measurements.

  5. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste

    KAUST Repository

    Yoon, Seyoon

    2014-06-01

    This study investigated the feasibility of using calcined layered double hydroxides (CLDHs) to prevent chloride-induced deterioration in reinforced concrete. CLDHs not only adsorbed chloride ions in aqueous solution with a memory effect but also had a much higher binding capacity than the original layered double hydroxides (LDHs) in the cement matrix. We investigated this adsorption in hardened cement paste in batch cultures to determine adsorption isotherms. The measured and theoretical binding capacities (153 mg g -1 and 257 mg g-1, respectively) of the CLDHs were comparable to the theoretical capacity of Friedel\\'s salt (2 mol mol-1 or 121 mg g-1), which belongs to the LDH family among cementitious phases. We simulated chloride adsorption by CLDHs through the cement matrix using the Fickian model and compared the simulation result to the X-ray fluorescence (XRF) chlorine map. Based on our results, it is proposed that the adsorption process is governed by the chloride transport through the cement matrix; this process differs from that in an aqueous solution. X-ray diffraction (XRD) analysis showed that the CLDH rebuilds the layered structure in a cementitious environment, thereby demonstrating the feasibility of applying CLDHs to the cement and concrete industries. © 2014 Published by Elsevier B.V. All rights reserved.

  6. Thermokinetic study of the rehydration process of a calcined MgAl-layered double hydroxide.

    Science.gov (United States)

    Pfeiffer, Heriberto; Lima, Enrique; Lara, Víctor; Valente, Jaime S

    2010-03-16

    The rehydration process of a calcined MgAl-layered double hydroxide (LDH) with a Mg/Al molar ratio of 3 was systematically analyzed at different temperatures and relative humidity. Qualitative and quantitative experiments were done. In the first set of samples, the temperature or the relative humidity was varied, fixing the second variable. Both adsorption and absorption phenomena were present; absorption process was associated to the LDH regeneration. Of course, in all cases the LDH regeneration was confirmed by other techniques such as TGA, solid state NMR, and SAXS. In the second set of experiments, a kinetic analysis was performed, the results allowed to obtain different activation enthalpies for the LDH regeneration as a function of the relative humidity. The activation enthalpies varied from 137.6 to 83.3 kJ/mol as a function of the relative humidity (50 and 80%, respectively). All these experiments showed that LDH regeneration is highly dependent on the temperature and relative humidity.

  7. Improvement of the crystallinity and photocatalytic property of zinc oxide as calcination product of Zn–Al layered double hydroxide

    International Nuclear Information System (INIS)

    Ahmed, Abdullah Ahmed Ali; Talib, Zainal Abidin; Hussein, Mohd Zobir bin; Zakaria, Azmi

    2012-01-01

    Highlights: ► ZnO phase and ZnAl 2 O 4 spinel can be formed as Zn–Al–NO 3 –LDH calcination products. ► The crystallinity of ZnO phase increased with an increase of calcination temperature. ► The optical band gaps of ZnO were improved with an increase in temperature. ► The oxygen vacancies in ZnO and ZnAl 2 O 4 generated the ESR signals. - Abstract: Zinc oxide with different degrees of crystallinity can be formed as Zn–Al-layered double hydroxide (Zn–Al–NO 3 –LDH) calcination products. ZnAl 2 O 4 spinel is also formed in a range of calcination temperatures from 600 to 1000 °C from the LDH. X-ray diffraction patterns showed that the crystallinity of the ZnO phase increased as calcination temperatures increased. The LDH structure was fully collapsed at and above 400 °C. The photocatalytic activity was determined by UV–VIS–NIR diffuse reflectance spectroscopy. The band gap of the calcined samples increased as the calcination temperature increased. Electron spin resonance (ESR) spectra of the fresh and calcined LDH at room temperature demonstrated that oxygen vacancies in the ZnO and ZnAl 2 O 4 were responsible for the generation of ESR signals. One BET specific surface area increased from 1 m 2 /g for the LDH to a maximum at 400 °C (43 m 2 /g) and decreased thereafter down to 6 m 2 /g at 1000 °C.

  8. Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue

    Science.gov (United States)

    Zhao, Guoqing; Li, Caifeng; Wu, Xia; Yu, Jingang; Jiang, Xinyu; Hu, Wenjihao; Jiao, Feipeng

    2018-03-01

    Calcined layered double hydroxides (CLDH) are one of the remarkable photocatalysts passionately studied for photodecolorization of organic dyes. NiFe-CLDH was successfully modified by reduced graphene oxide (RGO) through a facile in situ crystallization technique. The obtained RGO/NiFe-CLDH composites were fully characterized by powder X-ray diffraction (XRD), Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR), and UV-vis diffuse reflectance spectroscopy (DRS). The results analysis indicated that RGO sheets could work as base course to prompt the growth of LDH crystallites and NiFe-LDH lamellar crystal promiscuously distributed on the sheets with a strong interplay between each other. The photocatalytic performance of RGO/NiFe-CLDH composites toward decolorization of methylene blue tightly depended on the mass fraction of RGO and calcinated temperature. At the RGO weight loading of 1%, calcination temperature of 500 °C, the photocatalytic degradation efficiency of RGO/NiFe-CLDH composites reached 93.0% within 5.0 h. The enhanced activity of RGO/NiFe-CLDH composites may be due to the concerted catalysis effect between two constituents of as-prepared composites.

  9. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Cui Lin; Meng Xiaomeng; Xu Minrong; Shang Kun; Ai Shiyun; Liu Yinping

    2011-01-01

    Highlights: → A nitrite sensor fabricated based on copper calcined layered double hydroxides and gold nanoparticles modified electrode. → This sensor exhibited excellent electrocatalytic oxidation to nitrite. → This nitrite sensor exhibited very good analytical performance with low cost, convenient preparation and rapid detection. - Abstract: In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1-191 μM and with a detection limit of 0.5 μM. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.

  10. Removal of indigo carmine dye from water to Mg-Al-CO(3)-calcined layered double hydroxides.

    Science.gov (United States)

    El Gaini, L; Lakraimi, M; Sebbar, E; Meghea, A; Bakasse, M

    2009-01-30

    Layered double hydroxides (LDHs) calcined, denoted as CLDHs, have been shown to recover their original layered structure in the presence of appropriate anions. In the light of this so-called "memory effect", the removal of indigo carmine (IC), an anionic dye, from aqueous solution by calcined Mg-Al-CO(3) LDHs was investigated in batch mode. We looked at the influence of pH values, dye-adsorbent contact time, initial dye concentration and various temperatures of heating of LDHs on the decolorization rate of IC. The adsorption isotherms, described by Freundlich model are L-type. The characterization of the solids CLDHs, both fresh and after removal of IC, by X-ray diffraction and infrared spectroscopy shows that the IC adsorption on CLDHs is enhanced by reconstruction of a matrix hydrotalcite intercaled by the dye, and the intercalation of the organic ion was clearly evidenced by the net increase in the basal spacing from 0.76 nm for [Mg-Al-CO(3)] to 2.13 nm for the organic derivative.

  11. Removal of indigo carmine dye from water to Mg-Al-CO3-calcined layered double hydroxides

    International Nuclear Information System (INIS)

    El Gaini, L.; Lakraimi, M.; Sebbar, E.; Meghea, A.; Bakasse, M.

    2009-01-01

    Layered double hydroxides (LDHs) calcined, denoted as CLDHs, have been shown to recover their original layered structure in the presence of appropriate anions. In the light of this so-called 'memory effect', the removal of indigo carmine (IC), an anionic dye, from aqueous solution by calcined Mg-Al-CO 3 LDHs was investigated in batch mode. We looked at the influence of pH values, dye-adsorbent contact time, initial dye concentration and various temperatures of heating of LDHs on the decolorization rate of IC. The adsorption isotherms, described by Freundlich model are L-type. The characterization of the solids CLDHs, both fresh and after removal of IC, by X-ray diffraction and infrared spectroscopy shows that the IC adsorption on CLDHs is enhanced by reconstruction of a matrix hydrotalcite intercaled by the dye, and the intercalation of the organic ion was clearly evidenced by the net increase in the basal spacing from 0.76 nm for [Mg-Al-CO 3 ] to 2.13 nm for the organic derivative

  12. Removal of indigo carmine dye from water to Mg-Al-CO{sub 3}-calcined layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    El Gaini, L. [Faculty of Science, University Chouaib Doukkali, 24000 El Jadida (Morocco); Lakraimi, M. [ENS Ecole Normale Superieure, 40000 Marrakech (Morocco); Sebbar, E. [Faculty of Science, University Chouaib Doukkali, 24000 El Jadida (Morocco); Meghea, A. [University POLITEHNICA of Bucharest (Romania); Bakasse, M. [Faculty of Science, University Chouaib Doukkali, 24000 El Jadida (Morocco)], E-mail: bakassem@yahoo.fr

    2009-01-30

    Layered double hydroxides (LDHs) calcined, denoted as CLDHs, have been shown to recover their original layered structure in the presence of appropriate anions. In the light of this so-called 'memory effect', the removal of indigo carmine (IC), an anionic dye, from aqueous solution by calcined Mg-Al-CO{sub 3} LDHs was investigated in batch mode. We looked at the influence of pH values, dye-adsorbent contact time, initial dye concentration and various temperatures of heating of LDHs on the decolorization rate of IC. The adsorption isotherms, described by Freundlich model are L-type. The characterization of the solids CLDHs, both fresh and after removal of IC, by X-ray diffraction and infrared spectroscopy shows that the IC adsorption on CLDHs is enhanced by reconstruction of a matrix hydrotalcite intercaled by the dye, and the intercalation of the organic ion was clearly evidenced by the net increase in the basal spacing from 0.76 nm for [Mg-Al-CO{sub 3}] to 2.13 nm for the organic derivative.

  13. Intercalation behavior of amino acids into Zn-Al-layered double hydroxide by calcination-rehydration reaction

    Science.gov (United States)

    Aisawa, Sumio; Kudo, Hiroko; Hoshi, Tomomi; Takahashi, Satoshi; Hirahara, Hidetoshi; Umetsu, Yoshio; Narita, Eiichi

    2004-11-01

    The intercalation of amino acids for the Zn-Al-layered double hydroxide (LDH) has been investigated by the calcination-rehydration reaction at 298 K using mainly phenylalanine (Phe) as a guest amino acid. The Zn-Al oxide precursor prepared by the calcination of Zn-Al-carbonated LDH at 773 K for 2 h was used as the host material. The amount of Phe intercalated by the rehydration was remarkably influenced by the initial solution pH and reached ca. 2.7 times for anion exchange capacity (AEC) of the LDH at neutral and weak alkaline solutions, suggesting that Phe was intercalated as amphoteric ion form into the LDH interlayer. As Phe is intercalated for the LDH as monovalent anion in alkaline solution, the amount of Phe intercalated at pH 10.5 corresponded with AEC of the LDH. The solid products were found to have the expanded LDH structure, which confirmed that Phe was intercalated into the LDH interlayer as amphoteric ion or anion form. The basal spacing, d003, of the Phe/LDH was 1.58 nm at pH 7.0 and 0.80 nm at pH 10.5; two kinds of expansion suggested for Phe in the interlayer space as vertical (pH 7.0) and horizontal (pH 10.5) orientations. The intercalation behavior of various amino acids for the LDH was also found to be greatly influenced by the feature of the amino acid side-chain, namely, its carbon-chain length, structure and physicochemical property. In particular, α-amino acids possessing a hydrophobic or negative-charged side-chain were preferentially intercalated for the LDH.

  14. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Chunsheng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); College of Environmental & Safety Engineering, Changzhou University, Changzhou 213164 (China); Zhu, Xiaofeng [College of Environmental & Safety Engineering, Changzhou University, Changzhou 213164 (China); Zhu, Bicheng; Jiang, Chuanjia; Le, Yao [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2017-01-05

    Highlights: • Ni/Mg/Al layered double hydroxides (NMA-LDHs) synthesized. • NMA-LDHs with hierarchically hollow microsphere structure. • Calcined NMA-LDHs have large adsorption capacities for CR and Cr(VI) ions. - Abstract: The preparation of hierarchical porous materials as catalysts and sorbents has attracted much attention in the field of environmental pollution control. Herein, Ni/Mg/Al layered double hydroxides (NMA-LDHs) hierarchical flower-like hollow microspheres were synthesized by a hydrothermal method. After the NMA-LDHs was calcined at 600 °C, NMA-LDHs transformed into Ni/Mg/Al layered double oxides (NMA-LDOs), which maintained the hierarchical flower-like hollow structure. The crystal phase, morphology, and microstructure of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy elemental mapping, Fourier transform infrared spectroscopy, and nitrogen adsorption−desorption methods. Both the calcined and non-calcined NMA-LDHs were examined for their performance to remove Congo red (CR) and hexavalent chromium (Cr(VI)) ions in aqueous solution. The maximum monolayer adsorption capacities of CR and Cr(VI) ions over the NMA-LDOs sample were 1250 and 103.4 mg/g at 30 °C, respectively. Thermodynamic studies indicated that the adsorption process was endothermic in nature. In addition, the addition of coexisting anions negatively influenced the adsorption capacity of Cr(VI) ions, in the following order: CO{sub 3}{sup 2−} > SO{sub 4}{sup 2−} > H{sub 2}PO{sub 4}{sup −} > Cl{sup −}. This work will provide new insight into the design and fabrication of advanced adsorption materials for water pollutant removal.

  15. Removal of indigo carmine and green bezanyl-F2B from water using calcined and uncalcined Zn/Al + Fe layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Hassiba Bessaha

    2017-06-01

    Full Text Available Layered double hydroxide Zn/(Al + Fe with a molar ratio of 3:(0.85 + 0.15, designated as ZAF-HT, was synthetized by co-precipitation. Its calcined product CZAF was obtained by heat treatment of ZAF-HT at 500°C. The calcined and uncalcined materials were used to remove the acid dyes indigo carmine (IC and green bezanyl-F2B (F2B from water in batch mode. The synthetized materials were characterized by X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller analysis, Fourier transform infra-red spectroscopy and thermogravimetric/differential thermal analysis. The sorption kinetic data fitted a pseudo-second-order model. The adsorbed amounts of the calcined material were much larger than ZAF-HT. The maximum adsorption capacity of CZAF was found to be 617.3 mg g−1 for IC and 1,501.4 mg g−1 for F2B. The isotherms showed that the removal of IC and F2B by ZAF-HT and CZAF could be described by a Langmuir model. The thermodynamic parameters were also calculated. The negative values of standard free energy ΔG° indicate the spontaneity of sorption process. The reuse of CZAF was studied for both dyes and the calcined material showed a good stability for four thermal cycles.

  16. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions.

    Science.gov (United States)

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Jiang, Chuanjia; Le, Yao; Yu, Jiaguo

    2017-01-05

    The preparation of hierarchical porous materials as catalysts and sorbents has attracted much attention in the field of environmental pollution control. Herein, Ni/Mg/Al layered double hydroxides (NMA-LDHs) hierarchical flower-like hollow microspheres were synthesized by a hydrothermal method. After the NMA-LDHs was calcined at 600°C, NMA-LDHs transformed into Ni/Mg/Al layered double oxides (NMA-LDOs), which maintained the hierarchical flower-like hollow structure. The crystal phase, morphology, and microstructure of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy elemental mapping, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption methods. Both the calcined and non-calcined NMA-LDHs were examined for their performance to remove Congo red (CR) and hexavalent chromium (Cr(VI)) ions in aqueous solution. The maximum monolayer adsorption capacities of CR and Cr(VI) ions over the NMA-LDOs sample were 1250 and 103.4mg/g at 30°C, respectively. Thermodynamic studies indicated that the adsorption process was endothermic in nature. In addition, the addition of coexisting anions negatively influenced the adsorption capacity of Cr(VI) ions, in the following order: CO 3 2- >SO 4 2- >H 2 PO 4 - >Cl - . This work will provide new insight into the design and fabrication of advanced adsorption materials for water pollutant removal. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Calcined Ni-Al Layered Double Hydroxide as Catalyst for Total Oxidation of VOC: Effect of Precursor Crystallinity.

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Zuzana; Čuba, Pavel; Balabánová, Jana; Rojka, T.; Kovanda, F.; Jirátová, Květa

    2007-01-01

    Roč. 61, 2 (2007) , s. 103-109 ISSN 0366-6352. [International Conference of Slovak Society of Chemical Engineering /33./. Matliare, 26.05.2006-30.05.2006] R&D Projects: GA ČR(CZ) GA104/04/2116; GA ČR(CZ) GD203/03/H140 Institutional research plan: CEZ:AV0Z40720504 Keywords : layered double hydroxide * mixed oxide * hydrothermal treatment Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.367, year: 2007

  18. Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts.

    Science.gov (United States)

    Sankaranarayanan, Sivashunmugam; Antonyraj, Churchil A; Kannan, S

    2012-04-01

    Fatty acid methyl esters (FAME) were produced from edible, non-edible and used cooking oils with different fatty acid contents by transesterification with methanol using calcined layered double hydroxides (LDHs) as solid base catalysts. Among the catalysts, calcined CaAl2-LDH (hydrocalumite) showed the highest activity with >90% yield of FAME using low methanol:oil molar ratio (<6:1) at 65 °C in 5 h. The activity of the catalyst was attributed to its high basicity as supported by Hammett studies and CO(2)-TPD measurements. The catalyst was successfully reused in up to four cycles. Some of the properties such as density, viscosity, neutralization number and glycerol content of the obtained biodiesel matched well with the standard DIN values. It is concluded that a scalable heterogeneously catalyzed process for production of biodiesel in high yields from a wide variety of triglyceride oils including used oils is possible using optimized conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Enhanced Removal of Arsenic and Antimony in the Mining Site by Calcined γ-Fe2O3/Layered Double Hydroxide Nanocomposite

    Science.gov (United States)

    Lee, Sang-Ho; Choi, Heechul; Kim, Kyoung-Woong

    2016-04-01

    Arsenic (As) and Antimony (Sb) have been recognized as harmful contaminants in aquatic environment due to its high toxicity and carcinogenicity. Especially, the contamination of arsenic in the mining areas is considered as a serious emerging environmental issue in Korea. Due to the hazardous effect of arsenic, the United States Environmental Protection Agency (US EPA) regulated maximum contamination level of arsenic to 10 μg/L in drinking water. The harmful effect on human health by excessive intake of antimony was also reported by previous studies, and severe contamination level (100 - 7,000 μg/L) of antimony reported in surface and groundwater of abandoned mining area in China and Slovakia. Therefore, US EPA regulated maximum contaminants level of antimony in drinking water to 6 μg/L. In order to remove anionic contaminants in drinking water, various type of nanomaterials have been developed. Layered double hydroxide (LDH) is the artificial anionic clay that is based on the layered structure of positively charged brucite-like layers with interlayers of anions. The LDH is one of the promising nanomaterials for the removal of anionic contaminants because it has high selectivity for arsenic, phosphate, chromium and antimony. However, the biggest problem of LDH for wastewater treatment is that the particles cannot be easily separated after the removal of contaminants. In this study, magnetic nanoparticles (γ-Fe2O3) supported LDH nanocomposite (γ-Fe2O3/LDH) was investigated to enhance magnetic particle recovery and removal efficiency for arsenic and antimony. The calcined γ-Fe2O3/LDH nanocomposites synthesized by co-precipitation method, and the crystallographic properties of maghemite (γ-Fe2O3) and layered structure of LDH were confirmed by X-ray diffraction. The nano-sized γ-Fe2O3 (30 to 50 nm) was stably attached on the surface of LDH (100 to 150 nm) and O1s spectrum by X-ray photoelectron spectroscopy (XPS) explained that there are both physical and

  20. New DC conductivity spectra of Zn–Al layered double hydroxide (Zn–Al–NO3–LDH and its calcined product of ZnO phase

    Directory of Open Access Journals (Sweden)

    Abdullah Ahmed Ali Ahmed

    2017-05-01

    Full Text Available Zn–Al–NO3–LDH nanostructure was synthesized via the coprecipitation method at molar ratio Zn2+/Al3+ = 4 and pH = 7. The resultant sample was thermally treated at calcined temperatures of 50, 100, 150, 200, 250 and 300 °C. The layered structure of the Zn–Al–NO3–LDH samples was stable below the calcination temperature 200 °C as shown in powder X-ray diffraction (PXRD patterns of calcined samples. The calcination products showed a collapse of LDH structure and ZnO phase was formed at 200 °C and above. The dielectric spectroscopy of LDH was explained using anomalous low frequency dispersion (ALFD due to the low mobility of LDH carriers. The conductivity spectra of LDH can be theoretically described according to the effective phase within the calcination products of LDH. In the comparison with previously researches, this study presented higher values of DC conductivity for all studied samples.

  1. Use of calcined layered double hydroxides for the removal of color and organic matter from textile effluents: kinetic, equilibrium and recycling studies

    Directory of Open Access Journals (Sweden)

    T. P. F. Teixeira

    2014-03-01

    Full Text Available This paper presents data for the synthesis and characterization of layer double hydroxides (LDH and their use for color and chemical oxygen demand (COD removal from effluents generated by a textile industry. Adsorption studies with raw and biologically treated (activated sludge textile effluent showed that the pseudo-second order model best fitted the experimental data, leading to adsorption coefficients of 39.1 and 102.9 mgCOD/gLDH for raw and treated effluents, respectively. The best conditions for color and COD removal were obtained at lower values of temperature and pH (25 °C and pH 7 and, in these conditions, an LDH dose of 10 g/L resulted in color removal efficiencies of 56% for samples of raw and 66% for samples of treated effluent. Recycling studies indicated that the reuse of thermally treated LDH led to a progressive loss in the removal efficiencies of COD and color. The reduction was more pronounced with samples of the raw textile effluent. LDH characterization performed before and after each adsorption and regeneration experiment showed that there was no intercalation of dye molecules in the interlayer region of the LDH, indicating that COD and color removal might be due to the adsorption of organic molecules onto the LDH surface.

  2. Double layers in space

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-01-01

    For more than a decade it has been realised that electrostatic double layers are likely to occur in space. The author briefly discusses the theoretical background of such double layers. Most of the paper is devoted to an account of the observational evidence for double layers in the ionosphere and magnetosphere of the Earth. Several different experiments are reviewed including rocket and satellite measurements and ground based observations. It is concluded that the observational evidence for double layers in space is very strong. The experimental results indicate that double layers with widely different properties may exist in space. (Auth.)

  3. Double layer formation

    International Nuclear Information System (INIS)

    Singh, N.

    1982-01-01

    Results from several numerical simulations of the formation of double layers in plasmas with a constant potential drop across them are presented. Here the emphasis is mainly on plasma processes during the formation of double layers. The recurring formation of double layers, their propagation and associated current interruptions are observed when the electron current injected into the simulation region from the low potential side exceeds the electron thermal current. This recurring process is stopped (or delayed) when the electron current recuperation is inhibited by a small magnetic force on the electrons. The motion of double layers is examined and it is found that the motion is caused by the interruption of the ion current from the high potential side. The subsequent recovery of this current renders the double layer stationary. (author)

  4. A double layer review

    International Nuclear Information System (INIS)

    Block, L.P.

    1977-06-01

    A review of the main results on electrostatic double layers (sometimes called space charge layers or sheaths) obtained from theory, and laboratory and space experiments up to the spring of 1977 is given. By means of barium jets and satellite probes, double layers have now been found at the altitudes, earlier predicted theoretically. The general potential distribution above the auroral zone, suggested by inverted V-events and electric field reversals, is corroborated. (author)

  5. Layered double hydroxides

    DEFF Research Database (Denmark)

    López Rayo, Sandra; Imran, Ahmad; Hansen, Hans Chr. Bruun

    2017-01-01

    A novel zinc (Zn) fertilizer concept based on Zn doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthetized, their chemical composition was analyzed and their nutrient release was studied in buffered solutions with different pH values. Uptake...

  6. Double layers - theory and experiment

    International Nuclear Information System (INIS)

    Torven, S.

    1980-06-01

    A survey is given of recent investigations of electric double layers in low density plasmas. The existence of double layers is now well established in both magnetized and unmagnetized plasmas. Laboratory experiments and numerical simulations show that double layers coexist with waves and fluctuations as expected in view of the particle beams which are formed in the layer. Under certain conditions the level of the fluctuations is small and experimental results then compare favourably with stationary double layer models. Significant progress on layer formation processes has been made, but further investigations are required to predict under what conditions double layers will form in different types of plasmas. (author)

  7. Layering and Ordering in Electrochemical Double Layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yihua [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Kawaguchi, Tomoya [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Pierce, Michael S. [Rochester Institute of Technology, School of Physics and Astronomy, Rochester, New York 14623, United States; Komanicky, Vladimir [Faculty of Science, Safarik University, 041 54 Kosice, Slovakia; You, Hoydoo [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

    2018-02-26

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  8. Global effects of double layers

    International Nuclear Information System (INIS)

    Raad, M.A.

    1984-12-01

    Locally the formation of an electrostatic double layer in a current carrying plasma leads to a direct acceleration of particles which may penetrate far into the surrounding medium. The potential across the double layer, giving this acceleration, must be maintained by the external system and is a basic parameter for the local to global coupling. The double layer potential is associated with an electric field parallel to the magnetic field. In general this leads to a magnetohydrodynamic relaxation of the surrounding medium providing the influx of energy which is dissipated by the double layer. The double layer potential is limited as is the maximum possible rate of energy influx. If the global response of the external medium can be represented by an external circuit and if an equivalent circuit element can be found to represent the double layer, for example a negative resistance for intermediate time scales, it is possible to give a description of the dynamics and stability of the whole system. (Author)

  9. Double layers above the aurora

    International Nuclear Information System (INIS)

    Temerin, M.; Mozer, F.S.

    1987-01-01

    Two different kinds of double layers were found in association with auroral precipitation. One of these is the so-called electrostatic shock, which is oriented at an oblique angle to the magnetic field in such a way that the perpendicular electric field is much larger than the parallel electric field. This type of double layer is often found at the edges of regions of upflowing ion beams and the direction of the electric fields in the shock points toward the ion beam. The potential drop through the shock can be several kV and is comparable to the total potential needed to produce auroral acceleration. Instabilities associated with the shock may generate obliquely propagating Alfven waves, which may accelerate electrons to produce flickering auroras. The flickering aurora provides evidence that the electrostatic shock may have large temporal fluctuations. The other kind of double layer is the small-amplitude double layer found in regions of upward flowing in beams, often in association with electrostatic ion cyclotron waves. The parallel and perpendicular electric fields in these structures are comparable in magnitude. The associated potentials are a few eV. Since many such double layers are found in regions of upward flowing ion beams, the combined potential drop through a set of these double layers can be substantial

  10. On the physics of relativistic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-06-01

    A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)

  11. Study on calcination of bi-layered films produced by anodizing iron in dimethyl sulfoxide electrolyte

    International Nuclear Information System (INIS)

    Jagminas, Arūnas; Klimas, Vaclovas; Mažeika, Kęstutis; Mickevičius, Sigitas; Balakauskas, Saulius

    2012-01-01

    Research on well adherent, thick and nanoporous oxide film formation onto the metal substrates underwent a major burst throughout the last decade. In the current study, thick bi-layered films produced onto a pure iron surface by anodizing way in dimethyl sulfoxide (DMSO) electrolyte containing silica hexafluoride acid have been investigated upon the annealing in air. Compositional, phase and structural transformations of the film material to hematite, α-Fe 2 O 3 , were studied using Mössbauer spectroscopy at room to cryogenic temperatures, thermogravimetry (TG), differential thermal analysis (DTA), photoemission spectroscopy, scanning electron microscopy (SEM), and wave dispersive X-ray spectroscopy (WDX). Experimental findings indicated that much longer heating in air is required for these films to be fully transformed to hematite. This effect is linked here with the complex nature of DMSO films. Based on the combined WDX, photoemission and Mössbauer spectroscopy results, the transformations taken place during calcination of such amorphous films by heat-treatment in air to crystalline hematite have been determined. Investigations on the calcination effects of thick iron anodic films reported here offer opportunities for both fundamental research and practical applications.

  12. Some theoretical aspects of electrostatic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1978-11-01

    A review is presented of the main results of the theoretical work on electrostatic double layers. The general properties of double layers are first considered. Then the time-independent double layer is discussed. The discussion deals with the potential drop, the thickness, and some necessary criteria for the existence and stability of the layer. As a complement to the study of the timeindependent double layer a few remarks are also made upon the timedependent double layer. Finally the question of how double layers are formed and maintained is treated. Several possible formation mechanisms are considered. (author)

  13. Double Layer Dynamics in a Collisionless Magnetoplasma

    DEFF Research Database (Denmark)

    Iizuka, S.; Michelsen, Poul; Juul Rasmussen, Jens

    An experimental investigation of the dynamics of double layers is presented. The experiments are performed in a Q-machine plasma and the double layers are generated by applying a positive step potential to a cold collector plate terminating the plasma column. The double layer is created...... and propagation of a double layer. The period of the oscillations is determined by the propagation length of the double layer. The current is limited during the propagation of the double layer by a growing negative potential barrier formed on the low potential tail. Similar phenomena appear when a potential...... difference is applied between two plasmas in a Q-machine with two sources. In this case a stationary double layer forms in the plasma column, but the low potential tail is subject to "back and forth" oscillations leading to large amplitude current oscillations....

  14. The theory of double layers

    International Nuclear Information System (INIS)

    Schamel, H.

    1982-01-01

    Numerical and in some degree laboratory experiments suggest the existence of at least two different kinds of time-independent double layers: a strictly monotonic transition of the electrostatic potential and a transition accompanied by a negative spike at the low potential side (ion acoustic DL). An interpretation of both is presented in terms of analytic BGK modes. The first class of DLs commonly observed in voltage- or beam-driven plasmas needs for its existence beam-type distributions satisfying a Bohm criterion. The potential drop is at least of the order of Tsub(e), and stability arguments favour currents which satisfy the Langmuir condition. The second class found in current-driven plasma simulations is correlated with ion holes. This latter kind of nonlinear wave-solutions is linearly based on the slow ion-acoustic mode and exists due to a vortex-like distortion of the ion distribution in the thermal range. During the growth of an ion hole which is triggered by ion-acoustic fluctuations, the partial reflection of streaming electrons causes different plasma states on both sides of the potential dip and makes the ion hole asymmetric giving rise to an effective potential drop. This implies that the amplitude of this second type of double layers has an upper limit of 1-2 Tsub(e) and presumes a temperature ratio of Tsub(e)/Tsub(i) > or approximately 3 in coincidence with the numerical results. (Auth.)

  15. Dynamical Aspects of Electrostatic Double Layers

    DEFF Research Database (Denmark)

    Raadu, M.A.; Juul Rasmussen, J.

    1988-01-01

    Electrostatic double layers have been proposed as an acceleration mechanism in solar flares and other astrophysical objects. They have been extensively studied in the laboratory and by means of computer simulations. The theory of steady-state double layers implies several existence criteria......, in particular the Bohm criteria, restricting the conditions under which double layers may form. In the present paper several already published theoretical models of different types of double layers are discussed. It is shown that the existence conditions often imply current-driven instabilities in the ambient...... plasma, at least for strong double layers, and it is argued that such conditions must be used with care when applied to real plasmas. Laboratory double layers, and by implication those arising in astrophysical plasmas often produce instabilities in the surrounding plasma and are generally time...

  16. Three Dimensional Double Layers in Magnetized Plasmas

    DEFF Research Database (Denmark)

    Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul

    1982-01-01

    Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...

  17. Stationary Double Layers in a Collisionless Magnetoplasma

    DEFF Research Database (Denmark)

    Noriyoshi, Sato; Mieno, Tetsu; Hatakeyama, Rikizo

    1983-01-01

    Stationary double layers are generated in a magnetoplasma by applying potential differences between two heated plates on which the plasma is produced by surface ionization. By measuring the double-layer formation process, a localized potential drop is found to be formed initially in front of the ...

  18. molecules in a functionalized layered double hydroxide

    Indian Academy of Sciences (India)

    Unknown

    included within the functionalized Mg–Al layered double hydroxide solid are similar to that of dilute so- lutions of the PAH in non-polar ... thermally stable over a wide temperature range with their emission properties practically unaltered. Keywords. Layered double ..... deformation, C–C skeletal stretch. 1020. 1024. 1024. –.

  19. Instability limits for spontaneous double layer formation

    International Nuclear Information System (INIS)

    Carr, J. Jr.; Galante, M. E.; McCarren, D.; Scime, E. E.; Sears, S.; VanDervort, R. W.; Magee, R. M.; Reynolds, E.

    2013-01-01

    We present time-resolved measurements that demonstrate that large amplitude electrostatic instabilities appear in pulsed, expanding helicon plasmas at the same time as particularly strong double layers appear in the expansion region. A significant cross-correlation between the electrostatic fluctuations and fluctuations in the number of ions accelerated by the double layer electric field is observed. No correlation is observed between the electrostatic fluctuations and ions that have not passed through the double layer. These measurements confirm that the simultaneous appearance of the electrostatic fluctuations and the double layer is not simple coincidence. In fact, the accelerated ion population is responsible for the growth of the instability. The double layer strength, and therefore, the velocity of the accelerated ions, is limited by the appearance of the electrostatic instability

  20. Double layers and circuits in astrophysics

    International Nuclear Information System (INIS)

    Alfven, H.

    1986-05-01

    As the rate of energy release in a double layer with voltage DeltaV is P corresponding to IDeltaV, a double layer must be treated part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by menas of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroroal particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the sun's axis which may give radiations detectable from earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made. It is found that students using these textbooks remain essentially ignorant of even the existence of these, in spite of the fact that some of them have been well known for half a centry (e.g., double layers, Langmuir, 1929: pinch effect, Bennet, 1934). The conclusion is that astrophysics is too important to be left in the hands of the astrophysicist. Earth bound and space telescope data must be treated by scientists who are familiar with laboratory and magnetospheric physics and circuit theory, and of course with modern plasma theory. At least by volume the universe consists to more than 99 percent of plasma, and electromagnetic forces are 10/sup39/ time stronger than gravitation

  1. Simulation of plasma double-layer structures

    International Nuclear Information System (INIS)

    Borovsky, J.E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2-dimensional particle-in-cell method. The investigation of planar double layers indicates that these one-dimensional potential structures are susceptible to periodic disruption by instabilities in the low-potential plasmas. Only a slight increase in the double-layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double-layer electric-field alignment of accelerated particles and strong magnetization results in their magnetic-field alignment. The numerial simulations of spatially periodic two-dimensional double layers also exhibit cyclical instability. A morphological invariance in two-dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron-beam excited electrostatic electron-cyclotron waves and (ion-beam driven) solitary waves are present in the plasmas adjacent to the double layers

  2. Draping Double-Layer Woven Fabrics Onto Double-Curvature ...

    African Journals Online (AJOL)

    Draping woven fabrics to complex parts with double curvature leads to complex redistribution and reorientation of the yarns in composites reinforced with woven preforms. To reduce the risk of fabric tearing or wrinkling we propose to use double-layer woven fabrics. This paper presents a simulation model for draping

  3. Stationary Double Layers in a Collisionless Magnetoplasma

    DEFF Research Database (Denmark)

    Noriyoshi, Sato; Mieno, Tetsu; Hatakeyama, Rikizo

    1983-01-01

    Stationary double layers are generated in a magnetoplasma by applying potential differences between two heated plates on which the plasma is produced by surface ionization. By measuring the double-layer formation process, a localized potential drop is found to be formed initially in front...... of the plate on the low-potential side, being accompanied with current limitation. This localized potential drop moves along the plasma column, but finally stops and results in the formation of the stationary double layer in the presence of sufficient plasma supply from the plate on the high-potential side....

  4. Magnetic behavior of Mg-Al-Zn-Fe mixed oxides from precursors layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, M.I., E-mail: marcosivanoliva@gmail.com [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, M. Allende y H. de la Torre Ciudad Universitaria, 5000 Cordoba (Argentina); IFFAM AF (CONICET - FaMAF UNC), M. Allende y H. de la Torre Ciudad Universitaria, 5000 Cordoba (Argentina); Heredia, A. [CITeQ - Facultad R. Cordoba, Universidad Tecnologica Nacional Maestro Lopez esq. Cruz Roja Argentina, CP 5016 Cordoba (Argentina); Zandalazini, C.I. [Centro Laser de Ciencias Moleculares. INFIQC-FCQ-Grupo de Ciencia de Materiales-FaMAF-Universidad Nacional de Cordoba, Ciudad Universitaria, CP5000 Cordoba, Argentina CONICET (Argentina); Crivello, M. [CITeQ - Facultad R. Cordoba, Universidad Tecnologica Nacional Maestro Lopez esq. Cruz Roja Argentina, CP 5016 Cordoba (Argentina); Corchero, E. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, M. Allende y H. de la Torre Ciudad Universitaria, 5000 Cordoba (Argentina)

    2012-08-15

    Mixed oxides of Mg-Al-Zn-Fe were obtained by calcination of layered double hydroxides (LDH) prepared by coprecipitation reaction with hydrothermal treatment. The structural characterization of precursors and oxides was carried out by X rays diffraction, showing increases of ZnO phase with the increase of the zinc content. Magnetic behavior was studied by vibrating sample magnetometer (VSM) and by a superconducting quantum interference device (SQUID) showing both paramagnetic and super paramagnetic behavior depending on both particles size and composition.

  5. Double layer dynamics in a collisionless magnetoplasma

    DEFF Research Database (Denmark)

    Iizuka, S.; Michelsen, Poul; Juul Rasmussen, Jens

    1985-01-01

    Investigations of double layer dynamics are performed in a Q-machine plasma by applying a positive step potential to a cold end-plate collector. The double layer created at the grounded plasma source just after the pulse is applied propagates towards the collector with the plasma flow speed. Large...... oscillations occur in the plasma current which is related to a recurring formation and propagation of the double layer. The current is limited during the propagation by a growing negative potential dip formed on the low-potential tail. Similar phenomena appear on the low-potential tail of the stationary double...... layer formed by applying a potential difference between two plasma sources...

  6. Numerical simulations on ion acoustic double layers

    International Nuclear Information System (INIS)

    Sato, T.; Okuda, H.

    1980-07-01

    A comprehensive numerical study of ion acoustic double layers has been performed for both periodic as well as for nonperiodic systems by means of one-dimensional particle simulations. For a nonperiodic system, an external battery and a resistance are used to model the magnetospheric convection potential and the ionospheric Pedersen resistance. It is found that the number of double layers and the associated potential buildup across the system increases with the system length

  7. Three step double layers in the laboratory. [plasma physics

    Science.gov (United States)

    Bailey, Andrew, III; Hershkowitz, Noah

    1988-01-01

    A new class of stationary double layer structure, with three or more distinct steps, is demonstrated in the laboratory. A large monotonic potential increase results from a series of smaller double layers. In many respects, these double layer structures resemble those inferred from satellite measurements of auroral double layers. This new class of double layer appears to depend on turbulence for its existence and to be a hybrid structure, intermediate between anomalous resistivity and BGK double layers.

  8. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness

    International Nuclear Information System (INIS)

    Dai Hui; Zhong Xinghua; Li Jiayan; Zhang Yanfei; Meng Jian; Cao Xueqiang

    2006-01-01

    Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y 2 O 3 + ZrO 2 ) and lanthanum zirconate (LZ, La 2 Zr 2 O 7 ) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 deg. C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 μm have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 μm, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 μm, the failure mainly occurs at the interface of the YSZ layer and the bond coat

  9. Synthesis and release behavior of composites of camptothecin and layered double hydroxide

    International Nuclear Information System (INIS)

    Dong Lun; Yan Li; Hou Wanguo; Liu Shaojie

    2010-01-01

    A simple method, reconstruction of calcinated layered double hydroxides (CLDH) in an organic (ethanol)-water mixed solvent medium containing drug, was developed to intercalate partially a non-ionic and poorly water-soluble drug (camptothecin) into the gallery of layered double hydroxides (LDHs) to form the drug-LDH composites. The purpose of choosing organic-water mixed solvent is to increase remarkably the solubility of camptothecin (CPT) in the reconstruction medium. A probable morphology of CPT molecules in the gallery of LDHs is that CPT molecules arrange as monolayer with the long axis parallel to the LDH layers. The in vitro drug release from the composites was remarkably lower than that from the corresponding physical mixture, which shows these drug-inorganic composites can be used as a potential drug delivery system. - Graphical abstract: A simple method, reconstruction of calcinated LDHs in an organic-water medium containing drug, was developed to intercalate non-ionic and poorly water-soluble camptothecin into the gallery of LDHs.

  10. Equilibrium double layers in extended Pierce diodes

    International Nuclear Information System (INIS)

    Ciubotariu-Jassy, C.I.

    1992-01-01

    The extended Pierce diode is similar to the standard (or classical) Pierce diode, but has passive circuit elements in place of the short circuit between the electrodes. This device is important as an approximation to real bounded plasma systems. It consists of two parallel plane electrodes (an emitter located at x=0 and a collector located at x=l) and a collisionless cold electron beam travelling between them. The electrons are neutralized by a background of comoving massive ions. This situation is analysed in this paper and new equilibrium double layer (DL) plasma structures are obtained. (author) 6 refs., 3 figs

  11. Double layer of platinum electrodes: Non-monotonic surface charging phenomena and negative double layer capacitance

    Science.gov (United States)

    Huang, Jun; Zhou, Tao; Zhang, Jianbo; Eikerling, Michael

    2018-01-01

    In this study, a refined double layer model of platinum electrodes accounting for chemisorbed oxygen species, oriented interfacial water molecules, and ion size effects in solution is presented. It results in a non-monotonic surface charging relation and a peculiar capacitance vs. potential curve with a maximum and possibly negative values in the potential regime of oxide-formation.

  12. Effect of added zinc on the properties of cobalt-containing ceramic pigments prepared from layered double hydroxides

    Science.gov (United States)

    Pérez-Bernal, M. E.; Ruano-Casero, R. J.; Rives, V.

    2009-09-01

    Layered double hydroxides (LDHs) with the hydrotalcite-type structure containing Co and Al, or Zn, Co and Al in the brucite-like layers and carbonate in the interlayer have been prepared by coprecipitation. The Zn/Co molar ratio was kept to 1 in all samples, while the divalent/trivalent molar ratio was varied from 2/1 to 1/2. The samples have been characterised by element chemical analysis, powder X-ray diffraction, differential thermal and thermogravimetric analysis, temperature-programmed reduction and FT-IR spectroscopy. A single hydrotalcite-like phase is formed for samples with molar ratio 2/1, which crystallinity decreases as the Al content is increased, developing small amounts of diaspore and dawsonite and probably an additional amorphous phase. Calcination at 1200 °C in air led to formation of spinels; a small amount of NaAlO 2 was observed in the Al-rich samples, which was removed by washing. The nature of the spinels formed (containing Co II, Co III, Al III and Zn II) strongly depends on the cations molar ratio in the starting materials and the calcination treatment, leading to a partial oxidation of Co II species to Co III ones. Colour properties ( L* a* b*) of the original and calcined solids have been measured. While the original samples show a pink colour (lighter for the series containing Zn), the calcined Co,Al samples show a dark blue colour and the Zn,Co,Al ones a green colour. Changes due to the different molar ratios within a given calcined series are less evident than between samples with the same composition in different series. These calcined materials could be usable as ceramic pigments.

  13. Voltage Balancer for Electric Double Layer Capacitors

    Science.gov (United States)

    Mori, Kazuya; Takahashi, Shingo; Hasebe, Akio; Seki, Sumiko; Itoh, Takahiko

    Decrease in energy density of the storage system with several electric double layer capacitors (EDLCs) is caused by imbalance of voltage for each EDLC. In case of low power applications, conventional voltage balancer with constant voltage circuits is useful. However, it has some problems for high power applications such as electric vehicle. We have developed a new system to balance the voltage of EDLCs by removing a little energy. In any case, the system can store the energy in each EDLC equally. In the present research, a prototype of voltage balancer is produced for making use of a number of EDLCs and evaluated. The results confirm that the system is effective and suitable for high power applications.

  14. Application of Calcined Layered Double Hydroxides as Catalysts for Abatement of N2O Emissions

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Kovanda, F.; Jirátová, Květa; Pacultová, K.; Lacný, Z.

    2008-01-01

    Roč. 73, 8-9 (2008), s. 1045-1060 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * catalytic decomposition * mixed oxides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008

  15. Ethanol Total Oxidation Over Calcined Layered Double Hydroxides Modified with Organic Components

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jirátová, Květa; Klempa, Jan; Raabová, H.; Zapivovarski Votipka, Z.; Kovanda, F.

    2013-01-01

    Roč. 62, 5-6 (2013), s. 137-146 ISSN 0022-9830 R&D Projects: GA ČR GAP106/10/1762 Institutional support: RVO:67985858 Keywords : mixed oxides * Pluronic 123 * VOC oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  16. Ultrastrong Stationary Double Layers in a Nondischarge Magnetoplasma

    DEFF Research Database (Denmark)

    Sato, N.; Hatakeyama, R.; Iizuka, S.

    1981-01-01

    Ultrastrong stationary double layers are generated in a magnetoplasma by simply applying potential differences between two plasma sources. The potential drop ϕD of the double layer is increased up to eϕD/Te≃2×103 (Te is the electron temperature in eV) with no difficulties caused by gas discharge....... There are always large spiky fluctuations on the low-potential tail of the double layers....

  17. Strong double layer in the downward current region.

    Science.gov (United States)

    Andersson, L.; Ergun, R. E.; Newman, D.; McFadden, J. P.; Carlson, C. W.

    2001-12-01

    A direct observation of a strong double layer has been recorded in detail by the FAST satellite in the downward current region of the aurora. This presentation concentrates on a particular compelling example in which both the electric field and particle measurements clearly illustrate the detail characteristics of the double layer. Electrons with initial energies of about 50 eV are observed to be accelerated through the double layer into a beam of more than 750 eV. This beam is rapidly plateaued by intense wave turbulence into a extended power law distribution. This process forms accelerated `flat-top' electron distributions, which are represented of energized distributions in the downward current region. Ions are also observed to be accelerated by the double layer in the opposite direction of the electron beam. Ion conics on the low potential side of the double layer are trapped between the double layer and their mirror points. The double layer is observed to move up the magnetic field line, in the direction of the electron beam. In front of it, an ion population moves with the speed of the double layer suggesting an overshoot in the potential ramp. The intense wave turbulence on the high potential side is seen to transform into electron phase-space holes far away from the double layer.

  18. Anion capture with calcium, aluminium and iron containing layered double hydroxides

    Science.gov (United States)

    Phillips, J. D.; Vandeperre, L. J.

    2011-09-01

    The competitive adsorption of nitrate, chloride and carbonate in layered double hydroxides (LHD) with the general formula Ca(1-x)2+Al(1-y)3+,Fe(y)3+x(OH)2xNO3-·nHO was investigated. Both normal ion exchange by exposure to a solution containing different anions, as well as addition of calcined material to solution thereby exploiting the memory effect of LDHs was studied. Changes in the interlayer anion changed the interlayer spacing of the LDH. The order of preference of intercalation was Cl≈CO32->NO3-. When multiple anions were present in the exchange solution, LDHs with several distinct interlayer spacing were produced indicating that LDHs with different anions in the interlayer existed at the same time. However for extended exchange times (14 days) where high concentrations of carbonate anion were present, the layered structure was destroyed resulting in the formation of calcite, CaCO 3.

  19. On the negative resistance of double layers

    International Nuclear Information System (INIS)

    Raadu, M.A.; Silevitch, M.B.

    1982-08-01

    It is known that large amplitudes oscillations can occur in the current flowing through a plasma diode, typically when a constant potential is applied across the device. Burger (1965) suggested via a computer simulation that the oscillation characteristics was a function of the quantities T sub (e) and T sub (i), namely the respective time for an electron and an ion to cross the electric field region inside the diode. On the rapid time scale T sub (e) the self consistent equilibrium configuration, was unstable. Norris (1964) had previously arrived at the same conclusion using analytical arguments. In that work, it was concluded that the instability occurred since the diode acted as a negative resistance on the T sub (e) scale. A positive feedback effect forced the system away from equilibrium. Silevitch (1981) used the Burger mechanism to suggest an explanation for the flickering aurora phenomenon. He extended the Norris argument and showed by a variational method that a plausible analytic model for a double layer (DL) behaved as a negative resistance on the T sub (e) scale. In this present work we re-examine the negative resistance calculation by taking a more detailed account of the constraints which are imposed on the electron distributions that exist in the DL region. Specifically, we shall focus at the high potential side of the DL. (Authors)

  20. Synthesis and structure refinement of layered double hydroxides of ...

    Indian Academy of Sciences (India)

    Administrator

    )-oxygen bond in this compound as opposed to the Co–Ga hydroxide. These observations are supported by IR spectra. Keywords. Layered double hydroxide; Rietveld refinement; urea hydrolysis. 1. Introduction. The synthesis, structure and properties of layered double hydroxides (LDHs) have been widely studied in recent.

  1. Propagation characteristics of ion-acoustic double layer in ...

    Indian Academy of Sciences (India)

    Harvinder Kaur

    2017-07-24

    Jul 24, 2017 ... Abstract. In the present investigation, ion-acoustic double layers in an inhomogeneous plasma consisting of. Maxwellian and non-thermal distributions of electrons are studied. We have derived a modified Korteweg–de Vries. (mKdV) equation for ion-acoustic double layers propagating in a collisionless ...

  2. Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation

    DEFF Research Database (Denmark)

    Tian, Gui-Li; Zhao, Meng-Qiang; Zhang, Bingsen

    2014-01-01

    understood. Herein, the preparation of metal NPs with tunable areal density from layered double hydroxide (LDH) precursors in which the metal cations were pre-dispersed at an atomic scale was explored. Large quantities of mesopores induced by the Kirkendall effect were formed on the as-calcined layered...... double oxide (LDO) flakes. The O atoms bonded with Fe3+ cations were easy to be extracted at a temperature higher than 750 degrees C, which greatly increased the mobility of Fe. Consequently, coalescence of the reduced Fe atoms into large NPs enhanced the Kirkendall effect, leading to the formation....... When the areal density was increased from 0.039 to 0.55, and to 2.1 x 10(15) m(-2), the Fe NPs embedded on the LDO flakes exhibited good catalytic performance for the growth of entangled carbon nanotubes (CNTs), aligned CNTs, and double helical CNTs, respectively. This work provides not only new...

  3. The simulation of plasma double-layer structures

    International Nuclear Information System (INIS)

    Borovsky, J.E.; Joyce, G.

    1982-01-01

    Electrostatic plasma double layers are numerically simulated by means of a magnetized 2 1/2-dimensional particle-in-cell method. The investigation of planar double layers indicates that these one-dimensional potential structures are susceptible to periodic disruption by instabilities in the low-potential plasmas. Only a slight increase in the double-layer thickness with an increase in its obliqueness to the magnetic field is observed. Weak magnetization results in the double-layer electric field alignment of accelerated particles and strong magnetization results in their magnetic field alignment. The numerical simulations of spatially periodic two-dimensional double layers also exhibit cyclical instability. A morphological invariance in two-dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Electron-beam excited electrostatic electron-cyclotron waves and (ion-beam driven) solitary waves are present in the plasmas adjacent to the double layers. (Auth.)

  4. Fabrication and characterization of ZnO nanowires array electrodes with high photocurrent densities: Effects of the seed layer calcination time

    International Nuclear Information System (INIS)

    Lu, Yi-Jing; Liu, Ching-Fang; Hu, Chi-Chang; Kuo, Jen-Hou; Boddula, Rajender

    2017-01-01

    In this work, we demonstrate that vertically grown ZnO nanowire (NW) arrays of the wurzite phase were successfully fabricated on fluorine doped tin oxide (FTO) substrates via a hydrothermal method. The coating of a seed layer onto the FTO substrates was found to favor the growth of a uniform ZnO NWs array which shows saturation in the photocurrent density with a relatively low potential bias. Furthermore, prolonging the calcination time of the seed layer makes the ZnO NWs behave the better charge separation and improve the photo-electrochemical performance. Under the irradiation at a 75 mW cm −2 from a simulated sunlight source, the ZnO NWs array electrode prepared from the seed layer with calcination at 350 °C for 5 h shows a saturated photocurrent density of 514 μA cm −2 and a maximum half-cell solar-to-hydrogen (HC-STH) efficiency of 0.26% was obtained at 0.6 V versus reversible hydrogen electrode (RHE) in neutral electrolyte. - Highlights: • The seed layer annealing time strongly influences the textural and photo-activity of ZnO NWs. • The average diameter and density of ZnO NWs were controlled to 47–70 nm and 46–70 NWs μm −2 , respectively. • ZnO NWs show promising application potential in solar-electrocatalytic water splitting under potential bias. • The ZnO NWs with SL annealing time = 5 h achieve the highest HC-STH efficiency of 0.26% at 0.6 V.

  5. Fabrication and characterization of ZnO nanowires array electrodes with high photocurrent densities: Effects of the seed layer calcination time

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi-Jing; Liu, Ching-Fang; Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.tw; Kuo, Jen-Hou; Boddula, Rajender

    2017-03-01

    In this work, we demonstrate that vertically grown ZnO nanowire (NW) arrays of the wurzite phase were successfully fabricated on fluorine doped tin oxide (FTO) substrates via a hydrothermal method. The coating of a seed layer onto the FTO substrates was found to favor the growth of a uniform ZnO NWs array which shows saturation in the photocurrent density with a relatively low potential bias. Furthermore, prolonging the calcination time of the seed layer makes the ZnO NWs behave the better charge separation and improve the photo-electrochemical performance. Under the irradiation at a 75 mW cm{sup −2} from a simulated sunlight source, the ZnO NWs array electrode prepared from the seed layer with calcination at 350 °C for 5 h shows a saturated photocurrent density of 514 μA cm{sup −2} and a maximum half-cell solar-to-hydrogen (HC-STH) efficiency of 0.26% was obtained at 0.6 V versus reversible hydrogen electrode (RHE) in neutral electrolyte. - Highlights: • The seed layer annealing time strongly influences the textural and photo-activity of ZnO NWs. • The average diameter and density of ZnO NWs were controlled to 47–70 nm and 46–70 NWs μm{sup −2}, respectively. • ZnO NWs show promising application potential in solar-electrocatalytic water splitting under potential bias. • The ZnO NWs with SL annealing time = 5 h achieve the highest HC-STH efficiency of 0.26% at 0.6 V.

  6. Structural characterisation of aluminium layered double hydroxides by (27)Al solid-state NMR.

    Science.gov (United States)

    Vyalikh, Anastasia; Massiot, Dominique; Scheler, Ulrich

    2009-09-01

    (27)Al solid-state NMR has been applied to study the local structure of pristine and chemically modified aluminium layered double hydroxides (LDH). The pristine LDH only shows six-fold coordinated, octahedral, aluminium, while the calcined and subsequently surfactant treated LDH sample shows a significant fraction of four-fold coordinated tetrahedral aluminium. The co-existence of two types of octahedral sites with different quadrupolar parameters is clearly observed in both samples. Quadrupolar coupling constants and isotropic chemical shifts have been measured from the (27)Al triple-quantum MAS NMR allowing to fit the (27)Al MAS spectra and quantify the different species in the samples. The quantitative analysis reveals that 30% of the aluminium is in four-fold coordination in the surfactant-modified LDH. We show that this chemical modification retains the two types of AlO(6) sites with a decreased intensity of the site showing the lowest quadrupolar coupling constant.

  7. MgAl-Layered Double Hydroxide Solid Base Catalysts for Henry Reaction: A Green Protocol

    Directory of Open Access Journals (Sweden)

    Magda H. Abdellattif

    2018-03-01

    Full Text Available A series of MgAl-layered double hydroxide (MgAl-HT, the calcined form at 500 °C (MgAlOx, and the rehydrated one at 25 °C (MgAl-HT-RH were synthesized. Physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Surface area of the as-synthesized, calcined, and rehydrated catalysts was determined by N2 physisorption at −196 °C. CO2 temperature-programmed desorption (CO2-TPD was applied to determine the basic sites of catalysts. The catalytic test reaction was carried out using benzaldehyde and their derivatives with nitromethane and their derivatives. The Henry products (1–15 were obtained in a very good yield using MgAl-HT-RH catalyst either by conventional method at 90 °C in liquid phase or under microwave irradiation method. The mesoporous structure and basic nature of the rehydrated solid catalyst were responsible for its superior catalytic efficiency. The robust nature was determined by using the same catalyst five times, where the product % yield was almost unchanged significantly.

  8. Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides

    International Nuclear Information System (INIS)

    Wang Jun; Zhou Jideng; Li Zhanshuang; He Yang; Lin Shuangshuang; Liu Qi; Zhang Milin; Jiang Zhaohua

    2010-01-01

    We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 o C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m 2 /g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs having different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO 3 LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted

  9. The electric double layer has a life of its own

    NARCIS (Netherlands)

    Merlet, Céline; Limmer, David T.; Salanne, Mathieu; Van Roij, René|info:eu-repo/dai/nl/152978984; Madden, Paul A.; Chandler, David; Rotenberg, Benjamin

    2014-01-01

    Using molecular dynamics simulations with recently developed importance sampling methods, we show that the differential capacitance of a model ionic liquid based double-layer capacitor exhibits an anomalous dependence on the applied electrical potential. Such behavior is qualitatively incompatible

  10. Effect of calcination methods on electrochemical performance of NiO ...

    Indian Academy of Sciences (India)

    Administrator

    reason was proposed. The charge storage mechanism of NiO positive electrode in aqueous electrolyte was dis- ... Keywords. NiO; calcination methods; electrochemical performance; electrode materials; supercapacitor. 1. Introduction ... double-layer capacitors, mainly focusing on carbon mate- rials with a high specific ...

  11. Double-layer Tablets of Lornoxicam: Validation of Quantification ...

    African Journals Online (AJOL)

    Purpose: To formulate double-layer tablets of lornoxicam (LRX) prepared by direct compression method and evaluate their physical and drug release characteristics. Methods: The outer layer of tablets, composed of microcrystalline cellulose (MCC), starch and lactose, incorporated tan initial or prompt dose of the drug (4 ...

  12. NO and SCN -intercalated layered double hydroxides: structure and ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... Nitrite ion; thiocyanate ion; layered double hydroxide; structure refinement. 1. Introduction. The layered .... the synthesis. The [Zn−Al−NO2] and [Zn–Al–SCN] LDHs were synthe- sized by coprecipitation at constant pH = 8 and temperature of 60 ... were obtained by the difference Fourier method embedded in.

  13. The role of oleate-functionalized layered double hydroxide in the melt compounding of polypropylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Donato, Ricardo K., E-mail: ricardokeitel@iq.ufrgs.br [Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Luza, Leandro, E-mail: leandro.luza@ufrgs.br [Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Silva, Renato F. da, E-mail: renato.figueira@ufrgs.br [Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Moro, Celso C., E-mail: celso@iq.ufrgs.br [Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Guzatto, Rafael, E-mail: guzatto@gmail.com [Laboratory of Instrumentation and Molecular Dynamics, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Samios, Dimitrios, E-mail: dsamios@iq.ufrgs.br [Laboratory of Instrumentation and Molecular Dynamics, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Matejka, Libor, E-mail: matejka@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, Prague 6, 162 06 (Czech Republic); Dimzoski, Bojan, E-mail: dimzoski@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, Prague 6, 162 06 (Czech Republic); and others

    2012-12-01

    In this research, the oleate-functionalized magnesium and aluminum layered double hydroxide (LDH; Mg:Al = 3:1) o-LDH was applied as nanofiller in the melt blending of polypropylene (PP) nanocomposites, in order to understand its role in this process. o-LDH was prepared using the memory effect of the calcined carbonated LDH. Blending of PP and low o-LDH filler contents of 0.45 and 0.90 wt.% afforded the nanocomposites PP0.45 and PP0.90, respectively, which were characterized by transmission electron microscopy, X-ray diffraction, small angle X-ray scattering, thermo-gravimetric analysis, differential scanning calorimetry and dynamic mechanical analysis. The oleate LDH surface functionalization enhanced the system compatibility as a relative regular dispersion of o-LDH tactoids was observed within the matrix, together with partial PP intercalation. This o-LDH incorporation increased the PP relative crystallinity, induced crystalline orientation and decreased the glass transition temperature. Furthermore, the nanocomposites showed improved initial resistance to decomposition and stiffness. These results showed that the o-LDH acted as both nucleating agent and plasticizer, and that the presented approach can be used for the development of PP nanocomposites with distinguished properties. Highlights: Black-Right-Pointing-Pointer Nanofiller induced orientation of the crystalline polypropylene phase. Black-Right-Pointing-Pointer Renewable feedstock as compatibilizer in the preparation of nanocomposites Black-Right-Pointing-Pointer Layered double hydroxide as nucleating agent and plasticizer.

  14. Capacitance of carbon-based electrical double-layer capacitors.

    Science.gov (United States)

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  15. Free double layers in mercury-arc discharges

    International Nuclear Information System (INIS)

    Maciel, H.S.; Allen, J.E.

    1989-01-01

    A study has been carried out of free double layers formed within the plasma volume of a low-pressure mercury-arc discharge at high current densities. The free double layer is observed to form as a visible boundary, which drifts slowly from the central section of the discharge. Current-driven instabilities are observed as the discharge current is gradually increased to a critical value, at which current limitation is observed to occur. This process, which is accompanied by high-current spikes, ceases when the free double layer becomes visible as a sharp boundary dividing the discharge column into two regions of different luminosities. The layer is observed to form in the later stages of current limitation, the onset of which occurs for a ratio of drift to thermal speed of electrons of about unity. Electrical energy is converted by the layer into kinetic energy of the changed particles. Accordingly high-energy ions were measured by means of an electrostatic energy analyser. The multiple-sheath character of the free 'double layer'', which is inferred from probe measurements of potential profiles, is discussed and comparisons with other space-charge structures with the same topology are made. (author)

  16. Some recent trends in computer simulations of aqueous double layers

    International Nuclear Information System (INIS)

    Spohr, E.

    2003-01-01

    Recent molecular simulations of the electric double layer between an aqueous and a metallic phase are reviewed. Several trends in the field can be identified: (i) the increasing use of ab initio simulation methods, most notably the Car-Parrinello method, allows to combine a statistical mechanical description of the double layer with a description of elementary chemical processes on the electronic structure level; (ii) the application of free-energy methods in one and (recently) two dimensions to describe chemical reactivity within and beyond the framework of the Marcus theory of electron transfer; and (iii) at high concentrations, direct simulations of two-phase systems with an aqueous solution and a charged or uncharged solid phase or surface can model the entire double layer region

  17. Surface tension in plasmas related to double layer formation

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Sebastian; Lozneanu, Erzilia [Al. I. Cuza University, Dept. of Plasma Physics, Iasi (Romania)

    2001-07-01

    Self-organized space charge configurations bordered by electric double layers appear in plasma as the result of the transition into a state characterized by local minimum of the free energy. Considering the self-assemblage process of such a complex well-confined space-charge configuration in plasma, known by the name of ball of fire, as a nucleation process, it becomes possible to define an equivalent surface tension for the double layer that covers the core of the ball of fire and to make some predictions for its surface tension coefficient and capacitance. (author)

  18. Circuit effects on pierce instabilities, and double-layer formation

    International Nuclear Information System (INIS)

    Raadu, M.A.; Silevitch, M.B.

    1982-11-01

    The role of the Pierce instability in the formation of double layers is considered and compared with that of the Buneman instability. Pierce instabilities have been identified in a double-layer experiment, where they lead to ion trapping. Here the effects of external circuit elements are considered. In the case of immobile ions the onset criteria are unaffected, but in the unstable range the growth rate is reduced by the external impedance. Required experimental values of the circuit elements are estimated. The possible relevance to computer simulations is noted. (Authors)

  19. Double layer -- a particle accelerator in the magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiangrong [Los Alamos National Laboratory

    2015-07-16

    Slides present the material under the following topics: Introduction (What is a double layer (DL)? Why is it important? Key unsolved problems); Theory -- time-independent solutions of 1D Vlasov--Poisson system; Particle-in-cell simulations (Current-driven DLs); and Electron acceleration by DL (Betatron acceleration). Key problems include the generation mechanism, stability, and electron acceleration. In summary, recent observations by Van Allen Probes show large number of DLs in the outer radiation belt, associated with enhanced flux of relativistic electrons. Simulations show that ion acoustic double layers can be generated by field-aligned currents. Thermal electrons can gain energy via betatron acceleration in a dipole magnetic field.

  20. Double layers do accelerate particles in the auroral zone

    International Nuclear Information System (INIS)

    Borovsky, J.E.

    1992-01-01

    In response to a recent report [D. A. Bryant, R. Bingham, and U. de Angelis, Phys. Rev. Lett. 68, 37 (1991)] that makes the claim that electrostatic fields are weak in the auroral zone and that electrostatic fields cannot accelerate particles, it is pointed out that the evidence for electrostatic fields in the auroral zone is overwhelming and that these electrostatic fields often are accelerating electrons to produce aurora. The literature cited in the article above as evidence against double layers (strong electric fields) is reexamined and is found not to be evidence against double layers

  1. Synthesis, characterization and magnetic behavior of Mg–Fe–Al mixed oxides based on layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, Angélica C., E-mail: angelicacheredia@gmail.com [Universidad Tecnológica Nacional, Facultad Regional Córdoba-CITeQ, Maestro López esq. Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba (Argentina); Oliva, Marcos I. [IFEG, Universidad Nacional de Córdoba, Córdoba (Argentina); CONICET (Argentina); Agú, Ulises [Universidad Tecnológica Nacional, Facultad Regional Córdoba-CITeQ, Maestro López esq. Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba (Argentina); CONICET (Argentina); Zandalazini, Carlos I. [CONICET (Argentina); INFIQC, FCQ Universidad Nacional de Córdoba, Córdoba (Argentina); Marchetti, Sergio G. [CINDECA, UNLP, Buenos Aires (Argentina); Herrero, Eduardo R.; Crivello, Mónica E. [Universidad Tecnológica Nacional, Facultad Regional Córdoba-CITeQ, Maestro López esq. Cruz Roja Argentina, Ciudad Universitaria, 5016 Córdoba (Argentina)

    2013-09-15

    In the present work, Mg–Al–Fe layered double hydroxides were prepared by coprecipitation reaction with hydrothermal treatment. The characterization of precursors and their corresponding calcinated products (mixed oxides) were carried out by X ray diffraction, X-ray photoelectron spectroscopy (XPS), termogravimetric analysis and differential scanning calorimetry, diffuse reflectance UV–vis spectroscopy, specific surface area, Mössbauaer and magnetic properties. The Fe{sup 3+} species were observed in tetrahedrally and octahedrally coordination in brucite layered. The XPS analysis shows that the Fe{sup 3+} ions can be found in two coordination environments (tetrahedral and octahedral) as mixed oxides, and as spinel-structure. Oxides show a decrease in the specific surface areas when the iron loading is increased. The magnetic and Mössbauaer response show that MgAlFe mixed oxides are different behaviours such as different population ratios of ferromagnetic, weak-ferromagnetic, paramagnetic and superparamagnetic phases. The better crystallization of spinel structure with increased temperature, is correlated with the improved magnetic properties. - Highlights: • Mg–Al–Fe were successfully prepared by coprecipitation with hydrothermal treatment. • MgO, α-Fe{sub 2}O{sub 3,} MgFe{sub 2}O{sub 4} were detected by XRD in the calcined samples. • The Fe{sup 3+} is in tetrahedral and octahedral coordination in the brucite layered. • The specific surface area is directly related with the iron content. • The magnetic properties and MgFe{sub 2}O{sub 4} improve with increasing calcination temperature.

  2. Single Layered Versus Double Layered Intestinal Anastomosis: A Randomized Controlled Trial

    Science.gov (United States)

    Mohapatra, Vandana; Singh, Surendra; Rath, Pratap Kumar; Behera, Tapas Ranjan

    2017-01-01

    Introduction Gastrointestinal anastomosis is one of the most common procedures being performed in oesophagogastric, hepatobiliary, bariatric, small bowel and colorectal surgery; however, the safety and efficacy of single layer or double layer anastomotic technique is still unclear. Aim To assess and compare the efficacy, safety and cost effectiveness of single layered versus double layered intestinal anastomosis. Materials and Methods This prospective, double-blind, randomized controlled comparative study comprised of patients who underwent intestinal resection and anastomosis. They were randomly assigned to undergo either single layered extra-mucosal anastomosis (Group-A) or double layered intestinal anastomosis (Group-B). Primary outcome measures included average time taken for anastomosis, postoperative complications, mean duration of hospital stay and cost of suture material used; secondary outcome measures assessed the postoperative return of bowel function. Statistical analysis was done by Chi-square test and student t-test. Results A total of 97 participants were randomized. Fifty patients were allocated to single layered extramucosal continuous anastomosis (Group-A) and 47 patients to double layered anastomosis (Group-B). The patients in each group were well matched for age, sex and diagnosis. The mean time taken for anastomosis (15.12±2.27 minutes in Group-A versus 24.38±2.26 minutes in Group-B) and the length of hospital stay (5.90±1.43 days in Group-A versus 7.29±1.89 days in Group-B) was significantly shorter in Group-A {p-value anastomosis. However, there was no significant difference in the complication rates between the two groups. Conclusion It can be concluded that single layered extramucosal continuous intestinal anastomosis is equally safe and perhaps more cost effective than the conventional double layered method and may represent the optimal choice for routine surgical practice. PMID:28764239

  3. Double layer effects in the electroreduction of transition metal ions

    Czech Academy of Sciences Publication Activity Database

    Fawcett, W. R.; Hromadová, Magdaléna

    2008-01-01

    Roč. 12, č. 4 (2008), s. 347-351 ISSN 1432-8488 R&D Projects: GA AV ČR KJB400400603; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : sphere electrode reactions * crystal gold electrodes * diffuse double - layer Subject RIV: CG - Electrochemistry Impact factor: 1.597, year: 2008

  4. Oxidative leaching of chromium from layered double hydroxides ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The layered double hydroxide (LDH) of Zn with Cr on treatment with a hypochlorite solution releases chromate ions as a result of oxidative leaching by a dissolution–reprecipitation mechanism. The resi- due is found to be ε-Zn(OH)2. The LDH of Mg with Cr on the other hand is resistant to oxidative leaching. In.

  5. Oxidative leaching of chromium from layered double hydroxides ...

    Indian Academy of Sciences (India)

    The layered double hydroxide (LDH) of Zn with Cr on treatment with a hypochlorite solution releases chromate ions as a result of oxidative leaching by a dissolution–reprecipitation mechanism. The residue is found to be -Zn(OH)2. The LDH of Mg with Cr on the other hand is resistant to oxidative leaching. In contrast, a ...

  6. Electronic spectra of anions intercalated in layered double hydroxides

    Indian Academy of Sciences (India)

    Transition metal complexes intercalated in layered double hydroxides have a different electronic structure as compared to their free state owing to their confinement within the interlayer gallery. UV–Vis absorptions of the intercalated complex anions show a significant shift as compared to their free state. The ligand to metal ...

  7. Propagation characteristics of ion-acoustic double layer in ...

    Indian Academy of Sciences (India)

    Harvinder Kaur

    2017-07-24

    Jul 24, 2017 ... (mKdV) equation with cubic nonlinearity has been used widely to describe the propagation characteristics of electrostatic double layers in different plasma sys- tems [21–33]. It may further be noted that two-electron species are very common in laboratory [34–38] as well as space plasmas [1]. Ion-acoustic ...

  8. Interaction of pristine hydrotalcite-like layered double hydroxides ...

    Indian Academy of Sciences (India)

    Metal oxides in general have surface acidic sites, but for exceptional circumstances, are not expected to mineralize CO2. Given their intrinsic basicity and an expandable interlayer gallery, the hydrotalcite-like layered double hydroxides (LDHs) are expected to be superior candidate materials for CO2 mineralization.

  9. Damping of double wall panels including a viscothermal air layer

    NARCIS (Netherlands)

    Basten, T.G.H.; Stainhaouer, G.; Bakamidis, S.; Charalabopoulou, F.

    2001-01-01

    This paper deals with the dynamic behaviour of double wall panels, with emphasis on damping and sound radiation. It will be shown that a narrow air layer separating the two plates of a panel significantly alters the mentioned quantities by its viscothermal properties. Numerical and experimental

  10. Surfactant double layer stabilized magnetic nanofluids for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Tombacz, E; Hajdu, A; Illes, E; Majzik, A [Department of Colloid Chemistry, University of Szeged (Hungary); Bica, D; Vekas, L [Center of Fundamental and Advanced Technical Research, Romanian Academy-Timisoara Division (Romania)], E-mail: tombacz@chem.u-szeged.hu

    2008-05-21

    Magnetite nanoparticles were coated with surfactant double layers in order to prepare water based magnetic fluids (MFs). The effects of head group (sulfonate, carboxylate) and alkyl chain length (11-17 C atoms) and the combination of surfactants were studied. Adsorption, dynamic light scattering (DLS) and electrophoretic mobility measurements were performed. The quantity of surfactant varied between 0.3 and 0.5 g, i.e. their specific amount ranges over 1.5-2 mmol g{sup -1} magnetite in MFs. The adsorption isotherm of Na oleate on magnetite proved the double layer formation with 2 mmol g{sup -1} saturation value in good harmony with the empirical doses. The effect of diluting MFs, pH and salt concentration was studied. The pH-dependent stability and the salt tolerance of MFs were different owing to the dissociation of the outermost hydrophilic groups and the hydrophobic interactions scaling with the alkyl chain length of surfactant. The hydrophobic interactions are favored only for oleic and myristic acid double layers. In these MFs, aggregation cannot be observed even in fairly dilute systems up to the physiological salt concentration around neutral pH 6-8 favored in biomedical application. The stable oleic and myristic acid double layers can hinder effectively the aggregation of magnetite particles due to the combined steric and electrostatic stabilization.

  11. Double-layer Tablets of Lornoxicam: Validation of Quantification ...

    African Journals Online (AJOL)

    Purpose: To formulate double-layer tablets of lornoxicam (LRX) prepared by direct compression method and ... including direct compression method which is ..... Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: effect of entrapped air. J Pharm Sci 1983; 72(10): 1189-1191. 17.

  12. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...

  13. Interaction of pristine hydrotalcite-like layered double hydroxides ...

    Indian Academy of Sciences (India)

    -like layered double hydroxides (LDHs) are expected to be superior candidate materials for CO2 mineralization. However, the ... of the [Mg–Al–CO3] LDH is only marginally delayed in flowing CO2 in comparison with flowing N2, showing only.

  14. Electric-double-layer potential distribution in multiple-layer immiscible electrolytes

    NARCIS (Netherlands)

    Das, S.; Hardt, Steffen

    2011-01-01

    In this Brief Report, we calculate the electric-double-layer (EDL) electrostatic potential in a system of several layers of immiscible electrolytes. Verwey-Niessen theory predicts that at the interface between two immiscible electrolytes back-to-back EDLs are formed. The present analysis extends

  15. Simulation of Calcite Calcination

    Directory of Open Access Journals (Sweden)

    A. G. Коzhevnikov

    2006-01-01

    Full Text Available Mathematical modeling and experimental investigation results of heat transfer in the case of calcite calcinations in regenerative shaft furnaces are given in the paper. Influence of heating gas temperature, calcined material fragment size and desired final product output on the duration of calcite calcination has been studied. It has been shown that with the given percentage of final product output and permissible changes in heating gas temperature in the furnace it is the fraction size of the calcined material that greatly determines such parameter as a process duration.

  16. Research on liquid impact forming technology of double-layered tubes

    Science.gov (United States)

    Sun, Changying; Liu, Jianwei; Yao, Xinqi; Huang, Beixing; Li, Yuhan

    2018-03-01

    A double-layered tube is widely used and developed in various fields because of its perfect comprehensive performance and design. With the advent of the era of a double-layered tube, the requirements for double layered tube forming quality, manufacturing cost and forming efficiency are getting higher, so forming methods of a double-layered tube are emerged in an endless stream, the forming methods of a double-layered tube have a great potential in the future. The liquid impact forming technology is a combination of stamping technology and hydroforming technology. Forming a double-layered tube has huge advantages in production cost, quality and efficiency.

  17. Mixed oxides derived from layered double hydroxides as novel catalysts for phenol photodegradation

    Science.gov (United States)

    Puscasu, C. M.; Carja, G.; Mureseanu, M.; Zaharia, C.

    2017-08-01

    The removal of organic pollutants is nowadays a very challenging aspect of the environmental research. There are strong interests to develop novel semiconducting photocatalysts able to efficiently promote advanced oxidation reactions. The development of photocatalysts based on the mixtures of mixed oxides derived from layered double hydroxides (LDHs) - a family of naturally occurring anionic clays - might offer novel environmental-friendly solutions for the cost effective removal of organic pollutants. This work presents ZnO/ZnAl2O4, ZnO/Zn2TiO4 and ZnO/ZnCr2O4 as novel photocatalytic formulations for phenol degradation under UV irradiation. They were obtained by the controlled thermal treatment of the layered double hydroxides matrices (LDHs), as precursors materials, type ZnM-LDH (M = Al3+, Cr3+ or Ti4+). The LDHs were synthesized by the co-precipitation method at a constant pH. Controlled calcination at 650°C gives rise to solutions of mixed metal oxides. The structural and nanoarchitectonics characteristics of the studied catalysts were described by: XRD, SEM/TEM and TG/DTG techniques. Results show that in the photocatalytic process of the phenol degradation from aqueous solutions, ZnO/ZnCr2O4 and ZnO/ZnAl2O4 showed the best performance degrading ∼98% of phenol after 3.5 hs and 5 hs, respectively; while ZnO/Zn2TiO4 has degraded almost 80 % after 7.5 hs of UV irradiation. These results open new opportunities in the development of new cost effective photoresponsive formulations able to facilitate the photo-degradation of the organic pollution as “green” solution for removal of dangerous pollutants.

  18. Patch holography using a double layer microphone array

    DEFF Research Database (Denmark)

    Gomes, Jesper Skovhus

    a closed local element mesh that surrounds the microphone array, and with a part of the mesh coinciding with a patch, the entire source is not needed in the model. Since the array has two layers, sources/reflections behind the array are also allowed. The Equivalent Source Method (ESM) is another technique...... in which the sound field is represented by a set of monopoles placed inside the source. In this paper these monopoles are distributed so that they surround the array, and the reconstruction is compared with the IBEM-based approach. The comparisons are based on computer simulations with a planar double...... layer array and sources with different shapes....

  19. Membrane interactions and antimicrobial effects of layered double hydroxide nanoparticles

    DEFF Research Database (Denmark)

    Malekkhaiat Häffner, S; Nyström, L; Nordström, R

    2017-01-01

    ) on layered double hydroxide (LDH) interactions with both bacteria-mimicking and mammalian-mimicking lipid membranes. LDH binding to bacteria-mimicking membranes, extraction of anionic lipids, as well as resulting membrane destabilization, was found to increase with decreasing particle size, also translating...... into size-dependent synergistic effects with the antimicrobial peptide LL-37. Due to strong interactions with anionic lipopolysaccharide and peptidoglycan layers, direct membrane disruption of both Gram-negative and Gram-positive bacteria is suppressed. However, LDH nanoparticles cause size-dependent charge...

  20. Double layers in a modestly collisional electronegative discharge

    CERN Document Server

    Sheridan, T E

    1999-01-01

    The effect of ion-neutral collisions on the structure and ion flux emanating from a steady-state, planar discharge with two negative components is investigated. The positive ion component is modelled as a cold fluid subject to constant-mobility collisions, while the electrons and negative ions obey Boltzmann relations. The model includes the collisionless limit. When the negative ions are sufficiently cold three types of discharge structures are found. For small negative ion concentrations or high collisionality, the discharge is 'stratified', with an electronegative core and an electropositive edge. For the opposite conditions, the discharge is 'uniform' with the negative ion density remaining significant at the edge of the plasma. Between these cases lies the special case of a double-layer-stratified discharge, where quasi-neutrality is violated at the edge of the electronegative core. Double-layer-stratified solutions are robust in that they persist for moderate collisionality. Numerical solutions for fini...

  1. Electrical power generation by mechanically modulating electrical double layers.

    Science.gov (United States)

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  2. Flicker noise related to electrical double layer dynamics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Lozneanu, E.; Avram, C.; Balan, P.; Pohoata, V.; Schrittwieser, R.

    2000-01-01

    Transport of particles and energy by the effect of double layers, self-assembled at the edge of a confined plasma, towards a space charge configuration able to perform natural oscillations, reveals a new mechanism of anomalous transport of particles and energy in plasma devices. Based on these experimental results we suggest a new phenomenological basis for the explanation of flicker noise in fusion devices. (author)

  3. Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders

    Science.gov (United States)

    Lin, Chia-Hsuan; Chu, Hsueh-Liang; Hwang, Weng-Sing; Wang, Moo-Chin; Ko, Horng-Huey

    2017-12-01

    The synthesis and optical properties of Mg-Al layered double hydroxide (LDH) precursor powders were investigated using X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution TEM (HRTEM), UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363-1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH)2](CO3)0.083.(H2O)0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL) spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.

  4. Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders

    Directory of Open Access Journals (Sweden)

    Chia-Hsuan Lin

    2017-12-01

    Full Text Available The synthesis and optical properties of Mg-Al layered double hydroxide (LDH precursor powders were investigated using X-ray diffraction (XRD, Fourier transform-infrared (FT-IR spectroscopy, transmission electron microscopy (TEM, selected area electron diffraction (SAED, high-resolution TEM (HRTEM, UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363–1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH2](CO30.083·(H2O0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.

  5. Conditioning of HLW-calcines

    International Nuclear Information System (INIS)

    Kofler, O.; Neuman, W.

    1977-12-01

    PyC-coating of simulated HLW-calcines from a fluidized bed calciner was studied. As the wellknown properties of PyC layers meet the demands, which were made in HTR fuel production, for the similar problems a suitable protection of granules by such coating is expected. To avoid volatilization of radioactive components the coating temperature should not exceed 1300 K in regard of the thermal stability of granules, too. Therefore, acetylene was used as coating gas. The obtained low efficiency caused a great content of hydrocarbons and soot in the off gas. Since disturbing effects by deposition of its can occur, a device was designed for burning off these substances. Ceramographical and microoptical controls were performed on each layer. Density and thickness were determined (p approximately 1,88 g/cm 3 , d 140 μ) and leaching behaviour and mechanical strength were tested, too. The obtained results showed an excellent stability of waste products conditioned by PyC-coating, but you have to consider the suitable temperature range is limited and, therefore, calcines have to be heatresistant up to 1220 K. (author)

  6. Environmental Benign Synthesis of Lithium Silicates and Mg-Al Layered Double Hydroxide from Vermiculite Mineral for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-04-01

    Full Text Available This research introduces a completely new environmental benign synthesis route for obtaining two kinds of inter-mediate and high temperature CO2 sorbents, Mg-Al layered double hydroxide (LDH and Li4SiO4, from vermiculite. The mineral vermiculite was leached with acid, from which the obtained SiO2 was used for the synthesis of Li4SiO4 and the leaching waste water was used for the synthesis of Mg-Al LDH. Therefore, no waste was produced during the whole process. Both Li4SiO4 and Mg-Al LDH sorbents were carefully characterized using XRD, SEM, and BET analyses. The CO2 capturing performance of these two sorbents was comprehensively evaluated. The influence of the Li/Si ratio, calcination temperature, calcination time, and sorption temperature on the CO2 sorption capacity of Li4SiO4, and the sorption temperature on the CO2 sorption capacity of LDH, were investigated. The optimal leaching acid concentration for vermiculite and the CO2 sorption/desorption cycling performance of both the Li4SiO4 and Mg-Al LDH sorbents were determined. In sum, this demonstrated a unique and environment-friendly scheme for obtaining two CO2 sorbents from cheap raw materials, and this idea is applicable to the efficient utilization of other minerals.

  7. Double graphene-layer structures for adaptive devices

    Science.gov (United States)

    Mitin, V.; Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Shur, M. S.

    2014-06-01

    Among different carbon materials (diamond, graphite, fullerene, carbon nanotubes), graphene and more complex graphene-based structures attracted a considerable attention. The gapless energy spectrum of graphene implies that graphene can absorb and emit photons with rather low energies corresponding to terahertz (THz) and infrared (IR) ranges of the electromagnetic spectrum. In this presentation, the discussion is focused on the double-graphene-layer (double-GL) structures. In these structures, GLs are separated by a barrier layer (Boron Nitride, Silicon Carbide, and so on). Applying voltage between GLs, one can realize the situation when one GL is filled with electrons while the other is filled with holes. The variation of the applied voltage leads to the variations of the Fermi energies and, hence, to the change of the interband and intraband absorption of electromagnetic radiation and to the variation of the tunneling current. The plasma oscillations in double-GL structures exhibit interesting features. This is mainly because each GL serves as the gate for the other GL. The spectrum of the plasma oscillations in the double-GL structures falls into the terahertz range (THz) of frequencies and can be effectively controlled by the bias voltage. In this paper, we discuss the effects of the excitation of the plasma oscillations by incoming THz radiation and by optical radiation of two lasers with close frequencies as well as negative differential conductivity of the N-type and Z-type. These effects can be used in resonant THz detectors and THz photomixers. The models of devices based on double-GL structures as well as their characteristics are discussed.

  8. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

    NARCIS (Netherlands)

    Dhont, J.K.G.; Briels, Willem J.

    2008-01-01

    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

  9. Efficient double-emitting layer inverted organic light-emitting devices with different spacer layers

    Science.gov (United States)

    Nie, Qu-yang; Zhang, Fang-hui

    2017-09-01

    Double-emitting layer inverted organic light-emitting devices (IOLEDs) with different spacer layers were investigated, where 2,20,7,70-tetrakis(carbazol-9-yl)-9,9-spirobifluorene (CBP), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen) and 4,40,400-tris(N-carbazolyl)-triphenylamine (TCTA) were used as spacer layers, respectively, and GIr1 and R-4b were used as green and red guest phosphorescent materials, respectively. The results show that the device with BCP spacer layer has the best performance. The maximum current efficiency of the BCP spacer layer device reaches up to 24.15 cd·A-1 when the current density is 3.99 mA·cm-2, which is 1.23 times bigger than that of the CBP spacer layer device. The performance is better than that of corresponding conventional device observably. The color coordinate of the device with BCP spacer layer only changes from (0.625 1, 0.368 0) to (0.599 5, 0.392 8) when the driving voltage increases from 6 V to 10 V, so it shows good stability in color coordinate, which is due to the adoption of the co-doping evaporation method for cladding luminous layer and the effective restriction of spacer layer to carriers in emitting layer.

  10. CoCr/NiFe double layers studied by FMR and VSM

    NARCIS (Netherlands)

    Stam, M.T.H.C.W.; Gerritsma, G.J.; Lodder, J.C.; Popma, T.J.A.

    1987-01-01

    CoCr/NiFe double layers were investigated by FMR and VSM. The FMR linewidth of NiFe of the double layer is about twice that of a single NiFe layer. The resonance field is the same in both cases. Using the VSM the coercive field of the CoCr layer of the double layer was obtained. It is approximately

  11. New basic theory from laser-plasma double layers

    International Nuclear Information System (INIS)

    Hora, H.; Eliezer, S.; Pease, R.S.; Scharmann, A.; Schwabe, D.

    1991-01-01

    The study of laser-plasma interaction results in several extensions and new developments of plasma theory including the general formulation of the nonlinear force of laser-plasma interaction, the importance of collisions, quantum collisions and to the discovery of dynamic internal electric fields and double layers in inhomogeneous plasmas. The resulting surface tension in cavitons and at plasma boundaries (due to the faster emitted electrons) results in stabilization against Raleigh-Taylor instability. The same occurs with the degenerate electron gas within the ion lattice of a metal: the electrons try to leave the ion lattice with the Fermi energy until a double layer is being built up. The resulting surface tension immediately agrees with measured values from metals. This can be applied to explain the driving surface force of the Marangoni flow by the flow of the electrons in the electron layer swimming at the metal surface. Hofstadter's charge decay in nuclei from a Debye length is derived and the measured surface energy of nuclei is calculated

  12. Effect of Potassium in Calcined Co-Mn-Al Layered Double Hydroxide on the Catalytic Decomposition of N2O

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Karásková, K.; Jirátová, Květa; Kovanda, F.

    2009-01-01

    Roč. 90, 1-2 (2009), s. 132-140 ISSN 0926-3373 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * catalytic decomposition * potassium promoter Subject RIV: CC - Organic Chemistry Impact factor: 5.252, year: 2009

  13. Layered double hydroxide catalyst for the conversion of crude vegetable oils to a sustainable biofuel

    Science.gov (United States)

    Mollaeian, Keyvan

    Over the last two decades, the U.S. has developed the production of biodiesel, a mixture of fatty acid methyl esters, using chiefly vegetable oils as feedstocks. However, there is much concern about the availability of high-quality vegetable oils for longterm biodiesel production. Problems have also risen due to the production of glycerol, an unwanted byproduct, as well as the need for process wash water. Therefore, this study was initiated to produce not only fatty acid methyl esters (FAMEs) but also fatty acid glycerol carbonates (FAGCs) by replacing methanol with dimethyl carbonate (DMC). The process would have no unnecessary byproducts and would be a simplified process compared to traditional biodiesel. In addition, this altering of the methylating agent could convert triglycerides, free fatty acids, and phospholipids to a sustainable biofuel. In this project, Mg-Al Layered Double Hydroxide (LDH) was optimized by calcination in different temperature varied from 250°C to 450°C. The gallery between layers was increased by intercalating sodium dodecylsulfate (SDS). During catalyst preparation, the pH was controlled ~10. In our experiment, triazabicyclodecene (TBD) was attached with trimethoxysilane (3GPS) as a coupling agent, and N-cetyl-N,N,N-trimethylammonium bromide (CTAB) was added to remove SDS from the catalyst. The catalyst was characterized by XRD, FTIR, and Raman spectroscopy. The effect of the heterogeneous catalyst on the conversion of canola oil, corn oil, and free fatty acids was investigated. To analyze the conversion of lipid oils to biofuel an in situ Raman spectroscopic method was developed. Catalyst synthesis methods and a proposed mechanism for converting triglycerides and free fatty acids to biofuel will be presented.

  14. LAYERED DOUBLE HYDROXIDES: NANOMATERIALS FOR APPLICATIONS IN AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Luíz Paulo Figueredo Benício

    2015-02-01

    Full Text Available The current research aims to introduce Layered Double Hydroxides (LDH as nanomaterials to be used in agriculture, with particular reference to its use as storage and slow release matrix of nutrients and agrochemicals for plant growing. Structural characteristics, main properties, synthesis methods and characterization of LDH were covered in this study. Moreover, some literature data have been reported to demonstrate their potential for storage and slow release of nitrate, phosphate, agrochemicals, besides as being used as adsorbent for the wastewater treatment. This research aims to expand, in near future, the investigation field on these materials, with application in agriculture, increasing the interface between chemistry and agronomy.

  15. Simulating Electric Double Layer Capacitance by Using Lattice Boltzmann Method

    Science.gov (United States)

    Sun, Ning; Gersappe, Dilip

    2015-03-01

    By using the Lattice Boltzmann Method (LBM) we studied diffuse-charge dynamics in electrochemical systems. We use the LBM to solve Poisson-Nernst-Planck equations (PNP) and Modified Poisson-Nernst-Planck equations (MPNP). The isotropic permittivity of electrolyte is modeled using the Booth model. The results show that both steric effect (MPNP) and isotropic permittivity (Booth model) can have large influence on diffuse-charge dynamics, especially when electrolyte concentration or applied potential is high. This model can be applied to simulate electric double layer capacitance of super capacitors with complex geometry and also incorporate other effects such as heat convection in a modular manner.

  16. Electrostatic double-layer interaction between stacked charged bilayers

    Science.gov (United States)

    Hishida, Mafumi; Nomura, Yoko; Akiyama, Ryo; Yamamura, Yasuhisa; Saito, Kazuya

    2017-10-01

    The inapplicability of the DLVO theory to multilayered anionic bilayers is found in terms of the co-ion-valence dependence of the lamellar repeat distance. Most of the added salt is expelled from the interlamellar space to the bulk due to the Gibbs-Donnan effect on multiple bilayers with the bulk. The electrostatic double-layer interaction is well expressed by the formula recently proposed by Trefalt. The osmotic pressure due to the expelled ions, rather than the van der Waals interaction, is the main origin of the attractive force between the bilayers.

  17. Ion acoustic double layers in the presence of plasma source

    International Nuclear Information System (INIS)

    Okuda, H.; Ashour-Abdalla, M.

    1982-01-01

    Steady-state plasma turbulence and the formation of negative potential spikes and double layers in the presence of ion acoustic instabilities have been studied by means of one-dimensional particle simulations in which the velocities of a small fraction of electrons are replaced by the initial drifting Maxwellian at a constant rate. A steady state is found where negative potential spikes appear randomly in space and time giving rise to an anomalous resistivity much greater than previously found. Comparisons of the simulation results with laboratory and space plasmas are discussed

  18. A novel vibrational energy harvester with electric double layer electrets

    Science.gov (United States)

    Ono, S.; Miwa, K.; Iori, J.; Mitsuya, H.; Ishibashi, K.; Sano, C.; Toshiyoshi, H.; Fujita, H.

    2016-11-01

    We propose a new type of vibrational energy harvester with an electric double layer (EDL) electrets. Instead of using any external bias-voltage source or dielectric layer on top of the metal electrode to sustain EDL, we succeed to anchor the ions to polymer network to form the EDL electrets. By changing contact area between the EDL electrets and the electrode, large electric current is generated in the circuit. Owing to extremely large capacitance of the EDL electret, vibrational energy harvesters have the unique capability to leverage the high- density charge accumulation to the electrode and obtained current density becomes as high as 200 μA/cm2 with output voltage of 1V even with low frequency vibrations as low as 1 Hz.

  19. Buckling instability of circular double-layered graphene sheets.

    Science.gov (United States)

    Natsuki, Toshiaki; Shi, Jin-Xing; Ni, Qing-Qing

    2012-04-04

    In this paper, we study the buckling properties of circular double-layered graphene sheets (DLGSs), using plate theory. The two graphene layers are modeled as two individual sheets whose interactions are determined by the Lennard-Jones potential of the carbon-carbon bond. An analytical solution of coupled governing equations is proposed for predicting the buckling properties of circular DLGSs. Using the present theoretical approach, the influences of boundary conditions, plate sizes, and buckling-mode shapes on the buckling behaviors are investigated in detail. The buckling stability is significantly affected by the buckling-mode shapes. As a result of van der Waals interactions, the buckling stress of circular DLGSs is much larger for the anti-phase mode than for the in-phase mode. © 2012 IOP Publishing Ltd

  20. Hydrated-ion ordering in electrical double layers.

    Science.gov (United States)

    Espinosa-Marzal, Rosa M; Drobek, Tanja; Balmer, Tobias; Heuberger, Manfred P

    2012-05-07

    In this work we revisit the surface forces measured between two atomically flat mica surfaces submerged in a reservoir of potassium nitrate (KNO(3)) solution. We consider a comprehensive range of concentrations from 0.08 mM to 2.6 M. The significantly improved resolution available from the extended surface force apparatus (eSFA) allows the distinction of hydration structures and hydrated-ion correlations. Above concentrations of 0.3 mM, hydrated-ion correlations give rise to multiple collective transitions (4 ± 1 Å) in the electrical double layers upon interpenetration. These features are interpreted as the result of hydrated-ion ordering (e.g. layering), in contrast to the traditional interpretation invoking water layering. The hydrated-ion layer adjacent to the surface (i.e. outer Helmholtz layer) is particularly well defined and plays a distinctive role. It can be either collectively expelled in a 5.8 ± 0.3 Å film-thickness transition or collectively forced to associate with the surface by external mechanical work. The latter is observed as a characteristic 2.9 ± 0.3 Å film-thickness transition along with an abrupt decrease of surface adhesion at concentrations above 1 mM. At concentrations as low as 20 mM, attractive surface forces are measured in deviation to the DLVO theory. The hydration number in the confined electrolyte seems to be significantly below that of the bulk. A 1-3 nm thick ionic layer solidifies at the surfaces at concentrations >100 mM, i.e. below bulk saturation.

  1. Are there double layers in unmagnetized electronegative plasmas?

    Science.gov (United States)

    Yip, Chi-Shung; Hershkowitz, Noah

    2009-10-01

    Bounded electronegative plasmas are predicted to have electropositive halos. A recent experiment [1] showed that for a negative ion to electron concentration ratio of α=0.43 for an Argon-Oxygen plasma a positive halo was a consequence of negative ion satisfying a Boltzmann relation. When Te/T- is greater than 5+24 [2] and that α is greater than Te/T- [3], the negative ions are predicted to be confined by a double layer. Experiments are reported in Ar-SF6 and Ar-Cl2 plasmas aimed at finding the double layer by varying the gas concentrations. Experiments are carried out in a filament discharge in a multi-dipole chamber, with no magnetic field on the end walls. An unmagnetized boundary of the plasma is set by a bias plate along the axial direction of the chamber. Negative ion concentrations are determined from the phrase velocity of C.W. Ion Acoustic Waves. Electron temperature and density are determined using Langmuir probes. Plasma potentials are determined by emissive probes. Argon drift velocities are determined by Laser Induced Florescence. [1] Ghim, YC and Hershkowitz, N, Applied Physics Letters. 94, 15, 151503 (2009) [2] N. Braithwaite and J. E. Allen, J. Phys. D: Appl. Phys. 21, 1733 (1988) [3] R. N. Franklin, Plasma Sources Sci. Technol. 11, A31, (2002)

  2. Measurements of electrostatic double layer potentials with atomic force microscopy

    Science.gov (United States)

    Giamberardino, Jason

    The aim of this thesis is to provide a thorough description of the development of theory and experiment pertaining to the electrostatic double layer (EDL) in aqueous electrolytic systems. The EDL is an important physical element of many systems and its behavior has been of interest to scientists for many decades. Because many areas of science and engineering move to test, build, and understand systems at smaller and smaller scales, this work focuses on nanoscopic experimental investigations of the EDL. In that vein, atomic force microscopy (AFM) will be introduced and discussed as a tool for making high spatial resolution measurements of the solid-liquid interface, culminating in a description of the development of a method for completely characterizing the EDL. This thesis first explores, in a semi-historical fashion, the development of the various models and theories that are used to describe the electrostatic double layer. Later, various experimental techniques and ideas are addressed as ways to make measurements of interesting characteristics of the EDL. Finally, a newly developed approach to measuring the EDL system with AFM is introduced. This approach relies on both implementation of existing theoretical models with slight modifications as well as a unique experimental measurement scheme. The model proposed clears up previous ambiguities in definitions of various parameters pertaining to measurements of the EDL and also can be used to fully characterize the system in a way not yet demonstrated.

  3. Geometric corrections due to inhomogeneous field in the magnetospheric double current layer

    International Nuclear Information System (INIS)

    Callebaut, D.K.; Van den Buys, A.M.

    1985-01-01

    The case of oblique incidence and of a slope in the magnetic field for plane parallel models of the magnetospheric double layer is considered. The two models are the Magnetospheric Double Layer (MDL) and the Magnetospheric Double Current Layer (MDCL). The latter is more appropriate but due to some approximations it gives sometimes incorrect results. An improved model uses a triple current layer. (R.P.)

  4. Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern-Grahame layers.

    Science.gov (United States)

    Chan, Derek Y C; Healy, Thomas W; Supasiti, Tharatorn; Usui, S

    2006-04-01

    Models of surfaces with intrinsic ionisable amphoteric surface sites governed by the dissociation of acid-base potential determining ion species together with the capacity for the adsorption of anion and cations of the supporting electrolyte are required to describe both the results of electrokinetic and titration measurements of inorganic oxides. The Gouy-Chapman-Stern-Grahame (CGSG) model is one such model that has been widely used in the literature. The electrical double layer interaction between two dissimilar CGSG surfaces has been studied by Usui recently [S. Usui, J. Colloid Interface Sci. 280 (2004) 113] where erroneous discontinuities in the slope of the pressure-separation relation were observed. We revisit this calculation and provide a simple general methodology to analyse the electrical double layer interaction between dissimilar ionisable surfaces with ion adsorption.

  5. Thermal analysis of a double layer phase change material floor

    International Nuclear Information System (INIS)

    Jin Xing; Zhang Xiaosong

    2011-01-01

    Phase change materials (PCMs) can be used to shift the cooling or heating load from the peak period to the off-peak period. In this paper, a new double layer phase change material (PCM) floor is put forward. The two layers of PCM have different melting temperature. The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. According to the numerical model built in this paper, the thermal performances of the floor are analyzed. The results show that the optimal melting temperatures of PCMs exist. The fluctuations of the floor surface temperatures and the heat fluxes will be reduced and the system still can provide a certain amount of heat or cold energy after the heat pump or chiller has been turned off for a long time. Compared to the floor without PCM, the energy released by the floor with PCM in peak period will be increased by 41.1% and 37.9% during heating and cooling when the heat of fusion of PCM is 150 kJ/kg. - Highlights: → A new double layer phase change material floor is put forward. → The system is used to store heat or cold energy in the off-peak period and release them in the peak period during heating or cooling. → The optimal melting temperatures of PCMs in the system exist. → The heat and cold energy released by the floor with PCM in peak period can be increased by 41.1% and 37.9%.

  6. Small amplitude ion-acoustic double layers in multicomponent plasma with positrons

    International Nuclear Information System (INIS)

    Mishra, M. K.; Tiwari, R. S.; Jain, S. K.

    2007-01-01

    Ion-acoustic double layers has been studied in multicomponent plasma with positrons. Using the reductive perturbation method, the modified Korteweg-de Vries (mKdV) equation is derived for the system. The double-layer solution of the mKdV equation is discussed in detail. It is found that there exist two critical concentrations of positrons, α R and α Q , which decide the existence and nature of the ion-acoustic double layers. It is also found that the system supports ion-acoustic double layers only when the positron concentration (α) is less than the critical concentration α R (i.e., α R ). It is also investigated that for the given set of parameter values, if α R Q , the system supports only rarefactive double layers for the values of α lying in the range 0 R . However, for the given set of parameter values α R >α Q , the system supports rarefactive double layers for α Q , and for α>α Q , compressive double layers exist. The present theory also predicts that for a given set of parameter values on increasing the positron concentration, the amplitude of the rarefactive (compressive) double layer decreases (increases), whereas as positron concentration is increased, the width of the rarefactive (compressive) double layer increases (decreases). The effects of positron concentration and temperature ratio on the characteristics of the double layers (namely amplitude and width) are discussed in detail

  7. Selectivity of layered double hydroxides and their derivative mixed metal oxides as sorbents of hydrogen sulfide.

    Science.gov (United States)

    Othman, Mohamed A; Zahid, Waleed M; Abasaeed, Ahmed E

    2013-06-15

    In the context of finding high efficient sorbent materials for removing hydrogen sulfide (H2S) from air stream, a screening study was performed to find the best combination of metals for the synthesis of layered double hydroxides (LDHs) and their derivative mixed metal oxides. Based on selectivity of 998 natural mineral species of sulfur-containing compounds, Cu(2+), Ni(2+) and Zn(2+) were selected as divalent metals, and Fe(3+), Al(3+) and Cr(3+) as trivalent metals to synthesis the LDHs sorbents. 10 LDHs materials and their calcined mixed metal oxides, Ni(0.66)Al(0.34), Cu(0.35)Ni(0.32)Al(0.33), Zn(0.66)Al(0.34), Cu(0.36)Zn(0.32)Al(0.32), Ni(0.64)Fe(0.36), Cu(0.35)Ni(0.31)Fe(0.34), Ni(0.66)Cr(0.34), Cu(0.35)Ni(0.31)Cr(0.34), Zn(0.66)Cr(0.34), Cu(0.33)Zn(0.32)Cr(0.35) were synthesized, characterized chemically and physically, and then tested using breakthrough test to determine their sulfur uptake. Ni(0.64)Fe(0.36) mixed metal oxides was found to have the best uptake of hydrogen sulfide (136 mg H₂S/g). Regeneration of spent Ni(0.64)Fe(0.36) mixed metal oxides was studied using two different mixture solutions, NaCl/NaOH and acetate-buffer/NaCl/NaOH. The latter mixture successfully desorbed the sulfur from the Ni0.64Fe0.36 sorbent for 2 cycles of regeneration/sorption. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Inference of polymer adsorption from electrical double layer measurements : the silver iodide-polyvinyl alcohol system

    NARCIS (Netherlands)

    Koopal, L.K.

    1978-01-01

    The purpose of this study was to investigate how the double layer properties of charged particles are modified by the presence of adsorbed polymer molecules and to obtain information on the conformation of the polymer layer from the observed alterations in the double layer

  9. "Thermal Charging" Phenomenon in Electrical Double Layer Capacitors.

    Science.gov (United States)

    Wang, Jianjian; Feng, Shien-Ping; Yang, Yuan; Hau, Nga Yu; Munro, Mary; Ferreira-Yang, Emerald; Chen, Gang

    2015-09-09

    Electrical double layer capacitors (EDLCs) are usually charged by applying a potential difference across the positive and negative electrodes. In this paper, we demonstrated that EDLCs can be charged by heating. An open circuit voltage of 80-300 mV has been observed by heating the supercapacitor to 65 °C. The charge generated at high temperature can be stored in the device after its returning to the room temperature, thus allowing the lighting up of LEDs by connecting the "thermally charged" supercapacitors in a series. The underlying mechanism is related to a thermo-electrochemical process that enhances the kinetics of Faradaic process at the electrode surface (e.g., surface redox reaction of functional group, or chemical adsorption/desorption of electrolyte ions) at higher temperature. Effects of "thermal charging" times, activation voltage, rate, and times on "thermally charged" voltage are studied and possible mechanisms are discussed.

  10. Eddy turbulence, the double mesopause, and the double layer of atomic oxygen

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2012-01-01

    Full Text Available In this study, we consider the impact of eddy turbulence on temperature and atomic oxygen distribution when the peak of the temperature occurs in the upper mesosphere. A previous paper (Vlasov and Kelley, 2010 considered the simultaneous impact of eddy turbulence on temperature and atomic oxygen density and showed that eddy turbulence provides an effective mechanism to explain the cold summer and warm winter mesopause observed at high latitudes. Also, the prevalent role of eddy turbulence in this case removes the strong contradiction between seasonal variations of the O density distribution and the impact of upward/downward motion corresponding to adiabatic cooling/heating of oxygen atoms. Classically, there is a single minimum in the temperature profile marking the location of the mesopause. But often, a local maximum in the temperature is observed in the height range of 85–100 km, creating the appearance of a double mesopause (Bills and Gardner, 1993; Yu and She, 1995; Gusev et al., 2006. Our results show that the relative temperature maximum in the upper mesosphere (and thus the double mesopause can result from heating by eddy turbulence. According to our model, there is a close connection between the extra temperature peak in the mesosphere and the oxygen atom density distribution. The main feature of the O density height profile produced by eddy turbulence in our model is a double peak instead of a single peak of O density. A rocket experiment called TOMEX confirms these results (Hecht et al., 2004. Applying our model to the results of the TOMEX rocket campaign gives good agreement with both the temperature and oxygen profiles observed. Climatology of the midlatitude mesopause and green line emission shows that the double mesopause and the double layers of the green line emission, corresponding to the double O density height profile, are mainly observed in spring and fall (Yu and She, 1995; Liu and Shepherd, 2006. Further observations of

  11. The electric double layer put to work : thermal physics at electrochemical interfaces

    OpenAIRE

    Janssen, M.A.

    2017-01-01

    Where charged electrode surfaces meet fluids that contain mobile ions, so-called electric double layers (EDLs) form to screen the electric surface charge by a diffuse cloud of counterionic charge in the fluid phase. This double layer has been studied for over a century and is of paramount importance to many processes in physical chemistry and soft matter physics, as well as in electric double layer capacitors (EDLCs) used for energy storage. With the ongoing development of nanomaterials, elec...

  12. Observation of a stationary, current-free double layer in a plasma

    Science.gov (United States)

    Hairapetian, G.; Stenzel, R. L.

    1990-01-01

    A stationary, current-free, potential double layer is formed in a two-electron-population plasma due to self-consistent separation of the two electron species. The position and amplitude of the double layer are controlled by the relative densities of the two electron populations. The steady-state double layer traps the colder electrons on the high potential side, and generates a neutralized, monoenergetic ion beam on the low potential side. The field-aligned double layer is annihilated when an electron current is drawn through the plasma.

  13. Computer experiments on the formation and dynamics of electric double layers

    International Nuclear Information System (INIS)

    Singh, N.

    1980-01-01

    Electric double layers provide a mechanism for the acceleration of particles in plasmas. The results of computer simulations of double layers are presented. Simulations are carried out for the case of two interpenetrating plasmas with different plasma potentials. The dynamics of the double layer and its stability are studied. It is found that when the two plasmas satisfy the Langmuir condition for the existence of a double layer, stable double layers eventually form. During the formation phase of the layer, the initial constant electric field evolves in a solitary electric pulse of a constant shape. This pulse makes few oscillations before it becomes stationary. Scaling laws giving the dependence of the amplitude and width of the electric pulse on the potential difference between the two plasmas are given. When the Langmuir condition is not satisfied the double layer forms very swiftly and beam-plasma interactions on the high potential side of the layer cause strong instabilities giving rise to strong r.f. fields. These r.f. fields create an additional double layer through the action of a pondermotive force. The instabilities and the location of the double layer undergo a relaxation type of oscillation. An appreciable heating of the trapped electrons is also seen through mode-mode coupling. (author)

  14. Electrochemical double-layer capacitors based on functionalized graphene

    Science.gov (United States)

    Pope, Michael Allan

    Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective

  15. DFT-Based Simulation and Experimental Validation of the Topotactic Transformation of MgAl Layered Double Hydroxides.

    Science.gov (United States)

    Zhang, Shi-Tong; Dou, Yibo; Zhou, Junyao; Pu, Min; Yan, Hong; Wei, Min; Evans, David G; Duan, Xue

    2016-09-05

    The thermal topotactic transformation mechanism of MgAl layered double hydroxides (LDHs) is investigated by a combined theoretical and experimental study. Thermogravimetric differential thermal analysis (TG-DTA) results reveal that the LDH phase undergoes four key endothermic events at 230, 330, 450, and 800 °C. DFT calculations show that the LDH decomposes into CO2 and residual O atoms via a monodentate intermediate at 330 °C. At 450 °C, the metal cations almost maintain their original distribution within the LDH(001) facet during the thermal dehydration process, but migrate substantially along the c-axis direction perpendicular to the (001) facet; this indicates that the metal arrangement/dispersion in the LDH matrix is maintained two-dimensionally. A complete collapse of the layered structure occurs at 800 °C, which results in a totally disordered cation distribution and many holes in the final product. The structures of the simulated intermediates are highly consistent with the observed in situ powder XRD data for the MgAl LDH sample calcined at the corresponding temperatures. Understanding the structural topotactic transformation process of LDHs would provide helpful information for the design and preparation of metal/metal oxides functional materials derived from LDH precursors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Carrier mobility and scattering lifetime in electric double-layer gated few-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Piatti, E.; Galasso, S.; Tortello, M.; Nair, J.R.; Gerbaldi, C. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Bruna, M.; Borini, S. [Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Torino (Italy); Daghero, D. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Gonnelli, R.S., E-mail: renato.gonnelli@polito.it [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy)

    2017-02-15

    Highlights: • We fabricated few-layer graphene FETs by mechanical exfoliation and standard microfabrication techniques. • We employed a Li-TFSI based ion gel to induce carrier densities as high as ≈6e14 e{sup −}/cm{sup 2} in the devices' channel. • We found a strong asymmetry in the sheet conductance and mobility doping dependences between electron and hole doping. • We combined the experimental results with ab initio DFT calculations to obtain the average scattering lifetime of the charge carriers. • We found that the increase in the carrier density and an unexpected increase in the density of charged scattering centers compete in determining the scattering lifetime. - Abstract: We fabricate electric double-layer field-effect transistor (EDL-FET) devices on mechanically exfoliated few-layer graphene. We exploit the large capacitance of a polymeric electrolyte to study the transport properties of three, four and five-layer samples under a large induced surface charge density both above and below the glass transition temperature of the polymer. We find that the carrier mobility shows a strong asymmetry between the hole and electron doping regime. We then employ ab initio density functional theory (DFT) calculations to determine the average scattering lifetime from the experimental data. We explain its peculiar dependence on the carrier density in terms of the specific properties of the electrolyte we used in our experiments.

  17. Removal of boron species by layered double hydroxides: a review.

    Science.gov (United States)

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2013-07-15

    Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. High performance spiro ammonium electrolyte for Electric Double Layer Capacitors

    Science.gov (United States)

    DeRosa, Donald; Higashiya, Seiichiro; Schulz, Adam; Rane-Fondacaro, Manisha; Haldar, Pradeep

    2017-08-01

    The smallest spiro ammonium salt reported to date, 1 M 4-Axoniaspiro[3,4]octane tetrafluoroborate (APBF4), was successfully synthesized and investigated as the electrolyte with acetonitrile (AN) in an Electric Double Layer Capacitor (EDLC) for the first time. The electrochemical characteristics of EDLC devices containing 1 M APBF4/AN paired with commercial activated carbon electrodes were compared to devices containing popular EDLC electrolytes, 1 M 5-Azoniaspiro[4.4]nonane tetrafluoroborate (SBPBF4/AN) and 1 M tetraethyl ammonium tetrafluoroborate (TEABF4/AN), using cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS). The average gravimetric capacitance of the 1 M APBF4 device (124.7 F g-1) was found to be greater than the values measured for both the 1 M SBPBF4 device (108.6 F g-1) and the 1 M TEABF4 device (99.2 F g-1). The direct current equivalent series resistance (ESR) of the 1 M APBF4 device (383.4 mΩ cm-2) was found to be substantially lower than the values measured for both the 1 M SBPBF4 device (501.0 mΩ cm-2) and the 1 M TEABF4 device (710.8 mΩ cm-2). These results demonstrate that APBF4, when compared to current commercial electrolytes, significantly enhances the energy storage properties of EDLC devices.

  19. Silica@layered double hydroxide core-shell hybrid materials.

    Science.gov (United States)

    Kwok, Wing L J; Crivoi, Dana-Georgiana; Chen, Chunping; Buffet, Jean-Charles; O'Hare, Dermot

    2017-12-19

    A series of silica@layered double hydroxides (SiO 2 @Mg 2 Al-CO 3 -AMO-LDHs) have been synthesised by in situ precipitation of Mg 2 Al-CO 3 -LDH at room temperature in the presence of amorphous spherical silica particles (∼500 nm). We have systematically investigated a number of synthetic parameters in order to evaluate their effects on the composition, morphological and physical properties of the isolated materials. Syntheses carried out at moderate stirring speeds (e.g. 500 rpm) were found to promote the formation of vertically aligned LDH platelets with respect to the silica surface. Addition rates of the metal solutions slower than 0.43 mmol h -1 were found to create a thicker LDH shell consisting of vertically aligned LDH platelets. When the metal solutions were added rapidly (0.86 mmol h -1 ), we observed that for both slow and fast stirring speeds the synthesised core-shell materials had thin LDH shells and the majority of the LDH precipitated independent of the silica, forming unbound "free" LDH.

  20. Acid Green 1 removal from wastewater by layered double hydroxides

    Science.gov (United States)

    Elkhattabi, El Hassan; Lakraimi, Mohamed; Berraho, Moha; Legrouri, Ahmed; Hammal, Radouan; El Gaini, Layla

    2018-03-01

    The paper presents the removal of Acid Green 1 (AG1) from aqueous solutions by [Zn-Al-Cl]-layered double hydroxides (LDHs). The LDH was prepared by coprecipitation at constant pH. The affinity of this material for AG1 was studied as a function of contact time, pH of the solution, LDH dose and AG1/LDH mass ratio. It was found that 32 h are enough to reach the equilibrium with a maximum retention at pH 8 for an LDH dose of 100 mg and with an AG1/LDH mass ratio higher than 2. The adsorption isotherm is of L-type, as described by the Langmuir model. The results demonstrate that AG1 retention on LDHs occurs by adsorption on external surface when AG1/LDH mass ratio is equal or lower than 2 and by both adsorption and interlayer ion exchange for ratios higher than 2. A mechanism for the AG1 removal has been confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric-differential thermal analyses and scanning electron microscopy.

  1. Layered double hydroxide nanoparticles in gene and drug delivery.

    Science.gov (United States)

    Ladewig, Katharina; Xu, Zhi Ping; Lu, Gao Qing Max

    2009-09-01

    Layered double hydroxides (LDHs) have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, catalysts and additives for polymers, but their successful synthesis on the nanometer scale a few years ago opened up a whole new field for their application in nanomedicine. The delivery of drugs and other therapeutic/bioactive molecules (e.g., peptides, proteins, nucleic acids) to mammalian cells is an area of research that is of tremendous importance to medicine and provides manifold applications for any new developments in the area of nanotechnology. Among the many different nanoparticles that have been shown to facilitate gene and/or drug delivery, LDH nanoparticles have attracted particular attention owing to their many desirable properties. This review aims to report recent progress in gene and drug delivery using LDH nanoparticles. It summarizes the advantages and disadvantages of using LDH nanoparticles as carriers for nucleic acids and drugs against the general background of bottlenecks that are encountered by cellular delivery systems. It describes further the models that have been proposed for the internalization of LDH nanoparticles into cells so far and discusses the intracellular fate of the particles and their cargo. The authors offer some remarks on how this field of research will progress in the near future and which challenges need to be overcome before LDH nanoparticles can be used in a clinical setting.

  2. Large-amplitude double layers in a dusty plasma with an arbitrary ...

    Indian Academy of Sciences (India)

    Abstract. Formation of large-amplitude double layers in a dusty plasma whose con- stituents are electrons, ions, warm dust grains and positive ion beam are studied using. Sagdeev's pseudopotential technique. Existence of double layers is investigated. It is found that both the temperature of dust particles and ion beam ...

  3. Current limitation by an electric double layer in ion laser discharges

    International Nuclear Information System (INIS)

    Torven, S.

    1977-12-01

    A theory for current limitation in ion laser discharges is investigated. The basic mechanism considered is saturation of the positive ion flux at an electric double layer by the limited flux of neutral atoms. The result is compared with a recently published synthesis of a large number of experimental data which agree well with those predicted by the double layer model

  4. Double-layer structure in polar mesospheric clouds observed from SOFIE/AIM

    Directory of Open Access Journals (Sweden)

    H. Gao

    2017-02-01

    Full Text Available Double-layer structures in polar mesospheric clouds (PMCs are observed by using Solar Occultation for Ice Experiment (SOFIE data between 2007 and 2014. We find 816 and 301 events of double-layer structure with percentages of 10.32 and 7.25 % compared to total PMC events, and the mean distances between two peaks are 3.06 and 2.73 km for the Northern Hemisphere (NH and Southern Hemisphere (SH respectively. Double-layer PMCs almost always have less mean ice water content (IWC than daily IWC during the core of the season, but they are close to each other at the beginning and the end. The result by averaging over all events shows that the particle concentration has obvious double peaks, while the particle radius exhibits an unexpected monotonic increase with decreasing altitude. By further analysis of the background temperature and water vapour residual profiles, we conclude that the lower layer is a reproduced one formed at the bottom of the upper layer. 56.00 and 47.51 % of all double-layer events for the NH and SH respectively have temperature enhancements larger than 2 K locating between their double peaks. The longitudinal anti-correlation between the gravity waves' (GWs' potential energies and occurrence frequencies of double-layer PMCs suggests that the double-layer PMCs tend to form in an environment where the GWs have weaker intensities.

  5. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  6. Large-amplitude double layers in a dusty plasma with an arbitrary ...

    Indian Academy of Sciences (India)

    Formation of large-amplitude double layers in a dusty plasma whose constituents are electrons, ions, warm dust grains and positive ion beam are studied using Sagdeev's pseudopotential technique. Existence of double layers is investigated. It is found that both the temperature of dust particles and ion beam temperature ...

  7. Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation

    DEFF Research Database (Denmark)

    Gerds, Nathalie Christiane; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    Effective utilization of layered double hydroxides (LDH) for industrial applications requires the synthesis of pure and well-defined LDH phases. In the present study, dodecanoate (laurate) anions were intercalated into Mg–Al-layered double hydroxide (LDH-C12) by coprecipitation in the presence...

  8. Experimental validation of sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2013-01-01

    This paper is concerned with experimental validation of a recently proposed method of controlling sound fields with a circular double-layer array of loudspeakers [Chang and Jacobsen, J. Acoust. Soc. Am. 131(6), 4518-4525 (2012)]. The double-layer of loudspeakers is realized with 20 pairs of closed...

  9. Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene

    NARCIS (Netherlands)

    Saberi-Pouya, S.; Vazifehshenas, T.; Farmanbar Gelepordsari, M.; Salavati-Fard, T.

    2016-01-01

    We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned

  10. Double Layer of a Gold Electrode Probed by AFM Force Measurements

    NARCIS (Netherlands)

    Barten, D.; Kleijn, J.M.; Duval, J.F.L.; Leeuwen, van H.P.; Lyklema, J.; Cohen Stuart, M.A.

    2003-01-01

    Colloidal probe atomic force microscopy was used to determine the electric double layer interactions between a gold electrode and a spherical silica probe. The double layer properties of the gold/solution interface were varied through the pH and salt concentration of the electrolyte, as well as by

  11. The electric double layer put to work : thermal physics at electrochemical interfaces

    NARCIS (Netherlands)

    Janssen, M.A.

    2017-01-01

    Where charged electrode surfaces meet fluids that contain mobile ions, so-called electric double layers (EDLs) form to screen the electric surface charge by a diffuse cloud of counterionic charge in the fluid phase. This double layer has been studied for over a century and is of paramount importance

  12. Spray calcination of nuclear wastes

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-01-01

    The spray calciner is a relatively simple machine; operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of all commercial fuel reprocessor high-level liquid wastes and mixed high and intermediate-level wastes have been demonstrated. Wastes have been calcined containing over 2M sodium. Thus waste generated during plant startup and shutdown can be blended with normal waste and calcined. Spray calcination of ILLW has also been demonstrated. A remotely replaceable atomizing nozzle has been developed for use in plant scale equipment. The 6 mm (0.25 inch) orifice and ceramic tip offer freedom from plugging and erosion thus nozzle replacement should be required only after several months operation. Calciner capacity of over 75 l/h (20 gal/h) has been demonstrated in pilot scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. Since such a small amount of radionuclides escape the calciner the volume of recycle required from the effluent treatment system is very small. The noncondensable off-gas volume is also low, less than 0.5 m 3 /min (15 scfm) for a liquid feedrate of 75 l/hr (20 gal/hr). Calcine holdup in the calciner is less than 1 kg, thus the liquid feedrate is directly relatable to calcine flowrate. The calcine produced is very fine and reactive. Successful remote operation and maintenance of a heated wall spray calciner has been demonstrated while processing actual high-level waste. During these operations radionuclide volatilization from the calciner was acceptably low. 8 figures

  13. An investigation of the double layers caused by space vehicles moving through the ionosphere

    International Nuclear Information System (INIS)

    Liu Sanqiu; Liao Jingjing

    2010-01-01

    On the basis of non-steady-state nonlinear coupling equations of high-frequency field, density disturbance and potential, the evolution of double layers in the wake region of space vehicles moving through the ionosphere is numerically simulated in the non-static limit case. The results show that the interactions among plasmas, the vehicle and high-frequency electromagnetic waves radiated from the antenna system of the vehicle can lead to the formation of double layers. It is shown that the double layer is a nonlinear entity-caviton. Potential disturbance far away from the vehicle and the peak value of potential near the vehicle in the double layer are obvious. This is very important for detecting space vehicles with a stealth characteristic and preventing space vehicles from being harmed by double layers.

  14. Development of polymer nanocomposites based on layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Sipusic, J.

    2009-05-01

    Full Text Available Polymeric nanocomposites are commonly considered as systems composed of a polymeric matrix and - usually inorganic - filler. The types of nanofillers are indicated in Fig. 1. Beside wellknown layered silicate fillers, recent attention is attracted to layered double hydroxide fillers (LDH, mainly of synthetic origin. The structure of LDH is based on brucite, or magnesium hydroxide, Mg(OH2 and is illustrated in Fig. 2. The modification of LDHs is commonly done by organic anions, to increase the original interlayer distance and to improve the organophilicity of the filler, keeping in mind their final application as fillers for, usually hydrophobic, polymer matrices. We have used the modified rehydration procedure for preparing organically modified LDH. The stoichiometric quantities of Ca33Al2O6, CaO and benzoic (B (or undecenoic (U acid were mixed with water and some acetone. After long and vigorous shaking, the precipitated fillers were washed, dried and characterized. X-ray diffraction method (XRD has shown the increase of the original interlayer distance for unmodified LDH (OH–-saturated of 0.76 nm to the 1.6 nm in LDH-B or LDH-U fillers (Fig. 3. Infrared spectroscopy method (FTIR has confirmed the incorporation of benzoic anion within the filler layers (Fig. 4. For the preparation of LDH-B and LDH-U composites with polystyrene (PS, poly(methyl methacrylate (PMMA and copolymer (SMMA matrices, a two-step in situ bulk radical polymerization was selected (Table 1 for recipes, azobisisobutyronitrile as initiator, using conventional stirred tank reactor in the first step, and heated mold with the movable wall (Fig. 6 in the second step of polymerization. All the prepared composites with LDH-U fillers were macroscopically phase-separated, as was the PMMA/LDH-B composite.PS/LDH-B and SMMA/LDH-B samples were found to be transparent and were further examined for deduction of their structure (Fig. 5 and thermal properties. FTIR measurements showed that

  15. Two-Dimensional Layered Double Hydroxide Derived from Vermiculite Waste Water Supported Highly Dispersed Ni Nanoparticles for CO Methanation

    Directory of Open Access Journals (Sweden)

    Panpan Li

    2017-03-01

    Full Text Available Expanded multilayered vermiculite (VMT was successfully used as catalyst support and Ni/VMT synthesized by microwave irradiation assisted synthesis (MIAS exhibited excellent performance in our previous work. We also developed a two-dimensional porous SiO2 nanomesh (2D VMT-SiO2 by mixed-acid etching of VMT. Compared with three-dimensional (3D MCM-41, 2D VMT-SiO2 as a catalyst support provided a superior position for implantation of NiO species and the as-obtained catalyst exhibited excellent performance. In this paper, we successfully synthesized a layered double hydroxide (LDH using the spent liquor after mixed-acid etching of VMT, which mainly contained Mg2+ and Al3+. The as-calcined layered double oxide (LDO was used as a catalyst support for CO methanation. Compared with Ni/MgAl-LDO, Ni/VMT-LDO had smaller active component particles; therefore, in this study, it exhibited excellent catalytic performance over the whole temperature range of 250–500 °C. Ni/VMT-LDO achieved the best activity with 87.88% CO conversion, 89.97% CH4 selectivity, and 12.47 × 10−2·s−1 turn over frequency (TOF at 400 °C under a gas hourly space velocity of 20,000 mL/g/h. This study demonstrated that VMT-LDO as a catalyst support provided an efficient way to develop high-performance catalysts for synthetic natural gas (SNG from syngas.

  16. Roughness effects on the double-layer charge capacitance : the case of Helmholtz layer induced roughness attenuation

    NARCIS (Netherlands)

    Palasantzas, G.; Backx, G.M.E.A.

    2003-01-01

    For electrical double layers, the presence of a Helmholtz layer could lead to electrode roughness attenuation. The latter is assumed of self-affine type which is characterized by the roughness amplitude w, the correlation length xi, and the roughness exponent H. For sufficiently rough metal

  17. Large amplitude ion-acoustic solitary waves and double layers in multicomponent plasma with positrons

    International Nuclear Information System (INIS)

    Sabry, R.

    2009-01-01

    A finite amplitude theory for ion-acoustic solitary waves and double layers in multicomponent plasma consisting of hot positrons, cold ions, and electrons with two-electron temperature distributions is presented. Conditions are obtained under which large amplitude stationary ion-acoustic solitary waves and double layers can exist. For the physical parameters of interest, the ion-acoustic solitary wave (double layers) profiles and the relationship between the maximum soliton (double layers) amplitude and the Mach number are found. Also, we have presented the region of existence of the large amplitude ion-acoustic waves by analyzing the structure of the pseudopotential. For the selected range of parameters, it is found that only positive solitary waves and double layers can exist. An analysis for the small amplitude limit through the Sagdeev pseudopotential analysis and the reductive perturbation theory shows the existence of positive and negative ion-acoustic solitary waves and double layers. The effects of positron concentration and temperature ratio on the characteristics of the solitary ion-acoustic waves and double layers (namely, the amplitude and width) are discussed in detail. The relevance of this investigation to space and laboratory plasmas is pointed out.

  18. Large amplitude ion-acoustic solitary waves and double layers in multicomponent plasma with positrons

    Science.gov (United States)

    Sabry, R.

    2009-07-01

    A finite amplitude theory for ion-acoustic solitary waves and double layers in multicomponent plasma consisting of hot positrons, cold ions, and electrons with two-electron temperature distributions is presented. Conditions are obtained under which large amplitude stationary ion-acoustic solitary waves and double layers can exist. For the physical parameters of interest, the ion-acoustic solitary wave (double layers) profiles and the relationship between the maximum soliton (double layers) amplitude and the Mach number are found. Also, we have presented the region of existence of the large amplitude ion-acoustic waves by analyzing the structure of the pseudopotential. For the selected range of parameters, it is found that only positive solitary waves and double layers can exist. An analysis for the small amplitude limit through the Sagdeev pseudopotential analysis and the reductive perturbation theory shows the existence of positive and negative ion-acoustic solitary waves and double layers. The effects of positron concentration and temperature ratio on the characteristics of the solitary ion-acoustic waves and double layers (namely, the amplitude and width) are discussed in detail. The relevance of this investigation to space and laboratory plasmas is pointed out.

  19. Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry.

    Science.gov (United States)

    Li, Panpan; Yu, Feng; Altaf, Naveed; Zhu, Mingyuan; Li, Jiangbing; Dai, Bin; Wang, Qiang

    2018-01-31

    CH₄ as the paramount ingredient of natural gas plays an eminent role in C1 chemistry. CH₄ catalytically converted to syngas is a significant route to transmute methane into high value-added chemicals. Moreover, the CO/CO₂ methanation reaction is one of the potent technologies for CO₂ valorization and the coal-derived natural gas production process. Due to the high thermal stability and high extent of dispersion of metallic particles, two-dimensional mixed metal oxides through calcined layered double hydroxides (LDHs) precursors are considered as the suitable supports or catalysts for both the reaction of methanation and methane reforming. The LDHs displayed compositional flexibility, small crystal sizes, high surface area and excellent basic properties. In this paper, we review previous works of LDHs applied in the reaction of both methanation and methane reforming, focus on the LDH-derived catalysts, which exhibit better catalytic performance and thermal stability than conventional catalysts prepared by impregnation method and also discuss the anti-coke ability and anti-sintering ability of LDH-derived catalysts. We believe that LDH-derived catalysts are promising materials in the heterogeneous catalytic field and provide new insight for the design of advance LDH-derived catalysts worthy of future research.

  20. Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry

    Directory of Open Access Journals (Sweden)

    Panpan Li

    2018-01-01

    Full Text Available CH4 as the paramount ingredient of natural gas plays an eminent role in C1 chemistry. CH4 catalytically converted to syngas is a significant route to transmute methane into high value-added chemicals. Moreover, the CO/CO2 methanation reaction is one of the potent technologies for CO2 valorization and the coal-derived natural gas production process. Due to the high thermal stability and high extent of dispersion of metallic particles, two-dimensional mixed metal oxides through calcined layered double hydroxides (LDHs precursors are considered as the suitable supports or catalysts for both the reaction of methanation and methane reforming. The LDHs displayed compositional flexibility, small crystal sizes, high surface area and excellent basic properties. In this paper, we review previous works of LDHs applied in the reaction of both methanation and methane reforming, focus on the LDH-derived catalysts, which exhibit better catalytic performance and thermal stability than conventional catalysts prepared by impregnation method and also discuss the anti-coke ability and anti-sintering ability of LDH-derived catalysts. We believe that LDH-derived catalysts are promising materials in the heterogeneous catalytic field and provide new insight for the design of advance LDH-derived catalysts worthy of future research.

  1. Layered Double Hydroxides as Effective Adsorbents for U(VI and Toxic Heavy Metals Removal from Aqueous Media

    Directory of Open Access Journals (Sweden)

    G. N. Pshinko

    2013-01-01

    Full Text Available Capacities of different synthesized Zn,Al-hydrotalcite-like adsorbents, including the initial carbonate [Zn4Al2(OH12]·CO3·8H2O and its forms intercalated with chelating agents (ethylenediaminetetraacetic acid (EDTA, diethylenetriaminepentaacetic acid (DTPA, and hexamethylenediaminetetraacetic acid (HMDTA and heat-treated form Zn4Al2O7, to adsorb uranium(VI and ions of toxic heavy metals have been compared. Metal sorption capacities of hydrotalcite-like adsorbents have been shown to correlate with the stability of their complexes with the mentioned chelating agents in a solution. The synthesized layered double hydroxides (LDHs containing chelating agents in the interlayer space are rather efficient for sorption purification of aqueous media free from U(VI irrespective of its forms of natural abundance (including water-soluble bi- and tricarbonate forms and from heavy metal ions. [Zn4Al2(OH12]·EDTA·nH2O is recommended for practical application as one of the most efficient and inexpensive synthetic adsorbents designed for recovery of both cationic and particularly important anionic forms of U(VI and other heavy metals from aqueous media. Carbonate forms of LDHs turned out to be most efficient for recovery of Cu(II from aqueous media with pH0≥7 owing to precipitation of Cu(II basic carbonates and Cu(II hydroxides. Chromate ions are efficiently adsorbed from water only by calcinated forms of LDHs.

  2. A COMPARATIVE STUDY OF SINGLE VERSUS DOUBLE LAYER CLOSURE ON LOWER SEGMENT CAESAREAN SCAR

    Directory of Open Access Journals (Sweden)

    Kirtirekha Mohapatra

    2016-10-01

    Full Text Available BACKGROUND There are few issues in modern obstetrics that have been as controversial as management of a woman with a prior caesarean delivery. Hence, it is required to have evidence based correct practice of this surgical procedure. Healing of the uterine incision and the strength of the scar should be the most important consideration. The aim of the study is to compare the effect of technique of uterine closure (Single Layer vs. Double Layer on subsequent pregnancies and to find out, which technique has a better maternal and neonatal outcome by strengthening the scar. MATERIALS AND METHODS 500 cases of previous caesarean section pregnancies were taken, 250 from single layer closure group and 250 from double layer closure group. The mode of delivery during present pregnancy was noted. Integrity of scar, thickness of scar, presence of adhesion were documented. The neonates were observed. Results were compared so as to draw an inference about the better method. RESULTS Mean age between the two groups were similar. Majority did not have history of premature rupture of membrane during previous pregnancy. Postoperative complications were more when double layer closure of uterine scar was done in index surgery. Interpregnancy gap of <3 years was more commonly present in double layer closure group (52.8% in double layer versus 34.8% in single layer. Single layer had more scar tenderness (21.2%, thinned out scars (34.6%, incomplete ruptures (7.1% and complete ruptures (2.8% than double layer closure group. Neonatal outcomes were not statistically different in both the groups. CONCLUSION Double layer uterine closure seems to have better impact on scar integrity as compared to single layer uterine closure.

  3. Electrochemical Double Layered Capacitor Development and Implementation System

    Science.gov (United States)

    Strunk, Gavin P.

    Electrochemical Double Layered Capacitors (EDLC's) are becoming a more popular topic of research for hybrid power systems, especially vehicles. They are known for their high power density, high cycle life, low internal resistance, and wider operating temperature compared to batteries. They are rarely used as a standalone power source; however, because of their lack of energy density compared to batteries and fuel cells. Researchers are now discovering the benefits of using them in hybrid systems. The increased complexity of a hybrid power source presents many challenges. A major drawback of this complexity is the lack of design tools to assist a designer in translating a simulation all the way to a full scale implementation. A full spectrum of tools was designed to assist designers at all stages of implementation including: single cell testing, a multi-cell management system, and a full scale vehicle data acquisition system to monitor performance. First, the full scale vehicle data acquisition is described. The system is isolated from the electric shuttle bus it was tested on to allow the system to be ported to other vehicles and applications. This was done to modularize the system to characterize a wide variety of full scale applications. Next, a single cell test system was designed that allows the designer to characterize cell specifications, as well as, test control and safety systems in a controlled environment. The goal is to ensure safety systems can be thoroughly tested to ensure robustness as the bank is scaled up. This system also includes simulation models that provide examples of using the simulation to predict the behavior of a cell and the test system to validate the results of the simulation. This information is then used by the designer to more effectively design sensor ranges for the bank. Finally, a multi-cell EDLC management system was designed to implement a bank. It incorporates 12 series EDLC cells per control module, and the modular design

  4. Necessary Conditions For Establishing Quasi-Stable Double Layers in Earth's Auroral Upward Current Region

    Science.gov (United States)

    Main, D. S.; Newman, D.; Ergun, R. E.

    2010-12-01

    Observations from the Fast Auroral SnapshoT (FAST) spacecraft indicate that a strong localized electric field often exists at the boundary between the ionosphere and auroral cavity in the upward current region. The observed electric field structures are found to have widths that are on the order of tens of electron Debye lengths and have components both parallel and perpendicular to Earth’s magnetic field and are therefore said to be an “oblique” electric field. These oblique electric fields have previously been modeled by static BGK double layer solutions. Dynamic Vlasov simulations have shown that a non-oblique double layer models the parallel component of the observed electric field structures well, is quasi-stable and persists long enough to account for the often observed ion phase space holes in the auroral cavity. However, to date, it has not been clear how an oblique double layer can form and remain quasi-stable. Using an open boundary 1D3V particle-in-cell simulation, we present a parameter study of over 20 simulations in which we vary cold electron density and temperature and show the necessary conditions for maintaining both oblique and non-oblique double layers at the lower boundary of the upward current region. The simulation includes an assumed density cavity, hot auroral cavity electrons, cold ionospheric electrons, a hot H+ component and anti-earthward traveling H+ and O+ ion beams. We do not assume that any localized potential drop initially exists. Rather, if a DL forms, it does so self-consistently at the interface of the dense ionosphere and tenuous auroral cavity. Based on the PIC results, we find that the oblique double layer requires a cold (< 5 eV) ionospheric electron population to remain quasi-stable. We also compare the shape of the simulated double layer with observed double layers and show that the observed asymmetric shape can also be explained by the temperature and density of the cold ionospheric electrons. We will also present

  5. Dissolution Kinetics of Alumina Calcine

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas

    2001-09-01

    Dissolution kinetics of alumina type non-radioactive calcine was investigated as part of ongoing research that addresses permanent disposal of Idaho High Level Waste (HLW). Calcine waste was produced from the processing of nuclear fuel at the Idaho Nuclear Technology and Engineering Center (INTEC). Acidic radioactive raffinates were solidified at ~500°C in a fluidized bed reactor to form the dry granular calcine material. Several Waste Management alternatives for the calcine are presented in the Idaho High Level Waste Draft EIS. The Separations Alternative addresses the processing of the calcine so that the HLW is ready for removal to a national geological repository by the year 2035. Calcine dissolution is the key front-end unit operation for the separations alternative.

  6. Closing the Phosphorus Loop by Recovering Phosphorus From Waste Streams With Layered Double Hydroxide Nanocomposites and Converting the Product into an Efficient Fertilizer

    Science.gov (United States)

    Yan, H.; Shih, K.

    2015-12-01

    Phosphorus (P) recovery has been frequently discussed in recent decades due to the uncertain availability and uneven distribution of global phosphate rock reserves. Sorption technology is increasingly considered as a reliable, efficient and environmentally friendly P removal method from aqueous solution. In this study, a series of Mg-Al-based layered double hydroxide nanocomposites and their corresponding calcined products were fabricated and applied as phosphate adsorbents. The prepared samples were with average size at ~50 nm and self-assembled into larger particles in irregular shapes. The results of batch adsorption experiments demonstrated that calcination significantly enhanced the adsorption ability of LDHs for phosphorus, and the maximum adsorption capacity of calcined Mg-Al-LDH was as high as 100.7 mg-P/g. Furthermore, incorporation of Zr4+ and La3+ into LDH materials increases the sorption selectivity as well as sorption amount of phosphorus in LDHs, which was confirmed by experiments operated in synthetic human urine. For the first time ammonia (NH4OH) and potassium hydroxide (KOH) solutions were employed to desorb the P-loaded LDH. Identification of solids derived from two eluting solutions showed that struvite (MgNH4PO4•6H2O, MAP) was precipitated in ammonia solution while most phosphate was desorbed into liquid phase in KOH system without crystallization of potassium struvite (MgKPO4•6H2O) due to its higher solubility. Quantitative X-ray diffraction technique was used to determine struvite contents in obtained solids and the results revealed that ~ 30% of adsorbed P was transferred into struvite form in the sample extracted by 0.5M NH4OH. Leaching tests suggested that the phosphorus releasing kinetics of ammonia treated LDH was comparable to that of pure struvite product, indicating that postsorption Mg-Al-LDH desorbed with ammonia could serve as a slow-releasing fertilizer in agriculture (see Figure 1).

  7. Absorbing properties of α-manganese dioxide/carbon black double-layer composites

    International Nuclear Information System (INIS)

    Duan Yuping; Yang Yang; He Ma; Liu Shunhua; Cui Xiaodong; Chen Huifeng

    2008-01-01

    In order to improve the absorbing properties of the electromagnetic wave absorbing plate, double-layer wave absorbing materials, which are composed of a matching layer and an absorbing layer, were devised. The matching layer is a surface layer of the wave absorbing sample, from which most of the incident waves easily enter the sample, and the absorbing layer is a second layer under the matching layer, which plays an important role in incident wave attenuation. The total thickness of the double-layer composites is the sum of the thicknesses of the matching layer and the absorbing layer. In this paper, α-manganese dioxide and carbon black (CB) were used as absorbents in the matching layer and the absorbing layer respectively. Meanwhile, the structure of the α-manganese dioxide and the CB particles were analysed by x-ray diffraction and transmission electron microscopy, and the dielectric property and absorbing mechanics were also studied. The results showed that, in the case of the mass fraction of CB in the absorbing layer being 30% and the thickness of the absorbing layer being 3 mm, the effectual absorption band (below -10 dB) of the double-layer wave absorbing materials reaches 8.6 GHz and 7.6 GHz in the testing frequency range between 8 GHz and 18 GHz, respectively, when the mass fraction of α-MnO 2 in the matching layer was 10% and the thicknesses of the matching layer were 2 mm and 1 mm, respectively, and the effectual absorption band (below -10 dB) reaches 8.7 GHz in 8-18 GHz when the mass fraction of α-MnO 2 in the matching layer was 20% and the thickness of the matching layer was 2 mm

  8. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.

    Science.gov (United States)

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, Hyo Na; Kim, In Young; Hwang, Seong-Ju

    2011-09-28

    Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical

  9. Investigation on Calcination Behaviors of Coal Gangue by Fluidized Calcination in Comparison with Static Calcination

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2017-02-01

    Full Text Available In order to comprehensively utilize coal gangue, we present fluidized calcination as a new thermal technology for activating coal gangue and systematical study was conducted in comparison with static calcination. The calcined products obtained by different calcination methods under various temperatures were characterized by the means of X-ray diffraction (XRD, thermal gravimetry-differential scanning calorimeter (TG-DSC, Fourier transform-infrared spectroscopy (FT-IR and scanning electron microscope-energy dispersive spectrometer (SEM-EDS. Chemical and physical characteristics such as aluminium leaching rate, chemical oxygen demand and whiteness of calcined products were also investigated. The results show that aluminium leaching rate could reach to the maximal value 74.42% at 500 °C by fluidized calcination, while the maximal value of 66.33% could be reached at 600 °C by static calcination. Products by fluidized calcination obtained higher whiteness and lower chemical oxygen demand (COD under the same calcination temperature. The well-crystallized kaolinite transform to amorphous meta-kaolinite under 600 °C and mullite presence under 1000 °C according to phase transformation, chemical bond variation and microstructure evolution analysis. Fluidized calcination was more efficiently for combustion of carbon/organic matter and dehydroxylation of kaolinite, which might applied in coal gangue industry in future.

  10. Plasmon resonance in single- and double-layer CVD graphene nanoribbons

    DEFF Research Database (Denmark)

    Wang, Di; Emani, Naresh K.; Chung, Ting Fung

    2015-01-01

    Dynamic tunability of the plasmonic resonance in graphene nanoribbons is desirable in the near-infrared. We demonstrated a constant blue shift of plasmonic resonances in double-layer graphene nanoribbons with respect to single-layer graphene nanoribbons. © OSA 2015.......Dynamic tunability of the plasmonic resonance in graphene nanoribbons is desirable in the near-infrared. We demonstrated a constant blue shift of plasmonic resonances in double-layer graphene nanoribbons with respect to single-layer graphene nanoribbons. © OSA 2015....

  11. Conditions for double layers in the Earth's magnetosphere and perhaps in other astrophysical objects

    International Nuclear Information System (INIS)

    Lyons, L.R.

    1987-01-01

    Double layers (i.e., electric fields parallel to B) form along auroral field lines in the Earth's magnetosphere. They form in order to maintain current continuity in the ionosphere in the presence of a magnetospheric electric field E with DEL.E not= O. Features which govern the formation of the double layers are: 1) the divergence of E; 2) the conductivity of the ionosphere; and 3) the current-voltage characteristics of auroral magnetic field lines. Astrophysical situations where DEL.E not= O is applied to a conducting plasma similar to the Earth's ionosphere are potential candidates for the formation of double layers. The region with DEL.E not= O can be generated within, or along field lines connected to, the conducting plasma. In addition to DEL.E, shear neutral flow in the conducting plasma can also form double layers. (author)

  12. Conditions for double layers in the Earth's magnetosphere and perhaps in other astrophysical objects

    International Nuclear Information System (INIS)

    Lyons, L.R.

    1987-01-01

    Double layers form along auroral field lines in the Earth's magnetosphere. They form in order to maintain current continuity in the ionosphere in the presence of a magnetospheric electric field E with nabla x E is not equal to 0. Features which govern the formation of the double layers are: (1) the divergence of E, (2) the conductivity of the ionosphere, and (3) the current-voltage characteristics of auroral magnetic field lines. Astrophysical situations where nabla x E is not equal to 0 is applied to a conducting plasma similar to the Earth's ionosphere are potential candidates for the formation of double layers. The region with nabla x E is not equal to 0 can be generated within, or along field lines connected to, the conducting plasma. In addition to nabla x E, shear neutral flow in the conducting plasma can also form double layers

  13. Space-charge solitary waves and double layers in n-type compensated semiconductor quantum plasma

    Science.gov (United States)

    Banerjee, S.; Ghosh, B.

    2018-03-01

    Using quantum hydrodynamic (QHD) model and standard reductive perturbation method, we have investigated the formation and characteristics of space-charge solitary waves and double layers in n-type compensated drifting semiconductor plasma with varying doping profiles. Through numerical analysis, it is shown that the structures of space-charge solitary waves and double layers depend significantly on electron drift and compensation parameter which measures a comparative proportion of the donor, acceptor and intrinsic ion concentrations.

  14. DL-mandelic acid intercalated Zn-Al layered double hydroxide: A novel antimicrobial layered material.

    Science.gov (United States)

    Tang, Li-Ping; Cheng, Hui-Min; Cui, Shu-Mei; Wang, Xin-Rui; Song, Li-Ya; Zhou, Wei; Li, Shu-Jing

    2018-02-12

    DL-mandelic acid (MA) has been intercalated into Zn-Al layered double hydroxide (LDH) by an anion-exchange reaction. After intercalation of MA anions, the basal spacing of the LDH increased from 0.75 to 1.46 nm, suggesting that the MA anions were successfully intercalated into the interlayer galleries of the LDH. The structure and the thermal stability of the samples were characterized by XRD, FT-IR, TG-DTA. Studies of MA release from ZnAl-MA-LDH in hydrochloric solution (pH = 4) imply that ZnAl-MA-LDH is a better controlled release system than pure MA. Meanwhile, the mechanisms of slow release were assessed by using four commonly kinetic models. Finally, the antimicrobial activity of ZnAl-MA-LDH was tested against two kinds of bacteria and a fungus. The study confirms that the mandelic ions intercalated LDHs have the potential application as a slow release preservative in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Thermal analysis of double-layer metal films during femtosecond laser heating

    International Nuclear Information System (INIS)

    Chen, A M; Jiang, Y F; Sui, L Z; Liu, H; Jin, M X; Ding, D J

    2011-01-01

    In this paper, the primary interest is the heat effect of the bottom-layer metal on the temperature distribution of the top-layer metal in a double-layer metal structure during femtosecond laser irradiation. The evolution of the surface electron and lattice temperature depends a lot on the thermal parameters of the substrate. The damage threshold can be increased by using a substrate material with high electron–lattice coupling factor. Next, we choose chrome as the bottom-layer material. The results of modeling show that the surface lattice temperature of top-layer gold can be reduced remarkably. For a fixed entire thickness of the double-layer film, there is an optimal proportion of top and bottom layers for which the damage threshold is the highest possible. Also, for increasing the damage threshold, a substrate with higher melting temperature should be chosen

  16. Double-layer appearance after evacuation of a chronic subdural hematoma.

    Science.gov (United States)

    Sucu, Hasan Kamil; Akar, Ömer

    2014-01-01

    To investigate the reason for and the course of the double-layer appearance in the postoperative computed tomographies (CTs) of chronic subdural hematoma (CSDHs). We reviewed CSDH cases that were operated on during the last 3 years, between January 2008 and December 2010. We checked the preoperative, early postoperative, and late postoperative CTs of these patients. We investigated the relationship between the formation of a double-layer appearance and the prognoses and demographic characteristics of the patients. Our database included 119 cases. A double-layer appearance was found in the postoperative CTs of 34 cases. The mean age of double-layer cases was older (72.5 ± 12.1) than that of the remaining 85 cases (63.1 ± 17.8). We did not find any relationship between the double-layer appearance and the reoperation/recurrence/death rates. The double-layer appearance after evacuation of a CSDH might be caused by enlargement of the subarachnoid space and is not related to the presence of any residual hematoma. This appearance is not considered as a reason for reoperation.

  17. Quantum electron-acoustic double layers in two electron species quantum plasma

    Science.gov (United States)

    Sah, Om Prakash

    2009-01-01

    The existence and the characteristic properties of electron-acoustic double layers are investigated in three component unmagnetized dense quantum plasmas consisting of stationary background ions and two electron populations: one "cold" and the other "hot." Using the one-dimensional quantum hydrodynamic model and the reductive perturbation technique, a generalized form of nonlinear quantum Korteweg-de Vries equation governing the dynamics of weak electron acoustic double layers is derived. A stationary solution of this equation is obtained to discuss the existence criteria of different types of double layers and their characteristic properties. It is shown that two types of compressive double layers: one in the lower δ-parameter region and the other at the higher δ-parameter region, along with rarefactive double layers in the intermediate region, may exist, where δ =nec0/neh0 is the ratio of unperturbed cold to hot electron densities. The width, the amplitude, and the velocity of these double layers are significantly affected by the δ-parameter. The relevance of the present investigation is also discussed.

  18. Removal of an Acid Dye from Water Using Calcined and Uncalcined ZnAl-r Anionic Clay.

    Science.gov (United States)

    Bessaha, Hassiba; Bouraada, Mohamed; de Ménorval, Louis Charles

    2017-09-01

      The present report describes the removal of indigo carmine dye from water via adsorption on ZnAl-r hydrotalcite. Two grades of clay based on Zn/Al molar ratios of 3 and 4, uncalcined and calcined, were used. The adsorbents characterization using X-ray diffraction (XRD), Fourier transform infrared (FTIR), differential thermal and thermogravimetric analysis (DTA and TGA, respectively) revealed a layered structure for the hydrotalcite clays, whereas their calcination favored the formation of ZnO and ZnAl2O4 mixed metal oxides. The calcined materials immobilized much larger amounts of indigo carmine dye than the uncalcined layered double hydroxides (LDHs) specimens. The maximum adsorption capacities obey the order: CZnAl-4 (520.8 mg/g) > CZnAl-3 (358.4 mg/g) > ZnAl-3 (67.25 mg/g) > ZnAl-4 (21.65 mg/g). The adsorption isotherms are best described by Langmuir model. The sorption process is spontaneous in nature and its kinetics data are best described by a pseudo-second-order model. Adsorption tests on re-used calcined clays demonstrate its reusability after three thermal cycles.

  19. Cyclotron resonance study of the two-dimensional electron layers and double layers in tilted magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Goncharuk, Natalya; Smrčka, Ludvík; Kučera, Jan

    2004-01-01

    Roč. 22, - (2004), s. 590-593 ISSN 1386-9477. [International Conference on Electronic Properties of Two-Dimensional Systems /15./. Nara, 14.07.2003-18.07.2003] R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : single layer * double layer * two-dimensional electron system * cyclotron resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.898, year: 2004

  20. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    Science.gov (United States)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  1. Efficient Preparation of Nanocrystalline Anatase TiO2 and V/TiO2 Thin Layers Using Microwave Drying and/or Microwave Calcination Technique

    Czech Academy of Sciences Publication Activity Database

    Žabová, Hana; Sobek, Jiří; Církva, Vladimír; Šolcová, Olga; Kment, Štěpán; Hájek, Milan

    2009-01-01

    Roč. 182, č. 12 (2009), s. 3387-3392 ISSN 0022-4596 R&D Projects: GA ČR GA104/07/1212; GA ČR(CZ) GD203/08/H032 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z10100522 Keywords : thin layers * V-doped titanium dioxide * microwaves Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.340, year: 2009

  2. Proton Acceleration with Double-Layer Targets in the Radiation Pressure Dominant Regime

    International Nuclear Information System (INIS)

    Xia Chang-Quan; Deng Ai-Hua; Liu Li; Wang Wen-Tao; Lu Hai-Yang; Wang Cheng; Liu Jian-Sheng

    2011-01-01

    Acceleration of protons by a circularly polarized laser pulse irradiating on a double-layer target is investigated by a theoretical model and particle-in-cell simulations. The target is made up of a heavy ion layer coated with a proton layer on the rear surface. The results show that when the first layer is transparent induced by the hole-boring effect, the whole proton layer is accelerated by the transmitted laser pulse to high energy with low energy spread. The quality of the proton beam generated from a double-layer target is better than that from a single-layer target. The improvement is attributed to the flat top structure of the electrostatic field caused by the electrons injected into the second layer. It is easier to control the spectrum quality by using a double-layer target rather than using a single-layer one when the radiation pressure acceleration is dominant. (fundamental areas of phenomenology(including applications))

  3. SPRAY CALCINATION REACTOR

    Science.gov (United States)

    Johnson, B.M.

    1963-08-20

    A spray calcination reactor for calcining reprocessin- g waste solutions is described. Coaxial within the outer shell of the reactor is a shorter inner shell having heated walls and with open regions above and below. When the solution is sprayed into the irner shell droplets are entrained by a current of gas that moves downwardly within the inner shell and upwardly between it and the outer shell, and while thus being circulated the droplets are calcined to solids, whlch drop to the bottom without being deposited on the walls. (AEC) H03 H0233412 The average molecular weights of four diallyl phthalate polymer samples extruded from the experimental rheometer were redetermined using the vapor phase osmometer. An amine curing agent is required for obtaining suitable silver- filled epoxy-bonded conductive adhesives. When the curing agent was modified with a 47% polyurethane resin, its effectiveness was hampered. Neither silver nor nickel filler impart a high electrical conductivity to Adiprenebased adhesives. Silver filler was found to perform well in Dow-Corning A-4000 adhesive. Two cascaded hot-wire columns are being used to remove heavy gaseous impurities from methane. This purified gas is being enriched in the concentric tube unit to approximately 20% carbon-13. Studies to count low-level krypton-85 in xenon are continuing. The parameters of the counting technique are being determined. The bismuth isotopes produced in bismuth irradiated for polonium production are being determined. Preliminary data indicate the presence of bismuth207 and bismuth-210m. The light bismuth isotopes are probably produced by (n,xn) reactions bismuth-209. The separation of uranium-234 from plutonium-238 solutions was demonstrated. The bulk of the plutonium is removed by anion exchange, and the remainder is extracted from the uranium by solvent extraction techniques. About 99% of the plutonium can be removed in each thenoyltrifluoroacetone extraction. The viscosity, liquid density, and

  4. The influence of the UV irradiation intensity on photocatalytic activity of ZnAl layered double hydroxides and derived mixed oxides

    Directory of Open Access Journals (Sweden)

    Hadnađev-Kostić Milica S.

    2012-01-01

    Full Text Available Layered double hydroxides (LDHs have been studied to a great extent as environmental-friendly complex materials that can be used as photocatalysts or photocatalyst supports. ZnAl layered double hydroxides and their derived mixed oxides were chosen for the investigation of photocatalytic performances in correlation with the UV intensities measured in the South Pannonia region. Low supersaturation coprecipitation method was used for the ZnAl LDH synthesis. For the characterization of LDH and thermal treated samples powder X-ray diffraction (XRD, scanning electron microscopy (SEM, electron dispersive spectroscopy (EDS, nitrogen adsorption-desorption were used. The decomposition of azodye, methylene blue was chosen as photocatalytic test reaction. The study showed that the ZnAl mixed oxide obtained by thermal decomposition of ZnAl LDH has stable activity in the broader UV light irradiation range characterizing the selected region. Photocatalytic activity could be mainly attributed to the ZnO phase, detected both in LDH and thermally treated samples. The study showed that the ZnAl mixed oxide obtained by the calcination of ZnAl LDH has a stable activity within the measured UV light irradiation range; whereas the parent ZnAl LDH catalyst did not perform satisfactory when low UV irradiation intensity is implied.

  5. Arrangements of a pair of loudspeakers for sound field control with double-layer arrays

    DEFF Research Database (Denmark)

    Chang, Jiho; Agerkvist, Finn T.; Olsen, Martin

    2013-01-01

    Recent studies have attempted to control sound fields, and also to reduce room reflections with a circular or spherical array of loudspeakers. One of the attempts was to suppress sound waves propagating to the walls outside the array with a circular double-layer array of loudspeakers. The double-layer...... array represents a set of a monopole and a dipole in the Kirchhoff-Helmholtz integral equation, and thus the distance between these layers should be short compared with the wavelength. In practice, however, this condition is occasionally hard to satisfy because of the sizes of loudspeaker cabinets...

  6. XPS and TEM study of W-DLC/DLC double-layered film

    International Nuclear Information System (INIS)

    Takeno, Takanori; Komiyama, Takao; Miki, Hiroyuki; Takagi, Toshiyuki; Aoyama, Takashi

    2009-01-01

    A double-layered film of tungsten-containing diamond-like carbon (W-DLC) and DLC, (W-DLC)/DLC, was investigated. A film of 1.6 μm in thickness was deposited onto silicon substrate. The investigate double-layered coating was deposited by using the combination of PECVD and co-sputtering of tungsten metal target. Structure, interface and chemical bonding state of the investigated film were analyzed by Transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). From the results of the analyses, the structure of double-layered film is that amorphous phase of carbon is continued from DLC to W-DLC and tungsten metal clusters are dispersed in W-DLC layer.

  7. Thermal decomposition of Co–Al layered double hydroxide ...

    Indian Academy of Sciences (India)

    All other reflections are extinguished on account of. turbostratic disorder which destroys all ℎ reflections and; layer aperiodicity, which destroys all two dimensional ℎ reflections. Given its topochemical relationship with the spinel structure, such an intermediate is a necessary precursor to spinel formation.

  8. NUMERICAL MODELING OF THE PROBLEM OF DOUBLE-LAYER REINFORCEMENT

    Directory of Open Access Journals (Sweden)

    Nizomov Dzhakhongir Nizomovich

    2012-10-01

    The proposed solution is applicable in the lining of tunnels and subterranean structures in rock massifs, as well as galleries arranged in the body of earth dams. It represents two layers of concrete with different values of the modulus of elasticity and Poisson ratio. Tangential stress and reinforcement ring graphs are presented in the article.

  9. One-dimensional magnetophotonic crystals with magnetooptical double layers

    International Nuclear Information System (INIS)

    Berzhansky, V. N.; Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V.; Lukienko, I. N.; Kharchenko, Yu. N.; Golub, V. O.; Salyuk, O. Yu.; Belotelov, V. I.

    2016-01-01

    One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ F and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ F =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ F =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.

  10. One-dimensional magnetophotonic crystals with magnetooptical double layers

    Energy Technology Data Exchange (ETDEWEB)

    Berzhansky, V. N., E-mail: v.n.berzhansky@gmail.com; Shaposhnikov, A. N.; Prokopov, A. R.; Karavainikov, A. V.; Mikhailova, T. V. [V.I. Vernadsky Crimean Federal University (Russian Federation); Lukienko, I. N.; Kharchenko, Yu. N., E-mail: kharcenko@ilt.kharkov.ua [National Academy of Sciences of Ukraine, Verkin Institute for Low Temperature Physics and Engineering (Ukraine); Golub, V. O., E-mail: v-o-golub@yahoo.com; Salyuk, O. Yu. [National Academy of Sciences of Ukraine, Institute of Magnetism (Ukraine); Belotelov, V. I., E-mail: belotelov@physics.msu.ru [Russian Quantum Center (Russian Federation)

    2016-11-15

    One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle Θ{sub F} and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of Θ{sub F} =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are Θ{sub F} =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.

  11. Calcination/dissolution residue treatment

    International Nuclear Information System (INIS)

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O'Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination

  12. Improved Reliability of Small Molecule Organic Solar Cells by Double Anode Buffer Layers

    Directory of Open Access Journals (Sweden)

    Pao-Hsun Huang

    2014-01-01

    Full Text Available An optimized hybrid planar heterojunction (PHJ of small molecule organic solar cells (SM-OSCs based on copper phthalocyanine (CuPc as donor and fullerene (C60 as acceptor was fabricated, which obviously enhanced the performance of device by sequentially using both MoO3 and pentacene as double anode buffer layers (ABL, also known as hole extraction layer (HEL. A series of the vacuum-deposited ABL, acting as an electron and exciton blocking layer, were examined for their characteristics in SM-OSCs. The performance and reliability were compared between conventional ITO/ABL/CuPc/C60/BCP/Ag cells and the new ITO/double ABL/CuPc/C60/BCP/Ag cells. The effect on the electrical properties of these materials was also investigated to obtain the optimal thickness of ABL. The comparison shows that the modified cell has an enhanced reliability compared to traditional cells. The improvement of lifetime was attributed to the idea of double layers to prevent humidity and oxygen from diffusing into the active layer. We demonstrated that the interfacial extraction layers are necessary to avoid degradation of device. That is to say, in normal temperature and pressure, a new avenue for the device within double buffer layers has exhibited the highest values of open circuit voltage (Voc, fill factor (FF, and lifetime in this work compared to monolayer of ABL.

  13. High power laser interaction with single and double layer targets

    Czech Academy of Sciences Publication Activity Database

    Borodziuk, S.; Demchenko, N. N.; Gus'kov, S. Yu.; Jungwirth, Karel; Kálal, M.; Kasperczuk, A.; Kondrashov, V. N.; Králiková, Božena; Krouský, Eduard; Limpouch, Jiří; Mašek, Karel; Pisarczyk, P.; Pisarczyk, T.; Pfeifer, Miroslav; Rohlena, Karel; Rozanov, V. B.; Skála, Jiří; Ullschmied, Jiří

    2005-01-01

    Roč. 35, č. 2 (2005), s. 241-262 ISSN 0078-5466 R&D Projects: GA MŠk(CZ) LN00A100; GA AV ČR(CZ) KSK2043105 Grant - others:EU(XE) HPRI-CT-1999-00053; RFBR(RU) 02-02-16966; IAEA(XE) 11655/RBF; INTAS(XX) 01-0572 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser produced plasma * three-frame interferometry * macroparticle * single and double targets * crater * shock wave * laser energy absorption Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.459, year: 2005

  14. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  15. Improving Breakdown Behavior by Substrate Bias in a Novel Double Epi-layer Lateral Double Diffused MOS Transistor

    International Nuclear Information System (INIS)

    Li Qi; Wang Wei-Dong; Liu Yun; Wei Xue-Ming

    2012-01-01

    A new lateral double diffused MOS (LDMOS) transistor with a double epitaxial layer formed by an n-type substrate and a p-type epitaxial layer is reported (DEL LDMOS). The mechanism of the improved breakdown characteristic is that the high electric field around the drain is reduced by substrate reverse bias, which causes the redistribution of the bulk electric field in the drift region, and the vertical blocking voltage is shared by the drain side and the source side. The numerical results indicate that the trade-off between breakdown voltage and on-resistance of the proposed device is improved greatly in comparison to that of the conventional LDMOS. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Numerical simulation of white double-layer coating with different submicron particles on the spectral reflectance

    International Nuclear Information System (INIS)

    Chai, Jiale; Cheng, Qiang; Si, Mengting; Su, Yang; Zhou, Yifan; Song, Jinlin

    2017-01-01

    The spectral selective coating is becoming more and more popular against solar irradiation not only in keeping the coated objects stay cool but also retain the appearance of the objects by reducing the glare of reflected sunlight. In this work a numerical study is investigated to design the double-layer coating with different submicron particles to achieve better performance both in thermal and aesthetic aspects. By comparison, the performance of double-layer coating with TiO 2 and ZnO particles is better than that with single particles. What's more, the particle diameter, volume fraction of particle as well as substrate condition is also investigated. The results show that an optimized double-layer coating with particles should be the one with an appropriate particle diameter, volume fraction and the black substrate. - Highlights: • The double-layer coating has a great influence on both thermal and aesthetic aspects. • The double-layer coating performs better than the uniform one with single particles. • The volume fraction, particle diameter and substrate conditions are optimized.

  17. Umbilical Cord Mesenchymal Stem Cells Combined With a Collagenfibrin Double-layered Membrane Accelerates Wound Healing.

    Science.gov (United States)

    Nan, Wenbin; Liu, Rui; Chen, Hongli; Xu, Zhihao; Chen, Jiannan; Wang, Manman; Yuan, Zhiqing

    2015-05-01

    The aim of this study was to examine the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) in combination with a collagen-fibrin double-layered membrane on wound healing in mice. A collagen-fibrin double-layered membrane was prepared, and the surface properties of the support material were investigated using a scanning electron microscope. Twenty-four mice were prepared for use as full-thickness skin wound models and randomly divided into 3 groups: group A, a control group in which the wounds were bound using a conventional method; group B, a group treated with hUCMSCs combined with a collagen membrane; and group C, a group treated with hUCMSCs combined with a collagen-fibrin double-layered membrane. The postoperative concrescence of the wounds was observed daily to evaluate the effects of the different treatments. Scanning electron microscope observation showed the collagen-fibrin scaffolds exhibited a highly porous and interconnected structure, and wound healing in the double-layered membrane group was better than in groups A or B. Treatment with hUCMSCs combined with a collagen-fibrin double-layered membrane accelerated wound healing.

  18. Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells.

    Science.gov (United States)

    Yang, Tianshu; Wang, Xiaodong; Liu, Wen; Shi, Yanpeng; Yang, Fuhua

    2013-07-29

    Multilayer anti-reflection (AR) coatings can be used to improve the efficiency of Gallium Arsenide (GaAs) solar cells. We propose an alternate method to obtain optical thin films with specified refractive indices, which is using a self-assembled nanoporous anodic aluminum oxide (AAO) template as an optical thin film whose effective refractive index can be tuned by pore-widening. Different kinds of double-layer AR coatings each containing an AAO layer were designed and investigated by finite difference time domain (FDTD) method. We demonstrate that a λ /4n - λ /4n AR coating consisting of a TiO(2) layer and an AAO layer whose effective refractive index is 1.32 realizes a 96.8% light absorption efficiency of the GaAs solar cell under AM1.5 solar spectrum (400 nm-860 nm). We also have concluded some design principles of the double-layer AR coating containing an AAO layer for GaAs solar cells.

  19. Double-layered ZnO nanostructures for efficient perovskite solar cells

    KAUST Repository

    Mahmood, Khalid

    2014-01-01

    To date, a single layer of TiO2 or ZnO has been the most successful implementations of any electron transport layer (ETL) in solution-processed perovskite solar cells. In a quest to improve the ETL, we explore a new nanostructured double-layer ZnO film for mesoscopic perovskite-based thin film photovoltaics. This approach yields a maximum power conversion efficiency of 10.35%, which we attribute to the morphology of oxide layer and to faster electron transport. The successful implementation of the low-temperature hydrothermally processed double-layer ZnO film as ETL in perovskite solar cells highlights the opportunities to further improve the efficiencies by focusing on the ETL in this rapidly developing field. This journal is

  20. Double-layered ZnO nanostructures for efficient perovskite solar cells

    Science.gov (United States)

    Mahmood, Khalid; S. Swain, Bhabani; Amassian, Aram

    2014-11-01

    To date, a single layer of TiO2 or ZnO has been the most successful implementations of any electron transport layer (ETL) in solution-processed perovskite solar cells. In a quest to improve the ETL, we explore a new nanostructured double-layer ZnO film for mesoscopic perovskite-based thin film photovoltaics. This approach yields a maximum power conversion efficiency of 10.35%, which we attribute to the morphology of oxide layer and to faster electron transport. The successful implementation of the low-temperature hydrothermally processed double-layer ZnO film as ETL in perovskite solar cells highlights the opportunities to further improve the efficiencies by focusing on the ETL in this rapidly developing field.

  1. Double-layer versus single-layer bone-patellar tendon-bone anterior cruciate ligament reconstruction: a prospective randomized study with 3-year follow-up.

    Science.gov (United States)

    Mei, Xiaoliang; Zhang, Zhenxiang; Yang, Jingwen

    2016-12-01

    To evaluate the clinical results of a randomized controlled trial of single-layer versus double-layer bone-patellar tendon-bone (BPTB) anterior cruciate ligament (ACL) reconstruction. Fifty-eight subjects who underwent primary ACL reconstruction with a BPTB allograft were prospectively randomized into two groups: single-layer reconstruction (n = 31) and double-layer reconstruction (n = 27). The following evaluation methods were used: clinical examination, KT-1000 arthrometer measurement, muscle strength, Tegner activity score, Lysholm score, subjective rating scale regarding patient satisfaction and sports performance level, graft retear, contralateral ACL tear, and additional meniscus surgery. Forty-eight subjects (24 in single-layer group and 24 in double-layer group) who were followed up for 3 years were evaluated. Preoperatively, there were no differences between the groups. At 3-year follow-up, the Lachman and pivot-shift test results were better in the double-layer group (P = 0.019 and P reconstruction, double-layer BPTB reconstruction was significantly better than single-layer reconstruction regarding anterior and rotational stability at 3-year follow-up. The results of KT measurements and the Lachman and pivot-shift tests were significantly better in the double-layer group, whereas there was no difference in the anterior drawer test results. The Tegner score was also better in the double-layer group; however, there were no differences in the other subjective findings.

  2. Topotactic Synthesis of Porous Cobalt Ferrite Platelets from a Layered Double Hydroxide Precursor and Their Application in Oxidation Catalysis.

    Science.gov (United States)

    Ortega, Klaus Friedel; Anke, Sven; Salamon, Soma; Özcan, Fatih; Heese, Justus; Andronescu, Corina; Landers, Joachim; Wende, Heiko; Schuhmann, Wolfgang; Muhler, Martin; Lunkenbein, Thomas; Behrens, Malte

    2017-09-12

    Monocrystalline, yet porous mosaic platelets of cobalt ferrite, CoFe 2 O 4 , can be synthesized from a layered double hydroxide (LDH) precursor by thermal decomposition. Using an equimolar mixture of Fe 2+ , Co 2+ , and Fe 3+ during co-precipitation, a mixture of LDH, (Fe II Co II ) 2/3 Fe III 1/3 (OH) 2 (CO 3 ) 1/6 ⋅m H 2 O, and the target spinel CoFe 2 O 4 can be obtained in the precursor. During calcination, the remaining Fe II fraction of the LDH is oxidized to Fe III leading to an overall Co 2+ :Fe 3+ ratio of 1:2 as required for spinel crystallization. This pre-adjustment of the spinel composition in the LDH precursor suggests a topotactic crystallization of cobalt ferrite and yields phase pure spinel in unusual anisotropic platelet morphology. The preferred topotactic relationship in most particles is [111] Spinel ∥[001] LDH . Due to the anion decomposition, holes are formed throughout the quasi monocrystalline platelets. This synthesis approach can be used for different ferrites and the unique microstructure leads to unusual chemical properties as shown by the application of the ex-LDH cobalt ferrite as catalyst in the selective oxidation of 2-propanol. Compared to commercial cobalt ferrite, which mainly catalyzes the oxidative dehydrogenation to acetone, the main reaction over the novel ex-LDH cobalt is dehydration to propene. Moreover, the oxygen evolution reaction (OER) activity of the ex-LDH catalyst was markedly higher compared to the commercial material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Alternative calcination development status report

    International Nuclear Information System (INIS)

    Boardman, R.D.

    1997-12-01

    The Programmatic Spent Nuclear Fuel and (INEEL) Environmental Restoration and Waste Management Programs Environmental Impact Statement Record of Decision, dated June 1, 1995, specifies that high-level waste stored in the underground tanks at the ICPP continue to be calcined while other options to treat the waste are studied. Therefore, the High-Level Waste Program has funded a program to develop new flowsheets to increase the liquid waste processing rate. Simultaneously, a radionuclide separation process, as well as other options, are also being developed, which will be compared to the calcination treatment option. Two alternatives emerged as viable candidates; (1) elevated temperature calcination (also referred to as high temperature calcination), and (2) sugar-additive calcination. Both alternatives were determined to be viable through testing performed in a lab-scale calcination mockup. Subsequently, 10-cm Calciner Pilot Plant scoping tests were successfully completed for both flowsheets. The results were compared to the standard 500 C, high-ANN flow sheet (baseline flowsheet). The product and effluent streams were characterized to help elucidate the process chemistry and to investigate potential environmental permitting issues. Several supplementary tests were conducted to gain a better understanding of fine-particles generation, calcine hydration, scrub foaming, feed makeup procedures, sugar/organic elimination, and safety-related issues. Many of the experiments are only considered to be scoping tests, and follow-up experiments will be required to establish a more definitive understanding of the flowsheets. However, the combined results support the general conclusion that flowsheet improvements for the NWCF are technically viable

  4. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    Science.gov (United States)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  5. Conditions for double layers in the earth's magnetosphere and perhaps in other astrophysical objects

    Science.gov (United States)

    Lyons, L. R.

    1987-01-01

    It is suggested that the features which govern the formation of the double layers are: (1) the divergence of the magnetospheric electric field, (2) the ionospheric conductivity, and (3) the current-voltage characteristics of auroral magnetic field lines. Also considered are conditions in other astrophysical objects that could lead to the formation of DLs in a manner analogous to what occurs in the earth's auroral zones. It is noted that two processes can drive divergent Pedersen currents within a collisional conducting layer: (1) sheared plasma flow applied anywhere along the magnetic field lines connected to the conducting layer and (2) a neutral flow with shear within the conducting layer.

  6. Double-layer neutron shield design as neutron shielding application

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.

  7. Pellet fusion gain calculations modified by electrostatic double layers and by spin polarized nuclei

    International Nuclear Information System (INIS)

    Hora, H.; Cicchitelli, L.; Elijah, J.S.; Ghatak, A.K.; Goldsworthy, M.T.; Lalousis, P.; Eliezer, S.

    1984-01-01

    All preceding hydrodynamic computations of plasmas are wrong if the thermal conductivity is essential because electronic thermal conductivity is decreased in plasma inhomogeneities due to electrostatic double layers. In the worst case, ionic conductivity remains. We compare this with a possible electronic conductivity by the fast tail of the energy distribution. Using the volume ignition for fusion gain computations, we study the increase of gain by spin-polarization of nuclei for the DT reaction especially in non-linear ranges. Gain can increase by a factor 3.1. Contents are the following: electrostatic fields and double layers in inhomogeneous plasma, change of thermal conduction by double layers, consequences for pellet fusion, gain calculation with spin polarized nuclei. (Mori, K.)

  8. Density functional theory of the electrical double layer: the RFD functional

    International Nuclear Information System (INIS)

    Gillespie, Dirk; Valisko, Monika; Boda, Dezso

    2005-01-01

    Density functional theory (DFT) of electrolytes is applied to the electrical double layer under a wide range of conditions. The ions are charged, hard spheres of different size and valence, and the wall creating the double layer is uncharged, weakly charged, and strongly charged. Under all conditions, the density and electrostatic potential profiles calculated using the recently proposed RFD electrostatic functional (Gillespie et al 2002 J. Phys.: Condens. Matter 14 12129; 2003 Phys. Rev. E 68 031503) compare well to Monte Carlo simulations. When the wall is strongly charged, the RFD functional results agree with the results of a simpler perturbative electrostatic DFT, but the two functionals' results qualitatively disagree when the wall is uncharged or weakly charged. The RFD functional reproduces these phenomena of weakly charged double layers. It also reproduces bulk thermodynamic quantities calculated from pair correlation functions

  9. Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor.

    Science.gov (United States)

    Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said

    2017-04-19

    Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.

  10. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation

    OpenAIRE

    Cunha, Vanessa Roberta Rodrigues; de Souza, Rodrigo Barbosa; da Fonseca Martins, Ana Maria Cristina Rebello Pinto; Koh, Ivan Hong Jun; Constantino, Vera Regina Leopoldo

    2016-01-01

    Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule near...

  11. Megavolt parallel potentials arising from double-layer streams in the Earth's outer radiation belt.

    Science.gov (United States)

    Mozer, F S; Bale, S D; Bonnell, J W; Chaston, C C; Roth, I; Wygant, J

    2013-12-06

    Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230,000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1,000,000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100  km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.

  12. Near-infrared electroluminescence from double-emission-layers devices based on Ytterbium (III) complexes

    International Nuclear Information System (INIS)

    Li Zhefeng; Zhang Hongjie; Yu Jiangbo

    2012-01-01

    We investigated near-infrared electroluminescence properties of two lanthanide complexes Yb(PMBP) 3 Bath [PMBP = tris(1-phenyl-3-methyl-4-(4-tert-butylbenzacyl)-5-pyrazolone); Bath = bathophenanthroline] and Yb(PMIP) 3 TP 2 [PMIP = tris(1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone); TP = triphenyl phosphine oxide] by fabricated the double-emission-layers devices. From the device characteristics, it is known that holes are easier to transport in Yb(PMIP) 3 TP 2 layer and electrons are easier to transport in Yb(PMBP) 3 Bath layer, at the same time, both of the two complexes can be acted as emission layers in the device. The recombination region of carriers has been confined in the interface of Yb(PMIP) 3 TP 2 /Yb(PMBP) 3 Bath, and pure Yb 3+ ion characteristic emission centered at 980 nm has been obtained. The device shows the maximum near-infrared irradiance as 14.7 mW/m 2 at the applied voltage of 17.8 V. - Highlights: ► Near-infrared electroluminescent devices with Yb(III) complexes as emission layers. ► Double-emission layer device structure introduced to balance carriers. ► Improved performance of double-emission layer device.

  13. Mg/Al Ordering in Layered Double Hydroxides Revealed by Multinuclear NMR Spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Grey, Clare P.; Sideris, Paul J.

    2008-01-01

    The anion- exchange ability of layered double hydroxides ( LDHs) has been exploited to create materials for use in catalysis, drug delivery, and environmental remediation. The specific cation arrangements in the hydroxide layers of hydrotalcite- like LDHs, of general formula Mg1-x2+Alx3+OH2(Anion...... and aluminum distribution. These data, in combination with H-1-Al-27 double- resonance and Mg-25 triple- quantum MAS NMR data, show that the cations are fully ordered for magnesium: aluminum ratios of 2:1 and that at lower aluminum content, a nonrandom distribution of cations persists, with no Al3+-Al3+ close...

  14. Double-Layered Lateral Meniscus in an 8-Year-Old Child: Report of a Rare Case

    OpenAIRE

    Araki, Susumu; Kubo, Mitsuhiko; Kumagai, Kosuke; Imai, Shinji

    2016-01-01

    Reports of congenital abnormalities of the lateral meniscus include discoid meniscus, accessory meniscus, double-layered meniscus, and ring-shaped meniscus. Particularly, only a few cases of double-layered meniscus have been reported. We report a case of double-layered lateral meniscus, in which an additional semicircular meniscus was observed under the normal lateral meniscus. The accessory hemimeniscus was resected by means of arthroscopic surgery. This case demonstrates an interesting and ...

  15. Expanded graphite—Phenolic resin composites based double layer microwave absorber for X-band applications

    Science.gov (United States)

    Gogoi, Jyoti Prasad; Bhattacharyya, Nidhi Saxena

    2014-11-01

    In this investigation, double layer microwave absorbers are designed and developed with paired combination of 5 wt. %, 7 wt. %, 8 wt. %, and 10 wt. % expanded graphite-novolac phenolic resin (EG-NPR) composites, in the frequency range of 8.2-12.4 GHz. The thickness and compositional combination of the two layers constituting the absorber are optimized to achieve minimum value of reflection loss (dB) and a broad microwave absorption bandwidth. Double layer combinations showing -25 dB absorption bandwidth >2 GHz and -30 dB absorption bandwidth >1 GHz are chosen for fabrication. The total thickness of the fabricated double layer microwave absorber is varied from 3 mm to 3.4 mm. Absorption bandwidths at -10 dB, -20 dB, -25 dB and -30 dB are determined for the fabricated structure. The maximum -25 dB and -30 dB absorption bandwidth of 2.47 GHz and 1.77 GHz, respectively, are observed for the double layer structure with (5 wt. %-8 wt. %) EG-NPR composites with total thickness of 3.2 mm, while -10 dB bandwidth covers the entire X-band range.

  16. Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins

    OpenAIRE

    Jiang, Shu-Dong; Bai, Zhi-Man; Tang, Gang; Song, Lei; Stec, Anna A; Hull, T Richard; Hu, Yuan; Hu, Wei-Zhao

    2014-01-01

    Hierarchical mesoporous silica@Co–Al layered double hydroxide (m-SiO2@Co–Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co–Al LDH, the synthetic m-SiO2@Co–Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co–Al LDH nanosheets. Subsequently, the m-SiO2@Co–Al LDH spheres were incorporate...

  17. Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties

    OpenAIRE

    Ehsan Naderi Kalali; Xin Wanga; De-Yi Wang

    2015-01-01

    Functionalized layered double hydroxides (LDHs) based on a multi-modifier system composed of hydroxypropyl-sulfobutyl-beta-cyclodextrin sodium (sCD), dodecylbenzenesulfonate (DBS) and taurine (T) have been designed and fabricated in this paper, aiming at developing high performance fire retardant epoxy nanocomposites. In this multi-modifier system, sCD was utilized to improve the char yield, DBS was used to enlarge the inter-layer distance of LDH and T was used to enhance the interaction betw...

  18. Observation of negative potential depression on double layer during a phase of current disruption

    International Nuclear Information System (INIS)

    Fujita, H.; Matsuo, K.; Yagura, S.

    1984-01-01

    The negative potential depression with a depth of approximately electron temperature is observed on the low potential tail of the double layer just at the moment when the electron current passing through the layer is disrupted. The depression is confirmed to serve as an electron thermal barrier and form an ion hole from phase-space measurements of electrons and ions, respectively. The depth of the depression becomes maximum when the density around the depression becomes most inhomogeneous. (author)

  19. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity

    OpenAIRE

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-01-01

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the s...

  20. Single-layer versus double-layer laparoscopic intracorporeally sutured gastrointestinal anastomoses in the canine model.

    Science.gov (United States)

    Tavakoli, Azine; Bakhtiari, Jalal; Khalaj, Ali Reza; Gharagozlou, Mohammad Javad; Veshkini, Abbas

    2010-01-01

    The objective of this study was to compare the gross and histopathologic changes following 1- versus 2-layer hand-sewn suture techniques in laparoscopic gastrointestinal anastomosis in dogs. This was an experimental prospective study of 16 healthy mixed breed male and female dogs. Animals were randomly divided into 2 groups. Two-layer side-to-side hand-sewn laparoscopic gastrojejunostomies were performed in group A, so that simple interrupted sutures were placed in the outer layer and simple continuous suture was used in the inner layer. The 1-layer simple continuous anastomosis between the stomach and jejunum was done in group B precisely. Specimen were collected from the sites of anastomosis, and H&E statining was performed for light microscopic studies. All animals survived the surgery. There was no gross inflammation, ischemia, apparent granulation tissue, abscess or fistula formation, leakage or stricture formation, and all sites of anastomosis were patent. Several adhesion formations were found in the abdomen with the higher incidence in the control group. Mean scores of leukocyte infiltration and granulation tissue formation at the sites of anastomosis were statistically insignificant between groups (P>0.05). Gross and histopathologic findings revealed that hand-sewn laparoscopic gastrointestinal anastomosis with the 1-layer suture technique is comparable to the 2-layer suture technique.

  1. Asymptotic theory of double layer and shielding of electric field at the edge of illuminated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S. [Departamento de Física, CCCEE, Universidade da Madeira, Largo do Município, 9000 Funchal (Portugal); Thomas, D. M. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom)

    2014-04-15

    The method of matched asymptotic expansions is applied to the problem of a collisionless plasma generated by UV illumination localized in a central part of the plasma in the limiting case of small Debye length λ{sub D}. A second-approximation asymptotic solution is found for the double layer positioned at the boundary of the illuminated region and for the un-illuminated plasma for the plane geometry. Numerical calculations for different values of λ{sub D} are reported and found to confirm the asymptotic results. The net integral space charge of the double layer is asymptotically small, although in the plane geometry it is just sufficient to shield the ambipolar electric field existing in the illuminated region and thus to prevent it from penetrating into the un-illuminated region. The double layer has the same mathematical nature as the intermediate transition layer separating an active plasma and a collisionless sheath, and the underlying physics is also the same. In essence, the two layers represent the same physical object: a transonic layer.

  2. Hierarchical Supervisor and Agent Routing Algorithm in LEO/MEO Double-layered Optical Satellite Network

    Science.gov (United States)

    Li, Yongjun; Zhao, Shanghong

    2016-09-01

    A novel routing algorithm (Hierarchical Supervisor and Agent Routing Algorithm, HSARA) for LEO/MEO (low earth orbit/medium earth orbit) double-layered optical satellite network is brought forward. The so-called supervisor (MEO satellite) is designed for failure recovery and network management. LEO satellites are grouped according to the virtual managed field of MEO which is different from coverage area of MEO satellite in RF satellite network. In each LEO group, one LEO satellite which has maximal persistent link with its supervisor is called the agent. A LEO group is updated when this optical inter-orbit links between agent LEO satellite and the corresponding MEO satellite supervisor cuts off. In this way, computations of topology changes and LEO group updating can be decreased. Expense of routing is integration of delay and wavelength utilization. HSARA algorithm simulations are implemented and the results are as follows: average network delay of HSARA can reduce 21 ms and 31.2 ms compared with traditional multilayered satellite routing and single-layer LEO satellite respectively; LEO/MEO double-layered optical satellite network can cover polar region which cannot be covered by single-layered LEO satellite and throughput is 1% more than that of single-layered LEO satellite averagely. Therefore, exact global coverage can be achieved with this double-layered optical satellite network.

  3. Probing the electric field in organic double layer-system by optical second harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Eunju; Shibata, Yoshinori; Manaka, Takaaki [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Iwamoto, Mitsumasa, E-mail: iwamoto@ome.pe.titech.ac.j [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2009-11-30

    Optical electric field induced second harmonic generation (EFISHG) measurements were employed to probe the electric field in the active layer of organic field effect transistors (OFETs) and organic light emitting diodes (OLEDs). The OFETs used were double-layered with an active layer of pentacene/poly (3-hexyl thiophene) P3HT on SiO{sub 2} gate insulator with Au source and drain electrodes. It was shown that SHG from the P3HT bottom layer could be selectively probed at a wavelength of 450 nm. Similarly, by using OLEDs comprised of a double layer of Tris(8-hydroxyquinolinato) aluminium (Alq{sub 3}) and N'-di(1-naphthyl)-N,N'-diphenylbenzidine ({alpha}-NPD) with a device structure of indium-zinc oxide (IZO)/{alpha}-NPD/Alq{sub 3}/Al, it was shown that EFISHG from the Alq{sub 3} layer could be selectively probed at a wavelength of 1000 nm by reflective laser beam irradiation from IZO-side. The results show that the spectroscopic nature of materials allows us to selectively probe the electric field distribution in each layer of multi-layer in organic devices.

  4. Improved Efficiency of Polymer Solar Cells by means of Coating Hole Transporting Layer as Double Layer Deposition

    Science.gov (United States)

    Chonsut, T.; Kayunkid, N.; Rahong, S.; Rangkasikorn, A.; Wirunchit, S.; Kaewprajak, A.; Kumnorkaew, P.; Nukeaw, J.

    2017-09-01

    Polymer solar cells is one of the promising technologies that gain tremendous attentions in the field of renewable energy. Optimization of thickness for each layer is an important factor determining the efficiency of the solar cells. In this work, the optimum thickness of Poly(3,4-ethylenedioxythione): poly(styrenesulfonate) (PEDOT:PSS), a famous polymer widely used as hole transporting layer in polymer solar cells, is determined through the analyzing of device’s photovoltaic parameters, e.g. short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) as well as power conversion efficiency (PCE). The solar cells were prepared with multilayer of ITO/PEDOT:PSS/PCDTBT:PC70BM/TiOx/Al by rapid convective deposition. In such preparation technique, the thickness of the thin film is controlled by the deposition speed. The faster deposition speed is used, the thicker film is obtained. Furthermore, double layer deposition of PEDOT:PSS was introduced as an approach to improve solar cell efficiency. The results obviously reveal that, with the increase of PEDOT:PSS thickness, the increments of Jsc and FF play the important role to improve PCE from 3.21% to 4.03%. Interestingly, using double layer deposition of PEDOT:PSS shows the ability to enhance the performance of the solar cells to 6.12% under simulated AM 1.5G illumination of 100 mW/cm2.

  5. Enhancement of double-layer capacitance behavior and its electrical conductivity in layered poly (3, 4-ethylenedioxythiophene)-based nanocomposites

    International Nuclear Information System (INIS)

    Murugan, A. Vadivel; Viswanath, Annamraju Kasi; Campet, Guy; Gopinath, Chinnakonda S.; Vijayamohanan, K.

    2005-01-01

    In this letter, we report on the enhanced double-layer capacitance of a layered poly (3, 4-ethylene dioxythiophene) PEDOT-MoO 3 nanocomposite, which has been synthesized by a novel microwave irradiation method. The x-ray photoelectron spectroscopy analysis shows the changes in electron density and the shift in binding energy suggesting charge transfer from sulfur atoms upon PEDOT intercalation between MoO 3 layers. The room-temperature conductivity for the PEDOT-MoO 3 composite is found to be 1.82x10 -1 S cm -1 , which is four orders of magnitude higher than that of the pristine oxide (3.78x10 -5 S cm -1 ). The enhanced double-layer capacitance of the PEDOT-MoO 3 nanocomposite (∼300 F g -1 ) compared to that (∼40 mF g -1 ) of pristine MoO 3 is attributed to higher electronic conductivity, enhanced bidimensionality, and increase in surface area of the nanocomposite

  6. Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): Characterization and application for crystal violet removal.

    Science.gov (United States)

    Tan, Xiao-Fei; Liu, Yun-Guo; Gu, Yan-Ling; Liu, Shao-Bo; Zeng, Guang-Ming; Cai, Xiaoxi; Hu, Xin-Jiang; Wang, Hui; Liu, Si-Mian; Jiang, Lu-Hua

    2016-12-15

    A novel biochar/MgAl-layered double hydroxides composite (CB-LDH) was prepared for the removal of crystal violet from aqueous solution by pyrolyzing MgAl-LDH pre-coated ramie stem (Boehmeria nivea (L.) Gaud.). Pyrolysis played dual role for both converting biomass into biochar and calcining MgAl-LDH during the pyrolysis process. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and zeta potential analysis were used to characterize the CB-LDH. The results of characterization suggested that the calcined LDH was successfully synthesized and coated on biochar. The resulted CB-LDH had higher total pore volume and more functional groups than the pristine biochar. Adsorption experimental data fitted well with the pseudo-second order kinetics model and the Freundlich isotherm model. The rate-controlled step was controlled by film-diffusion initially and then followed by intra-particle diffusion. Thermodynamic analysis showed that the adsorption of crystal violet was a spontaneous and endothermic process. The higher pH and temperature of the solution enhanced the adsorption performance. CB-LDH could also have excellent ability for the removal of crystal violet from the actual industrial wastewater and groundwater with high ionic strength. LDH adsorption, electrostatic attraction, pore-filling, π-π interaction and hydrogen bond might be the main mechanisms for crystal violet adsorption on CB-LDH. The results of this study indicated that CB-LDH is a sustainable and green adsorbent with high performance for crystal violet contaminated wastewater treatment and groundwater remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Synthesis and Properties of Layered Organic-inorganic Hybrid Material: Zn-Al Layered Double Hydroxide-dioctyl Sulfosuccinate Nanocomposite

    International Nuclear Information System (INIS)

    Mohd Zobir bin Hussein; Tan Kim Hwa

    2000-01-01

    A layered organic-inorganic hybrid nanocomposite was prepared by using a surfactant, dioctyl sulphosuccinate (DSS) as a guest in Zn-Al layered double hydroxide (LDH) inorganic host by a self-assembly technique. The Zn-Al ratio of the mother liquor was kept constant at 4 at the beginning of the synthesis. Powder X-ray diffractogram shows that the basal spacing of the Zn-Al LDH with sulphate as the intergallery anion (ZASUL) expanded from 11.0 to 26.3 A to accommodate the DSS surfactant anion for the formation of the Zn-Al LDH-DSS layered organic-inorganic hybrid nanocomposite (ZADON). It was also found that the BET surface area reduced by about 90%, from 22.5 to 2.2 m 2 /g, for ZASUL and ZADON, respectively if 0.1 M DSS was used for the synthesis of the latter

  8. Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity

    International Nuclear Information System (INIS)

    Lin, Bizhou; Sun, Ping; Zhou, Yi; Jiang, Shaofeng; Gao, Bifen; Chen, Yilin

    2014-01-01

    Graphical abstract: - Highlights: • Two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion. • Effective interfacial heterojunction and high specific surface were observed. • Interstratified nanohybrid exhibits a superior photocatalytic activity. - Abstract: Oppositely charged 2D inorganic nanosheets of ZnAl-layered double hydroxide and layered titanate were successfully assembled into an interstratified nanohybrid through simply mixing the corresponding nanosheet suspensions. Powder X-ray diffraction and high-resolution transmission electron microscope clearly revealed that the component nanosheets in the as-obtained nanohybrid ZnAl–Ti 3 O 7 retain the 2D sheet skeletons of the pristine materials and that the two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion with a basal spacing of about 1.3 nm, coincident with the thickness summation of the two component nanosheets. The effective interfacial heterojunction between them and the high specific surface area resulted in that the nanohybrid exhibits a superior photocatalytic activity in the degradation of methylene blue with a reaction constant k of 2.81 × 10 −2 min −1 , which is about 9 and 4 times higher than its precursors H 2 Ti 3 O 7 and ZnAl-LDH, respectively. Based on UV–vis, XPS and photoelectrochemical measurements, a proposed photoexcitation model was provided to understand its photocatalytic behavior

  9. Formation of Layered Double Hydroxides on Alumina Surface in Aqueous Solutions Containing Divalent Metal Cations

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Mašátová, P.; Novotná, P.; Jirátová, Květa

    2009-01-01

    Roč. 57, č. 4 (2009), s. 425-432 ISSN 0009-8604 R&D Projects: GA ČR GA104/07/1400 Institutional research plan: CEZ:AV0Z40720504 Keywords : deposition * layered double hydroxides * supported mixed oxides Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.431, year: 2009

  10. Facile preparation of layered double hydroxide/MoS{sub 2}/poly(vinyl alcohol) composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Keqing, E-mail: zhoukq@cug.edu.cn [Faculty of Engineering, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan, Hubei, 430074 (China); Hu, Yixin [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Liu, Jiajia [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 (China); Gui, Zhou, E-mail: zgui@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026 (China); Jiang, Saihua [School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641 (China); Tang, Gang [School of Architecture and Civil Engineering, Anhui University of Technology, 59 Hudong Road, Ma' anshan, Anhui, 243002 (China)

    2016-08-01

    In present study, the layered double hydroxide/MoS{sub 2} hybrids are facilely synthesized by self-assembly of exfoliated MoS{sub 2} nanosheets and layered double hydroxide nanoplates via electrostatic interaction, with the aim of combining their physical and chemical functionalities to form a promising nanofiller for flame retardancy in polymer composites. The structure and morphology of the layered double hydroxide/MoS{sub 2} hybrids are probed by X-ray diffraction and transmission electron microscopy. Subsequently, the hybrids are incorporated into poly (vinyl alcohol) to serve as reinforcements. The flame retardant efficiency of MoS{sub 2} nanosheets in poly (vinyl alcohol) is significantly enhanced after the incorporation of layered double hydroxide nanoplates, which can be explained by the forming of a compact and uniform char during combustion. - Highlights: • The LDH/MoS{sub 2} hybrids were facilely synthesized by self-assembly method. • The flame retardant efficiency of LDH/MoS{sub 2} hybrids in PVA was significantly enhanced. • It is a promising strategy for improving the flame retardant efficiency of MoS{sub 2}.

  11. Studies on electrical double layer capacitor with a low-viscosity ionic ...

    Indian Academy of Sciences (India)

    The performance of an electrical double layer capacitor (EDLC) composed of high surface area acti- vated carbon electrodes and a new ... of activated carbon has been achieved with stable cyclic performance. Keywords. Ionic liquid; activated carbon; ..... Academic/Plenum Publishers). Duong T Q 2003 Annual progress ...

  12. Electrical double layer at various electrode potentials: A modification by vibration

    Czech Academy of Sciences Publication Activity Database

    Zhan, H.; Červenka, Jiří; Prawer, S.; Garrett, D.J.

    2017-01-01

    Roč. 121, č. 8 (2017), s. 4760-4764 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : electrical double layer * vibration * high concentration * model Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.536, year: 2016

  13. Sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2012-01-01

    This paper describes a method of generating a controlled sound field for listeners inside a circular array of loudspeakers without disturbing people outside the array appreciably. To achieve this objective, a double-layer array of loudspeakers is used. Several solution methods are suggested...

  14. Electric double layer transistors with ferroelectric BaTiO3 channels

    NARCIS (Netherlands)

    Ito, M.; Matsubara, Y.; Kozuka, Y.; Takahashi, K. S.; Kagawa, F.; Ye, J. T.; Iwasa, Y.; Ueno, K.; Tokura, Y.; Kawasaki, M.

    2014-01-01

    We report the surface conduction of a BaTiO3 thin film using electric double layer transistor (EDLT) structure. A transistor operation was observed at 220 K with an on/off ratio exceeding 10(5), demonstrating that ionic liquid gating is effective to induce carriers at the surface of ferroelectric

  15. Surface wave propagation in a double liquid layer over a liquid ...

    Indian Academy of Sciences (India)

    The frequency equation is derived for surface waves in a liquidsaturated porous half-space supporting a double layer, that of inhomogeneous and homogeneous liquids. Asymptotic approximations of Bessel functions are used for long and short wavelength cases. Certain other problems are discussed as special cases.

  16. Control of sound fields with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2012-01-01

    by the Kirchhoff-Helmholtz integral theorem a double-layer array of loudspeakers is used. Several solution methods are suggested and examined with computer simulations: pure contrast control, pure pressure matching, and a weighted combination. In order to compare the performance of the methods two performance...

  17. Anomalous impact strength for layered double hydroxide-palmitate/poly(e-caprolactone) nanocomposites

    CSIR Research Space (South Africa)

    Moyo, Lumbidzani

    2014-11-01

    Full Text Available is needed in order to transfer this potential into reality, particularly for short-term packaging applications. In this context, layered double hydroxide modified with palmitic acid (LDH-palmitate), was used as a nanoadditive to enhance the mechanical...

  18. Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films

    DEFF Research Database (Denmark)

    Schmidt, Bjørn; Katiyar, Vimal; Plackett, David

    2011-01-01

    Melt-extruded L-polylactide (PLA) nanocomposite films were prepared from commercially available PLA and laurate-modified Mg–Al layered double hydroxide (LDH-C12). Three films were tested for total migration as well as specific migration of LDH, tin, laurate and low molecular weight PLA oligomers...

  19. The electric double layer at high surface potentials: The influence of excess ion polarizability

    NARCIS (Netherlands)

    Hatlo, M. M.|info:eu-repo/dai/nl/412640678; van Roij, R.H.H.G.|info:eu-repo/dai/nl/152978984; Lue, L.

    2012-01-01

    By including the excess ion polarizability into the Poisson-Boltzmann theory, we show that the decrease in differential capacitance with voltage, observed for metal electrodes above a threshold potential, can be understood in terms of thickening of the double layer due to ion-induced polarizability

  20. Sound field separation with a double layer velocity transducer array (L)

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    of the array. The technique has been examined and compared with direct velocity based reconstruction, as well as with a technique based on the measurement of the sound pressure and particle velocity. The double layer velocity method circumvents some of the drawbacks of the pressure-velocity based...

  1. Synthesis and in situ mechanism of nuclei growth of layered double ...

    Indian Academy of Sciences (India)

    A host–guest material such as layered double hydroxide (LDH) has generated immense interest in current research due to its technological importance, whereby its dimension significantly affect its mechanical and other physical properties. The purpose of this study was to prepare Mg/Al-LDHs by systematically varying the ...

  2. Acetyl salicylic acid–ZnAl layered double hydroxide functional nanohybrid for skin care application

    CSIR Research Space (South Africa)

    Mosangi, Damodar

    2016-10-01

    Full Text Available In this study, a pharmaceutically active ingredient, acetyl salicylic acid (ASA), was intercalated into ZnAl layered double hydroxide (LDH). The LDH–ASA nanohybrid material was characterized by XRD, FTIR, SEM, ICP-MS, TEM and TGA. Successful...

  3. Dust-ion-acoustic Gardner double layers in a dusty plasma with two ...

    Indian Academy of Sciences (India)

    Abstract. The properties of dust-ion-acoustic Gardner double layers (DIA GDLs) in an unmag- netized dusty plasma, whose constituents are negatively-charged stationary dust, inertial ions, and. Boltzmann electrons of two distinct temperatures, are rigorously investigated by employing the reductive perturbation method: ...

  4. Hydrothermal Synthesis and Characterization of 3R Polytypes of Mg-Al Layered Double Hydroxides

    NARCIS (Netherlands)

    Budhysutanto, W.N.

    2010-01-01

    Layered Double Hydroxides (LDH) is a unique group of clays that have an anionic exchange capability. This research explored the hydrothermal method as an alternative method to synthesize Mg-Al LDH. It is a simple and more environmentally friendly compared to the conventional method of

  5. Space-charge solitary waves and double layers in n-type ...

    Indian Academy of Sciences (India)

    S BANERJEE

    2018-02-20

    Feb 20, 2018 ... Abstract. Using quantum hydrodynamic (QHD) model and standard reductive perturbation method, we have investigated the formation and characteristics of space-charge solitary waves and double layers in n-type compen- sated drifting semiconductor plasma with varying doping profiles. Through ...

  6. Influence of self-affine roughness on Parsons-Zobel plots for electrical double layers

    NARCIS (Netherlands)

    Palasantzas, G; Backx, GMEA

    In this paper we investigate the dependence of Parsons-Zobel plots on characteristic self-affine roughness parameters of the metal electrode in electrical double layers. Among the roughness amplitude w, the correlation length xi, and roughness exponent H, the latter appears to have the most

  7. Mg-Al layered double hydroxide intercalated with porphyrin anions: molecular simulations and experiments

    Czech Academy of Sciences Publication Activity Database

    Kovář, P.; Pospíšil, M.; Káfuňková, Eva; Lang, Kamil; Kovanda, F.

    2010-01-01

    Roč. 16, č. 2 (2010), s. 223-233 ISSN 1610-2940 R&D Projects: GA ČR(CZ) GA203/06/1244; GA AV ČR KAN100500651 Institutional research plan: CEZ:AV0Z40320502 Keywords : layered double hydroxide * porphyrin * molecular simulations Subject RIV: CA - Inorganic Chemistry Impact factor: 1.871, year: 2010

  8. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria)], E-mail: mouloud-tribeche@lycos.com

    2009-05-11

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  9. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2009-01-01

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  10. Inorganic layered double hydroxides as a 4-hexyl resorcinol delivery system for topical applications

    CSIR Research Space (South Africa)

    Mosangi, Damodar

    2016-08-01

    Full Text Available In this study, the hydrophobic even skin tone active, 4-hexylresorcinol (HR), was intercalated into a zinc aluminium layered double hydroxide (ZnAl-LDH) by a co-precipitation method and used as a controlled release ingredient in skin care...

  11. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  12. Does electrical double layer formation lead to salt exclusion or to uptake?

    NARCIS (Netherlands)

    Lyklema, J.

    2005-01-01

    When electric double layers are formed, cases have been reported where this formation nvolves expulsion of electrolyte into the solution and cases in which electrolyte is absorbed from the solution. Both situations are experimentally and theoretically documented, but they cannot be simultaneously

  13. Apatite formation on calcined kaolin-white Portland cement geopolymer.

    Science.gov (United States)

    Pangdaeng, S; Sata, V; Aguiar, J B; Pacheco-Torgal, F; Chindaprasirt, P

    2015-06-01

    In this study, calcined kaolin-white Portland cement geopolymer was investigated for use as biomaterial. Sodium hydroxide and sodium silicate were used as activators. In vitro test was performed with simulated body fluid (SBF) for bioactivity characterization. The formation of hydroxyapatite bio-layer on the 28-day soaked samples surface was tested using SEM, EDS and XRD analyses. The results showed that the morphology of hydroxyapatite was affected by the source material composition, alkali concentration and curing temperature. The calcined kaolin-white Portland cement geopolymer with relatively high compressive strength could be fabricated for use as biomaterial. The mix with 50% white Portland cement and 50% calcined kaolin had 28-day compressive strength of 59.0MPa and the hydroxyapatite bio-layer on the 28-day soaked sample surface was clearly evident. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity.

    Science.gov (United States)

    Li, Shuangming; Wan, Ying; Fan, Chunhai; Su, Yan

    2017-03-22

    Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO₂) waveguide-based, 36 degree-rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO₃) Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO₂ layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.

  15. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity

    Directory of Open Access Journals (Sweden)

    Shuangming Li

    2017-03-01

    Full Text Available Love wave sensors have been widely used for sensing applications. In this work, we introduce the theoretical analysis of the monolayer and double-layer waveguide Love wave sensors. The velocity, particle displacement and energy distribution of Love waves were analyzed. Using the variations of the energy repartition, the sensitivity coefficients of Love wave sensors were calculated. To achieve a higher sensitivity coefficient, a thin gold layer was added as the second waveguide on top of the silicon dioxide (SiO2 waveguide–based, 36 degree–rotated, Y-cut, X-propagating lithium tantalate (36° YX LiTaO3 Love wave sensor. The Love wave velocity was significantly reduced by the added gold layer, and the flow of wave energy into the waveguide layer from the substrate was enhanced. By using the double-layer structure, almost a 72-fold enhancement in the sensitivity coefficient was achieved compared to the monolayer structure. Additionally, the thickness of the SiO2 layer was also reduced with the application of the gold layer, resulting in easier device fabrication. This study allows for the possibility of designing and realizing robust Love wave sensors with high sensitivity and a low limit of detection.

  16. First steps towards the realization of a double layer perceptron based on organic memristive devices

    Directory of Open Access Journals (Sweden)

    A. V. Emelyanov

    2016-11-01

    Full Text Available Memristors are widely considered as promising elements for the efficient implementation of synaptic weights in artificial neural networks (ANNs since they are resistors that keep memory of their previous conductive state. Whereas demonstrations of simple neural networks (e.g., a single-layer perceptron based on memristors already exist, the implementation of more complicated networks is more challenging and has yet to be reported. In this study, we demonstrate linearly nonseparable combinational logic classification (XOR logic task using a network implemented with CMOS-based neurons and organic memrisitive devices that constitutes the first step toward the realization of a double layer perceptron. We also show numerically the ability of such network to solve a principally analogue task which cannot be realized by digital devices. The obtained results prove the possibility to create a multilayer ANN based on memristive devices that paves the way for designing a more complex network such as the double layer perceptron.

  17. First steps towards the realization of a double layer perceptron based on organic memristive devices

    Science.gov (United States)

    Emelyanov, A. V.; Lapkin, D. A.; Demin, V. A.; Erokhin, V. V.; Battistoni, S.; Baldi, G.; Dimonte, A.; Korovin, A. N.; Iannotta, S.; Kashkarov, P. K.; Kovalchuk, M. V.

    2016-11-01

    Memristors are widely considered as promising elements for the efficient implementation of synaptic weights in artificial neural networks (ANNs) since they are resistors that keep memory of their previous conductive state. Whereas demonstrations of simple neural networks (e.g., a single-layer perceptron) based on memristors already exist, the implementation of more complicated networks is more challenging and has yet to be reported. In this study, we demonstrate linearly nonseparable combinational logic classification (XOR logic task) using a network implemented with CMOS-based neurons and organic memrisitive devices that constitutes the first step toward the realization of a double layer perceptron. We also show numerically the ability of such network to solve a principally analogue task which cannot be realized by digital devices. The obtained results prove the possibility to create a multilayer ANN based on memristive devices that paves the way for designing a more complex network such as the double layer perceptron.

  18. Synthesis of Nitrogen-doped Carbon Nanotubes with Layered ...

    African Journals Online (AJOL)

    Synthesis of Nitrogen-doped Carbon Nanotubes with Layered Double Hydroxides Containing Iron, Cobalt or Nickel as Catalyst Precursors. ... X-ray diffraction was used to characterize the structures of the precursors and their calcined products. Transmission electron microscopy, X-ray photoelectron spectroscopy and ...

  19. Nonlinear Localization due to a Double Negative Defect Layer in a One-Dimensional Photonic Crystal Containing Single Negative Material Layers

    International Nuclear Information System (INIS)

    Ali, Munazza Zulfiqar; Abdullah, Tariq

    2008-01-01

    We investigate the effects of introducing a defect layer in a one-dimensional photonic crystal containing single negative material layers on the transmission properties. The width of the defect layer is taken to be the same or smaller than the period of the structure. Different cases of the defect layer being linear or nonlinear and double positive or double negative are discussed. It is found that only a nonlinear double negative layer gives rises to a localized mode within the zero-φ eff gap in this kind of structure. It is also shown that the important characteristics of the nonlinear defect mode such as its frequency, its FWHM and the threshold of the associated bistability can be controlled by changing the widths of the defect layer and the host layers

  20. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating

    International Nuclear Information System (INIS)

    Zhong, Xinghua; Zhao, Huayu; Zhou, Xiaming; Liu, Chenguang; Wang, Liang; Shao, Fang; Yang, Kai; Tao, Shunyan; Ding, Chuanxian

    2014-01-01

    Highlights: • Gd 2 Zr 2 O 7 /YSZ DCL thermal barrier coating was designed and fabricated. • The Gd 2 Zr 2 O 7 top ceramic layer was toughened by addition of nanostructured 3YSZ. • Remarkable improvement in thermal shock resistance of the DCL coating was achieved. - Abstract: Double-ceramic-layered (DCL) thermal barrier coating system comprising of toughened Gadolinium zirconate (Gd 2 Zr 2 O 7 , GZ) as the top ceramic layer and 4.5 mol% Y 2 O 3 partially-stabilized ZrO 2 (4.5YSZ) as the bottom ceramic layer was fabricated by plasma spraying and thermal shock behavior of the DCL coating was investigated. The GZ top ceramic layer was toughened by addition of nanostructured 3 mol% Y 2 O 3 partially-stabilized ZrO 2 (3YSZ) to improve fracture toughness of the matrix. The thermal shock resistance of the DCL coating was enhanced significantly compared to that of single-ceramic-layered (SCL) GZ-3YSZ composite coating, which is believed to be primarily attributed to the two factors: (i) the increase in fracture toughness of the top ceramic layer by incorporating nanostructured YSZ particles and (ii) the improvement in strain tolerance through the utilization of 4.5YSZ as the bottom ceramic layer. In addition, the failure mechanisms are mainly attributed to the still low fracture toughness of the top ceramic layer and oxidation of the bond-coat

  1. The influence of double nested layer waviness on compression strength of carbon fiber composite materials

    International Nuclear Information System (INIS)

    Khan, Z.M.

    1997-01-01

    As advanced composite materials having superior physical and mechanical properties are being developed, optimization of their production processes in eagerly being sought. One of the most common defect in production of structural composites is layer waviness. Layer waviness is more pronounced in thick section flat and cylindrical laminates that are extensively used in missile casings, submersibles and space platforms. Layer waviness undulates the entire layers of a multidirectional laminate in through-the-thickness direction leading to gross deterioration of its compression strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wave 0 degree centigrade layer fabricated in IM/85510-7 carbon - epoxy composite laminate on a steel mold using single step fabrication procedure. The laminate was cured on a heated press according to specific curing cycle. Static compression testing was performed using NASA short block compression fixture on an MTS servo Hydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of composite laminate. The experimental and analytical results revealed that up to about 35% fraction of wave 0 degree layer exceeded 35%. This analysis indicated that the percentage of 0 degree wavy layer may be used to estimate the reduction in compression strength of a composite laminate under restricted conditions. (author)

  2. Synthesis of Zn–Fe layered double hydroxides via an oxidation process and structural analysis of products

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Kazuya, E-mail: kazuya.morimoto@aist.go.jp [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Tamura, Kenji [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Anraku, Sohtaro [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Sato, Tsutomu [Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Suzuki, Masaya [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Yamada, Hirohisa [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-08-15

    The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. The product derived from the synthesis employing Fe(II) was found to transition to a Zn–Fe(III) layered double hydroxides phase following oxidation process. In contrast, the product obtained with Fe(III) did not contain a layered double hydroxides phase, but rather consisted of simonkolleite and hydrous ferric oxide. It was determined that the valency of the Fe reagent used in the initial synthesis affected the generation of the layered double hydroxides phase. Fe(II) species have ionic radii and electronegativities similar to those of Zn, and therefore are more likely to form trioctahedral hydroxide layers with Zn species. - Graphical abstract: The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. - Highlights: • Iron valency affected the generation of Zn–Fe layered double hydroxides. • Zn–Fe layered double hydroxides were successfully synthesized using Fe(II). • Fe(II) species were likely to form trioctahedral hydroxide layers with Zn species.

  3. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    Science.gov (United States)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  4. Double-atomic layer of Tl on Si(111): Atomic arrangement and electronic properties

    Science.gov (United States)

    Mihalyuk, Alexey N.; Bondarenko, Leonid V.; Tupchaya, Alexandra Y.; Gruznev, Dimitry V.; Chou, Jyh-Pin; Hsing, Cheng-Rong; Wei, Ching-Ming; Zotov, Andrey V.; Saranin, Alexander A.

    2018-02-01

    Metastable double-atomic layer of Tl on Si(111) has recently been found to display interesting electric properties, namely superconductivity below 0.96 K and magnetic-field-induced transition into an insulating phase intermediated by a quantum metal state. In the present work, using a set of experimental techniques, including low-energy electron diffraction, scanning tunneling microscopy, angle-resolved photoelectron spectroscopy, in a combination with density-functional-theory calculations, we have characterized atomic and electronic properties of the Tl double layer on Si(111). The double Tl layer has been concluded to contain ∼ 2.4 monolayer of Tl. A top Tl layer has a '1 × 1' basic structure and displays 6 × 6 moiré pattern which originates from various residence sites of Tl atoms. Upon cooling below ∼ 140 K, the 6 × 6 moiré pattern changes to that having a 6√{ 3} × 6√{ 3} periodicity. However, the experimentally determined electron band dispersions show a 1 × 1 periodicity. The calculated band structure unfolded into the 1 × 1 surface Brillouin zone reproduces well the main features of the photoelectron spectra.

  5. Quasi-Monoenergetic Dense and Uniform Electron Bunch Generation from Laser Driven Double-Layer Thin Films

    Science.gov (United States)

    Wang, C.; Roycroft, R.; McCary, E.; Meadows, A.; Blakeney, J.; Serratto, K.; Kuk, D.; Chester, C.; Gao, L.; Fu, H.; Yan, X. Q.; Schreiber, J.; Pomerantz, I.; Bernstein, A.; Quevedo, H.; Dyer, G.; Gaul, E.; Ditmire, T.; Gautier, D. C.; Fernandez, J.; Hegelich, B. M.

    2014-10-01

    We demonstrate that dense, uniform quasi-monoenergetic relativistic electron bunches can be generated from the interaction of a high-intensity laser pulse with a double-layer thin film target. The first layer of the target is a freestanding, nanometer-scale, diamond-like carbon production layer. The second layer is a thin plastic reflection layer which reflects the drive-laser pulse, but allows electrons to pass through. Although no electron bunch is generated from the second layer alone, by adding it behind the first layer we obtained a quasi-monoenergetic bunch along the laser axis, 35 times denser than a bunch from the single layer target. Comparing the angular distribution of the electron spectra from a double-layer target with that of a single-layer target, we observed an increase of the electron cutoff energy at larger angles, which improves the uniformity of created electron bunches.

  6. The Comparison of Engineering Properties Between Single and Double Layer Porous Asphalt made of Packing Gradation

    Directory of Open Access Journals (Sweden)

    Hardiman M. Y

    2008-01-01

    Full Text Available is paper presents the comparison of engineering properties between single and double layer porous asphalt (SLPA and DLPA made of packing gradation. Three nominal maximum aggregate sizes (NMAS were tested each made up of 10, 14, and 20 mm for SLPA. While for the DLPA with 30, 20, and 15 mm top layer are made of 10 and 14 mm NMAS, with a base layer of 20 mm NMAS. Total thickness of all mixes is 70 mm. Binders used are 60/70 penetration base bitumen and polymer binder styrene-butadiene-styrene (SBS. The result shows that the properties of SLPA mix namely permeability and resistance to abrasion loss decreases when the NMAS in SLPA decreases. The abrasion loss of DLPA mixes increases when the porous asphalt top layer thickness decreases, while drainage time value decreases. However, SLPA with 20 mm NMAS exhibits higher abrasion loss compared to all DLPA mixes.

  7. Evaluation of Double Process Lithography (DPL) with bi-layer photo-resist process for contact layer-patterning

    Science.gov (United States)

    Chen, Gong; Wu, Kevin

    2008-10-01

    Double Process Lithography (DPL) has been widely accepted as a viable printing technique for critical layers at 45nm nodes and below. In addition, DPL technique also allows us to use available process tool-sets with less capability to develop the next node CMOS devices in early research and development stages with additional photo-masks. One practical issue of applying DPL technique is the process crosstalk, which is the impact of the existing etched patterns after the 1st process to the overall lithography performance during the 2nd printing process. In this paper, we evaluated the DPL process for contact holetype patterning with a 193nm silicon-containing bi-layer photo-resist. We explained the bi-layer photoresist process flow and its low process cross-talk characteristics when applied in our DPL process. We also discussed the challenges of printing small contacts in the DPL process. The preliminary experiment results indicated that silicon-containing photo-resist process is a good candidate for DPL process in the contact hole-type of patterns, and it has good characteristics of low process cross-talk. The flexibility of the drydevelop process in bi-layer resist also offered us another way to form small contacts in the substrate film. At the end, we provided some suggestions in contact pattern decomposition algorithm and related exposure-tool alignment strategies for future implementation of DPL technology.

  8. A polygonal double-layer coil design for high-efficiency wireless power transfer

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    In this work, we present a novel coil structure for the design of Wireless Power Transfer (WPT) systems via magnetic resonant coupling. The new coil consists of two layers of flat polygonal windings in square, pentagonal and hexagonal shapes. The double-layer coil can be conveniently fabricated using the print circuit broad (PCB) technology. In our design, we include an angle between the two layers which can be adjusted to change the area of inter-layer overlap. This unique structure is thoroughly investigated with respect to the quality factor Q and the power transfer efficiency (PTE) using the finite element method (FEM). An equivalent circuit is derived and used to explain the properties of the angularly shifted double-layer coil theoretically. Comparative experiments are conducted from which the performance of the new coil is evaluated quantitatively. Our results have shown that an increased shift angle improves the Q-factor, and the optimal PTE is achieved when the angle reaches the maximum. When compared to the pentagonal and hexagonal coils, the square coil achieves the highest PTE due to its lowest parasitic capacitive effects. In summary, our new coil design improves the performance of WPT systems and allows a formal design procedure for optimization in a given application.

  9. Numerical Well Testing Interpretation Model and Applications in Crossflow Double-Layer Reservoirs by Polymer Flooding

    Directory of Open Access Journals (Sweden)

    Haiyang Yu

    2014-01-01

    Full Text Available This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV, permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I wellbore storage section, (II intermediate flow section (transient section, (III mid-radial flow section, (IV crossflow section (from low permeability layer to high permeability layer, and (V systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR.

  10. Degradation of l-polylactide during melt processing with layered double hydroxides

    DEFF Research Database (Denmark)

    Gerds, Nathalie; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    PLA was melt compounded in small-scale batches with two forms of laurate-modified magnesium–aluminum layered double hydroxide (Mg-Al-LDH-C12), the corresponding carbonate form (Mg-Al-LDH-CO3) and a series of other additives. Various methods were then adopted to characterize the resulting compounds...... in an effort to gain greater insights into PLA degradation during melt processing. PLA molecular weight reduction was found to vary according to the type of LDH additive. It is considered that the degree of particle dispersion and LDH exfoliation, and hence the accessibility of the hydroxide layer surfaces...

  11. Anion-exchange membranes derived from quaternized polysulfone and exfoliated layered double hydroxide for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wan; Liang, Na; Peng, Pai; Qu, Rong; Chen, Dongzhi; Zhang, Hongwei, E-mail: hanqiujiang@163.com

    2017-02-15

    Layered double hydroxides (LDH) are prepared by controlling urea assisted homogeneous precipitation conditions. Morphology and crystallinity of LDHs are confirmed by X-ray diffraction and scanning electron microscope. After LDHs are incorporated into quaternized polysulfone membranes, transmission electron microscope is used to observe the exfoliated morphology of LDH sheets in the membranes. The properties of the nanocomposite membranes, including water uptake, swelling ratio, mechanical property and ionic conductivity are investigated. The nanocomposite membrane containing 5% LDH sheets shows more balanced performances, exhibiting an ionic conductivity of 2.36×10{sup −2} S cm{sup −1} at 60 °C. - Graphical abstract: Anion-exchange membrane based on quaternized polysulfone and exfoliated layered double hydroxide is optically transparent and has good ionic properties.

  12. Synthesis and carbon dioxide sorption of layered double hydroxide/silica foam nanocomposites with hierarchical mesostructure

    KAUST Repository

    Fu, Liling

    2014-03-05

    Layered double hydroxides (LDHs) with a hierarchical mesostructure are successfully synthesized on mesoporous silica foams by simple impregnation and hydrothermal treatment. The as-synthesized LDH/silica foam nanocomposites show well-defined mesostructures with high surface areas, large pore volumes, and mesopores of 6-7 nm. The nanocomposites act as carbon dioxide (CO2) sorbents under simulated flue gas conditions. They also exhibit significantly enhanced CO2 capacities under high-pressure conditions and high CO2/N2 and CO2/CH4 selectivities. Respect the hierarchy: Hierarchical mesoporous layered double hydroxide (LDH) nanocomposites with high surface areas and large pore volumes are synthesized by controlled hydrothermal growth of LDH precursors on a mesoporous silica foam. The as-synthesized nanocomposites exhibit a significantly enhanced capacity and selectivity towards carbon dioxide, making them very promising candidates for carbon dioxide (CO2) separation applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil

    International Nuclear Information System (INIS)

    Wang Zhongliang; Wang Enbo; Gao Lei; Xu Lin

    2005-01-01

    A pharmaceutically active compound, 5-fluorouracil (5-FU) has been firstly intercalated into layered double hydroxide with the restructure method. Powder X-ray diffraction and spectroscopic analysis indicate that 5-FU molecule is stabilized in the host interlayer by electrostatic interaction and intermolecular interaction, and that the orientation of 5-FU is different when changing the pattern of aging treatment or the swelling agent. The release studies show that a rapid release of the drug during the first 40min is followed by a more sustained one, and that the total amount of drug released from hybrid material into the aqueous solution is almost 87% and 74% at pH 4 and 7, respectively. The studies mentioned above suggest that layered double hydroxide might be used as the basis of a tunable drug delivery carrier

  14. A New Voltage Balance Circuit using Chopper and Inverter for Electric Double Layer Capacitors

    OpenAIRE

    峯村, 明憲; 後藤, 純一; 金子, 裕良; 阿部, 茂

    2006-01-01

    Electric double layer capacitors(EDLCs) are used in series connection and the voltage balance among EDLCs is important. The voltage balance circuit with inverter has the merits of simple and low cost. However the voltage drop at diodes and transistors impedes the voltage balance operation. We have developed a new voltage balance circuit using chopper and inverter. The chopper steps up the input voltage of inverter to compensate the voltage drop. This paper describes the new voltage balance ci...

  15. Mixed oxides obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Rojka, T.; Dobešová, J.; Machovič, V.; Bezdička, Petr; Obalová, L.; Jirátová, Květa; Grygar, Tomáš

    2006-01-01

    Roč. 179, č. 3 (2006), s. 812-823 ISSN 0022-4596 R&D Projects: GA ČR(CZ) GA104/04/2116; GA ČR(CZ) GA106/05/0366 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40720504 Keywords : layered double hydroxides * hydrotalcite-like compounds * thermal decomposition Subject RIV: CA - Inorganic Chemistry Impact factor: 2.107, year: 2006

  16. Novel electric double-layer capacitor with a coaxial fiber structure.

    Science.gov (United States)

    Chen, Xuli; Qiu, Longbin; Ren, Jing; Guan, Guozhen; Lin, Huijuan; Zhang, Zhitao; Chen, Peining; Wang, Yonggang; Peng, Huisheng

    2013-11-26

    A coaxial electric double-layer capacitor fiber is developed from the aligned carbon nanotube fiber and sheet, which functions as two electrodes with a polymer gel sandwiched between them. The unique coaxial structure enables a rapid transportation of ions between the two electrodes with a high electrochemical performance. These energy storage fibers are also flexible and stretchable, and can be woven into and widely used for electronic textiles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Observation of a current-limited double layer in a linear turbulent-heating device

    International Nuclear Information System (INIS)

    Inuzuka, H.; Torii, Y.; Nagatsu, M.; Tsukishima, T.

    1985-01-01

    Time- and space-resolved measurements of strong double layers (DLs) have been carried out for the first time on a linear turbulent-heating device, together with those of fluctuation spectra and precise current measurements. A stable stong DL is formed even when the electric current through the DL is less than the so-called Bohm value. Discussion of the formation and decay processes is given, indicating a transition from an ion-acoustic DL to a monotonic DL

  18. Characteristics and development report for the MC4169 double-layer capacitor assembly

    Energy Technology Data Exchange (ETDEWEB)

    Clark, N.H.; Baca, W.E.

    1993-09-01

    The MC4169 Double-Layer Capacitor Assembly was developed in response to a request from the B61 Systems organization to provide interim power for the B61 Common JTA Development. The project has been successfully completed, and Lot 1 has been built by MMSC/GEND. Development testing showed that this assembly met all design requirements. This report describes the design configuration, environmental testing, and aging, reliability, and safety studies done to ensure that the design requirements were met.

  19. Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors

    Science.gov (United States)

    Brandon, Erik J.; Smart, Marshall C.; West, William C.

    2011-01-01

    Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent

  20. Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes

    Science.gov (United States)

    Taha Demirkan, Muhammed; Yurukcu, Mesut; Dursun, Burcu; Demir-Cakan, Rezan; Karabacak, Tansel

    2017-10-01

    Double-layer density modulated silicon thin films which contain alternating low and high density Si film layers were fabricated by magnetron sputtering. Two different samples consisting of alternating layers of high-density/low-density and low-density/high-density Si thin film layers were investigated as anode electrodes in Li-ion batteries. Si thin film in which the terminating layer at the top is low density Si layer-quoted as low-density/high-density film (LD/HD)- exhibits better performance than Si thin film that has high density layer at the top, -quoted as high-density/low-density (HD/LD). A highly stabilized cycling performance with the specific charge capacities of 2000 mAh g‑1 at the 150th cycle at C/2 current density, and 1200 mAh g‑1 at the 240th cycle at 10 C current density were observed for the LD/HD Si anode in the presence of fluoroethylene carbonate (FEC) electrolyte additive.

  1. Double-Layer Compressive Sensing Based Efficient DOA Estimation in WSAN with Block Data Loss.

    Science.gov (United States)

    Sun, Peng; Wu, Liantao; Yu, Kai; Shao, Huajie; Wang, Zhi

    2017-07-22

    Accurate information acquisition is of vital importance for wireless sensor array network (WSAN) direction of arrival (DOA) estimation. However, due to the lossy nature of low-power wireless links, data loss, especially block data loss induced by adopting a large packet size, has a catastrophic effect on DOA estimation performance in WSAN. In this paper, we propose a double-layer compressive sensing (CS) framework to eliminate the hazards of block data loss, to achieve high accuracy and efficient DOA estimation. In addition to modeling the random packet loss during transmission as a passive CS process, an active CS procedure is introduced at each array sensor to further enhance the robustness of transmission. Furthermore, to avoid the error propagation from signal recovery to DOA estimation in conventional methods, we propose a direct DOA estimation technique under the double-layer CS framework. Leveraging a joint frequency and spatial domain sparse representation of the sensor array data, the fusion center (FC) can directly obtain the DOA estimation results according to the received data packets, skipping the phase of signal recovery. Extensive simulations demonstrate that the double-layer CS framework can eliminate the adverse effects induced by block data loss and yield a superior DOA estimation performance in WSAN.

  2. Low Temperature Double-layer Capacitors with Improved Energy Density: An Overview of Recent Development Efforts

    Science.gov (United States)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Yushin, Gleb; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek

    2012-01-01

    Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.

  3. Facile synthesis of deoxycholate intercalated layered double hydroxide nanohybrids via a coassembly process

    International Nuclear Information System (INIS)

    Wu, Xiaowen; Wang, Shuang; Du, Na; Zhang, Renjie; Hou, Wanguo

    2013-01-01

    In this paper, we describe a synthesis strategy of deoxycholate (DC) intercalated layered double hydroxide (LDH) nanohybrids via a coassembly method at room temperature. For this strategy, LDH particles were delaminated to well-dispersed 2D nanosheets in formamide, and the resulting LDH nanosheets were then coassembled with DC anions into the DC intercalated LDH (DC-LDH) nanohybrids. The so-synthesized nanohybrids were characterized by XRD, TEM, FT-IR, elemental analyses and TG-DSC. It was found that the loading amount of DC in the nanohybrids could be easily controlled by changing the ratio of DC to LDH. In addition, the nanohybrids have similar characteristics with the DC-LDH nanohybrids synthesized by the hydrothermal method, including their DC loading, crystal structure, morphology and thermal gravimetric behavior. However, this strategy exhibited the advantages of short reaction time and mild experimental conditions compared with the hydrothermal method. - Graphical abstract: Deoxycholate intercalated layered double hydroxide nanohybrids were successfully synthesized via a coassembly strategy. In this strategy, the interlayer spaces of LDHs can be efficiently used for the intercalation of guest species. - Highlights: • Deoxycholate intercalated layered double hydroxide nanohybrids were synthesized via a coassembly strategy. • This strategy exhibited the advantages of short time and mild conditions. • This strategy can enable organic species to be readily intercalated into the LDH galleries

  4. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    International Nuclear Information System (INIS)

    Gao, Xiaorui; Lei, Lixu; O'Hare, Dermot; Xie, Juan; Gao, Pengran; Chang, Tao

    2013-01-01

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO 3 2− solutions imply that Mg 3 Al–VC LDH is a better controlled release system than Mg 3 Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO 3 2− solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO 3 2− solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO 3 2− solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO 3 2− solution

  5. Ionic double layer of atomically flat gold formed on mica templates

    International Nuclear Information System (INIS)

    Chilcott, Terry C.; Wong, Elicia L.S.; Coster, Hans G.L.; Coster, Adelle C.F.; James, Michael

    2009-01-01

    Electrical impedance spectroscopy characterisations of gold surfaces formed on mica templates in contact with potassium chloride electrolytes were performed at the electric potential of zero charge over a frequency range of 6 x 10 -3 to 100 x 10 3 Hz. They revealed constant-phase-angle (CPA) behaviour with a frequency exponent value of 0.96 for surfaces that were also characterised as atomically flat using atomic force microscopy (AFM). As the frequency exponent value was only marginally less than unity, the CPA behaviour yielded a realistic estimate for the capacitance of the ionic double layer. The retention of the CPA behaviour was attributed to specific adsorption of chloride ions which was detected as an adsorption conductance element in parallel with the CPA impedance element. Significant variations in the ionic double layer capacitance as well as the adsorption conductance were observed for electrolyte concentrations ranging from 33 μM to 100 mM, but neither of these variations correlated with concentration. This is consistent with the electrical properties of the interface deriving principally from the inner or Stern region of the double layer.

  6. The performance of double layer structure membrane prepared from flowing coagulant

    Science.gov (United States)

    Mieow Kee, Chan; Xeng, Anthony Leong Chan; Regal, Sasiskala; Singh, Balvinder; Raoo, Preeshaath; Koon Eu, Yap; Sok Choo, Ng

    2017-12-01

    Membrane with double layer structure is favourable as it exhibits smooth surface and macrovoids free structure. However, its’ performance in terms of permeability, porosity and strength has not been studied thoroughly. Additionally, the effect of flowing coagulant on the formation of double layer membrane has not been reported. Thus, the objective of this study is to investigate the performance of double layer membranes, which were prepared using flowing coagulant. Results showed that when the coagulant flow changed from laminar to turbulent, the pure water permeation of the membrane increased. It was due to the higher porosity in the membrane, which prepared by turbulent flow (CA-Turbulent) compared to the membrane which fabricated under laminar condition (CA-Laminar). This can be explained by the rapid solvent-coagulant exchange rate between the polymer solution and the turbulent coagulant. In term of strength, the tensile strength of the CA-Turbulent was ~32 MPa, which was 100% higher compared to CA-Laminar. This may due to the presence of large amount of nodules on its surface, which reduced the surface integrity. In conclusion, flowing coagulant altered the membrane properties and adopting turbulent coagulant flow in membrane fabrication would improve the porosity, surface roughness and the strength of the membrane.

  7. CO2 capture at low temperatures (30-80 °C) and in the presence of water vapor over a thermally activated Mg-Al layered double hydroxide.

    Science.gov (United States)

    Torres-Rodríguez, Daniela A; Lima, Enrique; Valente, Jaime S; Pfeiffer, Heriberto

    2011-11-10

    The carbonation process of a calcined Mg-Al layered double hydroxide (LDH) was systematically analyzed at low temperatures, varying the relative humidity. Qualitative and quantitative experiments were performed. In a first set of experiments, the relative humidity was varied while maintaining a constant temperature. Characterization of the rehydrated products by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and solid-state NMR revealed that the samples did not recover the LDH structure; instead hydrated MgCO(3) was produced. The results were compared with similar experiments performed on magnesium oxide for comparison purposes. Then, in the second set of experiments, a kinetic analysis was performed. The results showed that the highest CO(2) capture was obtained at 50 °C and 70% of relative humidity, with a CO(2) absorption capacity of 2.13 mmol/g.

  8. Tailoring the properties of magnetite nanoparticles clusters by coating with double inorganic layers

    Energy Technology Data Exchange (ETDEWEB)

    Petran, Anca [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca (Romania); Radu, Teodora, E-mail: teodora.radu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca (Romania); Culic, Bogdan [Faculty of Dental Medicine,Iuliu Hatieganu University of Medicine and Pharmacy, 32 Clinicilor Str., 400006 Cluj-Napoca (Romania); Turcu, Rodica, E-mail: rodica.turcu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca (Romania)

    2016-12-30

    Highlights: • New magnetite clusters covered with inorganic oxides double layers. • Coating layers influence on the surface properties of the magnetic clusters. • Color parameters assessment for the inorganic oxides coated magnetic clusters. • High magnetization clusters with appropiate color for magnetic security paper. - Abstract: New magnetic nanoparticles based on Fe{sub 3}O{sub 4} clusters covered with a double layer of inorganic salts/oxides with high magnetization for incorporation in security materials such as security paper were synthesized. For the inorganic layers ZnO, SiO{sub 2} and BaSO{sub 4} were used. The microstructure and composition of the products were determined by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS). Magnetization measurements on the obtained samples show a straightforward correlation between the saturation magnetization (M{sub s}) and morphology of the samples. The results obtained from color parameter assessment are discussed in relation with the morphology and microstructure of the prepared samples.

  9. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries

    Science.gov (United States)

    Zhao, Meng-Qiang; Zhang, Qiang; Huang, Jia-Qi; Tian, Gui-Li; Nie, Jing-Qi; Peng, Hong-Jie; Wei, Fei

    2014-03-01

    Preventing the stacking of graphene is essential to exploiting its full potential in energy-storage applications. The introduction of spacers into graphene layers always results in a change in the intrinsic properties of graphene and/or induces complexity at the interfaces. Here we show the synthesis of an intrinsically unstacked double-layer templated graphene via template-directed chemical vapour deposition. The as-obtained graphene is composed of two unstacked graphene layers separated by a large amount of mesosized protuberances and can be used for high-power lithium-sulphur batteries with excellent high-rate performance. Even after 1,000 cycles, high reversible capacities of ca. 530 mA h g-1 and 380 mA h g-1 are retained at 5 C and 10 C, respectively. This type of double-layer graphene is expected to be an important platform that will enable the investigation of stabilized three-dimensional topological porous systems and demonstrate the potential of unstacked graphene materials for advanced energy storage, environmental protection, nanocomposite and healthcare applications.

  10. Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2017-08-01

    In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.

  11. Effect of double-layer application on bond quality of adhesive systems.

    Science.gov (United States)

    Fujiwara, Satoshi; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Imai, Arisa; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Nakatsuka, Toshiyuki; Miyazaki, Masashi

    2018-01-01

    The aim of this study was to determine the effect of double-layer application of universal adhesives on the bond quality and compare to other adhesive systems. Two universal adhesives used were in this study: Scotchbond Universal (SU), [3M ESPE] and Prime & Bond elect (PE), [Dentsply Caulk]. The conventional single-step self-etch adhesives G-ӕnial Bond (GB), [GC Corporation.] and BeautiBond (BB), [Shofu Inc.], and a two-step self-etch adhesive, Optibond XTR (OX), [Kerr Corporation], were used as comparison adhesives. Shear bond strengths (SBS) and shear fatigue strengths (SFS) to human enamel and dentin were measured in single application mode and double application mode. For each test condition, 15 specimens were prepared for SBS testing and 30 specimens for SFS testing. Enamel and dentin SBS of the universal adhesives in the double application mode were significantly higher than those of the single application mode. In addition, the universal adhesives in the double application mode had significantly higher dentin SFS values than those of the single application mode. The two-step self-etch adhesive OX tended to have lower bond strengths in the double application mode, regardless of the test method or adherent substrate. The double application mode is effective in enhancing SBS and SFS of universal adhesives, but not conventional two-step self-etch adhesives. These results suggest that, although the double application mode may enhance the bonding quality of a universal adhesive, it may be counter-productive for two-step self-etch adhesives in clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Control strategy on the double-diffusive convection in a nanofluid layer with internal heat generation

    Science.gov (United States)

    Mokhtar, N. F. M.; Khalid, I. K.; Siri, Z.; Ibrahim, Z. B.; Gani, S. S. A.

    2017-10-01

    The influences of feedback control and internal heat source on the onset of Rayleigh-Bénard convection in a horizontal nanofluid layer is studied analytically due to Soret and Dufour parameters. The confining boundaries of the nanofluid layer (bottom boundary-top boundary) are assumed to be free-free, rigid-free, and rigid-rigid, with a source of heat from below. Linear stability theory is applied, and the eigenvalue solution is obtained numerically using the Galerkin technique. Focusing on the stationary convection, it is shown that there is a positive thermal resistance in the presence of feedback control on the onset of double-diffusive convection, while there is a positive thermal efficiency in the existence of internal heat generation. The possibilities of suppress or augment of the Rayleigh-Bénard convection in a nanofluid layer are also discussed in detail.

  13. A double-layer based model of ion confinement in electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Neri, L.; Celona, L.; Castro, G.; Gammino, S.; Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Via Graziella, I-89100 Reggio Calabria (Italy); Sorbello, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica, Viale Andrea Doria 6, 95125 Catania (Italy)

    2014-02-15

    The paper proposes a new model of ion confinement in ECRIS, which can be easily generalized to any magnetic configuration characterized by closed magnetic surfaces. Traditionally, ion confinement in B-min configurations is ascribed to a negative potential dip due to superhot electrons, adiabatically confined by the magneto-static field. However, kinetic simulations including RF heating affected by cavity modes structures indicate that high energy electrons populate just a thin slab overlapping the ECR layer, while their density drops down of more than one order of magnitude outside. Ions, instead, diffuse across the electron layer due to their high collisionality. This is the proper physical condition to establish a double-layer (DL) configuration which self-consistently originates a potential barrier; this “barrier” confines the ions inside the plasma core surrounded by the ECR surface. The paper will describe a simplified ion confinement model based on plasma density non-homogeneity and DL formation.

  14. Interactions Between Biological Cells and Layered Double Hydroxides: Towards Functional Materials.

    Science.gov (United States)

    Forano, Claude; Bruna, Felipe; Mousty, Christine; Prevot, Vanessa

    2018-03-08

    This review highlights the current research on the interactions between biological cells and Layered Double Hydroxides (LDH). The as-prepared biohybrid materials appear extremely attractive in diverse fields of application relating to health care, environment and energy production. We describe how thanks to the main features of biological cells and LDH layers, various strategies of assemblies can be carried out for constructing smart biofunctional materials. The interactions between the two components are described with a peculiar attention to the adsorption, biocompatibilization, LDH layer internalization, antifouling and antimicrobial properties. The most significant achievements including authors' results, involving biological cells and LDH assemblies in waste water treatment, bioremediation and bioenergy generation are specifically addressed. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation.

    Directory of Open Access Journals (Sweden)

    San Kyeong

    Full Text Available Superparamagnetic Fe3O4 nanoparticles (NPs based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules.

  16. Efficient InGaP/GaAs DJ solar cell with double back surface field layer

    Directory of Open Access Journals (Sweden)

    G.P. Mishra

    2015-09-01

    Full Text Available An effective and optimised BSF layer is an important layer in both single junction and multijunction solar cells. In this work the use of the double layer BSF for top cell with their varied thicknesses is investigated on GaInP/GaAs DJ solar cell using the computational numerical modelling TCAD tool Silvaco ATLAS. The detail photo-generation rates are determined. The major modelling stages are described and the simulation results are validated with published experimental data in order to describe the accuracy of our results produced. For this optimized cell structure, the maximum Jsc = 17.33 mA/cm2, Voc = 2.66 V, and fill factor (FF = 88.67% are obtained under AM1.5G illumination, exhibiting a maximum conversion efficiency of 34.52% (1 sun and 39.15% (1000 suns.

  17. Summary of Waste Calcination at INTEC

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Barry Henry; Newby, Bill Joe

    2000-10-01

    Fluidized-bed calcination at the Idaho Nuclear Technologies and Engineering Center (INTEC, formally called the Idaho Chemical Processing Plant) has been used to solidify acidic metal nitrate fuel reprocessing and incidental wastes wastes since 1961. A summary of waste calcination in full-scale and pilot plant calciners has been compiled for future reference. It contains feed compositions and operating conditions for all the processing campaigns for the original Waste Calcining Facility (WCF), the New Waste Calcining Facility (NWCF) started up in 1982, and numerous small scale pilot plant tests for various feed types. This summary provides a historical record of calcination at INTEC, and will be useful for evaluating calcinability of future wastes.

  18. Facile synthesis of monodisperse polymer/SiO2/polymer/TiO2 tetra-layer microspheres and the corresponding double-walled hollow SiO2/TiO2 microspheres.

    Science.gov (United States)

    Zhang, Han; Zhang, Xu; Yang, Xinlin

    2010-08-15

    Monodisperse tetra-layer poly(ethyleneglycol dimethacrylate-co-methacrylic acid) (P(EGDMA-co-MAA))/SiO(2)/P(EGDMA-co-MAA)/TiO(2) tetra-layer microspheres were facilely synthesized by the combination of the distillation precipitation polymerization for the preparation of P(EGDMA-co-MAA) layers and the controlled sol-gel hydrolysis of inorganic precursors for the formation of silica (SiO(2)) and titania (TiO(2)) layers. The thickness of the outer titania shell-layer was well-controlled via altering the feed of titanium tetrabutoxide (TBOT) during the sol-gel hydrolysis, while the size of polymeric layers were facilely controlled via a multi-step addition of ethyleneglycol dimethacrylate (EGDMA) crosslinker and methacrylic acid (MAA) monomer during the polymerization. The corresponding double-walled hollow inorganic microspheres containing SiO(2) inner shell and TiO(2) outer shell with various thickness were obtained after the selective removal of P(EGDMA-co-MAA) components via the calcination of the tetra-layer polymer/SiO(2)/polymer/TiO(2) microspheres under 550 degrees C for 4 h in air. The structure and morphology of the resultant microspheres were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), X-ray photoelectron microscopy (XPS), and thermogravimetric analysis (TGA). Further, the photocatalytic properties of the resultant double-walled hollow SiO(2)/TiO(2) microspheres were studied by photocatalytic degradation of methyl orange (MO) with ultraviolet (UV) irradiation of a 500 W high-pressure mercury lamp. Copyright 2010 Elsevier Inc. All rights reserved.

  19. A "counter-charge layer in generalized solvents" framework for electrical double layers in neat and hybrid ionic liquid electrolytes.

    Science.gov (United States)

    Feng, Guang; Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Qiao, Rui

    2011-08-28

    Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure-capacitance relationships for the EDLs of these systems. Here we present a theoretical framework termed "counter-charge layer in generalized solvents" (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment--the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion-ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominantly by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF(4)]) and in a mixture of [BMIM][BF(4)] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF(4)]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture

  20. Gold Nanoparticles on Layered Double Hydroxide Nanosheets and Its Electrocatalysis for Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hye Ran; Lee, Jong Hyeon [The Catholic University of Korea, Bucheon (Korea, Republic of); Cho, Se Hee; Ji, Hong Geun [H and A PharmaChem, Bucheon (Korea, Republic of)

    2016-03-15

    We developed a new way to form the well-defined nanocomposite of Au NPs and exfoliated LDH nanosheet by in situ chemical reduction with NaBH{sub 4}. The optical and structural studies indicate that the Au NPs are highly dispersed and immobilized on the surface of LDH nanosheets. The Au/LDH nanosheet exhibited an excellent electrocatalysis toward glucose oxidation reaction. The results strongly demonstrate that the nanoscopic natures and dense positive charges of LDH nanosheet effectively stabilized the Au NPs to maintain their inherent properties during the synthesis and the electrocatalysis. The use of the double hydroxide nanosheets as nanoscopic support materials for the transition-metal NPs will dramatically improve their functionalities in heterogeneous catalysis. Recently, two-dimensional nanosheet of exfoliated layered double hydroxide (LDH) has emerged as a new type of solid support to immobilize the diverse metal NPs because of the large metal hydroxide area, good biochemical stability, and highly charged positive potential of 1- to 2-nm thick LDH layers. LDHs consist of a continuous stack of positively charged metal hydroxide layers with counter anions and water molecules placed in interlayer spaces.

  1. A model for the electrical double layer combining integral equation techniques with quantum density functional theory

    International Nuclear Information System (INIS)

    Luque, N.B.; Woelki, S.; Henderson, D.; Schmickler, W.

    2011-01-01

    Highlights: · We augment a double-layer model based on integral equations by calculating the interaction parameters with the electrode from quantum density functional theory · Explicit model calculations for Ag(1 1 1) in aqueous solutions give at least qualitatively good results for the particle profiles · Ours is the only method which allows the calculation of capacity-charge characteristics. · We obtain reasonable values for the Helmholtz (inner-layer) capacity. - Abstract: We have complemented the singlet reference interaction site model for the electric double layer by quantum chemical calculations for the interaction of ions and solvents with an electrode. Specific calculations have been performed for an aqueous solution of NaCl in contact with a Ag(1 1 1) electrode. The particle profiles near the electrode show the specific adsorption of Cl - ions, but not of Na + , and are at least in qualitative agreement with those obtained by molecular dynamics. Including the electronic response of the silver surface into the model results in reasonable capacity-charge characteristics.

  2. Anisotropic hybrid excitation modes in monolayer and double-layer phosphorene on polar substrates

    Science.gov (United States)

    Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.

    2017-09-01

    We investigate the anisotropic hybrid surface optical (SO) phonon-plasmon dispersion relations in monolayer and double-layer phosphorene systems located on the polar substrates, such as SiO2, h -BN, and Al2O3 . We calculate these hybrid modes by using the dynamical dielectric function in the random phase approximation in which the electron-electron interaction and long-range electric field generated by the substrate SO phonons via Fröhlich interaction are taken into account. In the long-wavelength limit, we obtain some analytical expressions for the hybrid SO phonon-plasmon dispersion relations which agree with those obtained from the loss function. Our results indicate a strong anisotropy in SO phonon-plasmon modes, which are stronger along the light-mass direction in our heterostructures. Furthermore, we find that the type of substrate has a significant effect on the dispersion relations of the coupled modes. Importantly, the hybrid excitations are apparently sensitive to the misalignment and separation between layers in double-layer phosphorene.

  3. Cost-Effective Double-Layer Hydrogel Composites for Wound Dressing Applications

    Directory of Open Access Journals (Sweden)

    Javad Tavakoli

    2018-03-01

    Full Text Available Although poly vinyl alcohol-poly acrylic acid (PVA-PAA composites have been widely used for biomedical applications, their incorporation into double-layer assembled thin films has been limited because the interfacial binding materials negatively influence the water uptake capacity of PVA. To minimize the effect of interfacial binding, a simple method for the fabrication of a double-layered PVA-PAA hydrogel was introduced, and its biomedical properties were evaluated in this study. Our results revealed that the addition of PAA layers on the surface of PVA significantly increased the swelling properties. Compared to PVA, the equilibrium swelling ratio of the PVA-PAA hydrogel increased (p = 0.035 and its water vapour permeability significantly decreased (p = 0.04. Statistical analysis revealed that an increase in pH value from 7 to 10 as well as the addition of PAA at pH = 7 significantly increased the adhesion force (p < 0.04. The mechanical properties—including ultimate tensile strength, modulus, and elongation at break—remained approximately untouched compared to PVA. A significant increase in biocompatibility was found after day 7 (p = 0.016. A higher release rate for tetracycline was found at pH = 8 compared to neutral pH.

  4. Highly Durable Direct Methanol Fuel Cell with Double-Layered Catalyst Cathode

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-01-01

    Full Text Available Polymer electrolyte membrane (PEM is one of the key components in direct methanol fuel cells. However, the PEM usually gets attacked by reactive oxygen species during the operation period, resulting in the loss of membrane integrity and formation of defects. Herein, a double-layered catalyst cathode electrode consisting of Pt/CeO2-C as inner catalyst and Pt/C as outer catalyst is fabricated to extend the lifetime and minimize the performance loss of DMFC. Although the maximum power density of membrane electrode assembly (MEA with catalyst cathode is slightly lower than that of the traditional one, its durability is significantly improved. No obvious degradation is evident in the MEA with double-layered catalyst cathode within durability testing. These results indicated that Pt/CeO2-C as inner cathode catalyst layer greatly improved the stability of MEA. The significant reason for the improved stability of MEA is the ability of CeO2 to act as free-radical scavengers.

  5. Acoustic transmission resonance and suppression through double-layer subwavelength hole arrays

    International Nuclear Information System (INIS)

    Liu Zhifeng; Jin Guojun

    2010-01-01

    We present a theoretical study of acoustic waves passing through double-layer subwavelength hole arrays. The acoustic transmission resonance and suppression are observed. There are three mechanisms responsible for the transmission resonance: the excitation of geometrically induced acoustic surface waves, the Fabry-Perot resonance in a hole cavity (I-FP resonance) and the Fabry-Perot resonance between two plates (II-FP resonance). We can differentiate these mechanisms via the dispersion relation of acoustic modes supported by the double-layer structure. It is confirmed that the coupling between two single-layer perforated plates, associated with longitudinal interval and lateral displacement, plays a crucial role in modulating the transmission properties. The strong coupling between two plates can induce the splitting of the transmission peak, while the decoupling between plates leads to the appearance of transmission suppression. By analyzing the criterion derived for transmission suppression, we conclude that it is the destructive interference between the diffracted waves and the direct transmission waves assisted by the I-FP resonance of the first plate that leads to the decoupling between plates and then the transmission suppression.

  6. Thermal buckling of double-layered graphene system in humid environment

    Science.gov (United States)

    Sobhy, Mohammed; Zenkour, Ashraf M.

    2018-01-01

    In this paper, the effect of humidity conditions on thermal buckling analysis of graphene system contained two layers under different boundary conditions is investigated. The two-variable shear deformation plate theory is employed with the nonlocal continuum theory to deduce the governing stability equations. These equations are solved analytically to obtain the thermal buckling of the nanoplate system with simply supported, clamped and free boundary conditions. The present system of double-layered graphene sheets is composed from two sheets of graphene joined together by an elastic medium and hedged by two-parameter foundations. The external foundations are modeled as Winkler-Pasternak model. Two characteristic types of thermal buckling are considered: synchronous and asynchronous modes of buckling. The temperature rise and moisture concentration are assumed as a fixed, linear or nonlinear function of z (along the thickness direction). For the validation of the formulations, the present results are compared with those published in the references. Furthermore, the influences of the nonlocal parameter, humidity and other parameters on thermal buckling of double-layered graphene system are all discussed.

  7. A Sarsa(λ Algorithm Based on Double-Layer Fuzzy Reasoning

    Directory of Open Access Journals (Sweden)

    Quan Liu

    2013-01-01

    Full Text Available Solving reinforcement learning problems in continuous space with function approximation is currently a research hotspot of machine learning. When dealing with the continuous space problems, the classic Q-iteration algorithms based on lookup table or function approximation converge slowly and are difficult to derive a continuous policy. To overcome the above weaknesses, we propose an algorithm named DFR-Sarsa(λ based on double-layer fuzzy reasoning and prove its convergence. In this algorithm, the first reasoning layer uses fuzzy sets of state to compute continuous actions; the second reasoning layer uses fuzzy sets of action to compute the components of Q-value. Then, these two fuzzy layers are combined to compute the Q-value function of continuous action space. Besides, this algorithm utilizes the membership degrees of activation rules in the two fuzzy reasoning layers to update the eligibility traces. Applying DFR-Sarsa(λ to the Mountain Car and Cart-pole Balancing problems, experimental results show that the algorithm not only can be used to get a continuous action policy, but also has a better convergence performance.

  8. Universal biomimetic preparation and immobilization of layered double hydroxide films and adsorption behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Zhang, Wenpeng; Chen, Zilin

    2017-01-15

    Highlights: • An in situ method is developed for immobilization of nanoscale LDHs. • The universal method can be applied on multiple substrates. • The homogeneous LDHs film can be synthesis and immobilized in one step. • The LDHs film showed good adsorption performance towards anionic compounds. - Abstract: Preparation and immobilization of layered double hydroxides (LDHs) film onto multiple substrates is important and challenging in functional materials fields by date. In this work, a simple and universal polydopamine (PD)-based layer-by-layer assembly strategy was developed for the immobilization of LDHs film onto surfaces such as polypropylene chip, glass slides and metal coins. The surface of substrates was firstly modified by polydopamine functionalization, and then LDHs film was synthesized via urea method and directly immobilized on the PD layer by in situ growing strategy in one step. The PD layer as well as the final LDHs film was characterized by energy dispersive X-ray spectroscopy, scanning electron microscope, infrared spectroscopy, X-ray diffraction pattern and X-ray photoelectron spectra. It has been demonstrated the formation of the dense and homogeneous nanoscaled LDHs film with 400 nm thickness. Adsorption behavior of the fabricated NiAl-LDHs film toward anionic dyes and pharmaceuticals was further assessed. To demonstrate their extensive application, fast and high efficient adsorption of anionic dyes and pharmaceuticals was achieved by NiAl-LDHs-modified polypropylene centrifugal tube.

  9. Double-layer weekly sustained release transdermal patch containing gestodene and ethinylestradiol.

    Science.gov (United States)

    Gao, Yanli; Liang, Jinying; Liu, Jianping; Xiao, Yan

    2009-07-30

    The combination therapy of gestodene (GEST) and ethinylestradiol (EE) has shown advanced contraception effect and lower side effect. The present study was designed to develop a weekly sustained release matrix type transdermal patch containing GEST and EE using blends of different polymeric combinations. The multiple-layer technique was adopted in order to maintain a steady permeation flux for 7 days. The effects of polymer types, polymer ratios, permeation enhancers, drug loadings and drug ratios in different layers on the skin permeations of the drugs were evaluated using excised mice skin. Polariscope examination was carried out to observe the drug distribution behavior. The formulation with the mixture of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) (7:1) was found to provide the regular release and propylene glycol (PG) could enhance the permeation fluxes of drugs. Double-layer transdermal drug delivery system (TDDS) could sustain the steady permeation flux of drugs for 7 days when the ratio of drug in drug release layer and drug reservoir layer was 1:4 with the identical total drug amount. The in vitro transdermal permeation fluxes were 0.377 microg/cm(2)/h and 0.092 microg/cm(2)/h, for GEST and EE respectively. The uniformity of dosage units test showed that the distribution of drugs in the matrix was homogeneous, which was further demonstrated by the polariscope result. The developed transdermal delivery system containing GEST and EE could be a promising non-oral contraceptive method.

  10. Adjustable threshold-voltage in all-inkjet-printed organic thin film transistor using double-layer dielectric structures

    International Nuclear Information System (INIS)

    Wu, Wen-Jong; Lee, Chang-Hung; Hsu, Chun-Hao; Yang, Shih-Hsien; Lin, Chih-Ting

    2013-01-01

    An all-inkjet-printed organic thin film transistor (OTFT) with a double-layer dielectric structure is proposed and implemented in this study. By using the double-layer structure with different dielectric materials (i.e., polyvinylphenol with poly(vinylidene fluoride-co-hexafluoropropylene)), the threshold-voltage of OTFT can be adjusted. The threshold-voltage shift can be controlled by changing the composition of dielectric layers. That is, an enhancement-mode OTFT can be converted to a depletion-mode OTFT by selectively printing additional dielectric layers to form a high-k/low-k double-layer structure. The printed OTFT has a carrier mobility of 5.0 × 10 −3 cm 2 /V-s. The threshold-voltages of the OTFTs ranged between − 13 V and 10 V. This study demonstrates an additional design parameter for organic electronics manufactured using inkjet printing technology. - Highlights: • A double-layer dielectric organic thin film transistor, OTFT, is implemented. • The threshold voltage of OTFT can be configured by the double dielectric structure. • The composition of the dielectric determines the threshold voltage shift. • The characteristics of OTFTs can be adjusted by double dielectric structures

  11. Intercalation of methotrexatum into layered double hydroxides via exfoliation-reassembly process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Su-Qing; Li, Shu-Ping, E-mail: lishuping@njnu.edu.cn; Li, Xiao-Dong, E-mail: lixiaodong1@njnu.edu.cn

    2015-03-01

    Graphical abstract: The intercalation of methotrexatum (MTX) into layered double hydroxides (LDHs) via an exfoliation-reassembly process was studied and the resulting MTX/LDHs hybrids were evaluated by anticancer effects on A549 cells together with pristine LDHs and MTX itself, the results indicated that the hybrids obtained from low concentration of MTX solution presented much better anticancer effect. - Highlights: • Exfoliation-reassembly process is a good method to synthesize hybrids. • MTX/LDHs from low concentration of MTX solution presented better release property. • MTX/LDHs from low concentration of MTX solution presented good anticancer effects. - Abstract: In this paper, the intercalation of methotrexatum (MTX) into layered double hydroxides (LDHs) via an exfoliation-reassembly process was reported and the resulting hybrids were then characterized by X-ray diffraction (XRD) patterns, Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) patterns etc. In the synthesis procedure, LDHs particles were firstly delaminated into well-dispersed 2D nanosheets in formamide by ultrasonic treatment at room temperature, and then the resulting LDH nanosheets were reassembled in MTX solution to form MTX intercalated LDH (MTX/LDHs) hybrids. AFM images showed that during the exfoliation process a large part of LDHs particles were delaminated into single and double brucite layers. XRD patterns and FTIR investigations manifested the successful intercalation of MTX anions into LDHs interlayers for the final samples. It was also found out that the drug-loading capacity of the hybrids increased with the concentrations of MTX solutions, while the morphology became even aggregated. At last, the cell cytotoxicity of the hybrids was estimated by MTT assays on the human lung cancer cells (A549), and the results stated that MTX/LDHs hybrids had effective suppress role on the proliferation of cancer cells.

  12. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaorui, E-mail: gxr_1320@sina.com [College of Science, Hebei University of Engineering, Handan 056038 (China); School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Lei, Lixu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); O' Hare, Dermot [Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Xie, Juan [College of Science, Hebei University of Engineering, Handan 056038 (China); Gao, Pengran [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Chang, Tao [College of Science, Hebei University of Engineering, Handan 056038 (China)

    2013-07-15

    Two drug-inorganic composites involving vitamin C (VC) intercalated in Mg–Al and Mg–Fe layered double hydroxides (LDHs) have been synthesized by the calcination–rehydration (reconstruction) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV–vis absorption spectroscopy indicate a successful intercalation of VC into the interlayer galleries of the LDH host. Studies of VC release from the LDHs in deionised water and in aqueous CO{sub 3}{sup 2−} solutions imply that Mg{sub 3}Al–VC LDH is a better controlled release system than Mg{sub 3}Fe–VC LDH. Analysis of the release profiles using a number of kinetic models suggests a solution-dependent release mechanism, and a diffusion-controlled deintercalation mechanism in deionised water, but an ion exchange process in CO{sub 3}{sup 2−} solution. - Graphical abstract: Vitamin C anions have been intercalated in the interlayer space of layered double hydroxide and released in CO{sub 3}{sup 2−} solution and deionised water. - Highlights: • Vitamin C intercalated Mg–Al and Mg–Fe layered double hydroxides were prepared. • Release property of vitamin C in aqueous CO{sub 3}{sup 2−} solution is better. • Avrami-Erofe’ev and first-order models provide better fit for release results. • Diffusion-controlled and ion exchange processes occur in deionised water. • An ion exchange process occurs in CO{sub 3}{sup 2−} solution.

  13. New layered double hydroxides by prepared by the intercalation of gibbsite

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Jennifer R.; Burden, Chloe S.; Fogg, Andrew M., E-mail: andrewmfogg@hotmail.com

    2015-04-15

    New layered double hydroxides (LDHs) with the composition [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH){sub 3}, with the appropriate chloride salt in a synthesis in which the water of crystallization is the only solvent present and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature making them comparable to other LDHs in this respect. Reactions under the same conditions with CuCl{sub 2}·2H{sub 2}O and ZnCl{sub 2} failed to form the desired LDHs but those with nitrate salts did lead to the formation of the previously reported [MAl{sub 4}(OH){sub 12}](NO{sub 3}){sub 2}·1.5H{sub 2}O (M=Co, Ni) compounds. - Graphical abstract: New layered double hydroxides (LDHs) with the composition [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH){sub 3}, with the appropriate chloride salt in a synthesis in which no additional solvent is used and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature. - Highlights: • Synthesis of new layered double hydroxides, [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni). • Demonstration of the anion exchange capacity with both organic and inorganic anions. • Demonstration of the generality of the synthesis for LDHs.

  14. New layered double hydroxides by prepared by the intercalation of gibbsite

    International Nuclear Information System (INIS)

    Rees, Jennifer R.; Burden, Chloe S.; Fogg, Andrew M.

    2015-01-01

    New layered double hydroxides (LDHs) with the composition [MAl 4 (OH) 12 ]Cl 2 ·1.5H 2 O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH) 3 , with the appropriate chloride salt in a synthesis in which the water of crystallization is the only solvent present and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature making them comparable to other LDHs in this respect. Reactions under the same conditions with CuCl 2 ·2H 2 O and ZnCl 2 failed to form the desired LDHs but those with nitrate salts did lead to the formation of the previously reported [MAl 4 (OH) 12 ](NO 3 ) 2 ·1.5H 2 O (M=Co, Ni) compounds. - Graphical abstract: New layered double hydroxides (LDHs) with the composition [MAl 4 (OH) 12 ]Cl 2 ·1.5H 2 O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH) 3 , with the appropriate chloride salt in a synthesis in which no additional solvent is used and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature. - Highlights: • Synthesis of new layered double hydroxides, [MAl 4 (OH) 12 ]Cl 2 ·1.5H 2 O (M=Co, Ni). • Demonstration of the anion exchange capacity with both organic and inorganic anions. • Demonstration of the generality of the synthesis for LDHs

  15. Double Layers: Potential Formation and Related Nonlinear Phenomena in Plasmas: Proceedings of the 5th Symposium

    Science.gov (United States)

    Iizuka, S.

    1998-02-01

    The Table of Contents for the book is as follows: * PREFACE * INTERNATIONAL SCIENTIFIC COMMITTEE * LOCAL ORGANIZING COMMITTEE AT TOHOKU UNIVERSITY * CHAPTER 1: DOUBLE LAYERS, SHEATHS, AND POTENTIAL STRUCTURES * 1.1 Double Layers * On Fluid Models of Stationary, Acoustic Double Layers (Invited) * Particle Simulation of Double Layer (Invited) * Space-Time Dependence of Non-Steady Double Layers * The Role of Low Energy Electrons for the Generation of Anode Double Layers in Glow Discharges * Arbitrary Amplitude Ion-Acoustic Double Layers in a Dusty Plasma * 1.2 Sheaths * Bounded Plasma Edge Physics as Observed from Simulations in 1D and 2D (Invited) * Control of RF Sheath Structure in RF Diode Discharge * Observation of Density Gradients with Fine Structures and Low Frequency Wave Excitation at the Plasma-Sheath Boundary * Double Sheath Associated with an Electron Emission to a Plasma Containing Negative Ions * Sheath Edge and Floating Potential for Multi-Species Plasmas Including Dust Particles * 1.3 Potential Structures and Oscillations * Potential Structure Formed at a Constriction of a DC He Positive Column and its Coupling with Ionization Wave * Potential Structure in a New RF Magnetron Device with a Hollow Electrode * Potential Disruption in a RF Afterglow Electronegative Plasma * Potential Oscillation in a Strongly Asymmetry RF Discharge Containing Negative Ions * Effects of External Potential Control on Coulomb Dust Behavior * Potential Structure of Carbon Arc Discharge for High-Yield Fullerenes Formation * Control of Axial and Radial Potential Profiles in Tandem Mirrors (Invited) * CHAPTER 2: FIELD-ALIGNED ELECTRIC FIELDS AND RELATED PARTICLE ACCELERATIONS * 2.1 Field-Aligned Potential Formation * Formation of Large Potential Difference in a Plasma Flow along Converging Magnetic Field Lines (Invited) * Presheath Formation in front of an Oblique End-Plate in a Magnetized Sheet Plasma * Plasma Potential Formation Due to ECRH in a Magnetic Well * Electrostatic

  16. Highly Durable Direct Methanol Fuel Cell with Double-Layered Catalyst Cathode

    OpenAIRE

    Liu, Jing; Liu, Chun-Tao; Zhao, Lei; Wang, Zhen-Bo

    2015-01-01

    Polymer electrolyte membrane (PEM) is one of the key components in direct methanol fuel cells. However, the PEM usually gets attacked by reactive oxygen species during the operation period, resulting in the loss of membrane integrity and formation of defects. Herein, a double-layered catalyst cathode electrode consisting of Pt/CeO2-C as inner catalyst and Pt/C as outer catalyst is fabricated to extend the lifetime and minimize the performance loss of DMFC. Although the maximum power density o...

  17. Antimicrobial Double-Layer Coating Prepared from Pure or Doped-Titanium Dioxide and Binders

    OpenAIRE

    Ran Li; Tony Z. Jin; Zengshe Liu; LinShu Liu

    2018-01-01

    Fruit and vegetable containers with microbe-free surfaces can be made by coating with titanium dioxide (TiO2) particles or nonmetal (C, N, B, F) doped-TiO2 particles, using wear resistant polymers, such as zein, and paint, as the binders and to form a continuous binding phase. The doped-TiO2 powders absorb visible light radiation, and thus possess a higher antibacterial effect than non-modified TiO2 particles in environmental conditions. The study also presents a double-layer coating to use l...

  18. An Evaluation of Fuel Consumption and Emission for Double Glazed Windows That Have Optimum Air Layer

    Directory of Open Access Journals (Sweden)

    Okan KON

    2016-10-01

    Full Text Available In this study, CO2and SO2emission reductions and fuel consumption were examined for double-glazed windows that have optimum air layer thickness compared to single glazed windows in different degree-days. CO2and SO2emissions reductions tests were performed according to the combustion equations. Coal, natural gas and fuel oil were used as fuel. Calculations were made for degree-days between 1000-6000. Life cycle cost analysis and degree-days method were used in the calculations.

  19. Post heat treatment effects on double layer metal structures for VLSI applications

    Science.gov (United States)

    Wade, T. E.; Trotter, J. D.

    1978-01-01

    The realization of high yield double layer metal systems using wet chemistry processes and the ability to extend yields beyond that attainable with wet chemistry by means of post sintering processes at temperatures below 500 C for potential applications in very large scale integration structures were studied. Yields in excess of 98% and average total contact resistance of less than 150 ohms and 200 ohms were realized for a series of 560 vias of 0.5 X 0.5 mils and 0.2 X 0.2 mils in size, respectively.

  20. Review of the synthesis of layered double hydroxides: a thermodynamic approach

    Directory of Open Access Journals (Sweden)

    Bravo-Suárez Juan J.

    2004-01-01

    Full Text Available The synthesis of layered double hydroxides (LDHs by hydrothermal-LDH reconstruction and coprecipitation methods is reviewed using a thermodynamic approach. A mixture model was used for the estimation of the thermodynamics of formation of LDHs. The synthesis and solubility of LDHs are discussed in terms of standard molar Gibbs free energy change of reaction. Data for numerous divalent and trivalent metals as well as for some monovalent and tetravalent metals that may be part of the LDH structure have been compiled. Good agreement is found between theoretical and experimental data. Diagrams and tables for the prediction of possible new LDH materials are provided.

  1. Enhanced scrape-off layer plasma in DIII-D double-null discharges

    International Nuclear Information System (INIS)

    Watkins, J.G.; Jong, R.A.; Moyer, R.A.

    1994-07-01

    In this paper, the authors examine a denser and broader scrape-off layer (SOL) plasma, first seen in VH mode, in the DIII-D tokamak. The enhanced SOL appears in many types of double-null (DN) discharges and is not a property of VH-mode only. The DN enhanced SOL density and temperature profiles exhibit a 5--6 cm broad profile outside the separatrix. For DN and single-null (SN) boundary geometry with similar core plasma conditions, the enhanced SOL is only observed in high triangularity discharges. The origin of the enhanced SOL is, however, not yet understood

  2. Influence of ions on relativistic double layers radiation in astrophysical plasmas

    Directory of Open Access Journals (Sweden)

    AM Ahadi

    2009-12-01

    Full Text Available As double layers (DLs are one of the most important acceleration mechanisms in space as well as in laboratory plasmas, they are studied from different points of view. In this paper, the emitted power and energy radiated from charged particles, accelerated in relativistic cosmic DLs are investigated. The effect of the presence of additional ions in a multi-species plasma, as a real example of astrophysical plasma, is also investigated. Considering the acceleration role of DLs, radiations from accelerated charged particles could be seen as a loss mechanism. These radiations are influenced directly by the additional ion species as well as their relative densities.

  3. Superconductivity. Light-induced superconductivity using a photoactive electric double layer.

    Science.gov (United States)

    Suda, Masayuki; Kato, Reizo; Yamamoto, Hiroshi M

    2015-02-13

    Electric double layers (EDLs) of ionic liquids have been used in superconducting field-effect transistors as nanogap capacitors. Because of the freezing of the ionic motion below ~200 kelvin, modulations of the carrier density have been limited to the high-temperature regime. Here we observe carrier-doping-induced superconductivity in an organic Mott insulator with a photoinduced EDL based on a photochromic spiropyran monolayer. Because the spiropyran can isomerize reversibly between nonionic and zwitterionic isomers through photochemical processes, two distinct built-in electric fields can modulate the carrier density even at cryogenic conditions. Copyright © 2015, American Association for the Advancement of Science.

  4. Experimental observations of strong double layers. [in triple plasma device for lower magnetospheric simulation

    Science.gov (United States)

    Coakley, P.; Hershkowitz, N.; Hubbard, R.; Joyce, G.

    1978-01-01

    A computer simulation is applied to the production of strong electric potential double layers (DL) in a triple plasma device. The simulation is intended to represent DL in the low magnetosphere above the auroral zones. The DL are described as standing electrostatic shocks with different energy coefficients in their strong and weak forms. The strong DL was generally found to be unstable, but stability could be imparted if a population of trapped electrons was presented. Stability increased with the length of the system. A schematic for the system is presented, and a phase-space plot of electrons (indicating system stability) is graphed.

  5. Electric Double Layer at Metal Oxide Surfaces: Static Properties of the Cassiterite-Water Interface

    Czech Academy of Sciences Publication Activity Database

    Vlček, Lukáš; Zhang, Z.; Machesky, M.L.; Fenter, P.; Rosenqvist, J.; Wesolowski, D.J.; Anovitz, L. M.; Předota, Milan; Cummings, P.T.

    2007-01-01

    Roč. 23, č. 9 (2007), s. 4925-4937 ISSN 0743-7463 Grant - others:OBES(US) DE-AC05-00OR22727; OBES(US) DE-AC02-05CH11231; OBES(US) DE-AC02-06CH11357 Institutional research plan: CEZ:AV0Z40720504 Source of funding: N - neverejné zdroje ; N - neverejné zdroje ; N - neverejné zdroje Keywords : electric double layer * cassiterite * water Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.009, year: 2007

  6. Transport of energetic electrons in a magnetically expanding helicon double layer plasma

    International Nuclear Information System (INIS)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Cox, Wes; Hatakeyama, Rikizo

    2009-01-01

    Peripheral magnetic field lines extending from the plasma source into the diffusion chamber are found to separate two regions of Maxwellian electron energy probability functions: the central, ion-beam containing region with an electron temperature of 5 eV, and region near the chamber walls with electrons at 3 eV. Along the peripheral field lines a bi-Maxwellian population with a hot tail at 9 eV is shown to both originate from electrons in the source traveling downstream across the double layer and correspond to a local maximum in ion and electron densities.

  7. Ion-acoustic double layers in the presence of plasma source

    International Nuclear Information System (INIS)

    Okuda, H.; Ashour-Abdalla, M.

    1981-11-01

    Steady-state plasma turbulence and formation of negative potential spikes and double layers in the presence of ion acoustic instabilities have been studied by means of one-dimensional particle simulations in which velocities of a small fraction of electrons are replaced by the initial drifting Maxwellian at a constant rate. A steady state is found where negative potential spikes appear randomly in space and time giving rise to an anomalous resistivity much greater than previously found. Comparisons of the simulation results with laboratory and space plasmas are discussed

  8. Tailoring the properties of magnetite nanoparticles clusters by coating with double inorganic layers

    Science.gov (United States)

    Petran, Anca; Radu, Teodora; Culic, Bogdan; Turcu, Rodica

    2016-12-01

    New magnetic nanoparticles based on Fe3O4 clusters covered with a double layer of inorganic salts/oxides with high magnetization for incorporation in security materials such as security paper were synthesized. For the inorganic layers ZnO, SiO2 and BaSO4 were used. The microstructure and composition of the products were determined by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS). Magnetization measurements on the obtained samples show a straightforward correlation between the saturation magnetization (Ms) and morphology of the samples. The results obtained from color parameter assessment are discussed in relation with the morphology and microstructure of the prepared samples.

  9. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Science.gov (United States)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-11-01

    Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However, MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.

  10. Structure and Capacitance of Electrical Double Layers at the Graphene–Ionic Liquid Interface

    Directory of Open Access Journals (Sweden)

    Pengfei Lu

    2017-09-01

    Full Text Available Molecular dynamics simulations are carried out to investigate the structure and capacitance of the electrical double layers (EDLs at the interface of vertically oriented graphene and ionic liquids [EMIM]+/[BF4]−. The distribution and migration of the ions in the EDL on the rough and non-rough electrode surfaces with different charge densities are compared and analyzed, and the effect of the electrode surface morphology on the capacitance of the EDL is clarified. The results suggest that alternate distributions of anions and cations in several consecutive layers are formed in the EDL on the electrode surface. When the electrode is charged, the layers of [BF4]− anions experience more significant migration than those of [EMIM]+ cations. These ion layers can be extended deeper into the bulk electrolyte solution by the stronger interaction of the rough electrode, compared to those on the non-rough electrode surface. The potential energy valley of ions on the neutral electrode surface establishes a potential energy difference to compensate the energy cost of the ion accumulation, and is capable of producing a potential drop across the EDL on the uncharged electrode surface. Due to the greater effective contact area between the ions and electrode, the rough electrode possesses a larger capacitance than the non-rough one. In addition, it is harder for the larger-sized [EMIM]+ cations to accumulate in the narrow grooves on the rough electrode, when compared with the smaller [BF4]−. Consequently, the double-hump-shaped C–V curve (which demonstrates the relationship between differential capacitance and potential drop across the EDL for the rough electrode is asymmetric, where the capacitance increases more significantly when the electrode is positively charged.

  11. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging

    Science.gov (United States)

    Kilic, Mustafa Sabri; Bazant, Martin Z.; Ajdari, Armand

    2007-02-01

    The classical Poisson-Boltzmann (PB) theory of electrolytes assumes a dilute solution of point charges with mean-field electrostatic forces. Even for very dilute solutions, however, it predicts absurdly large ion concentrations (exceeding close packing) for surface potentials of only a few tenths of a volt, which are often exceeded, e.g., in microfluidic pumps and electrochemical sensors. Since the 1950s, several modifications of the PB equation have been proposed to account for the finite size of ions in equilibrium, but in this two-part series, we consider steric effects on diffuse charge dynamics (in the absence of electro-osmotic flow). In this first part, we review the literature and analyze two simple models for the charging of a thin double layer, which must form a condensed layer of close-packed ions near the surface at high voltage. A surprising prediction is that the differential capacitance typically varies nonmonotonically with the applied voltage, and thus so does the response time of an electrolytic system. In PB theory, the differential capacitance blows up exponentially with voltage, but steric effects actually cause it to decrease while remaining positive above a threshold voltage where ions become crowded near the surface. Other nonlinear effects in PB theory are also strongly suppressed by steric effects: The net salt adsorption by the double layers in response to the applied voltage is greatly reduced, and so is the tangential “surface conduction” in the diffuse layer, to the point that it can often be neglected compared to bulk conduction (small Dukhin number).

  12. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.

    Science.gov (United States)

    Haskins, Justin B; Lawson, John W

    2016-05-14

    We investigate how systematically increasing the accuracy of various molecular dynamics modeling techniques influences the structure and capacitance of ionic liquid electric double layers (EDLs). The techniques probed concern long-range electrostatic interactions, electrode charging (constant charge versus constant potential conditions), and electrolyte polarizability. Our simulations are performed on a quasi-two-dimensional, or slab-like, model capacitor, which is composed of a polarizable ionic liquid electrolyte, [EMIM][BF4], interfaced between two graphite electrodes. To ensure an accurate representation of EDL differential capacitance, we derive new fluctuation formulas that resolve the differential capacitance as a function of electrode charge or electrode potential. The magnitude of differential capacitance shows sensitivity to different long-range electrostatic summation techniques, while the shape of differential capacitance is affected by charging technique and the polarizability of the electrolyte. For long-range summation techniques, errors in magnitude can be mitigated by employing two-dimensional or corrected three dimensional electrostatic summations, which led to electric fields that conform to those of a classical electrostatic parallel plate capacitor. With respect to charging, the changes in shape are a result of ions in the Stern layer (i.e., ions at the electrode surface) having a higher electrostatic affinity to constant potential electrodes than to constant charge electrodes. For electrolyte polarizability, shape changes originate from induced dipoles that soften the interaction of Stern layer ions with the electrode. The softening is traced to ion correlations vertical to the electrode surface that induce dipoles that oppose double layer formation. In general, our analysis indicates an accuracy dependent differential capacitance profile that transitions from the characteristic camel shape with coarser representations to a more diffuse

  13. On the physical mechanism at the origin of multiple double layers appearance in plasma

    International Nuclear Information System (INIS)

    Dimitriu, D.G.; Gurlui, S.; Aflori, M.; Ivan, L.M.

    2005-01-01

    Double layers (DLs) in plasma are nonlinear potential structures consisting of two adjacent layers of positive and negative space charge, respectively. Between these layers a potential jump exists, creating an electric field. A common way to obtain a DL structure is to positively bias an electrode immersed in asymptotic stable plasma. In this way, a complex space charge structure (CSCS) in form of a positive 'nucleus' surrounded by a nearly spherical DL is obtained. Under certain experimental conditions (gas nature and pressure, plasma density, electron temperature) a more complex structure in form of two or more subsequent DLs was observed, which was called multiple double layers (MDL). It appears as several bright and concentric plasma shells attached to the electrode. The successive DLs are located at the abrupt changes of luminosity between two adjacent plasma shells. Probe measurements emphasized that the axial profile of the plasma potential has a stair steps shape, with potential jumps close to the ionization potential of the used gas. Experimental results clarify the essential role of excitation and ionization electron-neutral collisions for the generation and dynamics of MDL structures. However, if the electrode is large, the MDL structure appears non-concentrically, as a network of plasma spheres, near each other, almost equally distributed on the electrode surface. Each of the plasma spots is a CSCS as described above. Here, we will present experimental result on concentric and non-concentric MDL, which prove that the same physical mechanism is at the origin of their appearance in plasma. In this mechanism the electron-neutral impact excitations and ionizations play the key role. A simultaneously generation of both types of MDL was recorded. The dynamics of the MDL structures was analyzed by using the modern methods provided by the nonlinear dynamics. In this way, a scenario of transition to chaos by torus breakdown was emphasized, related with the

  14. Enhanced electrochemical performance of CoAl-layered double hydroxide nanosheet arrays coated by platinum films

    International Nuclear Information System (INIS)

    Cheng, J.P.; Fang, J.H.; Li, M.; Zhang, W.F.; Liu, F.; Zhang, X.B.

    2013-01-01

    Graphical abstract: Schematic illustration for the electron transport between the current collector and the active CoAl LDH arrays, where the yellow arrows indicate the high resistance of CoAl LDH, while the green arrows present the high conductivity of Pt films on LDH. -- Highlights: •CoAl layered double hydroxide nanosheet arrays are synthesized by hydrothermal method. •Pt films coated on surface of CoAl nanosheets facilitate fast electron transport. •CoAl LDH nanosheets coated with Pt film for 5 min have an excellent performance. -- Abstract: Three-dimensional network of cobalt and aluminum layered double hydroxide (LDH) nanosheets was synthesized on nickel foam by a simple hydrothermal method. The CoAl-LDH nonosheets were subsequently coated by ion sputtering with thin layers of Pt films to facilitate fast electron transport between current collector and the CoAl-LDH active materials. The optimal thickness of the Pt film acquiring the best performance was identified by applying various sputtering time in controlled experiments. The supercapacitor built by the CoAl-LDH nanosheets coated with Pt film sputtered for 5 min has a high specific capacitance (734.4 F g −1 at 3 A g −1 ), excellent rate capability as well as cycling stability. Moreover, it showed a long life of 77% retention after 6000 cycles and its general morphology was preserved after the test. The synergetic affect of conductive layer of Pt films and CoAl-LDH on the improvement of electrochemical properties was discussed and this would provide a useful clue in designing novel and effective electrode materials for supercapacitors

  15. A fast vibro-acoustic response analysis method for double wall structures including a viscothermal air layer

    NARCIS (Netherlands)

    Basten, T.G.H.; Grooteman, F.P.

    2000-01-01

    The damping behaviour of a thin air layer between two flexible panels can be used to reduce sound radiation of structural excited panels. The numerical model of the double wall panels takes into account full acousto-elastic interaction and viscothermal wave propagation in the air layer. This means

  16. Development and design of double-layer co-injection moulded soy protein based drug delivery devices

    NARCIS (Netherlands)

    Vaz, C.M.; Doeveren, van P.F.N.M.; Reis, R.L.; Cunha, A.M.

    2003-01-01

    Novel double-layer delivery devices based on soy protein derived materials were designed and produced using an innovative two material co-injection moulding technique. It was demonstrated that the viscosity ratio between core and skin layer materials played an important role in the formation of the

  17. Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: layer-by-layer method and their effects on the flame retardancy of epoxy resins.

    Science.gov (United States)

    Jiang, Shu-Dong; Bai, Zhi-Man; Tang, Gang; Song, Lei; Stec, Anna A; Hull, T Richard; Hu, Yuan; Hu, Wei-Zhao

    2014-08-27

    Hierarchical mesoporous silica@Co-Al layered double hydroxide (m-SiO2@Co-Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co-Al LDH, the synthetic m-SiO2@Co-Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co-Al LDH nanosheets. Subsequently, the m-SiO2@Co-Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co-Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co-Al LDH play pivotal roles in the flame retardance enhancement.

  18. Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining.

    Science.gov (United States)

    Lin, Yanzhang; Yao, Haizi; Ju, Xuewei; Chen, Ying; Zhong, Shuncong; Wang, Xiangfeng

    2017-10-16

    We report on the fabrication and transmission properties of free-standing single-layer and double-layer THz bandpass filters. These filters are fabricated on aluminum foils using femtosecond laser micro-machining. The aluminum foils are periodically patterned with cross apertures with a total area of 1.75×1.75 cm 2 , also known as frequency-selective surfaces. Their terahertz transmission properties were simulated using the FDTD method and measured using a time-domain terahertz spectroscopy system. The simulation results agree with the measurements results very well. The performance of single-layer bandpass filters is as good as the commercial equivalents on the market. The double-layer filters show extraordinary transmission peaks with changing spacing between the two layers. We show the contour map of the electric field distribution across the apertures, and ascribe the new transmission peaks to the interference and coupling of surface plasmon polaritons between the two layers.

  19. Analytical solution of electrohydrodynamic flow and transport in rectangular channels: inclusion of double layer effects

    KAUST Repository

    Joekar-Niasar, V.

    2013-01-25

    Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.

  20. Bose-Einstein condensation and superfluidity of dipolar excitons in a phosphorene double layer

    Science.gov (United States)

    Berman, Oleg L.; Gumbs, Godfrey; Kezerashvili, Roman Ya.

    2017-07-01

    We study the formation of dipolar excitons and their superfluidity in a phosphorene double layer. The analytical expressions for the single dipolar exciton energy spectrum and wave function are obtained. It is predicted that a weakly interacting gas of dipolar excitons in a double layer of black phosphorus exhibits superfluidity due to the dipole-dipole repulsion between the dipolar excitons. In calculations are employed the Keldysh and Coulomb potentials for the interaction between the charge carriers to analyze the influence of the screening effects on the studied phenomena. It is shown that the critical velocity of superfluidity, the spectrum of collective excitations, concentrations of the superfluid and normal component, and mean-field critical temperature for superfluidity are anisotropic and demonstrate the dependence on the direction of motion of dipolar excitons. The critical temperature for superfluidity increases if the exciton concentration and the interlayer separation increase. It is shown that the dipolar exciton binding energy and mean-field critical temperature for superfluidity are sensitive to the electron and hole effective masses. The proposed experiment to observe a directional superfluidity of excitons is addressed.

  1. Double layer for hard spheres with an off-center charge

    Directory of Open Access Journals (Sweden)

    W. Silvestre-Alcantara

    2016-02-01

    Full Text Available Simulations for the density and potential profiles of the ions in the planar electrical double layer of a model electrolyte or an ionic liquid are reported. The ions of a real electrolyte or an ionic liquid are usually not spheres; in ionic liquids, the cations are molecular ions. In the past, this asymmetry has been modelled by considering spheres that are asymmetric in size and/or valence (viz., the primitive model or by dimer cations that are formed by tangentially touching spheres. In this paper we consider spherical ions that are asymmetric in size and mimic the asymmetrical shape through an off-center charge that is located away from the center of the cation spheres, while the anion charge is at the center of anion spheres. The various singlet density and potential profiles are compared to (i the dimer situation, that is, the constituent spheres of the dimer cation are tangentially tethered, and (ii the standard primitive model. The results reveal the double layer structure to be substantially impacted especially when the cation is the counterion. As well as being of intrinsic interest, this off-center charge model may be useful for theories that consider spherical models and introduce the off-center charge as a perturbation.

  2. Dynamical aspects of various solitary waves and double layers in dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Das, G.C. [Plasma Physics Division, Institute of Advanced Study in Science Technology, Khanapara, Guwahati-781022, Assam (India); Sarma, J. [Department of Mathematics, R. G. Baruah College, Guwahati-781025, Assam (India); Talukdar, M. [Computer Science Division, Institute of Advanced Study in Science Technology, Khanapara, Guwahati-781022, Assam (India)

    1998-01-01

    Employing quasipotential analysis, the Sagdeev potential equation has been derived in a multicomponent plasma consisting of free and trapped electrons and contaminated by the dust charged grains forming therein by the attachment of electrons to finite-size dust particles. Because of the free and trapped electrons in the dusty plasma, the plasma-acoustic wave exhibits the different features of various solitary waves. The Sagdeev potential equation, at a small-amplitude approximation, leads to the evaluation, by a proposed new formalism of a simple wave solution technique, of the new scenario of solitary wave propagation in a dusty plasma. It has been shown that the ordering of the nonisothermality in the dusty plasma also plays a unique role. In the case of a plasma with first-order nonisothermality, the Sagdeev potential equation derives the compressive solitary wave propagation, while for plasma with higher-order nonisothermality the method might fail to solve the Sagdeev potential equation and, thus, an alternate method is used to reveal the coexistence of compressive and rarefactive solitary waves. In addition, for certain plasma parameters, the solitary waves disappear and a double layer is expected. Again, with the better approximation in the Sagdeev potential, more features of solitary waves, known as spiky and explosive, along with the double layers, are also highlighted. The observations made of the solitary waves could be of further interest in the understanding of laboratory and space plasmas.{copyright} {ital 1998 American Institute of Physics.}

  3. Relation between the ion size and pore size for an electric double-layer capacitor.

    Science.gov (United States)

    Largeot, Celine; Portet, Cristelle; Chmiola, John; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2008-03-05

    The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (approximately 0.7 nm). The capacitance values of TiC-CDC produced at 500 degrees C are more than 160 F/g and 85 F/cm(3) at 60 degrees C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm(3) in ionic liquids. A significant drop in capacitance has been observed in pores that were larger or smaller than the ion size by just an angstrom, suggesting that the pore size must be tuned with sub-angstrom accuracy when selecting a carbon/ion couple. This work suggests a general approach to EDLC design leading to the maximum energy density, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes.

  4. Retention of heavy metals on layered double hydroxides thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 76900 Bucharest-Magurele (Romania); Birjega, R.; Matei, A.; Luculescu, C.; Mitu, B.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 76900 Bucharest-Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania)

    2014-05-01

    Heavy metals are toxic and hazardous pollutants in the environment due to their nonbiodegradability and persistence, which can pose serious threats to living organisms. The ability of Mg–Al based layered double hydroxides (LDHs) thin films to retain heavy metals from aqueous solutions at different concentrations is a novel topic with prospects of attractive applications, such as detection of heavy metals. We report on the ability of a series of Mg–Al based layered double hydroxides thin films to detect Ni and Co cations in aqueous solutions. Uptake of heavy metals ions such as Ni{sup 2+}, Co{sup 2+} from aqueous solutions was studied as function of contact time at a standard metal ion concentration. The LDHs thin films were deposited using pulsed laser deposition (PLD). The different adsorption mechanisms were studied in connection with different heavy metals used as probe cations. X-ray diffraction, atomic force microscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infra-red spectroscopy were the techniques used for the investigation of as deposited and after heavy metals retention thin films.

  5. A study of thermally activated Mg–Fe layered double hydroxides as potential environmental catalysts

    Directory of Open Access Journals (Sweden)

    MILICA S. HADNAĐEV-KOSTIĆ

    2010-09-01

    Full Text Available Layered double hydroxides (LDHs and mixed oxides derived after thermal decomposition of LDHs with different Mg–Fe contents were investigated. These materials were chosen because of the possibility to tailor their various properties, such as ion-exchange capability, redox and acid–base and surface area. Layered double hydroxides, [Mg1-xFex(OH2](CO3x/2×mH2O (where x presents the content of trivalent ions, x = M(III/(M(II + M(III were synthesized using the low supersaturation precipitation method. The influence of different Mg/Fe ratios on the structure and surface properties of the LDH and derived mixed oxides was investigated in correlation to their catalytic properties in the chosen test reaction (Fischer–Tropsch synthesis. It was determined that the presence of active sites in the mixed oxides is influenced by the structural properties of the initial LDH and by the presence of additional Fe phases. Furthermore, a synthesis outside the optimal range for the synthesis of single phase LDHs leads to the formation of metastable, multiphase systems with specific characteristics and active sites.

  6. Nonlinear electron acoustic structures generated on the high-potential side of a double layer

    Directory of Open Access Journals (Sweden)

    R. Pottelette

    2009-04-01

    Full Text Available High-time resolution measurements of the electron distribution function performed in the auroral upward current region reveals a large asymmetry between the low- and high-potential sides of a double-layer. The latter side is characterized by a large enhancement of a locally trapped electron population which corresponds to a significant part (~up to 30% of the total electron density. As compared to the background hot electron population, this trapped component has a very cold temperature in the direction parallel to the static magnetic field. Accordingly, the differential drift between the trapped and background hot electron populations generates high frequency electron acoustic waves in a direction quasi-parallel to the magnetic field. The density of the trapped electron population can be deduced from the frequency where the electron acoustic spectrum maximizes. In the auroral midcavity region, the electron acoustic waves may be modulated by an additional turbulence generated in the ion acoustic range thanks to the presence of a pre-accelerated ion beam located on the high-potential side of the double layer. Electron holes characterized by bipolar pulses in the electric field are sometimes detected in correlation with these electron acoustic wave packets.

  7. Formation of high aspect ratio polyamide-6 nanofibers via electrically induced double layer during electrospinning

    International Nuclear Information System (INIS)

    Nirmala, R.; Nam, Ki Taek; Park, Soo-Jin; Shin, Yu-Shik; Navamathavan, R.; Kim, Hak Yong

    2010-01-01

    In the present study, the formation of high aspect ratio nanofibers in polyamide-6 was investigated as a function of applied voltage ranging from 15 to 25 kV using electrospinning technique. All other experimental parameters were kept constant. The electrospun polyamide-6 nanofibers were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). FE-SEM images of polyamide-6 nanofibers showed that the diameter of the electrospun fiber was decreased with increasing applied voltage. At the critical applied voltage, the polymer solution was completely ionized to form the dense high aspect ratio nanofibers in between the main nanofibers. The diameter of the polyamide-6 nanofibers was observed to be in the range of 75-110 nm, whereas the high aspect ratio structures consisted of regularly distributed very fine nanofibers with diameters of about 9-28 nm. Trends in fiber diameter and diameter distribution were discussed for the high aspect ratio nanofibers. TEM results revealed that the formation of double layers in polyamide-6 nanofibers and then split-up into ultrafine fibers. The electrically induced double layer in combination with the polyelectrolytic nature of solution is proposed as the suitable mechanisms for the formation of high aspect ratio nanofibers in polyamide-6.

  8. Investigation of thermally stimulated properties of SHI beam irradiated polycarbonate/polystyrene double layered samples

    Science.gov (United States)

    Rathore, Bhupendra Singh; Gaur, Mulayam Singh; Singh, Kripa Shanker

    2011-12-01

    The double layered samples of polycarbonate/polystyrene (PC/PS) have been prepared by solvent casting method and irradiated with 55 MeV C 5+ beam at different ion fluences range from 1 × 10 11 to 1 × 10 13 ion/cm 2. The effect of swift heavy ion (SHI) beam in interfacial phenomena, phase change, dielectric relaxation, degradation temperature, stability, charge storage and transport mechanism of PC/PS pristine and irradiated double layered samples have been investigated by thermally stimulated discharge current (TSDC), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). TSDC show α, β-relaxation peaks shifted to the lower temperatures side with increase of fluence. The activation energy and relaxation time decrease, while the depolarization current and charge released increase with increase in the ion fluences. DSC curve show the glass transition temperature ( T g) and heat capacity decreases with increase in the ion fluences. The TGA characteristics represent the thermal stability, which is found to be decreased with increase in the ion fluences.

  9. Preparation and properties of blends composed of lignosulfonated layered double hydroxide/plasticized starch and thermoplastics.

    Science.gov (United States)

    Privas, Edwige; Leroux, Fabrice; Navard, Patrick

    2013-07-01

    Layered double hydroxide prepared with lignosulfonate (LDH/LS) can be easily dispersed down to the nanometric scale in thermoplastic starch, at concentration of 1 up to 4 wt% of LDH/LS. They can thus be used as a bio-based reinforcing agent of thermoplastic starch. Incorporation of LDH/LS in starch must be done using LDH/LS slurry instead of powder on order to avoid secondary particles aggregation, the water of the paste being used as the starch plasticizer. This reinforced starch was used for preparing a starch-polyolefine composite. LDH/LS-starch nanocomposites were mixed in a random terpolymer of ethylene, butyl acrylate (6%) and maleic anhydride (3%) at concentrations of 20 wt% and 40 wt%. With a 20% loading of (1 wt% LDH/LS in thermoplastic starch), the ternary copolymer is partially bio-based while keeping nearly its original processability and mechanical properties and improving oxygen barrier properties. The use of layered double hydroxides is also removing most odours linked to the lignin phase. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Application of a site-binding, electrical, double-layer model to nuclear waste disposal

    International Nuclear Information System (INIS)

    Relyea, J.F.; Silva, R.J.

    1981-09-01

    A site-binding, electrical, double-layer adsorption model has been applied to adsorption of Cs for both a montmorillonite clay and powdered SiO 2 . Agreement between experimental and predicted results indicates that C/sub s/ + is adsorbed by a simple cation-exchange mechanism. Further application of a combination equilibrium thermodynamic model and site-binding, electrical, double-layer adsorption model has been made to predict the behavior of U(VI) in solutions contacting either the montmorillonite clay or powdered SiO 2 . Experimentally determined U solution concentrations have been used to select what is felt to be the best available thermodynamic data for U under oxidizing conditions. Given the existing information about the probable U solution species, it was possible to determine that UO 2 +2 is most likely adsorbed by cation-exchange at pH 5. At higher values (pH 7 and 9), it was shown that UO 2 (OH) 2 0 is probably the most strongly adsorbed U solution species. It was also found that high NaCl solution concentrations at higher pH values lowered U concentrations (either because of enhanced sorption or lowered solubility); however, the mechanism responsible for this behavior has not been determined

  11. Evaluation of a starch-based double layer scaffold for bone regeneration in a rat model.

    Science.gov (United States)

    Requicha, Joao F; Moura, Tiago; Leonor, Isabel B; Martins, Teresa; Muñoz, Fernando; Reis, Rui L; Gomes, Manuela E; Viegas, Carlos A

    2014-07-01

    Damages in the maxillofacial bones are frequent in humans following trauma, metabolic diseases, neoplasia, or inflammatory processes. Many of the available treatments to regenerate bone are often ineffective. The goal of this work was to assess the in vivo behavior of an innovative double-layered scaffold based on a blend of starch and polycaprolactone (SPCL) that comprises a membrane obtained by solvent casting, which aims to act as a guided tissue regeneration membrane, and a wet-spun fiber mesh (in some cases functionalized with osteoconductive silanol groups) targeting bone regeneration. The behavior of the double layer scaffold, functionalized with silanol groups (SPCL-Si) or without (SPCL), was assessed in a mandibular rodent model and compared to a commercial collagen membrane (positive control) and to empty defects (negative control). After 8 weeks of implantation, the micro-computed tomography and the histomorphometric analysis revealed that the SPCL-Si scaffolds induced significantly higher new bone formation compared to the collagen membrane and to the empty defects, although they had a similar performance when compared to the SPCL scaffolds. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy.

    Science.gov (United States)

    Sideris, Paul J; Nielsen, Ulla Gro; Gan, Zhehong; Grey, Clare P

    2008-07-04

    The anion-exchange ability of layered double hydroxides (LDHs) has been exploited to create materials for use in catalysis, drug delivery, and environmental remediation. The specific cation arrangements in the hydroxide layers of hydrotalcite-like LDHs, of general formula Mg2+(1-x)Al3+(x)OH2(Anion(n-)(x/n)).yH2O, have, however, remained elusive, and their elucidation could enhance the functional optimization of these materials. We applied rapid (60 kilohertz) magic angle spinning (MAS) to obtain high-resolution hydrogen-1 nuclear magnetic resonance (1H NMR) spectra and characterize the magnesium and aluminum distribution. These data, in combination with 1H-27Al double-resonance and 25Mg triple-quantum MAS NMR data, show that the cations are fully ordered for magnesium:aluminum ratios of 2:1 and that at lower aluminum content, a nonrandom distribution of cations persists, with no Al3+-Al3+ close contacts. The application of rapid MAS NMR methods to investigate proton distributions in a wide range of materials is readily envisaged.

  13. Improvement of efficiency roll-off in blue phosphorescence OLED using double dopants emissive layer

    International Nuclear Information System (INIS)

    Yoo, Seung Il; Yoon, Ju An; Kim, Nam Ho; Kim, Jin Wook; Kang, Jin Sung; Moon, Chang-Bum; Kim, Woo Young

    2015-01-01

    Blue phosphorescent organic light-emitting diodes (PHOLEDs) were fabricated using double dopants FIrpic and FIr6 in emissive layer (EML) with structure of ITO/NPB (700 Å)/mCP:FIrpic-8%:FIr6-x% (300 Å)/TPBi (300 Å)/Liq (20 Å)/Al (1200 Å). We optimized concentration of the second dopant FIr6 in the presence of a fixed FIrpic to observe its effect on electrical performance of PHOLED device. 24.8 cd/A of luminous efficiency was achieved by the device with dopant ratio of 8%FIrpic:4%FIr6 in EML. Efficiency roll-off was also improved 20% compared to the PHOLED device singly dopped with FIrpic or FIr6 only. Second doping proved its effect in stabilizing charge balance in EML and enhancing energy transfer of triplet excitons between two dopants. - Highlights: • We fabricated blue PHOLED with double blue phosphorescent dopants in single EML. • Efficiency roll-off was improved by using double dopant in single EML. • The host–dopant transfer is discussed by analyzing the photo-absorption and photoluminescence. • The spectroscopic analysis using multi-peak fits with a Gaussian function

  14. Improvement of efficiency roll-off in blue phosphorescence OLED using double dopants emissive layer

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Il; Yoon, Ju An; Kim, Nam Ho; Kim, Jin Wook; Kang, Jin Sung; Moon, Chang-Bum [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2015-04-15

    Blue phosphorescent organic light-emitting diodes (PHOLEDs) were fabricated using double dopants FIrpic and FIr6 in emissive layer (EML) with structure of ITO/NPB (700 Å)/mCP:FIrpic-8%:FIr6-x% (300 Å)/TPBi (300 Å)/Liq (20 Å)/Al (1200 Å). We optimized concentration of the second dopant FIr6 in the presence of a fixed FIrpic to observe its effect on electrical performance of PHOLED device. 24.8 cd/A of luminous efficiency was achieved by the device with dopant ratio of 8%FIrpic:4%FIr6 in EML. Efficiency roll-off was also improved 20% compared to the PHOLED device singly dopped with FIrpic or FIr6 only. Second doping proved its effect in stabilizing charge balance in EML and enhancing energy transfer of triplet excitons between two dopants. - Highlights: • We fabricated blue PHOLED with double blue phosphorescent dopants in single EML. • Efficiency roll-off was improved by using double dopant in single EML. • The host–dopant transfer is discussed by analyzing the photo-absorption and photoluminescence. • The spectroscopic analysis using multi-peak fits with a Gaussian function.

  15. Preparation and inhibition properties of molybdate intercalated ZnAlCe layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Huajie; Wang, Jihui, E-mail: jhwang@tju.edu.cn; Zhang, Yu; Hu, Wenbin

    2016-09-05

    ZnAlCe layered double hydroxide intercalated by molybdate (ZnAlCe−MoO{sub 4} LDH) was successfully synthesized by using co-precipitation method, and the morphology, structure of ZnAlCe−MoO{sub 4} LDH were observed and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. The inhibition behavior of ZnAlCe−MoO{sub 4} LDH for Q235 steel in 3.5%NaCl solution was determined by polarization curves, electrochemical impedance spectroscopy (EIS), inductively coupled plasma mass spectrometer (ICP-MS) and X-ray photoelectron spectrometer (XPS) methods. The results shows that the synthesized ZnAlCe−MoO{sub 4} LDH has a lamellar structure with a particle size of 0.1–2.0 μm, an average thickness of 30 nm, and a basal plane spacing of 0.898 nm. Compared with the addition of ZnAl layered double hydroxide intercalated by nitrate (ZnAl−NO{sub 3} LDH) and ZnAl layered double hydroxide intercalated by molybdate (ZnAl−MoO{sub 4} LDH) in 3.5% NaCl solution, Q235 steel in 3.5%NaCl + ZnAlCe−MoO{sub 4} LDH solution has a lower corrosion current density, larger polarization resistance and a higher inhibition efficiency. The addition of ZnAlCe−MoO{sub 4} LDH will reduce the chloride concentration in 3.5% NaCl solution by the anion exchanged with molybdate, and improve the corrosion resistance of Q235 steel owing to the formation of passive film with the composition of ferrous or iron molybdate and deposition film with zinc and cerium hydroxides. - Highlights: • ZnAlCe−MoO{sub 4} LDH compound was successfully synthesized by co-precipitation method. • ZnAlCe−MoO{sub 4} LDH has a better inhibition effect to Q235 steel in 3.5%NaCl solution. • The Cl{sup −} ions in solution was partially exchanged with MoO{sub 4}{sup 2−} ions in host layers. • The passive film and deposition film were formed by the release of LDH compound.

  16. Synthesis, characterization, and antimicrobial properties of novel double layer nanocomposite electrospun fibers for wound dressing applications

    Directory of Open Access Journals (Sweden)

    Hassiba AJ

    2017-03-01

    Full Text Available Alaa J Hassiba,1 Mohamed E El Zowalaty,2 Thomas J Webster,3–5 Aboubakr M Abdullah,6 Gheyath K Nasrallah,7 Khalil Abdelrazek Khalil,8 Adriaan S Luyt,6 Ahmed A Elzatahry1 1Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, Qatar; 2School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; 3Department of Chemical Engineering, 4Department of Bioengineering, Northeastern University, Boston, MA, USA; 5Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 6Center for Advanced Materials, 7Department of Biomedical Science, College of Health Sciences, Biomedical Research Center, Qatar University, Doha, Qatar; 8Department of Mechanical Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates Abstract: Herein, novel hybrid nanomaterials were developed for wound dressing applications with antimicrobial properties. Electrospinning was used to fabricate a double layer nanocomposite nanofibrous mat consisting of an upper layer of poly(vinyl alcohol and chitosan loaded with silver nanoparticles (AgNPs and a lower layer of polyethylene oxide (PEO or polyvinylpyrrolidone (PVP nanofibers loaded with chlorhexidine (as an antiseptic. The top layer containing AgNPs, whose purpose was to protect the wound site against environmental germ invasion, was prepared by reducing silver nitrate to its nanoparticulate form through interaction with chitosan. The lower layer, which would be in direct contact with the injured site, contained the antibiotic drug needed to avoid wound infections which would otherwise interfere with the healing process. Initially, the upper layer was electrospun, followed sequentially by electrospinning the second layer, creating a bilayer nanofibrous mat. The morphology of the nanofibrous mats was studied by scanning electron microscopy and transmission electron microscopy, showing successful nanofiber

  17. Dual nutraceutical nanohybrids of folic acid and calcium containing layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae-Hyun; Oh, Jae-Min, E-mail: jaemin.oh@yonsei.ac.kr

    2016-01-15

    Dual nutraceutical nanohybrids consisting of organic nutrient, folic acid (FA), and mineral nutrient, calcium, were prepared based on layered double hydroxide (LDH) structure. Among various hybridization methods such as coprecipitation, ion exchange, solid phase reaction and exfoliation-reassembly, it was found that exfoliation-reassembly was the most effective in terms of intercalation of FA moiety between Ca-containing LDH layers. X-ray diffraction patterns and infrared spectra indicated that FA molecules were well stabilized in the interlayer space of LDHs through electrostatic interaction. From the atomic force and scanning electron microscopic studies, particle thickness of LDH was determined to be varied with tens, a few and again tens of nanometers in pristine, exfoliated and reassembled state, respectively, while preserving particle diameter. The result confirmed layer-by-layer hybrid structure of FA and LDHs was obtained by exfoliation-reassembly. Solid UV–vis spectra showed 2-dimensional molecular arrangement of FA moiety in hybrid, exhibiting slight red shift in n→π* and π→π* transition. The chemical formulae of FA intercalated Ca-containing LDH were determined to Ca{sub 1.30}Al(OH){sub 4.6}FA{sub 0.74}·3.33H{sub 2}O and Ca{sub 1.53}Fe(OH){sub 5.06}FA{sub 2.24}·9.94H{sub 2}O by inductively coupled plasma-atomic emission spectroscopy, high performance liquid chromatography and thermogravimetry, showing high nutraceutical content of FA and Ca. - Highlights: • We successfully intercalated FA molecules into Ca-containing LDHs. • Exfoliation-reassembly was proven to be the most effective. • The interaction between LDH and FA were studied by FT-IR and UV–vis spectra. • Thermal stability of FA were enhanced by electrostatic interaction with LDH layers.

  18. CoCr double-layered media with NiFe and CoZrNb soft-magnetic layers (invited)

    International Nuclear Information System (INIS)

    Bernards, J.P.C.; Schrauwen, C.P.G.; Zieren, V.; Luitjens, S.B.

    1988-01-01

    The magnetic, structural, and recording properties of CoCr double-layered media are investigated. The underlayer materials NiFe (crystalline) and CoZrNb (amorphous) were combined with two different kinds of intermediate layers: Ti (crystalline) and Ge (amorphous). Applying a bias voltage during sputtering of NiFe results in a low coercivity of the NiFe layer and in a high coercivity of the CoCr layer. The structure of the NiFe layer influences the structure of the CoCr layer. A Ti layer between the NiFe and CoCr layers decreases the in-plane remanence of the CoCr layer. The coercivity of all CoZrNb layers is low, independent of the application of a bias voltage. The orientation and structure of CoCr on CoZrNb can be improved by using a Ge intermediate layer, which results in a low coercivity of the CoCr. A Ti intermediate layer increases the coercivity. Ring heads show a dependence of spike noise on the underlayer coercivity and on the applied normal force. A probe-type head shows a dependence of its output on the CoCr coercivity, which may be understood in terms of demagnetization and writing depth

  19. Design technology co-optimization for 14/10nm metal1 double patterning layer

    Science.gov (United States)

    Duan, Yingli; Su, Xiaojing; Chen, Ying; Su, Yajuan; Shao, Feng; Zhang, Recco; Lei, Junjiang; Wei, Yayi

    2016-03-01

    Design and technology co-optimization (DTCO) can satisfy the needs of the design, generate robust design rule, and avoid unfriendly patterns at the early stage of design to ensure a high level of manufacturability of the product by the technical capability of the present process. The DTCO methodology in this paper includes design rule translation, layout analysis, model validation, hotspots classification and design rule optimization mainly. The correlation of the DTCO and double patterning (DPT) can optimize the related design rule and generate friendlier layout which meets the requirement of the 14/10nm technology node. The experiment demonstrates the methodology of DPT-compliant DTCO which is applied to a metal1 layer from the 14/10nm node. The DTCO workflow proposed in our job is an efficient solution for optimizing the design rules for 14/10 nm tech node Metal1 layer. And the paper also discussed and did the verification about how to tune the design rule of the U-shape and L-shape structures in a DPT-aware metal layer.

  20. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes

    International Nuclear Information System (INIS)

    Liao, C.-S.; Ye, W.-B.

    2004-01-01

    The oligo(ethylene oxide) modified layered double hydroxide (LDH) prepared by template method was added as a nanoscale nucleating agent into poly(ethylene oxide) (PEO) to form PEO/OLDH nanocomposite electrolytes. The effects of OLDH addition on morphology and conductivities of nanocomposite electrolytes were studied using wide-angle X-ray diffractometer, polarized optical microscopy, differential scanning calorimetry and ionic conductivity measurement. The results show that the exfoliated morphology of nanocomposites is formed due to the surface modification of LDH layers with PEO matrix compatible oligo(ethylene oxide)s. The nanoscale dispersed OLDH layers inhibit the crystal growth of PEO crystallites and result in a plenty amount of intercrystalline grain boundary within PEO/OLDH nanocomposites. The ionic conductivities of nanocomposite electrolytes are enhanced by three orders of magnitude compared to the pure PEO polymer electrolytes at ambient temperature. It can be attributed to the ease transport of Li + along intercrystalline amorphous phase. This novel nanocomposite electrolytes system with high conductivities will be benefited to fabricate the thin-film type of Li-polymer secondary battery

  1. Electric double layer and electrokinetic potential of pectic macromolecules in sugar beet

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana A.

    2008-01-01

    Full Text Available Electrokinetic potential is an important property of colloidal particles and, regarding the fact that it is a well defined and easily measurable property, it is considered to be a permanent characteristic of a particular colloidal system. In fact, it is a measure of electrokinetic charge that surrounds the colloidal particle in a solution and is in direct proportion with the mobility of particles in an electric field. Gouy-Chapman-Stern-Graham's model of electric double layer was adopted and it was proven experimentally that the addition of Cu++ ions to sugar beet pectin caused a reduction in the negative electrokinetic potential proportional to the increase of Cu++ concentration. Higher Cu++ concentrations increased the proportion of cation specific adsorption (Cu++ and H+ with regard to electrostatic Coulombic forces. Consequently, there is a shift in the shear plane between the fixed and diffuse layers directed towards the diffuse layer, i.e. towards its compression and decrease in the electrokinetic potential or even charge inversion of pectin macromolecules.

  2. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Directory of Open Access Journals (Sweden)

    Tajuddin Muhammad Hanis

    2018-01-01

    Full Text Available Thin film nanocomposite (TFN membrane with copper-aluminium layered double hydroxides (LDH incorporated into polyamide (PA selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4 removal and compared with thin film composite (TFC. The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  3. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Science.gov (United States)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  4. Self-Assembly of Single-Layer CoAl-Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction.

    Science.gov (United States)

    Ping, Jianfeng; Wang, Yixian; Lu, Qipeng; Chen, Bo; Chen, Junze; Huang, Ying; Ma, Qinglang; Tan, Chaoliang; Yang, Jian; Cao, Xiehong; Wang, Zhijuan; Wu, Jian; Ying, Yibin; Zhang, Hua

    2016-09-01

    A non-noble metal based 3D porous electrocatalyst is prepared by self-assembly of the liquid-exfoliated single-layer CoAl-layered double hydroxide nanosheets (CoAl-NSs) onto 3D graphene network, which exhibits higher catalytic activity and better stability for electrochemical oxygen evolution reaction compared to the commercial IrO2 nanoparticle-based 3D porous electrocatalyst. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The current-voltage characteristic and potential oscillations of a double layer in a triple plasma device

    International Nuclear Information System (INIS)

    Carpenter, R.T.; Torven, S.

    1986-07-01

    The properties of a strong double layer in a current circuit with a capacitance and an inductance are investigated in a triple plasma device. The double layer gives rise to a region of negative differential resistance in the current-voltage characteristic of the device, and this gives non-linear oscillations in the current and the potential drop over the double layer (PhiDL). For a sufficiently large circuit inductance PhiDL reaches an amplitude given by the induced voltage (-LdI/dt) which is much larger than the circuit EMF due to the rapid current decrease when PhiDL increases. A variable potential minimum exists in the plasma on the low potential side of the double layer, and the depth of the minimum increases when PhiDL increases. An increasing fraction of the electrons incident at the double layer are then reflected, and this is found to be the main process giving rise to the negative differential resistance. A qualitative model for the variation of the minimum potential with PhiDL is also proposed. It is based on the condition that the minimum potential must adjust itself self-consistentely so that quasi-neutrality is maintained in the plasma region where the minimum is assumed. (authors)

  6. A retrospective study comparing the outcome of horses undergoing small intestinal resection and anastomosis with a single layer (Lembert) or double layer (simple continuous and Cushing) technique.

    Science.gov (United States)

    Close, Kristyn; Epstein, Kira L; Sherlock, Ceri E

    2014-05-01

    To (1) compare postoperative complications and survival in horses after small intestinal resection and anastomosis using 2 anastomosis techniques (single layer Lembert; double layer simple continuous oversewn with Cushing), and (2) to compare outcome by anastomosis type (jejunoileostomy; jejunojejunostomy). Retrospective case series. Horses (n = 53). Medical records (July 2006-July 2010) of all horses that had small intestinal resection and anastomosis. Horses were divided into groups based on technique and type of anastomosis. Comparisons of pre- and intraoperative findings (disease severity), postoperative complications, and survival rates were made between groups. There were no differences in disease severity, postoperative complications, or survival between single layer (n = 23) or double layer (n = 31) anastomoses. There were no differences in disease severity or survival between jejunoileostomy (n = 16) or jejunojejunostomy (n = 38). There was a higher incidence of postoperative colic in hospital after jejunoileostomy (13/16) compared with jejunojejunostomy (18/38) (P = .0127). Postoperative complications and survival are comparable between horses undergoing single layer and double layer small intestinal end-to-end anastomoses. With the exception of increased postoperative colic in the hospital, postoperative complications and survival after jejunoileostomy and jejunojejunostomy are also comparable. © Copyright 2014 by The American College of Veterinary Surgeons.

  7. Incorporation of Polymers into Calcined Clays as Improved Thermal Insulating Materials for Construction

    OpenAIRE

    Ng, Serina; Jelle, Bjørn Petter

    2017-01-01

    Calcined clay is a Type Q supplementary cementing material according to EN197-1:2000. It possesses lower thermal conductivity than cement. To further improve its thermal insulation property, polymer-calcined clay complexes (PCCs) were produced in a one-pot synthesis. Two contrasting polymers, polystyrene (PS) and polyethylene glycol (PEG), were employed. The hydrophilicity of the polymers influenced the thermal conductivity of PCC. Hydrophilic PEG entrapped more water molecules on clay layers...

  8. Intercalation of p-methycinnamic acid anion into Zn-Al layered double hydroxide to improve UV aging resistance of asphalt

    Directory of Open Access Journals (Sweden)

    Chao Peng

    2015-02-01

    Full Text Available A UV absorber, p-methycinnamic acid (PMCA, was intercalated into Zn-Al layered double hydroxide (LDH by calcination recovery. Fourier transform infrared spectroscopy showed that the PMCA anions completely replaced the CO32− anions in the interlayer galleries of Zn-Al-LDH containing PMCA anions (Zn-Al-PMCA-LDH. X-ray diffraction and transmission electron microscopy showed that the interlayer distance increased from 0.78 nm to 1.82 nm after the substitution of PMCA anions for CO32− anions. The similar diffraction angles of the CO32− anion-containing Zn-Al-LDH (Zn-Al-CO32−-LDH and the Zn-Al-CO32−-LDH/styrene–butadiene–styrene (SBS modified asphalt implied that the asphalt molecules do not enter into the LDH interlayer galleries to form separated-phase structures. The different diffraction angles of Zn-Al-PMCA-LDH and Zn-Al-PMCA-LDH/SBS modified asphalt indicated that the asphalt molecules penetrated into the LDH interlayer galleries to form an expanded-phase structure. UV-Vis absorbance analyses showed that Zn-Al-PMCA-LDH was better able to block UV light due to the synergistic effects of PMCA and Zn-Al-LDH. Conventional physical tests and atomic force microscopy images of the SBS modified asphalt, Zn-Al-CO32−-LDH/SBS modified asphalt and Zn-Al-PMCA-LDH/SBS modified asphalt before and after UV aging indicated that Zn-Al-PMCA-LDH improved the UV aging resistance of SBS modified asphalts.

  9. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    International Nuclear Information System (INIS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-01-01

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  10. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Energy Technology Data Exchange (ETDEWEB)

    Djebbi, Mohamed Amine, E-mail: mohamed.djebbi@etu.univ-lyon1.fr [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Braiek, Mohamed [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Namour, Philippe [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Irstea, 5 rue de la Doua, 69100 Villeurbanne (France); Ben Haj Amara, Abdesslem [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Jaffrezic-Renault, Nicole [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France)

    2016-11-15

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  11. Experimental and modeling study of flash calcination of kaolinite rich clay particles in a gas suspension calciner

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    2015-01-01

    gas suspension calciner, with the aim to derive useful guidelines on smart calcination for obtaining products of the best pozzolanic properties. Calcination tests are performed in the calciner under six different operation conditions. The raw feed and the calcined clay samples are all characterized...

  12. Synthesis of nanocomposite coating based on TiO2/ZnAl layer double hydroxides

    International Nuclear Information System (INIS)

    Jovanov, V.; Rudic, O.; Ranogajec, J.; Fidanchevska, E.

    2017-01-01

    The aim of this investigation was the synthesis of nanocomposite coatings based on Zn-Al layered double hydroxides (Zn-Al LDH) and TiO2. The Zn-Al LDH material, which acted as the catalyst support of the active TiO2 component (in the content of 3 and 10 wt. %), was synthesized by a low super saturation co-precipitation method. The interaction between the Zn-Al LDH and the active TiO2 component was accomplished by using vacuum evaporation prior to the mechanical activation and only by mechanical activation. The final suspension based on Zn-Al LDH and 10wt. % TiO2, impregnated only by mechanical activation, showed the optimal characteristics from the aspect of particle size distribution and XRD analysis. These properties had a positive effect on the functional properties of the coatings (photocatalytic activity and self-cleaning efficiency) after the water rinsing procedure. [es

  13. Antimicrobial Double-Layer Coating Prepared from Pure or Doped-Titanium Dioxide and Binders

    Directory of Open Access Journals (Sweden)

    Ran Li

    2018-01-01

    Full Text Available Fruit and vegetable containers with microbe-free surfaces can be made by coating with titanium dioxide (TiO2 particles or nonmetal (C, N, B, F doped-TiO2 particles, using wear resistant polymers, such as zein, and paint, as the binders and to form a continuous binding phase. The doped-TiO2 powders absorb visible light radiation, and thus possess a higher antibacterial effect than non-modified TiO2 particles in environmental conditions. The study also presents a double-layer coating to use less TiO2 particles in coating, while achieving higher antimicrobial activity. Containers with microbe-free surfaces can stop cross-contamination from infected workers or spoiled/decayed/contaminated fruits or vegetables, and thus are expected to be able to reduce the risk from microbiological contamination of fruits and vegetables during harvest in fields, and postharvest storage or transportation.

  14. Sub-millimeter arbitrary arrangements of monolithically micro-scale electrical double layer capacitors

    International Nuclear Information System (INIS)

    Laszczyk, Karolina U; Kazufumi, Kobashi; Sakurai, Shunsuke; Sekiguchi, Atsuko; Futaba, Don N; Yamada, Takeo; Hata, Kenji

    2015-01-01

    We report the investigation on the reproducibility of micro-scale electric double layer capacitors (micro-EDLCs). The micro-EDLC components were fabricated parallel using photolithography, wet and dry processing. Electrodes of the micro-EDLCs are highly dense packed Single Wall Carbon Nanotubes (SWCNTs) that form a mesh structure. The micro- EDLCs are connected 1-10 in series and in parallel being unified electrical circuits to tune the capacitance and the operational voltage. To confirm the reproducibility of the cells as well as the yield we performed electrochemical measurements in order to define the performance uniformity between cells strings and individual cells connected in a string. For 1-10 cells in series and in parallel the trends for the capacitance and operational voltage satisfied electrophysics rules governing cells addition. However, the measurements of the individual cells in a string revealed the significant performance discrepancy that might result in a shorten life cycling of a circuit. (paper)

  15. Sub-millimeter arbitrary arrangements of monolithically micro-scale electrical double layer capacitors

    Science.gov (United States)

    Laszczyk, Karolina U.; Kazufumi, Kobashi; Sakurai, Shunsuke; Sekiguchi, Atsuko; Futaba, Don N.; Yamada, Takeo; Hata, Kenji

    2015-12-01

    We report the investigation on the reproducibility of micro-scale electric double layer capacitors (micro-EDLCs). The micro-EDLC components were fabricated parallel using photolithography, wet and dry processing. Electrodes of the micro-EDLCs are highly dense packed Single Wall Carbon Nanotubes (SWCNTs) that form a mesh structure. The micro- EDLCs are connected 1-10 in series and in parallel being unified electrical circuits to tune the capacitance and the operational voltage. To confirm the reproducibility of the cells as well as the yield we performed electrochemical measurements in order to define the performance uniformity between cells strings and individual cells connected in a string. For 1-10 cells in series and in parallel the trends for the capacitance and operational voltage satisfied electrophysics rules governing cells addition. However, the measurements of the individual cells in a string revealed the significant performance discrepancy that might result in a shorten life cycling of a circuit.

  16. Limitations and strengths of uniformly charged double-layer theory: physical significance of capacitance anomalies.

    Science.gov (United States)

    Partenskii, Michael B; Jordan, Peter C

    2008-06-01

    Theoretical studies of electrical double layers typically consider the response of ionic conductors to the field of uniform charge-density distributions sigma ("sigma -control"). Many such analyses predict apparent anomalies of differential capacitance, C , including divergences and negative values. To clarify misconceptions regarding these predictions, we critically reexamine some theoretical approaches dealing with the admissible sign of C . We examine the anomalies' origin and stress its relation to the artificiality of sigma-control. We show that calculations based on sigma-control can illuminate the nature of instabilities and phase transitions under the physically attainable conditions of potential control, where applied voltage phi rather than sigma is fixed. For illustration, we discuss the physical nature of the "ultimate anomaly," negative integral capacitance predicted by some recent analyses. We also show that sigma-control anomalies can explain some experimentally observed features of C(phi) .

  17. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    Science.gov (United States)

    Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar

    2017-12-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

  18. Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters

    Science.gov (United States)

    Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.

    2018-01-01

    Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.

  19. Activity Dependent Synaptic Plasticity Mimicked on Indium-Tin-Oxide Electric-Double-Layer Transistor.

    Science.gov (United States)

    Wen, Juan; Zhu, Li Qiang; Fu, Yang Ming; Xiao, Hui; Guo, Li Qiang; Wan, Qing

    2017-10-25

    Ion coupling has provided an additional method to modulate electric properties for solid-state materials. Here, phosphorosilicate glass (PSG)-based electrolyte gated protonic/electronic coupled indium-tin-oxide electric-double-layer (EDL) transistors are fabricated. The oxide transistor exhibits good electrical performances due to an extremely strong proton gating behavior for the electrolyte. With interfacial electrochemical doping, channel conductances of the oxide EDL transistor can be regulated to different levels, corresponding to different initial synaptic weights. Thus, activity dependent synaptic responses such as excitatory postsynaptic current, paired-pulse facilitation, and high-pass filtering are discussed in detail. The proposed proton conductor gated oxide EDL synaptic transistors with activity dependent synaptic plasticities may act as fundamental building blocks for neuromorphic system applications.

  20. Poly I-lactide-layered double hydroxide nanocomposites via in situ polymerization of I-lactide

    DEFF Research Database (Denmark)

    Katiyar, Vimal; Gerds, N.; Koch, C.B.

    2010-01-01

    The use of clay nanofillers offers a potential route to improved barrier properties in polylactide films. Magnesium–aluminium layered double hydroxides (LDHs) are interesting in this respect and we therefore explored synthesis of PLA-LDH nanocomposites by ring-opening polymerization. This method...... is attractive because it should ensure good dispersion of LDH in the polymer. The effect of adding either LDH carbonate (LDH-CO3) or laurate-modified LDH (LDH-C12) was investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy revealed that exfoliated nanocomposites were...... weight was significantly reduced when in-situ polymerization was conducted in the presence of the LDHs and we suggest that chain termination via LDH surface hydroxyl groups and/or metal-catalyzed degradation could be responsible....

  1. Recent advances in polymer supporting layered double hydroxides nanocomposite for electrochemical biosensors

    Science.gov (United States)

    Dhanasekaran, T.; Padmanaban, A.; Gnanamoorthy, G.; Manigandan, R.; Praveen Kumar, S.; Stephen, A.; Narayanan, V.

    2018-01-01

    In recent years, layered double hydroxides (LDHs) materials having emerging due to their ability of intercalate a variety of anions, either organic or inorganic molecules. The most significance of the LDHs has been found potential applications in catalysis, wastewater treatment, and electrochemical sensors. The Mg-Al LDHs (MAL) and Poly-o-phenylenediamine @ Mg-Al LDHs (P-MAL) was prepared via simple one step hydrothermal method. As prepared material was characterized using many techniques such as, the structural and crystal phase was determined from XRD and Raman analyses. The functional groups were depicted using FT-IR spectroscopy. The optical propertied studied using diffuse reflectance spectroscopy UV-vis spectroscopy and the emission property were analyzed from Photoluminescence spectroscopy. The surface morphology and average particle size was analyzed using FESEM microscopy. The prepared polymer composite material P-MAL was further used for highly sensitive electrochemical detection towards dopamine (DA).

  2. Large-area WSe2 electric double layer transistors on a plastic substrate

    KAUST Repository

    Funahashi, Kazuma

    2015-04-27

    Due to the requirements for large-area, uniform films, currently transition metal dichalcogenides (TMDC) cannot be used in flexible transistor industrial applications. In this study, we first transferred chemically grown large-area WSe2 monolayer films from the as-grown sapphire substrates to the flexible plastic substrates. We also fabricated electric double layer transistors using the WSe2 films on the plastic substrates. These transistors exhibited ambipolar operation and an ON/OFF current ratio of ∼104, demonstrating chemically grown WSe2 transistors on plastic substrates for the first time. This achievement can be an important first step for the next-generation TMDC based flexible devices. © 2015 The Japan Society of Applied Physics.

  3. Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation.

    Science.gov (United States)

    Zhao, Yufei; Zhao, Yunxuan; Waterhouse, Geoffrey I N; Zheng, Lirong; Cao, Xingzong; Teng, Fei; Wu, Li-Zhu; Tung, Chen-Ho; O'Hare, Dermot; Zhang, Tierui

    2017-11-01

    Semiconductor photocatalysis attracts widespread interest in water splitting, CO 2 reduction, and N 2 fixation. N 2 reduction to NH 3 is essential to the chemical industry and to the Earth's nitrogen cycle. Industrially, NH 3 is synthesized by the Haber-Bosch process under extreme conditions (400-500 °C, 200-250 bar), stimulating research into the development of sustainable technologies for NH 3 production. Herein, this study demonstrates that ultrathin layered-double-hydroxide (LDH) photocatalysts, in particular CuCr-LDH nanosheets, possess remarkable photocatalytic activity for the photoreduction of N 2 to NH 3 in water at 25 °C under visible-light irradiation. The excellent activity can be attributed to the severely distorted structure and compressive strain in the LDH nanosheets, which significantly enhances N 2 chemisorption and thereby promotes NH 3 formation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Silver Orthophosphate Immobilized on Flaky Layered Double Hydroxides as the Visible-Light-Driven Photocatalysts

    Directory of Open Access Journals (Sweden)

    Xianlu Cui

    2012-01-01

    Full Text Available Flaky layered double hydroxide (FLDH was prepared by the reconstruction of its oxide in alkali solution. The composites with FLDH/Ag3PO4 mass ratios at 1.6 : 1 and 3 : 1 were fabricated by the coprecipitation method. The powders were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscope, and UV-vis diffuse reflectance spectroscopy. The results indicated that the well-distributed Ag3PO4 in a fine crystallite size was formed on the surface of FLDH. The photocatalytic activities of the Ag3PO4 immobilized on FLDH were significantly enhanced for the degradation of acid red G under visible light irradiation compared to bare Ag3PO4. The composite with the FLDH/Ag3PO4 mass ratio of 3 : 1 showed a higher photocatalytic efficiency.

  5. The smallest quaternary ammonium salts with ether groups for high-performance electrochemical double layer capacitors.

    Science.gov (United States)

    Han, Taihee; Park, Min-Sik; Kim, Jeonghun; Kim, Jung Ho; Kim, Ketack

    2016-03-01

    Electrochemical double layer capacitors (EDLCs) are energy storage devices that have been used for a wide range of electronic applications. In particular, the electrolyte is one of the important components, directly related to the capacitance and stability. Herein, we first report a series of the smallest quaternary ammonium salts (QASs), with ether groups on tails and tetrafluoroborate (BF 4 ) as an anion, for use in EDLCs. To find the optimal structure, various QASs with different sized head groups and ether-containing tail groups were systematically compared. Comparing two nearly identical structures with and without ether groups, QASs with oxygen atoms showed improved capacitance, proving that ions with oxygen atoms move more easily than their counterparts at lower electric fields. Moreover, the ether containing QASs showed low activation energy values of conductivities, leading to smaller IR drops during the charge and discharge processes, resulting in an overall higher capacitance.

  6. Molecular Simulations of Graphene-Based Electric Double-Layer Capacitors

    Science.gov (United States)

    Kalluri, Raja K.; Konatham, Deepthi; Striolo, Alberto

    2011-03-01

    Towards deploying renewable energy sources it is crucial to develop efficient and cost-effective technologies to store electricity. Traditional batteries are plagued by a number of practical problems that at present limit their widespread applicability. One possible solution is represented by electric double-layer capacitors (EDLCs). To deploy EDLCs at the large scale it is necessary to better understand how electrolytes pack and diffuse within narrow charged pores. We present here simulation results for the concentrated aqueous solutions of NaCl, CsCl, and NaI confined within charged graphene-based porous materials. We discuss how the structure of confined water, the salt concentration, the ions size, and the surface charge density determine the accumulation of electrolytes within the porous network. Our results, compared to data available for bulk systems, are critical for relating macroscopic observations to molecular-level properties of the confined working fluids. Research supported by the Department of Energy.

  7. Preparation and characterization of trans-RhCl(CO)(TPPTS)2-intercalated layered double hydroxides

    International Nuclear Information System (INIS)

    Zhang Xian; Wei Min; Pu Min; Li Xianjun; Chen Hua; Evans, David G.; Duan Xue

    2005-01-01

    trans-RhCl(CO)(TPPTS) 2 (TPPTS=tris(m-sulfonatophenyl)phosphine) has been intercalated into Zn-Al layered double hydroxides (LDHs) by the method of ion exchange. The structure, composition and thermal stability of the composite material have been characterized by powder X-ray diffraction, Fourier transform infrared and 31 P solid-state magic-angle spinning nuclear magnetic resonance spectroscopy, elemental analysis, thermogravimetry, and differential thermal analysis. The geometry of trans-RhCl(CO)(TPPTS) 2 was fully optimized using the PM3 semiempirical molecular orbital method, and a schematic model for the intercalated species has been proposed. The thermal stability of trans-RhCl(CO)(TPPTS) 2 is significantly enhanced by intercalation, which suggests that such materials may have prospective application as the basis of a supported catalyst system for the hydroformylation of higher olefins

  8. Synthesis of Co–Al layered double hydroxide nanoclusters as reduction nanocatalyst in aqueous media

    Directory of Open Access Journals (Sweden)

    Daisuke Kino

    2017-12-01

    Full Text Available Layered double hydroxides (LDHs have attracted attention as green materials due to their catalytic ability in benign aqueous solvents. We here demonstrate the synthesis of colloidal Co–Al LDH nanoclusters with an average size of <10 nm via a facile liquid-phase reaction for the enhancement of the catalytic activity. To the best of our knowledge, the present LDH is the smallest Co–Al LDH with an extremely large surface area and stability in an aqueous solvent, forming a stable and concentrated colloidal solution as high as 40 g/L. We investigated the formation mechanism, and the catalytic activity of Co–Al LDH nanoclusters. The Co–Al LDH nanoclusters showed 47 times higher rate of the reduction of dye molecules in the aqueous media than standard Co–Al LDH particles with a micrometer size. LDH nanoclusters demonstrated here are promising green nanocatalysts for the aqueous reaction processes.

  9. A 130 GHz Electro-Optic Ring Modulator with Double-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Lei Wu

    2017-02-01

    Full Text Available The optical absorption coefficient of graphene will change after injecting carriers. Based on this principle, a high-speed double-layer graphene electro-optic modulator with a ring resonator structure was designed in this paper. From the numerical simulations, we designed a modulator. Its optical bandwidth is larger than 130 GHz, the switching energy is 0.358 fJ per bit, and the driven voltage is less than 1.2 V. At the same time, the footprint of the proposed modulator is less than 10 microns squared, which makes the process compatible with the Complementary Metal Oxide Semiconductors (CMOS process. This will provide the possibility for the on-chip integration of the photoelectric device.

  10. Up and down translocation events and electric double-layer formation inside solid-state nanopores.

    Science.gov (United States)

    Zanjani, Mehdi B; Engelke, Rebecca E; Lukes, Jennifer R; Meunier, Vincent; Drndić, Marija

    2015-08-01

    We present a theoretical study of nanorod translocation events through solid-state nanopores of different sizes which result in positive or negative ion conductance changes. Using theoretical models, we show that positive conductance changes or up events happen for nanopore diameters smaller than a transition diameter dt, and negative conductance changes or down events occur for nanopore diameters larger than dt. We investigate the underlying physics of such translocation phenomena and describe the significance of the electric double-layer effects for nanopores with small diameters. Furthermore, for nanopores with large diameters, it is shown that a geometric model, formulated based on the nanoparticle blockade inside the nanopore, provides a straightforward and reasonably accurate prediction of ion conductance change. Based on this concept, we also implement a method to distinguish and detect nanorods of different sizes by focusing solely on the sign and not the exact value of the conductance change.

  11. Fatigue Properties of Layered Double Hydroxides Modified Asphalt and Its Mixture

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2014-01-01

    Full Text Available This study investigated the influence of layered double hydroxides (LDHs on the fatigue properties of asphalt mixture. In this paper, different aging levels (thin film oven test (TFOT and ultraviolet radiation aging (UV aging for short of bitumen modified with various mass ratios of the LDHs were investigated. The TFOT and UV aging process were used to simulate short-term field thermal-oxidative aging and long-term field light UV aging of bitumen, respectively. The influences of LDHs on the fatigue properties of LDHs were evaluated by dynamic shear rheometer (DSR and indirect tensile fatigue test. Results indicated that the introduction of LDHs could change the fatigue properties of bitumen under a stress control mode. The mixture with modified bitumen showed better fatigue resistance than the mixture with base bitumen. The results illustrated that the LDHs would be alternative modifiers used in the bitumen to improve the lifetime of asphalt pavements.

  12. Physical mechanism of beam splitting based on reflective embedded double-layer grating

    Science.gov (United States)

    Wang, Bo; Li, Hongtao; Shu, Wenhao; Li, Wenhua; Chen, Li; Lei, Liang; Zhou, Jinyun

    2016-12-01

    It is not easy to achieve high performance for conventional beam splitters, such as high efficiency, good uniformity, polarization-independence, and wide bandwidth. A reflective embedded double-layer grating is described for beam splitting. With optimized grating profiles, the novel beam splitter can diffract both TE and TM polarizations into two orders with high performance. For the easy production, the fabrication tolerance is investigated and given. Most importantly, efficiencies more than 45% can be split into two orders within the wide bandwidth of 1412-1647 nm for TE polarization. The beam splitter based on multilayer coatings is sensitive to the incident angle and wavelength. And the bandwidth needs to be improved for the beam splitter based on simple grating. The design is of benefit for the performance improvement of the beam splitter by new grating configuration compared with the conventional simple grating.

  13. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2Reduction

    KAUST Repository

    Saliba, Daniel

    2016-03-30

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A facile mechanochemical approach to synthesize Zn-Al layered double hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun, E-mail: forsjun@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); He, Xiaoman; Chen, Min; Huang, Pengwu [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Zhang, Qiwu, E-mail: zhangqw@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Liu, Xinzhong [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 (China)

    2017-06-15

    In this study, a mechanochemical route to synthesize Zn-Al layered double hydroxide (LDH) was introduced, in which Zn basic carbonate and Al hydroxide were first dry milled into an activated state and then agitated in water to obtain the final products. The as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG) and Scanning electron microscopy (SEM). The products possessed a high crystallinity of Zn–Al LDH phase without any other impurities, proving a facile and effective preparation of Zn–Al LDH by using non-heating mechanochemical approach. - Highlights: • A non-heating mechanochemical route to synthesize Zn-Al LDH. • The products possessed high crystalline Zn-Al LDH phase. • No emission of other impurities or wastewater.

  15. Tunable Properties of Exfoliated Polyvinylalcohol Nanocomposites by In Situ Coprecipitation of Layered Double Hydroxides

    Science.gov (United States)

    Liu, Jiajia; Yuen, Richard K. K.; Hu, Yuan

    2017-10-01

    Poly(vinyl alcohol) (PVA) nanocomposites were prepared by a “one step” method based on the coprecipitation of layered double hydroxide (LDH) nanosheets in the polymer aqueous solution. The morphology, fire resistance properties, mechanical and optical properties of the PVA/LDH nanocomposites were studied. The LDH nanosheets were homogeneously dispersed in the PVA matrix as indicated by X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) characterization. Meanwhile, the peak of heat release rate (pHRR) and total heat release (THR) were decreased by 58% and 28%, respectively. Storage modulus at 30 °C was increased, and the transmittance of more than 90% at the visible region was obtained upon addition of 5 wt% LDH.

  16. Comparison of density functional and modified Poisson-Boltzmann structural properties for a spherical double layer

    Directory of Open Access Journals (Sweden)

    L.B.Bhuiyan

    2005-01-01

    Full Text Available The density functional and modified Poisson-Boltzmann descriptions of a spherical (electric double layer are compared and contrasted vis-a-vis existing Monte Carlo simulation data (for small ion diameter 4.25·10-10 m from the literature for a range of physical parameters such as macroion surface charge, macroion radius, valencies of the small ions, and electrolyte concentration. Overall, the theoretical predictions are seen to be remarkably consistent between themselves, being also in very good agreement with the simulations. Some modified Poisson-Boltzmann results for the zeta potential at small ion diameters of 3 and 2·10-10 m are also reported.

  17. Application of a recently proposed test to the hypernettedchain approximation for the electric double layer

    Directory of Open Access Journals (Sweden)

    D.Henderson

    2007-09-01

    Full Text Available Bhuiyan, Outhwaite, and Henderson, J. Electroanal. Chem., 2007, 607, 54, have studied the electric double layer formed by a symmetric electrolyte in the restricted primitive model and suggested that an examination of the product of the coion and counter ion profiles, normalized to the one when the distance of an ion from the electrode is large, is an interesting and useful test of a theory. This product is identically one in the Poisson-Boltzmann theory but simulation results show that, at contact, this product can be greater or smaller than one at small electrode charge but always seems to tend to zero at large electrode charge. In this study we report the results of the hypernetted chain approximation (HNC/MSA version for this product and find that, at contact, for this theory this product is always greater than the one at small electrode charge but tends to zero at large electrode charge.

  18. Using a double-layered palmaris longus tendon for suspension of facial paralysis

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Bakholdt, Vivi; Sørensen, Jens Ahm

    2015-01-01

    INTRODUCTION: Facial palsy is a debilitating condition entailing both cosmetic and functional limitations. Static suspension procedures can be performed when more advanced dynamic techniques are not indicated. Since 2006, we have used a double-layered palmaris longus tendon graft through an ovular...... electronic patient records were retrieved, patients were invited for a follow-up visit and results were measured using the Lip Reanimation Outcomes Questionnaire. Furthermore, standardised photographs were taken and evaluated by multiple surgeons. RESULTS: A total of 13 patients were included with a mean...... at follow-up. Photographic evaluation revealed an acceptable symmetry at rest with an increasing asymmetry with increasing smile intensity. No post-operative complications or donor site morbidity was noted in any of our patients. CONCLUSION: Our technique is easy to perform with no noteworthy complications...

  19. A comparison of statistically optimized near field acoustic holography using single layer pressure velocity measurements and using double layer pressure measurements

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Chen, Xinyi; Jaud, Virginie

    2008-01-01

    recently been suggested. An alternative method uses a double layer array of pressure transducers. Both methods make it possible to distinguish between sources on the two sides of the array and thus suppress the influence of extraneous noise and reflections coming from the “wrong” side. This letter compares...

  20. Solitons and double-layers of electron-acoustic waves in magnetized plasma; an application to auroral zone plasma

    Science.gov (United States)

    El-Labany, S. K.; Shalaby, M.; Sabry, R.; El-Sherif, L. S.

    2012-07-01

    A theoretical investigation is carried out for understanding the properties of electron-acoustic potential structures (i.e., solitary waves and double-layers) in a magnetized plasma whose constituents are a cold magnetized electron fluid, hot electrons obeying a nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation; modified Zakharov-Kuznetsov (MZK) equation, in the small amplitude regime. The MZK equation is analyzed to examine the existence regions of the solitary pulses and double-layers. It is found that rarefactive electron-acoustic solitary waves and double-layers strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter.

  1. Polymethyl methacrylate and polystyrene with layered double hydroxide nano composites: In situ synthesis, morphology and thermal properties

    International Nuclear Information System (INIS)

    Botan, Rodrigo; Nogueira, Telma R.; Lona, Liliane M.F.; Wypych, Fernando

    2011-01-01

    Over the past decade, polymer nanocomposites have attracted interest, both in industry and in academia, because they often exhibit remarkable improvement in their properties when compared with pure polymer or conventional micro and macro-composites using low levels of reinforcements. In this work polymethyl methacrylate and polystyrene reinforced with layered double hydroxide, which was intercalated with sodium dodecyl sulfate were synthesized by in situ bulk polymerization. The nanocomposites were characterized and compared by X-ray diffraction, thermogravimetric analysis and flammability test. The X-ray diffraction demonstrated that synthesized nanocomposites showed a high global dispersion of layered double hydroxide, suggesting exfoliated morphology. The result of thermogravimetric analysis and flammability test for synthesized polystyrene/ layered double hydroxide nanocomposite presented a significant improvement in thermal stability and flammability property when compared with pure polymer. (author)

  2. Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Mitsuhiro [FDK Corp., Shizuoka (Japan). Research and Development Div.; Nakanishi, Masanori [FDK Corp., Shizuoka (Japan). Research and Development Div.; Yamamoto, Kohei [FDK Corp., Shizuoka (Japan). Research and Development Div.

    1996-06-01

    Electrochemical characterization has been carried out for several activated carbons used as polarizable electrodes of electric double-layer capacitors in an aqueous electrolytic solution. The rest potential of the activated carbon was proportional to the logarithm of the oxygen content or to the concentration of the acidic surface functional groups of the activated carbon. The result of triangular voltage-sweep cyclic voltammetry was the same as that of the residual current measurement. The oxygen content and concentration of the acidic surface groups of activated carbon influenced the electrochemical characteristics of the activated carbon. Under anodic polarization, gas evolution was observed at the electrode surface of activated carbon with high oxygen content at 0.8 V versus saturated calomel electrode (SCE). Gas evolution was not observed at the electrode surface of activated carbon with low oxygen content even to 1.0 V versus SCE. Under cathodic polarization of activated carbon with high oxygen content, the peak was observed at approximately -0.2 V versus SCE, but there was no gas evolution at the electrode surface of the activated carbon. Bubbles were not observed at the electrode surface of activated carbon with low oxygen content at -0.5 V versus SCE. Electric double-layer capacitors were made from activated carbons used for electrochemical measurements; load-life tests have been carried out. Thickness and internal resistance of the capacitor composed of activated carbon with high oxygen content increased. The changes in thickness and internal resistance of the capacitor composed of activated carbon with low oxygen content were small. (orig.)

  3. Synthesis, characterization, and controlled release anticorrosion behavior of benzoate intercalated Zn-Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [Shandong Provincial Key Lab of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Zhang, Dun, E-mail: zhangdun@qdio.ac.cn [Shandong Provincial Key Lab of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China)

    2011-11-15

    Graphical abstract: The benzoate anion released from Zn-Al LDHs provides a more effective long-term protection against corrosion of Q235 carbon steel in 3.5% NaCl solution. Highlights: {yields} A benzoate anion corrosion inhibitor intercalated Zn-Al layered double hydroxides (LDHs) has been assembled by coprecipitation method. {yields} The kinetic simulation indicates that the ion-exchange one is responsible for the release process and the diffusion through particle is the rate limiting step. {yields} A significant reduction of the corrosion rate is observed when the LDH nanohybrid is present in the corrosive media. -- Abstract: Corrosion inhibitor-inorganic clay composite including benzoate anion intercalated Zn-Al layered double hydroxides (LDHs) are assembled by coprecipitation. Powder X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectrum analyses indicate that the benzoate anion is successfully intercalated into the LDH interlayer and the benzene planes are vertically bilayer-positioned as a quasi-guest ion-pair form in the gallery space. Kinetic simulation for the release data, XRD and FT-IR analyses of samples recovered from the release medium indicate that ion-exchange is responsible for the release process and diffusion through the particle is also indicated to be the rate-limiting step. The anticorrosion capabilities of LDHs loaded with corrosion inhibitor toward Q235 carbon steel are analyzed by polarization curve and electrochemical impedance spectroscopy methods. Significant reduction of corrosion rate is observed when the LDH nanohybrid is present in the corrosive medium. This hybrid material may potentially be applied as a nanocontainer in self-healing coatings.

  4. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation.

    Science.gov (United States)

    Cunha, Vanessa Roberta Rodrigues; de Souza, Rodrigo Barbosa; da Fonseca Martins, Ana Maria Cristina Rebello Pinto; Koh, Ivan Hong Jun; Constantino, Vera Regina Leopoldo

    2016-08-02

    Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule nearby the LDH was noticed for both materials as well any sign of inflammatory reactions. Sidestream Dark Field imaging, used to monitor in real time the microcirculation in tissues, revealed overall integrity of the microcirculatory network neighboring the tablets, with no blood flow obstruction, bleeding and/or increasing of leukocyte endothelial adhesion. After 28 days Mg2Al-Cl promoted multiple collagen invaginations (mostly collagen type-I) among its fragments while Zn2Al-Cl induced predominantly collagen type-III. This work supports previous results in the literature about LDHs compatibility with living matter, endorsing them as functional materials for biomedical applications.

  5. Synthesis and UV absorption properties of 5-sulfosalicylate-intercalated Zn Al layered double hydroxides

    Science.gov (United States)

    Zhang, Linyan; Lin, Yanjun; Tuo, Zhenjun; Evans, David G.; Li, Dianqing

    2007-04-01

    5-sulfosalicylic acid (SSA) anions have been intercalated into layered double hydroxides (LDHs) by an anion-exchange reaction using ZnAl-NO 3-LDHs as a precursor. The samples were characterized by XRD, FT-IR, TG-DTA/MS and UV-visible spectroscopy. The results show that the NO 3- anions in the precursor have been completely replaced by SSA anions to give ZnAl-SSA-LDHs having a high degree of crystallinity. Detailed studies reveal the existence of a supramolecular structure in ZnAl-SSA-LDHs involving electrostatic attraction between opposite charges, hydrogen bonding and other weak chemical bonding interactions between host layers and SSA anions. The thermal stability of ZnAl-SSA-LDHs is considerably enhanced compared with that of a mixture of ZnAl-NO 3-LDHs and SSA. After addition of 2.0 wt% ZnAl-SSA-LDHs to polypropylene (PP), the resistance of the polymer to UV degradation is significantly improved.

  6. "Squishy capacitor" model for electrical double layers and the stability of charged interfaces.

    Science.gov (United States)

    Partenskii, Michael B; Jordan, Peter C

    2009-07-01

    Negative capacitance (NC), predicted by various electrical double layer (EDL) theories, is critically reviewed. Physically possible for individual components of the EDL, the compact or diffuse layer, it is strictly prohibited for the whole EDL or for an electrochemical cell with two electrodes. However, NC is allowed for the artificial conditions of sigma control, where an EDL is described by the equilibrium electric response of electrolyte to a field of fixed, and typically uniform, surface charge-density distributions, sigma. The contradiction is only apparent; in fact local sigma cannot be set independently, but is established by the equilibrium response to physically controllable variables, i.e., applied voltage phi (phi control) or total surface charge q (q control). NC predictions in studies based on sigma control signify potential instabilities and phase transitions for physically realizable conditions. Building on our previous study of phi control [M. B. Partenskii and P. C. Jordan, Phys. Rev. E 77, 061117 (2008)], here we analyze critical behavior under q control, clarifying the basic picture using an exactly solvable "squishy capacitor" toy model. We find that phi can change discontinuously in the presence of a lateral transition, specify stability conditions for an electrochemical cell, analyze the origin of the EDL's critical point in terms of compact and diffuse serial contributions, and discuss perspectives and challenges for theoretical studies not limited by sigma control.

  7. Sengon wood (Paraserianthes falcataria (L.) Nielsen) carbon as supporting material for electrochemical double layer capasitor

    Science.gov (United States)

    Wulandhari; Syarif, N.; Waruwu, I.; Ridho Prayogo, M.

    2017-07-01

    A microstructure carbon electrodes was potentially developed into energy storage device, i.e electrochemical double layer capacitor (EDLC) or super capacitor. The structure has a large surface that able to increased the capacitance of electrodes. Sengon Wood Carbon (SWC) was one of microstructure carbon which mainly has honeycomb structure. SWC was prepared hydrothermally along with microwave heating. SWC has 202 m2g-1 of surface area, 14,4 S.cm-1 of conductivity and crystalline carbon peak at 29.55° with honeycomb structure. Mixtures of honeycomb sengon carbon and graphite were casted it into thin layer electrode (TLE). The electrodes are fabricated into EDLC along with aluminum foil, and their performance are tested by using Galvanostatic and capacitance meter. TLE had 2.984 to 3.547 μF/g of capacitance, initial voltage of EDLC ranged from 0.67 to 0.42 V. Capacitance of 3 cm x 4 cm EDLC ranged from 30.6 to 60 μF. Galvanostatic Charge-Discharge (GCD) indicated that SWC suitable for EDLC application.

  8. Nonvolatile Electric Double-Layer Transistor Memory Devices Embedded with Au Nanoparticles.

    Science.gov (United States)

    Koo, Jaemok; Yang, Jeehye; Cho, Boeun; Jo, Hyunwoo; Lee, Keun Hyung; Kang, Moon Sung

    2018-03-21

    We present nonvolatile transistor memory devices that rely on the formation of electric double layer (EDL) at the semiconductor-electrolyte interface. The two critical functional components of the devices are the ion gel electrolyte and gold nanoparticles (NPs). The ion gel electrolyte contains ionic species for EDL formation that allow inducing charges in the semiconductor-electrolyte interface. The gold NPs inserted between the ion gel and the channel layer serve as trapping sites to the induced charges to store the electrical input signals. Two different types of gold NPs were used: one prepared using direct thermal evaporation and the other prepared using a colloidal process. The organic ligands attached onto the colloidal gold NPs prevented the escape of the trapped charges from the particles and thus enhanced the retention characteristics of the programmed/erased signals. The low-voltage-driven EDL formation resulted in a programmed/erased memory signal ratio larger than 10 3 from the nonvolatile indium-gallium-zinc oxide transistor memory devices at voltages below 10 V, which could be held for >10 5 s. The utility of the electrolytes to operate memory devices demonstrated herein should provide an alternative strategy to realize cheap, portable electronic devices powered with thin-film batteries.

  9. Recent progress in layered double hydroxide based materials for electrochemical capacitors: design, synthesis and performance.

    Science.gov (United States)

    Zhao, Mingming; Zhao, Qunxing; Li, Bing; Xue, Huaiguo; Pang, Huan; Chen, Changyun

    2017-10-19

    As representative two-dimensional (2D) materials, layered double hydroxides (LDHs) have received increasing attention in electrochemical energy storage and conversion because of the facile tunability between their composition and morphology. The high dispersion of active species in layered arrays, the simple exfoliation into monolayer nanosheets and chemical modification offer the LDHs an opportunity as active electrode materials in electrochemical capacitors (ECs). LDHs are favourable in providing large specific surface areas, good transport features as well as attractive physicochemical properties. In this review, our purpose is to provide a detailed summary of recent developments in the synthesis and electrochemical performance of the LDHs. Their composites with carbon (carbon quantum dots, carbon black, carbon nanotubes/nanofibers, graphene/graphene oxides), metals (nickel, platinum, silver), metal oxides (TiO 2 , Co 3 O 4 , CuO, MnO 2 , Fe 3 O 4 ), metal sulfides/phosphides (CoS, NiCo 2 S 4 , NiP), MOFs (MOF derivatives) and polymers (PEDOT:PSS, PPy (polypyrrole), P(NIPAM-co-SPMA) and PET) are also discussed in this review. The relationship between structures and electrochemical properties as well as the associated charge-storage mechanisms is discussed. Moreover, challenges and prospects of the LDHs for high-performance ECs are presented. This review sheds light on the sustainable development of ECs with LDH based electrode materials.

  10. Heterogeneous photocatalytic degradation of pesticides using decatungstate intercalated macroporous layered double hydroxides.

    Science.gov (United States)

    Da Silva, Eliana S; Prevot, Vanessa; Forano, Claude; Wong-Wah-Chung, Pascal; Burrows, Hugh D; Sarakha, Mohamed

    2014-10-01

    Decatungstate W10O32(4-) was efficiently intercalated between the layers of three-dimensionally ordered macroporous Mg2Al-layered double hydroxide. The structural and textural properties of as-prepared intercalated compound were characterized using different solid-state characterization techniques such as X-ray powder diffraction, FTIR and Raman spectroscopies and electronic microscopy. The photocatalytic properties of immobilized W10O32 (4-) within Mg2Al structure were investigated using 2-(1-naphthyl) acetamide (NAD) as a model of pesticide. The influence of different parameters such as amount of catalyst, pH and oxygen concentration were investigated. An optimal NAD degradation was obtained for a photocatalyst concentration of 60 mg l(-1). Under our experimental conditions, this heterogeneous photocatalyst induces photodegradation of 60 % of NAD after 17 h of irradiation at 365 nm and at pH 6.6. Interestingly, pesticide photodegradation leads to the mineralization of substrates to H2O and CO2 and the photocatalyst can be recycled and reused without any loss of activity over four cycles.

  11. Engineering of (10-hydroxycamptothecin intercalated layered double hydroxide)@liposome nanocomposites with excellent water dispersity

    Science.gov (United States)

    Zhang, Yongfang; Wu, Xiaowen; Mi, Yuwei; Li, Haiping; Hou, Wanguo

    2017-09-01

    A hierarchical nanocomposite of 10-hydroxycamptothecin (HCPT), a nonionic and lipophilic anticancer drug, intercalated layered double hydroxide (LDH) encapsulated in liposomes was constructed. HCPT molecules were first incorporated into sodium cholate (Ch) micelles, and the resultant negatively charged HCPT-loaded Ch micelles were then co-assembled with positively charged LDH single-layer nanosheets, forming a HCPT/Ch intercalated LDH (HCPT-Ch-LDH) host-gest nanohybrid. The nanohybrid particles were further coated with liposomes (LSs), gaining a core-shell nanocomposite, denoted as (HCPT-Ch-LDH)@LS. The so-obtained samples were characterized using TEM, SAXS, FT-IR, DLS, and elemental analyses. Special emphasis was placed on the effect of liposome-coating for the HCPT-Ch-LDH on its water dispersity and drug-release. The results showed that the nanocomposite has excellent water dispersity and enhanced drug sustained-release performance in comparison with the HCPT-Ch-LDH, demonstrating that the liposome-coating for drug-LDH nanohybrids is an effective strategy to enhance their water dispersity and sustained-release performances. This work provides an effective strategy for engineering of LDH-based delivery systems for nonionic and lipophilic drugs.

  12. Development of controlled drug release formulation based on pamoate-zinc-aluminium-layered double hydroxide nano composite

    International Nuclear Information System (INIS)

    Zaemah Jubri

    2008-01-01

    Controlled drug release formulation of pamoate was developed by the intercalation of pamoate anion into Zn-Al-layered double hydroxide (LDH). The resulting layered organic-inorganic hybrid nano composite material was formed using pamoate as guest anion intercalated into the Zn-Al layered double hydroxide inorganic host by direct co-precipitation method. As a result of successful intercalation of pamoate ion into the interlayer structure of Zn-Al-LDH, an expansion of the interlayer spacing, from 8.9 Angstrom in the layered double hydroxide to 18.1 Angstrom in the nano composite (ZAP) could be observed in the powder X-ray diffractogram. The reverse process, for example the de intercalation or release of the guest, pamoate was found to be rapid initially, followed by a more sustained release thereafter and this behavior was dependent on the pH of the release medium, the aqueous solution. The mechanism of release has been interpreted on the basis of the ion-exchange process between the pamoate anion intercalated in the lamella host and nitrate, or hydroxyl anions in the aqueous solution. This study suggest that layered double hydroxide can be used as a carrier for drugs that allow safe and controlled delivery of various bio agents into target with high efficiency. (author)

  13. Double-layered buffer to enhance the thermal performance in a high-level radioactive waste disposal system

    International Nuclear Information System (INIS)

    Choi, Heui-Joo; Choi, Jongwon

    2008-01-01

    A thermal performance is one of the most important factors in the design of a geological disposal system for high-level radioactive wastes. According to the conceptual design of the Korean Reference disposal System, the maximum temperature of its buffer with a domestic Ca-bentonite is close to the thermal criterion, 100 deg. C. In order to improve the thermal conductivity of its buffer, several kinds of additives are compared. Among the additives, graphite shows the best result in that the thermal conductivity of the bentonite block is more than 2.0 W/m deg. C. We introduced the concept of a double-layered buffer instead of a traditional bentonite block in order to use the applied additive more effectively. The thermal analysis, based upon the three-dimensional finite element method, shows that a double-layered buffer could reduce the maximum temperature on a canister's surface by 7 deg. C under identical conditions when compared with a single-layered buffer. An analytical solution was derived to efficiently analyze the effects of a double-layered buffer. The illustrative cases show that the temperature differences due to a double-layered buffer depend on the thickness of the buffer

  14. Thermal stability and data retention of resistive random access memory with HfOx/ZnO double layers

    International Nuclear Information System (INIS)

    Lai Yun-Feng; Chen Fan; Zeng Ze-Cun; Lin PeiJie; Cheng Shu-Ying; Yu Jin-Ling

    2017-01-01

    As an industry accepted storage scheme, hafnium oxide (HfO x ) based resistive random access memory (RRAM) should further improve its thermal stability and data retention for practical applications. We therefore fabricated RRAMs with HfO x /ZnO double-layer as the storage medium to study their thermal stability as well as data retention. The HfO x /ZnO double-layer is capable of reversible bipolar switching under ultralow switching current (< 3 μA) with a Schottky emission dominant conduction for the high resistance state and a Poole–Frenkel emission governed conduction for the low resistance state. Compared with a drastically increased switching current at 120 °C for the single HfO x layer RRAM, the HfO x /ZnO double-layer exhibits excellent thermal stability and maintains neglectful fluctuations in switching current at high temperatures (up to 180 °C), which might be attributed to the increased Schottky barrier height to suppress current at high temperatures. Additionally, the HfO x /ZnO double-layer exhibits 10-year data retention @85 °C that is helpful for the practical applications in RRAMs. (paper)

  15. XANES analysis of dried and calcined bones

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Jayapradhi [Materials Science and Engineering Department, University of Texas at Arlington (United States); Gialanella, Stefano [Materials Science and Industrial Technology Department, University of Trento (Italy); Aswath, Pranesh B., E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington (United States)

    2013-10-15

    The structure of dried and calcined bones from chicken, bovine, deer, pig, sheep and chamois was examined using X-ray Absorption Near Edge Structure (XANES) spectroscopy. The oxygen K-edge absorption edge indicates that the surface of dried bone has a larger proportion of carbonate than the interior that is made up of phosphates. The phosphorus L and K edge clearly indicate that pyrophosphates, α-tricalcium phosphate (α-TCP) and hydrogen phosphates of Ca do not exist in either the dried bone or calcined bone and phosphorus exists as either β-tricalcium phosphate (β-TCP) or hydroxyapatite, both in the dried and calcined conditions. The Ca K-edge analysis indicates that β-TCP is the likely form of phosphate in both the dried and calcined conditions. - Highlights: • For the first time bones of five different species of vertebrates have been compared in both the dried and calcined states. • O, P and Ca edges detail the local coordination of these atoms in dried and calcined bone. • O K-edge shows that the surface of bone has more CO{sub 3} while the interior has more PO{sub 4}. • P and Ca edges eliminate the presence of pyrophosphates and confirmed the presence of HA and β-TCP. • The stability of these phosphates on calcination has been examined using XANES.

  16. Calcined solids storage facility closure study

    Energy Technology Data Exchange (ETDEWEB)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

  17. Calcined solids storage facility closure study

    International Nuclear Information System (INIS)

    Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C.

    1998-02-01

    The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a open-quotes Settlement Agreementclose quotes (or open-quotes Batt Agreementclose quotes) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed

  18. Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs

    International Nuclear Information System (INIS)

    Xia Shengjie; Ni Zheming; Xu Qian; Hu Baoxiang; Hu Jun

    2008-01-01

    Zn/Al layered double hydroxides (LDHs) were intercalated with the anionic antihypertensive drugs Enalpril, Lisinopril, Captopril and Ramipril by using coprecipitation or ion-exchange technique. TG-MS analyses suggested that the thermal stability of Ena - , Lis - (arranged with monolayer, resulted from X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR) analysis was enhanced much more than Cap - and Ram - (arranged with bilayer). The release studies show that the release rate of all samples markedly decreased in both pH 4.25 and 7.45. However, the release time of Ena - , Lis - were much longer compared with Cap - , Ram - in both pH 4.25 and 7.45, it is possible that the intercalated guests, arranged with monolayer in the interlayer, show lesser repulsive force and strong affinity with the LDH layers. And the release data followed both the Higuchi-square-root law and the first-order equation well. Based on the analysis of batch release, intercalated structural models as well as the TG-DTA results, we conclude that for drug-LDH, stronger the affinity between intercalated anions and the layers is, better the thermal property and the stability to the acid attack of drug-LDH, and the intercalated anions are easier apt to monolayer arrangement within the interlayer, were presented. - Graphical abstract: A series of antihypertensive drugs including Enalpril, Lisinopril, Captopril and Ramipril were intercalated into Zn/Al-NO 3 -LDHs successfully by coprecipitation or ion-exchange technique. We focus on the structure, thermal property and low/controlled release property of as-synthesized drug-LDH composite intended for the possibility of applying these LDH-antihypertensive nanohybrids in drug delivery and controlled release systems

  19. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly

    International Nuclear Information System (INIS)

    Yuan, Shuang; Peng, Dinghua; Hu, Xianluo; Gong, Jingming

    2013-01-01

    Graphical abstract: -- Highlights: •A new highly sensitive bifunctional electrochemical sensor developed. •As-prepared sensor fabricated by alternate assembly of HA and exfoliated LDH nanosheets. •Such a newly designed sensor combining the individual properties of HA and LDH nanosheets. •Simultaneous determination of pentachlorophenol and copper ions achieved. •Practical applications demonstrated in water samples. -- Abstract: A new, highly sensitive bifunctional electrochemical sensor for the simultaneous determination of pentachlorophenol (PCP) and copper ions (Cu 2+ ) has been developed, where organic–inorganic hybrid ultrathin films were fabricated by alternate assembly of humic acid (HA) and exfoliated Mg–Al-layered double hydroxide (LDH) nanosheets onto ITO substrates via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of UV–vis spectrometry, scanning electron microscopy (SEM), and atomic force microscope (AFM). These films were found to have a relatively smooth surface with almost equal amounts of HA incorporated in each cycle. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/HA) n multilayer films, combining the individual properties of HA (dual recognition ability for organic herbicides and metal ions) together with LDH nanosheets (a rigid inorganic matrix), can be applied to the simultaneous analysis of PCP and Cu(II) without interference from each other. The LBL assembled nanoarchitectures were further investigated by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR), which provides insight for bifunctional sensing behavior. Under the optimized conditions, the detection limit was found to be as low as 0.4 nM PCP, well below the guideline value of PCP in drinking water (3.7 nM) set by the United States Environmental Protection Agency (U.S. EPA), and 2.0 nM Cu 2+ , much below the guideline value (2.0 mg L −1

  20. New Waste Calcining Facility (NWCF) Waste Streams

    International Nuclear Information System (INIS)

    K. E. Archibald

    1999-01-01

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF

  1. Variable Charge and Electrical Double Layer of Mineral-Water Interfaces: Silver Halides versus Metal (Hydr)Oxides

    NARCIS (Netherlands)

    Hiemstra, T.

    2012-01-01

    Classically, silver (Ag) halides have been used to understand thermodynamic principles of the charging process and the corresponding development of the electrical double layer (EDL). A mechanistic approach to the processes on the molecular level has not yet been carried out using advanced surface

  2. Synthesis and Controlled Release Property of Levodopa from Its Zn-Al-Layered Double Hydroxide Nano hybrid

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Sariwani Abdul Ghani; Mohd Zobir Hussein; Abdul Halim Abdullah

    2011-01-01

    A new inorganic-based drug delivery system, levodopa-layered double hydroxide nano hybrid compound was synthesized for a controlled release formulation through co-precipitation method. The nano hybrid was synthesized using a layered double hydroxide material of Zn-Al layered double hydroxide type as a host in which nitrate anions present in the host galleries were ion-exchanged with levodopa anion. The results from PXRD, FTIR and thermal analysis (TG/DTA) indicated the presence of the levodopa anion that has been successfully intercalated into the layered double hydroxide for the formation of nano hybrid. The release of the active agent, levodopa from the interlayer of the nano hybrid was found to be of controlled manner governed by the pseudo-second order kinetic. It was found that the release of levodopa in phosphate buffer solution medium is of controlled manner while chloride speeds up the release rate of levodopa. The material has good potential as a new generation of drug with slow release capability which can be used for drug delivery system. (author)

  3. Synthesis of Zn/Co/Fe-layered double hydroxide nanowires with controllable morphology in a water-in-oil microemulsion

    International Nuclear Information System (INIS)

    Wu Hongyu; Jiao Qingze; Zhao Yun; Huang Silu; Li Xuefei; Liu Hongbo; Zhou Mingji

    2010-01-01

    The Zn/Co/Fe-layered double hydroxide nanowires were synthesized via a reverse microemulsion method by using cetyltrimethyl ammonium bromide (CTAB) /n-hexane/n-hexanol/water as Soft-Template. ZnSO 4 , CoSO 4 , Fe 2 (SO 4 ) 3 and urea were used as raw materials. The influence of reaction temperature, time, urea concentration and Cn (molar ratio of cetyltrimethyl ammonium bromide to water) on the structure and morphology of Zn/Co/Fe-layered double hydroxides was investigated. The samples were characterized using Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), X-ray Diffraction (XRD) and Infrared Absorption Spectrum (IR). The results indicate that higher temperature is beneficial to the formation of layered double hydroxides, but particles apart from nanowires could be produced if temperature is up to 120 deg. C. By varying the temperature, reaction time, urea concentration and Cn, we got the optimum conditions of synthesizing uniform Zn/Co/Fe-layered double hydroxide nanowires: 100 deg. C, more than 12 h, Cn: 30-33, urea concentration: 0.3 M.

  4. Drug intercalation in layered double hydroxide clay: Application in the development of a nanocomposite film for guided tissue regeneration

    DEFF Research Database (Denmark)

    Chakraborti, M.; Jackson, J.K.; Plackett, David

    2011-01-01

    of release by intercalation of alendronate anions in magnesium/aluminum layered double hydroxide (LDH) clay nanoparticles and dispersed in the PLGA film matrix. Tetracycline, loaded as free drug into the film together with alendronate–LDH clay complex released more rapidly than alendronate, but showed...

  5. How the Method of Synthesis Governs the Local and Global Structure of Zinc Aluminum Layered Double Hydroxides

    DEFF Research Database (Denmark)

    Puschparaj, Suraj S. C.; Forano, Claude; Prevot, Vanessa

    2015-01-01

    Seven zinc aluminum layered double hydroxides (ZnAl LDHs), [Zn1-xAlx (OH)2Ax,nH2O] A = NO3-, Cl- or CO32-, prepared by the urea and co-precipitation synthesis methods were investigated to determine how synthesis parameters (pH, metal ion concentration and post synthesis treatment) affect the local...

  6. The effect of scattering on sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2012-01-01

    A recent study has shown that a circular double-layer array of loudspeakers makes it possible to achieve a sound field control that can generate a controlled field inside the array and reduce sound waves propagating outside the array. This is useful if it is desirable not to disturb people outside...

  7. Numerical study on ion filtering of titanium hydride cathodic vacuum arc plasma through a double-layer extraction grid

    Science.gov (United States)

    Lan, Chaohui; Long, Jidong; Zheng, Le; Dong, Pan; Li, Jie; Yang, Zhen; Wang, Tao; He, Jialong; Li, Xi

    2017-06-01

    A novel method of filtering titanium hydride cathodic vacuum arc ions through a double-layer extraction grid is proposed in this paper. Two grids with different transmission rates are placed very closely, and apertures of the two grids are staggered. Due to the differences of ions in the charge state and kinetic energy, H+ can easily go through the second grid after passing the first grid and then be extracted, while most Tii+ (i = 1 ˜ 3) are blocked and absorbed by the second grid. Using a 2D electrostatic particle-in-cell simulation, the effectiveness of the double-layer extraction grid on ion filtering is verified. The results show that the fraction of H+ can be increased from 39% to 80% by the double-layer grid and the fraction of metal ions decreases significantly. The fraction of H+ depends on the distance and the overlap length of the two grids. Besides, in a wide range of extraction voltage, the double-layer grid is effective in increasing the fraction of H+.

  8. Purse-string double-layer closure: a novel technique for repairing the uterine incision during cesarean section.

    Science.gov (United States)

    Turan, Cem; Büyükbayrak, Esra Esim; Yilmaz, Aylin Onan; Karsidag, Yasemin Karageyim; Pirimoglu, Meltem

    2015-04-01

    To compare the classical double-layer uterine closure to a double-layer purse-string uterine closure (Turan technique) in cesarean section regarding short- and long-term results. Patients were randomized into either the double-layer purse-string uterine closure arm (study group, 84 patients) or the classical double-layer uterine closure arm (control group, 84 patients). For short-term comparison, a detailed transvaginal ultrasound examination was planned in all patients 6 weeks after the operation and a wedge-shaped defect in the uterine incision scar was accepted as uterine scar defect and recorded. For the long-term comparison, subsequent pregnancies of these patients were followed up for any complication. The number of patients with ultrasonographically visible uterine scar defect was 12 (23.5% of all scar defects) in the study group whereas it was 39 (76.5% of all scar defects) in the control group (P complication during their pregnancies and second cesarean operation were encountered. With the Turan technique, the uterine incision length becomes shorter, and the frequency of uterine scar defect is lower regarding short-term results. More data is needed for long-term results. ClinicalTrials.gov NCT01287611. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  9. Synthesis of Zn/Co/Fe-layered double hydroxide nanowires with controllable morphology in a water-in-oil microemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hongyu; Jiao Qingze [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Zhao Yun, E-mail: zhaoyun@bit.edu.cn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Huang Silu; Li Xuefei; Liu Hongbo; Zhou Mingji [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China)

    2010-02-15

    The Zn/Co/Fe-layered double hydroxide nanowires were synthesized via a reverse microemulsion method by using cetyltrimethyl ammonium bromide (CTAB) /n-hexane/n-hexanol/water as Soft-Template. ZnSO{sub 4}, CoSO{sub 4}, Fe{sub 2}(SO{sub 4}){sub 3} and urea were used as raw materials. The influence of reaction temperature, time, urea concentration and Cn (molar ratio of cetyltrimethyl ammonium bromide to water) on the structure and morphology of Zn/Co/Fe-layered double hydroxides was investigated. The samples were characterized using Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), X-ray Diffraction (XRD) and Infrared Absorption Spectrum (IR). The results indicate that higher temperature is beneficial to the formation of layered double hydroxides, but particles apart from nanowires could be produced if temperature is up to 120 deg. C. By varying the temperature, reaction time, urea concentration and Cn, we got the optimum conditions of synthesizing uniform Zn/Co/Fe-layered double hydroxide nanowires: 100 deg. C, more than 12 h, Cn: 30-33, urea concentration: 0.3 M.

  10. Probing the electrical double-layer structure at the rutile-water interface with x-ray standing waves.

    Energy Technology Data Exchange (ETDEWEB)

    Fenter, P.; Cheng, L.; Rihs, S.; Machesky, M.; Bedzyk, M. J.; Sturchio, N. C.

    2000-11-28

    We demonstrate that the X-ray standing wave (XSW) technique is a powerful probe of the electrical double-layer (EDL) structure. Measurements were made of Sr adsorption at the rutile (110)-water interface from aqueous solutions. Our results show that Bragg XSW, using small-period standing waves generated by Bragg diffraction from the substrate, precisely probes the location of ions within the condensed layer, and the in situ partitioning of ions between the condensed and diffuse layers. Such measurements can provide important constraints for the development and verification of theoretical models that describe ion adsorption at the solid-water interface.

  11. INTER-LAYER INTERACTION IN DOUBLE-WALLED CARBON NANOTUBES EVIDENCED BY SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY

    DEFF Research Database (Denmark)

    Giusca, Cristina E; Tison, Yann; Silva, S. Ravi P.

    2008-01-01

    and the overall electronic structure for double-walled carbon nanotubes, is demonstrated by our experiments, showing that the effect the inner tube has on the overall electronic structure of double-walled nanotubes cannot be neglected, and is key to the opto-electronic properties of the system. We postulate...... that previous analysis of the opto-electronic properties on multiple-walled carbon nanotubes based purely on the outer layer chirality of the tube needs significant modification based on new understanding brought forth with our analysis.......Scanning Tunneling Microscopy and Spectroscopy have been used in an attempt to elucidate the electronic structure of nanotube systems containing two constituent shells. Evidence for modified electronic structure due to the inter-layer interaction in double-walled carbon nanotubes is provided...

  12. On the theory of electric double layer with explicit account of a polarizable co-solvent

    International Nuclear Information System (INIS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Kiselev, M. G.

    2016-01-01

    We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On

  13. On the theory of electric double layer with explicit account of a polarizable co-solvent.

    Science.gov (United States)

    Budkov, Yu A; Kolesnikov, A L; Kiselev, M G

    2016-05-14

    We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On

  14. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    International Nuclear Information System (INIS)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu; Tjiu, Weng Weei; Liu Tianxi

    2012-01-01

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  15. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Tjiu, Weng Weei [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Liu Tianxi, E-mail: txliu@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)

    2012-06-15

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  16. Bin Set 1 Calcine Retrieval Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    R. D. Adams; S. M. Berry; K. J. Galloway; T. A. Langenwalter; D. A. Lopez; C. M. Noakes; H. K. Peterson; M. I. Pope; R. J. Turk

    1999-10-01

    At the Department of Energy's Idaho Nuclear Technology and Engineering Center, as an interim waste management measure, both mixed high-level liquid waste and sodium bearing waste have been solidified by a calculation process and are stored in the Calcine Solids Storage Facilities. This calcined product will eventually be treated to allow final disposal in a national geologic repository. The Calcine Solids Storage Facilities comprise seven ''bit sets.'' Bin Set 1, the first to be constructed, was completed in 1959, and has been in service since 1963. It is the only bin set that does not meet current safe-shutdown earthquake seismic criteria. In addition, it is the only bin set that lacks built-in features to aid in calcine retrieval. One option to alleviate the seismic compliance issue is to transport the calcine from Bin Set 1 to another bin set which has the required capacity and which is seismically qualified. This report studies the feasibility of retrieving the calcine from Bi n Set 1 and transporting it into Bin Set 6 which is located approximately 650 feet away. Because Bin Set 1 was not designed for calcine retrieval, and because of the high radiation levels and potential contamination spread from the calcined material, this is a challenging engineering task. This report presents preconceptual design studies for remotely-operated, low-density, pneumatic vacuum retrieval and transport systems and equipment that are based on past work performed by the Raytheon Engineers and Constructors architectural engineering firm. The designs presented are considered feasible; however, future development work will be needed in several areas during the subsequent conceptual design phase.

  17. Bin Set 1 Calcine Retrieval Feasibility Study

    International Nuclear Information System (INIS)

    Adams, R.D.; Berry, S.M.; Galloway, K.J.; Langenwalter, T.A.; Lopez, D.A.; Noakes, C.M.; Peterson, H.K.; Pope, M.I.; Turk, R.J.

    1999-01-01

    At the Department of Energy's Idaho Nuclear Technology and Engineering Center, as an interim waste management measure, both mixed high-level liquid waste and sodium bearing waste have been solidified by a calculation process and are stored in the Calcine Solids Storage Facilities. This calcined product will eventually be treated to allow final disposal in a national geologic repository. The Calcine Solids Storage Facilities comprise seven ''bit sets.'' Bin Set 1, the first to be constructed, was completed in 1959, and has been in service since 1963. It is the only bin set that does not meet current safe-shutdown earthquake seismic criteria. In addition, it is the only bin set that lacks built-in features to aid in calcine retrieval. One option to alleviate the seismic compliance issue is to transport the calcine from Bin Set 1 to another bin set which has the required capacity and which is seismically qualified. This report studies the feasibility of retrieving the calcine from Bi n Set 1 and transporting it into Bin Set 6 which is located approximately 650 feet away. Because Bin Set 1 was not designed for calcine retrieval, and because of the high radiation levels and potential contamination spread from the calcined material, this is a challenging engineering task. This report presents preconceptual design studies for remotely-operated, low-density, pneumatic vacuum retrieval and transport systems and equipment that are based on past work performed by the Raytheon Engineers and Constructors architectural engineering firm. The designs presented are considered feasible; however, future development work will be needed in several areas during the subsequent conceptual design phase

  18. Alveolar ridge preservation with an open-healing approach using single-layer or double-layer coverage with collagen membranes.

    Science.gov (United States)

    Choi, Ho-Keun; Cho, Hag-Yeon; Lee, Sung-Jo; Cho, In-Woo; Shin, Hyun-Seung; Koo, Ki-Tae; Lim, Hyun-Chang; Park, Jung-Chul

    2017-12-01

    The aim of this prospective pilot study was to compare alveolar ridge preservation (ARP) procedures with open-healing approach using a single-layer and a double-layer coverage with collagen membranes using radiographic and clinical analyses. Eleven molars from 9 healthy patients requiring extraction of the maxillary or mandibular posterior teeth were included and allocated into 2 groups. After tooth extraction, deproteinized bovine bone mineral mixed with 10% collagen was grafted into the socket and covered either with a double-layer of resorbable non-cross-linked collagen membranes (DL group, n=6) or with a single-layer (SL group, n=5). Primary closure was not obtained. Cone-beam computed tomography images were taken immediately after the ARP procedure and after a healing period of 4 months before implant placement. Radiographic measurements were made of the width and height changes of the alveolar ridge. All sites healed without any complications, and dental implants were placed at all operated sites with acceptable initial stability. The measurements showed that the reductions in width at the level 1 mm apical from the alveolar crest (including the bone graft) were -1.7±0.5 mm in the SL group and -1.8±0.4 mm in the DL group, and the horizontal changes in the other areas were also similar in the DL and SL groups. The reductions in height were also comparable between groups. Within the limitations of this study, single-layer and double-layer coverage with collagen membranes after ARP failed to show substantial differences in the preservation of horizontal or vertical dimensions or in clinical healing. Thus, both approaches seem to be suitable for open-healing ridge preservation procedures.

  19. [Infrared spectral analysis for calcined borax].

    Science.gov (United States)

    Zhao, Cui; Ren, Li-Li; Wang, Dong; Zhou, Ping; Zhang, Qian; Wang, Bo-Tao

    2011-08-01

    To valuate the quality of calcined borax which is sold in the market, 18 samples of calcined borax were studied using the Fourier transform infrared, and samples with different water content were selected and analyzed. Then, the results of analysis were used to evaluate the quality of calcined borax. Results show that the infrared spectra of calcined borax include OH vibration, BO3(-3) vibration and BO4(5-) vibration absorption bands. The position and width of OH vibration absorption band depend on the level of water content, and the more the water content, the wider the absorption band. The number of BO3(3-) vibration and BO4(5-) vibration bands also depend on the level of water content, and the more the water content, and the stronger the hydrogen bond and the lower the symmetry of B atoms, the more the number of infrared absorption peaks. It was concluded that because the quality of calcined borax has direct correlation with water content, the infrared spectroscopy is an express and objective approach to quality analysis and evaluation of calcined borax.

  20. Multivariate optimization of process parameters in the synthesis of calcined Ca‒Al (NO3) LDH for defluoridation using 3(3) factorial, central composite and Box-Behnken design.

    Science.gov (United States)

    Ghosal, Partha S; Gupta, Ashok K; Sulaiman, Ayoob

    2016-01-01

    Response surface methodology was applied for the first time in the optimization of the preparation of layered double hydroxide (LDH) for defluoridation. The influence of three vital process parameters (viz. pH, molar ratio and calcination temperature) in the synthesis of the adsorbent 'Calcined Ca‒Al (NO3) LDH' was thoroughly examined to maximize its fluoride scavenging potential. The process parameters were optimized using the 3(3) factorial, face centered central composite and Box-Behnken designs and a comparative assessment of the methods was conducted. The maximum fluoride removal efficiency was achieved at a calcination temperature of approximately 500ºC; however, the efficiency decreased with increasing pH and molar ratio. The outcome of the comparative assessment clearly delineates the case specific nature of the models. A better predictability over the entire experimental domain was obtained with the 3(3) factorial method, whereas the Box-Behnken design was found to be the most efficient model with lesser number of experimental runs. The desirability function technique was performed for optimizing the response, wherein face centered central composite design exhibited a maximum desirability. The calcined Ca‒Al (NO3) LDH, synthesized under the optimum conditions, demonstrated the removal efficiencies of 95% and 99% for the doses of 3 g L(-1) and 5 g L(-1), respectively.

  1. Methotrexatum intercalated layered double hydroxides: Statistical design, mechanism explore and bioassay study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-Feng [Department of Gastroenterology, Weihai municipal hospital, Weihai 264200 (China); Liu, Su-Qing [Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023 (China); Li, Shu-Ping, E-mail: lishuping@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023 (China)

    2015-04-01

    A series of methotrexatum intercalated layered double hydroxide (MTX/LDH for short) hybrids have been synthesized by a mechanochemical–hydrothermal method, the statistical experiments are planned and conducted to find out the critical factor influencing the physicochemical properties. Four variables, i.e., addition of NaOH solution, grinding duration, hydrothermal temperature and time, are chosen to play as the examined factors in the orthogonal design. Furthermore, three respective levels, i.e., high, medium and low levels, are conducted in the design. The resulting hybrids are then characterized by X-ray diffraction (XRD) patterns, transmission electron microscope (TEM) graphs and Zeta potentials. XRD diffractions indicate that MTX anions have been successfully intercalated into LDH interlayers and the amount of NaOH solution can change the gallery height greatly. The information from TEM graphs and Zeta potentials state that the increase of alkali solution gives rise to regular morphology and the increase of Zeta potentials. As a result of the statistical analysis, addition of alkali solution is the major factor affecting the morphology and drug-loading capacity. At last, the mechanism of particle growth is explored emphatically, and the anticancer efficacy of some MTX/LDH hybrids is estimated by MTT assay on A549 cells as well. - Graphical abstract: Schematic illustration of synthesis and properties of MTX intercalated LDH hybrids. - Highlights: • Increasing NaOH solution gives rise to high drug-loading capacity. • Increasing the alkali solution leads to high layer charge and regular morphology. • The monodispersity has critical effect on the tumor suppression efficiency.

  2. [Role of layered double hydroxide (LDH) in the protection of herring testis DNA from heavy metals].

    Science.gov (United States)

    Tang, Yi-Ni; Wu, Ping-Xiao; Zhu, Neng-Wu

    2012-10-01

    The role of layered double hydroxide (LDH) in the protection of herring testis DNA from heavy metals Cd2+ and Pb2+ was studied by X-ray diffraction ( XRD) spectra, Fourier transform infrared (FTIR) spectra, Scanning Electron Microscopy (SEM), Cyclic Voltammetry and Ultraviolet Spectrometry. Size expansion of the basal spacing (003) from 0. 76 nm in LDH to 2. 30 nm was observed in the resulting DNA-LDH nanohybrids and it gave peaks corresponding to C=O (1 534 cm(-1) and 1488 cm(-1)) in skeleton and bases, C-O stretching vibration (1228 cm(-1)), and P-O symmetrical stretching vibration (1096 cm(-1)) in functional groups of DNA, indicating that DNA were intercalated into the LDH by the ion exchange. However, the displacement of NO3(-) was not fully complete (partial intercalation of DNA). The DNA outside LDH interlayers was absorbed on the surface of LDH. The cyclic voltammetric curves showed that DNA in the composites exhibited a very similar peaks, which corresponded to the two reduction current peaks (E(P) = - 1.2 mV and E(P) = -2.4 mV) of free DNA. Also there was no cathode sag emerging in cyclic voltammetric curves, suggesting that both Cd2+ and Pb2+ cannot insert into the groove of DNA to associate with base pairs or other groups when DNA was bound on LDH. The results showed that, on the one hand, both Cd2+ and Pb2+ were absorbed on the external surface of LDH for immobilization, on the other hand, the layer of LDH provided ideal space for DNA by the action of protecting DNA molecules from Cd2+ and Pb2+.

  3. Synthesis of protocatechuic acid–zinc/aluminium–layered double hydroxide nanocomposite as an anticancer nanodelivery system

    Energy Technology Data Exchange (ETDEWEB)

    Barahuie, Farahnaz [Materials Synthesis and Characterisation Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Hussein, Mohd Zobir, E-mail: mzobir@upm.edu.my [Materials Synthesis and Characterisation Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Gani, Shafinaz Abd [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Fakurazi, Sharida [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Zainal, Zulkarnain [Materials Synthesis and Characterisation Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia)

    2015-01-15

    Protocatechuic acid, an active anticancer agent, has been intercalated into Zn/Al–layered double hydroxide at Zn/Al=2) using two different preparation methods, co-precipitation and ion-exchange, which are labelled as PZAE and PZAC, respectively. The release of protocatechuate from the nanocomposites occurred in a controlled manner and was fitted satisfactorily to pseudo-second order kinetics. The basal spacing of the resulting nanocomposites PZAE and PZAC was 10.2 and 11.0 Å, respectively, indicating successful intercalation of protocatechuate anions into the interlayer galleries of Zn/Al–NO{sub 3}–LDH in a monolayer arrangement with angles of 24 and 33° from the z-axis in PZAE and PZAC, respectively. The formation of nanocomposites was further confirmed by a Fourier transform infrared study. Thermogravimetric and differential thermogravimetric analyses indicated that the thermal stability of the intercalated protocatechuic acid was significantly enhanced compared to its free protocatechuic acid, and the drug content in the nanocomposites was estimated to be approximately 32.6% in PZAE and 29.2% in PZAC. Both PZAE and PZAC nanocomposites inhibit the growth of human cervical, liver and colorectal cancer cell lines and exhibit no toxic effects towards normal fibroblast 3T3 cell after 72 h of treatment. - Graphical abstract: Protocatechuate anions were arranged in monolayer mode with the angle of 24° for PZAE and 33° for PZAC from Z axis to maximize interaction between carboxylate groups and brucite-like layers. - Highlights: • Two methods gave nanocomposites with slightly different physico-chemical properties. • PZAE and PZAC have the potential to be used as a controlled release formulation. • The thermal stability of PA is markedly enhanced upon the intercalation process. • Higher cancer cell growth inhibition for PZAE and PZAC nanocomposites than for PA.

  4. Tribological Behavior of NiAl-Layered Double Hydroxide Nanoplatelets as Oil-Based Lubricant Additives.

    Science.gov (United States)

    Wang, Hongdong; Liu, Yuhong; Liu, Wenrui; Wang, Rong; Wen, Jianguo; Sheng, Huaping; Peng, Jinfang; Erdemir, Ali; Luo, Jianbin

    2017-09-13

    Layered double hydroxides (LDHs) are a class of naturally occurring inorganic minerals that are composed of divalent and trivalent metal cations. In this study, three different sized NiAl-LDH nanoplatelets were synthesized by varying crystallization time during the microemulsification process. The layered structure and three-dimensional size of nanoplatelets were confirmed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). As lubricant additives, their tribological properties in base oil were evaluated by use of a ball-on-disk reciprocating tribometer under three different loads: 50, 100, and 150 N (which created peak Hertz pressures of 1.74, 2.16, and 2.47 GPa). Under contact pressures of up 2.16 GPa, not only did the coefficient of friction (COF) decrease by about 10% after nano-LDHs were added but also the wear performance improved substantially. These improvements resulted from a protective tribolayer formation on the contact interface, as revealed by detailed surface and structure analytical studies. In particular, cross-sectional TEM images revealed that the larger size nanoplatelets (NiAl-24h), rather than the smaller ones (NiAl-6h) showed the best and most stable tribological performance. This was mainly because of their higher degree of crystallinity, which in turn resulted in the formation of a tribofilm with far superior mechanical properties during sliding. Owing to the simple synthetic method and superior tribological properties as oil-based additives, nano-LDHs hold great potential for use in demanding industrial applications in the future.

  5. High-efficiency green phosphorescent organic light-emitting diodes with double-emission layer and thick N-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Nobuki, Shunichiro, E-mail: shunichiro.nobuki.nb@hitachi.com [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Wakana, Hironori; Ishihara, Shingo [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Mikami, Akiyoshi [Dept. of Electrical Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichimachi, Ishikawa 921-8501 (Japan)

    2014-03-03

    We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high external quantum efficiency of 59.7% and power efficiency of 243 lm/W at 2.73 V at 0.053 mA/cm{sup 2}. A double emission layer and a thick n-doped electron transport layer were adopted to improve the exciton recombination factor. A high refractive index hemispherical lens was attached to a high refractive index substrate for extracting light trapped inside the substrate and the multiple-layers of OLEDs to air. Additionally, we analyzed an energy loss mechanism to clarify room for the improvement of our OLEDs including the charge balance factor. - Highlights: • We developed high efficiency green phosphorescent organic light-emitting diode (OLED). • Our OLED had external quantum efficiency of 59.7% and power efficiency of 243 lm/W. • A double emission layer and thick n-doped electron transport layer were adopted. • High refractive index media (hemispherical lens and substrate) were also used. • We analyzed an energy loss mechanism to clarify the charge balance factor of our OLED.

  6. Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous s

    Directory of Open Access Journals (Sweden)

    Mohammad Noori Sepehr

    2017-07-01

    Full Text Available Magnesium/aluminum layered double hydroxide (LDH nanoparticles were synthesized by hydrolyzing urea and used to remove metronidazole (MN from aqueous solution. The surface morphology images of the LDH nanoparticles showed that the adsorbent surface consisted of hexagonal nanosheets with a diameter of 200–1000 nm. The MN removal efficiency was strongly dependent on the solution pH ranging from 3 to 9. The addition of nitrate, sulfate, and carbonate did not remarkably affect MN adsorption, while hardness slightly improved MN removal efficiency. The adsorption isotherm data could be well described using the Sips equation. The analysis of kinetic data showed that the adsorption of MN onto LDH closely followed the Avrami model and that several kinetic processes may control the rate of sorption. The adsorption process was non-spontaneous and exothermic in nature. The maximum Langmuir adsorption capacity was 62.804 mg/g, demonstrating that LDH is an efficient adsorbent that can be used for the removal of MN compounds.

  7. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices.

    Science.gov (United States)

    Black, Jennifer M; Come, Jeremy; Bi, Sheng; Zhu, Mengyang; Zhao, Wei; Wong, Anthony T; Noh, Joo Hyon; Pudasaini, Pushpa R; Zhang, Pengfei; Okatan, Mahmut Baris; Dai, Sheng; Kalinin, Sergei V; Rack, Philip D; Ward, Thomas Zac; Feng, Guang; Balke, Nina

    2017-11-22

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.

  8. Synthesis, characterization, and controlled release antibacterial behavior of antibiotic intercalated Mg–Al layered double hydroxides

    International Nuclear Information System (INIS)

    Wang, Yi; Zhang, Dun

    2012-01-01

    Graphical abstract: The antibiotic anion released from Mg–Al LDHs provides a controlled release antibacterial activity against the growth of Micrococcus lysodeikticus in 3.5% NaCl solution. Highlights: ► Antibiotic anion intercalated LDHs were synthesized and characterized. ► The ion-exchange one is responsible for the release process. ► The diffusion through particle is the release rate limiting step. ► LDHs loaded with antibiotic anion have high antibacterial capabilities. -- Abstract: Antibiotic–inorganic clay composites including four antibiotic anions, namely, benzoate (BZ), succinate (SU), benzylpenicillin (BP), and ticarcillin (TC) anions, intercalated Mg–Al layered double hydroxides (LDHs) were synthesized via ion-exchange. Powder X-ray diffraction and Fourier transform infrared spectrum analyses showed the successful intercalation of antibiotic anion into the LDH interlayer. BZ and BP anions were accommodated in the interlayer region as a bilayer, whereas SU and TC anions were intercalated in a monolayer arrangement. Kinetic simulation of the release data indicated that ion-exchange was responsible for the release process, and the diffusion through the particles was the rate-limiting step. The antibacterial capabilities of LDHs loaded with antibiotic anion toward Micrococcus lysodeikticus growth were analyzed using a turbidimetric method. Significant high inhibition rate was observed when LDH nanohybrid was introduced in 3.5% NaCl solution. Therefore, this hybrid material may be applied as nanocontainer in active antifouling coating for marine equipment.

  9. Kinetic Evaluation of Lipid Oils Conversion to Biofuel Using Layered Double Hydroxide Doped with Triazabicyclodece Catalyst

    Science.gov (United States)

    Nato Lopez, Frank D.

    Worldwide, there is an ever increasing need for sustainable, renewable fuels that will accommodate the rapidly increasing energy demand and provide independence from fossil fuels. The search for a sustainable alternative to petroleum based fuels has been a great challenge to the scientific community; therefore, great efforts are being made to overcome the fossil fuels dependence by exploring the prominent field of biofuels (bioethanol and biodiesel). Traditional biodiesel is produced from feedstocks such as vegetable oils and animal fats by converting the triglycerides with methanol in the presence of a homogeneous catalyst to produce fatty acid methyl esters (FAMEs). However, drawbacks of this process are the undesired glycerol byproduct and post reaction processing, including separation from reaction mixture, that results in high costs factors. In the present work, the reaction kinetics of a glycerol-free biodiesel method is studied. This method consists of the transesterification of a vegetable oil (i.e. canola oil) using dimethyl carbonate (DMC) as an alternative methylating agent in presence of layered double hydroxides doped with triazabicyclodecene catalyst (a basic organocatalyst). Furthermore, is theorized that this heterogeneous catalyst (TBD/LDH) simultaneously converts both FFAs and triglycerides due to acid sites formed by Al3+ active sites of the LDH structure. Additionally, the versatility of the Raman in situ technique was used as quantitative analysis tool to monitor the reaction kinetics and collect real time data.

  10. In vitro color stability of double-layer veneers after accelerated aging.

    Science.gov (United States)

    Heydecke, G; Zhang, F; Razzoog, M E

    2001-06-01

    Porcelain laminates made from thin alumina shells veneered with feldspathic porcelain could be a promising alternative to conventional veneers. Long-term shade stability is critical for esthetics. This study compared changes in CIE L*a*b* color coordinates of simulated veneers made from aluminum oxide core material veneered with feldspathic porcelain after 300 hours of accelerated photothermal aging (weathering). Fifteen aluminum oxide disks (Procera) were divided into 3 groups. Each of the 5 disks was veneered with All-Ceram porcelain of the Vita shades A1 and B4, respectively. Five disks remained unfinished as controls. The disks were bonded to composite substrates simulating stained teeth. The color of the specimens was measured with a colorimeter. All specimens were subjected to 300 hours of accelerated aging under light exposure and thermocycling. Color measurements were repeated, and the data were statistically evaluated with multiple paired t tests. Color changes in the test groups involved an increase in lightness and a decrease in chroma. The calculated total color differences were not statistically significant compared with a level of 3 DeltaE units. This simulation of double-layer veneers appears to demonstrate acceptable color stability for this type of restoration. Clinical research is necessary to substantiate these in vitro findings.

  11. Treatment with coated layer double hydroxide clays decreases the toxicity of copper-contaminated water.

    Science.gov (United States)

    Blake, Deanne; Nar, Mangesh; D'Souza, Nandika Anne; Glenn, J Brad; Klaine, Stephen J; Roberts, Aaron P

    2014-05-01

    Copper is a common pollutant found in watersheds that exerts toxic effects on both invertebrates and vertebrates. Layer double hydroxide (LDH) clays are able to adsorb a wide range of contaminants through ion-exchange mechanisms. Coating LDH clays with various materials alters the aggregation of clay particles into the nano-size range, thus increasing relative surface area and offering great potential for contaminant remediation. The goal of this study was to determine if treatment with coated LDH clays decreases the toxicity of copper-containing solutions to Daphnia magna. Four LDH clays with different coatings used to alter hydrophobicity were as follows: used: Na(+) montmorillonite, Zn-Al LDH-nitrate, Zn-Al LDH-stearate, and Zn-Al LDH-carbonate. It was determined that coated LDH clays decreased copper toxicity by decreasing bioavailability and that smaller aggregate sizes decreased bioavailability the most. 96 h LC50 values increased by as much as 4.2 times with the treatment of the solutions with 100 mg/L LDH clay. Copper analysis of the clay and solutions indicated that the clays work by decreasing copper bioavailability by way of a binding mechanism. Coated LDH clays hold promise as a small-scale remediation tool or as an innovative tool for toxicity identification and evaluation characterization of metals.

  12. Mechanochemical synthesis of Cu-Al and methyl orange intercalated Cu-Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun, E-mail: forsjun@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); He, Xiaoman; Chen, Min; Hu, Huimin [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Zhang, Qiwu, E-mail: zhangqw@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Liu, Xinzhong [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 China (China)

    2017-04-15

    In this study, a mechanochemical route to synthesize a Cu-Al layered double hydroxide (LDH) and a methyl orange (MO) intercalated one (MO-LDH) was introduced, in which basic cupric carbonate (Cu{sub 2}(OH){sub 2}CO{sub 3}) and aluminum hydroxide (Al(OH){sub 3}) with Cu/Al molar ratio at 2/1 was first dry ground for 2 h and then agitated in water or methyl orange solution for another 4 h to obtain the LDH and MO-LDH products without any heating operation. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). The products showed high crystallinity phase of Cu-Al and MO intercalated Cu-Al LDH with no evident impurities, proving that the craft introduced here was facile and effective. The new idea can be applied in other fields to produce organic-inorganic composites. - Highlights: • A facile mechanochemical route to synthesize Cu-Al and MO intercalated Cu-Al LDH. • The products possesses high crystalline of LDH phase with no impure phases. • The dry milling process induces the element substitution between the raw materials. • The agitation operation helps the grain growth of LDH.

  13. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    Science.gov (United States)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Novel Tetrahydrocannabinol Electrochemical Nano Immunosensor Based on Horseradish Peroxidase and Double-Layer Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Dingqiang Lu

    2016-10-01

    Full Text Available In the current study, a novel double-layer gold nanoparticles-electrochemical immunosensor electrode immobilized with tetrahydrocannabinol (THC antibody derived from Balb/c mice was developed. To increase the fixed quantity of antibodies and electrochemical signals, an electrochemical biosensing signal amplification system was utilized with gold nanoparticles-thionine-chitosan absorbing horseradish peroxidase (HRP. In addition, a transmission electron microscope (TEM was used to characterize the nanogold solution. To evaluate the quality of the immunosensor, the amperometric I-t curve method was applied to determine the THC in PBS. The results showed that the response current had a good linear correlation with the THC concentration range from 0.01~103 ng/mL with a correlation coefficient of 0.9986. The lowest detection limit for THC was 3.3 pg/mL (S/N = 3. Moreover, it was validated with high sensitivity and reproducibility. Apparently, the immunosensor may be a very useful tool for monitoring the THC.

  15. Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Dessislava Kostadinova

    2016-12-01

    Full Text Available Increasing attention has been devoted to the design of layered double hydroxide (LDH-based hybrid materials. In this work, we demonstrate the intercalation by anion exchange process of poly(acrylic acid (PAA and three different hydrophilic random copolymers of acrylic acid (AA and n-butyl acrylate (BA with molar masses ranging from 2000 to 4200 g mol−1 synthesized by reversible addition-fragmentation chain transfer (RAFT polymerization, into LDH containing magnesium(II and aluminium(III intralayer cations and nitrates as counterions (MgAl-NO3 LDH. At basic pH, the copolymer chains (macroRAFT agents carry negative charges which allowed the establishment of electrostatic interactions with the LDH interlayer and their intercalation. The resulting hybrid macroRAFT/LDH materials displayed an expanded interlamellar domain compared to pristine MgAl-NO3 LDH from 1.36 nm to 2.33 nm. Depending on the nature of the units involved into the macroRAFT copolymer (only AA or AA and BA, the intercalation led to monolayer or bilayer arrangements within the interlayer space. The macroRAFT intercalation and the molecular structure of the hybrid phases were further characterized by Fourier transform infrared (FTIR and solid-state 13C, 1H and 27Al nuclear magnetic resonance (NMR spectroscopies to get a better description of the local structure.

  16. Mechanochemical synthesis of dodecyl sulfate anion (DS-) intercalated Cu-Al layered double hydroxide

    Science.gov (United States)

    Qu, Jun; He, Xiaoman; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-12-01

    Dodecyl sulfate anion (DS-) was successfully intercalated into the gallery space of Cu-Al layered double hydroxides (LDH) by a non-heating mechanochemical route, in which basic cupric carbonate (Cu2(OH)2CO3) and aluminum hydroxide (Al(OH)3) were first dry ground and then agitated in SDS solution under ambient environment. The organics modified Cu-Al LDH showed good adsorption ability toward 2,4-dichlorophenoxyacetic acid (2, 4-D). The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), CHS elemental analysis and Scanning electron microscopy (SEM). The LDH precursor prepared by ball-milling could directly react with SDS molecules forming a pure phase of DS- pillared Cu-Al LDH, which was not observed with the LDH product through the ion-exchange of DS- at room temperature. The process introduced here may be applied to manufacture other types of organic modified composites for pollutants removal and other applications.

  17. New Insights into CO2 Adsorption on Layered Double Hydroxide (LDH)-Based Nanomaterials

    Science.gov (United States)

    Tang, Nian; He, Tingyu; Liu, Jie; Li, Li; Shi, Han; Cen, Wanglai; Ye, Zhixiang

    2018-02-01

    The interlamellar spacing of layered double hydroxides (LDHs) was enlarged by dodecyl sulfonate ions firstly, and then, (3-aminopropyl)triethoxysilane (APS) was chemically grafted (APS/LDHs). The structural characteristics and thermal stability of these prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflectance Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TG), and elemental analysis (EA) respectively. The CO2 adsorption performance was investigated adopting TG and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results presented that the CO2 adsorption capacity on APS/LDHs was as high as 90 mg/g and showed no obvious reduction during a five cyclic adsorption-desorption test, indicating its superior performance stability. The DRIFTS results showed that both carbamates and weakly bounded CO2 species were generated on APS/LDHs. The weakly adsorbed species was due to the different local chemical environment for CO2 capture provided by the surface moieties of LDHs like free silanol and hydrogen bonds.

  18. Methotrexate intercalated layered double hydroxides with the mediation of surfactants: Mechanism exploration and bioassay study

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chao-Fan; Tian, De-Ying; Li, Shu-Ping, E-mail: lishuping@njnu.edu.cn; Li, Xiao-Dong

    2015-12-01

    Methotrexatum intercalated layered double hydroxides (MTX/LDHs) hybrids were synthesized by the co-precipitation method and three kinds of nonionic surfactants with different hydrocarbon chain lengths were used. The resulting hybrids were then characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). XRD and FTIR investigations manifest the successful intercalation of MTX anions into the interlayer of LDHs. TEM graphs indicate that the morphology of the hybrids changes with the variation of the chain length of the surfactants, i.e., the particles synthesized using polyethylene glycol (PEG-7) present regular disc morphology with good monodispersity, while samples with the mediation of alkyl polyglycoside (APG-14) are heavily aggregated and samples with the addition of polyvinylpyrrolidone (PVP-10) exhibit irregular branches. Furthermore, the release and bioassay experiments show that monodisperse MTX/LDHs present good controlled-release and are more efficient in the suppression of the tumor cells. - Highlights: • Surfactants could be used to modify the dispersing state of MTX/LDHs hybrids. • Surfactants have great effect on the morphology of MTX/LDHs hybrids. • MTX/LDHs with good monodisperse degree are more efficient in the suppression of the tumor cells.

  19. Synthesis and characterization of 10-hydroxycamptothecin - sebacate - layered double hydroxide nanocomposites

    Science.gov (United States)

    Pang, Xiujiang; Ma, Xiuming; Li, Dongxiang; Hou, Wanguo

    2013-02-01

    10-Hydroxycamptothecin (HCPT) as a hydrophobic anticancer drug brings many challenges in the clinical applications due to its poor water solubility and the presence of a chemically unstable lactone ring. In this work, the nanocomposites of HCPT intercalated layered double hydroxide (LDH) were prepared by a secondary intercalation method, and the encapsulated HCPT could keep the biologically active lactone form. A Zn-Al-NO3 LDH was pillared with sebacate anions by a co-precipitation method in an aqueous medium, and then HCPT was intercalated into the LDH's gallery via hydrophobic interaction in an ethanol medium. The parallel alkyl chains of perpendicularly arranged sebacate anions in the LDH gallery provide a hydrophobic space for the drug intercalation. The in vitro release kinetics of HCPT from the nanocomposites could be fitted with the pseudo-second-order kinetic model, and the diffusion of HCPT through the LDH particles played an important role in controlling the drug release. The nanocomposites can be considered as a potential drug delivery system.

  20. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents.

    Science.gov (United States)

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; Hoke, Thomas; Ucar, Huseyin; Moyer, Bruce A; Harrison, Stephen

    2017-11-21

    We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.

  1. An all-solid-state electrochemical double-layer capacitor based on a plastic crystal electrolyte

    Directory of Open Access Journals (Sweden)

    Ali eaabouimrane

    2015-08-01

    Full Text Available A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C4H94NPF6, (10 molar % with succinonitrile, SCN, (N C−CH2−CH2−C N, [SCN-10%TBA-PF6]. The resultant waxy material shows a plastic crystalline phase that extend from -36 °C up to its melting at 23 °C. It shows a high ionic conductivity reaching 4 × 10−5 S/cm in the plastic crystal phase (15 °C and ~ 3 × 10−3 S/cm in the molten state (25 °C. These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC. The EDLC was assembled and its performance was tested by cyclic voltammetry, AC impedance spectroscopy and galvanostatic charge-discharge methods. Specific capacitance values in the range of 4-7 F/g. (of electrode active material were obtained in the plastic crystal phase at 15 °C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  2. Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.

    Science.gov (United States)

    Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun

    2016-01-01

    In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The Adsorption of Dextranase onto Mg/Fe-Layered Double Hydroxide: Insight into the Immobilization

    Directory of Open Access Journals (Sweden)

    Yi Ding

    2018-03-01

    Full Text Available We report the adsorption of dextranase on a Mg/Fe-layered double hydroxide (Mg/Fe-LDH. We focused the effects of different buffers, pH, and amino acids. The Mg/Fe-LDH was synthesized, and adsorption experiments were performed to investigate the effects. The maximum adsorption occurred in pH 7.0 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid (HEPES buffer, and the maximum dextranase adsorption uptake was 1.38 mg/g (416.67 U/mg; histidine and phenylalanine could affect the adsorption. A histidine tag could be added to the protein to increase the adsorption significantly. The performance features and mechanism were investigated with X-ray diffraction patterns (XRD and Fourier transform infrared spectra (FTIR. The protein could affect the crystal structure of LDH, and the enzyme was adsorbed on the LDH surface. The main interactions between the protein and LDH were electrostatic and hydrophobic. Histidine and phenylalanine could significantly affect the adsorption. The hexagonal morphology of LDH was not affected after adsorption.

  4. Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant.

    Science.gov (United States)

    Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha

    2018-01-30

    Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.

  5. Layered double hydroxides functionalized with anionic surfactant: Direct electrochemistry and electrocatalysis of hemoglobin

    International Nuclear Information System (INIS)

    Li Maoguo; Chen Shuihong; Ni Fang; Wang Yinling; Wang Lun

    2008-01-01

    Direct electrochemistry of hemoglobin (Hb), which was immobilized on the glass carbon electrode (GCE) modified with Zn-Al layered double hydroxide (LDH) functionalized with sodium dodecylsulfonate (SDS), was investigated. The resulting electrode (Hb/LDH-SDS/GCE) gave a well-defined redox couple for HbFe(III)/Fe(II) with a formal potential of about -0.34 V (vs. AgCl/Ag) in pH 7.0 buffer. The electron-transfer rate constant was estimated to be 2.6 s -1 . The Hb/LDH-SDS/GCE exhibited a remarkable electrocatalytic activity for the reduction of hydrogen peroxide (H 2 O 2 ). The low calculated apparent Michaelis-Menten constant (K M app ) was 456 μM. Based on the high catalytic activity of Hb immobilized on LDH-SDS modified electrode to the reduction of H 2 O 2 , LDH functionalized with SDS is expected to have widely potential applications for development of new biosensors and biocatalysis

  6. Ion Acceleration by Double Layers with Multi-Component Ion Species

    Science.gov (United States)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  7. An Optical Wavefront Sensor Based on a Double Layer Microlens Array

    Directory of Open Access Journals (Sweden)

    Hsiang-Chun Wei

    2011-10-01

    Full Text Available In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin, the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution.

  8. Synthesis, characterization, and controlled release antibacterial behavior of antibiotic intercalated Mg–Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [Shandong Provincial Key Lab of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Zhang, Dun, E-mail: zhangdun@qdio.ac.cn [Shandong Provincial Key Lab of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China)

    2012-11-15

    Graphical abstract: The antibiotic anion released from Mg–Al LDHs provides a controlled release antibacterial activity against the growth of Micrococcus lysodeikticus in 3.5% NaCl solution. Highlights: ► Antibiotic anion intercalated LDHs were synthesized and characterized. ► The ion-exchange one is responsible for the release process. ► The diffusion through particle is the release rate limiting step. ► LDHs loaded with antibiotic anion have high antibacterial capabilities. -- Abstract: Antibiotic–inorganic clay composites including four antibiotic anions, namely, benzoate (BZ), succinate (SU), benzylpenicillin (BP), and ticarcillin (TC) anions, intercalated Mg–Al layered double hydroxides (LDHs) were synthesized via ion-exchange. Powder X-ray diffraction and Fourier transform infrared spectrum analyses showed the successful intercalation of antibiotic anion into the LDH interlayer. BZ and BP anions were accommodated in the interlayer region as a bilayer, whereas SU and TC anions were intercalated in a monolayer arrangement. Kinetic simulation of the release data indicated that ion-exchange was responsible for the release process, and the diffusion through the particles was the rate-limiting step. The antibacterial capabilities of LDHs loaded with antibiotic anion toward Micrococcus lysodeikticus growth were analyzed using a turbidimetric method. Significant high inhibition rate was observed when LDH nanohybrid was introduced in 3.5% NaCl solution. Therefore, this hybrid material may be applied as nanocontainer in active antifouling coating for marine equipment.

  9. Biocompatible nanocomposite of carboxymethyl cellulose and functionalized carbon-norfloxacin intercalated layered double hydroxides.

    Science.gov (United States)

    Allou, N'guadi Blaise; Yadav, Archana; Pal, Mintu; Goswamee, Rajib Lochan

    2018-04-15

    In recent years, the development of systems with progressive drug release properties, which is an effective technique for the use of drugs, has aroused great interest in the field of controlled release formulations. In this work, hybrid materials containing citric acid cross-linked carboxymethyl cellulose (CMC) and norfloxacin (NOR) intercalated layered double hydroxide (LDH) deposited over the surface of functionalized carbon (AC) were prepared. The synthesized CMC@AC-LDHNOR nanohybrids were characterized using different techniques and in vitro NOR release behaviors were investigated in phosphate buffer saline, pH 7.4 at 37 °C. On the basis of the release profiles, it was found that NOR release was delayed when it was intercalated in AC-LDH which in presence of modified CMC decreases further. The nanohybrids indicated enhancement of antibacterial activity against gram-negative and gram-positive bacteria. The MTT assay showed their non-toxic behavior against ovarian normal epithelial and cancer cells, suggesting their potential use as drug carriers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Synthesis of Fluorinated Graphene/CoAl-Layered Double Hydroxide Composites as Electrode Materials for Supercapacitors.

    Science.gov (United States)

    Peng, Weijun; Li, Hongqiang; Song, Shaoxian

    2017-02-15

    CoAl-layered double hydroxide/fluorinated graphene (CoAl-LDH/FGN) composites were fabricated via a two-step hydrothermal method. The synthesized CoAl-LDH/FGN composites have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and electrochemical measurements. The results indicated that the fluorinated carbon with various configuration forms were grafted onto the framework of graphene, and the C-F bond configuration and fluorine content could be tuned by the fluorination time. Most of semi-ionic C-F bonds were formed at an appropriate fluorination time and, then, converted into fluorine rich surface groups (such as CF 2 , CF 3 , etc.) which were electrochemically inactive as the fluorination time prolonged. Moreover, the CoAl-LDH/FGN composites prepared at the optimal fluorination time exhibited the highest specific capacitance (1222 F/g at 1 A/g), the best rate capability, and the most stable capacitance retention, which offered great promise as electrode materials for supercapacitors.

  11. Synergistic Effect of Cobalt and Iron in Layered Double Hydroxide Catalysts for the Oxygen Evolution Reaction.

    Science.gov (United States)

    Yang, Fengkai; Sliozberg, Kirill; Sinev, Ilya; Antoni, Hendrik; Bähr, Alexander; Ollegott, Kevin; Xia, Wei; Masa, Justus; Grünert, Wolfgang; Cuenya, Beatriz Roldan; Schuhmann, Wolfgang; Muhler, Martin

    2017-01-10

    Co-based layered double hydroxide (LDH) catalysts with Fe and Al contents in the range of 15 to 45 at % were synthesized by an efficient coprecipitation method. In these catalysts, Fe 3+ or Al 3+ ions play an essential role as trivalent species to stabilize the LDH structure. The obtained catalysts were characterized by a comprehensive combination of surface- and bulk-sensitive techniques and were evaluated for the oxygen evolution reaction (OER) on rotating disk electrodes. The OER activity decreased upon increasing the Al content for the Co- and Al-based LDH catalysts, whereas a synergistic effect in Co- and Fe-based LDHs was observed, which resulted in an optimal Fe content of 35 at %. This catalyst was spray-coated on Ni foam electrodes and showed very good stability in a flow-through cell with a potential of approximately 1.53 V at 10 mA cm -2 in 1 m KOH for at least 48 h. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction.

    Science.gov (United States)

    Zhou, Peng; Wang, Yanyong; Xie, Chao; Chen, Chen; Liu, Hanwen; Chen, Ru; Huo, Jia; Wang, Shuangyin

    2017-08-22

    Water splitting is promising for energy storage and conversion, but the sluggish oxygen evolution reaction (OER) hinders its wide application. The search for efficient and low-cost electrocatalysts for oxygen evolution has been pursued owing to their significance for green energy generation and storage. Layered Double Hydroxide (LDH) based materials are promising for the OER to improve this weakness. However, the wide application of LDHs is limited by their electronic properties and active sites. Here we report a simple and promising method to improve the OER catalytic activity via an acid-base reaction, which resulted in an exfoliation process and multiple defects including Co, Fe and O vacancies. The acid etched LDHs exhibit better oxygen evolution performance than the pristine LDHs under alkaline conditions with a small Tafel slope and good durability. The acid etching improves the electronic structure and provides more active sites, which results in significant enhancement of OER activity. This work will open up a novel and inexpensive way to improve the catalytic performance in an alkaline substance.

  13. Highly Efficient Iodine Capture by Layered Double Hydroxides Intercalated with Polysulfides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shulan; Islam, Saiful M.; Shim, Yurina; Gu, Qingyang; Wang, Pengli; Li, Hao; Sun, Genban; Yang, Xiaojing; Kanatzidis, Mercouri G.

    2014-12-23

    We demonstrate strong iodine (I-2) vapor adsorption using Mg/Al layered double hydroxide (MgAl-LDH) nanocomposites intercalated with polysulfide (S-x(2-)) groups (S-x-LDH, x = 2, 4, 6). The as-prepared LDH/polysulfide hybrid materials display highly efficient iodine capture resulting from the reducing property of the intercalated polysulfides. During adsorption, the I-2 molecules are reduced to I-3(-) anions by the intercalated [S-x](2-) groups that simultaneously are oxidized to form S8. In addition to the chemical adsorption, additional molecular I-2 is physically captured by the LDH composites. As a result of these parallel processes, and despite their very low BET surface areas, the iodine capture capacities of S-2-LDH, S-4-LDH, and S-6-LDH are similar to 1.32, 1.52, and 1.43 g/g, respectively, with a maximum adsorption of 152% (wt %). Thermogravimetric and differential thermal analysis (TG-DTA), energy dispersive X-ray spectroscopy (EDS), and temperature-variable powder X-ray diffraction (XRD) measurements show the resulting I-3(-) ions that intercalated into the LDH gallery have high thermal stability (>= 350 degrees C). The excellent iodine adsorption performance combined with the facile preparation points to the S-x-LDH systems as potential superior materials for adsorption of radioactive iodine, a waste product of the nuclear power industry.

  14. Prediction of TOC based on pre-stack inversion and double hidden layer BP neural network

    Science.gov (United States)

    Jiang, Xu-dong; Cao, Jun-xing; Cai, Zi-wei

    2017-11-01

    In the study of shale oil and gas reservoirs prediction, the total organic carbon content (TOC) is one of the important indexes to evaluate its hydrocarbon generation capability. Therefore, an accurate method for predicting TOC is particularly significant. Strong correlation between TOC and seismic sensitive parameters are obtained by the intersection analysis including density, shear modulus and Young's modulus. The double hidden layer BP neural network is used to study the measured TOC data and the high sensitive seismic parameters relationship, and then build the prediction network. The parameters of density, Young's modulus and shear modulus can be obtained directly by prestack elasticity parameters inversion. By using the established network, the prediction results of TOC in the study area were obtained. We found the correlation between the prediction results and the measured TOC is as high as 0.97, and the overall distribution also is satisfied with the geological depositional rule of the Sichuan Basin, China. Field data application demonstrates our method and its effectiveness. The proposed method can also improve the prediction precision and reliability of TOC.

  15. Comparative study of the coprecipitation methods for the preparation of Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Crepaldi Eduardo L.

    2000-01-01

    Full Text Available Coprecipitation is the method most frequently applied to prepare Layered Double Hydroxides (LDHs. Two variations of this method can be used, depending on the pH control conditions during the precipitation step. In one case the pH values are allowed to vary while in the other they are kept constant throughout coprecipitation. Although research groups have their preferences, no systematic comparison of the two variations of the coprecipitation method is available in the literature. On this basis, the objective of the present study was to compare the properties of LDHs prepared using the two forms of pH control in the coprecipitation method. The results showed that even though coprecipitation is easier to perform under conditions of variable pH values, materials with more interesting properties, from the point of view of technological applications, are obtained at constant pH. Higher crystallinity, smaller particle size, higher specific surface area and higher average pore diameter were found for materials obtained by coprecipitation at constant pH, when compared to the materials obtained at variable pH.

  16. The Adsorption of Dextranase onto Mg/Fe-Layered Double Hydroxide: Insight into the Immobilization

    Science.gov (United States)

    Ding, Yi; Liu, Le; Fang, Yaowei; Zhang, Xu; Lyu, Mingsheng; Wang, Shujun

    2018-01-01

    We report the adsorption of dextranase on a Mg/Fe-layered double hydroxide (Mg/Fe-LDH). We focused the effects of different buffers, pH, and amino acids. The Mg/Fe-LDH was synthesized, and adsorption experiments were performed to investigate the effects. The maximum adsorption occurred in pH 7.0 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, and the maximum dextranase adsorption uptake was 1.38 mg/g (416.67 U/mg); histidine and phenylalanine could affect the adsorption. A histidine tag could be added to the protein to increase the adsorption significantly. The performance features and mechanism were investigated with X-ray diffraction patterns (XRD) and Fourier transform infrared spectra (FTIR). The protein could affect the crystal structure of LDH, and the enzyme was adsorbed on the LDH surface. The main interactions between the protein and LDH were electrostatic and hydrophobic. Histidine and phenylalanine could significantly affect the adsorption. The hexagonal morphology of LDH was not affected after adsorption. PMID:29562655

  17. Defect-Rich Ultrathin Cobalt-Iron Layered Double Hydroxide for Electrochemical Overall Water Splitting.

    Science.gov (United States)

    Liu, Peng Fei; Yang, Shuang; Zhang, Bo; Yang, Hua Gui

    2016-12-21

    Efficient and durable electrocatalysts from earth-abundant elements play a vital role in the key renewable energy technologies including overall water splitting and hydrogen fuel cells. Here, generally used CoFe based layered double hydroxides (LDHs) were first delaminated and exfoliated in the DMF-ethanol solvent (CoFe LDH-F), with enhancement both in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The exfoliation process creates more coordinatively unsaturated metals and improves the intrinsic electronic conductivity, which is important in water electrolyzer reactions. In the basic solution, the CoFe LDH-F catalyst outperforms the commercial iridium dioxide (IrO 2 ) electrocatalyst in activity and stability for OER and approaches the performance of platinum (Pt) for HER. The bifunctional electrocatalysts can be further used for overall water splitting, with a current density of ∼10 mA/cm 2 at the applied voltage of 1.63 V for long-term electrolysis test, rivalling the performance of Pt and IrO 2 combination as benchmarks. Our findings demonstrate the promising catalytic activity of LDHs for scale-up alkaline water splitting.

  18. Starch Biocatalyst Based on α-Amylase-Mg/Al-Layered Double Hydroxide Nanohybrids.

    Science.gov (United States)

    Bruna, Felipe; Pereira, Marita G; Polizeli, Maria de Lourdes T M; Valim, João B

    2015-08-26

    The design of new biocatalysts through the immobilization of enzymes, improving their stability and reuse, plays a major role in the development of sustainable methodologies toward the so-called green chemistry. In this work, α-amylase (AAM) biocatalyst based on Mg3Al-layered double-hydroxide (LDH) matrix was successfully developed with the adsorption method. The adsorption process was studied and optimized as a function of time and enzyme concentration. The biocatalyst was characterized, and the mechanism of interaction between AAM and LDH, as well as the immobilization effects on the catalytic activity, was elucidated. The adsorption process was fast and irreversible, thus yielding a stable biohybrid material. The immobilized AAM partially retained its enzymatic activity, and the biocatalyst rapidly hydrolyzed starch in an aqueous solution with enhanced efficiency at intermediate loading values of ca. 50 mg/g of AAM/LDH. Multiple attachments through electrostatic interactions affected the conformation of the immobilized enzyme on the LDH surface. The biocatalyst was successfully stored in its dry form, retaining 100% of its catalytic activity. The results reveal the potential usefulness of a LDH compound as a support of α-amylase for the hydrolysis of starch that may be applied in industrial and pharmaceutical processes as a simple, environmentally friendly, and low-cost biocatalyst.

  19. Electrical Double-Layer Capacitors in Hybrid Topologies —Assessment and Evaluation of Their Performance

    Directory of Open Access Journals (Sweden)

    Joeri Van Mierlo

    2012-11-01

    Full Text Available PHEVs and BEVs make use of battery cells optimized for high energy rather than for high power. This means that the power abilities of these batteries are limited. In order to enhance their performance, a hybrid Rechargeable Energy Storage System (RESS architecture can be used combining batteries with electrical-double layer capacitors (EDLCs. Such a hybridized architecture can be accomplished using passive or active systems. In this paper, the characteristics of these topologies have been analyzed and compared based on a newly developed hybridization simulation tool for association of lithium-ion batteries and EDLCs. The analysis shows that the beneficial impact of the EDLCs brings about enhanced battery performances in terms of energy efficiency and voltage drops, rather than extension of vehicle range. These issues have been particularly studied for the passive and active hybrid topologies. The classical passive and active topologies being expensive and less beneficial in term of cost, volume and weight, a new hybrid configuration based on the parallel combination of lithium-ion and EDLCs on cell level has been proposed in this article. This topology allows reducing cost, volume, and weight and system complexity in a significant way. Furthermore, a number of experimental setups have illustrated the power of the novel topology in terms of battery capacity increase and power capabilities during charging and discharging. Finally, a unique cycle life test campaign demonstrated that the lifetime of highly optimized lithium-ion batteries can be extended up to 30%–40%.

  20. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor

    Science.gov (United States)

    Hao, Zhi-Qiang; Cao, Jing-Pei; Wu, Yan; Zhao, Xiao-Yan; Zhuang, Qi-Qi; Wang, Xing-Yong; Wei, Xian-Yong

    2017-09-01

    Waste sugar solution (WSS), which contains abundant 2-keto-L-gulonic acid, is harmful to the environment if discharged directly. For value-added utilization of the waste resource, a novel process is developed for preparation of porous carbon spheres by hydrothermal carbonization (HTC) of WSS followed by KOH activation. Additionally, the possible preparation mechanism of carbon spheres is proposed. The effects of hydrothermal and activation parameters on the properties of the carbon sphere are also investigated. The carbon sphere is applied to electric double-layer capacitor and its electrochemical performance is studied. These results show that the carbon sphere obtained by HTC at 180 °C for 12 h with the WSS/deionized water volume ratio of 2/3 possess the highest specific capacitance under identical activation conditions. The specific capacitance of the carbon spheres can reach 296.1 F g-1 at a current density of 40 mA g-1. Besides, excellent cycle life and good capacitance retention (89.6%) are observed at 1.5 A g-1 after 5000 cycles. This study not only provides a facile and potential method for the WSS treatment, but also achieves the high value-added recycling of WSS for the preparation of porous carbon spheres with superior electrochemical properties.

  1. Study on the adsorption of DNA on the layered double hydroxides (LDHs)

    Science.gov (United States)

    Li, Bin; Wu, Pingxiao; Ruan, Bo; Liu, Paiyu; Zhu, Nengwu

    2014-03-01

    Four kinds of layered double hydroxides (LDHs) were prepared by chemical coprecipitation method and used as DNA adsorbents. Multiple characterization tools such as power X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Standard electronic modules (SEM) were employed to characterize the LDHs. By examining the effect of initial concentration, solution pH, adsorption experiments were carried out to investigate the adsorption capacities of LDHs for DNA. The results revealed that the LDHs with Mg/Al = 3 had higher ability on adsorbing the DNA and were not affected by pH values. The LDHs exhibited excellent adsorption properties and completely adsorbed DNA within 2 h. The adsorption equilibrium data were fitted to the Langmuir and Freundlich models, showing that the Langmuir model which represented monolayer adsorption had better correlation with the adsorption linear equation. In addition, Circular dichroism (CD) spectrum, UV-vis spectorscopy and agarose gel electrophoresis revealed the integrity of DNA structure, suggesting that there had no damage on the DNA structure during the adsorption process.

  2. Organo-layered double hydroxides composite thin films deposited by laser techniques

    Science.gov (United States)

    Birjega, R.; Vlad, A.; Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M.; Zavoianu, R.; Raditoiu, V.; Corobea, M. C.

    2016-06-01

    We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn2+/Al3+ ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  3. Immobilization of layered double hydroxides in the fluidic system for nanoextraction of specific DNA molecules

    Science.gov (United States)

    Chen, Jem-Kun; Chan, Chia-Hao; Chang, Feng-Chih

    2008-02-01

    The purpose of this study was to immobilize inorganic layered double hydroxides (LDHs) on the poly(methylmethacrylate) substrate as the media to extract the specific DNA molecules through fluidic system to enhance the efficiency of extract specific DNA molecules from extremely low concentration in sample solution. LDH immobilized through solvent swelling and plasma treatment on the polymer surface captured the specific DNA molecules lysed from Escherichia coli (E. coli) cells as the target DNA molecules with 2×10-4g/l of concentration in sample solution mixed biomacromolecules lysed from human blood. The encapsulated DNA molecules released through dissolving of LDHs by slight acid (pH=4-5) solution then amplified by polymerase chain reaction (PCR) process through the primers for E. coli cells. The DNA molecules amplified by PCR process were characterized by gel electrophoresis to recognize the existence of E. coli cells. The results show that immobilized LDHs could be regarded as the specific DNA detector for rapid disease diagnosis through fluidic system.

  4. Nanoplasmonic sensing of metal-halide complex formation and the electric double layer capacitor.

    Science.gov (United States)

    Dahlin, Andreas B; Zahn, Raphael; Vörös, Janos

    2012-04-07

    Many nanotechnological devices are based on implementing electrochemistry with plasmonic nanostructures, but these systems are challenging to understand. We present a detailed study of the influence of electrochemical potentials on plasmon resonances, in the absence of surface coatings and redox active molecules, by synchronized voltammetry and spectroscopy. The experiments are performed on gold nanodisks and nanohole arrays in thin gold films, which are fabricated by improved methods. New insights are provided by high resolution spectroscopy and variable scan rates. Furthermore, we introduce new analytical models in order to understand the spectral changes quantitatively. In contrast to most previous literature, we find that the plasmonic signal is caused almost entirely by the formation of ionic complexes on the metal surface, most likely gold chloride in this study. The refractometric sensing effect from the ions in the electric double layer can be fully neglected, and the charging of the metal gives a surprisingly small effect for these systems. Our conclusions are consistent for both localized nanoparticle plasmons and propagating surface plasmons. We consider the results in this work especially important in the context of combined electrochemical and optical sensors. This journal is © The Royal Society of Chemistry 2012

  5. Ion-acoustic double layers in magnetized positive-negative ion plasmas with nonthermal electrons

    Science.gov (United States)

    El-Labany, S. K.; Sabry, R.; El-Taibany, W. F.; Elghmaz, E. A.

    2012-07-01

    The nonlinear ion-acoustic double layers (IADLs) in a warm magnetoplasma with positive-negative ions and nonthermal electrons are investigated. For this purpose, the hydrodynamic equations for the positive-negative ions, nonthermal electron density distribution, and the Poisson equation are used to derive a modified Zakharov-Kuznetsov (MZK) equation, in the small amplitude regime. It is found that compressive and rarefactive IADLs strongly depend on the mass and density ratios of the negative-to-positive ions as well as the nonthermal electron parameter. Also, it is shown that there are one critical value for the density ratio of the negative-to-positive ions ( ν), the ratio between unperturbed electron-to-positive ion density ( μ), and the nonthermal electron parameter ( β), which decide the existence of positive and negative IADLs. The present study is applied to examine the small amplitude nonlinear IADL excitations for the (H+, O2-) and (H+,H-) plasmas, where they are found in the D- and F-regions of the Earth's ionosphere. This investigation should be helpful in understanding the salient features of the nonlinear IADLs in either space or laboratory plasmas where two distinct groups of ions and non-Boltzmann distributed electrons are present.

  6. Ionic elastomers based on carboxylated nitrile rubber (XNBR and magnesium aluminum layered double hydroxide (hydrotalcite

    Directory of Open Access Journals (Sweden)

    A. Laskowska

    2014-06-01

    Full Text Available The presence of carboxyl groups in carboxylated nitrile butadiene rubber (XNBR allows it to be cured with different agents. This study considers the effect of crosslinking of XNBR by magnesium aluminum layered double hydroxide (MgAl-LDH, known also as hydrotalcite (HT, on rheometric, mechano-dynamical and barrier properties. Results of XNBR/HT composites containing various HT loadings without conventional curatives are compared with XNBR compound crosslinked with commonly used zinc oxide. Hydrotalcite acts as an effective crosslinking agent for XNBR, as is particularly evident from rheometric and Fourier transform infrared spectroscopy (FTIR studies. The existence of ionic crosslinks was also detected by dynamic mechanical analysis (DMA of the resulting composites. DMA studies revealed that the XNBR/HT composites exhibited two transitions – one occurring at low temperature is associated to the Tg of elastomer and the second at high temperature corresponds to the ionic transition temperature Ti. Simultaneous application of HT as a curing agent and a filler may deliver not only environmentally friendly, zinc oxide-free rubber product but also ionic elastomer composite with excellent mechanical, barrier and transparent properties.

  7. Equilibrium and Thermodynamic Studies of Anionic Dyes Removal by an Anionic Clay-Layered Double Hydroxide

    International Nuclear Information System (INIS)

    Kantasamy, N.; Siti Mariam Sumari

    2016-01-01

    Adsorption isotherm describes the interaction of adsorbates with adsorbent in equilibrium. Equilibrium data was examined using Langmuir and Freundlich isotherm models. Thermodynamic studies were used to evaluate the thermodynamic parameters; heat of enthalpy change (ΔH degree), Gibbs free energy change (ΔG degree) and heat of entropy change (ΔSdegree) in order to gain information regarding the nature of adsorption (exothermic or endothermic). Four reactive dyes of anionic type, Acid Blue 29 (AB29), Reactive Black 5 (RB5), Reactive Orange 16 (RO16) and Reactive Red 120 (RR120) were used to obtain equilibrium isotherms at 25, 35, 45 and 55 degree Celsius. Based on Giles' classification, the isotherm produced were of L2-type, indicating strong dye affinity towards the adsorbent, and with weak competition with the solvent molecules for active adsorption sites. Equilibrium data fitted both Langmuir and Freundlich isotherm models with high correlation coefficient (R 2 > 0.91) indicating the possibility of both homogeneity and heterogeneous nature of adsorption. The negative values of ΔGdegree indicate the adsorption processes were spontaneous and feasible. The negative values of ΔHdegree lie between -20 to -75 kJ/ mol, suggesting these processes were exothermic and physical in nature. The negative values of ΔSdegree are indication of decreased disorder and randomness of spontaneous adsorption of reactive dyes on layered double hydroxide as adsorbent. (author)

  8. Novel route for layered double hydroxides preparation by enzymatic decomposition of urea

    Science.gov (United States)

    Vial, S.; Prevot, V.; Forano, C.

    2006-05-01

    This study presents a new route for the preparation of a series of layered double hydroxide materials with controlled textural properties. It concerns the biogenesis of hydrotalcite like phases by Jack bean urease through the enzymatic decomposition process of urea. Different conditions of LDH biogenesis are investigated (urease activity, urea concentration). A comparative study with the precipitation method based on the thermal decomposition of urea (90 °C) is conducted in order to asses the effect of the various urea hydrolysis conditions (kinetic, temperature) and the presence of enzyme in the reaction medium on the structural and textural properties of the as prepared LDH materials. Mechanisms of formation of the LDH phases for both synthesis processes are discussed on basis of their pH control. The PXRD and SEM analysis of samples prepared by the thermal process evidence higher crystallinity and greater particle sizes than LDH obtained in mild biogenic conditions. In the latter case, presence of urease or effect of some M(II) metals may inhibit the crystallization.

  9. Electric Double-Layer Capacitor Module with Series-Parallel Reconfigurable Cell Voltage Equalizers

    Science.gov (United States)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    When electric double-layer capacitors (EDLCs) are connected in series, cell voltage imbalance that results due to non-uniform cell properties is observed. Cell voltage imbalance should be minimized to prolong cycle lives and maximize the available energy of cells. In this study, we propose a series-parallel reconfigurable cell voltage equalizer that is considered suitable for energy-storage systems using EDLCs instead of traditional secondary batteries as main energy-storage sources. The proposed equalizer requires only EDLCs and switches as its main circuit elements, and it utilizes EDLCs not only for energy storage but also for equalization. An equivalent circuit model using equivalent resistors that can be regarded as an index of equalization speed is developed. Current distribution and cell voltage imbalance during operation are quantitatively generalized. Experimental charge-discharge tests were performed for EDLC modules to demonstrate the performance of the cell voltage equalizer. All the cells in the modules could be charged/discharged uniformly even when a degradation-mimicking cell was intentionally included in the module. The resultant cell voltage imbalances and current distributions were in good agreement with those predicted by mathematical analyses.

  10. Mesoscopic Oxide Double Layer as Electron Specific Contact for Highly Efficient and UV Stable Perovskite Photovoltaics.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Giordano, Fabrizio; Zakeeruddin, Shaik Mohammed; Grätzel, Michael

    2018-03-15

    The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7%, exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE toward the Shockley-Queisser limit of 33.5% warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO 2 nanoparticles covered by a thin film of SnO 2 , either in amorphous (a-SnO 2 ), crystalline (c-SnO 2 ), or nanocrystalline (quantum dot) form (SnO 2 -NC). We find that the band gap of a-SnO 2 is larger than that of the crystalline (tetragonal) polymorph leading to a corresponding lift in its conduction band edge energy which aligns it perfectly with the conduction band edge of both the triple cation perovskite and the TiO 2 scaffold. This enables very fast electron extraction from the light perovskite, suppressing the notorious hysteresis in the current-voltage ( J-V) curves and retarding nonradiative charge carrier recombination. As a result, we gain a remarkable 170 mV in open circuit photovoltage ( V oc ) by replacing the crystalline SnO 2 by an amorphous phase. Because of the quantum size effect, the band gap of our SnO 2 -NC particles is larger than that of bulk SnO 2 causing their conduction band edge to shift also to a higher energy thereby increasing the V oc . However, for SnO 2 -NC there remains a barrier for electron injection into the TiO 2 scaffold decreasing the fill factor of the device and lowering the PCE. Introducing the a-SnO 2 coated mp-TiO 2 scaffold as electron extraction layer not only increases the V oc and PEC of the solar cells but also render them resistant to UV light which forebodes well for outdoor deployment of these new PSC architectures.

  11. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    Science.gov (United States)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  12. Effect of double-layer application on dentin bond durability of one-step self-etch adhesives.

    Science.gov (United States)

    Taschner, M; Kümmerling, M; Lohbauer, U; Breschi, L; Petschelt, A; Frankenberger, R

    2014-01-01

    The aim of this in vitro study was 1) to analyze the influence of a double-layer application technique of four one-step self-etch adhesive systems on dentin and 2) to determine its effect on the stability of the adhesive interfaces stored under different conditions. Four different one-step self-etch adhesives were selected for the study (iBondSE, Clearfil S(3) Bond, XenoV(+), and Scotchbond Universal). Adhesives were applied according to manufacturers' instructions or with a double-layer application technique (without light curing of the first layer). After bonding, resin-dentin specimens were sectioned for microtensile bond strength testing in accordance with the nontrimming technique and divided into 3 subgroups of storage: a) 24 hours (immediate bond strength, T0), b) six months (T6) in artificial saliva at 37°C, or c) five hours in 10 % NaOCl at room temperature. After storage, specimens were stressed to failure. Fracture mode was assessed under a light microscope. At T0, iBond SE showed a significant increase in microtensile bond strength when the double-application technique was applied. All adhesive systems showed reduced bond strengths after six months of storage in artificial saliva and after storage in 10% NaOCl for five hours; however at T6, iBond SE, Clearfil S(3) Bond, and XenoV(+) showed significantly higher microtensile bond strength results for the double-application technique compared with the single-application technique. Scotchbond Universal showed no difference between single- or double-application, irrespective of the storage conditions. The results of this study show that improvements in bond strength of one-step self-etch adhesives by using the double-application technique are adhesive dependent.

  13. Enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target

    Directory of Open Access Journals (Sweden)

    Yanling Ji

    2018-02-01

    Full Text Available An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.

  14. Enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target

    Science.gov (United States)

    Ji, Yanling; Duan, Tao; Zhou, Weimin; Li, Boyuan; Wu, Fengjuan; Zhang, Zhimeng; Ye, Bin; Wang, Rong; Wu, Chunrong; Tang, Yongjian

    2018-02-01

    An enhanced long-distance transport of periodic electron beams in an advanced double layer cone-channel target is investigated using two-dimensional particle-in-cell simulations. The target consists of a cone attached to a double-layer hollow channel with a near-critical-density inner layer. The periodic electron beams are generated by the combination of ponderomotive force and longitudinal laser electric field. Then a stable electron propagation is achieved in the double-layer channel over a much longer distance without evident divergency, compared with a normal cone-channel target. Detailed simulations show that the much better long-distance collimation and guidance of energetic electrons is attributed to the much stronger electromagnetic fields at the inner wall surfaces. Furthermore, a continuous electron acceleration is obtained by the more intense laser electric fields and extended electron acceleration length in the channel. Our investigation shows that by employing this advanced target, both the forward-going electron energy flux in the channel and the energy coupling efficiency from laser to electrons are about threefold increased in comparison with the normal case.

  15. Experimental results: Pilot plant calcine dissolution and liquid feed stability

    International Nuclear Information System (INIS)

    Herbst, R.S.; Fryer, D.S.; Brewer, K.N.; Johnson, C.K.; Todd, T.A.

    1995-02-01

    The dissolution of simulated Idaho Chemical Processing Plant pilot plant calcines, containing none of the radioactive actinides, lanthanides or fission products, was examined to evaluate the solubility of calcine matrix materials in acidic media. This study was a necessary precursor to dissolution and optimization experiments with actual radionuclide-containing calcines. The importance of temperature, nitric acid concentration, ratio of acid volume to calcine mass, and time on the amount, as a weight percentage of calcine dissolved, was evaluated. These parameters were studied for several representative pilot plant calcine types: (1) Run No. 74 Zirconia calcine; (2) Run No. 17 Zirconia/Sodium calcine; (3) Run No. 64 Zirconia/Sodium calcine; (3) Run No. 1027 Alumina calcine; and (4) Run No. 20 Alumina/Zirconia/Sodium calcine. Statistically designed experiments with the different pilot plant calcines indicated the effect of the studied process variables on the amount of calcine dissolved decreases in the order: Acid/Calcine Ratio > Temperature > HNO 3 Concentration > Dissolution Time. The following conditions are suitable to achieve greater than 90 wt. % dissolution of most Zr, Al, or Na blend calcines: (1) Maximum nitric acid concentration of 5M; (2) Minimum acid/calcine ratio of 10 mL acid/1 gram calcine; (3) Minimum dissolution temperature of 90 degrees C; and (4) Minimum dissolution time of 30 minutes. The formation of calcium sulphate (CaSO 4 ) precipitates was observed in certain dissolved calcine solutions during the dissolution experiments. Consequently, a study was initiated to evaluate if and under what conditions the resulting dissolved calcine solutions would be unstable with regards to precipitate formation. The results indicate that precipitate formation in the calcine solutions prepared under the above proposed dissolution conditions are not anticipated

  16. The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer with non-equilibrium model.

    Directory of Open Access Journals (Sweden)

    Zhixin Yang

    Full Text Available The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer is studied when the fluid and solid phase are not in local thermal equilibrium. The modified Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the fluid and solid phases separately. The effect of thermal non-equilibrium on the onset of double diffusive convection is discussed. The critical Rayleigh number and the corresponding wave number for the exchange of stability and over-stability are obtained, and the onset criterion for stationary and oscillatory convection is derived analytically and discussed numerically.

  17. Formation and properties of the buried isolating silicon-dioxide layer in double-layer “porous silicon-on-insulator” structures

    Energy Technology Data Exchange (ETDEWEB)

    Bolotov, V. V.; Knyazev, E. V.; Ponomareva, I. V.; Kan, V. E., E-mail: kan@obisp.oscsbras.ru; Davletkildeev, N. A.; Ivlev, K. E.; Roslikov, V. E. [Russian Academy of Sciences, Omsk Scientific Center, Siberian Branch (Russian Federation)

    2017-01-15

    The oxidation of mesoporous silicon in a double-layer “macroporous silicon–mesoporous silicon” structure is studied. The morphology and dielectric properties of the buried insulating layer are investigated using electron microscopy, ellipsometry, and electrical measurements. Specific defects (so-called spikes) are revealed between the oxidized macropore walls in macroporous silicon and the oxidation crossing fronts in mesoporous silicon. It is found that, at an initial porosity of mesoporous silicon of 60%, three-stage thermal oxidation leads to the formation of buried silicon-dioxide layers with an electric-field breakdown strength of E{sub br} ~ 10{sup 4}–10{sup 5} V/cm. Multilayered “porous silicon-on-insulator” structures are shown to be promising for integrated chemical micro- and nanosensors.

  18. A comparative study between different approaches to improve the RCS of a compact double-layer absorber

    Science.gov (United States)

    El-Hakim, H. A.; Mahmoud, K. R.

    2017-10-01

    In this paper, straightforward and efficient techniques have been addressed into double-layer structure to enlarge the operating bandwidth to include the X, Ku and K bands, in addition to increase the electromagnetic wave absorption for wide varieties of incident angles and both polarization types. To increase the band-stop resonating frequency up to 26 GHz, an additional layer of meta-surface, circuit analog radar absorber material (CAR), or a thin radar absorber material (RAM) layer is engineered. The synthesized layers are designed based on optimization process with genetic algorithm (GA) through numerical technique (Ansoft design software HFSS) for both transmission line (T.L) and the free space method to get optimal material properties suitable for the design. For different approaches, the designed structures achieved a reflectivity value less than -16 dB on average in the desired bandwidth from 8 to 26 GHz for TE/TM modes with incidence angle up to 50o.

  19. Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: A density functional approach

    Science.gov (United States)

    Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.; Sushko, Maria L.; Marucho, Marcelo

    2014-05-01

    In this article, we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry, and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids [J. Chem. Phys. 124, 154506 (2006); Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)]. It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the mean spherical approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry, and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that

  20. Fast Response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C(2)H(2).

    Science.gov (United States)

    Cai, Minzhen; Outlaw, Ronald A; Quinlan, Ronald A; Premathilake, Dilshan; Butler, Sue M; Miller, John R

    2014-06-24

    The growth and electrical characteristics of vertically oriented graphene nanosheets grown by radio frequency plasma-enhanced chemical vapor deposition from C2H2 feedstock on nickel substrates and used as electrodes in symmetric electric double layer capacitors (EDLC) are presented. The nanosheets exhibited 2.7 times faster growth rate and much greater specific capacitance for a given growth time than CH4 synthesized films. Raman spectra showed that the intensity ratio of the D band to G band versus temperature initially decreased to a minimum value of 0.45 at a growth temperature of 750 °C, but increased rapidly with further temperature increase (1.15 at 850 °C). The AC specific capacitance at 120 Hz of these EDLC devices increased in a linear fashion with growth temperature, up to 265 μF/cm(2) (2 μm high film, 850 °C with 10 min growth). These devices exhibited ultrafast frequency response: the frequency response at -45° phase angle reached over 20 kHz. Consistent with the increase in D band to G band ratio, the morphology of the films became less vertical, less crystalline, and disordered at substrate temperatures of 800 °C and above. This deterioration in morphology resulted in an increase in graphene surface area and defect density, which, in turn, contributed to the increased capacitance, as well as a slight decrease in frequency response. The low equivalent series resistance varied from 0.07 to 0.08 Ω and was attributed to the significant carbon incorporation into the Ni substrate.